N

N

A Framework for Generating HT'TP Adaptive Streaming
Traffic in ns-3
William David Diego Maza

» To cite this version:

William David Diego Maza. A Framework for Generating HTTP Adaptive Streaming Traffic in ns-3.
SIMUTools - 9th EAI International Conference on Simulation Tools and Techniques - 2016, ACM
SIGSIM, Aug 2016, Prague, Czech Republic. hal-01362445

HAL Id: hal-01362445
https://hal.science/hal-01362445
Submitted on 10 Oct 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Copyright

https://hal.science/hal-01362445
https://hal.archives-ouvertes.fr

A Framework for Generating HTTP Adaptive Streaming
Traffic in ns-3

William Diego
Orange Labs
44 Avenue de la République
...92320 Chétillon, France
william.diego@orange.com

ABSTRACT

Video streaming is today one of the most relevant service
in mobile Internet, which represents around 50% of total
mobile data traffic. Consequently, researchers perform huge
efforts to design and propose new mechanisms and archi-
tectures to improve video streaming in mobile networks. In
this regard, simulation is a relevant step to test and vali-
date those new mechanisms and models. ns-3 is one models
of the most widely used network simulator due to its rich
library of network and its vast user community. Despite
of its relevance, ns-3 lacks of realistic traffic source. This
paper presents a HTTP Adaptive Streaming traffic genera-
tor framework for mobile networks in ns-3. Its design and
validation are presented, as well as some possible evolution
directions and future works.

Categories and Subject Descriptors

1.6 [Simulation and Modeling]: General, Model Devel-
opment, Model Validation and analysis; C.2.2 [Computer
Networks]|: Applications— YouTube traffic model, perfor-
mance measures

Keywords

Video Streaming, HAS, YouTube, ns-3 simulator, Internet
traffic

1. INTRODUCTION

Video streaming is growing faster and today represents a
large fraction of global Internet data traffic. Recent traf-
fic reports as [2], [7] and [1] show that video streaming ac-
counted for around 40 — 60% of fixed data traffic and ac-
counted for 50% of mobile data traffic. HTTP Adaptive
Streaming (HAS) video is primarily driven by over-the-top
(OTT) providers as YouTube, which is the dominant actor
of video streaming in many regions and typically accounting
for 50 — 70% of total video traffic volume.

Due to the prohibitively high costs of a physical commu-
nication network (e.g. servers, routers, etc), simulation is an
important stage for network traffic research as it provides the
necessary tools to study new protocols and models, at least
during the initial stages. Thus, there exists an obvious crit-
ical need for realistic traffic generators. In this sense, ns-3,
which is an open-source simulator, proposes a large range
of resources to study communication technologies, proto-
cols and models. ns-3 provides great flexibility and today is
widely employed in the academic research community. Nev-
ertheless, ns-3 is relatively new and today it proposes some
basic traffic generator models (e.g. on-off traffic model). In
some cases some works propose interesting traffic models to
ns-3 as those described in [3,5,15].

In this paper we propose a framework for generating HAS
traffic in ns-3 and evaluate its performance. Our framework
imitates YouTube traffic behaviour and is based on recent
works related to mobile YouTube traffic characterization.

2. BACKGROUND AND RELATED WORK

2.1 YouTube Characteristics

Most popular video streaming services (i.e. YouTube,
Netflix) use HAS. HAS, split up media (i.e. video) into a
series of small files called chunks, which are then encoded us-
ing different video qualities as shown in Figure 1 [12]. Each
chunk is transmitted individually as a single web object via
plain HTTP. In the course of playout of the video, the client
continuously assess available bandwidth and requests succes-
sive chunks for the data rate that can be supported. Typi-
cally, the client keeps a buffer of chunks to deal with eventual
network issues (e.g. latency, packet loss, connection loss).

