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Abstract

We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making

them easily accessible to the particle physics community. More specifically, we report on the determi-

nation of the light-quark masses, the form factor f+(0), arising in the semileptonic K → π transition at

zero momentum transfer, as well as the decay constant ratio fK/fπ and its consequences for the CKM

matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some

of the low-energy constants of SU(2)L × SU(2)R and SU(3)L × SU(3)R Chiral Perturbation Theory.

We review the determination of the BK parameter of neutral kaon mixing as well as the additional

four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities

are an addition compared to the previous review. For the heavy-quark sector, we provide results for

mc and mb (also new compared to the previous review), as well as those for D- and B-meson decay

constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant

for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we

review the status of lattice determinations of the strong coupling constant αs.
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1 Introduction

Flavour physics provides an important opportunity for exploring the limits of the Standard
Model of particle physics and for constraining possible extensions that go beyond it. As the
LHC explores a new energy frontier and as experiments continue to extend the precision fron-
tier, the importance of flavour physics will grow, both in terms of searches for signatures of
new physics through precision measurements and in terms of attempts to construct the the-
oretical framework behind direct discoveries of new particles. A major theoretical limitation
consists in the precision with which strong-interaction effects can be quantified. Large-scale
numerical simulations of lattice QCD allow for the computation of these effects from first
principles. The scope of the Flavour Lattice Averaging Group (FLAG) is to review the cur-
rent status of lattice results for a variety of physical quantities in low-energy physics. Set up
in November 2007 it comprises experts in Lattice Field Theory, Chiral Perturbation Theory
and Standard Model phenomenology. Our aim is to provide an answer to the frequently posed
question “What is currently the best lattice value for a particular quantity?” in a way that
is readily accessible to nonlattice-experts. This is generally not an easy question to answer;
different collaborations use different lattice actions (discretizations of QCD) with a variety of
lattice spacings and volumes, and with a range of masses for the u− and d−quarks. Not only
are the systematic errors different, but also the methodology used to estimate these uncer-
tainties varies between collaborations. In the present work we summarize the main features
of each of the calculations and provide a framework for judging and combining the different
results. Sometimes it is a single result that provides the “best” value; more often it is a com-
bination of results from different collaborations. Indeed, the consistency of values obtained
using different formulations adds significantly to our confidence in the results.

The first two editions of the FLAG review were published in 2011 [1] and 2014 [2]. The
second edition reviewed results related to both light (u-, d- and s-), and heavy (c- and b-)
flavours. The quantities related to pion and kaon physics were light-quark masses, the form
factor f+(0) arising in semileptonicK → π transitions (evaluated at zero momentum transfer),
the decay constants fK and fπ, and the BK parameter from neutral kaon mixing. Their
implications for the CKM matrix elements Vus and Vud were also discussed. Furthermore,
results were reported for some of the low-energy constants of SU(2)L×SU(2)R and SU(3)L×
SU(3)R Chiral Perturbation Theory. The quantities related to D- and B-meson physics
that were reviewed were the B- and D-meson decay constants, form factors, and mixing
parameters. These are the heavy-light quantities most relevant to the determination of CKM
matrix elements and the global CKM unitarity-triangle fit. Last but not least, the current
status of lattice results on the QCD coupling αs was reviewed.

In the present paper we provide updated results for all the above-mentioned quantities,
but also extend the scope of the review in two ways. First, we now present results for the
charm and bottom quark masses, in addition to those of the three lightest quarks. Second,
we review results obtained for the kaon mixing matrix elements of new operators that arise
in theories of physics beyond the Standard Model. Our main results are collected in Tabs. 1
and 2.

Our plan is to continue providing FLAG updates, in the form of a peer reviewed paper,
roughly on a biennial basis. This effort is supplemented by our more frequently updated web-
site http://itpwiki.unibe.ch/flag [3], where figures as well as pdf-files for the individual
sections can be downloaded. The papers reviewed in the present edition have appeared before
the closing date 30 November 2015.
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Quantity Sec. Nf = 2 + 1 + 1 Refs. Nf = 2 + 1 Refs. Nf = 2 Refs.

ms[MeV] 3.1.3 93.9(1.1) [4, 5] 92.0(2.1) [6–10] 101(3) [11, 12]

mud[MeV] 3.1.3 3.70(17) [4] 3.373(80) [7–10, 13] 3.6(2) [11]

ms/mud 3.1.4 27.30(34) [4, 14] 27.43(31) [7, 8, 10, 15] 27.3(9) [11]

mu[MeV] 3.1.5 2.36(24) [4] 2.16(9)(7) ‡ 2.40(23) [16]

md[MeV] 3.1.5 5.03(26) [4] 4.68(14)(7) ‡ 4.80(23) [16]

mu/md 3.1.5 0.470(56) [4] 0.46(2)(2) ‡ 0.50(4) [16]

mc(3 GeV)[GeV] 3.2.3 0.996(25) [4, 5] 0.987(6) [9, 17] 1.03(4) [11]

mc/ms 3.2.4 11.70(6) [4, 5, 14] 11.82(16) [17, 18] 11.74(35) [11]

mb(mb)[GeV] 3.3 4.190(21) [5, 19] 4.164(23) [9] 4.256(81) [20, 21]

f+(0) 4.3 0.9704(24)(22) [22] 0.9677(27) [23, 24] 0.9560(57)(62) [25]

fK±/fπ± 4.3 1.193(3) [14, 26, 27] 1.192(5) [28–31] 1.205(6)(17) [32]

fπ± [MeV] 4.6 130.2(1.4) [28, 29, 31]

fK±[MeV] 4.6 155.6(4) [14, 26, 27] 155.9(9) [28, 29, 31] 157.5(2.4) [32]

Σ1/3[MeV] 5.2.1 280(8)(15) [33] 274(3) [10, 13, 34, 35] 266(10) [33, 36–38]

Fπ/F 5.2.1 1.076(2)(2) [39] 1.064(7) [10, 29, 34, 35, 40] 1.073(15) [36–38, 41]

ℓ̄3 5.2.2 3.70(7)(26) [39] 2.81(64) [10, 29, 34, 35, 40] 3.41(82) [36, 37, 41]

ℓ̄4 5.2.2 4.67(3)(10) [39] 4.10(45) [10, 29, 34, 35, 40] 4.51(26) [36, 37, 41]

ℓ̄6 5.2.2 15.1(1.2) [37, 41]

B̂K 6.1 0.717(18)(16) [42] 0.7625(97) [10, 43–45] 0.727(22)(12) [46]

‡ This is a FLAG estimate, based on χPT and the isospin averaged up- and down-quark mass mud [7–10, 13].

Table 1: Summary of the main results of this review, grouped in terms of Nf , the number of dynamical quark flavours in lattice
simulations. Quark masses and the quark condensate are given in the MS scheme at running scale µ = 2GeV or as indicated; the
other quantities listed are specified in the quoted sections. For each result we list the references that entered the FLAG average or
estimate. From the entries in this column one can also read off the number of results that enter our averages for each quantity. We
emphasize that these numbers only give a very rough indication of how thoroughly the quantity in question has been explored on
the lattice and recommend to consult the detailed tables and figures in the relevant section for more significant information and for
explanations on the source of the quoted errors.
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Quantity Sec. Nf = 2 + 1 + 1 Refs. Nf = 2 + 1 Refs. Nf = 2 Refs.

fD[MeV] 7.1 212.15(1.45) [14, 27] 209.2(3.3) [47, 48] 208(7) [20]

fDs[MeV] 7.1 248.83(1.27) [14, 27] 249.8(2.3) [17, 48, 49] 250(7) [20]

fDs/fD 7.1 1.1716(32) [14, 27] 1.187(12) [47, 48] 1.20(2) [20]

fDπ
+ (0) 7.2 0.666(29) [50]

fDK
+ (0) 7.2 0.747(19) [51]

fB[MeV] 8.1 186(4) [52] 192.0(4.3) [48, 53–56] 188(7) [20, 57, 58]

fBs [MeV] 8.1 224(5) [52] 228.4(3.7) [48, 53–56] 227(7) [20, 57, 58]

fBs/fB 8.1 1.205(7) [52] 1.201(16) [48, 53–56] 1.206(23) [20, 57, 58]

fBd

√
B̂Bd [MeV] 8.2 219(14) [54, 59] 216(10) [20]

fBs

√
B̂Bs [MeV] 8.2 270(16) [54, 59] 262(10) [20]

B̂Bd 8.2 1.26(9) [54, 59] 1.30(6) [20]

B̂Bs 8.2 1.32(6) [54, 59] 1.32(5) [20]

ξ 8.2 1.239(46) [54, 60] 1.225(31) [20]

BBs/BBd 8.2 1.039(63) [54, 60] 1.007(21) [20]

Quantity Sec. Nf = 2 + 1 and Nf = 2 + 1 + 1 Refs.

α
(5)

MS
(MZ) 9.9 0.1182(12) [5, 9, 61–63]

Λ
(5)

MS
[MeV] 9.9 211(14) [5, 9, 61–63]

Table 2: Summary of the main results of this review, grouped in terms of Nf , the number of dynamical quark flavours in lattice
simulations. The quantities listed are specified in the quoted sections. For each result we list the references that entered the FLAG
average or estimate. From the entries in this column one can also read off the number of results that enter our averages for each
quantity. We emphasize that these numbers only give a very rough indication of how thoroughly the quantity in question has been
explored on the lattice and recommend to consult the detailed tables and figures in the relevant section for more significant information
and for explanations on the source of the quoted errors.
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This review is organized as follows. In the remainder of Sec. 1 we summarize the compo-
sition and rules of FLAG and discuss general issues that arise in modern lattice calculations.
In Sec. 2 we explain our general methodology for evaluating the robustness of lattice results.
We also describe the procedures followed for combining results from different collaborations
in a single average or estimate (see Sec. 2.2 for our definition of these terms). The rest of the
paper consists of sections, each dedicated to a single (or groups of closely connected) physical
quantity(ies). Each of these sections is accompanied by an Appendix with explicatory notes.

1.1 FLAG composition, guidelines and rules

FLAG strives to be representative of the lattice community, both in terms of the geographical
location of its members and the lattice collaborations to which they belong. We aspire to
provide the particle-physics community with a single source of reliable information on lattice
results.

In order to work reliably and efficiently, we have adopted a formal structure and a set of
rules by which all FLAG members abide. The collaboration presently consists of an Advisory
Board (AB), an Editorial Board (EB), and seven Working Groups (WG). The rôle of the
Advisory Board is that of general supervision and consultation. Its members may interfere at
any point in the process of drafting the paper, expressing their opinion and offering advice.
They also give their approval of the final version of the preprint before it is rendered public.
The Editorial Board coordinates the activities of FLAG, sets priorities and intermediate
deadlines, and takes care of the editorial work needed to amalgamate the sections written
by the individual working groups into a uniform and coherent review. The working groups
concentrate on writing up the review of the physical quantities for which they are responsible,
which is subsequently circulated to the whole collaboration for critical evaluation.

The current list of FLAG members and their Working Group assignments is:

• Advisory Board (AB): S. Aoki, C. Bernard, M. Golterman, H. Leutwyler,
and C. Sachrajda

• Editorial Board (EB): G. Colangelo, A. Jüttner, S. Hashimoto, S. Sharpe, A. Vladikas,
and U. Wenger

• Working Groups (coordinator listed first):

– Quark masses L. Lellouch, T. Blum, and V. Lubicz

– Vus, Vud S. Simula, P. Boyle,1 and T. Kaneko

– LEC S. Dürr, H. Fukaya, and U.M. Heller

– BK H. Wittig, P. Dimopoulos, and R. Mawhinney

– fB(s)
, fD(s)

, BB M. Della Morte, Y. Aoki, and D. Lin

– B(s), D semileptonic and radiative decays E. Lunghi, D. Becirevic, S. Gottlieb,
and C. Pena

– αs R. Sommer, R. Horsley, and T. Onogi

As some members of the WG on quark masses were faced with unexpected hindrances, S. Sim-
ula has kindly assisted in the completion of the relevant section during the final phases of its
composition.

1Peter Boyle had participated actively in the early stages of the current FLAG effort. Unfortunately, due
to other commitments, it was impossible for him to contribute until the end, and he decided to withdraw from
the collaboration.
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The most important FLAG guidelines and rules are the following:

• the composition of the AB reflects the main geographical areas in which lattice collabo-
rations are active, with members from America, Asia/Oceania and Europe;

• the mandate of regular members is not limited in time, but we expect that a certain
turnover will occur naturally;

• whenever a replacement becomes necessary this has to keep, and possibly improve, the
balance in FLAG, so that different collaborations, from different geographical areas are
represented;

• in all working groups the three members must belong to three different lattice collabo-
rations;2

• a paper is in general not reviewed (nor colour-coded, as described in the next section)
by any of its authors;

• lattice collaborations not represented in FLAG will be consulted on the colour coding of
their calculation;

• there are also internal rules regulating our work, such as voting procedures.

1.2 Citation policy

We draw attention to this particularly important point. As stated above, our aim is to
make lattice QCD results easily accessible to nonlattice-experts and we are well aware that
it is likely that some readers will only consult the present paper and not the original lattice
literature. It is very important that this paper be not the only one cited when our results are
quoted. We strongly suggest that readers also cite the original sources. In order to facilitate
this, in Tabs. 1 and 2, besides summarizing the main results of the present review, we also
cite the original references from which they have been obtained. In addition, for each figure
we make a bibtex-file available on our webpage [3] which contains the bibtex-entries of all
the calculations contributing to the FLAG average or estimate. The bibliography at the end
of this paper should also make it easy to cite additional papers. Indeed we hope that the
bibliography will be one of the most widely used elements of the whole paper.

1.3 General issues

Several general issues concerning the present review are thoroughly discussed in Sec. 1.1 of
our initial 2010 paper [1] and we encourage the reader to consult the relevant pages. In
the remainder of the present subsection, we focus on a few important points. Though the
discussion has been duly updated, it is essentially that of Sec. 1.2 of the 2013 review [2].

The present review aims to achieve two distinct goals: first, to provide a description
of the work done on the lattice concerning low-energy particle physics; and, second, to draw
conclusions on the basis of that work, summarizing the results obtained for the various
quantities of physical interest.

The core of the information about the work done on the lattice is presented in the form of
tables, which not only list the various results, but also describe the quality of the data that
underlie them. We consider it important that this part of the review represents a generally

2The WG on semileptonic D and B decays has currently four members, but only three of them belong to
lattice collaborations.
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accepted description of the work done. For this reason, we explicitly specify the quality
requirements3 used and provide sufficient details in appendices so that the reader can verify
the information given in the tables.

On the other hand, the conclusions drawn on the basis of the available lattice results are the
responsibility of FLAG alone. Preferring to err on the side of caution, in several cases we draw
conclusions that are more conservative than those resulting from a plain weighted average of
the available lattice results. This cautious approach is usually adopted when the average is
dominated by a single lattice result, or when only one lattice result is available for a given
quantity. In such cases one does not have the same degree of confidence in results and errors
as when there is agreement among several different calculations using different approaches.
The reader should keep in mind that the degree of confidence cannot be quantified, and it is
not reflected in the quoted errors.

Each discretization has its merits, but also its shortcomings. For most topics covered in
this review we have an increasingly broad database, and for most quantities lattice calcula-
tions based on totally different discretizations are now available. This is illustrated by the
dense population of the tables and figures in most parts of this review. Those calculations
that do satisfy our quality criteria indeed lead to consistent results, confirming universality
within the accuracy reached. In our opinion, the consistency between independent lattice
results, obtained with different discretizations, methods, and simulation parameters, is an
important test of lattice QCD, and observing such consistency also provides further evidence
that systematic errors are fully under control.

In the sections dealing with heavy quarks and with αs, the situation is not the same.
Since the b-quark mass cannot be resolved with current lattice spacings, all lattice methods
for treating b quarks use effective field theory at some level. This introduces additional compli-
cations not present in the light-quark sector. An overview of the issues specific to heavy-quark
quantities is given in the introduction of Sec. 8. For B and D meson leptonic decay constants,
there already exists a good number of different independent calculations that use different
heavy-quark methods, but there are only one or two independent calculations of semileptonic
B and D meson form factors and B meson mixing parameters. For αs, most lattice methods
involve a range of scales that need to be resolved and controlling the systematic error over a
large range of scales is more demanding. The issues specific to determinations of the strong
coupling are summarized in Sec. 9.

Number of sea quarks in lattice simulations:
Lattice QCD simulations currently involve two, three or four flavours of dynamical quarks.
Most simulations set the masses of the two lightest quarks to be equal, while the strange
and charm quarks, if present, are heavier (and tuned to lie close to their respective physical
values). Our notation for these simulations indicates which quarks are nondegenerate, e.g.
Nf = 2 + 1 if mu = md < ms and Nf = 2 + 1 + 1 if mu = md < ms < mc. Calculations
with Nf = 2, i.e. two degenerate dynamical flavours, often include strange valence quarks
interacting with gluons, so that bound states with the quantum numbers of the kaons can
be studied, albeit neglecting strange sea-quark fluctuations. The quenched approximation
(Nf = 0), in which sea quark contributions are omitted, has uncontrolled systematic errors
and is no longer used in modern lattice simulations with relevance to phenomenology. Ac-
cordingly, we will review results obtained with Nf = 2, Nf = 2 + 1, and Nf = 2 + 1 + 1, but

3We also use terms like “quality criteria”, “rating”, “colour coding” etc. when referring to the classification
of results, as described in Sec. 2.
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omit earlier results with Nf = 0. The only exception concerns the QCD coupling constant
αs. Since this observable does not require valence light quarks, it is theoretically well defined
also in the Nf = 0 theory, which is simply pure gluodynamics. The Nf -dependence of αs, or
more precisely of the related quantity r0ΛMS, is a theoretical issue of considerable interest;
here r0 is a quantity with the dimension of length, which sets the physical scale, as discussed
in Appendix A.2. We stress, however, that only results with Nf ≥ 3 are used to determine
the physical value of αs at a high scale.

Lattice actions, simulation parameters and scale setting:
The remarkable progress in the precision of lattice calculations is due to improved algorithms,
better computing resources and, last but not least, conceptual developments. Examples of the
latter are improved actions that reduce lattice artifacts and actions that preserve chiral sym-
metry to very good approximation. A concise characterization of the various discretizations
that underlie the results reported in the present review is given in Appendix A.1.

Physical quantities are computed in lattice simulations in units of the lattice spacing so
that they are dimensionless. For example, the pion decay constant that is obtained from a
simulation is fπa, where a is the spacing between two neighboring lattice sites. To convert
these results to physical units requires knowledge of the lattice spacing a at the fixed values
of the bare QCD parameters (quark masses and gauge coupling) used in the simulation. This
is achieved by requiring agreement between the lattice calculation and experimental measure-
ment of a known quantity, which thus “sets the scale” of a given simulation. A few details on
this procedure are provided in Appendix A.2.

Renormalization and scheme dependence:
Several of the results covered by this review, such as quark masses, the gauge coupling, and
B-parameters, are for quantities defined in a given renormalization scheme and at a spe-
cific renormalization scale. The schemes employed (e.g. regularization-independent MOM
schemes) are often chosen because of their specific merits when combined with the lattice
regularization. For a brief discussion of their properties, see Appendix A.3. The conversion of
the results, obtained in these so-called intermediate schemes, to more familiar regularization
schemes, such as the MS-scheme, is done with the aid of perturbation theory. It must be
stressed that the renormalization scales accessible in simulations are limited, because of the
presence of an ultraviolet (UV) cutoff of ∼ π/a. To safely match to MS, a scheme defined
in perturbation theory, Renormalization Group (RG) running to higher scales is performed,
either perturbatively or nonperturbatively (the latter using finite-size scaling techniques).

Extrapolations:
Because of limited computing resources, lattice simulations are often performed at unphys-
ically heavy pion masses, although results at the physical point have become increasingly
common. Further, numerical simulations must be done at nonzero lattice spacing, and in a
finite (four- dimensional) volume. In order to obtain physical results, lattice data are obtained
at a sequence of pion masses and a sequence of lattice spacings, and then extrapolated to
the physical pion mass and to the continuum limit. In principle, an extrapolation to infinite
volume is also required. However, for most quantities discussed in this review, finite-volume
effects are exponentially small in the linear extent of the lattice in units of the pion mass
and, in practice, one often verifies volume independence by comparing results obtained on
a few different physical volumes, holding other parameters equal. To control the associated
systematic uncertainties, these extrapolations are guided by effective theories. For light-quark
actions, the lattice-spacing dependence is described by Symanzik’s effective theory [64, 65];
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for heavy quarks, this can be extended and/or supplemented by other effective theories such
as Heavy-Quark Effective Theory (HQET). The pion-mass dependence can be parameterized
with Chiral Perturbation Theory (χPT), which takes into account the Nambu-Goldstone na-
ture of the lowest excitations that occur in the presence of light quarks. Similarly, one can use
Heavy-Light Meson Chiral Perturbation Theory (HMχPT) to extrapolate quantities involv-
ing mesons composed of one heavy (b or c) and one light quark. One can combine Symanzik’s
effective theory with χPT to simultaneously extrapolate to the physical pion mass and the
continuum; in this case, the form of the effective theory depends on the discretization. See
Appendix A.4 for a brief description of the different variants in use and some useful references.
Finally, χPT can also be used to estimate the size of finite-volume effects measured in units of
the inverse pion mass, thus providing information on the systematic error due to finite-volume
effects in addition to that obtained by comparing simulations at different volumes.

Critical slowing down:
The lattice spacings reached in recent simulations go down to 0.05 fm or even smaller. In
this regime, long autocorrelation times slow down the sampling of the configurations [66–75].
Many groups check for autocorrelations in a number of observables, including the topologi-
cal charge, for which a rapid growth of the autocorrelation time is observed with decreasing
lattice spacing. This is often referred to as topological freezing. A solution to the problem
consists in using open boundary conditions in time, instead of the more common antiperiodic
ones [76]. More recently two other approaches have been proposed, one based on a multiscale
thermalization algorithm [77] and another based on defining QCD on a nonorientable man-
ifold [78]. The problem is also touched upon in Sec. 9.2, where it is stressed that attention
must be paid to this issue. While large scale simulations with open boundary conditions are
already far advanced [79], unfortunately so far no results reviewed here have been obtained
with any of the above methods. It is usually assumed that the continuum limit can be reached
by extrapolation from the existing simulations and that potential systematic errors due to
the long autocorrelation times have been adequately controlled.

Simulation algorithms and numerical errors:
Most of the modern lattice-QCD simulations use exact algorithms such as Refs. [80, 81], which
do not produce any systematic errors when exact arithmetic is available. In reality, one uses
numerical calculations at double (or in some cases even single) precision, and some errors
are unavoidable. More importantly, the inversion of the Dirac operator is carried out itera-
tively and it is truncated once some accuracy is reached, which is another source of potential
systematic error. In most cases, these errors have been confirmed to be much less than the
statistical errors. In the following we assume that this source of error is negligible. Some of
the most recent simulations use an inexact algorithm in order to speed-up the computation,
though it may produce systematic effects. Currently available tests indicate that errors from
the use of inexact algorithms are under control.

2 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem of rating and averaging lattice
quantities have been outlined in our first publication [1]. Our aim is to help the reader assess
the reliability of a particular lattice result without necessarily studying the original article
in depth. This is a delicate issue, since the ratings may make things appear simpler than
they are. Nevertheless, it safeguards against the common practice of using lattice results,
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and drawing physics conclusions from them, without a critical assessment of the quality of
the various calculations. We believe that, despite the risks, it is important to provide some
compact information about the quality of a calculation. We stress, however, the importance
of the accompanying detailed discussion of the results presented in the various sections of the
present review.

2.1 Systematic errors and colour code

The major sources of systematic error are common to most lattice calculations. These include,
as discussed in detail below, the chiral, continuum and infinite-volume extrapolations. To
each such source of error for which systematic improvement is possible we assign one of three
coloured symbols: green star, unfilled green circle (which replaced in Ref. [2] the amber disk
used in the original FLAG review [1]) or red square. These correspond to the following ratings:
⋆ the parameter values and ranges used to generate the datasets allow for a satisfactory
control of the systematic uncertainties;

◦ the parameter values and ranges used to generate the datasets allow for a reasonable
attempt at estimating systematic uncertainties, which however could be improved;
� the parameter values and ranges used to generate the datasets are unlikely to allow for a
reasonable control of systematic uncertainties.
The appearance of a red tag, even in a single source of systematic error of a given lattice
result, disqualifies it from inclusion in the global average.

The attentive reader will notice that these criteria differ from those used in Refs. [1, 2].
In the previous FLAG editions we used the three symbols in order to rate the reliability of
the systematic errors attributed to a given result by the paper’s authors. This sometimes
proved to be a daunting task, as the methods used by some collaborations for estimating
their systematics are not always explained in full detail. Moreover, it is sometimes difficult to
disentangle and rate different uncertainties, since they are interwoven in the error analysis.
Thus, in the present edition we have opted for a different approach: the three symbols rate the
quality of a particular simulation, based on the values and range of the chosen parameters, and
its aptness to obtain well-controlled systematic uncertainties. They do not rate the quality of
the analysis performed by the authors of the publication. The latter question is deferred to
the relevant sections of the present review, which contain detailed discussions of the results
contributing (or not) to each FLAG average or estimate. As a result of this different approach
to the rating criteria, as well as changes of the criteria themselves, the colour coding of some
papers in the current FLAG version differs from that of Ref. [2].

For most quantities the colour-coding system refers to the following sources of systematic
errors: (i) chiral extrapolation; (ii) continuum extrapolation; (iii) finite volume. As we will
see below, renormalization is another source of systematic uncertainties in several quantities.
This we also classify using the three coloured symbols listed above, but now with a different
rationale: they express how reliably these quantities are renormalized, from a field-theoretic
point of view (namely nonperturbatively, or with 2-loop or 1-loop perturbation theory).

Given the sophisticated status that the field has attained, several aspects, besides those
rated by the coloured symbols, need to be evaluated before one can conclude whether a
particular analysis leads to results that should be included in an average or estimate. Some
of these aspects are not so easily expressible in terms of an adjustable parameter such as
the lattice spacing, the pion mass or the volume. As a result of such considerations, it
sometimes occurs, albeit rarely, that a given result does not contribute to the FLAG average
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or estimate, despite not carrying any red tags. This happens, for instance, whenever aspects
of the analysis appear to be incomplete (e.g. an incomplete error budget), so that the presence
of inadequately controlled systematic effects cannot be excluded. This mostly refers to results
with a statistical error only, or results in which the quoted error budget obviously fails to
account for an important contribution.

Of course any colour coding has to be treated with caution; we emphasize that the criteria
are subjective and evolving. Sometimes a single source of systematic error dominates the
systematic uncertainty and it is more important to reduce this uncertainty than to aim for
green stars for other sources of error. In spite of these caveats we hope that our attempt to
introduce quality measures for lattice simulations will prove to be a useful guide. In addition
we would like to stress that the agreement of lattice results obtained using different actions
and procedures provides further validation.

2.1.1 Systematic effects and rating criteria

The precise criteria used in determining the colour coding are unavoidably time-dependent;
as lattice calculations become more accurate, the standards against which they are measured
become tighter. For this reason, some of the quality criteria related to the light-quark sector
have been tightened up between the first [1] and second [2] editions of FLAG.

In the second edition we have also reviewed quantities related to heavy quark physics [2].
The criteria used for light- and heavy-flavour quantities were not always the same. For the
continuum limit, the difference was more a matter of choice: the light-flavour Working Groups
defined the ratings using conditions involving specific values of the lattice spacing, whereas
the heavy-flavour Working Groups preferred more data-driven criteria. Also, for finite-volume
effects, the heavy-flavour groups slightly relaxed the boundary between ⋆ and ◦, compared
to the light-quark case, to account for the fact that heavy-quark quantities are less sensitive
to the finiteness of the volume.

In the present edition we have opted for simplicity and adopted unified criteria for both
light- and heavy-flavoured quantities.4 The colour code used in the tables is specified as
follows:

• Chiral extrapolation:
⋆ Mπ,min < 200 MeV

◦ 200 MeV ≤Mπ,min ≤ 400 MeV
� 400 MeV < Mπ,min

It is assumed that the chiral extrapolation is performed with at least a three-point
analysis; otherwise this will be explicitly mentioned. This condition is unchanged from
Ref. [2].

• Continuum extrapolation:
⋆ at least 3 lattice spacings and at least 2 points below 0.1 fm and a range of lattice
spacings satisfying [amax/amin]

2 ≥ 2

◦ at least 2 lattice spacings and at least 1 point below 0.1 fm and a range of lattice
spacings satisfying [amax/amin]

2 ≥ 1.4
� otherwise
It is assumed that the lattice action isO(a)-improved (i.e. the discretization errors vanish

4 We note, however, that the data-driven criteria can be used by individual working groups in order to rate
the reliability of the analyses for specific quantities.
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quadratically with the lattice spacing); otherwise this will be explicitly mentioned. For
unimproved actions an additional lattice spacing is required. This condition has been
tightened compared to that of Ref. [2] by the requirements concerning the range of lattice
spacings.

• Finite-volume effects:
⋆ [Mπ,min/Mπ,fid]

2 exp{4−Mπ,min[L(Mπ,min)]max} < 1, or at least 3 volumes

◦ [Mπ,min/Mπ,fid]
2 exp{3−Mπ,min[L(Mπ,min)]max} < 1, or at least 2 volumes

� otherwise
It is assumed here that calculations are in the p-regime5 of chiral perturbation theory,
and that all volumes used exceed 2 fm. Here we are using a more sophisticated condition
than that of Ref. [2]. The new condition involves the quantity [L(Mπ,min)]max, which is
the maximum box size used in the simulations performed at smallest pion mass Mπ,min,
as well as a fiducial pion mass Mπ,fid, which we set to 200 MeV (the cutoff value for a
green star in the chiral extrapolation).

The rationale for this condition is as follows. Finite volume effects contain the universal
factor exp{−L Mπ}, and if this were the only contribution a criterion based on the values
ofMπ,minL would be appropriate. This is what we used in Ref. [2] (withMπ,minL > 4 for
⋆ andMπ,minL > 3 for ◦). However, as pion masses decrease, one must also account for
the weakening of the pion couplings. In particular, 1-loop chiral perturbation theory [82]
reveals a behaviour proportional to M2

π exp{−L Mπ}. Our new condition includes this
weakening of the coupling, and ensures for example, that simulations with Mπ,min =
135 MeV and L Mπ,min = 3.2 are rated equivalently to those with Mπ,min = 200 MeV
and L Mπ,min = 4.

• Renormalization (where applicable):
⋆ nonperturbative

◦ 1-loop perturbation theory or higher with a reasonable estimate of truncation errors
� otherwise
In Ref. [1], we assigned a red square to all results which were renormalized at 1-loop in
perturbation theory. In Ref. [2] we decided that this was too restrictive, since the error
arising from renormalization constants, calculated in perturbation theory at 1-loop, is
often estimated conservatively and reliably.

• Renormalization Group (RG) running (where applicable):
For scale-dependent quantities, such as quark masses or BK , it is essential that contact
with continuum perturbation theory can be established. Various different methods are
used for this purpose (cf. Appendix A.3): Regularization-independent Momentum Sub-
traction (RI/MOM), the Schrödinger functional, and direct comparison with (resummed)
perturbation theory. Irrespective of the particular method used, the uncertainty associ-
ated with the choice of intermediate renormalization scales in the construction of physical
observables must be brought under control. This is best achieved by performing compar-
isons between nonperturbative and perturbative running over a reasonably broad range
of scales. These comparisons were initially only made in the Schrödinger functional
approach, but are now also being performed in RI/MOM schemes. We mark the data
for which information about nonperturbative running checks is available and give some
details, but do not attempt to translate this into a colour code.

5We refer to Sec. 5.1 and Appendix A.4 in the Glossary for an explanation of the various regimes of chiral
perturbation theory.
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The pion mass plays an important role in the criteria relevant for chiral extrapolation
and finite volume. For some of the regularizations used, however, it is not a trivial matter to
identify this mass.

In the case of twisted-mass fermions, discretization effects give rise to a mass difference
between charged and neutral pions even when the up- and down-quark masses are equal:
the charged pion is found to be the heavier of the two for twisted-mass Wilson fermions
(cf. Ref. [83]). In early works, typically referring to Nf = 2 simulations (e.g. Refs. [83]
and [36]), chiral extrapolations are based on chiral perturbation theory formulae which do
not take these regularization effects into account. After the importance of keeping the isospin
breaking when doing chiral fits was shown in Ref. [84], later works, typically referring to
Nf = 2+1+1 simulations, have taken these effects into account [4]. We use Mπ± for Mπ,min

in the chiral-extrapolation rating criterion. On the other hand, sea quarks (corresponding to
both charged and neutral “sea pions“ in an effective-chiral-theory logic) as well as valence
quarks are intertwined with finite-volume effects. Therefore, we identify Mπ,min with the root
mean square (RMS) of Mπ+ , Mπ− and Mπ0 in the finite-volume rating criterion.6

In the case of staggered fermions, discretization effects give rise to several light states
with the quantum numbers of the pion.7 The mass splitting among these “taste” partners
represents a discretization effect of O(a2), which can be significant at large lattice spacings
but shrinks as the spacing is reduced. In the discussion of the results obtained with staggered
quarks given in the following sections, we assume that these artefacts are under control. We
conservatively identify Mπ,min with the root mean square (RMS) average of the masses of all
the taste partners, both for chiral-extrapolation and finite-volume criteria.8

The strong coupling αs is computed in lattice QCD with methods differing substantially
from those used in the calculations of the other quantities discussed in this review. Therefore
we have established separate criteria for αs results, which will be discussed in Sec. 9.2.

