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ABSTRACT

The paper proposes a diagnosis approach corresponding to
the specific MES level to provide information on the origins
of a performance indicator degradation. Our key distribution
is the proposal of a set of potential causes that may impact
the successful completion of production operations, such as
the operator stress, quality of material, equipment or recipe
change and their characteristic parameters by exploiting MES
historical database. We use Bayesian Network model to di-
agnose the potential failure causes and support effective hu-
man decisions on corrective actions (maintenance, human re-
source planning, recipe re-qualification, etc) by computing
conditional probabilities for each suspected proposed causes.

1. INTRODUCTION

Nowadays in a highly competitive and complex production
environment with wide range products, manufacturers must
be equipped with precise knowledge of the production sys-
tems via data analysis tools to support their process control.
The information system like Manufacturing Execution Sys-
tem (MES) is designed for this requirement. MES is as a
bridge between the Enterprise Resource Planning (ERP) and
the local control, integrating several functions to control a
production system based today on a standard data base (IEC,
2003). The MES solutions editor offers generic functions
such as recipe management, execution production, traceabil-
ity or performance analysis. The genericity is based on pa-
rametered functions that guarantee a cheaper and faster de-
ployment. MES solutions collect and record a growing num-
ber of production data especially with the development of uni-
tary traceability (as Fig. 1).

Ngoc-Hoang Tran et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Figure 1. Manufacturing Execution System.

However, the exploitation of MES historical data is often lim-
ited to the calculations of Key Performance Indicators (KPI),
such as Overall Equipment Effectiveness (OEE). Today, the
evolution analysis of these indicators is performed by the users
(operator, team leader, manager and directors) based on their
knowledge on the production system and especially their ex-
pertise. In the complex and high variability context, the re-
quired time for these manual analysis becomes incompatible
with production requirements. To support human in the anal-
ysis of performance indicators drifts, we propose in this paper
a new generic and configurable diagnosis function based on
production data collected and stored by the MES.

This paper focuses on proposing a set of potential causes
which have most impact to performance indicators degrada-
tion and how to characterize them by analyzing MES data
and recalling industrial expert’s experience. In order to repre-
sent these cause and their failure modes on complex context
of MES, probabilistic approaches such as Bayesian Network
(BN) are well-suited techniques to build a diagnosis model
based on MES data, the proposed approach enables online
diagnosis for corrective actions after learning historical data
phase.

The diagnosis objective and its targets are introduced in the
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next section. The problems are presented in section 3. Sec-
tion 4 presents identified potential causes and propose of their
characterized parameters according to our hypotheses of us-
ing unique MES database. Based that, BN diagnosis is pro-
posed in section 5 to present identified variables relationship
(failures modes and cause) to explain performance indicator
drifts. At the end of this paper, the conclusion and future
works are discussed.

2. MES DIAGNOSIS OBJECTIVES

Our global objective is to provide information on the origins
of an OEE indicator’s degradation (out of the threshold value)
and to help making the best decision for all user categories
(operator, team leader, supervisor and director) as described
in Fig. 2. We focus on the difference between the measured
OEE and the threshold value.

Figure 2. The distance between measured OEE and threshold
value.

In order to achieve this purpose, we will begin with the def-
inition of failure modes and sources causes in the following
two subsections and basis to the determination of our chosen
scientific problems for this paper.

2.1. Failure Modes

In fact, the OEE is consist of three component indicators:
Availability, Performance and Quality which can be calcu-
lated on different time periods (hour, day, week, month, and
year) and is described in Fig. 3 (Piétrac et al., 2011). In that
way, the Availability, Performance and Quality drift are con-
sidered as three failure modes at the MES level.

According to Fig. 3, the Availability indicator correspond to
the percentage of scheduled time the operation is available
(with absence of downtime events in production process) to
the total planned production time (with downtime losses).
The Performance indicator represents the actual speed of the
equipment as related to the design speed of the equipment.
It is calculated as the number of total manufactured pieces
divided to the product of operating time and theoretical ca-
dence. Finally, the Quality indicator is the percentage of the

Figure 3. Overall Equipment Effectiveness Formula.

good pieces to the total manufactured pieces.