High
resolution

(1 Tube}

Video request
(video ID, itag, range) }

Original Video
File

Clients
YouTube Servers

Low
resolution

Video re-encoding and encapsulation
(itag assignation)

Figure 1: YouTube video service

In order to provide compatibility with all browsers, de-
vices, bandwidth and quality requirements, a wide range of
encoding for every video file is available for clients, which can
be selected according needed. Besides, a numerical identifier
named "itag” is used in order to identify different encoding
schemes of a video. The itag information is included in the
HTTP requests. Moreover each chunk is transmitted in-
dividually as a single web object via plain HTTP. During
the playout of the video, the client continuously estimates
available bandwidth and requests chunks for the data rate
that can be supported as shown in Fig. 2. The client try to
keep a buffer of video data to deal with eventual network
issues (e.g. latency, packet loss, connection loss), in order to

Video Chunks

perform it, a buffering strategy is necessary.
Example ‘
) (D(D(D(D (D(D
resolution
itag 93

- 1D [0ia

- BEN- BOLD
o g 151 (IR CEIIDD) ~ (DIDIE

000 DOoO0O

Figure 2: YouTube video streaming strategy

2.2 YouTube Buffer Management

The video buffering strategy is a key element on video
streaming because it could permit the optimization of net-
work resources (i.e. bandwidth, radio resources) or in the
worst case reduce the wastage of it. Below is a brief de-
scription of most used video buffering strategy, which are
described in [8,12-14]:

e Standard buffering: In standard buffering strategy
the device receives all video traffic (i.e. chunks) and
keep data in the buffer until it is full. At this point,
playback of the video starts and the video application
tries to keep the buffer full along the video playback,
in this regard the device will request to server the
needed video data. In case the network condition are
disturbed and the instant bandwidth goes below the
value required for the video, the buffer data is used to
fill the gap. In worst case when the buffer is empty, the
video is interrupted until new video data are buffered.

e Dual-threshold buffering: In case of mobile net-
works, the standard buffering strategy is vulnerable to
bandwidth drops, as well as being unable to exploit a
increase of bandwidth. Dual-threshold buffering strat-
egy is more flexible and try to fill the gaps of standard
buffering strategy. It provides a resilience to data rate
fluctuations or other adverse conditions associates to
nature of wireless media.

In the dual-threshold buffering strategy an initial buffer-
ing is performed before the playback of the video, which
consists of filling a first threshold B,in (lower thresh-
old) in the buffer. In this strategy, instead of trying

to keep the buffer full to this min level Bj,in, it tries
to fill the buffer to a second higher level By,a, (upper
threshold). These additional video data will be useful
if the network connection encounters temporary im-
pairments. In worst case when the buffer is empty,
the video playout can start after a short pre-loading
time. Also, in case of an increase of data rate, a bigger
buffering of video chunks to counteract the possibility
of network malfunctions can be performed. Details of
dual-threshold buffering are shown in Figure 3

2.3 YouTube Traffic Models

We can find several YouTube measurement studies in liter-
ature. Much of them were focused on characterizing various
aspects of YouTube videos, as well as its usage patterns and
its strategy depending on supported hardware and software
of terminals. But only few of these studies are focused in
mobile YouTube traffic characterization.

In [10] authors analyze YouTube and Netflix video stream-
ing using iOS and Android devices over wireless networks
(WiFi, 3G and LTE). They found that when a client re-
quests a video, the resolution is selected based on the device
types (screen size), regardless of OSs on the devices or ac-
cess networks. They also found that video players frequently
terminated the TCP connection and open a new TCP con-
nection to continue receiving the video content. The num-
ber of TCP connections varies depending on the playback
buffer management policies of the video players running on
different OSs. In [11] the above authors propose dynamic
QoS-aware rules for LTE networks to select an appropriate
video resolution under a fluctuating channel condition, in
order to reduce the waste of the video content and enhance
the QoE for end-users. They also found that YouTube uses
a single TCP connection, which is opened and closed along
the video streaming.