2.1.2 Heavy-quark actions

In most cases, and in particular for the b quark, the discretization of the heavy-quark action
follows a very different approach to that used for light flavours. There are several different
methods for treating heavy quarks on the lattice, each with their own issues and considera-
tions. All of these methods use Effective Field Theory (EFT) at some point in the compu-
tation, either via direct simulation of the EFT, or by using EFT as a tool to estimate the
size of cutoff errors, or by using EFT to extrapolate from the simulated lattice quark masses
up to the physical b-quark mass. Because of the use of an EFT, truncation errors must be
considered together with discretization errors.

The charm quark lies at an intermediate point between the heavy and light quarks. In
our previous review, the bulk of the calculations involving charm quarks treated it using one
of the approaches adopted for the b quark. Many recent calculations, however, simulate the
charm quark using light-quark actions, in particular the Nf = 2+1+1 calculations. This has
become possible thanks to the increasing availability of dynamical gauge field ensembles with

6 This is a change from Ref. [2], where we used the charged pion mass when evaluating both chiral-
extrapolation and finite-volume effects.

7 We refer the interested reader to a number of good reviews on the subject [85–89].
8 In Ref. [2], the RMS value was used in the chiral-extrapolation criteria throughout the paper. For the

finite-volume rating, however,Mπ,min was identified with the RMS value only in Secs. 4 and 6, while in Secs. 3,
5, 7 and 8 it was identified with the mass of the lightest pseudoscalar state.
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fine lattice spacings. But clearly, when charm quarks are treated relativistically, discretization
errors are more severe than those of the corresponding light-quark quantities.

In order to address these complications, we add a new heavy-quark treatment category to
the rating system. The purpose of this criterion is to provide a guideline for the level of action
and operator improvement needed in each approach to make reliable calculations possible, in
principle.

A description of the different approaches to treating heavy quarks on the lattice is given
in Appendix A.1.3, including a discussion of the associated discretization, truncation, and
matching errors. For truncation errors we use HQET power counting throughout, since this
review is focused on heavy quark quantities involving B and D mesons rather than bottomo-
nium or charmonium quantities. Here we describe the criteria for how each approach must be
implemented in order to receive an acceptable (X) rating for both the heavy quark actions
and the weak operators. Heavy-quark implementations without the level of improvement
described below are rated not acceptable ( �). The matching is evaluated together with renor-
malization, using the renormalization criteria described in Sec. 2.1.1. We emphasize that the
heavy-quark implementations rated as acceptable and described below have been validated in
a variety of ways, such as via phenomenological agreement with experimental measurements,
consistency between independent lattice calculations, and numerical studies of truncation er-
rors. These tests are summarized in Sec. 8.

Relativistic heavy quark actions:

X at least tree-level O(a) improved action and weak operators
This is similar to the requirements for light quark actions. All current implementations of
relativistic heavy quark actions satisfy this criterion.

NRQCD:

X tree-level matched through O(1/mh) and improved through O(a2)
The current implementations of NRQCD satisfy this criterion, and also include tree-level cor-
rections of O(1/m2

h) in the action.

HQET:

X tree-level matched through O(1/mh) with discretization errors starting at O(a2)
The current implementation of HQET by the ALPHA collaboration satisfies this criterion,
since both action and weak operators are matched nonperturbatively through O(1/mh). Cal-
culations that exclusively use a static-limit action do not satisfy this criterion, since the
static-limit action, by definition, does not include 1/mh terms. However for SU(3)-breaking
ratios, such as ξ and fBs/fB , truncation errors start at O((ms−md)/mh). We therefore con-
sider lattice calculations of such ratios that use a static-limit action to still have controllable
truncation errors.

Light-quark actions for heavy quarks:

X discretization errors starting at O(a2) or higher
This applies to calculations that use the tmWilson action, a nonperturbatively improved Wil-
son action, or the HISQ action for charm quark quantities. It also applies to calculations that
use these light quark actions in the charm region and above together with either the static
limit or with an HQET inspired extrapolation to obtain results at the physical b quark mass.
In these cases, the continuum extrapolation criteria described earlier must be applied to the
entire range of heavy-quark masses used in the calculation.
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2.1.3 Conventions for the figures

For a coherent assessment of the present situation, the quality of the data plays a key role, but
the colour coding cannot be carried over to the figures. On the other hand, simply showing
all data on equal footing would give the misleading impression that the overall consistency of
the information available on the lattice is questionable. Therefore, in the figures we indicate
the quality of the data in a rudimentary way, using the following symbols:
� corresponds to results included in the average or estimate (i.e. results that contribute to
the black square below);
�� corresponds to results that are not included in the average but pass all quality criteria;
� corresponds to all other results;
� corresponds to FLAG averages or estimates; they are also highlighted by a gray vertical
band.
The reason for not including a given result in the average is not always the same: the result
may fail one of the quality criteria; the paper may be unpublished; it may be superseded by
newer results; or it may not offer a complete error budget.

Symbols other than squares are used to distinguish results with specific properties and
are always explained in the caption.9

Often nonlattice data are also shown in the figures for comparison. For these we use the
following symbols:
• corresponds to nonlattice results;
N corresponds to Particle Data Group (PDG) results.

2.2 Averages and estimates

FLAG results of a given quantity are denoted either as averages or as estimates. Here we
clarify this distinction. To start with, both averages and estimates are based on results without
any red tags in their colour coding. For many observables there are enough independent
lattice calculations of good quality, with all sources of error (not merely those related to the
colour-coded criteria), as analyzed in the original papers, appearing to be under control. In
such cases it makes sense to average these results and propose such an average as the best
current lattice number. The averaging procedure applied to this data and the way the error
is obtained is explained in detail in Sec. 2.3. In those cases where only a sole result passes our
rating criteria (colour coding), we refer to it as our FLAG average, provided it also displays
adequate control of all other sources of systematic uncertainty.

On the other hand, there are some cases in which this procedure leads to a result that, in
our opinion, does not cover all uncertainties. Systematic error estimates are by their nature
often subjective and difficult to estimate, and may thus end up being underestimated in one
or more results that receive green symbols for all explicitly tabulated criteria. Adopting a
conservative policy, in these cases we opt for an estimate (or a range), which we consider
as a fair assessment of the knowledge acquired on the lattice at present. This estimate is
not obtained with a prescribed mathematical procedure, but reflects what we consider the
best possible analysis of the available information. The hope is that this will encourage more
detailed investigations by the lattice community.

9For example, for quark mass results we distinguish between perturbative and nonperturbative renormal-
ization, for low-energy constants we distinguish between the p- and ǫ-regimes, and for heavy flavour results we
distinguish between those from leptonic and semi-leptonic decays.
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There are two other important criteria that also play a role in this respect, but that cannot
be colour coded, because a systematic improvement is not possible. These are: i) the publi-
cation status, and ii) the number of sea-quark flavours Nf . As far as the former criterion is
concerned, we adopt the following policy: we average only results that have been published in
peer-reviewed journals, i.e. they have been endorsed by referee(s). The only exception to this
rule consists in straightforward updates of previously published results, typically presented
in conference proceedings. Such updates, which supersede the corresponding results in the
published papers, are included in the averages. Note that updates of earlier results rely, at
least partially, on the same gauge-field-configuration ensembles. For this reason, we do not
average updates with earlier results. Nevertheless, all results are listed in the tables,10 and
their publication status is identified by the following symbols:

• Publication status:
A published or plain update of published results
P preprint
C conference contribution

In the present edition, the publication status on the 30th of November 2015 is relevant.
If the paper appeared in print after that date, this is accounted for in the bibliography, but
does not affect the averages.

As noted above, in this review we present results from simulations with Nf = 2, Nf = 2+1
and Nf = 2 + 1 + 1 (except for r0ΛMS where we also give the Nf = 0 result). We are not
aware of an a priori way to quantitatively estimate the difference between results produced
in simulations with a different number of dynamical quarks. We therefore average results at
fixed Nf separately; averages of calculations with different Nf will not be provided.

To date, no significant differences between results with different values of Nf have been
observed in the quantities listed in Tabs. 1 and 2. In the future, as the accuracy and the
control over systematic effects in lattice calculations increases, it will hopefully be possible
to see a difference between results from simulations with Nf = 2 and Nf = 2 + 1, and thus
determine the size of the Zweig-rule violations related to strange-quark loops. This is a very
interesting issue per se, and one which can be quantitatively addressed only with lattice
calculations.

The question of differences between results with Nf = 2 + 1 and Nf = 2 + 1 + 1 is more
subtle. The dominant effect of including the charm sea quark is to shift the lattice scale, an
effect that is accounted for by fixing this scale nonperturbatively using physical quantities.
For most of the quantities discussed in this review, it is expected that residual effects are small
in the continuum limit, suppressed by αs(mc) and powers of Λ2/m2

c . Here Λ is a hadronic
scale that can only be roughly estimated and depends on the process under consideration.
Note that the Λ2/m2

c effects have been addressed in Ref. [90]. Assuming that such effects are
small, it might be reasonable to average the results from Nf = 2 + 1 and Nf = 2 + 1 + 1
simulations. This is not yet a pressing issue in this review, since there are relatively few
results with Nf = 2 + 1 + 1, but it will become a more important question in the future.

10Whenever figures turn out to be overcrowded, older, superseded results are omitted. However, all the most
recent results from each collaboration are displayed.
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2.3 Averaging procedure and error analysis

In the present report we repeatedly average results obtained by different collaborations and es-
timate the error on the resulting averages. We follow the procedure of the previous edition [2],
which we describe here in full detail.

One of the problems arising when forming averages is that not all of the datasets are in-
dependent. In particular, the same gauge-field configurations, produced with a given fermion
descretization, are often used by different research teams with different valence-quark lattice
actions, obtaining results that are not really independent. Our averaging procedure takes
such correlations into account.

Consider a given measurable quantity Q, measured by M distinct, not necessarily un-
correlated, numerical experiments (simulations). The result of each of these measurement is
expressed as

Qi = xi ± σ
(1)
i ± σ

(2)
i ± · · · ± σ

(E)
i , (1)

where xi is the value obtained by the ith experiment (i = 1, · · · ,M) and σ
(k)
i (for k = 1, · · · , E)

are the various errors. Typically σ
(1)
i stands for the statistical error and σ

(k)
i (k ≥ 2) are the

different systematic errors from various sources. For each individual result, we estimate the
total error σi by adding statistical and systematic errors in quadrature:

Qi = xi ± σi ,

σi ≡

√√√√
E∑

k=1

[
σ
(k)
i

]2
. (2)

With the weight factor of each total error estimated in standard fashion:

ωi =
σ−2
i∑M

i=1 σ
−2
i

, (3)

the central value of the average over all simulations is given by

xav =
M∑

i=1

xi ωi . (4)

The above central value corresponds to a χ2
min weighted average, evaluated by adding statis-

tical and systematic errors in quadrature. If the fit is not of good quality (χ2
min/dof > 1),

the statistical and systematic error bars are stretched by a factor S =
√
χ2/dof .

Next we examine error budgets for individual calculations and look for potentially corre-
lated uncertainties. Specific problems encountered in connection with correlations between
different data sets are described in the text that accompanies the averaging. If there is reason
to believe that a source of error is correlated between two calculations, a 100% correlation is
assumed. The correlation matrix Cij for the set of correlated lattice results is estimated by a
prescription due to Schmelling [91]. This consists in defining

σi;j =

√√√√
′∑

(k)

[
σ
(k)
i

]2
, (5)
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with
∑′

(k) running only over those errors of xi that are correlated with the corresponding
errors of measurement xj. This expresses the part of the uncertainty in xi that is correlated
with the uncertainty in xj. If no such correlations are known to exist, then we take σi;j = 0.
The diagonal and off-diagonal elements of the correlation matrix are then taken to be

Cii = σ2i (i = 1, · · · ,M) ,

Cij = σi;j σj;i (i 6= j) . (6)

Finally the error of the average is estimated by

σ2av =

M∑

i=1

M∑

j=1

ωi ωj Cij , (7)

and the FLAG average is
Qav = xav ± σav . (8)
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3 Quark masses

Quark masses are fundamental parameters of the Standard Model. An accurate determination
of these parameters is important for both phenomenological and theoretical applications.
The charm and bottom masses, for instance, enter the theoretical expressions of several cross
sections and decay rates in heavy-quark expansions. The up-, down- and strange-quark masses
govern the amount of explicit chiral symmetry breaking in QCD. From a theoretical point of
view, the values of quark masses provide information about the flavour structure of physics
beyond the Standard Model. The Review of Particle Physics of the Particle Data Group
contains a review of quark masses [92], which covers light as well as heavy flavours. Here we
also consider light- and heavy- quark masses, but focus on lattice results and discuss them
in more detail. We do not discuss the top quark, however, because it decays weakly before
it can hadronize, and the nonperturbative QCD dynamics described by present day lattice
simulations is not relevant. The lattice determination of light- (up, down, strange), charm-
and bottom-quark masses is considered below in Secs. 3.1, 3.2, and 3.3, respectively.

Quark masses cannot be measured directly in experiment because quarks cannot be iso-
lated, as they are confined inside hadrons. On the other hand, quark masses are free pa-
rameters of the theory and, as such, cannot be obtained on the basis of purely theoretical
considerations. Their values can only be determined by comparing the theoretical predic-
tion for an observable, which depends on the quark mass of interest, with the corresponding
experimental value.

In the last edition of this review [2], quark-mass determinations came from two- and
three-flavour QCD calculations. Moreover, these calculations were most often performed in
the isospin limit, where the up- and down-quark masses (especially those in the sea) are
set equal. In addition, some of the results retained in our light-quark mass averages were
based on simulations performed at values of mud which were still substantially larger than
its physical value imposing a significant extrapolation to reach the physical up- and down-
quark mass point. Among the calculations performed near physical mud by PACS-CS [93–95],
BMW [7, 8] and RBC/UKQCD [31], only the ones in Refs. [7, 8] did so while controlling all
other sources of systematic error.

Today, however, the effects of the charm quark in the sea are more and more systemati-
cally considered and most of the new quark-mass results discussed below have been obtained
in Nf = 2 + 1 + 1 simulations by ETM [4], HPQCD [14] and FNAL/MILC [5]. In addition,
RBC/UKQCD [10], HPQCD [14] and FNAL/MILC [5] are extending their calculations down
to up-down-quark masses at or very close to their physical values while still controlling other
sources of systematic error. Another aspect that is being increasingly addressed are elec-
tromagnetic and (md −mu), strong isospin-breaking effects. As we will see below these are
particularly important for determining the individual up- and down-quark masses. But with
the level of precision being reached in calculations, these effects are also becoming important
for other quark masses.

Three-flavour QCD has four free parameters: the strong coupling, αs (alternatively ΛQCD)
and the up-, down- and strange-quark masses, mu, md andms. Four-flavour calculations have
an additional parameter, the charm-quark mass mc. When the calculations are performed in
the isospin limit, up- and down-quark masses are replaced by a single parameter: the isospin-
averaged up- and down-quark mass, mud = 1

2(mu + md). A lattice determination of these
parameters, and in particular of the quark masses, proceeds in two steps:
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1. One computes as many experimentally measurable quantities as there are quark masses.
These observables should obviously be sensitive to the masses of interest, preferably
straightforward to compute and obtainable with high precision. They are usually com-
puted for a variety of input values of the quark masses which are then adjusted to
reproduce experiment. Another observable, such as the pion decay constant or the mass
of a member of the baryon octet, must be used to fix the overall scale. Note that the
mass of a quark, such as the b, which is not accounted for in the generation of gauge
configurations, can still be determined. For that an additional valence-quark observable
containing this quark must be computed and the mass of that quark must be tuned to
reproduce experiment.

2. The input quark masses are bare parameters which depend on the lattice spacing and
particulars of the lattice regularization used in the calculation. To compare their values
at different lattice spacings and to allow a continuum extrapolation they must be renor-
malized. This renormalization is a short-distance calculation, which may be performed
perturbatively. Experience shows that 1-loop calculations are unreliable for the renor-
malization of quark masses: usually at least two loops are required to have trustworthy
results. Therefore, it is best to perform the renormalizations nonperturbatively to avoid
potentially large perturbative uncertainties due to neglected higher-order terms. Never-
theless we will include in our averages 1-loop results if they carry a solid estimate of the
systematic uncertainty due to the truncation of the series.

In the absence of electromagnetic corrections, the renormalization factors for all quark masses
are the same at a given lattice spacing. Thus, uncertainties due to renormalization are absent
in ratios of quark masses if the tuning of the masses to their physical values can be done
lattice spacing by lattice spacing and significantly reduced otherwise.

We mention that lattice QCD calculations of the b-quark mass have an additional compli-
cation which is not present in the case of the charm- and light-quarks. At the lattice spacings
currently used in numerical simulations the direct treatment of the b quark with the fermionic
actions commonly used for light quarks will result in large cutoff effects, because the b-quark
mass is of order one in lattice units. There are a few widely used approaches to treat the b
quark on the lattice, which have been already discussed in the FLAG 13 review (see Section 8
of Ref. [2]). Those relevant for the determination of the b-quark mass will be briefly described
in Sec. 3.3.

3.1 Masses of the light quarks

Light-quark masses are particularly difficult to determine because they are very small (for the
up and down quarks) or small (for the strange quark) compared to typical hadronic scales.
Thus, their impact on typical hadronic observables is minute, and it is difficult to isolate their
contribution accurately.

Fortunately, the spontaneous breaking of SU(3)L × SU(3)R chiral symmetry provides
observables which are particularly sensitive to the light-quark masses: the masses of the
resulting Nambu-Goldstone bosons (NGB), i.e. pions, kaons and etas. Indeed, the Gell-Mann-
Oakes-Renner relation [96] predicts that the squared mass of a NGB is directly proportional to
the sum of the masses of the quark and antiquark which compose it, up to higher-order mass
corrections. Moreover, because these NGBs are light and are composed of only two valence
particles, their masses have a particularly clean statistical signal in lattice-QCD calculations.
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In addition, the experimental uncertainties on these meson masses are negligible. Thus,
in lattice calculations, light-quark masses are typically obtained by renormalizing the input
quark mass and tuning them to reproduce NGB masses, as described above.

3.1.1 Contributions from the electromagnetic interaction

As mentioned in Sec. 2.1, the present review relies on the hypothesis that, at low energies, the
Lagrangian LQCD+LQED describes nature to a high degree of precision. However, most of the
results presented below are obtained in pure QCD calculations, which do not include QED.
Quite generally, when comparing QCD calculations with experiment, radiative corrections
need to be applied. In pure QCD simulations, where the parameters are fixed in terms of
the masses of some of the hadrons, the electromagnetic contributions to these masses must
be accounted for. Of course, once QED is included in lattice calculations, the subtraction of
e.m. contributions is no longer necessary.

The electromagnetic interaction plays a particularly important role in determinations
of the ratio mu/md, because the isospin-breaking effects generated by this interaction are
comparable to those from mu 6= md (see Subsection 3.1.5). In determinations of the ratio
ms/mud, the electromagnetic interaction is less important, but at the accuracy reached, it
cannot be neglected. The reason is that, in the determination of this ratio, the pion mass
enters as an input parameter. Because Mπ represents a small symmetry-breaking effect, it is
rather sensitive to the perturbations generated by QED.

The decomposition of the sum LQCD + LQED into two parts is not unique and specifying
the QCD part requires a convention. In order to give results for the quark masses in the
Standard Model at scale µ = 2GeV, on the basis of a calculation done within QCD, it is
convenient to match the parameters of the two theories at that scale. We use this convention
throughout the present review 11.

Such a convention allows us to distinguish the physical mass MP , P ∈ {π+, π0, K+,
K0}, from the mass M̂P within QCD. The e.m. self-energy is the difference between the two,
Mγ

P ≡ MP − M̂P . Because the self-energy of the Nambu-Goldstone bosons diverges in the
chiral limit, it is convenient to replace it by the contribution of the e.m. interaction to the
square of the mass,

∆γ
P ≡M2

P − M̂2
P = 2MPM

γ
P +O(e4) . (9)

The main effect of the e.m. interaction is an increase in the mass of the charged particles,
generated by the photon cloud that surrounds them. The self-energies of the neutral ones
are comparatively small, particularly for the Nambu-Goldstone bosons, which do not have a
magnetic moment. Dashen’s theorem [102] confirms this picture, as it states that, to leading
order (LO) of the chiral expansion, the self-energies of the neutral NGBs vanish, while the
charged ones obey ∆γ

K+ = ∆γ
π+ . It is convenient to express the self-energies of the neutral

particles as well as the mass difference between the charged and neutral pions within QCD
in units of the observed mass difference, ∆π ≡M2

π+ −M2
π0 :

∆γ
π0 ≡ ǫπ0 ∆π , ∆γ

K0 ≡ ǫK0 ∆π , M̂
2
π+ − M̂2

π0 ≡ ǫm∆π . (10)

11Note that a different convention is used in the analysis of the precision measurements carried out in low-
energy pion physics (e.g. Ref. [97]). When comparing lattice results with experiment, it is important to fix
the QCD parameters in accordance with the convention used in the analysis of the experimental data (for a
more detailed discussion, see Refs. [98–101]).
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In this notation, the self-energies of the charged particles are given by

∆γ
π+ = (1 + ǫπ0 − ǫm)∆π , ∆γ

K+ = (1 + ǫ+ ǫK0 − ǫm)∆π , (11)

where the dimensionless coefficient ǫ parameterizes the violation of Dashen’s theorem, 12

∆γ
K+ −∆γ

K0 −∆γ
π+ +∆γ

π0 ≡ ǫ∆π . (12)

Any determination of the light-quark masses based on a calculation of the masses of π+,K+

and K0 within QCD requires an estimate for the coefficients ǫ, ǫπ0 , ǫK0 and ǫm.
The first determination of the self-energies on the lattice was carried out by Duncan,

Eichten and Thacker [104]. Using the quenched approximation, they arrived atMγ
K+−Mγ

K0 =
1.9MeV. Actually, the parameterization of the masses given in that paper yields an estimate
for all but one of the coefficients introduced above (since the mass splitting between the
charged and neutral pions in QCD is neglected, the parameterization amounts to setting
ǫm = 0 ab initio). Evaluating the differences between the masses obtained at the physical value
of the electromagnetic coupling constant and at e = 0, we obtain ǫ = 0.50(8), ǫπ0 = 0.034(5)
and ǫK0 = 0.23(3). The errors quoted are statistical only: an estimate of lattice systematic
errors is not possible from the limited results of Ref. [104]. The result for ǫ indicates that
the violation of Dashen’s theorem is sizeable: according to this calculation, the nonleading
contributions to the self-energy difference of the kaons amount to 50% of the leading term.
The result for the self-energy of the neutral pion cannot be taken at face value, because it
is small, comparable to the neglected mass difference M̂π+ − M̂π0 . To illustrate this, we
note that the numbers quoted above are obtained by matching the parameterization with the
physical masses for π0, K+ and K0. This gives a mass for the charged pion that is too high
by 0.32 MeV. Tuning the parameters instead such that Mπ+ comes out correctly, the result
for the self-energy of the neutral pion becomes larger: ǫπ0 = 0.10(7) where, again, the error
is statistical only.

In an update of this calculation by the RBC collaboration [105] (RBC 07), the electro-
magnetic interaction is still treated in the quenched approximation, but the strong interac-
tion is simulated with Nf = 2 dynamical quark flavours. The quark masses are fixed with
the physical masses of π0, K+ and K0. The outcome for the difference in the electromag-
netic self-energy of the kaons reads Mγ

K+ −Mγ
K0 = 1.443(55)MeV. This corresponds to a

remarkably small violation of Dashen’s theorem. Indeed, a recent extension of this work
to Nf = 2 + 1 dynamical flavours [103] leads to a significantly larger self-energy difference:
Mγ

K+−Mγ
K0 = 1.87(10)MeV, in good agreement with the estimate of Eichten et al. Expressed

in terms of the coefficient ǫ that measures the size of the violation of Dashen’s theorem, it
corresponds to ǫ = 0.5(1).

The input for the electromagnetic corrections used by MILC is specified in Ref. [106]. In
their analysis of the lattice data, ǫπ0 , ǫK0 and ǫm are set equal to zero. For the remaining
coefficient, which plays a crucial role in determinations of the ratio mu/md, the very conserva-
tive range ǫ = 1(1) was used in MILC 04 [107], while in MILC 09 [89] and MILC 09A [6] this
input has been replaced by ǫ = 1.2(5), as suggested by phenomenological estimates for the
corrections to Dashen’s theorem [108, 109]. Results of an evaluation of the electromagnetic
self-energies based on Nf = 2 + 1 dynamical quarks in the QCD sector and on the quenched

12Sometimes, e.g. in Ref. [103], the violation of Dashen’s theorem is given in terms of a different quantity,
ǭ ≡ (∆γ

K+ −∆γ

K0)/(∆
γ

π+ −∆γ

π0) − 1. This parameter is related to ǫ used here through ǫ = (1 − ǫm)ǭ. Given
the value of ǫm (see Eq. (13)), these two quantities differ by 4% only.
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approximation in the QED sector have been also reported by MILC in Refs. [110–112] and
updated recently in Refs. [113, 114]. Their latest (preliminary) result is ǭ = 0.84(5)(19),
where the first error is statistical and the second systematic, coming from discretization and
finite-volume uncertainties added in quadrature. With the estimate for ǫm given in Eq. (13),
this result corresponds to ǫ = 0.81(5)(18).

Preliminary results have been also reported by the BMW collaboration in conference
proceedings [115–117], with the updated result being ǫ = 0.57(6)(6), where the first error is
statistical and the second systematic.

The RM123 collaboration employs a new technique to compute e.m. shifts in hadron
masses in 2-flavour QCD: the effects are included at leading order in the electromagnetic
coupling α through simple insertions of the fundamental electromagnetic interaction in quark
lines of relevant Feynman graphs [16]. They find ǫ = 0.79(18)(18), where the first error is
statistical and the second is the total systematic error resulting from chiral, finite-volume,
discretization, quenching and fitting errors all added in quadrature.

Recently [118] the QCDSF/UKQCD collaboration has presented results for several pseu-
doscalar meson masses obtained from Nf = 2+ 1 dynamical simulations of QCD + QED (at
a single lattice spacing a ≃ 0.07 fm). Using the experimental values of the π0, K0 and K+

mesons masses to fix the three light-quark masses, they find ǫ = 0.50(6), where the error is
statistical only.

The effective Lagrangian that governs the self-energies to next-to-leading order (NLO)
of the chiral expansion was set up in Ref. [119]. The estimates made in Refs. [108, 109]
are obtained by replacing QCD with a model, matching this model with the effective theory
and assuming that the effective coupling constants obtained in this way represent a decent
approximation to those of QCD. For alternative model estimates and a detailed discussion of
the problems encountered in models based on saturation by resonances, see Refs. [120–122].
In the present review of the information obtained on the lattice, we avoid the use of models
altogether.

There is an indirect phenomenological determination of ǫ, which is based on the decay
η → 3π and does not rely on models. The result for the quark-mass ratio Q, defined in Eq. (32)
and obtained from a dispersive analysis of this decay, implies ǫ = 0.70(28) (see Sec. 3.1.5).
While the values found in older lattice calculations [103–105] are a little less than one standard
deviation lower, the most recent determinations [16, 110–116, 123], though still preliminary,
are in excellent agreement with this result and have significantly smaller error bars. However,
even in the more recent calculations, e.m. effects are treated in the quenched approximation.
Thus, we choose to quote ǫ = 0.7(3), which is essentially the η → 3π result and covers the
range of post-2010 lattice results. Note that this value has an uncertainty which is reduced
by about 40% compared to the result quoted in the first edition of the FLAG review [1].

We add a few comments concerning the physics of the self-energies and then specify
the estimates used as an input in our analysis of the data. The Cottingham formula [124]
represents the self-energy of a particle as an integral over electron scattering cross sections;
elastic as well as inelastic reactions contribute. For the charged pion, the term due to elastic
scattering, which involves the square of the e.m. form factor, makes a substantial contribution.
In the case of the π0, this term is absent, because the form factor vanishes on account of charge
conjugation invariance. Indeed, the contribution from the form factor to the self-energy of the
π+ roughly reproduces the observed mass difference between the two particles. Furthermore,
the numbers given in Refs. [125–127] indicate that the inelastic contributions are significantly
smaller than the elastic contributions to the self-energy of the π+. The low-energy theorem
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of Das, Guralnik, Mathur, Low and Young [128] ensures that, in the limit mu,md → 0,
the e.m. self-energy of the π0 vanishes, while the one of the π+ is given by an integral over
the difference between the vector and axial-vector spectral functions. The estimates for ǫπ0

obtained in Ref. [104] and more recently in Ref. [118] are consistent with the suppression of
the self-energy of the π0 implied by chiral SU(2)×SU(2). In our opinion, as already done in
the FLAG 13 review [2], the value ǫπ0 = 0.07(7) still represents a quite conservative estimate
for this coefficient. The self-energy of the K0 is suppressed less strongly, because it remains
different from zero if mu and md are taken massless and only disappears if ms is turned off
as well. Note also that, since the e.m. form factor of the K0 is different from zero, the self-
energy of the K0 does pick up an elastic contribution. The recent lattice result ǫK0 = 0.2(1)
obtained in Ref. [118] indicates that the violation of Dashen’s theorem is smaller than in the
case of ǫ. Following the FLAG 13 review [2] we confirm the choice of the conservative value
ǫK0 = 0.3(3).

Finally, we consider the mass splitting between the charged and neutral pions in QCD.
This effect is known to be very small, because it is of second order in mu − md. There
is a parameter-free prediction, which expresses the difference M̂2

π+ − M̂2
π0 in terms of the

physical masses of the pseudoscalar octet and is valid to NLO of the chiral perturbation
series. Numerically, the relation yields ǫm = 0.04 [129], indicating that this contribution
does not play a significant role at the present level of accuracy. We attach a conservative
error also to this coefficient: ǫm = 0.04(2). The lattice result for the self-energy difference
of the pions, reported in Ref. [103], Mγ

π+ −Mγ
π0 = 4.50(23)MeV, agrees with this estimate:

expressed in terms of the coefficient ǫm that measures the pion-mass splitting in QCD, the
result corresponds to ǫm = 0.04(5). The corrections of next-to-next-to-leading order (NNLO)
have been worked out in Ref. [130], but the numerical evaluation of the formulae again meets
with the problem that the relevant effective coupling constants are not reliably known.

In summary, we use the following estimates for the e.m. corrections:

ǫ = 0.7(3) , ǫπ0 = 0.07(7) , ǫK0 = 0.3(3) , ǫm = 0.04(2) . (13)

While the range used for the coefficient ǫ affects our analysis in a significant way, the numerical
values of the other coefficients only serve to set the scale of these contributions. The range
given for ǫπ0 and ǫK0 may be overly generous, but because of the exploratory nature of the
lattice determinations, we consider it advisable to use a conservative estimate.

Treating the uncertainties in the four coefficients as statistically independent and adding
errors in quadrature, the numbers in Eq. (13) yield the following estimates for the e.m. self-
energies,

Mγ
π+ = 4.7(3)MeV , Mγ

π0 = 0.3(3)MeV , Mγ
π+ −Mγ

π0 = 4.4(1)MeV , (14)

Mγ
K+ = 2.5(5)MeV , Mγ

K0 = 0.4(4)MeV , Mγ
K+ −Mγ

K0 = 2.1(4)MeV ,

and for the pion and kaon masses occurring in the QCD sector of the Standard Model,

M̂π+ = 134.8(3)MeV , M̂π0 = 134.6(3)MeV , M̂π+ − M̂π0 = 0.2(1)MeV , (15)

M̂K+ = 491.2(5)MeV , M̂K0 = 497.2(4)MeV , M̂K+ − M̂K0 = −6.1(4)MeV .

The self-energy difference between the charged and neutral pion involves the same coefficient
ǫm that describes the mass difference in QCD – this is why the estimate for Mγ

π+ −Mγ
π0 is so

precise.

29



3.1.2 Pion and kaon masses in the isospin limit

As mentioned above, most of the lattice calculations concerning the properties of the light
mesons are performed in the isospin limit of QCD (mu−md → 0 at fixedmu+md). We denote
the pion and kaon masses in that limit byMπ andMK , respectively. Their numerical values
can be estimated as follows. Since the operation u ↔ d interchanges π+ with π− and K+

with K0, the expansion of the quantities M̂2
π+ and 1

2(M̂
2
K+ +M̂2

K0) in powers of mu−md only
contains even powers. As shown in Ref. [131], the effects generated by mu −md in the mass

of the charged pion are strongly suppressed: the difference M̂2
π+ −M 2

π represents a quantity

of O[(mu −md)
2(mu +md)] and is therefore small compared to the difference M̂2

π+ − M̂2
π0 ,

for which an estimate was given above. In the case of 1
2(M̂

2
K+ + M̂2

K0)−M 2
K , the expansion

does contain a contribution at NLO, determined by the combination 2L8 − L5 of low-energy
constants, but the lattice results for that combination show that this contribution is very
small, too. Numerically, the effects generated by mu−md in M̂2

π+ and in 1
2 (M̂

2
K+ + M̂2

K0) are
negligible compared to the uncertainties in the electromagnetic self-energies. The estimates
for these given in Eq. (15) thus imply

Mπ = M̂π+ = 134.8(3)MeV , MK =

√
1

2
(M̂2

K+ + M̂2
K0) = 494.2(3)MeV . (16)

This shows that, for the convention used above to specify the QCD sector of the Standard
Model, and within the accuracy to which this convention can currently be implemented,
the mass of the pion in the isospin limit agrees with the physical mass of the neutral pion:
Mπ −Mπ0 = −0.2(3) MeV.

3.1.3 Lattice determination of ms and mud

We now turn to a review of the lattice calculations of the light-quark masses and begin with
ms, the isospin-averaged up- and down-quark mass, mud, and their ratio. Most groups quote
only mud, not the individual up- and down-quark masses. We then discuss the ratio mu/md

and the individual determination of mu and md.
Quark masses have been calculated on the lattice since the mid-nineties. However early

calculations were performed in the quenched approximation, leading to unquantifiable sys-
tematics. Thus in the following, we only review modern, unquenched calculations, which
include the effects of light sea quarks.