In fact, the downtime losses which are the observed occur-
rences of events related to changes of state of the system
are usually configured and measured via the OEE data in-
side MES data model. However they are considered as the
secondary causes or intermediate causes but not the origin
causes. Moreover, they do not support operators to explain
Performance/ Quality indicator degradation on the analyze
phase which become more difficult in incertitude and vari-
ability context. This present an example of the fact that his-
torical MES data is not exploited to its full potential.

2.2. Sources Causes

In manufacturing context, these KPIs depend naturally on
the performed result of production operation (operating time,
quantity and quality of manufactured product). In our frame-
work, the MES production station is generally represented by
5 important elements that impact the successful completion
of production operations such as the operator (human factor),
material, equipment, recipe and planning (as in Fig. 4). They
are referred to in our paper as root causes. Any change of one
of these elements may lead to changes of production process
performance at both positively and negatively.

Figure 4. Important elements of MES production station.

Indeed, to achieve the global objective, MES diagnosis objec-
tive is to model and determine the relationship between fail-
ure modes and these causes as in Fig. 5. Naturally, it opens
to the scientific problems of this paper and our contribution,
presented in the next section.
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Figure 5. Diagnosis objective definition.

3. PROBLEMS

The scientific problems are organized in two different phases.
The first phase is the identification of a set of variables to
characterized root causes (such as the required qualification
(skill) or experience of operators, work plan or health of equip-
ment, quality of material, etc). They also represent the macro-
scopic results corresponding to the specific MES production
station context. This is complemented with the determination
of all the parameters that allow to characterize these variables
on the different time horizons by using unique MES data.

Figure 6. Problems.

In the second phase, we determine a well suited technique
to exploit the rich MES database to model the relationship
between these proposed failure modes and variables linked to
root causes. Based on that, learning approach as BN is used
to represent the cause-effect relationship and to evaluate the
suspect level of variable by their probabilities after learning
behavior of the production system.

4. FAILURE CAUSES OF MES

This section present a set of proposed potential causes vari-
ables around the sources causes such as the equipment (sec-
tion 4.1), context production/planning (section 4.2), opera-
tor (section 4.3), recipe (section 4.4) and material (section
4.5) by calling for the industrial experience to help determine
phase. This section also presents the characterization of these
causes from the database of MES on the different time hori-
zons (hour, day, week, month, and year). This section will be
closed by the analysis diagnosis in order to model these rela-
tions of proposed causes and failures modes and localize the

root causes by exploiting the historical production data MES.

4.1. Equipment Health index (EH)

The health situation of equipment is an important factor be-
hind poor product quality (Abu-Samah et al., 2015; Nguyen
et al., 2016). Therefore, we consider the Equipment Health
(EH) as a important cause that impact the product quality and
performance. In addition, the poor Equipment Health (EH)
such as occurrence of breakdown event on equipment nat-
urally impacts the availability indicator degradation (defini-
tion in OEE formula). So, how can we estimate the health of
equipment level?

In order to respond this question, (Chen & Wu, 2007) evalu-
ate the machine condition by observing the distribution of the
machine parameters readings and comparing it against pre-
defined machine specifications by Machine Capacity Index
(MCI) indicator. The distance between observed and usual
reading data parameters represents the deviation from its pre-
defined target. It provides an easy reading of the equipment
current operating condition. However, in this complex and
ambiguous MES context, the number of equipment parame-
ter is very large (such as in semi-conductor: millions sensors,
and hundreds operations), it is difficult to compute the MCI,
and worse in the case of incomplete data. Indeed, MCI is not
well suited with the macroscopic level analysis (workstation)
of our objective diagnosis.