In [4] authors present an empirical study of the perfor-
mance of YouTube in cellular networks. Is showed that
the complex and dynamic CDN (Content Delivery Network)
architecture of YouTube has better service performance in
video over cellular networks in terms of improved QoE (de-
lay and throughput) and user engagement compared to other
CDNs providing HTTP video streaming.

In [9] authors analyze and compare the performance when
Android and iOS devices are accessing Internet streaming
services.

Is very hard to identify a valid reference of YouTube traffic
characterization, because it is constantly evolving. In this
paper we try to present an state-of-art of YouTube and high-
light the most important evolutions that can impact its traf-
fic characteristics. Moreover, we study the mobile ecosystem
because is relative few explored field and additionally all our
studies are focused on it. In this paper, we propose and eval-
uate a YouTube traffic generator based on models presented
in [12,14] and [16], which propose a YouTube traffic model
described below.

Each application instance is composed by a video server
that streams data via a TCP connection to a video client.
The chunk duration and codec is 5 seconds. The client de-
vice uses a playlist information which provides several dif-
ferent profiles of video quality levels and is identified by the
itag values, for example those presented in Table 1. These
profiles is used in order to choose the appropriate quality,
according to the network and the devise capabilities.

itag | Resolution | Encoding rate
132 426 x 240 266 kbps
92 426 x 240 395 kbps
93 640 x 360 758 kbps

Table 1: YouTube video quality information

At the beginning of the communication, the device re-
quests a chunk with the lowest video quality (itag = 132,
266 kbps, 426 x 240), after that the device estimates its data
rate based on the received chunk, it automatically selects
the highest playable video quality and sends the YouTube
server a request message. The ratio between the Throttling
Phase throughput and the encoding rate is referred as the
throttling factor. In [12] was found that mobiles use a throt-
tling factor of 2.0, for encoding rates higher than 200 kbps.
It is also showed that some terminals use a dual-threshold
buffering strategy and others a standard buffering strategy,
we implement the first one because the second one can be
easily emulated using a high B,q. and fixing Byin = Bmaas-

The server first sends an Initial Burst, corresponding to
35s seconds of video data, before to start playing the video.
When the amount of data in the player buffer exceeds ap-
proximately 100s of video, the client aborts the TCP con-
nection. The download is interrupted for approximately
60 — 70s. When the amount of data in the player buffer
falls below approximately 30s, the terminal opens a new
TCP connection to request to the server the next video seg-
ment. This behavior is repeated until the full video is down-
loaded. This threshold strategy avoids wasting data if the
user aborts the video playback. The upper and lower thresh-
old that we use are 100s and 30s, respectively, but these val-
ues can be modified. We also establish a maximum timeout
for chunk request in order to avoid errors during simulation,
we fix this parameter at 30s. After that the timeout is ex-
ceeded, the video session is stopped and it starts a new video
session.

3. YOUTUBE TRAFFIC MODEL IN NS-3

This section describes the design of our YouTube traffic
generator for ns-3. We have implemented a specific module
in ns-3 in order to emulate the delivery of mobile YouTube
traffic. For this purpose, we have taken advantage of the
YouTube traffic model described on [12,14] and [16]. We
base our ns-3 implementation on the transactional traffic
generator presented in [5].

3.1 Basic Structure

As shown in Figure 4, the YoutubeClient and Youtube-
Server applications are responsible for the major function-
alities, such as generating the adaptive traffic, handling HAS
processes, as well as recording and process statistics. When
the mobile YouTube model starts, the YoutubeClient and
YoutubeServer applications are installed in client and server
nodes, respectively. Both applications start a new TCP con-
nection; then the evolution of the communication between
the YoutubeClient and YoutubeServer is described in Fig-
ure 5.

We also define two main attributes, VideoSize and Time-
out, which define the video duration and the maximum time
to wait a video chunk before to restart the video session re-
spectably.