Tabs. 3, 4 and 5 list the results of Nf = 2, Nf = 2 + 1 and Nf = 2 + 1 + 1 lattice
calculations of ms and mud. These results are given in the MS scheme at 2GeV, which
is standard nowadays, though some groups are starting to quote results at higher scales
(e.g. Ref. [31]). The tables also show the colour coding of the calculations leading to these
results. As indicated earlier in this review, we treat calculations with different numbers, Nf ,
of dynamical quarks separately.

Nf = 2 lattice calculations

For Nf = 2, no new calculations have been performed since the previous edition of the
FLAG review [2]. A quick inspection of Tab. 3 indicates that only the more recent calculations,
ALPHA 12 [12] and ETM 10B [11], control all systematic effects – the special case of Dürr
11 [132] is discussed below. Only ALPHA 12 [12], ETM 10B [11] and ETM 07 [133] really
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enter the chiral regime, with pion masses down to about 270 MeV for ALPHA and ETM.
Because this pion mass is still quite far from the physical pion mass, ALPHA 12 refrain from
determining mud and give only ms. All the other calculations have significantly more massive
pions, the lightest being about 430 MeV, in the calculation by CP-PACS 01 [134]. Moreover,
the latter calculation is performed on very coarse lattices, with lattice spacings a ≥ 0.11 fm
and only 1-loop perturbation theory is used to renormalize the results.

ETM 10B’s [11] calculation of mud and ms is an update of the earlier twisted mass
determination of ETM 07 [133]. In particular, they have added ensembles with a larger
volume and three new lattice spacings, a = 0.054, 0.067 and 0.098 fm, allowing for a continuum
extrapolation. In addition, it features analyses performed in SU(2) and SU(3) χPT.

The ALPHA 12 [12] calculation of ms is an update of ALPHA 05 [135], which pushes
computations to finer lattices and much lighter pion masses. It also importantly includes a de-
termination of the lattice spacing with the decay constant FK , whereas ALPHA 05 converted
results to physical units using the scale parameter r0 [136], defined via the force between static
quarks. In particular, the conversion relied on measurements of r0/a by QCDSF/UKQCD
04 [137] which differ significantly from the new determination by ALPHA 12. As in ALPHA
05, in ALPHA 12 both nonperturbative running and nonperturbative renormalization are
performed in a controlled fashion, using Schrödinger functional methods.

The conclusion of our analysis of Nf = 2 calculations is that the results of ALPHA
12 [12] and ETM 10B [11] (which update and extend ALPHA 05 [135] and ETM 07 [133],
respectively), are the only ones to date which satisfy our selection criteria. Thus we average
those two results for ms, obtaining 101(3) MeV. Regarding mud, for which only ETM 10B [11]
gives a value, we do not offer an average but simply quote ETM’s number. Thus, we quote
as our estimates:

ms = 101(3) MeV Refs. [11, 12],
Nf = 2 : (17)

mud = 3.6(2) MeV Ref. [11].

The errors on these results are 3% and 6%, respectively. However, these errors do not account
for the fact that sea strange-quark mass effects are absent from the calculation, a truncation
of the theory whose systematic effects cannot be estimated a priori. Thus, these results carry
an additional unknown systematic arror. It is worth remarking that the difference between
ALPHA 12’s [12] central value for ms and that of ETM 10B [11] is 7(7) MeV.

We have not included the results of Dürr 11 [132] in the averages of Eq. (17), despite
the fact that they satisfy our selection criteria. The reason for this is that the observable
which they actually compute on the lattice is mc/ms = 11.27(30)(26), reviewed in Sec. 3.2.4.
They obtain ms by combining that value of mc/ms with already existing phenomenological
calculations of mc. Subsequently they obtain mud by combining this result for ms with the
Nf = 2+1 calculation ofms/mud of BMW 10A, 10B [7, 8] discussed below. Thus, their results
for ms and mud are not per se lattice results, nor do they correspond to Nf = 2. The value of
the charm-quark mass which they use is an average of phenomenological determinations, which
they estimate to be mc(2GeV) = 1.093(13)GeV, with a 1.2% total uncertainty. This value
for mc leads to the results for ms and mud in Tab. 3 which are compatible with the averages
given in Eq. (17) and have similar uncertainties. Note, however, that their determination of
mc/ms is about 1.5 combined standard deviations below the only other Nf = 2 result which
satisfies our selection criteria, ETM 10B’s [11] result, as discussed in Sec. 3.2.4.
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mud ms

ALPHA 12 [12] A ◦ ⋆ ⋆ ⋆ a, b 102(3)(1)

Dürr 11‡ [132] A ◦ ⋆ ◦ − − 3.52(10)(9) 97.0(2.6)(2.5)
ETM 10B [11] A ◦ ⋆ ◦ ⋆ c 3.6(1)(2) 95(2)(6)
JLQCD/TWQCD 08A [138] A ◦ � � ⋆ − 4.452(81)(38)

(

+0
−227

)

–

RBC 07† [105] A � � ⋆ ⋆ − 4.25(23)(26) 119.5(5.6)(7.4)
ETM 07 [133] A ◦ � ◦ ⋆ − 3.85(12)(40) 105(3)(9)
QCDSF/
UKQCD 06

[139] A � ⋆ � ⋆ − 4.08(23)(19)(23) 111(6)(4)(6)

SPQcdR 05 [140] A � ◦ ◦ ⋆ − 4.3(4)(+1.1
−0.0) 101(8)(+25

−0 )

ALPHA 05 [135] A � ◦ ⋆ ⋆ a 97(4)(18)§

QCDSF/
UKQCD 04

[137] A � ⋆ � ⋆ − 4.7(2)(3) 119(5)(8)

JLQCD 02 [141] A � � ◦ � − 3.223(+46
−69) 84.5(+12.0

−1.7 )
CP-PACS 01 [134] A � � ⋆ � − 3.45(10)(+11

−18) 89(2)(+2
−6)

⋆

‡ What is calculated is mc/ms = 11.27(30)(26). ms is then obtained using lattice and phenomenological
determinations of mc which rely on perturbation theory. Finally, mud is determined from ms using
BMW 10A, 10B’s Nf = 2+1 result for ms/mud [7, 8]. Since mc/ms is renormalization group invariant
in QCD, the renormalization and running of the quark masses enter indirectly through that of mc, a
mass that we do not review here.

† The calculation includes quenched e.m. effects.
§ The data used to obtain the bare value of ms are from UKQCD/QCDSF 04 [137].
⋆ This value of ms was obtained using the kaon mass as input. If the φ-meson mass is used instead, the

authors find ms = 90(+5
−11).

a The masses are renormalized and run nonperturbatively up to a scale of 100GeV in the Nf = 2 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 100 GeV all the way down to 2 GeV [135].

b The running and renormalization results of Ref. [135] are improved in Ref. [12] with higher statistical
and systematic accuracy.

c The masses are renormalized nonperturbatively at scales 1/a ∼ 2 ÷ 3GeV in the Nf = 2 RI/MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 4 GeV down to 2 GeV to better than 3% [142].

Table 3: Nf = 2 lattice results for the masses mud and ms (MeV, running masses in the MS
scheme at scale 2 GeV). The significance of the colours is explained in Sec. 2. If information
about nonperturbative running is available, this is indicated in the column “running”, with
details given at the bottom of the table.
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Nf = 2 + 1 lattice calculations

We turn now to Nf = 2 + 1 calculations. These and the corresponding results for mud

and ms are summarized in Tab. 4. Given the very high precision of a number of the results,
with total errors on the order of 1%, it is important to consider the effects neglected in these
calculations. Since isospin breaking and e.m. effects are small on mud and ms, and have been
approximately accounted for in the calculations that will be retained for our averages, the
largest potential source of uncontrolled systematic error is that due to the omission of the
charm quark in the sea. Beyond the small perturbative corrections that come from matching
the Nf = 3 to the Nf = 4 MS scheme at mc (∼ −0.2%), the charm sea-quarks affect the
determination of the light-quark masses through contributions of order 1/m2

c . As these are
further suppressed by the Okubo-Zweig-Iizuka rule, they are also expected to be small, but are
difficult to quantify a priori. Fortunately, as we will see below, ms has been directly computed
with Nf = 2+1+1 simulations. In particular, HPQCD 14 [5] has computed ms in QCD4 with
very much the same approach as it had used to obtain the QCD3 result of HPQCD 10 [9].
Their results for ms(Nf = 3, 2 GeV) are 93.8(8)MeV [5] and 92.2(1.3)MeV [9], where the
Nf = 4 result has been converted perturbatively to Nf = 3 in Ref. [5]. This leads to a relative
difference of 1.7(1.6)%. While the two results are compatible within one combined standard
deviation, a ∼ 2% effect cannot be excluded. Thus, we will retain this 2% uncertainty and
add it to the averages for ms and mud given below.

The only new calculation since the last FLAG report [2] is that of RBC/UKQCD 14 [10].
It significantly improves on their RBC/UKQCD 12 [31] work by adding three new domain
wall fermion simulations to three used previously. Two of the new simulations are performed
at essentially physical pion masses (Mπ ≃ 139MeV) on lattices of about 5.4 fm in size and
with lattice spacings of 0.114 fm and 0.084 fm. It is complemented by a third simulation
with Mπ ≃ 371MeV, a ≃ 0.063 and a rather small L ≃ 2.0 fm. Altogether, this gives
them six simulations with six unitary Mπ’s in the range of 139 to 371MeV and effectively
three lattice spacings from 0.063 to 0.114 fm. They perform a combined global continuum
and chiral fit to all of their results for the π and K masses and decay constants, the Ω
baryon mass and two Wilson-flow parameters. Quark masses in these fits are renormalized
and run nonperturbatively in the RI/SMOM scheme. This is done by computing the relevant
renormalization constant for a reference ensemble and determining those for other simulations
relative to it by adding appropriate parameters in the global fit. This new calculation passes
all of our selection criteria. Its results will replace the older RBC/UKQCD 12 results in our
averages.

Nf = 2+1 MILC results for light-quark masses go back to 2004 [107, 148]. They use rooted
staggered fermions. By 2009 their simulations covered an impressive range of parameter
space, with lattice spacings which go down to 0.045 fm and valence-pion masses down to
approximately 180 MeV [6]. The most recent MILC Nf = 2 + 1 results, i.e. MILC 10A [13]
and MILC 09A [6], feature large statistics and 2-loop renormalization. Since these data sets
subsume those of their previous calculations, these latest results are the only ones that must
be kept in any world average.

The PACS-CS 12 [143] calculation represents an important extension of the collaboration’s
earlier 2010 computation [95], which already probed pion masses down to Mπ ≃ 135MeV, i.e.
down to the physical-mass point. This was achieved by reweighting the simulations performed
in PACS-CS 08 [93] at Mπ ≃ 160MeV. If adequately controlled, this procedure eliminates
the need to extrapolate to the physical-mass point and, hence, the corresponding systematic
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mud ms

RBC/UKQCD 14B⊖ [10] P ⋆ ⋆ ⋆ ⋆ d 3.31(4)(4) 90.3(0.9)(1.0)
RBC/UKQCD 12⊖ [31] A ⋆ ◦ ⋆ ⋆ d 3.37(9)(7)(1)(2) 92.3(1.9)(0.9)(0.4)(0.8)
PACS-CS 12⋆ [143] A ⋆ � � ⋆ b 3.12(24)(8) 83.60(0.58)(2.23)
Laiho 11 [44] C ◦ ⋆ ⋆ ◦ − 3.31(7)(20)(17) 94.2(1.4)(3.2)(4.7)
BMW 10A, 10B+ [7, 8] A ⋆ ⋆ ⋆ ⋆ c 3.469(47)(48) 95.5(1.1)(1.5)
PACS-CS 10 [95] A ⋆ � � ⋆ b 2.78(27) 86.7(2.3)
MILC 10A [13] C ◦ ⋆ ⋆ ◦ − 3.19(4)(5)(16) –
HPQCD 10∗ [9] A ◦ ⋆ ⋆ − − 3.39(6) 92.2(1.3)
RBC/UKQCD 10A [144] A ◦ ◦ ⋆ ⋆ a 3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)

Blum 10† [103] A ◦ � ◦ ⋆ − 3.44(12)(22) 97.6(2.9)(5.5)
PACS-CS 09 [94] A ⋆ � � ⋆ b 2.97(28)(3) 92.75(58)(95)
HPQCD 09A⊕ [18] A ◦ ⋆ ⋆ − − 3.40(7) 92.4(1.5)
MILC 09A [6] C ◦ ⋆ ⋆ ◦ − 3.25 (1)(7)(16)(0) 89.0(0.2)(1.6)(4.5)(0.1)
MILC 09 [89] A ◦ ⋆ ⋆ ◦ − 3.2(0)(1)(2)(0) 88(0)(3)(4)(0)
PACS-CS 08 [93] A ⋆ � � � − 2.527(47) 72.72(78)
RBC/UKQCD 08 [145] A ◦ � ⋆ ⋆ − 3.72(16)(33)(18) 107.3(4.4)(9.7)(4.9)
CP-PACS/
JLQCD 07

[146] A � ⋆ ⋆ � − 3.55(19)(+56
−20) 90.1(4.3)(+16.7

−4.3 )

HPQCD 05 [147] A ◦ ◦ ◦ ◦ − 3.2(0)(2)(2)(0)‡ 87(0)(4)(4)(0)‡

MILC 04, HPQCD/
MILC/UKQCD 04

[107, 148] A ◦ ◦ ◦ � − 2.8(0)(1)(3)(0) 76(0)(3)(7)(0)

⊖ The results are given in the MS scheme at 3 instead of 2 GeV. We run them down to 2 GeV using
numerically integrated 4-loop running [149, 150] with Nf = 3 and with the values of αs(MZ), mb and
mc taken from Ref. [151]. The running factor is 1.106. At three loops it is only 0.2% smaller, indicating
that running uncertainties are small. We neglect them here.

⋆ The calculation includes e.m. and mu 6= md effects through reweighting.
+ The fermion action used is tree-level improved.
∗ What is calculated is then obtained by combining this result with HPQCD 09A’s
mc/ms = 11.85(16) [18]. Finally, mud is determined from ms with the MILC 09 result for
ms/mud. Since mc/ms is renormalization group invariant in QCD, the renormalization and running of
the quark masses enter indirectly through that of mc (see below).

† The calculation includes quenched e.m. effects.
⊕ What is calculated is mc/ms = 11.85(16). ms is then obtained by combing this result with the

determination mc(mc) = 1.268(9) GeV from Ref. [152]. Finally, mud is determined from ms with the
MILC 09 result for ms/mud.

‡ The bare numbers are those of MILC 04. The masses are simply rescaled, using the ratio of the 2-loop
to 1-loop renormalization factors.

a The masses are renormalized nonperturbatively at a scale of 2 GeV in a couple of Nf = 3 RI/SMOM
schemes. A careful study of perturbative matching uncertainties has been performed by comparing
results in the two schemes in the region of 2 GeV to 3 GeV [144].

b The masses are renormalized and run nonperturbatively up to a scale of 40GeV in the Nf = 3 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 40 GeV all the way down to 3 GeV [95].

c The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Nf = 3 RI/MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [8].

d All required running is performed nonperturbatively.

Table 4: Nf = 2 + 1 lattice results for the masses mud and ms (see Tab. 3 for notation).
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error. The new calculation now applies similar reweighting techniques to include electromag-
netic and mu 6= md isospin-breaking effects directly at the physical pion mass. Further, as in
PACS-CS 10 [95], renormalization of quark masses is implemented nonperturbatively, through
the Schrödinger functional method [153]. As it stands, the main drawback of the calculation,
which makes the inclusion of its results in a world average of lattice results inappropriate
at this stage, is that for the lightest quark mass the volume is very small, corresponding
to LMπ ≃ 2.0, a value for which finite-volume effects will be difficult to control. Another
problem is that the calculation was performed at a single lattice spacing, forbidding a contin-
uum extrapolation. Further, it is unclear at this point what might be the systematic errors
associated with the reweighting procedure.

The BMW 10A, 10B [7, 8] calculation still satisfies our stricter selection criteria. They
reach the physical up- and down-quark mass by interpolation instead of by extrapolation.
Moreover, their calculation was performed at five lattice spacings ranging from 0.054 to
0.116 fm, with full nonperturbative renormalization and running and in volumes of up to
(6 fm)3 guaranteeing that the continuum limit, renormalization and infinite-volume extrap-
olation are controlled. It does neglect, however, isospin-breaking effects, which are small on
the scale of their error bars.

Finally we come to another calculation which satisfies our selection criteria, HPQCD 10 [9].
It updates the staggered fermions calculation of HPQCD 09A [18]. In these papers the
renormalized mass of the strange quark is obtained by combining the result of a precise
calculation of the renormalized charm-quark mass, mc, with the result of a calculation of the
quark-mass ratio, mc/ms. As described in Ref. [152] and in Sec. 3.2, HPQCD determines
mc by fitting Euclidean-time moments of the c̄c pseudoscalar density two-point functions,
obtained numerically in lattice QCD, to fourth-order, continuum perturbative expressions.
These moments are normalized and chosen so as to require no renormalization with staggered
fermions. Since mc/ms requires no renormalization either, HPQCD’s approach displaces the
problem of lattice renormalization in the computation of ms to one of computing continuum
perturbative expressions for the moments. To calculate mud HPQCD 10 [9] use the MILC 09
determination of the quark-mass ratio ms/mud [89].

HPQCD 09A [18] obtains mc/ms = 11.85(16) [18] fully nonperturbatively, with a preci-
sion slightly larger than 1%. HPQCD 10’s determination of the charm-quark mass, mc(mc) =
1.268(6), 13 is even more precise, achieving an accuracy better than 0.5%. While these errors
are, perhaps, surprisingly small, we take them at face value as we do those of RBC/UKQCD 14,
since we will add a 2% error due to the quenching of the charm on the final result.

This discussion leaves us with four results for our final average for ms: MILC 09A [6],
BMW 10A, 10B [7, 8], HPQCD 10 [9] and RBC/UKQCD 14 [10]. Assuming that the result
from HPQCD 10 is 100% correlated with that of MILC 09A, as it is based on a subset of the
MILC 09A configurations, we find ms = 92.0(1.1)MeV with a χ2/dof = 1.8.

For the light quark mass mud, the results satisfying our criteria are RBC/UKQCD 14B,
BMW 10A, 10B, HPQCD 10, and MILC 10A. For the error, we include the same 100%
correlation between statistical errors for the latter two as for the strange case, resulting in
mud = 3.373(43) at 2 GeV in the MS scheme (χ2/d.of.=1.5). Adding the 2% estimate for the

13To obtain this number, we have used the conversion from µ = 3 GeV to mc given in Ref. [152].
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missing charm contribution, our final estimates for the light-quark masses are

mud = 3.373(80) MeV Refs. [7–10, 13],
Nf = 2 + 1 : (18)

ms = 92.0(2.1) MeV Refs. [6–10].

Nf = 2 + 1 + 1 lattice calculations

One of the novelties since the last edition of this review [2] is the fact that Nf = 2 +
1 + 1 results for the light-quark masses have been published. These and the features of the
corresponding calculations are summarized in Tab. 5. Note that the results of Ref. [5] are
reported as ms(2GeV;Nf = 3) and those of Ref. [4] as mud(s)(2GeV;Nf = 4). We convert
the former to Nf = 4 and obtain ms(2GeV;Nf = 4) = 93.7(8)MeV. The average of ETM
14 and HPQCD 14A is 93.9(1.1)MeV with χ2/d.o.f.=1.8. For the light0quark average we use
the sole available value from ETM 14A. Our averages are

mud = 3.70(17) MeV Ref. [4],
Nf = 2 + 1 + 1 : (19)

ms = 93.9(1.1) MeV Refs. [4, 5].
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mud ms

HPQCD 14A ⊕ [5] A ⋆ ⋆ ⋆ − − 93.7(8)
ETM 14⊕ [4] A ◦ ⋆ ⋆ ⋆ − 3.70(13)(11) 99.6(3.6)(2.3)

⊕ As explained in the text, ms is obtained by combining the results mc(5GeV;Nf = 4) = 0.8905(56) GeV
and (mc/ms)(Nf = 4) = 11.652(65), determined on the same data set. A subsequent scale and scheme
conversion, performed by the authors leads, to the value 93.6(8). In the table we have converted this
to ms(2GeV;Nf = 4), which makes a very small change.

Table 5: Nf = 2 + 1 + 1 lattice results for the masses mud and ms (see Tab. 3 for notation).

In Figs. 1 and 2 the lattice results listed in Tabs. 3, 4 and 5 and the FLAG averages
obtained at each value of Nf are presented and compared with various phenomenological
results.

3.1.4 Lattice determinations of ms/mud

The lattice results for ms/mud are summarized in Tab. 6. In the ratio ms/mud, one of the
sources of systematic error – the uncertainties in the renormalization factors – drops out.
Also, we can compare the lattice results with the leading-order formula of χPT,

ms

mud

LO

=
M̂2

K+ + M̂2
K0 − M̂2

π+

M̂2
π+

, (20)
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Figure 1: MS mass of the strange quark (at 2 GeV scale) in MeV. The upper three panels
show the lattice results listed in Tabs. 3, 4 and 5, while the bottom panel collects a few sum
rule results and also indicates the current PDG estimate. Diamonds and squares represent
results based on perturbative and nonperturbative renormalization, respectively. The black
squares and the grey bands represent our estimates (17) , (18) and (19). The significance of
the colours is explained in Sec. 2.

which relates the quantity ms/mud to a ratio of meson masses in QCD. Expressing these in
terms of the physical masses and the four coefficients introduced in Eqs. (10)-(12), linearizing
the result with respect to the corrections and inserting the observed mass values, we obtain

ms

mud

LO

= 25.9 − 0.1 ǫ+ 1.9 ǫπ0 − 0.1 ǫK0 − 1.8 ǫm . (21)

If the coefficients ǫ, ǫπ0 , ǫK0 and ǫm are set equal to zero, the right hand side reduces to the
value ms/mud = 25.9 that follows from Weinberg’s leading-order formulae for mu/md and
ms/md [161], in accordance with the fact that these do account for the e.m. interaction at
leading chiral order, and neglect the mass difference between the charged and neutral pions in
QCD. Inserting the estimates (13) gives the effect of chiral corrections to the e.m. self-energies
and of the mass difference between the charged and neutral pions in QCD. With these, the
LO prediction in QCD becomes

ms

mud

LO

= 25.9(1) , (22)

leaving the central value unchanged at 25.9. The corrections parameterized by the coefficients
of Eq. (13) are small for this quantity. Note that the quoted uncertainty does not include an
estimate of higher-order chiral contributions to this LO QCD formula, but only accounts for
the error bars in the coefficients. However, even this small uncertainty is no longer irrelevant
given the the high precision reached in lattice determinations of the ratio ms/mud.
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Figure 2: Mean mass of the two lightest quarks, mud = 1
2 (mu +md) (for details see Fig. 1).

The lattice results in Tab. 6, which satisfy our selection criteria, indicate that the cor-
rections generated by the nonleading terms of the chiral perturbation series are remarkably
small, in the range 3–10%. Despite the fact that the SU(3)-flavour-symmetry breaking effects
in the Nambu-Goldstone boson masses are very large (M2

K ≃ 13M2
π), the mass spectrum of

the pseudoscalar octet obeys the SU(3)× SU(3) formula (20) very well.

Nf = 2 lattice calculations

With respect to the FLAG 13 review [2] there is only one new result, ETM 14D [160],
based on recent ETM gauge ensembles generated close to the physical point with the addition
of a clover term to the tmQCD action. The new simulations are performed at a single lattice
spacing of ≃ 0.09 fm and at a single box size L ≃ 4 fm and therefore their calculations do
not pass our criteria for the continuum extrapolation and finite-volume effects.

Therefore the FLAG average at Nf = 2 is still obtained by considering only the ETM 10B
result (described already in the previous Section), namely

Nf = 2 : ms/mud = 27.3 (9) Ref. [11], (23)

with an overall uncertainty equal to 3.3%.
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ms/mud

FNAL/MILC 14A [14] 2+1+1 A ⋆ ⋆ ⋆ 27.35(5)+10
−7

ETM 14 [4] 2+1+1 A ◦ ⋆ ◦ 26.66(32)(2)

RBC/UKQCD 14B [10] 2+1 P ⋆ ⋆ ⋆ 27.34(21)
RBC/UKQCD 12⊖ [31] 2+1 A ⋆ ◦ ⋆ 27.36(39)(31)(22)
PACS-CS 12⋆ [143] 2+1 A ⋆ � � 26.8(2.0)
Laiho 11 [44] 2+1 C ◦ ⋆ ⋆ 28.4(0.5)(1.3)
BMW 10A, 10B+ [7, 8] 2+1 A ⋆ ⋆ ⋆ 27.53(20)(8)
RBC/UKQCD 10A [144] 2+1 A ◦ ◦ ⋆ 26.8(0.8)(1.1)
Blum 10† [103] 2+1 A ◦ � ◦ 28.31(0.29)(1.77)
PACS-CS 09 [94] 2+1 A ⋆ � � 31.2(2.7)
MILC 09A [6] 2+1 C ◦ ⋆ ⋆ 27.41(5)(22)(0)(4)
MILC 09 [89] 2+1 A ◦ ⋆ ⋆ 27.2(1)(3)(0)(0)
PACS-CS 08 [93] 2+1 A ⋆ � � 28.8(4)
RBC/UKQCD 08 [145] 2+1 A ◦ � ⋆ 28.8(0.4)(1.6)
MILC 04, HPQCD/
MILC/UKQCD 04

[107, 148] 2+1 A ◦ ◦ ◦ 27.4(1)(4)(0)(1)

ETM 14D [160] 2 C ⋆ � � 27.63(13)
ETM 10B [11] 2 A ◦ ⋆ ◦ 27.3(5)(7)

RBC 07† [105] 2 A � � ⋆ 28.10(38)
ETM 07 [133] 2 A ◦ � ◦ 27.3(0.3)(1.2)
QCDSF/UKQCD 06 [139] 2 A � ⋆ � 27.2(3.2)

⊖ The errors are statistical, chiral and finite volume.
⋆ The calculation includes e.m. and mu 6= md effects through reweighting.
+ The fermion action used is tree-level improved.
† The calculation includes quenched e.m. effects.

Table 6: Lattice results for the ratio ms/mud.

Nf = 2 + 1 lattice calculations

For Nf = 2 + 1 our average of ms/mud is based on the new result RBC/UKQCD 14B,
which replaces RBC/UKQCD 12 (see Sec. 3.1.3), and on the results MILC 09A and BMW
10A, 10B. The value quoted by HPQCD 10 does not represent independent information as it
relies on the result for ms/mud obtained by the MILC collaboration. Averaging these results
according to the prescriptions of Sec. 2.3 gives ms/mud = 27.43(13) with χ2/dof ≃ 0.2. Since
the errors associated with renormalization drop out in the ratio, the uncertainties are even
smaller than in the case of the quark masses themselves: the above number for ms/mud

amounts to an accuracy of 0.5%.
At this level of precision, the uncertainties in the electromagnetic and strong isospin-

breaking corrections are not completely negligible. The error estimate in the LO result (22)
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indicates the expected order of magnitude. In view of this, we ascribe conservatively a 1.0%
uncertainty to this source of error. Thus, our final conservative estimate is

Nf = 2 + 1 : ms/mud = 27.43 (13) (27) = 27.43 (31) Ref. [6–8, 10], (24)

with a total 1.1% uncertainty. It is also fully consistent with the ratio computed from our
individual quark masses in Eq. (18), ms/mud = 27.6(6), which has a larger 2.2% uncertainty.
In Eq. (24) the first error comes from the averaging of the lattice results, and the second is
the one that we add to account for the neglect of isospin-breaking effects.

Nf = 2 + 1 + 1 lattice calculations

For Nf = 2+1+ 1 there are two results, ETM 14 [4] and FNAL/MILC 14A [14], both of
which satisfy our selection criteria.

ETM 14 uses 15 twisted mass gauge ensembles at 3 lattice spacings ranging from 0.062
to 0.089 fm (using fπ as input), in boxes of size ranging from 2.0 to 3.0 fm and pion masses
from 210 to 440 MeV (explaining the tag ◦ in the chiral extrapolation and the tag ⋆ for the
continuum extrapolation). The value of MπL at their smallest pion mass is 3.2 with more
than two volumes (explaining the tag ◦ in the finite-volume effects). They fix the strange
mass with the kaon mass.

FNAL/MILC 14A employs HISQ staggered fermions. Their result is based on 21 ensem-
bles at 4 values of the coupling β corresponding to lattice spacings in the range from 0.057
to 0.153 fm, in boxes of sizes up to 5.8 fm and with taste-Goldstone pion masses down to 130
MeV and RMS pion masses down to 143 MeV. They fix the strange mass with Ms̄s, corrected
for e.m. effects with ǭ = 0.84(20) [113]. All of our selection criteria are satisfied with the tag
⋆ . Thus our average is given by ms/mud = 27.30 (20), where the error includes a large
stretching factor equal to

√
χ2/dof ≃ 2.1, coming from our rules for the averages discussed

in Sec. 2.2. Nevertheless the above number amounts still to an accuracy of 0.7%. As in the
case of our average for Nf = 2 + 1, we add a 1.0% uncertainty related to the neglect of
isospin-breaking effects, leading to

Nf = 2 + 1 + 1 : ms/mud = 27.30 (20) (27) = 27.30 (34) Refs. [4, 14], (25)

which corresponds to an overall uncertainty equal to 1.3%.
All the lattice results listed in Tab. 6 as well as the FLAG averages for each value of Nf

are reported in Fig. 3 and compared with χPT, sum rules and the updated PDG estimate
ms/mud = 27.5(3) [151].

Note that our averages (23), (24) and (25), obtained for Nf = 2, 2 + 1 and 2 + 1 + 1,
respectively, agree very well within the quoted errors. They also show that the LO prediction
of χPT in Eq. (22) receives only small corrections from higher orders of the chiral expansion:
according to Eqs. (24) and (25), these generate shifts of 5.9(1.1)% and 5.4(1.2)% relative to
Eq. (22), respectively.

The ratio ms/mud can also be extracted from the masses of the neutral Nambu-Goldstone
bosons: neglecting effects of order (mu − md)

2 also here, the leading-order formula reads

ms/mud
LO

= 3
2M̂

2
η/M̂

2
π − 1

2 . Numerically, this gives ms/mud
LO

= 24.2. The relation has the
advantage that the e.m. corrections are expected to be much smaller here, but it is more
difficult to calculate the η-mass on the lattice. The comparison with Eqs. (24) and (25) shows
that, in this case, the NLO contributions are somewhat larger: 11.9(9)% and 11.4(1.1)%.
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Figure 3: Results for the ratio ms/mud. The upper part indicates the lattice results listed in
Tab. 6 together with the FLAG averages for each value of Nf . The lower part shows results
obtained from χPT and sum rules, together with the current PDG estimate.

3.1.5 Lattice determination of mu and md

Since FLAG 13, two new results have been reported for nondegenerate light-quark masses,
ETM 14 [4], and QCDSF/UKQCD 15 [165], for Nf = 2 + 1 + 1, and 3 flavours respectively.
The former uses simulations in pure QCD, but determines mu − md from the slope of the
square of the kaon mass and the neutral-charged mass-squares difference, evaluated at the
isospin-symmetric point. The latter uses QCD+QED dynamical simulations performed at
the SU(3)-flavour-symmetric point, but at a single lattice spacing, so they do not enter our
average. While QCDSF/UKQCD 15 use three volumes, the smallest has linear size roughly
1.7 fm, and the smallest partially quenched pion mass is greater than 200 MeV, so our
finite-volume and chiral-extrapolation criteria require ◦ ratings. In Ref. [165] results for ǫ
and mu/md are computed in the so-called Dashen scheme. A subsequent paper [118] gives
formulae to convert the ǫ parameters to the MS scheme.

As the above implies, the determination of mu and md separately requires additional
input. MILC 09A [6] uses the mass difference between K0 and K+, from which they subtract
electromagnetic effects using Dashen’s theorem with corrections, as discussed in Sec. 3.1.1.
The up and down sea quarks remain degenerate in their calculation, fixed to the value of mud

obtained from Mπ0 .
To determine mu/md, BMW 10A, 10B [7, 8] follow a slightly different strategy. They ob-

tain this ratio from their result for ms/mud combined with a phenomenological determination
of the isospin-breaking quark-mass ratio Q = 22.3(8), defined below in Eq. (32), from η → 3π
decays [101] (the decay η → 3π is very sensitive to QCD isospin breaking but fairly insensitive
to QED isospin breaking). As discussed in Sec. 3.1.6, the central value of the e.m. parameter
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ǫ in Eq. (13) is taken from the same source.
RM123 11 [166] actually uses the e.m. parameter ǫ = 0.7(5) from the first edition of

the FLAG review [1]. However they estimate the effects of strong isospin breaking at first
nontrivial order, by inserting the operator 1

2 (mu − md)
∫
(ūu − d̄d) into correlation func-

tions, while performing the gauge averages in the isospin limit. Applying these techniques,
they obtain (M̂2

K0 − M̂2
K+)/(md −mu) = 2.57(8)MeV. Combining this result with the phe-

nomenological (M̂2
K0 − M̂2

K+) = 6.05(63)×103 determined with the above value of ǫ, they get
(md −mu) = 2.35(8)(24)MeV, where the first error corresponds to the lattice statistical and
systematic uncertainties combined in quadrature, while the second arises from the uncertainty
on ǫ. Note that below we quote results from RM123 11 for mu, md and mu/md. As described
in Tab. 7, we obtain them by combining RM123 11’s result for (md −mu) with ETM 10B’s
result for mud.