In this complex context, (Bouaziz et al., 2011) proposed Equip-
ment Health Factor (EHF) which is characterized by the prob-
ability of failure mode occurrence on equipment EHF =
P(FM\Observations). Based on the FMEA (Failure Modes
and Effects Analysis) table, a BN model is structured with the
failure modes, the root causes and parameters of equipment.
By exploiting the historical production data, this model es-
timates the distribution probability to provide the last result
EHF. This way, EHF can handle complex big data and even
in the incomplete data case. Moreover, with the probabil-
ity result (within 0 to 1), we can estimate several Equipment
Health levels (ex: very low, low, normal, good and very good)
to show better description of these causes. In addition, the
quantity of necessary data to calculate EHF is available in
the MES data model consist of historical production events,
FMEA, maintenance events which was defined by the norm
IEC 62264. Therefore, the estimation of EHF by MES data is
possible.

However, (Bouaziz et al., 2011) proposed EHF as an indicator
to predict the possibility of occurrence of FM on equipment
at any instant (t). Therefore, in order to more pertinent and an
active using in our case the Equipment Health (EH) should be
calculated on different time periods (hour, day, week, month,
and year) according to the purpose of users. We propose to
estimate HE on any period (X) such as Fig. 7 by the average of
all discretion instants of that period. In which X= [t0 → tn].
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Figure 7. Estimated formula of EH by utilization EHF model.

According this figure, the HE on period (X) is estimated by:

HE(X)= the average of {EHF(t0), ..., EHF(tn)}

By this way, the HE is calculated on the different production
periods (hours, day, week, month and year) depend on each
of EHF(t). However, because of nature of learning phase,
it needs a set of quantity sufficient data to calculate exactly
probabilities (minimum 1000 learning samples). Therefore,
it is necessary to know that the estimation EHF will be better
on the long production periods such as week, month or year,
several years .

4.2. Workload production Rate (WR) and mix produc-
tion (Mix)

In highly competitive production environments which are con-
strained by rapid products and technologies changes, the equip-
ment’s can be often operated at their full capacities (Hubac &
Zamai, 2013). Indeed, stressful work-flow where direct vari-
ability frequently and strongly influences the equipment per-
formance, availability and quality product (Said et al., 2016).
If that’s happen in a long time, these will cause the perfor-
mance degradation indicators which are considered failures
modes in our work.

Figure 8. The proposed estimated WR and Mix formation.

In order to estimate workload production rate (WR) and mix-
production (Mix) level, (Duong et al., 2013) monitor the quan-
tity of manufactured product, number type of product with
quality product rate by a statistical technique where apply
on a lot production in semi-conductor. By the same way,
(Hohmann, 2011) propose to estimate the WR by comparing
the quantity of manufactured product into a considered hori-
zon production with maximal production capacity. Both of
two are limited on their knowledge on the production system
and especially their expertise.

Based on these works, we propose the estimated formation
of these causes in the Fig. 8 with the similarity variables via
OEE data inside MES data-model. These variables could be
discretized by getting the average value in the preparing data
phase and they are also measured on different time periods (1
hour, 8 hours, day, week, month, and year) to according to
measured period of failure mode or OEE.

4.3. Human Level Experience (HLE), Fatigue Physical Hu-
man Level (FPHL) and Human Stress Level (HSL)

4.3.1. Human Level Experience (HLE)

Human behavior is an important and indispensable factor for
the complex production process. However, they are poten-
tial source of disturbances because of lack of global vision
on their decisions or the mistakes in their tasks. For exam-
ple (Cacciabue, 2004; Nguyen et al., 2016) demonstrate in-
effectiveness of human could cause production quality prob-
lem. In this context, we consider the Human Level Experi-
ence (HLE) as a failure cause impact to the performance and
quality degradation.

In (Vemer et al., 2003), the HLE is defined as an acquisition
of operational execution production knowledge over a long
period of exercise activity on a workplace however this work
does not give any specific way to measure HLE. To estimate
this cause (HLE), we propose two way to estimate:

• Based on the definition of (Vemer et al., 2003), on the Fig. 9
we want to define the factors to estimate this cause. With α,
x, β are the parameters which have determined by the learn-
ing phase the reference production data of one reference ex-
pert operator. This idea is very useful and well applied in the
example as follows (in Fig. 10) with short calculation period
(ex: 4 hours) consider a 6 years production data of several op-
erator, each work shift is 4 hours with one operator and we get
a table of correspond quality indicator consider as Performed
level. With the determined , x, (assume), by reasoning via

the equivalence ratio:
x

β
=

t

α
=
beginning

expert
. With (t) is an

instant in which estimate HLE.