Click on YouTube
Video

Start TCP Connection

(*) Firstly, the client
computes the instantaneous
bandwidth and then
chooses a corresponding
chunk size, finally a request
is send . (7he first time, the
smallest chunk is requested)

No
Yes

Stop TCP Connection

No
Yes

—| Start TCP Connection

Figure 5: Flow description of our YouTube traffic generator

4. VALIDATION AND RESULTS

This section verifies and validates the YouTube traffic gen-
erator framework implementation in ns-3.

4.1 Framework Validation

In order to validate our model we perform an unitary
simulation, where 2 User Equipments (UEs) are randomly
placed in a LTE cell. The first UE performs a YouTube
session and the second one performs a FTP download. The
simulation parameters are detailed in Table 2. The band-
width was set-up to 3Mhz (15 RBs) and the duration of the
whole video is fixed at 250 seconds.

Figure 6 shows the data at player instantaneous (i.e. Youtube

Client), which is captured using wireshark. It shows the
typical behaviour of YouTube session, the first part is the
Initial Burst where the UE buffers the initial chunks be-
fore to playout the video. In the second part the Throttling
Phase where the UE requests needed video chunks accord-
ing to dual-threshold buffering strategy in order to avoid
stalling.

4.2 Simulation Example

In this section, we present simulation results and perfor-
mance evaluation of our proposed framework.

g
N &> 83 tzé’ Qf? q,Qb
s g, E S e s o
S ¥ & s & S R N 2
T & &S &L & S
& & < il L& ® ol £
| : : PR I ‘ ‘
1 1 K (Dissonmasied] A : * A (250
1001 ‘ : ‘ T : T
- /A EN AN
) I — J : \ P J _ threshold | 200
. 3 3 / 3 \ 1 TCR connectjon stop / | | o
CH N X\ B .~ \| | | 2
P : : - ‘ ; tewer— 150 Q
% 60 / \ W / ; ‘\ ‘ th:reshold E
& ol / ; Vo AN VN |y oo 5
) R o \ :
20 || I ‘/ \\ \\ 3 /L \ 1 50
L/ A/TCP connectidn s:tart/\vi/l | \\
o fa’ ‘ B s ‘ 0
Q. 50 100 150 | 200 250 300 350
Initial Buffering Stalling Occurrence I Playout Time (s)
Time Time (s) I Buffer Size (s)

Figure 3: Dual-threshold buffering strategy Playout time and Buffer state illustration

Application

YoutubeClient

- userlD : unsigned int

- videoSize : double

- chunkSize : double

- timeout : unsigned int

- controller: YoutubeController

+ ConnectionComplete()
+ ConnectionFailed()

+ TrafficGenerator()

+ ClientReceive()

+ DataSent()

+ StartVideo()

+ StartSending()

+ StartNewSocket()

Client / AN Server

J3]j043U0)

YoutubeServer

- controller: YoutubeController

+ ConnectionRequested()
+ ConnectionAccepted()
+ServerReceive()

+ dataSend()

- StartApplication()

- StopApplication()

YoutubeSite

- totalChuncks
- totalReceived
- startTime

- Stadistics()

YoutubeController

- remainingChuncks

- StartApplication()
- StopApplication()

- SegmentS

ize

- ServerContainer
- ClientContainer

- message: YoutubeMessage

+ Clear()

+ ServerSen

d()

+ CallTiemOut()
+ ClientSend()

+ ScheduleNextClientSend ()
+ ScheduleNextServerSend()

7

YoutubeMessage

- messageType
- size

Figure 4: YouTube class diagram

4.2.1 Scenarios and metrics

We have evaluated the proposed YouTube traffic genera-
tor framework. We have considered a typical outdoor sce-
nario with 10 UEs (random positions) attached to a single
eNB (evolved Node B), thus inter cell interference is not
taken into account. The eNB is equipped with an omnidi-
rectional antenna and UEs experience varying channel con-
ditions. Given the path loss model and the other network
parameters, we obtained a wide range of SINR values, which
provided Channel Quality Indicators (CQI) values in range

of [1,15].