Instead of subtracting electromagnetic effects using phenomenology, RBC 07 [105] and
Blum 10 [103] actually include a quenched electromagnetic field in their calculation. This
means that their results include corrections to Dashen’s theorem, albeit only in the presence
of quenched electromagnetism. Since the up and down quarks in the sea are treated as
degenerate, very small isospin corrections are neglected, as in MILC’s calculation.

PACS-CS 12 [143] takes the inclusion of isospin-breaking effects one step further. Using
reweighting techniques, it also includes electromagnetic and mu −md effects in the sea.

Lattice results for mu, md and mu/md are summarized in Tab. 7. In order to discuss
them, we consider the LO formula

mu

md

LO

=
M̂2

K+ − M̂2
K0 + M̂2

π+

M̂2
K0 − M̂2

K+ + M̂2
π+

. (26)

Using Eqs. (10)–(12) to express the meson masses in QCD in terms of the physical ones and
linearizing in the corrections, this relation takes the form

mu

md

LO

= 0.558 − 0.084 ǫ − 0.02 ǫπ0 + 0.11 ǫm . (27)

Inserting the estimates (13) and adding errors in quadrature, the LO prediction becomes

mu

md

LO

= 0.50(3) . (28)

Again, the quoted error exclusively accounts for the errors attached to the estimates (13) for
the epsilons – contributions of nonleading order are ignored. The uncertainty in the leading-
order prediction is dominated by the one in the coefficient ǫ, which specifies the difference
between the meson squared-mass splittings generated by the e.m. interaction in the kaon and
pion multiplets. The reduction in the error on this coefficient since the previous review [1]
results in a reduction of a factor of a little less than 2 in the uncertainty on the LO value of
mu/md given in Eq. (28).

It is interesting to compare the assumptions made or results obtained by the different
collaborations for the violation of Dashen’s theorem. The input used in MILC 09A is ǫ =
1.2(5) [6], while the Nf = 2 computation of RM123 13 finds ǫ = 0.79(18)(18) [16]. As
discussed in Sec. 3.1.6, the value of Q used by BMW 10A, 10B [7, 8] gives ǫ = 0.70(28) at
NLO (see Eq. (40)). On the other hand, RBC 07 [105] and Blum 10 [103] obtain the results
ǫ = 0.13(4) and ǫ = 0.5(1). The new results from QCDSF/UKQCD 15 give ǫ = 0.50(6) [118].
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mu md mu/md

MILC 14 [113] C⋆⋆⋆− − 0.4482(48)(+ 21
−115)(1)(165)

ETM 14 [4] A⋆⋆⋆⋆ b 2.36(24) 5.03(26) 0.470(56)

QCDSF/UKQCD 15⊖ [165] P ◦ � ◦ − − 0.52(5)
PACS-CS 12⋆ [143] A⋆ � � ⋆ a 2.57(26)(7) 3.68(29)(10) 0.698(51)
Laiho 11 [44] C ◦⋆⋆ ◦ − 1.90(8)(21)(10) 4.73(9)(27)(24) 0.401(13)(45)
HPQCD 10‡ [9] A ◦⋆⋆⋆− 2.01(14) 4.77(15)
BMW 10A, 10B+ [7, 8] A⋆⋆⋆⋆ b 2.15(03)(10) 4.79(07)(12) 0.448(06)(29)
Blum 10† [103] A ◦ � ◦⋆− 2.24(10)(34) 4.65(15)(32) 0.4818(96)(860)
MILC 09A [6] C ◦⋆⋆ ◦ − 1.96(0)(6)(10)(12) 4.53(1)(8)(23)(12) 0.432(1)(9)(0)(39)
MILC 09 [89] A ◦⋆⋆ ◦ − 1.9(0)(1)(1)(1) 4.6(0)(2)(2)(1) 0.42(0)(1)(0)(4)
MILC 04, HPQCD/
MILC/UKQCD 04

[107]
[148]

A ◦ ◦ ◦ � − 1.7(0)(1)(2)(2) 3.9(0)(1)(4)(2) 0.43(0)(1)(0)(8)

RM123 13 [16] A ◦⋆ ◦⋆ c 2.40(15)(17) 4.80 (15)(17) 0.50(2)(3)
RM123 11⊕ [166] A ◦⋆ ◦⋆ c 2.43(11)(23) 4.78(11)(23) 0.51(2)(4)
Dürr 11∗ [132] A ◦⋆ ◦ − − 2.18(6)(11) 4.87(14)(16)

RBC 07† [105] A � � ⋆⋆− 3.02(27)(19) 5.49(20)(34) 0.550(31)

⊖ Results are computed in QCD+QED and quoted in an unconventional “Dashen scheme”.
⋆ The calculation includes e.m. and mu 6= md effects through reweighting.
‡ Values obtained by combining the HPQCD 10 result for ms with the MILC 09 results for ms/mud and
mu/md.

+ The fermion action used is tree-level improved.
∗ Values obtained by combining the Dürr 11 result for ms with the BMW 10A, 10B results for ms/mud

and mu/md.
⊕ mu, md and mu/md are obtained by combining the result of RM123 11 for (md − mu) [166] with
mud = 3.6(2)MeV from ETM 10B. (md −mu) = 2.35(8)(24)MeV in Ref. [166] was obtained assuming
ǫ = 0.7(5) [1] and ǫm = ǫπ0 = ǫK0 = 0. In the quoted results, the first error corresponds to the lattice
statistical and systematic errors combined in quadrature, while the second arises from the uncertainties
associated with ǫ.

† The calculation includes quenched e.m. effects.

a The masses are renormalized and run nonperturbatively up to a scale of 100GeV in the Nf = 2 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 100 GeV all the way down to 2 GeV [135].

b The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Nf = 3 RI/MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [8].

c The masses are renormalized nonperturbatively at scales 1/a ∼ 2 ÷ 3GeV in the Nf = 2 RI/MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 4 GeV down 2 GeV to better than 3% [142].

Table 7: Lattice results for mu, md (MeV) and for the ratio mu/md. The values refer to
the MS scheme at scale 2 GeV. The top part of the table lists the result obtained with
Nf = 2 + 1 + 1, while the middle and lower part presents calculations with Nf = 2 + 1 and
Nf = 2, respectively.
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Note that PACS-CS 12 [143] do not provide results which allow us to determine ǫ directly.
However, using their result for mu/md, together with Eq. (27), and neglecting NLO terms,
one finds ǫ = −1.6(6), which is difficult to reconcile with what is known from phenomenology
(see Secs. 3.1.1 and 3.1.6). Since the values assumed or obtained for ǫ differ, it does not come
as a surprise that the determinations of mu/md are different.

These values of ǫ are also interesting because they allow us to estimate the chiral correc-
tions to the LO prediction (28) for mu/md. Indeed, evaluating the relation (27) for the values
of ǫ given above, and neglecting all other corrections in this equation, yields the LO values
(mu/md)

LO = 0.46(4), 0.547(3), 0.52(1), 0.50(2), 0.49(2) and 0.51(1) for MILC 09A, RBC
07, Blum 10, BMW 10A, 10B, RM123 13, and QCDSF/UKQCD 15, respectively. However,
in comparing these numbers to the nonperturbative results of Tab. 7 one must be careful
not to double count the uncertainty arising from ǫ. One way to obtain a sharp comparison
is to consider the ratio of the results of Tab. 7 to the LO values (mu/md)

LO, in which the
uncertainty from ǫ cancels to good accuracy. Here we will assume for simplicity that they
cancel completely and will drop all uncertainties related to ǫ. For Nf = 2 we consider RM123
13 [16], which updates RM123 11 and has no red dots. Since the uncertainties common to
ǫ and mu/md are not explicitly given in Ref. [16], we have to estimate them. For that we
use the leading-order result for mu/md, computed with RM123 13’s value for ǫ. Its error
bar is the contribution of the uncertainty on ǫ to (mu/md)

LO. To good approximation this
contribution will be the same for the value of mu/md computed in Ref. [16]. Thus, we sub-
tract it in quadrature from RM123 13’s result in Tab. 7 and compute (mu/md)/(mu/md)

LO,
dropping uncertainties related to ǫ. We find (mu/md)/(mu/md)

LO = 1.02(6). This result
suggests that chiral corrections in the case of Nf = 2 are negligible. For the two most accu-
rate Nf = 2 + 1 calculations, those of MILC 09A and BMW 10A, 10B, this ratio of ratios is
0.94(2) and 0.90(1), respectively. Though these two numbers are not fully consistent within
our rough estimate of the errors, they indicate that higher-order corrections to Eq. (28) are
negative and about 8% when Nf = 2 + 1. In the following, we will take them to be -8(4)%.
The fact that these corrections are seemingly larger and of opposite sign than in the Nf = 2
case is not understood at this point. It could be an effect associated with the quenching of
the strange quark. It could also be due to the fact that the RM123 13 calculation does not
probe deeply enough into the chiral regime – it has Mπ

>∼ 270MeV – to pick up on important
chiral corrections. Of course, being less than a two-standard-deviation effect, it may be that
there is no problem at all and that differences from the LO result are actually small.

Given the exploratory nature of the RBC 07 calculation, its results do not allow us to draw
solid conclusions about the e.m. contributions tomu/md for Nf = 2. As discussed in Sec. 3.1.3
and here, the Nf = 2 + 1 results of Blum 10, PACS-CS 12, and QCDSF/UKQCD 15 do not
pass our selection criteria either. We therefore resort to the phenomenological estimates of the
electromagnetic self-energies discussed in Sec. 3.1.1, which are validated by recent, preliminary
lattice results.

Since RM123 13 [16] includes a lattice estimate of e.m. corrections, for the Nf = 2 final
results we simply quote the values of mu, md, and mu/md from RM123 13 given in Tab. 7:

mu = 2.40(23)MeV Ref. [16],

Nf = 2 : md = 4.80(23)MeV Ref. [16], (29)

mu/md = 0.50(4) Ref. [16],

with errors of roughly 10%, 5% and 8%, respectively. In these results, the errors are obtained
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by combining the lattice statistical and systematic errors in quadrature.
For Nf = 2+1 there is to date no final, published computation of e.m. corrections. Thus,

we take the LO estimate for mu/md of Eq. (28) and use the -8(4)% obtained above as an
estimate of the size of the corrections from higher orders in the chiral expansion. This gives
mu/md = 0.46(3). The two individual masses can then be worked out from the estimate (18)
for their mean. Therefore, for Nf = 2 + 1 we obtain:

mu = 2.16(9)(7)MeV ,

Nf = 2 + 1 : md = 4.68(14)(7)MeV , (30)

mu/md = 0.46(2)(2) .

In these results, the first error represents the lattice statistical and systematic errors, combined
in quadrature, while the second arises from the uncertainties associated with e.m. corrections
of Eq. (13). The estimates in Eq. (30) have uncertainties of order 5%, 3% and 7%, respectively.

Finally, for four flavours we simply adopt the results of ETM 14A which meet all of our
criteria.

mu = 2.36(24)MeV Ref. [4] ,

Nf = 2 + 1 + 1 : md = 5.03(26)MeV Ref. [4] , (31)

mu/md = 0.470(56) Ref. [4] .

Naively propagating errors to the end, we obtain (mu/md)Nf=2/(mu/md)Nf=2+1 = 1.09(10).
If instead of Eq. (29) we use the results from RM123 11, modified by the e.m. corrections
in Eq. (13), as was done in our previous review, we obtain (mu/md)Nf=2/(mu/md)Nf=2+1 =
1.11(7)(1), confirming again the strong cancellation of e.m. uncertainties in the ratio. The
Nf = 2 and 2+1 results are compatible at the 1 to 1.5 σ level. Clearly the difference between
three and four flavours is even smaller, and completely covered by the quoted uncertainties.

It is interesting to note that in the results above, the errors are no longer dominated by
the uncertainties in the input used for the electromagnetic corrections, though these are still
significant at the level of precision reached in the Nf = 2 + 1 results. This is due to the
reduction in the error on ǫ discussed in Sec. 3.1.1. Nevertheless, the comparison of Eqs. (28)
and (30) indicates that more than half of the difference between the predictionmu/md = 0.558
obtained from Weinberg’s mass formulae [161] and the result for mu/md obtained on the
lattice stems from electromagnetism, the higher orders in the chiral perturbation generating
a comparable correction.

In view of the fact that a massless up-quark would solve the strong CP-problem, many
authors have considered this an attractive possibility, but the results presented above exclude
this possibility: the value of mu in Eq. (30) differs from zero by 20 standard deviations. We
conclude that nature solves the strong CP-problem differently. This conclusion relies on lattice
calculations of kaon masses and on the phenomenological estimates of the e.m. self-energies
discussed in Sec. 3.1.1. The uncertainties therein currently represent the limiting factor in
determinations of mu and md. As demonstrated in Refs. [16, 103–105, 110–116, 123], lattice
methods can be used to calculate the e.m. self-energies. Further progress on the determination
of the light-quark masses hinges on an improved understanding of the e.m. effects.
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3.1.6 Estimates for R and Q

The quark-mass ratios

R ≡ ms −mud

md −mu
and Q2 ≡ m2

s −m2
ud

m2
d −m2

u

(32)

compare SU(3) breaking with isospin breaking. The quantity Q is of particular interest
because of a low-energy theorem [167], which relates it to a ratio of meson masses,

Q2
M ≡

M̂2
K

M̂2
π

· M̂2
K − M̂2

π

M̂2
K0 − M̂2

K+

, M̂2
π ≡ 1

2(M̂
2
π+ + M̂2

π0) , M̂2
K ≡ 1

2(M̂
2
K+ + M̂2

K0) . (33)

Chiral symmetry implies that the expansion of Q2
M in powers of the quark masses (i) starts

with Q2 and (ii) does not receive any contributions at NLO:

QM
NLO

= Q . (34)

Inserting the estimates for the mass ratios ms/mud, and mu/md given for Nf = 2 in
Eqs. (17) and (29) respectively, we obtain

R = 40.7(3.7)(2.2) , Q = 24.3(1.4)(0.6) , (35)

where the errors have been propagated naively and the e.m. uncertainty has been separated
out, as discussed in the third paragraph after Eq. (28). Thus, the meaning of the errors is
the same as in Eq. (30). These numbers agree within errors with those reported in Ref. [16]
where values for ms and mud are taken from ETM 10B [11].

For Nf = 2 + 1, we use Eqs. (24) and (30) and obtain

R = 35.7(1.9)(1.8) , Q = 22.5(6)(6) , (36)

where the meaning of the errors is the same as above. The Nf = 2 and Nf = 2+1 results are
compatible within 2σ, even taking the correlations between e.m. effects into account.

Again, for Nf = 2 + 1 + 1, we simply take values from ETM 14A,

R = 35.6(5.1) , Q = 22.2(1.6) , (37)

which are quite compatible with two and three flavour results.
It is interesting to use these results to study the size of chiral corrections in the relations

of R and Q to their expressions in terms of meson masses. To investigate this issue, we use
χPT to express the quark-mass ratios in terms of the pion and kaon masses in QCD and then
again use Eqs. (10)–(12) to relate the QCD masses to the physical ones. Linearizing in the
corrections, this leads to

R
LO

= RM = 43.9 − 10.8 ǫ + 0.2 ǫπ0 − 0.2 ǫK0 − 10.7 ǫm , (38)

Q
NLO

= QM = 24.3− 3.0 ǫ + 0.9 ǫπ0 − 0.1 ǫK0 + 2.6 ǫm . (39)

While the first relation only holds to LO of the chiral perturbation series, the second remains
valid at NLO, on account of the low-energy theorem mentioned above. The first terms on
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the right hand side represent the values of R and Q obtained with the Weinberg leading-
order formulae for the quark-mass ratios [161]. Inserting the estimates (13), we find that
the e.m. corrections lower the Weinberg values to RM = 36.7(3.3) and QM = 22.3(9),
respectively.

Comparison of RM and QM with the full results quoted above gives a handle on higher-
order terms in the chiral expansion. Indeed, the ratios RM/R and QM/Q give NLO and

NNLO (and higher)-corrections to the relations R
LO

= RM and Q
NLO

= QM , respectively. The
uncertainties due to the use of the e.m. corrections of Eq. (13) are highly correlated in the nu-
merators and denominators of these ratios, and we make the simplifying assumption that they
cancel in the ratio. Thus, for Nf = 2 we evaluate Eqs. (38) and (39) using ǫ = 0.79(18)(18)
from RM123 13 [16] and the other corrections from Eq. (13), dropping all uncertainties. We
divide them by the results for R and Q in Eq. (35), omitting the uncertainties due to e.m.
We obtain RM/R ≃ 0.88(8) and QM/Q ≃ 0.91(5). We proceed analogously for Nf = 2 + 1
and 2+1+1, using ǫ = 0.70(3) from Eq. (13) and R and Q from Eqs. (36) and (37), and find
RM/R ≃ 1.02(5) and 1.03(17), and QM/Q ≃ 0.99(3) and 1.00(8). The chiral corrections
appear to be small for three and four flavours, especially those in the relation of Q to QM .
This is less true for Nf = 2, where the NNLO and higher corrections to Q = QM could be
significant. However, as for other quantities which depend on mu/md, this difference is not
significant.

As mentioned in Sec. 3.1.1, there is a phenomenological determination of Q based on
the decay η → 3π [168, 169]. The key point is that the transition η → 3π violates isospin
conservation. The dominating contribution to the transition amplitude stems from the mass
difference mu −md. At NLO of χPT, the QCD part of the amplitude can be expressed in a
parameter-free manner in terms of Q. It is well-known that the electromagnetic contributions
to the transition amplitude are suppressed (a thorough recent analysis is given in Ref. [170]).
This implies that the result for Q is less sensitive to the electromagnetic uncertainties than
the value obtained from the masses of the Nambu-Goldstone bosons. For a recent update of
this determination and for further references to the literature, we refer to Ref. [171]. Using
dispersion theory to pin down the momentum dependence of the amplitude, the observed
decay rate implies Q = 22.3(8) (since the uncertainty quoted in Ref. [171] does not include
an estimate for all sources of error, we have retained the error estimate given in Ref. [164],
which is twice as large). The formulae for the corrections of NNLO are available also in
this case [172] – the poor knowledge of the effective coupling constants, particularly of those
that are relevant for the dependence on the quark masses, is currently the limiting factor
encountered in the application of these formulae.

As was to be expected, the central value ofQ obtained from η-decay agrees exactly with the
central value obtained from the low-energy theorem: we have used that theorem to estimate
the coefficient ǫ, which dominates the e.m. corrections. Using the numbers for ǫm, ǫπ0 and
ǫK0 in Eq. (13) and adding the corresponding uncertainties in quadrature to those in the
phenomenological result for Q, we obtain

ǫ
NLO

= 0.70(28) . (40)

The estimate (13) for the size of the coefficient ǫ is taken from here, as it is confirmed by the
most recent, preliminary lattice determinations [16, 110–112, 115, 116].

Our final results for the masses mu, md, mud, ms and the mass ratios mu/md, ms/mud,
R, Q are collected in Tabs. 8 and 9. We separate mu, md, mu/md, R and Q from mud, ms
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and ms/mud, because the latter are completely dominated by lattice results while the former
still include some phenomenological input.

Nf mud ms ms/mud

2+1+1 3.70(17) 93.9(1.1) 27.30(34)

2+1 3.373(80) 92.0(2.1) 27.43(31)

2 3.6(2) 101(3) 27.3(9)

Table 8: Our estimates for the strange-quark and the average up-down-quark masses in the
MS scheme at running scale µ = 2GeV. Numerical values are given in MeV. In the results
presented here, the error is the one which we obtain by applying the averaging procedure of
Sec. 2.3 to the relevant lattice results. We have added an uncertainty to the Nf = 2 + 1
results, associated with the neglect of the charm sea-quark and isospin-breaking effects, as
discussed around Eqs. (18) and (24). This uncertainty is not included in the Nf = 2 results,
as it should be smaller than the uncontrolled systematic associated with the neglect of strange
sea-quark effects.

Nf mu md mu/md R Q

2+1+1 2.36(24) 5.03(26) 0.470(56) 35.6(5.1) 22.2 (1.6)

2+1 2.16(9)(7) 4.68(14)(7) 0.46(2)(2) 35.0(1.9)(1.8) 22.5(6)(6)

2 2.40(23) 4.80(23) 0.50(4) 40.7(3.7)(2.2) 24.3(1.4)(0.6)

Table 9: Our estimates for the masses of the two lightest quarks and related, strong isospin-
breaking ratios. Again, the masses refer to the MS scheme at running scale µ = 2GeV.
Numerical values are given in MeV. In the results presented here, the first error is the one
that comes from lattice computations while the second for Nf = 2 + 1 is associated with
the phenomenological estimate of e.m. contributions, as discussed after Eq. (30). The second
error on the Nf = 2 results for R and Q is also an estimate of the e.m. uncertainty, this time
associated with the lattice computation of Ref. [16], as explained after Eq. (35). We present
these results in a separate table, because they are less firmly established than those in Tab. 8.
For Nf = 2 + 1 and 2+1+1 they still include information coming from phenomenology, in
particular on e.m. corrections, and for Nf = 2 the e.m. contributions are computed neglecting
the feedback of sea quarks on the photon field.

3.2 Charm-quark mass

In the present review we collect and discuss for the first time the lattice determinations of
the MS charm-quark mass mc. Most of the results have been obtained by analyzing the
lattice-QCD simulations of 2-point heavy-light- or heavy-heavy-meson correlation functions,
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using as input the experimental values of the D, Ds and charmonium mesons. The exceptions
are represented by the HPQCD 14A [5] result at Nf = 2 + 1 + 1, the HPQCD 08B [152],
HPQCD 10 [9] and JLQCD 15B [173] results at Nf = 2 + 1, and the ETM 11F [174] result
at Nf = 2, where the moments method has been employed. The latter is based on the lattice
calculation of the Euclidean time moments of pseudoscalar-pseudoscalar correlators for heavy-
quark currents followed by an OPE expansion dominated by perturbative QCD effects, which
provides the determination of both the heavy-quark mass and the strong coupling constant
αs.

The heavy-quark actions adopted by the various lattice collaborations have been reviewed
already in the FLAG 13 review [2], and their descriptions can be found in Sec. A.1.3. While
the charm mass determined with the moments method does not need any lattice evaluation
of the mass renormalization constant Zm, the extraction of mc from 2-point heavy-meson
correlators does require the nonperturbative calculation of Zm. The lattice scale at which Zm

is obtained, is usually at least of the order 2−3 GeV, and therefore it is natural in this review
to provide the values of mc(µ) at the renormalization scale µ = 3 GeV. Since the choice of
a renormalization scale equal to mc is still commonly adopted (as by PDG [151]), we have
collected in Tab. 10 the lattice results for both mc(mc) and mc(3 GeV), obtained at Nf = 2,
2 + 1 and 2 + 1 + 1. When not directly available in the publications, we apply a conversion
factor equal either to 0.900 between the scales µ = 2 GeV and µ = 3 GeV or to 0.766 between
the scales µ = mc and µ = 3 GeV, obtained using perturbative QCD evolution at four loops
assuming ΛQCD = 300 MeV for Nf = 4.

In the next subsections we review separately the results of mc(mc) for the various values
of Nf .

3.2.1 Nf = 2 + 1 + 1 results

There are three recent results employing four dynamical quarks in the sea. ETM 14 [4] uses
15 twisted mass gauge ensembles at 3 lattice spacings ranging from 0.062 to 0.089 fm (using
fπ as input), in boxes of size ranging from 2.0 to 3.0 fm and pion masses from 210 to 440
MeV (explaining the tag ◦ in the chiral extrapolation and the tag ⋆ for the continuum
extrapolation). The value of MπL at their smallest pion mass is 3.2 with more than two
volumes (explaining the tag ◦ in the finite-volume effects). They fix the strange mass with
the kaon mass and the charm one with that of the Ds and D mesons.

ETM 14A [175] uses 10 out of the 15 gauge ensembles adopted in ETM 14 spanning
the same range of values for the pion mass and the lattice spacing, but the latter is fixed
using the nucleon mass. Two lattice volumes with size larger than 2.0 fm are employed.
The physical strange and the charm mass are obtained using the masses of the Ω− and Λ+

c

baryons, respectively.
HPQCD 14A [5] works with the moments method adopting HISQ staggered fermions.

Their results are based on 9 out of the 21 ensembles carried out by the MILC collaboration [14]
at 4 values of the coupling β corresponding to lattice spacings in the range from 0.057 to 0.153
fm, in boxes of sizes up to 5.8 fm and with taste-Goldstone-pion masses down to 130 MeV and
RMS-pion masses down to 173 MeV. The strange- and charm-quark masses are fixed using as
input the lattice result Ms̄s = 688.5(2.2) MeV, calculated without including s̄s annihilation
effects, and Mηc = 2.9863(27) GeV, obtained from the experimental ηc mass after correcting
for c̄c annihilation and e.m. effects. All of the selection criteria of Sec. 2.1.1 are satisfied with
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mc(mc) mc(3 GeV)

HPQCD 14A [5] 2+1+1 A ⋆ ⋆ ⋆ − 1.2715(95) 0.9851(63)
ETM 14A [175] 2+1+1 A ◦ ⋆ ◦ ⋆ 1.3478(27)(195) 1.0557(22)(153)
ETM 14 [4] 2+1+1 A ◦ ⋆ ◦ ⋆ 1.348(46) 1.058(35)

JLQCD 15B [173] 2+1 C ◦ ⋆ ⋆ − 1.2769(21)(89) 0.9948(16)(69)
χQCD 14 [17] 2+1 A ◦ ◦ ◦ ⋆ 1.304(5)(20) 1.006(5)(22)
HPQCD 10 [9] 2+1 A ◦ ⋆ ◦ − 1.273(6) 0.986(6)
HPQCD 08B [152] 2+1 A ◦ ⋆ ◦ − 1.268(9) 0.986(10)

ALPHA 13B [176] 2 C ⋆ ◦ ⋆ ⋆ 1.274(36) 0.976(28)
ETM 11F [174] 2 C ◦ ⋆ ◦ − 1.279(12)/1.296(18)⋆ 0.979(09)/0.998(14)⋆

ETM 10B [11] 2 A ◦ ⋆ ◦ ⋆ 1.28(4) 1.03(4)

PDG [151] 1.275(25)

⋆ Two results are quoted.

Table 10: Lattice results for the MS-charm-quark mass mc(mc) and mc(3 GeV) in GeV,
together with the colour coding of the calculations used to obtain these. When not directly
available in the publications, a conversion factor equal to 0.900 between the scales µ = 2 GeV
and µ = 3 GeV (or equal to 0.766 between the scales µ = mc and µ = 3 GeV) has been
considered.

the tag ⋆ 14.
According to our rules on the publication status all the three results can enter the FLAG

average at Nf = 2 + 1 + 1. The determinations of mc obtained by ETM 14 and 14A agree
quite well with each other, but they are not compatible with the HPQCD 14A result. There-
fore we first combine the two ETM results with a 100% correlation in the statistical error,
yielding mc(mc) = 1.348(20)GeV. Then we perform the average with the HPQCD 14A result,
obtaining the final FLAG averages

mc(mc) = 1.286 (30) GeV Refs. [4, 5], (41)
Nf = 2 + 1 + 1:

mc(3 GeV) = 0.996 (25) GeV Refs. [4, 5], (42)

where the errors include a quite large value (3.5 and 4.4, respectively) for the stretching factor√
χ2/dof coming from our rules for the averages discussed in Sec. 2.2.

14Note that in Section 9.7.2 different coding criteria are adopted and the HPQCD 14A paper is tagged
differently for the continuum extrapolation.
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3.2.2 Nf = 2 + 1 results

The HPQCD 10 [9] result is based on the moments method adopting a subset of Nf = 2 + 1
Asqtad-staggered-fermion ensembles from MILC [89], on which HISQ valence fermions are
studied. The charm mass is fixed from that of the ηc meson, Mηc = 2.9852(34) GeV corrected
for c̄c annihilation and e.m. effects. HPQCD 10 replaces the result HPQCD 08B [152], in
which Asqtad staggered fermions have been used also for the valence quarks.

χQCD 14 [17] uses a mixed-action approach based on overlap fermions for the valence
quarks and on domain-wall fermions for the sea quarks. They adopt six of the gauge ensembles
generated by the RBC/UKQCD collaboration [144] at two values of the lattice spacing (0.087
and 0.11 fm) with unitary pion masses in the range from 290 to 420 MeV. For the valence
quarks no light-quark masses are simulated. At the lightest pion mass Mπ ≃ 290 MeV, the
value of MπL is 4.1, which satisfies the tag ◦ for the finite-volume effects. The strange- and
charm-quark masses are fixed together with the lattice scale by using the experimental values
of the Ds, D

∗
s and J/ψ meson masses.

JLQCD 15B [173] determines the charm mass through the moments method using Möbius
domain-wall fermions at three values of the lattice spacing, ranging from 0.044 to 0.083 fm.
The lightest pion mass is ≃ 230 MeV and the corresponding value of MπL is ≃ 4.4.

Thus, according to our rules on the publication status, the FLAG average for the charm-
quark mass at Nf = 2 + 1 is obtained by combining the two results HPQCD 10 and χQCD
14, leading to

mc(mc) = 1.275 (8) GeV Refs. [9, 17], (43)
Nf = 2 + 1:

mc(3 GeV) = 0.987 (6) GeV Refs. [9, 17], (44)

where the error onmc(mc) includes a stretching factor
√
χ2/dof ≃ 1.4 as discussed in Sec. 2.2.

3.2.3 Nf = 2 results

We turn now to the three results at Nf = 2.
ETM 10B [11] is based on tmQCD simulations at four values of the lattice spacing in the

range from 0.05 fm to 0.1 fm, with pion masses as low as 270 MeV at two lattice volumes. They
fix the strange-quark mass with either MK or Ms̄s and the charm mass using alternatively
the D, Ds and ηc masses.

ETM 11F [174] is based on the same gauge ensemble as ETM 10B, but the moments
method is adopted.

ALPHA 13B uses a subset of the CLS gauge ensembles with O(a)-improved Wilson
fermions generated at two values of the lattice spacing (0.048 fm and 0.065 fm), using the
kaon decay constant to fix the scale. The pion masses are as low as 190 MeV with the value of
MπL equal to ≃ 4 at the lightest pion mass (explaining the tag ⋆ for finite-volume effects).

According to our rules on the publication status ETM 10B becomes the FLAG average
at Nf = 2, n-mely

mc(mc) = 1.28 (4) GeV Ref. [11], (45)
Nf = 2:

mc(3 GeV) = 1.03 (4) GeV Ref. [11]. (46)

In Fig. 4 the lattice results of Tab. 10 and the FLAG averages obtained at Nf = 2, 2 + 1
and 2 + 1 + 1 are presented.
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Figure 4: Lattice results and FLAG averages at Nf = 2, 2+1, and 2+1+1 for the charm-quark
mass mc(3 GeV).

3.2.4 Lattice determinations of the ratio mc/ms

Because some of the results for the light-quark masses given in this review are obtained via
the quark-mass ratio mc/ms, we now review also these lattice calculations, which are listed
in Tab. 11.

We begin with the Nf = 2 results. Besides the result ETM 10B, already discussed in
Sec. 3.2.3, there are two more results, Dürr 11 [132] and ETM 14D [160]. Dürr 11 [132] is
based on QCDSF Nf = 2 O(a)-improved Wilson-fermion simulations [139, 177] on which
valence, Brillouin-improved Wilson quarks [178] are considered. It features only 2 ensembles
withMπ < 400 MeV. The bare axial-Ward-identity (AWI) masses for ms and mc are tuned to
simultaneously reproduce the physical values ofM2

s̄s/(M
2
D∗
s
−M2

Ds
) and (2M2

D∗
s
−M2

s̄s)/(M
2
D∗
s
−

M2
Ds

), where M2
s̄s = 685.8(8) MeV is the quark-connected-s̄s pseudoscalar mass.

The ETM 14D result [160] is based on recent ETM gauge ensembles generated close to the
physical point with the addition of a clover term to the tmQCD action. The new simulations
are performed at a single lattice spacing of ≃ 0.09 fm and at a single box size L ≃ 4 fm
and therefore their calculations do not pass our criteria for the continuum extrapolation and
finite-volume effects. The FLAG average at Nf = 2 can be therefore obtained by averaging
ETM 10B and Dürr 11, obtaining

Nf = 2: mc/ms = 11.74 (35) Ref. [11, 132], (47)

where the error includes the stretching factor
√
χ2/dof ≃ 1.5.

The situation is similar also for the Nf = 2 + 1 results, as besides χQCD 14 there is
only the result HPQCD 09A [18]. The latter is based on a subset of Nf = 2 + 1 Asqtad-
staggered-fermion simulations from MILC, on which HISQ-valence fermions are studied. The
strange mass is fixed with Ms̄s = 685.8(4.0),MeV and the charm’s from that of the ηc,
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mc/ms

HPQCD 14A [5] 2+1+1 A ⋆ ⋆ ⋆ 11.652(35)(55)
FNAL/MILC 14A [14] 2+1+1 A ⋆ ⋆ ⋆ 11.747(19)(+59

−43)
ETM 14 [4] 2+1+1 A ◦ ⋆ ◦ 11.62(16)

χQCD 14 [17] 2+1 A ◦ ◦ ◦ 11.1(8)
HPQCD 09A [18] 2+1 A ◦ ⋆ ⋆ 11.85(16)

ETM 14D [160] 2 C ⋆ � � 12.29(10)
Dürr 11 [132] 2 A ◦ ⋆ ◦ 11.27(30)(26)
ETM 10B [11] 2 A ◦ ⋆ ◦ 12.0(3)

Table 11: Lattice results for the quark-mass ratio mc/ms, together with the colour coding of
the calculations used to obtain these.