In order to determine parameter α, x, β in this example, we
analyse evolution of performance cadence of each operator
on each 4 hours correspond to a work shift in Fig. 11. In
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Figure 9. Estimate HLE by work time.

Figure 10. Example.

this case, the performance cadence could be calculated by the
number of assemblage piece divided by performance period
(4 hours). In fact, it is very obvious to find that the experience
of operator is linear with the quantity of manufactured pieces.
Then we determine the parameters:

+ x: correspond to cadence level of operator who is in first
day on the workstation. Or we can estimate x as the lowest
cadence level of operator on the first day of each operator.

+ β: correspond to cadence level of operator who has longest
time on the workstation. Or we can estimate β as the highest
cadence level of operator by observation their evolution.

+ α: correspond to duration whereas is intersect of most of
evolution curves after they crossovers the β.

Based on this figure, the experience operator level of operator
is defined according to his production time (t).

• Based on the reference model of personnel defined by IEC
62264 standard (page 92-93 of Part 1), we determine a set
of parameter that impact to HLE factor: personnel, class per-
sonnel, personnel priority, class personnel priority, test speci-
fication priority, test specification result which were available
on MES data. In addition, via the first idea and the definition
of HLE, we must consider the indispensable temporal fac-
tor. Consequently, we consider on a model to present set of
determined parameters (stochastic variables) and also tempo-
ral factor such as Dynamic Bayes Network (DBN). On con-

Figure 11. Example of experience curve.

text without hidden variable, we propose to estimate HLE by
DBN in Fig. 12 base on its advantages of inference (diagno-
sis or prognosis) and also treatment incomplete data (Oliver
& Horvitz, 2005):

Figure 12. Estimate HLE by DBN.

This way, the HLE will be estimated by the probability of
good performance indicators (OEE) knowing set of parameter
on considered instant θt2 and performance indicators on the
past instant θt1.

HLE = P(Perf.θt2 = good \ Parasθt2 , P erf.θt1 ).

In fact, this formula is well applied in (Duong et al., 2013) to
estimate the Confidence of Reported Information CLFI. With
probability within 0→1, we estimate HLE in plural moral
values depending on users (beginner/intermediate and expert
or good/normal and poor). With this DBN model, the HLE
could be calculated in the different periods (hours, day, week,
month or year) by different learning phase period. For ex-
ample in Fig. 10 we estimate on a day period parameter Per-
sonnel ={ABC, DBF, ADC, FEB, etc} and Class personnel
={Class (ABC), Class (DBF), etc}. With two ideas to esti-
mate for HLE, the choice is remaining to users according to
their type of industrial purpose.
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4.3.2. Fatigue Physical Human Level (FPHL) and Human
Stress Level (HSL)

On the human factor, beside HLE cause, we also consider the
Fatigue Physical Level and Stress Level as the failure causes
which may increase the manufacturing risk. In fact, FPHL
and HSL impact labor behavior which was symptom of the
degradation performance indicators (Cacciabue, 2004). In
this section, we present the FPHL and follows by the HSL. In
literature, the FPHL is defined as the fatigue level appeared by
physiological way of human body after a work period. In our
manufacturing context, (Lan et al., 2003) propose to explain
the factors impact to fatigue by a static model BN (Fig. 13).
In reality, it is very difficult to estimate FPHL (or HSL) be-
cause each operator has different physical condition and dif-
ferent support capacity. Therefore, our framework does not
contain physical condition and assume that work condition as
a normal manufacturing environment.

Figure 13. Static model BN to explain fatigue.
(Lan et al., 2003)

a) In our manufacturing context, sleep time data and phys-
ical condition data will never exist in historical produc-
tion data. Therefore, we propose to replace them to suit
the MES production data using the break time for opera-
tor (ie: lunchtime, holiday, vacancy) when operators stop
their works to relax. Based on that, we consider to esti-
mate the work environment by WR and Mix variables.
The relation between fatigue level and working time was
proposed Pareto analysis by (McCulloch et al., 2007) as
Fig. 14.
α and β were defined as the standard break and work-
ing time of operator. In France, α and β were proposed
by (International Labour Conference, 2005) as 2 hours
break/ 8 hours working on a working-day or 18 hours
break/35 hours working on a week. We also measure
them on the different production periods base on this por-
tion. This way, we propose estimate the FPHL by the
following formation:
- Fatigue= [(β ≤ x) ∪ (y ≤ α)] ∩ [(Mix = high) ∩ (WR=
high)].