At the beginning of each run, UEs are placed randomly
in a disc representing the cell within a distance range of
30-500m. Then, UEs move within the disc according to a
Random Walk Model, at a fixed speed of 3 km/h. The
simulation parameters are shown in Table 2 and the system
configuration is as follows: The cell is connected via the PDN
Gateway (P-GW) to the internet. A server is implemented
for FTP and Youtube. The server is connected to the P-GW
via an over-provisioned point-to-point link in order to avoid
congestion on this segment of the network.

5
45 — YouTube (UE1)
N R S R FIP (UE2)
D35
Kol
% 3 Initial Burst Throttling Phase
225 N
o
T 2
©
015
]
05 M
A

=)

20 40 60 80 100 120 140 160 180 200 220
Time (s)

Figure 6: Time evolution of received data by a Youtube
Client (ns-3 YouTube framework test)

Users mobility model RandomWalk (3 km /h)
Bandwidth 50 RB (10 MHz)
Cell coverage radius 500 m

Pathloss Model Cost231

eNB TX Power / Noise Figure | 46 dBm / 5 dB

UE TX Power / Noise Figure | 24 dBm /5 dB
Fading loss model EPA 3 km/h (urban)
AMC model PiroEW2010

DL /UL carrier frequency 2120 / 1930 MHz
RLC Transmission Mode UM

RLC Buffer Size 100 kbytes

Table 2: Simulation parameters

4.2.2 Traffic Description

The 7 first UEs use YouTube and the 3 others UEs per-
form FTP sessions. In case of FTP, the size of downloaded
files follows a uniform law between [1,5] Mbytes. The ar-
rivals of new FTP session follow a Poisson process with an
average inter-arrival time A = 10 seconds.

We have set a maximum timeout for YouTube chunk re-
quest to avoid blocking situations during simulation, and we
have fixed this parameter at 30 seconds. When the timeout
is exceeded, the video session is stopped and a new video
session started. The duration of the whole video is fixed
at 120 seconds with an exponential inter-video interval with
10 seconds of mean.

4.2.3 Simulation Result and Analysis

We present here performance results related to the scenar-
ios described previously. The simulation run lasts for 600
seconds, with a warm-up time of 5 seconds where statistics
are not collected, and is replicated three times with different
seeds. Applications are started at a random time uniformly
distributed in [1, 5] seconds.

Figure 7 depicts the cumulative distribution functions (CDF)

of cell throughput in the analysed scenario.

Regarding YouTube traffic, Figure 8-a shows the mean
of the initial buffering time for YouTube videos, which is
around 3.8 s. It should be noted that the current Best Effort
scheme is widely used today by the majority of operators.
Figure 8-b shows the distribution of the quality of video
chunks, almost 50% of chunks are delivered in the highest
quality and only around 5% of chunks are delivered in the
medium quality. When UEs are in poor radio conditions,

2 4 6 8 10 12 14 16 18 20
Throughput (Mbps)

Figure 7: Cumulative Distribution Function (CDF) of the
cell throughput

they do not obtain enough resources to support high defini-
tion video chunks. The impacts of this low/medium quality
level should be evaluated in the light of customer experience
(i.e. depending on screen size). Thus, there is an urgent
need of Quality of experience (QoE) metrics as a MOS to
video traffic. However, this is a topic currently under study
by many researchers.

4.5
4
B jtag 93 (758 kbps - High Quality)
3.5 O itag 94 (395 kbps - Medium Quality)
3 B jtag 132 (266 kbps - Low Quality)
@ss
]
S
= 2
1.5
1
0.5

%irst Buffering Time

(a) (b)

Figure 8: Performance indicators as (a) first buffering time
(90% confidence interval), (b) chunks quality

Simulations have highlighted the efficiency of our frame-
work, which allows having realistic behavior of most used
traffic in current mobile networks. You can also find exten-
sive simulation results of our proposed framework in [6].