Mηc = 2.9852(34) GeV corrected for c̄c annihilation and e.m. effects. By combing the results
χQCD 14 and HPQCD 09A we obtain

Nf = 2 + 1: mc/ms = 11.82 (16) Refs. [17, 18], (48)

with a χ2/dof ≃ 0.85.
Turning now to the Nf = 2 + 1 + 1 results, in addition to the HPQCD 14A and ETM

14 calculations, already described in Sec. 3.2.1, we consider the recent FNAL/MILC 14 re-
sult [14], where HISQ staggered fermions are employed. Their result is based on the use of
21 gauge ensembles at 4 values of the coupling β corresponding to lattice spacings in the
range from 0.057 to 0.153 fm, in boxes of sizes up to 5.8 fm and with taste-Goldstone-pion
masses down to 130 MeV and RMS-pion masses down to 143 MeV. They fix the strange mass
with Ms̄s, corrected for e.m. effects with ǭ = 0.84(20) [113]. The charm mass is fixed with
the mass of the Ds meson. As for the HPQCD 14A result, all of our selection criteria are
satisfied with the tag ⋆ . However a slight tension exists between the two results. Indeed by
combining HPQCD 14A and FNAL/MILC 14 results, assuming a 100 % correlation between
the statistical errors (since the two results share the same gauge configurations), we obtain
mc/ms = 11.71(6), where the error includes the stretching factor

√
χ2/dof ≃ 1.35. A further

average with the ETM 14A result leads to our final average

Nf = 2 + 1 + 1: mc/ms = 11.70 (6) Refs. [4, 5, 14], (49)

which has a remarkable overall precision of 0.5 %.
All of the results for mc/ms discussed above are shown in Fig. 5 together with the FLAG

averages corresponding to Nf = 2, 2 + 1 and 2 + 1 + 1.
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Figure 5: Lattice results for the ratio mc/ms listed in Tab. 11 and the FLAG averages
corresponding to Nf = 2, 2 + 1 and 2 + 1 + 1.

3.3 Bottom-quark mass

We now give the lattice results for the MS-bottom-quark mass mb for the first time as part of
this review. Related heavy-quark actions and observables have been discussed in the FLAG
13 review [2], and descriptions can be found in Sec. A.1.3. In Tab. 12 we have collected the
lattice results for mb(mb) obtained at Nf = 2, 2 + 1 and 2 + 1 + 1, which in the following
we review separately. Available results for the quark-mass ratio mb/mc are also reported.
Afterwards we evaluate the corresponding FLAG averages.

3.3.1 Nf = 2 + 1 + 1

Results have been published by HPQCD using NRQCD and HISQ-quark actions (HPQCD
14B [19] and HPQCD 14A [5], respectively). In both works the b-quark mass is computed
with the moments method, that is, from Euclidean-time moments of two-point, heavy-heavy
meson correlation functions (see Sec. 9.7 for a description of the method).

In HPQCD 14B the b-quark mass is computed from ratios of the moments Rn of heavy
current-current correlation functions, namely

[
Rnrn−2

Rn−2rn

]1/2 M̄kin

2mb
=

M̄Υ,ηb

2m̄b(µ)
, (50)

where rn are the perturbative moments calculated at N3LO, M̄kin is the spin-averaged kinetic
mass of the heavy-heavy vector and pseudoscalar mesons and M̄Υ,ηb is the experimental spin
average of the Υ and ηb masses. The kinetic mass M̄kin is chosen since in the lattice calculation
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mb(mb) mb/mc

HPQCD 14B [19] 2+1+1 A ⋆ ⋆ ⋆ ⋆ X 4.196(23)†

ETM 14B [179] 2+1+1 C ◦ ⋆ ◦ ⋆ X 4.26(7)(14) 4.40(6)(5)
HPQCD 14A [5] 2+1+1 A ⋆ ⋆ ⋆ − X 4.162(48) 4.528(14)(52)

HPQCD 13B [180] 2+1 A � ◦ − − X 4.166(43)
HPQCD 10 [9] 2+1 A ⋆ ⋆ ⋆ − X 4.164(23)⋆ 4.51(4)

ETM 13B [20] 2 A ◦ ⋆ ◦ ⋆ X 4.31(9)(8)
ALPHA 13C [21] 2 A ⋆ ⋆ ⋆ ⋆ X 4.21(11)
ETM 11A [181] 2 A ◦ ⋆ ◦ ⋆ X 4.29(14)

PDG [151] 4.18(3)

† Warning: only two pion points are used for chiral extrapolation.
⋆ The number that is given is mb(10 GeV, Nf = 5) = 3.617(25) GeV.

Table 12: Lattice results for the MS-bottom-quark mass mb(mb) in GeV, together with the
systematic error ratings for each. Available results for the quark mass ratio mb/mc are also
reported.

the splitting of the Υ and ηb states is inverted. In Eq. (50) the bare mass mb appearing on
the left hand side is tuned so that the spin-averaged mass agrees with experiment, while the
mass mb at the fixed scale µ = 4.18 GeV is extrapolated to the continuum limit using three
HISC (MILC) ensembles with a ≈ 0.15, 0.12 and 0.09 fm and two pion masses, one of which is
the physical one. Therefore according to our rules on the chiral extrapolation a warning must
be given. Their final result is mb(µ = 4.18GeV) = 4.207(26) GeV, where the error is from
adding systematic uncertainties in quadrature only (statistical errors are smaller than 0.1%
and ignored). The errors arise from renormalization, perturbation theory, lattice spacing, and
NRQCD systematics. The finite-volume uncertainty is not estimated, but at the lowest pion
mass they have mπL ≃ 4, which leads to the tag ⋆ .

In HPQCD 14A the quark mass is computed using a similar strategy as above but with
HISQ heavy quarks instead of NRQCD. The gauge-field ensembles are the same as in HPQCD
14B above plus the one with a = 0.06 fm (four lattice spacings in all). Bare heavy-quark
masses are tuned to their physical values using the ηh mesons, and ratios of ratios yield
mh/mc. The MS-charm-quark mass determined as described in Sec. 3.2 then gives mb. The
moment ratios are expanded using the OPE, and the quark masses and αS are determined
from fits of the lattice ratios to this expansion. The fits are complicated: HPQCD uses cubic
splines for valence- and sea-mass dependence, with several knots, and many priors for 21 ratios
to fit 29 data points. Taking this fit at face value results in a ⋆ rating for the continuum
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limit since they use four lattice spacings down to 0.06 fm. See however the detailed discussion
of the continuum limit given in Sec. 9.7 on αS .

The third four-flavour result is from the ETM Collaboration and appears in a conference
proceedings, so it is not included in our final average. The calculation is performed on a set
of configurations generated with twisted Wilson fermions with three lattice spacings in the
range 0.06 to 0.09 fm and with pion masses in the range 210 to 440 MeV. The b-quark mass is
determined from a ratio of heavy-light pseudoscalar meson masses designed to yield the quark
pole mass in the static limit. The pole mass is related to the MS mass through perturbation
theory at N3LO. The key idea is that by taking ratios of ratios, the b-quark mass is accessible
through fits to heavy-light(strange)-meson correlation functions computed on the lattice in
the range ∼ 1− 2×mc and the static limit, the latter being exactly 1. By simulating below
mb, taking the continuum limit is easier. They find mb(mb) = 4.26(7)(14) GeV, where the
first error is statistical and the second systematic. The dominant errors come from setting
the lattice scale and fit systematics.

3.3.2 Nf = 2 + 1

HPQCD 13B [180] extracts mb from a lattice determination of the Υ energy in NRQCD and
the experimental value of the meson mass. The latter quantities yield the pole mass which
is related to the MS mass in 3-loop perturbation theory. The MILC coarse (0.12 fm) and
fine (0.09 fm) Asqtad-2+1-flavour ensembles are employed in the calculation. The bare light-
(sea)-quark masses correspond to a single, relatively heavy, pion mass of about 300 MeV. No
estimate of the finite-volume error is given.

The value of mb(mb) reported in HPQCD 10 [9] is computed in a very similar fashion
to the one in HPQCD 14A described in the last section, except that MILC 2+1-flavour-
Asqtad ensembles are used under HISQ-heavy-valence quarks. The lattice spacings of the
ensembles range from 0.18 to 0.045 fm and pion masses down to about 165 MeV. In all, 22
ensembles were fit simultaneously. An estimate of the finite-volume error based on leading-
order perturbation theory for the moment ratio is also provided. Details of perturbation
theory and renormalization systematics are given in Sec. 9.7.

3.3.3 Nf = 2

The ETM Collaboration computes mb(mb) using the ratio method described above on two-
flavour twisted-mass gauge ensembles with four values of the lattice spacing in the range
0.10 to 0.05 fm and pion masses between 280 and 500 MeV (ETM 13B updates ETM 11).
The heavy-quark masses cover a range from charm to a little more than three GeV, plus
the exact static-limit point. They find mb(mb) = 4.31(9)(8) GeV for two-flavour running,
while mb(mb) = 4.27(9)(8) using four-flavour running, from the 3 GeV scale used in the
N3LO perturbative matching calculation from the pole mass to the MS mass. The latter
are computed nonperturbatively in the RI-MOM scheme at 3 GeV and matched to MS. The
dominant errors are combined statistical+fit(continuum+chiral limits) and the uncertainty in
setting the lattice scale. ETM quotes the average of two- and five-flavour results, mb(mb) =
4.29(9)(8)(2) where the last error is one-half the difference between the two. In our average
(see below), we use the two-flavour result.

The Alpha Collaboration uses HQET for heavy-light mesons to obtain mb [21] (ALPHA
13C). They employ CLS, nonperturbatively improved, Wilson gauge field ensembles with
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three lattice spacings (0.075-0.048 fm), pion masses from 190 to 440 MeV, and three or four
volumes at each lattice spacing, with mπL > 4.0. The bare-quark mass is related to the
RGI-scheme mass using the Schrödinger Functional technique with conversion to MS through
four-loop anomalous dimensions for the mass. The final result, extrapolated to the continuum
and chiral limits, is mb(mb) = 4.21(11) with two-flavour running, where the error combines
statistical and systematic uncertainties. The value includes all corrections in HQET through
Λ2/mb, but repeating the calculation in the static limit yields the identical result, indicating
the HQET expansion is under very good control.

3.3.4 Averages for mb(mb)

Taking the results that meet our rating criteria, ◦, or better, we compute the averages from
HPQCD 14A and 14B for Nf = 2 + 1 + 1, ETM 13B and ALPHA 13C for Nf = 2, and we
take HPQCD 10 as estimate for Nf = 2 + 1, obtaining

Nf = 2 + 1 + 1 : mb(mb) = 4.190(21) Refs. [5, 19], (51)

Nf = 2 + 1 : mb(mb) = 4.164(23) Ref. [9], (52)

Nf = 2 : mb(mb) = 4.256(81) Refs. [20, 21]. (53)

Since HPQCD quotes mb(mb) values using Nf = 5 running, we used those values directly in
these Nf = 2 + 1 + 1 and 2+1 averages. The results ETM 13B and ALPHA 13C, entering
the average at Nf = 2, correspond to the Nf = 2 running.

All the results for mb(mb) discussed above are shown in Fig. 6 together with the FLAG
averages corresponding to Nf = 2, 2 + 1 and 2 + 1 + 1.
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Figure 6: Lattice results and FLAG averages at Nf = 2, 2+ 1, and 2+ 1+ 1 for the b-quark
mass mb(mb). The updated PDG value from Ref. [151] is reported for comparison.
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4 Leptonic and semileptonic kaon and pion decay and |Vud| and
|Vus|

This section summarizes state-of-the-art lattice calculations of the leptonic kaon and pion
decay constants and the kaon semileptonic-decay form factor and provides an analysis in
view of the Standard Model. With respect to the previous edition of the FLAG review
[2] the data in this section has been updated. As in Ref. [2], when combining lattice data
with experimental results, we take into account the strong SU(2) isospin correction, either
obtained in lattice calculations or estimated by using chiral perturbation theory, both for the
kaon leptonic decay constant fK± and for the ratio fK±/fπ± .

4.1 Experimental information concerning |Vud|, |Vus|, f+(0) and fK±/fπ±

The following review relies on the fact that precision experimental data on kaon decays very
accurately determine the product |Vus|f+(0) [182] and the ratio |Vus/Vud|fK±/fπ± [182, 183]:

|Vus|f+(0) = 0.2165(4) ,

∣∣∣∣
Vus
Vud

∣∣∣∣
fK±

fπ±

= 0.2760(4) . (54)

Here and in the following fK± and fπ± are the isospin-broken decay constants, respectively, in
QCD (the electromagnetic effects have already been subtracted in the experimental analysis
using chiral perturbation theory). We will refer to the decay constants in the SU(2) isospin-
symmetric limit as fK and fπ (the latter at leading order in the mass difference (mu −md)
coincides with fπ±). |Vud| and |Vus| are elements of the Cabibbo-Kobayashi-Maskawa matrix
and f+(t) represents one of the form factors relevant for the semileptonic decay K0 → π−ℓ ν,
which depends on the momentum transfer t between the two mesons. What matters here is
the value at t = 0: f+(0) ≡ fK

0π−

+ (t)
t→0

. The pion and kaon decay constants are defined

by15

〈0|dγµγ5 u|π+(p)〉 = i pµfπ+ , 〈0| sγµγ5 u|K+(p)〉 = i pµfK+ .

In this normalization, fπ± ≃ 130 MeV, fK± ≃ 155 MeV.
The measurement of |Vud| based on superallowed nuclear β transitions has now become

remarkably precise. The result of the update of Hardy and Towner [185], which is based on
20 different superallowed transitions, reads16

|Vud| = 0.97417(21) . (55)

The matrix element |Vus| can be determined from semiinclusive τ decays [192–195]. Sep-
arating the inclusive decay τ → hadrons + ν into nonstrange and strange final states, e.g.

15The pion decay constant represents a QCD matrix element – in the full Standard Model, the one-pion
state is not a meaningful notion: the correlation function of the charged axial current does not have a pole at
p2 = M2

π+ , but a branch cut extending fromM2
π+ to ∞. The analytic properties of the correlation function and

the problems encountered in the determination of fπ are thoroughly discussed in Ref. [184]. The “experimental”
value of fπ depends on the convention used when splitting the sum LQCD + LQED into two parts (compare
Sec. 3.1.1). The lattice determinations of fπ do not yet reach the accuracy where this is of significance, but at
the precision claimed by the Particle Data Group [151, 183], the numerical value does depend on the convention
used [98–100, 184].

16It is not a trivial matter to perform the data analysis at this precision. In particular, isospin-breaking
effects need to be properly accounted for [186–191]. For a review of recent work on this issue, we refer to
Ref. [185].
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HFAG 14 [196] obtain
|Vus| = 0.2176(21) . (56)

Maltman et al. [194, 197, 198] and Gamiz et al. [199, 200] arrive at very similar values.
Inclusive hadronic τ decay offers an interesting way to measure |Vus|, but a number of

open issues yet remain to be clarified. In particular, the value of |Vus| as determined from τ
decays differs from the result one obtains from assuming three-flavour SM-unitarity by more
than three standard deviations [196]. It is important to understand this apparent tension
better. A possibility is that at the current level of precision the treatment of higher orders in
the operator product expansion and violations of quark-hadron duality may play a role. Very
recently [201] a new implementation of the relevant sum rules has been elaborated suggesting
a much larger value of |Vus| with respect to the result (56), namely |Vus| = 0.2228(23), which
is in much better agreement with CKM unitarity. Another possibility is that τ decay involves
new physics, but more work both on the theoretical and experimental side is required.

The experimental results in Eq. (54) are for the semileptonic decay of a neutral kaon into
a negatively charged pion and the charged pion and kaon leptonic decays, respectively, in
QCD. In the case of the semileptonic decays the corrections for strong and electromagnetic
isospin breaking in chiral perturbation theory at NLO have allowed for averaging the different
experimentally measured isospin channels [202]. This is quite a convenient procedure as long
as lattice QCD does not include strong or QED isospin-breaking effects. Lattice results for
fK/fπ are typically quoted for QCD with (squared) pion and kaon masses of M2

π = M2
π0

and M2
K = 1

2

(
M2

K± +M2
K0 −M2

π± +M2
π0

)
for which the leading strong and electromagnetic

isospin violations cancel. While progress is being made for including strong and electromag-
netic isospin breaking in the simulations (e.g. Ref. [16, 93, 166, 203–206]), for now contact to
experimental results is made by correcting leading SU(2) isospin breaking guided either by
chiral perturbation theory or by lattice calculations.

4.2 Lattice results for f+(0) and fK±/fπ±

The traditional way of determining |Vus| relies on using estimates for the value of f+(0),
invoking the Ademollo-Gatto theorem [218]. Since this theorem only holds to leading order
of the expansion in powers of mu, md and ms, theoretical models are used to estimate the
corrections. Lattice methods have now reached the stage where quantities like f+(0) or
fK/fπ can be determined to good accuracy. As a consequence, the uncertainties inherent in
the theoretical estimates for the higher order effects in the value of f+(0) do not represent a
limiting factor any more and we shall therefore not invoke those estimates. Also, we will use
the experimental results based on nuclear β decay and τ decay exclusively for comparison –
the main aim of the present review is to assess the information gathered with lattice methods
and to use it for testing the consistency of the SM and its potential to provide constraints for
its extensions.

The database underlying the present review of the semileptonic form factor and the ratio
of decay constants is listed in Tabs. 13 and 14. The properties of the lattice data play a crucial
role for the conclusions to be drawn from these results: range of Mπ, size of LMπ, continuum
extrapolation, extrapolation in the quark masses, finite-size effects, etc. The key features of
the various data sets are characterized by means of the colour code specified in Sec. 2.1. More
detailed information on individual computations are compiled in appendix B.2.

The quantity f+(0) represents a matrix element of a strangeness-changing null-plane
charge, f+(0) = 〈K|Qus|π〉. The vector charges obey the commutation relations of the Lie
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f+(0)

ETM 15C [207] 2+1+1 C ◦ ⋆ ◦ 0.9709(45)(9)
FNAL/MILC 13E [22] 2+1+1 A ⋆ ⋆ ⋆ 0.9704(24)(22)
FNAL/MILC 13C [208] 2+1+1 C ⋆ ⋆ ⋆ 0.9704(24)(32)

RBC/UKQCD 15A [24] 2+1 A ⋆ ◦ ◦ 0.9685(34)(14)
RBC/UKQCD 13 [209] 2+1 A ⋆ ◦ ◦ 0.9670(20)(+18

−46)
FNAL/MILC 12I [23] 2+1 A ◦ ◦ ⋆ 0.9667(23)(33)
JLQCD 12 [210] 2+1 C ◦ � ⋆ 0.959(6)(5)
JLQCD 11 [211] 2+1 C ◦ � ⋆ 0.964(6)
RBC/UKQCD 10 [212] 2+1 A ◦ � ⋆ 0.9599(34)(+31

−47)(14)
RBC/UKQCD 07 [213] 2+1 A ◦ � ⋆ 0.9644(33)(34)(14)

ETM 10D [214] 2 C ◦ ⋆ ◦ 0.9544(68)stat
ETM 09A [25] 2 A ◦ ◦ ◦ 0.9560(57)(62)
QCDSF 07 [215] 2 C � � ⋆ 0.9647(15)stat
RBC 06 [216] 2 A � � ⋆ 0.968(9)(6)
JLQCD 05 [217] 2 C � � ⋆ 0.967(6), 0.952(6)

Table 13: Colour code for the data on f+(0).

algebra of SU(3), in particular [Qus, Qsu] = Quu−ss. This relation implies the sum rule∑
n |〈K|Qus|n〉|2−∑n |〈K|Qsu|n〉|2 = 1. Since the contribution from the one-pion intermedi-

ate state to the first sum is given by f+(0)
2, the relation amounts to an exact representation

for this quantity [219]:

f+(0)
2 = 1−

∑

n 6=π

|〈K|Qus|n〉|2 +
∑

n

|〈K|Qsu|n〉|2 . (57)

While the first sum on the right extends over nonstrange intermediate states, the second runs
over exotic states with strangeness ±2 and is expected to be small compared to the first.

The expansion of f+(0) in SU(3) chiral perturbation theory in powers of mu, md and ms

starts with f+(0) = 1+f2+f4+. . . [129]. Since all of the low-energy constants occurring in f2
can be expressed in terms of Mπ, MK , Mη and fπ [220], the NLO correction is known. In the
language of the sum rule (57), f2 stems from nonstrange intermediate states with three mesons.
Like all other nonexotic intermediate states, it lowers the value of f+(0): f2 = −0.023 when
using the experimental value of fπ as input. The corresponding expressions have also been
derived in quenched or partially quenched (staggered) chiral perturbation theory [23, 221].
At the same order in the SU(2) expansion [222], f+(0) is parameterized in terms of Mπ and
two a priori unknown parameters. The latter can be determined from the dependence of the
lattice results on the masses of the quarks. Note that any calculation that relies on the χPT
formula for f2 is subject to the uncertainties inherent in NLO results: instead of using the
physical value of the pion decay constant fπ, one may, for instance, work with the constant
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f0 that occurs in the effective Lagrangian and represents the value of fπ in the chiral limit.
Although trading fπ for f0 in the expression for the NLO term affects the result only at
NNLO, it may make a significant numerical difference in calculations where the latter are
not explicitly accounted for (the lattice results concerning the value of the ratio fπ/f0 are
reviewed in Sec. 5.3).
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Figure 7: Comparison of lattice results (squares) for f+(0) and fK±/fπ± with various model
estimates based on χPT (blue circles). The ratio fK±/fπ± is obtained in pure QCD including
the SU(2) isospin-breaking correction (see Sec. 4.3). The black squares and grey bands
indicate our estimates. The significance of the colours is explained in Sec. 2.

The lattice results shown in the left panel of Fig. 7 indicate that the higher order contri-
butions ∆f ≡ f+(0) − 1− f2 are negative and thus amplify the effect generated by f2. This
confirms the expectation that the exotic contributions are small. The entries in the lower part
of the left panel represent various model estimates for f4. In Ref. [227] the symmetry-breaking
effects are estimated in the framework of the quark model. The more recent calculations are
more sophisticated, as they make use of the known explicit expression for the Kℓ3 form fac-
tors to NNLO in χPT [226, 228]. The corresponding formula for f4 accounts for the chiral
logarithms occurring at NNLO and is not subject to the ambiguity mentioned above.17 The
numerical result, however, depends on the model used to estimate the low-energy constants
occurring in f4 [223–226]. The figure indicates that the most recent numbers obtained in this
way correspond to a positive or an almost vanishing rather than a negative value for ∆f . We
note that FNAL/MILC 12I [23] have made an attempt at determining a combination of some
of the low-energy constants appearing in f4 from lattice data.

4.3 Direct determination of f+(0) and fK±/fπ±

All lattice results for the form factor f+(0) and many available results for the ratio of decay
constants, that we summarize here in Tabs. 13 and 14, respectively, have been computed in
isospin-symmetric QCD. The reason for this unphysical parameter choice is that there are
only few simulations of SU(2) isospin-breaking effects in lattice QCD, which is ultimately

17Fortran programs for the numerical evaluation of the form factor representation in Ref. [226] are available
on request from Johan Bijnens.
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the cleanest way for predicting these effects [16, 103, 104, 110, 115, 166, 205, 206]. In the
meantime one relies either on chiral perturbation theory [107, 129] to estimate the correction
to the isospin limit or one calculates the breaking at leading order in (mu−md) in the valence
quark sector by extrapolating the lattice data for the charged kaons to the physical value of
the up(down)-quark mass (the result for the pion decay constant is always extrapolated to
the value of the average light-quark mass m̂). This defines the prediction for fK±/fπ± .

Since the majority of the collaborations present their newest results including the strong
SU(2) isospin-breaking correction (as we will see this comprises the majority of results which
qualify for inclusion into the FLAG average), we prefer to provide in Fig. 7 the overview of
the world data of fK±/fπ± , at variance with the choice made in the previous edition of the
FLAG review [2]. For all the results of Tab. 14 provided only in the isospin-symmetric limit
we apply individually an isospin correction which will be described later on (see equations
Eqs. (62-63)).

The plots in Fig. 7 illustrate our compilation of data for f+(0) and fK±/fπ± . The lattice
data for the latter quantity are largely consistent even when comparing simulations with
different Nf , while in the case of f+(0) a slight tendency to get higher values for increasing
Nf seems to be visible, even if it does not exceed one standard deviation. We now proceed to
form the corresponding averages, separately for the data with Nf = 2+1+1, Nf = 2+1 and
Nf = 2 dynamical flavours and in the following we will refer to these averages as the “direct”
determinations.

For f+(0) there are currently two computational strategies: FNAL/MILC uses the Ward
identity to relate the K → π form factor at zero momentum transfer to the matrix element
〈π|S|K〉 of the flavour-changing scalar current. Peculiarities of the staggered fermion dis-
cretization used by FNAL/MILC (see Ref. [23]) makes this the favoured choice. The other
collaborations are instead computing the vector current matrix element 〈π|Vµ|K〉. Apart from
FNAL/MILC 13C and the recent FNAL/MILC 13E all simulations in Tab. 13 involve unphys-
ically heavy quarks and therefore the lattice data needs to be extrapolated to the physical
pion and kaon masses corresponding to the K0 → π− channel. We note also that the recent
computations of f+(0) obtained by the FNAL/MILC and RBC/UKQCD collaborations make
use of the partially-twisted boundary conditions to determine the form-factor results directly
at the relevant kinematical point q2 = 0 [241, 242], avoiding in this way any uncertainty due
to the momentum dependence of the vector and/or scalar form factors. The ETM collabo-
ration uses partially-twisted boundary conditions to compare the momentum dependence of
the scalar and vector form factors with the one of the experimental data [214], while keeping
at the same time the advantage of the high-precision determination of the scalar form factor
at the kinematical end-point q2max = (MK −Mπ)

2 [25, 243] for the interpolation at q2 = 0.
According to the colour codes reported in Tab. 13 and to the FLAG rules of Sec. 2.2,

only the result ETM 09A with Nf = 2, the results FNAL/MILC 12I and RBC/UKQCD 15A
with Nf = 2 + 1 and the result FNAL/MILC 13E with Nf = 2 + 1+ 1 dynamical flavours of
fermions, respectively, can enter the FLAG averages.

AtNf = 2+1+1 the new result from the FNAL/MILC collaboration, f+(0) = 0.9704(24)(22)
(FNAL/MILC 13E), is based on the use of the Highly Improved Staggered Quark (HISQ)
action (for both valence and sea quarks), which has been taylored to reduce staggered taste-
breaking effects, and includes simulations with three lattice spacings and physical light-quark
masses. These features allow to keep the uncertainties due to the chiral extrapolation and to
the discretization artifacts well below the statistical error. The remaining largest systematic
uncertainty comes from finite-size effects.
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fK/fπ fK±/fπ±

ETM 14E [27] 2+1+1 A ◦ ⋆ ◦ 1.188(11)(11) 1.184(12)(11)
FNAL/MILC 14A [14] 2+1+1 A ⋆ ⋆ ⋆ 1.1956(10)(+26

−18)
ETM 13F [229] 2+1+1 C ◦ ⋆ ◦ 1.193(13)(10) 1.183(14)(10)
HPQCD 13A [26] 2+1+1 A ⋆ ◦ ⋆ 1.1948(15)(18) 1.1916(15)(16)
MILC 13A [230] 2+1+1 A ⋆ ⋆ ⋆ 1.1947(26)(37)

MILC 11 [231] 2+1+1 C ◦ ◦ ◦ 1.1872(42)†stat.
ETM 10E [232] 2+1+1 C ◦ ◦ ◦ 1.224(13)stat

RBC/UKQCD 14B [10] 2+1 A ⋆ ⋆ ⋆ 1.1945(45)
RBC/UKQCD 12 [31] 2+1 A ⋆ ◦ ⋆ 1.199(12)(14)

Laiho 11 [44] 2+1 C ◦ ⋆ ◦ 1.202(11)(9)(2)(5)††

MILC 10 [29] 2+1 C ◦ ⋆ ⋆ 1.197(2)(+3
−7)

JLQCD/TWQCD 10 [233] 2+1 C ◦ � ⋆ 1.230(19)
RBC/UKQCD 10A [144] 2+1 A ◦ ◦ ⋆ 1.204(7)(25)
PACS-CS 09 [94] 2+1 A ⋆ � � 1.333(72)
BMW 10 [30] 2+1 A ⋆ ⋆ ⋆ 1.192(7)(6)
JLQCD/TWQCD 09A [234] 2+1 C ◦ � � 1.210(12)stat
MILC 09A [6] 2+1 C ◦ ⋆ ⋆ 1.198(2)(+6

−8)
MILC 09 [89] 2+1 A ◦ ⋆ ⋆ 1.197(3)( +6

−13)
Aubin 08 [235] 2+1 C ◦ ◦ ◦ 1.191(16)(17)
PACS-CS 08, 08A [93, 236] 2+1 A ⋆ � � 1.189(20)
RBC/UKQCD 08 [145] 2+1 A ◦ � ⋆ 1.205(18)(62)
HPQCD/UKQCD 07 [28] 2+1 A ◦ ◦ ◦ 1.189(2)(7)
NPLQCD 06 [237] 2+1 A ◦ � � 1.218(2)(+11

−24)
MILC 04 [107] 2+1 A ◦ ◦ ◦ 1.210(4)(13)

ETM 14D [160] 2 C ⋆ � ◦ 1.203(5)stat
ALPHA 13A [238] 2 C ⋆ ⋆ ⋆ 1.1874(57)(30)
BGR 11 [239] 2 A ◦ � � 1.215(41)
ETM 10D [214] 2 C ◦ ⋆ ◦ 1.190(8)stat
ETM 09 [32] 2 A ◦ ⋆ ◦ 1.210(6)(15)(9)
QCDSF/UKQCD 07 [240] 2 C ◦ ◦ ⋆ 1.21(3)

† Result with statistical error only from polynomial interpolation to the physical point.
†† This work is the continuation of Aubin 08.

Table 14: Colour code for the data on the ratio of decay constants: fK/fπ is the pure QCD
SU(2)-symmetric ratio, while fK±/fπ± is in pure QCD including the SU(2) isospin-breaking
correction.

At Nf = 2 + 1 there is a new result from the RBC/UKQCD collaboration, f+(0) =
0.9685(34)(14) [24] (RBC/UKQCD 15A), which satisfies all FLAG criteria for entering the
average. RBC/UKQCD 15A superseeds RBC/UKQCD 13 thanks to two new simulations at
the physical point. The other result eligible to enter the FLAG average at Nf = 2+1 is the one
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from FNAL/MILC 12I, f+(0) = 0.9667(23)(33). The two results, based on different fermion
discretizations (staggered fermions in the case of FNAL/MILC and domain wall fermions in
the case of RBC/UKQCD) are in nice agreement. Moreover, in the case of FNAL/MILC the
form factor has been determined from the scalar current matrix element, while in the case of
RBC/UKQCD it has been determined including also the matrix element of the vector current.
To a certain extent both simulations are expected to be affected by different systematic effects.

RBC/UKQCD 15A has analyzed results on ensembles with pion masses down to 140 MeV,
mapping out the complete range from the SU(3)-symmetric limit to the physical point. No
significant cut-off effects (results for two lattice spacings) were observed in the simulation
results. Ensembles with unphysical light-quark masses are weighted to work as a guide for
small corrections toward the physical point, reducing in this way the model dependence in
the fitting ansatz. The systematic uncertainty turns out to be dominated by finite-volume
effects, for which an estimate based on effective theory arguments is provided.

The result FNAL/MILC 12I is from simulations reaching down to a lightest RMS pion
mass of about 380 MeV (the lightest valence pion mass for one of their ensembles is about
260 MeV). Their combined chiral and continuum extrapolation (results for two lattice spac-
ings) is based on NLO staggered chiral perturbation theory supplemented by the contin-
uum NNLO expression [226] and a phenomenological parameterization of the breaking of
the Ademollo-Gatto theorem at finite lattice spacing inherent in their approach. The p4

low-energy constants entering the NNLO expression have been fixed in terms of external
input [130].

The ETM collaboration uses the twisted-mass discretization and provides at Nf = 2 a
comprehensive study of the systematics [25, 214], by presenting results for four lattice spacings
and by simulating at light pion masses (down to Mπ = 260 MeV). This makes it possible to
constrain the chiral extrapolation, using both SU(3) [220] and SU(2) [222] chiral perturbation
theory. Moreover, a rough estimate for the size of the effects due to quenching the strange
quark is given, based on the comparison of the result for Nf = 2 dynamical quark flavours [32]
with the one in the quenched approximation, obtained earlier by the SPQcdR collaboration
[243].

We now compute the Nf = 2+1 FLAG-average for f+(0) based on FNAL/MILC 12I and
RBC/UKQCD 15A, which we consider uncorrelated, while for Nf = 2+1+1 and Nf = 2 we
consider directly the FNAL/MILC 13E and ETM 09A results, respectively:

direct, Nf = 2 + 1 + 1 : f+(0) = 0.9704(24)(22) Ref. [22], (58)

direct, Nf = 2 + 1 : f+(0) = 0.9677(27) Refs. [23, 24], (59)

direct, Nf = 2 : f+(0) = 0.9560(57)(62) Ref. [25], (60)

where the brackets in the first and third lines indicate the statistical and systematic errors,
respectively. We stress that the results (58) and (59), corresponding to Nf = 2 + 1 + 1 and
Nf = 2 + 1 respectively, include already simulations with physical light-quark masses.

In the case of the ratio of decay constants the data sets that meet the criteria for-
mulated in the introduction are HPQCD 13A [26], FNAL/MILC 14A [14] (which updates
MILC 13A [230]) and ETM 14E [27] with Nf = 2 + 1 + 1, MILC 10 [29], BMW 10 [30],
HPQCD/UKQCD 07 [28] and RBC/UKQCD 12 [31] (which is an update of RBC/UKQCD
10A [144]) with Nf = 2 + 1 and ETM 09 [32] with Nf = 2 dynamical flavours.