Figure 14. Relation between Fatigue Physical and
break/working time.

- Normal= [(x < β) ∩ (y > α)] ∪ [(Mix= low) ∩ (WR=
low)].
In which, x and y as working and break time on a consid-
ered production period of a operator or even a team/group.
In this case, they could be measured by taking the aver-
age of break/working time for each operator.

b) HSL on the other hand present the fatigue of human but
in the side mental health: stress. The HSL is also defined
in (Lan et al., 2003) as the effect of WR and Mix but also
a complex level of work type.

Figure 15. Relation between the stress of operator and com-
plex work level.

Fig. 15 is proposed by (McCulloch et al., 2007) to present
the relation between complex levels with HSL (stress of
operator). In which n1, n2, n3 and n4 as the complex
work levels. They could be estimated by Pareto analysis
with the number of operation of equipment, because the
more complex, the more number operation to execute. In
another way, they could also be defined by expert by the
operating mode of equipment. According to Fig. 15, the
HSL can be estimated by the following formation:
- High= [z≥ n4 ∩ z≤ n1] ∪ [WR=high ∪Mix=high]
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- Normal= [(n1 <z< n2) ∩ (n3 <z< n4)] ∪ [WR=low
∩Mix=low].
- Low= [n2 ≤ z≤ n3] ∪ [WR=low ∪Mix=low].
(With z is complex work level of considered equipment).

In reality, FPHL and HSL are two sides of operator capacity,
they are involved together. When you feel stress because of
work you will easily fatigue, and opposite.

4.4. Recipe Change (RC)

The concept of recipe is widely used in the manufacturing
systems. The recipe is often developed by the R&D and qual-
ified on equipment before using on production system. The
control recipe often consists: the production schedule, the
multi-purpose plant description and executable control recipe
is presented in (Genrich et al., 1994). In reality, the oversights
during the design phase or transition phase lead to poor prod-
uct quality (Nguyen et al., 2016). At that transition phase,
the change recipe process which represent the change process
of number parameters on machine can lead to poor product
quality (nonconformity piece). Moreover, by Pareto analy-
sis (Duong et al., 2013) demonstrate that the RC have strong
impact to the product quality through increasing the equip-
ment drift. Therefore, we consider in this case the RC is an
important cause that produce the quality degradation.

Via (Genrich et al., 1994), we define a set of parameters which
present the most impact of change recipe: cadence (rate), in-
stallation machine time, number procedure, procedure ver-
sion, and product type (Meyer et al., 2009). Similar to infer-
ence in section 3.3, we model process change recipe by DBN
because of presentation temporal factor as Fig. 16.

Figure 16. Estimate RC by RBD.

This way, the RC will be estimated by the probability of good
piece (price conformity) knowing set of parameter on con-
sidered instant θt and quality of product on the past instant
θt−1. With a probability within 0→1, we estimate RC in plu-
ral moral values depend on users. In this work, we consider
RC with 3 moral values low, normal and high. Such as EHF,
the RC can be estimated on the different production periods

production data.

4.5. Raw Material Quality (MQ)

Material is one of the important external factor impact to pro-
duction operation, especially hazards of the characteristics of
the raw material or quality of the raw material. In fact, raw
material quality has a big effect on the physical product char-
acteristic that lead to poor quality product from a poor mate-
rial quality (Ashori & Nourbakhsh, 2008). Hence, correspond
to our macroscopic level analysis of our work, our objective
specify the impact level between material quality and a degra-
dation of OEE indicators on a considered production period.