S. EXTENSION AND FUTURE WORK

This framework opens many possibilities to evolutions and
can be extended to implements/evaluate following:

e Mobile Edge Computing (MEC) use case to video de-
livery

e Video-Aware scheduler design
e Video Mean Opinion Score (MOS) models

e Mobile video optimizers mechanisms

We plan to extend our current framework in order to im-
plement and evaluate the RAN-aware Content Optimization
to video delivery, which is a MEC use case proposed by the
European Telecommunications Standards Institute (ETSI).
We also work in a model for video MOS (v-MOS), which is
a hot topic, where the proposed framework to generate HAS
video will be a key tool to evaluate our model in realistic
scenarios.

6. CONCLUSIONS

In this paper we have presented the design and the im-
plementation of a HAS traffic generator for ns-3 based on
YouTube traffic characterisation. Simulation results have
confirmed the observed YouTube traffic behaviour. We anal-
ysed YouTube performance over an LTE network and we
showed some performance indicators.

7. REFERENCES

[1] Sandvine. ” Global Internet phenomena Report”.
Technical report, 2014.

[2] Cisco Systems Inc. White paper: "Cisco Visual
Networking Index: Forecast and Methodology, 2014 -
20197, May 2015.

[3] D. Ammar, T. Begin, and I. Guerin-Lassous. ”a new
tool for generating realistic internet traffic in ns-3”. In
EATI SIMUTools, 2011.

[4] P. Casas, P. Fiadino, A. Sackl, and A. D’Alconzo.
”YouTube in the move: Understanding the
performance of Youtube in cellular networks”. In
IEEE IFIP 2014.

[5] Y. Cheng, E. K. Cetinkaya, and J. P. Sterbenz.
“transactional traffic generator implementation in
ns-3”. In In IEEE ICST 2013.

[6] W. Diego, H. Isabelle, and X. Lagrange. "Cross-layer
Design and Performance Evaluation for IP-Centric
QoS Model in LTE-EPC Networks”. In IFIP WMNC,
2015.

[7] Ericsson. White paper: "Mobility Report”, February
2016.

[8] M. Haddad, E. Altman, R. El-Azouzi, T. Jiménez,

S. E. Elayoubi, S. B. Jamaa, A. Legout, and A. Rao.
”A survey on YouTube streaming service”. In In ICST
2011.

[9] Y. Liu, F. Li, L. Guo, B. Shen, and S. Chen. "A
comparative study of android and iOS for accessing
internet streaming services”. In Passive and Active
Measurement. Springer Berlin Heidelberg, 2013.

[10] H. Nam, B. H. Kim, D. Calin, and H. G. Schulzrinne.
"Mobile video is inefficient: A traffic analysis”.
Columbia University, 2013.

[11] H. Nam, K. H. Kim, B. H. Kim, D. Calin, and
H. Schulzrinne. "Towards A Dynamic QoS-aware
Over-The-Top Video Streaming in LTE”. In IEEE
WoWMoM 201.

[12] J. J. Ramos-Mufioz, J. Prados-Garzon, P. Ameigeiras,
J. Navarro-Ortiz, and J. M. Lépez-Soler.
”Characteristics of mobile youtube traffic”. Wireless
Communications, IEEE, 2014.

[13] F. Sonnati. "Implementing a dual-threshold buffering
strategy in Flash Media Server”.
http://adobe.ly/RqSJnQ, 2006. [Online; accessed
22-July-2016).

[14] F. Wamser, P. Casas, M. Seufert, C. Moldovan,

P. Tran-Gia, and T. Hossfeld. Modeling the youtube
stack: From packets to quality of experience.
Computer Networks, 2016.

[15] E. Weingértner, R. Glebke, M. Lang, and K. Wehrle.
“building a modular bittorrent model for ns-3”. In FAI
SIMUTools, 2012.

[16] R. Yang and H. J. Son. ”"Youtube’s Live TV
Streaming in Mobile Devices - HLS and Adaptive”.
Technical report, Netmanias Tech-Blog, 2013-10-30.
[Online; accessed 22-July-2016].