ETM 14E uses the twisted-mass discretization and provides a comprehensive study of
the systematics by presenting results for three lattice spacings in the range 0.06 − 0.09 fm
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and and for pion masses in the range 210 − 450 MeV. This makes it possible to constrain
the chiral extrapolation, using both SU(2) [222] chiral perturbation theory and polynomial
fits. The ETM collaboration always includes the spread in the central values obtained from
different ansätze into the systematic errors. The final result of their analysis is fK±/fπ± =
1.184(12)stat+fit(3)Chiral(9)a2(1)ZP (3)FV (3)IB where the errors are (statistical + the error due
to the fitting procedure), due to the chiral extrapolation, the continuum extrapolation, the
mass-renormalization constant, the finite-volume and (strong) isospin-breaking effects.

FNAL/MILC 14A has determined the ratio of the decay constants from a comprehensive
set of HISQ ensembles with Nf = 2+1+1 dynamical flavours. They have generated ensembles
for four values of the lattice spacing (0.06 − 0.15 fm, scale set with fπ+) and with both
physical and unphysical values of the light sea-quark masses, controlling in this way the
systematic uncertainties due to chiral and continuum extrapolations. With respect to MILC
13A they have increased the statistics and added an important ensemble at the finest lattice
spacing and for physical values of the light-quark mass. The final result of their analysis
is fK±/fπ± = 1.1956(10)stat(

+23
−14)a2(10)FV (5)EM where the errors are statistical, due to the

continuum extrapolation, finite-volume and electromagnetic effects. With respect to MILC
13A a factor of ≃ 2.6, 1.8 and ≃ 1.7 has been gained for the statistical, the discretization
and the finite-volume errors.

HPQCD 13A analyzes ensembles generated by MILC and therefore its study of fK±/fπ±

is based on the same set of ensembles bar the one for the finest lattice spacing (a = 0.09−0.15
fm, scale set with fπ+ and relative scale set with the Wilson flow [244, 245]) supplemented
by some simulation points with heavier quark masses. HPQCD employs a global fit based on
continuum NLO SU(3) chiral perturbation theory for the decay constants supplemented by
a model for higher-order terms including discretization and finite-volume effects (61 param-
eters for 39 data points supplemented by Bayesian priors). Their final result is fK±/fπ± =
1.1916(15)stat(12)a2(1)FV (10), where the errors are statistical, due to the continuum extrap-
olation, due to finite-volume effects and the last error contains the combined uncertainties
from the chiral extrapolation, the scale-setting uncertainty, the experimental input in terms
of fπ+ and from the uncertainty in mu/md.

In the previous edition of the FLAG review [2] the error budget of HPQCD 13A was
compared with the one of MILC 13A and discussed in details. It was pointed out that,
despite the large overlap in primary lattice data, both collaborations arrive at surprisingly
different error budgets. The same still holds when the comparison is made between HPQCD
13A and FNAL/MILC 14A.

Concerning the cutoff dependence, the finest lattice included into MILC’s analysis is a =
0.06 fm while the finest lattice in HPQCD’s case is a = 0.09 fm and both collaborations
allow for taste-breaking terms in their analyses. MILC estimates the residual systematic after
extrapolating to the continuum limit by taking the split between the result of an extrapolation
with up to quartic and only up to quadratic terms in a as their systematic. HPQCD on the
other hand models cutoff effects within their global fit ansatz up to including terms in a8,
using priors for the unknown coefficients and without including the spread in the central
values obtained from different ansätze into the systematic errors. In this way HPQCD arrives
at a systematic error due to the continuum limit which is smaller than MILC’s estimate by
about a factor ≃ 1.8.

Turning to finite-volume effects, NLO staggered chiral perturbation theory (MILC) or
continuum chiral perturbation theory (HPQCD) was used for correcting the lattice data to-
wards the infinite-volume limit. MILC then compared the finite-volume correction to the one
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obtained by the NNLO expression and took the difference as their estimate for the residual
finite-volume error. In addition they checked the compatibility of the effective-theory predic-
tions (NLO continuum, staggered and NNLO continuum chiral perturbation theory) against
lattice data of different spacial extent. The final verdict is that the related residual systematic
uncertainty on fK±/fπ± made by MILC is larger by an order of magnitude than the one made
by HPQCD.

Adding in quadrature all the uncertainties one gets: fK±/fπ± = 1.1916(22) (HPQCD
13A) and fK±/fπ± = 1.1960(24)18 (FNAL/MILC 14A). It can be seen that the total errors
turn out to be very similar, but the central values seem to show a slight tension of about two
standard deviations. While FLAG is looking forward to independent confirmations of the
result for fK±/fπ± at the same level of precision, we evaluate the FLAG average using a two-
step procedure. First, the HPQCD 13A and FNAL/MILC 14A are averaged assuming a 100%
statistical correlation, obtaining fK±/fπ± = 1.1936(29), where, following the prescription of
Sec. 2.3, the error has been inflated by the factor

√
(χ2/dof) ≃

√
2.5 as a result of the tension

between the two central values. Then, the above finding is averaged with the (uncorrelated)
ETM 14E result, obtaining

direct, Nf = 2 + 1 + 1 : fK±/fπ± = 1.1933(29) Refs. [14, 26, 27] . (61)

For both Nf = 2 + 1 and Nf = 2 no new result enters the corresponding FLAG av-
erages with respect to the previous edition of the FLAG review [2] and before the closing
date specified in Sec. 1. Here we limit ourselves to note that for Nf = 2 + 1 MILC 10 and
HPQCD/UKQCD 07 are based on staggered fermions, BMW 10 has used improved Wilson
fermions and RBC/UKQCD 12’s result is based on the domain-wall formulation. Concerning
simulations with Nf = 2 the FLAG average remains the ETM 09 result, which has simulated
twisted-mass fermions. In contrast to FNAL/MILC 14A all these simulations are for un-
physical values of the light-quark masses (corresponding to smallest pion masses in the range
240−260 MeV in the case of MILC 10, HPQCD/UKQCD 07 and ETM 09 and around 170 MeV
for RBC/UKQCD 12) and therefore slightly more sophisticated extrapolations needed to be
controlled. Various ansätze for the mass and cutoff dependence comprising SU(2) and SU(3)
chiral perturbation theory or simply polynomials were used and compared in order to esti-
mate the model dependence. While BMW 10 and RBC/UKQCD 12 are entirely independent
computations, subsets of the MILC gauge ensembles used by MILC 10 and HPQCD/UKQCD
07 are the same. MILC 10 is certainly based on a larger and more advanced set of gauge
configurations than HPQCD/UKQCD 07. This allows them for a more reliable estimation of
systematic effects. In this situation we consider only their statistical but not their systematic
uncertainties to be correlated.

Before determining the average for fK±/fπ± , which should be used for applications to
Standard-Model phenomenology, we apply the isospin correction individually to all those re-
sults which have been published in the isospin-symmetric limit, i.e. BMW 10, HPQCD/UKQCD
07 and RBC/UKQCD 12 at Nf = 2 + 1 and ETM 09 at Nf = 2. To this end, as in the
previous edition of the FLAG review [2], we make use of NLO SU(3) chiral perturbation
theory [129, 246], which predicts

fK±

fπ±

=
fK
fπ

√
1 + δSU(2) , (62)

18Here we have symmetrized the asymmetric systematic error and shifted the central value by half the
difference as will be done throughout this section.
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where [246]

δSU(2) ≈
√
3 ǫSU(2)

[
−4

3 (fK/fπ − 1) + 2
3(4π)2f2

0

(
M2

K −M2
π −M2

π ln
M2
K

M2
π

)]
. (63)

We use as input ǫSU(2) =
√
3/4/R with the FLAG result for R of Eq. (36), F0 = f0/

√
2 =

80(20) MeV, Mπ = 135 MeV and MK = 495 MeV (we decided to choose a conservative
uncertainty on f0 in order to reflect the magnitude of potential higher-order corrections).
The results are reported in Tab. 15, where in the last column the first error is statistical and
the second error is due to the isospin correction (the remaining errors are quoted in the same
order as in the original data).

fK/fπ δSU(2) fK±/fπ±

HPQCD/UKQCD 07 1.189(2)(7) -0.0040(7) 1.187(2)(2)(7)
BMW 10 1.192(7)(6) -0.0041(7) 1.190(7)(2)(6)
RBC/UKQCD 12 1.199(12)(14) -0.0043(9) 1.196(12)(2)(14)

Table 15: Values of the SU(2) isospin-breaking correction δSU(2) applied to the lattice data
for fK/fπ , entering the FLAG average at Nf = 2 + 1, for obtaining the corrected charged
ratio fK±/fπ± .

For Nf = 2 a dedicated study of the strong-isospin correction in lattice QCD does exist.
The (updated) result of the RM123 collaboration [16] amounts to δSU(2) = −0.0080(4) and
we use this result for the isospin correction of the ETM 09 result at Nf = 2.

Note that the RM123 value for the strong-isospin correction is almost incompatible with
the results based on SU(3) chiral perturbation theory, δSU(2) = −0.004(1) (see Tab. 15).
Moreover, for Nf = 2+1+1 HPQCD 13A [26] and ETM 14E [27] estimate a value for δSU(2)

equal to −0.0054(14) and −0.0080(38), respectively. One would not expect the strange and
heavier sea-quark contributions to be responsible for such a large effect. Whether higher-
order effects in chiral perturbation theory or other sources are responsible still needs to be
understood. More lattice QCD simulations of SU(2) isospin-breaking effects are therefore
required. To remain on the conservative side we add a 100% error to the correction based
on SU(3) chiral perturbation theory. For further analyses we add (in quadrature) such an
uncertainty to the systematic error.

Using the results of Tab. 15 for Nf = 2 + 1 we obtain

direct, Nf = 2 + 1 + 1 : fK±/fπ± = 1.193(3) Refs. [14, 26, 27], (64)

direct, Nf = 2 + 1 : fK±/fπ± = 1.192(5) Refs. [28–31], (65)

direct, Nf = 2 : fK±/fπ± = 1.205(6)(17) Ref. [32], (66)

for QCD with broken isospin.
It is instructive to convert the above results for f+(0) and fK±/fπ± into a corresponding

range for the CKM matrix elements |Vud| and |Vus|, using the relations (54). Consider first
the results for Nf = 2 + 1 + 1. The range for f+(0) in Eq. (58) is mapped into the interval
|Vus| = 0.2231(9), depicted as a horizontal red band in Fig. 8, while the one for fK±/fπ± in
Eq. (64) is converted into |Vus|/|Vud| = 0.2313(7), shown as a tilted red band. The red ellipse
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is the intersection of these two bands and represents the 68% likelihood contour,19 obtained
by treating the above two results as independent measurements. Repeating the exercise for
Nf = 2 + 1 and Nf = 2 leads to the green and blue ellipses, respectively. The plot indicates
a slight tension between the Nf = 2 + 1 + 1 and the nuclear β decay results.
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Figure 8: The plot compares the information for |Vud|, |Vus| obtained on the lattice with
the experimental result extracted from nuclear β transitions. The dotted line indicates the
correlation between |Vud| and |Vus| that follows if the CKM-matrix is unitary.

4.4 Tests of the Standard Model

In the Standard Model, the CKM matrix is unitary. In particular, the elements of the first
row obey

|Vu|2 ≡ |Vud|2 + |Vus|2 + |Vub|2 = 1 . (67)

The tiny contribution from |Vub| is known much better than needed in the present context:
|Vub| = 4.13(49) · 10−3 [151]. In the following, we first discuss the evidence for the validity of
the relation (67) and only then use it to analyse the lattice data within the Standard Model.

In Fig. 8, the correlation between |Vud| and |Vus| imposed by the unitarity of the CKM
matrix is indicated by a dotted line (more precisely, in view of the uncertainty in |Vub|, the
correlation corresponds to a band of finite width, but the effect is too small to be seen here).
The plot shows that there is a slight tension with unitarity in the data for Nf = 2 + 1 + 1:
Numerically, the outcome for the sum of the squares of the first row of the CKM matrix
reads |Vu|2 = 0.980(9), which deviates from unity at the level of two standard deviations.

19Note that the ellipses shown in Fig. 5 of both Ref. [1] and Ref. [2] correspond instead to the 39% likelihood
contours. Note also that in Ref. [2] the likelihood was erroneously stated to be 68% rather than 39%.
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Still, it is fair to say that at this level the Standard Model passes a nontrivial test that
exclusively involves lattice data and well-established kaon decay branching ratios. Combining
the lattice results for f+(0) and fK±/fπ± in Eqs. (58) and (64) with the β decay value of
|Vud| quoted in Eq. (55), the test sharpens considerably: the lattice result for f+(0) leads
to |Vu|2 = 0.9988(6), which highlights again a 2σ-tension with unitarity, while the one for
fK±/fπ± implies |Vu|2 = 0.9998(5), confirming the first-row CKM unitarity below the permille
level.

The situation is similar for Nf = 2 + 1: |Vu|2 = 0.984(11) with the lattice data alone.
Combining the lattice results for f+(0) and fK±/fπ± in Eqs. (59) and (65) with the β decay
value of |Vud|, the test sharpens again considerably: the lattice result for f+(0) leads to
|Vu|2 = 0.9991(6), while the one for fK±/fπ± implies |Vu|2 = 0.9999(6), thus confirming again
CKM unitarity below the permille level.

Repeating the analysis for Nf = 2, we find |Vu|2 = 1.029(34) with the lattice data alone.
This number is fully compatible with unity and perfectly consistent with the value of |Vud|
found in nuclear β decay: combining this value with the result (60) for f+(0) yields |Vu|2 =
1.0003(10), combining it with the data (66) on fK±/fπ± gives |Vu|2 = 0.9988(15).

Note that the above tests also offer a check of the basic hypothesis that underlies our
analysis: we are assuming that the weak interaction between the quarks and the leptons
is governed by the same Fermi constant as the one that determines the strength of the
weak interaction among the leptons and determines the lifetime of the muon. In certain
modifications of the Standard Model, this is not the case. In those models it need not be true
that the rates of the decays π → ℓν, K → ℓν and K → πℓν can be used to determine the
matrix elements |Vudfπ|, |VusfK | and |Vusf+(0)|, respectively and that |Vud| can be measured
in nuclear β decay. The fact that the lattice data are consistent with unitarity and with
the value of |Vud| found in nuclear β decay indirectly also checks the equality of the Fermi
constants.

4.5 Analysis within the Standard Model

The Standard Model implies that the CKM matrix is unitary. The precise experimental
constraints quoted in (54) and the unitarity condition (67) then reduce the four quantities
|Vud|, |Vus|, f+(0), fK±/fπ± to a single unknown: any one of these determines the other three
within narrow uncertainties.

Fig. 9 shows that the results obtained for |Vus| and |Vud| from the data on fK±/fπ±

(squares) are quite consistent with the determinations via f+(0) (triangles). In order to
calculate the corresponding average values, we restrict ourselves to those determinations that
we have considered best in Sec. 4.3. The corresponding results for |Vus| are listed in Tab. 16
(the error in the experimental numbers used to convert the values of f+(0) and fK±/fπ± into
values for |Vus| is included in the statistical error).

For Nf = 2+1+1 we consider the data both for f+(0) and fK±/fπ± , treating FNAL/MILC
13E, FNAL/MILC 14A and HPQCD 13A as statistically correlated (according to the pre-
scription of Sec. 2.3). We obtain |Vus| = 0.2250(11), where the error includes the inflation
factor due the value of χ2/dof ≃ 2.3. This result is indicated on the left hand side of Fig. 9
by the narrow vertical band. In the case Nf = 2+ 1 we consider MILC 10, FNAL/MILC 12I
and HPQCD/UKQCD 07 on the one hand and RBC/UKQCD 12 and RBC/UKQCD 15A on
the other hand, as mutually statistically correlated, since the analysis in the two cases starts
from partly the same set of gauge ensembles. In this way we arrive at |Vus| = 0.2243(10) with
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Figure 9: Results for |Vus| and |Vud| that follow from the lattice data for f+(0) (triangles)
and fK±/fπ± (squares), on the basis of the assumption that the CKM matrix is unitary.
The black squares and the grey bands represent our estimates, obtained by combining these
two different ways of measuring |Vus| and |Vud| on a lattice. For comparison, the figure also
indicates the results obtained if the data on nuclear β decay and τ decay are analysed within
the Standard Model.

χ2/dof ≃ 1.0. For Nf = 2 we consider ETM 09A and ETM 09 as statistically correlated,
obtaining |Vus| = 0.2256(21) with χ2/dof ≃ 0.7. The figure shows that the result obtained
for the data with Nf = 2, Nf = 2 + 1 and Nf = 2 + 1 + 1 are consistent with each other.

Alternatively, we can solve the relations for |Vud| instead of |Vus|. Again, the result
|Vud| = 0.97440(19) which follows from the lattice data with Nf = 2 + 1 + 1 is perfectly
consistent with the values |Vud| = 0.97451(23) and |Vud| = 0.97423(47) obtained from the
data with Nf = 2 + 1 and Nf = 2, respectively. The reduction of the uncertainties in the
result for |Vud| due to CKM unitarity is to be expected from Fig. 8: the unitarity condition
reduces the region allowed by the lattice results to a nearly vertical interval.

Next, we determine the values of f+(0) and fK±/fπ± that follow from our determinations
of |Vus| and |Vud| obtained from the lattice data within the Standard Model. We find f+(0) =
0.9622(50) for Nf = 2 + 1 + 1, f+(0) = 0.9652(47) for Nf = 2 + 1, f+(0) = 0.9597(91) for
Nf = 2 and fK±/fπ± = 1.195(5) for Nf = 2 + 1 + 1, fK±/fπ± = 1.199(5) for Nf = 2 + 1,
fK±/fπ± = 1.192(9) for Nf = 2, respectively. These results are collected in the upper half
of Tab. 17. In the lower half of the table, we list the analogous results found by working
out the consequences of the CKM unitarity using the values of |Vud| and |Vus| obtained from
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Collaboration Ref. Nf from |Vus| |Vud|

FNAL/MILC 13E [22] 2 + 1 + 1 f+(0) 0.2231(7)(5) 0.97479(16)(12)

ETM 14E [27] 2 + 1 + 1 fK±/fπ± 0.2270(22)(20) 0.97388(51)(47)

FNAL/MILC 14A [14] 2 + 1 + 1 fK±/fπ± 0.2249(4)(4) 0.97438(8)(9)

HPQCD 13A [26] 2 + 1 + 1 fK±/fπ± 0.2256(4)(3) 0.97420(10)(7)

RBC/UKQCD 15A [24] 2 + 1 f+(0) 0.2235(9)(3) 0.97469(20)(7)

FNAL/MILC 12I [23] 2 + 1 f+(0) 0.2240(7)(8) 0.97459(16)(18)

MILC 10 [29] 2 + 1 fK±/fπ± 0.2250(5)(9) 0.97434(11)(21)

RBC/UKQCD 12 [144] 2 + 1 fK±/fπ± 0.2249(22)(25) 0.97438(50)(58)

BMW 10 [30] 2 + 1 fK±/fπ± 0.2259(13)(11) 0.97413(30)(25)

HPQCD/UKQCD 07 [28] 2 + 1 fK±/fπ± 0.2265(6)(13) 0.97401(14)(29)

ETM 09A [25] 2 f+(0) 0.2265(14)(15) 0.97401(33)(34)

ETM 09 [32] 2 fK±/fπ± 0.2233(11)(30) 0.97475(25)(69)

Table 16: Values of |Vus| and |Vud| obtained from the lattice determinations of either f+(0)
or fK±/fπ± assuming CKM unitarity. The first (second) number in brackets represents the
statistical (systematic) error.

nuclear β decay and τ decay, respectively. The comparison shows that the lattice result for
|Vud| not only agrees very well with the totally independent determination based on nuclear β
transitions, but is also remarkably precise. On the other hand, the values of |Vud|, f+(0) and
fK±/fπ± which follow from the τ -decay data if the Standard Model is assumed to be valid,
are not in good agreement with the lattice results for these quantities. The disagreement is
reduced considerably if the analysis of the τ data is supplemented with experimental results
on electroproduction [198]: the discrepancy then amounts to little more than one standard
deviation.

4.6 Direct determination of fK± and fπ±

It is useful for flavour physics studies to provide not only the lattice average of fK±/fπ± , but
also the average of the decay constant fK±. The case of the decay constant fπ± is different,
since the experimental value of this quantity is often used for setting the scale in lattice QCD
(see Appendix A.2). However, the physical scale can be set in different ways, namely by using
as input the mass of the Ω-baryon (mΩ) or the Υ-meson spectrum (∆MΥ), which are less
sensitive to the uncertainties of the chiral extrapolation in the light-quark mass with respect
to fπ±. In such cases the value of the decay constant fπ± becomes a direct prediction of the
lattice-QCD simulations. It is therefore interesting to provide also the average of the decay
constant fπ±, obtained when the physical scale is set through another hadron observable, in
order to check the consistency of different scale setting procedures.

Our compilation of the values of fπ± and fK± with the corresponding colour code is pre-
sented in Tab. 18. With respect to the case of fK±/fπ± we have added two columns indicating
which quantity is used to set the physical scale and the possible use of a renormalization con-
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Ref. |Vus| |Vud| f+(0) fK±/fπ±

Nf = 2 + 1 + 1 0.2250(11) 0.97440(19) 0.9622(50) 1.195(5)

Nf = 2 + 1 0.2243(10) 0.97451(23) 0.9652(47) 1.199(5)

Nf = 2 0.2256(21) 0.97423(47) 0.9597(91) 1.192(9)

β decay [185] 0.2258(9) 0.97417(21) 0.9588(42) 1.191(4)

τ decay [199] 0.2165(26) 0.9763(6) 1.0000(122) 1.245(12)

τ decay [198] 0.2208(39) 0.9753(9) 0.9805(174) 1.219(18)

Table 17: The upper half of the table shows our final results for |Vus|, |Vud|, f+(0) and
fK±/fπ± , which are obtained by analysing the lattice data within the Standard Model. For
comparison, the lower half lists the values that follow if the lattice results are replaced by the
experimental results on nuclear β decay and τ decay, respectively.

stant for the axial current. Indeed, for several lattice formulations the use of the nonsinglet
axial-vector Ward identity allows to avoid the use of any renormalization constant.

One can see that the determinations of fπ± and fK± suffer from larger uncertainties
with respect to the ones of the ratio fK±/fπ± , which is less sensitive to various systematic
effects (including the uncertainty of a possible renormalization constant) and, moreover, is
not exposed to the uncertainties of the procedure used to set the physical scale.

According to the FLAG rules, for Nf = 2 + 1+ 1 three data sets can form the average of
fK± only: ETM 14E [27], FNAL/MILC 14A [14] and HPQCD 13A [26]. Following the same
procedure already adopted in Sec. 4.3 in the case of the ratio of the decay constant we treat
FNAL/MILC 14A and HPQCD 13A as statistically correlated. For Nf = 2 + 1 three data
sets can form the average of fπ± and fK± : RBC/UKQCD 12 [31] (update of RBC/UKQCD
10A), HPQCD/UKQCD 07 [28] and MILC 10 [29], which is the latest update of the MILC
program. We consider HPQCD/UKQCD 07 and MILC 10 as statistically correlated and use
the prescription of Sec. 2.3 to form an average. For Nf = 2 the average cannot be formed for
fπ± , and only one data set (ETM 09) satisfies the FLAG rules in the case of fK±.

Thus, our estimates read

Nf = 2 + 1 : fπ± = 130.2 (1.4) MeV Refs. [28, 29, 31], (68)

Nf = 2 + 1 + 1 : fK± = 155.6 (0.4) MeV Refs. [14, 26, 27],

Nf = 2 + 1 : fK± = 155.9 (0.9) MeV Refs. [28, 29, 31], (69)

Nf = 2 : fK± = 157.5 (2.4) MeV Ref. [32].

The lattice results of Tab. 18 and our estimates (68-69) are reported in Fig. 10. The latter
ones agree within the errors with the latest experimental determinations of fπ and fK from
the PDG [151]:

f
(PDG)
π± = 130.41 (0.20) MeV , f

(PDG)
K± = 156.2 (0.7) MeV . (70)
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Moreover the values of fπ± and fK± quoted by the PDG are obtained assuming Eq. (55) for
the value of |Vud| and adopting the average of FNAL/MILC 12I and RBC-UKQCD 10 results
for f+(0).

Collaboration Ref. Nf pu
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fπ± fK±

ETM 14E [27] 2+1+1 A ◦ ⋆ ◦ na fπ – 154.4(1.5)(1.3)
FNAL/MILC 14A [14] 2+1+1 A ⋆ ⋆ ⋆ na fπ – 155.92(13)(+34

−23)
HPQCD 13A [26] 2+1+1 A ⋆ ◦ ⋆ na fπ – 155.37(20)(27)
MILC 13A [230] 2+1+1 A ⋆ ◦ ⋆ na fπ – 155.80(34)(54)
ETM 10E [232] 2+1+1 C ◦ ◦ ◦ na fπ X – 159.6(2.0)

RBC/UKQCD 14B [10] 2+1 A ⋆ ⋆ ⋆ NPR mΩ X 130.19(89) 155.18(89)
RBC/UKQCD 12 [31] 2+1 A ⋆ ◦ ⋆ NPR mΩ X 127.1(2.7)(2.7) 152.1(3.0)(1.7)

Laiho 11 [44] 2+1 C ◦ ⋆ ◦ na † 130.53(87)(210) 156.8(1.0)(1.7)

MILC 10 [29] 2+1 C ◦ ⋆ ⋆ na † 129.2(4)(14) –
MILC 10 [29] 2+1 C ◦ ⋆ ⋆ na fπ – 156.1(4)(+6

−9)
JLQCD/TWQCD 10 [233] 2+1 C ◦ � ⋆ na mΩ X 118.5(3.6)stat 145.7(2.7)stat
RBC/UKQCD 10A [144] 2+1 A ◦ ◦ ⋆ NPR mΩ X 124(2)(5) 148.8(2.0)(3.0)
PACS-CS 09 [94] 2+1 A ⋆ � � NPR mΩ X 124.1(8.5)(0.8) 165.0(3.4)(1.1)
JLQCD/TWQCD 09A [234] 2+1 C ◦ � � na fπ X – 156.9(5.5)stat
MILC 09A [6] 2+1 C ◦ ⋆ ⋆ na ∆MΥ 128.0(0.3)(2.9) 153.8(0.3)(3.9)
MILC 09A [6] 2+1 C ◦ ⋆ ⋆ na fπ – 156.2(0.3)(1.1)
MILC 09 [89] 2+1 A ◦ ⋆ ⋆ na ∆MΥ 128.3(0.5)(+2.4

−3.5) 154.3(0.4)(+2.1
−3.4)

MILC 09 [89] 2+1 A ◦ ⋆ ⋆ na fπ 156.5(0.4)(+1.0
−2.7)

Aubin 08 [235] 2+1 C ◦ ◦ ◦ na ∆MΥ 129.1(1.9)(4.0) 153.9(1.7)(4.4)
PACS-CS 08, 08A [93, 236] 2+1 A ⋆ � � 1lp mΩ X 134.0(4.2)stat 159.0(3.1)stat
RBC/UKQCD 08 [145] 2+1 A ◦ � ⋆ NPR mΩ X 124.1(3.6)(6.9) 149.4(3.6)(6.3)
HPQCD/UKQCD 07 [28] 2+1 A ◦ ◦ ◦ na ∆MΥ X 132(2) 156.7(0.7)(1.9)
MILC 04 [107] 2+1 A ◦ ◦ ◦ na ∆MΥ 129.5(0.9)(3.5) 156.6(1.0)(3.6)

ETM 14D [160] 2 C ⋆ � ◦ na fπ X – 153.3(7.5)stat
TWQCD 11 [248] 2 P ⋆ � � na r0

∗ 127.3(1.7)(2.0)∗∗ –
ETM 09 [32] 2 A ◦ ⋆ ◦ na fπ X – 157.5(0.8)(2.0)(1.1)††

JLQCD/TWQCD 08A [138] 2 A ◦ � � na r0 119.6(3.0)(+6.5
−1.0)

∗∗ –

The label ’na’ indicates the lattice calculations which do not require the use of any renormalization constant
for the axial current, while the label ’NPR’ (’1lp’) signals the use of a renormalization constant calculated
nonperturbatively (at 1-loop order in perturbation theory).

† The ratios of lattice spacings within the ensembles were determined using the quantity r1. The
conversion to physical units was made on the basis of Ref. [249] and we note that such a determination
depends on the experimental value of the pion decay constant

†† Errors are (stat+chiral)(a 6= 0)(finite size).
∗ The ratio fπ/Mπ was used as experimental input to fix the light-quark mass.

∗∗ Lmin < 2fm in these simulations.

Table 18: Colour code for the lattice data on fπ± and fK± together with information on the
way the lattice spacing was converted to physical units and on whether or not an isospin-
breaking correction has been applied to the quoted result (see Sec. 4.3). The numerical values
are listed in MeV units.
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Figure 10: Values of fπ and fK. The black squares and grey bands indicate our estimates
(68) and (69). The black triangles represent the experimental values quoted by the PDG, see
Eq. (70).
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5 Low-energy constants

In the study of the quark-mass dependence of QCD observables calculated on the lattice, it
is common practice to invoke chiral perturbation theory (χPT). For a given quantity this
framework predicts the nonanalytic quark-mass dependence and it provides symmetry rela-
tions among different observables. These relations are best expressed with the help of a set of
linearly independent and universal (i.e. process-independent) low-energy constants (LECs),
which appear as coefficients of the polynomial terms (in mq or M2

π) in different observables.
When numerical simulations are done at heavier than physical (light) quark masses, χPT is
usually invoked in the extrapolation to physical quark masses.

5.1 Chiral perturbation theory

χPT is an effective field theory approach to the low-energy properties of QCD based on the
spontaneous breaking of chiral symmetry, SU(Nf )L × SU(Nf )R → SU(Nf )L+R, and its soft
explicit breaking by quark-mass terms. In its original implementation, in infinite volume, it
is an expansion in mq and p2 with power counting M2

π ∼ mq ∼ p2.
If one expands around the SU(2) chiral limit, there appear two LECs at order p2 in the

chiral effective Lagrangian,

F ≡ Fπ
mu,md→0

and B ≡ Σ

F 2
, where Σ ≡ −〈ūu〉

∣∣∣
mu,md→0

, (71)

and seven at order p4, indicated by ℓ̄i with i = 1, . . . , 7. In the analysis of the SU(3) chiral
limit there are also just two LECs at order p2,

F0 ≡ Fπ
mu,md,ms→0

and B0 ≡
Σ0

F 2
0

, where Σ0 ≡ −〈ūu〉
∣∣∣
mu,md,ms→0

, (72)

but ten at order p4, indicated by the capital letter Li(µ) with i = 1, . . . , 10. These constants
are independent of the quark masses,20 but they become scale dependent after renormalization
(sometimes a superscript r is added). The SU(2) constants ℓ̄i are scale independent, since
they are defined at scale µ =Mπ (as indicated by the bar). For the precise definition of these
constants and their scale dependence we refer the reader to Refs. [129, 131].

If the box volume is finite but large compared to the Compton wavelength of the pion,
L ≫ 1/Mπ, the power counting generalizes to mq ∼ p2 ∼ 1/L2, as one would assume based
on the fact that pmin = 2π/L is the minimum momentum in a finite box. This is the so-called
p-regime of χPT. It coincides with the setting that is used for standard phenomenologically
oriented lattice-QCD computations, and we shall consider the p-regime the default in the
following. However, if the pion mass is so small that the box-length L is no longer large
compared to the Compton wavelength that the pion would have, at the given mq, in infinite
volume, then the chiral series must be reordered. Such finite-volume versions of χPT with
correspondingly adjusted power counting schemes, referred to as ǫ- and δ-regime, are described
in Secs. 5.1.4 and 5.1.5, respectively.

20More precisely, they are independent of the 2 or 3 light quark masses which are explicitly considered in
the respective framework. However, all low-energy constants depend on the masses of the remaining quarks
s, c, b, t or c, b, t in the SU(2) and SU(3) framework, respectively, although the dependence on the masses of
the c, b, t quarks is expected to be small.
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Lattice calculations can be used to test if chiral symmetry is indeed spontaneously broken
along the path SU(Nf )L×SU(Nf )R → SU(Nf )L+R by measuring nonzero chiral condensates
and by verifying the validity of the GMOR relation M2

π ∝ mq close to the chiral limit. If the
chiral extrapolation of quantities calculated on the lattice is made with the help of fits to their
χPT forms, apart from determining the observable at the physical value of the quark masses,
one also obtains the relevant LECs. This is a very important by-product for two reasons:

1. All LECs up to order p4 (with the exception of B and B0, since only the product of
these times the quark masses can be estimated from phenomenology) have either been
determined by comparison to experiment or estimated theoretically, e.g. in large-Nc

QCD. A lattice determination of the better known LECs thus provides a test of the χPT
approach.

2. The less well-known LECs are those which describe the quark-mass dependence of ob-
servables – these cannot be determined from experiment, and therefore the lattice, where
quark masses can be varied, provides unique quantitative information. This information
is essential for improving phenomenological χPT predictions in which these LECs play
a role.

We stress that this program is based on the nonobvious assumption that χPT is valid in the
region of masses and momenta used in the lattice simulations under consideration, something
that can and should be checked. In the end one wants to compare lattice and phenomeno-
logical determinations of LECs, much in the spirit of Ref. [250]. An overview of many of the
conceptual issues involved in matching lattice data to an effective field theory framework like
χPT is given in Refs. [251–253].