Inside MES data model, the material model is defined by the
material lot/class, material definition, properties and material
specification (IEC 62264). Under which, material quality is
perhaps characterized by the QA (Quality Assurance) test re-
sult that represents report of good characteristic of a mate-
rial lot (ex: pass or fail). That way, a statistical technique is
used for estimating this cause from historical production data
in following formation. With probability, we considered this
cause in the plural morale (good/normal/bad ...).

MQ = P(Product = bad \QA− test− result = fail).

This way, QA can be estimated on the different production
periods.

5. DIAGNOSIS APPROACH BASED ON BAYESIAN NET-
WORK

Through section 2 and section 4 we defined the failure modes
and the potential causes in our case of MES. But how can we
model this cause and failure mode to show their relation in
order to specify the failure cause?

Based on a rich MES database, a method which can exploit
the historical production data to achieve our objective diag-
nosis will be the focus. Moreover, in the dynamic context,
that kind of method is well-suited with the variation product,
operators, and recipe, etc. in production context. In addition,
through the determined failures causes space we should focus
in how to evaluate suspected causes level between them and
how to describe exactly and dynamic their relations.

All these needs lead us to the probabilistic approaches. These
approaches can be performed without understanding the un-
derlying structure of a production system (Bouaziz et al., 2011).
Among the probabilistic approaches, we incline toward the
Bayesian Network (BN) which is widely used to identify a
graphical structure model that describes relationships between
variables in production system (Weber et al., 2012). More-
over, its conditional probabilities will be calculated by a learn-
ing phase to provide the risk priorities of causes and sup-
port corrective maintenance decisions (Nguyen et al., 2016).
However, a difficulty of BN is to identify the graphical struc-
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ture in complexity context of manufacturing system. Identifi-
cation of this graphical structure is often be performed by ex-
perts or can be learned from the data using many algorithms
such as K2, PC or Tabu. Consequently, our contribution in
section 5 define the relation between these proposed causes
and failures modes by transformation the relations of their
characteristics parameters in meta data model MES and pro-
pose suite cased BN model.

5.1. Established BN model

In order to establish BN model, 3 principal phases: identi-
fication variables, determine relation between variables and
determine BN probability law as proposed in (Bouaziz et al.,
2011). Following our study in these previous sections, our
BN model is developed basic on the set of proposed variables
that represented relation causes-effects corresponds to nodes
in the static Bayesian model with:

• Failure modes: As we mention, three failure modes are
correspond to three component OEE indicators: Avail-
ability, Performance and Quality. They could be mea-
sure likes continuous and discrete quantitative variables
on different production periods. In that case, we assume
that the state of these variables takes three values (good,
normal and bad) by their average value to indicate level
of indicators variances.

• Failure causes: these variables represent potential causes
in MES as mention in section 4. Their values have calcu-
lated by collecting their parameters from historical pro-
duction data. Therefore, they are often taken plural moral-
ities described under the formalization phase or discrete
values (good, normal or bad) by their probabilities.

Second phase, the task of determination relations between the
identified variables is often performed into two steps. First,
we define relations between nodes of the different families
(causes and failure modes) and second, we define links be-
tween the different variables nodes of each group.

In our cases, the first step is performed at definition phase of
each cause variable. For example, Equipment Health (EH)
is characterized by the failure modes and parameters of ma-
chine, so it impact to product quality (Bouaziz et al., 2011)
and machine availability or availability and quality indicators.
In addition, Workload Rate (WR) and product mix (Mix) are
represented by the number manufactured pieces, number se-
ries changes or series changes times of production that impact
to variant of performance and quality indicators (norm EF
60). Besides that, the operator mistakes lead to the failures on
products or production performance (Cacciabue, 2004; Nguyen
et al., 2016). Other means implies these cause consequence
relationships HLE, FPHL, HSL→ Performance and Quality
indicators. Therewith, basic on (Abu-Samah et al., 2015) and
(Ashori & Nourbakhsh, 2008), Change recipe (RC) and Ma-
terial Quality (MQ) may lead to poor product quality.