The fact that, at large volume, the finite-size effects, which occur if a system undergoes
spontaneous symmetry breakdown, are controlled by the Nambu-Goldstone modes, was first
noted in solid state physics, in connection with magnetic systems [254, 255]. As pointed out
in Ref. [256] in the context of QCD, the thermal properties of such systems can be studied
in a systematic and model-independent manner by means of the corresponding effective field
theory, provided the temperature is low enough. While finite volumes are not of physical
interest in particle physics, lattice simulations are necessarily carried out in a finite box. As
shown in Refs. [257–259], the ensuing finite-size effects can be studied on the basis of the
effective theory – χPT in the case of QCD – provided the simulation is close enough to the
continuum limit, the volume is sufficiently large and the explicit breaking of chiral symmetry
generated by the quark masses is sufficiently small. Indeed, χPT represents a useful tool for
the analysis of the finite-size effects in lattice simulations.

In the remainder of this subsection we collect the relevant χPT formulae that will be used
in the two following subsections to extract SU(2) and SU(3) LECs from lattice data.

5.1.1 Quark-mass dependence of pseudoscalar masses and decay constants

A. SU(2) formulae

The expansions21 of M2
π and Fπ in powers of the quark mass are known to next-to-next-to-

leading order (NNLO) in the SU(2) chiral effective theory. In the isospin limit,mu = md = m,

21Here and in the following, we stick to the notation used in the papers where the χPT formulae were
established, i.e. we work with Fπ ≡ fπ/

√
2 = 92.2(1)MeV and FK ≡ fK/

√
2. The occurrence of different

normalization conventions is not convenient, but avoiding it by reformulating the formulae in terms of fπ , fK
is not a good way out. Since we are using different symbols, confusion cannot arise.
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the explicit expressions may be written in the form [260]

M2
π = M2

{
1− 1

2
x ln

Λ2
3

M2
+

17

8
x2
(
ln

Λ2
M

M2

)2

+ x2kM +O(x3)
}
, (73)

Fπ = F

{
1 + x ln

Λ2
4

M2
− 5

4
x2
(
ln

Λ2
F

M2

)2

+ x2kF +O(x3)
}
.

Here the expansion parameter is given by

x =
M2

(4πF )2
, M2 = 2Bm =

2Σm

F 2
, (74)

but there is another option as discussed below. The scales Λ3,Λ4 are related to the effective
coupling constants ℓ̄3, ℓ̄4 of the chiral Lagrangian at scale Mπ ≡Mphys

π by

ℓ̄n = ln
Λ2
n

M2
π

, n = 1, ..., 7. (75)

Note that in Eq. (73) the logarithms are evaluated at M2, not at M2
π . The coupling con-

stants kM , kF in Eq. (73) are mass-independent. The scales of the squared logarithms can be
expressed in terms of the O(p4) coupling constants as

ln
Λ2
M

M2
=

1

51

(
28 ln

Λ2
1

M2
+ 32 ln

Λ2
2

M2
− 9 ln

Λ2
3

M2
+ 49

)
, (76)

ln
Λ2
F

M2
=

1

30

(
14 ln

Λ2
1

M2
+ 16 ln

Λ2
2

M2
+ 6 ln

Λ2
3

M2
− 6 ln

Λ2
4

M2
+ 23

)
.

Hence by analysing the quark-mass dependence of M2
π and Fπ with Eq. (73), possibly trun-

cated at NLO, one can determine22 the O(p2) LECs B and F , as well as the O(p4) LECs ℓ̄3
and ℓ̄4. The quark condensate in the chiral limit is given by Σ = F 2B. With precise enough
data at several small enough pion masses, one could in principle also determine ΛM , ΛF and
kM , kF . To date this is not yet possible. The results for the LO and NLO constants will be
presented in Sec. 5.2.

Alternatively, one can invert Eq. (73) and express M2 and F as an expansion in

ξ ≡ M2
π

16π2F 2
π

, (77)

and the corresponding expressions then take the form

M2 = M2
π

{
1 +

1

2
ξ ln

Λ2
3

M2
π

− 5

8
ξ2
(
ln

Ω2
M

M2
π

)2

+ ξ2cM +O(ξ3)
}
, (78)

F = Fπ

{
1− ξ ln

Λ2
4

M2
π

− 1

4
ξ2
(
ln

Ω2
F

M2
π

)2

+ ξ2cF +O(ξ3)
}
.

22Notice that one could analyse the quark-mass dependence entirely in terms of the parameter M2 defined
in Eq. (74) and determine equally well all other LECs. Using the determination of the quark masses described
in Sec. 3 one can then extract B or Σ. No matter the strategy of extraction, determination of B or Σ requires
knowledge of the scale and scheme dependent quark mass renormalization factor Zm(µ).
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The scales of the quadratic logarithms are determined by Λ1, . . . ,Λ4 through

ln
Ω2
M

M2
π

=
1

15

(
28 ln

Λ2
1

M2
π

+ 32 ln
Λ2
2

M2
π

− 33 ln
Λ2
3

M2
π

− 12 ln
Λ2
4

M2
π

+ 52

)
, (79)

ln
Ω2
F

M2
π

=
1

3

(
−7 ln

Λ2
1

M2
π

− 8 ln
Λ2
2

M2
π

+ 18 ln
Λ2
4

M2
π

− 29

2

)
.

B. SU(3) formulae

While the formulae for the pseudoscalar masses and decay constants are known to NNLO for
SU(3) as well [261], they are rather complicated and we restrict ourselves here to next-to-
leading order (NLO). In the isospin limit, the relevant SU(3) formulae take the form [129]

M2
π

NLO

= 2B0mud

{
1 + µπ −

1

3
µη +

B0

F 2
0

[
16mud(2L8−L5) + 16(ms+2mud)(2L6−L4)

]}
,

M2
K

NLO

= B0(ms+mud)
{
1+

2

3
µη+

B0

F 2
0

[
8(ms+mud)(2L8−L5)+16(ms+2mud)(2L6−L4)

]}
,

Fπ
NLO

= F0

{
1− 2µπ − µK +

B0

F 2
0

[
8mudL5 + 8(ms+2mud)L4

]}
, (80)

FK
NLO

= F0

{
1− 3

4
µπ −

3

2
µK −

3

4
µη +

B0

F 2
0

[
4(ms+mud)L5 + 8(ms+2mud)L4

]}
,

where mud is the common up and down quark mass (which may be different from the one in
the real world), and B0 = Σ0/F

2
0 , F0 denote the condensate parameter and the pseudoscalar

decay constant in the SU(3) chiral limit, respectively. In addition, we use the notation

µP =
M2

P

32π2F 2
0

ln
(M2

P

µ2

)
. (81)

At the order of the chiral expansion used in these formulae, the quantities µπ, µK , µη can
equally well be evaluated with the leading-order expressions for the masses,

M2
π

LO

= 2B0mud , M2
K

LO

= B0(ms+mud) , M2
η

LO

= 2
3B0(2ms+mud) . (82)

Throughout, Li denotes the renormalized low-energy constant/coupling (LEC) at scale µ,
and we adopt the convention which is standard in phenomenology, µ =Mρ = 770MeV. The
normalization used for the decay constants is specified in footnote 21.

5.1.2 Pion form factors and charge radii

The scalar and vector form factors of the pion are defined by the matrix elements

〈πi(p2)| q̄ q |πk(p1)〉 = δikF π
S (t) , (83)

〈πi(p2)| q̄ 1
2τ

jγµq |πk(p1)〉 = i ǫijk(pµ1 + pµ2 )F
π
V (t) ,

where the operators contain only the lightest two quark flavours, i.e. τ1, τ2, τ3 are the Pauli
matrices, and t ≡ (p1 − p2)2 denotes the momentum transfer.

The vector form factor has been measured by several experiments for time-like as well as
for space-like values of t. The scalar form factor is not directly measurable, but it can be
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evaluated theoretically from data on the ππ and πK phase shifts [262] by means of analyticity
and unitarity, i.e. in a model-independent way. Lattice calculations can be compared with data
or model-independent theoretical evaluations at any given value of t. At present, however,
most lattice studies concentrate on the region close to t = 0 and on the evaluation of the
slope and curvature which are defined as

F π
V (t) = 1 + 1

6 〈r2〉πV t+ cV t
2 + . . . , (84)

F π
S (t) = F π

S (0)
[
1 + 1

6〈r
2〉πSt+ cS t

2 + . . .
]
.

The slopes are related to the mean-square vector and scalar radii which are the quantities on
which most experiments and lattice calculations concentrate.

In χPT, the form factors are known at NNLO for SU(2) [263]. The corresponding formulae
are available in fully analytical form and are compact enough that they can be used for the
chiral extrapolation of the data (as done, for example in Refs. [41, 264]). The expressions for
the scalar and vector radii and for the cS,V coefficients at two-loop level read

〈r2〉πS =
1

(4πFπ)2
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 , (85)
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where
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ln
Ω2
cS

M2
π

=
43

63

(
11 ln

Λ2
1

M2
π

+ 14 ln
Λ2
2

M2
π

+ 18 ln
Λ2
4

M2
π

− 6041

120

)
,

ln
Ω2
cV

M2
π

=
1

72

(
2 ln

Λ2
1

M2
π

− 2 ln
Λ2
2

M2
π

− ln
Λ2
6

M2
π

− 26

30

)
,

and krS , krV and kcS , kcV are independent of the quark masses. Their expression in terms of
the ℓi and of the O(p6) constants cM , cF is known but will not be reproduced here.

The SU(3) formula for the slope of the pion vector form factor reads, to NLO [220],

〈r2〉πV
NLO

= − 1

32π2F 2
0

{
3 + 2 ln

M2
π

µ2
+ ln

M2
K

µ2

}
+

12L9

F 2
0

, (87)

while the expression 〈r2〉octS for the octet part of the scalar radius does not contain any NLO
low-energy constant at one-loop order [220] – contrary to the situation in SU(2), see Eq. (85).
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The difference between the quark-line connected and the full (i.e. containing the connected
and the disconnected pieces) scalar pion form factor has been investigated by means of χPT in
Ref. [265]. It is expected that the technique used can be applied to a large class of observables
relevant in QCD phenomenology.

As a point of practical interest let us remark that there are no finite-volume correction
formulae for the mean-square radii 〈r2〉V,S and the curvatures cV,S . The lattice data for
FV,S(t) need to be corrected, point by point in t, for finite-volume effects. In fact, if a given t
is realized through several inequivalent p1−p2 combinations, the level of agreement after the
correction has been applied is indicative of how well higher-order effects are under control.

5.1.3 Partially quenched and mixed action formulations

The term “partially quenched QCD” is used in two ways. For heavy quarks (c, b and sometimes
s) it usually means that these flavours are included in the valence sector, but not into the
functional determinant, i.e. the sea sector. For the light quarks (u, d and sometimes s) it
means that they are present in both the valence and the sea sector of the theory, but with
different masses (e.g. a series of valence quark masses is evaluated on an ensemble with fixed
sea-quark masses).

The program of extending the standard (unitary) SU(3) theory to the (second version
of) “partially quenched QCD” has been completed at the two-loop (NNLO) level for masses
and decay constants [266]. These formulae tend to be complicated, with the consequence
that a state-of-the-art analysis with O(2000) bootstrap samples on O(20) ensembles with
O(5) masses each [and hence O(200 000) different fits] will require significant computational
resources. For a summary of recent developments in χPT relevant to lattice QCD we refer to
Ref. [267]. The SU(2) partially quenched formulae can be obtained from the SU(3) ones by
“integrating out the strange quark.” At NLO, they can be found in Ref. [268] by setting the
lattice artifact terms from the staggered χPT form to zero.

The theoretical underpinning of how “partial quenching” is to be understood in the (prop-
erly extended) chiral framework is given in Ref. [269]. Specifically, for partially quenched QCD
with staggered quarks it is shown that a transfer matrix can be constructed which is not Her-
mitian but bounded, and can thus be used to construct correlation functions in the usual way.
The program of calculating all observables in the p-regime in finite-volume to two loops, first
completed in the unitary theory [270, 271], has been carried out for the partially quenched
case, too [272].

A further extension of the χPT framework concerns the lattice effects that arise in partially
quenched simulations where sea and valence quarks are implemented with different lattice
fermion actions [221, 273–279].

5.1.4 Correlation functions in the ǫ-regime

The finite-size effects encountered in lattice calculations can be used to determine some of the
LECs of QCD. In order to illustrate this point, we focus on the two lightest quarks, take the
isospin limit mu = md = m and consider a box of size Ls in the three space directions and
size Lt in the time direction. If m is sent to zero at fixed box size, chiral symmetry is restored,
and the zero-momentum mode of the pion field becomes nonperturbative. An intuitive way
to understand the regime with ML < 1 (L = Ls∼<Lt) starts from considering the pion
propagator G(p) = 1/(p2 +M2) in finite volume. For ML∼> 1 and p ∼ 1/L, G(p) ∼ L2 for
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small momenta, including p = 0. But when M becomes of order 1/L2, G(0) ∝ L4 ≫ G(p 6=
0) ∼ L2. The p = 0 mode of the pion field becomes nonperturbative, and the integration over
this mode restores chiral symmetry in the limit m→ 0.

The pion effective action for the zero-momentum field depends only on the combination
µ = mΣV , the symmetry-restoration parameter, where V = L3

sLt. In the ǫ-regime, in which
m ∼ 1/V , all other terms in the effective action are sub-dominant in powers of ǫ ∼ 1/L,
leading to a reordering of the usual chiral expansion, which assumes that m ∼ ǫ2 instead of
m ∼ ǫ4. In the p-regime, with m ∼ ǫ2 or equivalently ML∼> 1, finite-volume corrections are of
order

∫
d4p eipxG(p)|x∼L ∼ e−ML, while in the ǫ-regime, the chiral expansion is an expansion

in powers of 1/(ΛQCDL) ∼ 1/(FL).
As an example, we consider the correlator of the axial charge carried by the two lightest

quarks, q(x) = {u(x), d(x)}. The axial current and the pseudoscalar density are given by

Ai
µ(x) = q̄(x)12τ

i γµγ5 q(x) , P i(x) = q̄(x)12τ
i iγ5 q(x) , (88)

where τ1, τ2, τ3 are the Pauli matrices in flavour space. In Euclidean space, the correlators
of the axial charge and of the space integral over the pseudoscalar density are given by

δikCAA(t) = L3
s

∫
d3~x 〈Ai

4(~x, t)A
k
4(0)〉 , (89)

δikCPP (t) = L3
s

∫
d3~x 〈P i(~x, t)P k(0)〉 .

χPT yields explicit finite-size scaling formulae for these quantities [259, 280, 281]. In the
ǫ-regime, the expansion starts with

CAA(t) =
F 2L3

s

Lt

[
aA +

Lt

F 2L3
s

bA h1

(
t

Lt

)
+O(ǫ4)

]
, (90)

CPP (t) = Σ2L6
s

[
aP +

Lt

F 2L3
s

bP h1

(
t

Lt

)
+O(ǫ4)

]
,

where the coefficients aA, bA, aP , bP stand for quantities of O(ǫ0). They can be expressed in
terms of the variables Ls, Lt and m and involve only the two leading low-energy constants F
and Σ. In fact, at leading order only the combination µ = mΣL3

sLt matters, the correlators
are t-independent and the dependence on µ is fully determined by the structure of the groups
involved in the pattern of spontaneous symmetry breaking. In the case of SU(2) × SU(2)
→ SU(2), relevant for QCD in the symmetry restoration region with two light quarks, the
coefficients can be expressed in terms of Bessel functions. The t-dependence of the correla-

tors starts showing up at O(ǫ2), in the form of a parabola, viz. h1(τ) = 1
2

[(
τ − 1

2

)2 − 1
12

]
.

Explicit expressions for aA, bA, aP , bP can be found in Refs. [259, 280, 281], where some
of the correlation functions are worked out to NNLO. By matching the finite-size scaling of
correlators computed on the lattice with these predictions one can extract F and Σ. A way
to deal with the numerical challenges germane to the ǫ-regime has been described [282].

The fact that the representation of the correlators to NLO is not “contaminated” by
higher-order unknown LECs, makes the ǫ-regime potentially convenient for a clean extraction
of the LO couplings. The determination of these LECs is then affected by different systematic
uncertainties with respect to the standard case; simulations in this regime yield complemen-
tary information which can serve as a valuable cross-check to get a comprehensive picture of
the low-energy properties of QCD.
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The effective theory can also be used to study the distribution of the topological charge in
QCD [283] and the various quantities of interest may be defined for a fixed value of this charge.
The expectation values and correlation functions then not only depend on the symmetry
restoration parameter µ, but also on the topological charge ν. The dependence on these two
variables can explicitly be calculated. It turns out that the two-point correlation functions
considered above retain the form (90), but the coefficients aA, bA, aP , bP now depend on the
topological charge as well as on the symmetry restoration parameter (see Refs. [284–286] for
explicit expressions).

A specific issue with ǫ-regime calculations is the scale setting. Ideally one would perform
a p-regime study with the same bare parameters to measure a hadronic scale (e.g. the proton
mass). In the literature, sometimes a gluonic scale (e.g. r0) is used to avoid such expenses.
Obviously the issues inherent in scale setting are aggravated if the ǫ-regime simulation is
restricted to a fixed sector of topological charge.

It is important to stress that in the ǫ-expansion higher-order finite-volume corrections
might be significant, and the physical box size (in fm) should still be large in order to keep
these distortions under control. The criteria for the chiral extrapolation and finite-volume
effects are obviously different with respect to the p-regime. For these reasons we have to
adjust the colour coding defined in Sec. 2.1 (see Sec. 5.2 for more details).

Recently, the effective theory has been extended to the “mixed regime” where some quarks
are in the p-regime and some in the ǫ-regime [287, 288]. In Ref. [289] a technique is proposed
to smoothly connect the p- and ǫ-regimes. In Ref. [290] the issue is reconsidered with a
counting rule which is essentially the same as in the p-regime. In this new scheme, one can
treat the IR fluctuations of the zero-mode nonperturbatively, while keeping the logarithmic
quark mass dependence of the p-regime.

Also first steps towards calculating higher n-point functions in the ǫ-regime have been
taken. For instance the electromagnetic pion form factor in QCD has been calculated to NLO
in the ǫ-expansion, and a way to get rid of the pion zero-momentum part has been proposed
[291].

5.1.5 Energy levels of the QCD Hamiltonian in a box and δ-regime

At low temperature, the properties of the partition function are governed by the lowest
eigenvalues of the Hamiltonian. In the case of QCD, the lowest levels are due to the Nambu-
Goldstone bosons and can be worked out with χPT [292]. In the chiral limit the level pattern
follows the one of a quantum-mechanical rotator, i.e. Eℓ = ℓ(ℓ+1)/(2Θ) with ℓ = 0, 1, 2, . . ..
For a cubic spatial box and to leading order in the expansion in inverse powers of the box
size Ls, the moment of inertia is fixed by the value of the pion decay constant in the chiral
limit, i.e. Θ = F 2L3

s.
In order to analyse the dependence of the levels on the quark masses and on the parameters

that specify the size of the box, a reordering of the chiral series is required, the so-called δ-
expansion; the region where the properties of the system are controlled by this expansion
is referred to as the δ-regime. Evaluating the chiral series in this regime, one finds that
the expansion of the partition function goes in even inverse powers of FLs, that the rotator
formula for the energy levels holds up to NNLO and the expression for the moment of inertia
is now also known up to and including terms of order (FLs)

−4 [293–295]. Since the level
spectrum is governed by the value of the pion decay constant in the chiral limit, an evaluation
of this spectrum on the lattice can be used to measure F . More generally, the evaluation of
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various observables in the δ-regime offers an alternative method for a determination of some
of the low-energy constants occurring in the effective Lagrangian. At present, however, the
numerical results obtained in this way [177, 296] are not yet competitive with those found in
the p- or ǫ-regime.

5.1.6 Other methods for the extraction of the low-energy constants

An observable that can be used to extract LECs is the topological susceptibility

χt =

∫
d4x 〈ω(x)ω(0)〉, (91)

where ω(x) is the topological charge density,

ω(x) =
1

32π2
ǫµνρσTr [Fµν(x)Fρσ(x)] . (92)

At infinite volume, the expansion of χt in powers of the quark masses starts with [297]

χt = mΣ {1 +O(m)} , m ≡
(

1

mu
+

1

md
+

1

ms
+ . . .

)−1

. (93)

The condensate Σ can thus be extracted from the properties of the topological susceptibility
close to the chiral limit. The behaviour at finite volume, in particular in the region where the
symmetry is restored, is discussed in Ref. [281]. The dependence on the vacuum angle θ and
the projection on sectors of fixed ν have been studied in Ref. [283]. For a discussion of the
finite-size effects at NLO, including the dependence on θ, we refer to Refs. [286, 298].

The role that the topological susceptibility plays in attempts to determine whether there
is a large paramagnetic suppression when going from the Nf = 2 to the Nf = 2 + 1 theory
has been highlighted in Ref. [299]. And the potential usefulness of higher moments of the
topological charge distribution to determine LECs has been investigated in Ref. [300].

Another method for computing the quark condensate has been proposed in Ref. [301],
where it is shown that starting from the Banks-Casher relation [302] one may extract the con-
densate from suitable (renormalizable) spectral observables, for instance the number of Dirac
operator modes in a given interval. For those spectral observables higher-order corrections
can be systematically computed in terms of the chiral effective theory. For recent implemen-
tations of this strategy, see Refs. [33, 38, 303]. As an aside let us remark that corrections
to the Banks-Casher relation that come from a finite quark mass, a finite four-dimensional
volume and (with Wilson-type fermions) a finite lattice spacing can be parameterized in a
properly extended version of the chiral framework [304, 305].

An alternative strategy is based on the fact that at LO in the ǫ-expansion the partition
function in a given topological sector ν is equivalent to the one of a chiral Random Matrix
Theory (RMT) [306–309]. In RMT it is possible to extract the probability distributions
of individual eigenvalues [310–312] in terms of two dimensionless variables ζ = λΣV and
µ = mΣV , where λ represents the eigenvalue of the massless Dirac operator and m is the sea
quark mass. More recently this approach has been extended to the Hermitian (Wilson) Dirac
operator [313] which is easier to study in numerical simulations. Hence, if it is possible to
match the QCD low-lying spectrum of the Dirac operator to the RMT predictions, then one
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may extract23 the chiral condensate Σ. One issue with this method is that for the distributions
of individual eigenvalues higher-order corrections are still not known in the effective theory,
and this may introduce systematic effects which are hard24 to control. Another open question
is that, while it is clear how the spectral density is renormalized [317], this is not the case
for the individual eigenvalues, and one relies on assumptions. There have been many lattice
studies [318–322] which investigate the matching of the low-lying Dirac spectrum with RMT.
In this review the results of the LECs obtained in this way25 are not included.

5.2 Extraction of SU(2) low-energy constants

In this and the following subsections we summarize the lattice results for the SU(2) and SU(3)
LECs, respectively. In either case we first discuss the O(p2) constants and then proceed to
their O(p4) counterparts. The O(p2) LECs are determined from the chiral extrapolation
of masses and decay constants or, alternatively, from a finite-size study of correlators in
the ǫ-regime. At order p4 some LECs affect two-point functions while others appear only
in three- or four-point functions; the latter need to be determined from form factors or
scattering amplitudes. The χPT analysis of the (nonlattice) phenomenological quantities is
nowadays26 based on O(p6) formulae. At this level the number of LECs explodes and we
will not discuss any of these. We will, however, discuss how comparing different orders and
different expansions (in particular the x versus ξ-expansion) can help to assess the theoretical
uncertainties of the LECs determined on the lattice.

The lattice results for the SU(2) LECs are summarized in Tabs. (19–22) and Figs. (11–13).
The tables present our usual colour coding which summarizes the main aspects related to the
treatment of the systematic errors of the various calculations.

A delicate issue in the lattice determination of chiral LECs (in particular at NLO) which
cannot be reflected by our colour coding is a reliable assessment of the theoretical error that
comes from the chiral expansion. We add a few remarks on this point:

1. Using both the x and the ξ expansion is a good way to test how the ambiguity of the
chiral expansion (at a given order) affects the numerical values of the LECs that are
determined from a particular set of data [35, 138]. For instance, to determine ℓ̄4 (or Λ4)
from lattice data for Fπ as a function of the quark mass, one may compare the fits based
on the parameterisation Fπ = F{1 + x ln(Λ2

4/M
2)} [see Eq. (73)] with those obtained

from Fπ = F/{1 − ξ ln(Λ2
4/M

2
π)} [see Eq. (78)]. The difference between the two results

provides an estimate of the uncertainty due to the truncation of the chiral series. Which
central value one chooses is in principle arbitrary, but we find it advisable to use the one
obtained with the ξ expansion,27 in particular because it makes the comparison with

23By introducing an imaginary isospin chemical potential, the framework can be extended such that the
low-lying spectrum of the Dirac operator is also sensitive to the pseudoscalar decay constant F at LO [314].

24Higher-order systematic effects in the matching with RMT have been investigated in Refs. [315, 316].
25The results for Σ and F lie in the same range as the determinations reported in Tables 19 and 20.
26Some of the O(p6) formulae presented below have been derived in an unpublished note by three of us (GC,

SD and HL) and Jürg Gasser. We thank him for allowing us to publish them here.
27There are theoretical arguments suggesting that the ξ expansion is preferable to the x expansion, based

on the observation that the coefficients in front of the squared logs in Eq. (73) are somewhat larger than in
Eq. (78). This can be traced to the fact that a part of every formula in the x expansion is concerned with
locating the position of the pion pole (at the previous order) while in the ξ expansion the knowledge of this
position is built in exactly. Numerical evidence supporting this view is presented in Ref. [138].
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phenomenological determinations (where it is standard practice to use the ξ expansion)
more meaningful.

2. Alternatively one could try to estimate the influence of higher chiral orders by reshuffling
irrelevant higher-order terms. For instance, in the example mentioned above one might
use Fπ = F/{1 − x ln(Λ2

4/M
2)} as a different functional form at NLO. Another way

to establish such an estimate is through introducing by hand “analytical” higher-order
terms (e.g. “analytical NNLO” as done, in the past, by MILC [89]). In principle it would
be preferable to include all NNLO terms or none, such that the structure of the chiral
expansion is preserved at any order (this is what ETM [36] and JLQCD/TWQCD [138]
have done for SU(2) χPT and MILC for both SU(2) and SU(3) χPT [6, 13, 29]). There
are different opinions in the field as to whether it is advisable to include terms to which
the data are not sensitive. In case one is willing to include external (typically: nonlattice)
information, the use of priors is a theoretically well founded option (e.g. priors for NNLO
LECs if one is interested exclusively in LECs at LO/NLO).

3. Another issue concerns the s-quark mass dependence of the LECs ℓ̄i or Λi of the SU(2)

framework. As far as variations of ms around mphys
s are concerned (say for 0 < ms <

1.5mphys
s at best) the issue can be studied in SU(3) χPT, and this has been done in

a series of papers [129, 323, 324]. However, the effect of sending ms to infinity, as is
the case in Nf = 2 lattice studies of SU(2) LECs, cannot be addressed in this way. A
way to analyse this difference is to compare the numerical values of LECs determined
in Nf = 2 lattice simulations to those determined in Nf = 2 + 1 lattice simulations (see
e.g. Ref. [325] for a discussion).

4. Last but not least let us recall that the determination of the LECs is affected by dis-
cretisation effects, and it is important that these are removed by means of a contin-
uum extrapolation. In this step invoking an extended version of the chiral Lagrangian
[274, 326–330] may be useful28 in case one aims for a global fit of lattice data involving
several Mπ and a values and several chiral observables.

In the tables and figures we summarize the results of various lattice collaborations for
the SU(2) LECs at LO (F or F/Fπ, B or Σ) and at NLO (ℓ̄1 − ℓ̄2, ℓ̄3, ℓ̄4, ℓ̄6). Throughout
we group the results into those which stem from Nf = 2 + 1 + 1 calculations, those which
come from Nf = 2 + 1 calculations and those which stem from Nf = 2 calculations (since,
as mentioned above, the LECs are logically distinct even if the current precision of the data
is not sufficient to resolve the differences). Furthermore, we make a distinction whether
the results are obtained from simulations in the p-regime or whether alternative methods
(ǫ-regime, spectral densities, topological susceptibility, etc.) have been used (this should not
affect the result). For comparison we add, in each case, a few representative phenomenological
determinations.

A generic comment applies to the issue of the scale setting. In the past none of the
lattice studies with Nf ≥ 2 involved simulations in the p-regime at the physical value of
mud. Accordingly, the setting of the scale a−1 via an experimentally measurable quantity did
necessarily involve a chiral extrapolation, and as a result of this dimensionful quantities used
to be particularly sensitive to this extrapolation uncertainty, while in dimensionless ratios

28This means that for any given lattice formulation one needs to determine additional lattice-artifact low-
energy constants. For certain formulations, e.g. the twisted-mass approach, first steps in this direction have
already been taken [331], while with staggered fermions MILC routinely does so, see e.g. Refs. [89, 107].
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such as Fπ/F , F/F0, B/B0, Σ/Σ0 this particular problem is much reduced (and often finite
lattice-to-continuum renormalization factors drop out). Now, there is a new generation of
lattice studies with Nf = 2 [332], Nf = 2 + 1 [7, 8, 10, 23, 31, 34, 35, 94, 333, 334], and
Nf = 2 + 1 + 1 [26, 335], which does involve simulations at physical pion masses. In such
studies the uncertainty that the scale setting has on dimensionful quantities is much mitigated.

It is worth repeating here that the standard colour-coding scheme of our tables is nec-
essarily schematic and cannot do justice to every calculation. In particular there is some
difficulty in coming up with a fair adjustment of the rating criteria to finite-volume regimes
of QCD. For instance, in the ǫ-regime29 we re-express the “chiral extrapolation” criterion in
terms of

√
2mminΣ/F , with the same threshold values (in MeV) between the three categories

as in the p-regime. Also the “infinite volume” assessment is adapted to the ǫ-regime, since
the MπL criterion does not make sense here; we assign a green star if at least 2 volumes with
L > 2.5 fm are included, an open symbol if at least 1 volume with L > 2 fm is invoked and
a red square if all boxes are smaller than 2 fm. Similarly, in the calculation of form factors
and charge radii the tables do not reflect whether an interpolation to the desired q2 has been
performed or whether the relevant q2 has been engineered by means of “twisted boundary
conditions” [338]. In spite of these limitations we feel that these tables give an adequate
overview of the qualities of the various calculations.

5.2.1 Results for the LO SU(2) LECs

We begin with a discussion of the lattice results for the SU(2) LEC Σ. We present the results
in Tab. 19 and Fig. 11. We add that results which include only a statistical error are listed in
the table but omitted from the plot. Regarding the Nf = 2 computations there are six entries
without a red tag. We form the average based on ETM 09C, ETM 13 (here we deviate from
our “superseded” rule, since the two works use different methods), Brandt 13, and Engel 14.
We add that the last one (with numbers identical to those given in Ref. [303]) is new compared
to FLAG 13. Here and in the following we take into account that ETM 09C, ETM 13 share
configurations, and the same statement holds true for Brandt 13 and Engel 14. Regarding the
Nf = 2+1 computations there are four published or updated papers (MILC 10A, Borsanyi 12,
BMW 13, and RBC/UKQCD 14B) which qualify for the Nf = 2+ 1 average. The last one is
new compared to FLAG 13, and the last but one was not included in the FLAG 13 average,
since at the time it was only a preprint.