Second, in order to draw links between the different variables
nodes of each group, there is interface between human factor,
control recipe and equipment in context of a successful pro-
duction operation, presented in (Nguyen et al., 2016). Under
which, the oversights of human factors may lead to failure
on equipment and furthermore, the failure in design step or
change phase of recipe are also too. Moreover, they in fact
are provided by transformation relations between their pa-
rameters in standard data model MES. Indeed, failures op-
erator sources (HLE, FPHL, HSL) and failure recipe source
(RC) changes their characterized parameters likes work-plan
times, operations resources or production parameters who can
cause the variant of production data (events, measurement
or quality data) of equipment. In addition, there is also the
causes-consequence relationship in which Mix and WR af-
fect to FPHL and HSL as their estimated formulas in section
4.

Figure 17. Causal graph BN of identified nodes.

Based on the analysis of relationships between failure source
and identified failure modes, we propose in this section the
causal graph as presented in Fig. 17.

We take careful note these BN properties in our case as no
loops, no hidden node or absence of temporal properties. There-
fore, we consider Tree Augmented Naive Bayes (TAN) to
represent failure mode class has no child while each cause
node has maybe the parent class or a child. We take also a
strong assumption in this paper that all nodes take discrete
value and are observed to simply the practice phase.

5.2. Required data collection

The learning BN phase needs to have a table where each col-
umn corresponds to a node with each line records on a time
periods (either hour, day, week, month or year). In this phase,
we call to the industrial experience to determine the appro-
priated period to estimate these variables according to type
of industrial product, for example a week for semiconductor
or months for a medical product. Following we present in
Fig. 18 a collected data table example of AIP-RAO (educa-
tion manufacturing system) with day line production record.

8
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Figure 18. Production data table.

The production data table above is a collected production data
table example in 6 month at station 4 from MES-AIP data. In
which, the Availability, Performance and Quality indicators
are calculated on day, we assumed to estimate them by com-
paring with an objective indicators which is usually defined
by an industrial expert. These causes variables have estimated
according to their formula mention in section 4 on same day
periods.

5.3. Diagnosis approach Execution

In this section, we propose an algorithm to diagnosis from
the structure presented in Fig. 17, based on computing condi-
tional probabilities of this model. We started with data anal-
ysis to identify the relationships and impact on these perfor-
mances indicators of MES through the experience and knowl-
edge of experts who built the Bayesian Network structure
from the instantiated MES production data model as described
in Fig. 19. From now, the result of this diagnosis model will
be provided online after learning phase a considered produc-
tion data at where needs to explain the degradation perfor-
mance indicators.

Figure 19. The diagnosis approach execution.

By estimating the conditional probabilities of each compo-
nent (causes variables) with failure modes variables presented
in Fig 20. The final decision will be made by the suspected

Figure 20. Proposed approach algorithm.

components priorities.

Based on process data and the experts knowledge, we are now
able to provide necessary information to explain the degrada-
tion function of MES though by 3 component performance
indicators: Availability, Performance and Quality. This result
is a set of value between 0 and 1 that extends the first phase
of on-line diagnosis inference in MES level.

In addition, the diagnosis process is performed based on a BN
model in which a rich MES database has not deployed just to
analysis performance phase but also to characteristic the MES
potential causes even if in incomplete data case.

6. CONCLUSION

In this paper, we proposed at first the macroscopic analysis
corresponding to the specific MES level to provide maximum
information of the origins of an OEE degradation. Through
an analysis of MES standard data model who defines all the
production data on the basis of the ISA 95, we determined a
set of potential causes that may impact the successful comple-
tion of production operations such as the operator stress, qual-
ity material, equipment or change recipe, etc. This phase has
not only presented to identify the observable causes via stan-
dard data model of MES but also all the parameters that allow
to characterize these causes from the database of MES on the
different time horizons. Based on that, we used a BN model
to generate the associated probabilities on the identified struc-
ture BN to evaluate the suspect level of each proposed po-
tential fault origins. From that, the diagnosis results support

9
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quickly and right decision-making for corrective maintenance
activities in MES level. In next time, we focus on testing the
model on data collected from an experimental manufacturing
system in AIP-RAO. And next, we study to validate this fault
diagnosis approach in a real data of an industrial case MES to
improve optimization and accurate this model.
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