In slight deviation from the general recipe outlined in Sec. 2.2 we use these values as a
basis for our estimates (as opposed to averages) of the Nf = 2 and Nf = 2 + 1 condensates.
In each case the central value is obtained from our standard averaging procedure, but the
(symmetrical) error is just the median of the overall uncertainties of all contributing results
(see the comment below for details). This leads to the values

Nf = 2 : Σ1/3 = 266(10)MeV Refs. [33, 36–38],
(94)

Nf = 2 + 1 : Σ1/3 = 274(3)MeV Refs. [10, 13, 34, 35],

in the MS scheme at the renormalization scale 2GeV, where the errors include both statistical
and systematic uncertainties. In accordance with our guidelines we ask the reader to cite the
appropriate set of references as indicated in Eq. (94) when using these numbers. Finally, for
Nf = 2 + 1 + 1 there is only one calculation available, the result of Ref. [33] as given in

29Also in case of Refs. [336, 337] the colour-coding criteria for the ǫ-regime have been applied.
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Σ1/3

ETM 13 [33] 2+1+1 A ◦ ⋆ ⋆ ⋆ 280(8)(15)

RBC/UKQCD 15E [334] 2+1 P ⋆ ⋆ ⋆ ⋆ 274.2(2.8)(4.0)
RBC/UKQCD 14B [10] 2+1 A ⋆ ⋆ ⋆ ⋆ 275.9(1.9)(1.0)
BMW 13 [35] 2+1 A ⋆ ⋆ ⋆ ⋆ 271(4)(1)
Borsanyi 12 [34] 2+1 A ⋆ ⋆ ⋆ ⋆ 272.3(1.2)(1.4)
MILC 10A [13] 2+1 C ◦ ⋆ ⋆ ⋆ 281.5(3.4)

(

+2.0
−5.9

)

(4.0)

JLQCD/TWQCD 10A [337] 2+1 A ⋆ � ◦ ⋆ 234(4)(17)
RBC/UKQCD 10A [144] 2+1 A ◦ ◦ ◦ ⋆ 256(5)(2)(2)
JLQCD 09 [336] 2+1 A ⋆ � ◦ ⋆ 242(4)

(

+19
−18

)

MILC 09A, SU(3)-fit [6] 2+1 C ◦ ⋆ ⋆ ⋆ 279(1)(2)(4)
MILC 09A, SU(2)-fit [6] 2+1 C ◦ ⋆ ⋆ ⋆ 280(2)

(

+4
−8

)

(4)

MILC 09 [89] 2+1 A ◦ ⋆ ⋆ ⋆ 278(1)
(

+2
−3

)

(5)

TWQCD 08 [339] 2+1 A � � � ⋆ 259(6)(9)
JLQCD/TWQCD 08B [340] 2+1 C ◦ � � ⋆ 249(4)(2)
PACS-CS 08, SU(3)-fit [93] 2+1 A ⋆ � � � 312(10)
PACS-CS 08, SU(2)-fit [93] 2+1 A ⋆ � � � 309(7)
RBC/UKQCD 08 [145] 2+1 A ◦ � ◦ ⋆ 255(8)(8)(13)

Engel 14 [38] 2 A ⋆ ⋆ ⋆ ⋆ 263(3)(4)
Brandt 13 [37] 2 A ◦ ⋆ ◦ ⋆ 261(13)(1)
ETM 13 [33] 2 A ◦ ⋆ ◦ ⋆ 283(7)(17)
ETM 12 [341] 2 A ◦ ⋆ ◦ ⋆ 299(26)(29)
Bernardoni 11 [342] 2 C ◦ � � ⋆ 306(11)
TWQCD 11 [248] 2 A ◦ � � ⋆ 230(4)(6)
TWQCD 11A [343] 2 A ◦ � � ⋆ 259(6)(7)
JLQCD/TWQCD 10A [337] 2 A ⋆ � � ⋆ 242(5)(20)

Bernardoni 10 [344] 2 A ◦ � � ⋆ 262
(

+33
−34

)(

+4
−5

)

ETM 09C [36] 2 A ◦ ⋆ ◦ ⋆ 270(5)
(

+3
−4

)

ETM 09B [345] 2 C ⋆ � ◦ ⋆ 245(5)
ETM 08 [41] 2 A ◦ ◦ ◦ ⋆ 264(3)(5)
CERN 08 [301] 2 A ◦ � ◦ ⋆ 276(3)(4)(5)
Hasenfratz 08 [346] 2 A ◦ � ⋆ ⋆ 248(6)
JLQCD/TWQCD 08A [138] 2 A ◦ � � ⋆ 235.7(5.0)(2.0)

(

+12.7
−0.0

)

JLQCD/TWQCD 07 [347] 2 A ⋆ � � ⋆ 239.8(4.0)
JLQCD/TWQCD 07A [348] 2 A ⋆ � � ⋆ 252(5)(10)

Table 19: Cubic root of the SU(2) quark condensate Σ ≡ −〈ūu〉|mu,md→0 in MeV units, in
the MS-scheme, at the renormalization scale µ = 2 GeV. Horizontal lines separate different
Nf . All ETM values which were available only in r0 units were converted on the basis of
r0 = 0.48(2) fm [332, 349, 350], with this error being added in quadrature to any existing
systematic error.
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Figure 11: Cubic root of the SU(2) quark condensate Σ ≡ −〈ūu〉|mu,md→0 in the MS-scheme,
at the renormalization scale µ = 2 GeV. Squares indicate determinations from correlators in
the p-regime. Up triangles refer to extractions from the topological susceptibility, diamonds
to determinations from the pion form factor, and star symbols refer to the spectral density
method.

Tab. 19. According to the conventions of Sec. 2.2 this will be denoted as the “FLAG average”
for Nf = 2 + 1 + 1 in Fig. 11.

As a rationale for using estimates (as opposed to averages) for Nf = 2 and Nf = 2+1, we
add that for Σ1/3|Nf=2 and Σ1/3|Nf=2+1 the standard averaging method would yield central
values as quoted in Eq. (94), but with (overall) uncertainties of 4MeV and 1MeV, respectively.
It is not entirely clear to us that the scale is sufficiently well known in all contributing works to
warrant a precision of up to 0.36% on our Σ1/3, and a similar statement can be made about the
level of control over the convergence of the chiral expansion. The aforementioned uncertainties
would suggest an Nf -dependence of the SU(2) chiral condensate which (especially in view
of similar issues with other LECs, see below) seems premature to us. Therefore we choose
to form the central value of our estimate with the standard averaging procedure, but its
uncertainty is taken as the median of the uncertainties of the participating results. We hope
that future high-quality determinations with both Nf = 2, Nf = 2 + 1, and in particular
with Nf = 2+ 1+ 1, will help determine whether there is a noticeable Nf -dependence of the
SU(2) chiral condensate or not.

The next quantity considered is F , i.e. the pion decay constant in the SU(2) chiral limit
(mud → 0, at fixed physical ms for Nf > 2 simulations). As argued on previous occasions
we tend to give preference to Fπ/F (here the numerator is meant to refer to the physical-
pion-mass point) wherever it is available, since often some of the systematic uncertainties are
mitigated. We collect the results in Tab. 20 and Fig. 12. In those cases where the collaboration
provides only F , the ratio is computed on the basis of the phenomenological value of Fπ, and
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F Fπ/F

ETM 11 [351] 2+1+1 C ◦ ⋆ ◦ 85.60(4) 1.077(1)
ETM 10 [39] 2+1+1 A ◦ ◦ ⋆ 85.66(6)(13) 1.076(2)(2)

RBC/UKQCD 15E [334] 2+1 P ⋆ ⋆ ⋆ 85.8(1.1)(1.5) 1.0641(21)(49)
RBC/UKQCD 14B [10] 2+1 A ⋆ ⋆ ⋆ 86.63(12)(13) 1.0645(15)(0)
BMW 13 [35] 2+1 A ⋆ ⋆ ⋆ 88.0(1.3)(0.3) 1.055(7)(2)
Borsanyi 12 [34] 2+1 A ⋆ ⋆ ⋆ 86.78(05)(25) 1.0627(06)(27)
NPLQCD 11 [40] 2+1 A ◦ ◦ ◦ 86.8(2.1)

(

+3.3
−3.4

)

1.062(26)
(

+42
−40

)

MILC 10 [29] 2+1 C ◦ ⋆ ⋆ 87.0(4)(5) 1.060(5)(6)
MILC 10A [13] 2+1 C ◦ ⋆ ⋆ 87.5(1.0)

(

+0.7
−2.6

)

1.054(12)
(

+31
−09

)

MILC 09A, SU(3)-fit [6] 2+1 C ◦ ⋆ ⋆ 86.8(2)(4) 1.062(1)(3)
MILC 09A, SU(2)-fit [6] 2+1 C ◦ ⋆ ⋆ 87.4(0.6)

(

+0.9
−1.0

)

1.054(7)
(

+12
−11

)

MILC 09 [89] 2+1 A ◦ ⋆ ⋆ 87.66(17)
(

+28
−52

)

1.052(2)
(

+6
−3

)

PACS-CS 08, SU(3)-fit [93] 2+1 A ⋆ � � 90.3(3.6) 1.062(8)
PACS-CS 08, SU(2)-fit [93] 2+1 A ⋆ � � 89.4(3.3) 1.060(7)
RBC/UKQCD 08 [145] 2+1 A ◦ � ◦ 81.2(2.9)(5.7) 1.080(8)

ETM 15A [332] 2 P ⋆ � ◦ 86.3(2.8) 1.069(35)
Engel 14 [38] 2 A ⋆ ⋆ ⋆ 85.8(0.7)(2.0) 1.075(09)(25)
Brandt 13 [37] 2 A ◦ ⋆ ◦ 84(8)(2) 1.080(16)(6)
QCDSF 13 [352] 2 A ⋆ ◦ ◦ 86(1) 1.07(1)
TWQCD 11 [248] 2 A ◦ � � 83.39(35)(38) 1.106(5)(5)

ETM 09C [36] 2 A ◦ ⋆ ◦ 85.91(07)
(

+78
−07

)

1.0755(6)
(

+08
−94

)

ETM 09B [345] 2 C ⋆ � ◦ 92.1(4.9) 1.00(5)
ETM 08 [41] 2 A ◦ ◦ ◦ 86.6(7)(7) 1.067(9)(9)
Hasenfratz 08 [346] 2 A ◦ � ⋆ 90(4) 1.02(5)
JLQCD/TWQCD 08A [138] 2 A ◦ � � 79.0(2.5)(0.7)

(

+4.2
−0.0

)

1.167(37)(10)
(

+02
−62

)

JLQCD/TWQCD 07 [347] 2 A ⋆ � � 87.3(5.6) 1.06(7)

Colangelo 03 [353] 86.2(5) 1.0719(52)

Table 20: Results for the SU(2) low-energy constant F (in MeV) and for the ratio Fπ/F .
Horizontal lines separate different Nf . All ETM values which were available only in r0 units
were converted on the basis of r0 = 0.48(2) fm [332, 349, 350], with this error being added in
quadrature to any existing systematic error. Numbers in slanted fonts have been calculated
by us, based on

√
2F phys

π = 130.41(20)MeV [151], with this error being added in quadrature
to any existing systematic error.
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Figure 12: Comparison of the results for the ratio of the physical pion decay constant Fπ and
the leading-order SU(2) low-energy constant F . The meaning of the symbols is the same as
in Fig. 11.

the respective entries in Tab. 20 are in slanted fonts. We encourage authors to provide both
F and Fπ/F from their analysis, since the ratio is less dependent on the scale setting, and
errors tend to partially cancel. Among the Nf = 2 determinations five (ETM 08, ETM 09C,
QCDSF 13, Brandt 13 and Engel 14) are without red tags. Since the third one is without
systematic error, only four of them enter the average. Compared to FLAG 13 the last work is
the only one which is new. Among the Nf = 2+1 determinations five values (MILC 10 as an
update of MILC 09, NPLQCD 11, Borsanyi 12, BMW 13, and RBC/UKQCD 14B) contribute
to the average. Compared to FLAG 13 the last work is a new addition, and the last but one
is included in the average for the first time. Here and in the following we take into account
that MILC 10 and NPLQCD 11 share configurations. Finally, there is a single Nf = 2+1+1
determination (ETM 10) which forms the current best estimate in this category.

In analogy to the condensates discussed above, we use these values as a basis for our
estimates (as opposed to averages) of the decay constant ratios

Nf = 2 : Fπ/F = 1.073(15) Refs. [36–38, 41],
(95)

Nf = 2 + 1 : Fπ/F = 1.064(7) Refs. [10, 29, 34, 35, 40],

where the errors include both statistical and systematic uncertainties. These numbers are
obtained through the well-defined procedure described next to Eq. (94). We ask the reader
to cite the appropriate set of references as indicated in Eq. (95) when using these numbers.
Finally, for Nf = 2+ 1+ 1 the result of Ref. [39] is the only one available; see Tab. 20 for the
numerical value.

For this observable the standard averaging method would yield the central values as quoted
in Eq. (95), but with (overall) uncertainties of 6 and 1, respectively, on the last digit quoted.
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In this particular case the single Nf = 2 + 1 + 1 determination lies significantly higher than
the Nf = 2 + 1 average (with the small error-bar), basically on par with the Nf = 2 average
(with the small error-bar), and this makes such a standard average look even more suspicious
to us. At the least, one should wait for one more qualifying Nf = 2 + 1 + 1 determination
before attempting any conclusions about the Nf dependence of Fπ/F . While we are not
aware of any theorem which excludes a nonmonotonic behavior in Nf of a LEC, standard
physics reasoning would suggest that quark-loop effects become smaller with increasing quark
mass, hence a dynamical charm quark will influence LECs less significantly than a dynamical
strange quark, and even the latter one seems to bring rather small shifts. As a result, we
feel that a nonmonotonic behavior of Fπ/F with Nf , once established, would represent a
noteworthy finding. We hope this reasoning explains why we prefer to stay in Eq. (95) with
estimates which obviously are on the conservative side.

5.2.2 Results for the NLO SU(2) LECs

We move on to a discussion of the lattice results for the NLO LECs ℓ̄3 and ℓ̄4. We remind the
reader that on the lattice the former LEC is obtained as a result of the tiny deviation from
linearity seen in M2

π versus Bmud, whereas the latter LEC is extracted from the curvature in
Fπ versus Bmud. The available determinations are presented in Tab. 21 and Fig. 13. Among
the Nf = 2 determinations ETM 08, ETM 09C and Brandt 13 are published prior to the
deadline, with a systematic uncertainty, and without red tags. Given that the former two
use different approaches, all three determinations enter our average. The colour coding of the
Nf = 2+1 results looks very promising; there is a significant number of lattice determinations
without any red tag. Applying our superseding rule, MILC 10, NPLQCD 11, Borsanyi 12,
BMW 13, and RBC/UKQCD 14B contribute to the average. Compared to the previous
edition of our review, the last one is a new addition, and the last but one is included for the
first time in the average. For Nf = 2 + 1 + 1 there is only the single work ETM 10.

In analogy to our processing of the LECs at LO, we use these determinations as the basis
of our estimate (as opposed to average) of the NLO quantities

Nf = 2 : ℓ̄3 = 3.41(82) Refs. [36, 37, 41],
(96)

Nf = 2 + 1 : ℓ̄3 = 2.81(64) Refs. [10, 29, 34, 35, 40],

Nf = 2 : ℓ̄4 = 4.51(26) Refs. [36, 37, 41],
(97)

Nf = 2 + 1 : ℓ̄4 = 4.10(45) Refs. [10, 29, 34, 35, 40],

where the errors include both statistical and systematic uncertainties. These numbers are
obtained through the well-defined procedure described next to Eq. (94). Again we ask the
reader to cite the appropriate set of references as indicated in Eq. (96) or Eq. (97) when using
these numbers. For Nf = 2 + 1 + 1 once again Ref. [39] is the single reference available, see
Tab. 21 for the numerical values.

We remark that our preprocessing procedure30 symmetrizes the asymmetric error of ETM
09C with a slight adjustment of the central value. Regarding the difference between the

30There are two naive procedures to symmetrize an asymmetric systematic error: (i) keep the central value
untouched and enlarge the smaller error, (ii) shift the central value by half of the difference between the two
original errors and enlarge/shrink both errors by the same amount. Our procedure (iii) is to average the
results of (i) and (ii). In other words a result c(s)

(

+u
−ℓ

)

with ℓ > u is changed into c+(u− ℓ)/4 with statistical
error s and a symmetric systematic error (u+ 3ℓ)/4. The case ℓ < u is handled accordingly.
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ℓ̄3 ℓ̄4

ETM 11 [351] 2+1+1 C ◦ ⋆ ◦ 3.53(5) 4.73(2)
ETM 10 [39] 2+1+1 A ◦ ◦ ⋆ 3.70(7)(26) 4.67(3)(10)

RBC/UKQCD 15E [334] 2+1 P ⋆ ⋆ ⋆ 2.81(19)(45) 4.02(8)(24)
RBC/UKQCD 14B [10] 2+1 A ⋆ ⋆ ⋆ 2.73(13)(0) 4.113(59)(0)
BMW 13 [35] 2+1 A ⋆ ⋆ ⋆ 2.5(5)(4) 3.8(4)(2)
RBC/UKQCD 12 [31] 2+1 A ⋆ ⋆ ⋆ 2.91(23)(07) 3.99(16)(09)
Borsanyi 12 [34] 2+1 A ⋆ ⋆ ⋆ 3.16(10)(29) 4.03(03)(16)
NPLQCD 11 [40] 2+1 A ◦ ◦ ◦ 4.04(40)

(

+73
−55

)

4.30(51)
(

+84
−60

)

MILC 10 [29] 2+1 C ◦ ⋆ ⋆ 3.18(50)(89) 4.29(21)(82)
MILC 10A [13] 2+1 C ◦ ⋆ ⋆ 2.85(81)

(

+37
−92

)

3.98(32)
(

+51
−28

)

RBC/UKQCD 10A [144] 2+1 A ◦ ◦ ◦ 2.57(18) 3.83(9)
MILC 09A, SU(3)-fit [6] 2+1 C ◦ ⋆ ⋆ 3.32(64)(45) 4.03(16)(17)
MILC 09A, SU(2)-fit [6] 2+1 C ◦ ⋆ ⋆ 3.0(6)

(

+9
−6

)

3.9(2)(3)

PACS-CS 08, SU(3)-fit [93] 2+1 A ⋆ � � 3.47(11) 4.21(11)
PACS-CS 08, SU(2)-fit [93] 2+1 A ⋆ � � 3.14(23) 4.04(19)
RBC/UKQCD 08 [145] 2+1 A ◦ � ◦ 3.13(33)(24) 4.43(14)(77)

ETM 15A [332] 2 P ⋆ � ◦ 3.3(4)
Gülpers 15 [354] 2 P ⋆ ⋆ ⋆ 4.54(30)(0)
Gülpers 13 [355] 2 A ◦ � ◦ 4.76(13)
Brandt 13 [37] 2 A ◦ ⋆ ◦ 3.0(7)(5) 4.7(4)(1)
QCDSF 13 [352] 2 A ⋆ ◦ ◦ 4.2(1)
Bernardoni 11 [342] 2 C ◦ � � 4.46(30)(14) 4.56(10)(4)
TWQCD 11 [248] 2 A ◦ � � 4.149(35)(14) 4.582(17)(20)
ETM 09C [36] 2 A ◦ ⋆ ◦ 3.50(9)

(

+09
−30

)

4.66(4)
(

+04
−33

)

JLQCD/TWQCD 09 [356] 2 A ◦ � � 4.09(50)(52)
ETM 08 [41] 2 A ◦ ◦ ◦ 3.2(8)(2) 4.4(2)(1)
JLQCD/TWQCD 08A [138] 2 A ◦ � � 3.38(40)(24)

(

+31
−00

)

4.12(35)(30)
(

+31
−00

)

CERN-TOV 06 [357] 2 A ◦ � � 3.0(5)(1)

Colangelo 01 [260] 4.4(2)
Gasser 84 [131] 2.9(2.4) 4.3(9)

Table 21: Results for the SU(2) NLO low-energy constants ℓ̄3 and ℓ̄4. For comparison, the
last two lines show results from phenomenological analyses.
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Figure 13: Effective coupling constants ℓ̄3, ℓ̄4 and ℓ̄6. Squares indicate determinations from
correlators in the p-regime, diamonds refer to determinations from the pion form factor.
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estimates as given in Eqs. (96, 97) and the result of the standard averaging procedure we
add that the latter would yield the overall uncertainties 25 and 12 for ℓ̄3, and the overall
uncertainties 17 and 5 for ℓ̄4. In all cases the central value would be unchanged. Especially
for ℓ̄4 such numbers would suggest a clear difference between the value with Nf = 2 dynamical
flavours and the one at Nf = 2 + 1. Similarly to what happened with Fπ/F , the single
determination with Nf = 2 + 1 + 1 is more on the Nf = 2 side which, if confirmed, would
suggest a nonmonotonicity of a χPT LEC with Nf . Again we think that currently such a
conclusion would be premature, and this is why we give preference to the estimates quoted
in Eqs. (96, 97).

From a more phenomenological point of view there is a notable difference between ℓ̄3
and ℓ̄4 in Fig. 13. For ℓ̄4 the precision of the phenomenological determination achieved in
Colangelo 01 [260] represents a significant improvement compared to Gasser 84 [131]. Picking
any Nf , the lattice estimate of ℓ̄4 is consistent with both of the phenomenological values and
comes with an error-bar which is roughly comparable to or somewhat larger than the one
in Colangelo 01 [260]. By contrast, for ℓ̄3 the error of an individual lattice computation is
usually much smaller than the error of the estimate given in Gasser 84 [131], and even our
conservative estimates (96) have uncertainties which represent a significant improvement on
the error-bar of Gasser 84 [131]. Evidently, our hope is that future determinations of ℓ̄3, ℓ̄4,
with Nf = 2, Nf = 2+ 1 and Nf = 2+ 1+ 1, will allow us to further shrink our error-bars in
a future edition of FLAG.

We finish with a discussion of the lattice results for ℓ̄6 and ℓ̄1− ℓ̄2. The LEC ℓ̄6 determines
the leading contribution in the chiral expansion of the pion vector charge radius, see Eq. (85).
Hence from a lattice study of the vector form factor of the pion with several Mπ one may
extract the radius 〈r2〉πV , the curvature cV (both at the physical pion-mass point) and the
LEC ℓ̄6 in one go. Similarly, the leading contribution in the chiral expansion of the scalar
radius of the pion determines ℓ̄4, see Eq. (85). This LEC is also present in the pion-mass
dependence of Fπ, as we have seen. The difference ℓ̄1 − ℓ̄2, finally, may be obtained from
the momentum dependence of the vector and scalar pion form factors, based on the two-loop
formulae of Ref. [263]. The top part of Tab. 22 collects the results obtained from the vector
form factor of the pion (charge radius, curvature and ℓ̄6). Regarding this low-energy constant
two Nf = 2 calculations are published works without a red tag; we thus arrive at the average
(actually the first one in the LEC section)

Nf = 2 : ℓ̄6 = 15.1(1.2) Refs. [37, 41], (98)

which is represented as a grey band in the last panel of Fig. 13. Here we ask the reader to
cite Refs. [37, 41] when using this number.

The experimental information concerning the charge radius is excellent and the curvature
is also known very accurately, based on e+e− data and dispersion theory. The vector form
factor calculations thus present an excellent testing ground for the lattice methodology. The
first data column of Tab. 22 shows that most of the available lattice results pass the test.
There is, however, one worrisome point. For ℓ̄6 the agreement seems less convincing than
for the charge radius, even though the two quantities are closely related. In particular the
ℓ̄6 value of JLQCD 14 [359] seems inconsistent with the phenomenological determinations of
Refs. [131, 263], even though its value for 〈r2〉πV is consistent. So far we have no explanation
(other than observing that lattice computations which disagree with the phenomenological
determination of ℓ̄6 tend to have red tags), but we urge the groups to pay special attention to
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〈r2〉πV cV ℓ̄6

HPQCD 15B [335] 2+1+1 P ⋆ ⋆ ⋆ 0.403(18)(6)

JLQCD 15A , SU(2)-fit[358] 2+1 P ◦ � ◦ 0.395(26)(32) 13.49(89)(82)
JLQCD 14 [359] 2+1 A ⋆ � � 0.49(4)(4) 7.5(1.3)(1.5)
PACS-CS 11A [360] 2+1 A ◦ � ◦ 0.441(46)
RBC/UKQCD 08A [338] 2+1 A ◦ � ◦ 0.418(31) 12.2(9)
LHP 04 [361] 2+1 A ◦ � � 0.310(46)

Brandt 13 [37] 2 A ◦ ⋆ ◦ 0.481(33)(13) 15.5(1.7)(1.3)
JLQCD/TWQCD 09 [356] 2 A ◦ � � 0.409(23)(37) 3.22(17)(36) 11.9(0.7)(1.0)
ETM 08 [41] 2 A ◦ ◦ ◦ 0.456(30)(24) 3.37(31)(27) 14.9(1.2)(0.7)
QCDSF/UKQCD 06A [362] 2 A ◦ ⋆ ◦ 0.441(19)(63)

Bijnens 98 [263] 0.437(16) 3.85(60) 16.0(0.5)(0.7)
NA7 86 [363] 0.439(8)
Gasser 84 [131] 16.5(1.1)
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〈r2〉πS ℓ̄1 − ℓ̄2

HPQCD 15B [335] 2+1+1 P ⋆ ⋆ ⋆ 0.481(37)(50)

RBC/UKQCD 15E [334] 2+1 P ⋆ ⋆ ⋆ -9.2(4.9)(6.5)

Gülpers 15 [354] 2 P ⋆ ⋆ ⋆ 0.600(52)(0)
Gülpers 13 [355] 2 A ◦ � ◦ 0.637(23)
JLQCD/TWQCD 09 [356] 2 A ◦ � � 0.617(79)(66) -2.9(0.9)(1.3)

Colangelo 01 [260] 0.61(4) -4.7(6)

Table 22: Top (vector form factor of the pion): Lattice results for the charge radius 〈r2〉πV (in
fm2), the curvature cV (in GeV−4) and the effective coupling constant ℓ̄6 are compared with
the experimental value, as obtained by NA7, and some phenomenological estimates. Bottom
(scalar form factor of the pion): Lattice results for the scalar radius 〈r2〉πS (in fm2) and the
combination ℓ̄1 − ℓ̄2 are compared with a dispersive calculation of these quantities.
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this point. Similarly, the bottom part of Tab. 22 collects the results obtained for the scalar
form factor of the pion and the combination ℓ̄1− ℓ̄2 that is extracted from it. A new feature is
that the (yet unpublished) paper [335] gives both the (flavour) octet and singlet part in SU(3),
finding 〈r2〉πS,octet = 0.431(38)(46) and 〈r2〉πS,singlet = 0.506(38)(53). For reasons of backward

compatibility they also give 〈r2〉πS,ud defined with a ūu+ d̄d density, and this number is shown

in Tab. 22. Last but not least they find the ordering 〈r2〉πS,conn < 〈r2〉πS,octet < 〈r2〉πS,ud <
〈r2〉πS,singlet [335].

5.2.3 Epilogue

In this subsection there are several quantities for which only one qualifying (“all-green”)
determination is available for a given SU(2) LEC. Obviously the phenomenologically oriented
reader is encouraged to use such a value (as provided in our tables) and to cite the original
work. We hope that the lattice community will come up with further computations, in
particular for Nf = 2 + 1 + 1, such that a fair comparison of different works is possible
at any Nf , and eventually a statement can be made about the presence or absence of an
Nf -dependence of SU(2) LECs.

What can be learned about the convergence pattern of SU(2) χPT from varying the fit
ranges (in mud) of the pion mass and decay constant (i.e. the quantities from which ℓ̄3, ℓ̄4 are
derived) is discussed in Ref. [364], where also the usefulness of comparing results from the x
and the ξ expansion (with material taken from Ref. [35]) is emphasized.

Perhaps the most important physics result of this subsection is that the lattice simulations
confirm the approximate validity of the Gell-Mann-Oakes-Renner formula and show that the
square of the pion mass indeed grows in proportion to mud. The formula represents the
leading term of the chiral series and necessarily receives corrections from higher orders. At
first nonleading order, the correction is determined by the effective coupling constant ℓ̄3. The
results collected in Tab. 21 and in the top panel of Fig. 13 show that ℓ̄3 is now known quite
well. They corroborate the conclusion drawn already in Ref. [365]: the lattice confirms the
estimate of ℓ̄3 derived in Ref. [131]. In the graph of M2

π versus mud, the values found on the
lattice for ℓ̄3 correspond to remarkably little curvature: the Gell-Mann-Oakes-Renner formula
represents a reasonable first approximation out to values ofmud that exceed the physical value
by an order of magnitude.

As emphasized by Stern and collaborators [366–368], the analysis in the framework of
χPT is coherent only if (i) the leading term in the chiral expansion of M2

π dominates over
the remainder and (ii) the ratio ms/mud is close to the value 25.6 that follows from Wein-
berg’s leading-order formulae. In order to investigate the possibility that one or both of
these conditions might fail, the authors proposed a more general framework, referred to as
“generalized χPT”, which includes χPT as a special case. The results found on the lattice
demonstrate that QCD does satisfy both of the above conditions – in the context of QCD,
the proposed generalization of the effective theory does not appear to be needed. There is a
modified version, however, referred to as “re-summed χPT” [369], which is motivated by the
possibility that the Zweig-rule violating couplings L4 and L6 might be larger than expected.
The available lattice data do not support this possibility, but they do not rule it out either
(see Sec. 5.3 for details).
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F0 F/F0 B/B0

JLQCD/TWQCD 10A[337] 3 A � � � 71(3)(8)

MILC 10 [29] 2+1 C ◦ ⋆ ⋆ 80.3(2.5)(5.4)
MILC 09A [6] 2+1 C ◦ ⋆ ⋆ 78.3(1.4)(2.9) 1.104(3)(41) 1.21(4)

(

+5
−6

)

MILC 09 [89] 2+1 A ◦ ⋆ ⋆ 1.15(5)
(

+13
−03

)

1.15(16)
(

+39
−13

)

PACS-CS 08 [93] 2+1 A ⋆ � � 83.8(6.4) 1.078(44) 1.089(15)
RBC/UKQCD 08 [145] 2+1 A ◦ � ◦ 66.1(5.2) 1.229(59) 1.03(05)
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Σ
1/3
0 Σ/Σ0

JLQCD/TWQCD 10A [337] 3 A � � � ⋆ 214(6)(24) 1.31(13)(52)

MILC 09A [6] 2+1 C ◦ ⋆ ⋆ ⋆ 245(5)(4)(4) 1.48(9)(8)(10)
MILC 09 [89] 2+1 A ◦ ⋆ ⋆ ⋆ 242(9)

(

+05
−17

)

(4) 1.52(17)
(

+38
−15

)

PACS-CS 08 [93] 2+1 A ⋆ � � � 290(15) 1.245(10)
RBC/UKQCD 08 [145] 2+1 A ◦ � ◦ ⋆ 1.55(21)

Table 23: Lattice results for the low-energy constants F0, B0 (in MeV) and Σ0≡F 2
0B0, which

specify the effective SU(3) Lagrangian at leading order. The ratios F/F0, B/B0, Σ/Σ0,
which compare these with their SU(2) counterparts, indicate the strength of the Zweig-rule
violations in these quantities (in the large-Nc limit, they tend to unity). Numbers in slanted
fonts are calculated by us, from the information given in the references.

5.3 Extraction of SU(3) low-energy constants

To date, there are three comprehensive SU(3) papers with results based on lattice QCD with
Nf =2+1 dynamical flavours [89, 93, 145], and one more with results based on Nf =2+1+1

dynamical flavours [26]. It is an open issue whether the data collected at ms ≃ mphys
s allow for

an unambiguous determination of SU(3) low-energy constants (cf. the discussion in Ref. [145]).
To make definite statements one needs data at considerably smaller ms, and so far only MILC
has some [89]. We are aware of a few papers with a result on one SU(3) low-energy constant
each which we list for completeness. Some particulars of the computations are listed in
Tab. 23.
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103L4 103L6 103(2L6−L4)

HPQCD 13A [26] 2+1+1 A ⋆ ⋆ ⋆ 0.09(34) 0.16(20) 0.22(17)

JLQCD/TWQCD 10A [337] 3 A � � � 0.03(7)(17)

MILC 10 [29] 2+1 C ◦ ⋆ ⋆ -0.08(22)
(

+57
−33

)

-0.02(16)
(

+33
−21

)

0.03(24)
(

+32
−27

)

MILC 09A [6] 2+1 C ◦ ⋆ ⋆ 0.04(13)(4) 0.07(10)(3) 0.10(12)(2)
MILC 09 [89] 2+1 A ◦ ⋆ ⋆ 0.1(3)

(

+3
−1

)

0.2(2)
(

+2
−1

)

0.3(1)
(

+2
−3

)

PACS-CS 08 [93] 2+1 A ⋆ � � -0.06(10)(–) 0.02(5)(–) 0.10(2)(–)
RBC/UKQCD 08 [145] 2+1 A ◦ � ◦ 0.14(8)(–) 0.07(6)(–) 0.00(4)(–)

Bijnens 11 [267] 0.75(75) 0.29(85) -0.17(1.86)
Gasser 85 [129] -0.3(5) -0.2(3) -0.1(8)

Collaboration Ref. Nf 103L5 103L8 103(2L8−L5)

HPQCD 13A [26] 2+1+1 A ⋆ ⋆ ⋆ 1.19(25) 0.55(15) -0.10(20)

MILC 10 [29] 2+1 C ◦ ⋆ ⋆ 0.98(16)
(

+28
−41

)

0.42(10)
(

+27
−23

)

-0.15(11)
(

+45
−19

)

MILC 09A [6] 2+1 C ◦ ⋆ ⋆ 0.84(12)(36) 0.36(5)(7) -0.12(8)(21)
MILC 09 [89] 2+1 A ◦ ⋆ ⋆ 1.4(2)

(

+2
−1

)

0.8(1)(1) 0.3(1)(1)

PACS-CS 08 [93] 2+1 A ⋆ � � 1.45(7)(–) 0.62(4)(–) -0.21(3)(–)
RBC/UKQCD 08 [145] 2+1 A ◦ � ◦ 0.87(10)(–) 0.56(4)(–) 0.24(4)(–)
NPLQCD 06 [237] 2+1 A ◦ � � 1.42(2)

(

+18
−54

)

Bijnens 11 [267] 0.58(13) 0.18(18) -0.22(38)
Gasser 85 [129] 1.4(5) 0.9(3) 0.4(8)

Collaboration Ref. Nf 103L9 103L10

Boito 15 [370] 2+1 P ⋆ ◦ ⋆ -3.50(17)
JLQCD 15A [358] 2+1 P ◦ � ◦ 4.6(1.1)

(

+0.1
−0.5

)

(0.4)

Boyle 14 [371] 2+1 A ⋆ ◦ ⋆ -3.46(32)
JLQCD 14 [359] 2+1 A ⋆ � � 2.4(0.8)(1.0)
RBC/UKQCD 09 [372] 2+1 A ◦ � ◦ -5.7(11)(07)
RBC/UKQCD 08A [338] 2+1 A ◦ � ◦ 3.08(23)(51)

JLQCD 08A [373] 2 A ◦ � � -5.2(2)
(

+5
−3

)

Bijnens 02 [374] 5.93(43)
Davier 98 [375] -5.13(19)
Gasser 85 [129] 6.9(7) -5.5(7)

Table 24: Low-energy constants of the SU(3) Lagrangian at NLO with running scale µ =
770MeV (the values in Refs. [6, 26, 29, 89, 129] are evolved accordingly). The MILC 10 entry
for L6 is obtained from their results for 2L6−L4 and L4 (similarly for other entries in slanted
fonts). The JLQCD 08A result for ℓ5(770MeV) [despite the paper saying L10(770MeV)]
was converted to L10 with the GL one-loop formula, assuming that the difference between
ℓ̄5(ms=m

phys
s ) [needed in the formula] and ℓ̄5(ms=∞) [computed by JLQCD] is small.
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Results for the SU(3) low-energy constants of leading order are found in Tab. 23 and
analogous results for some of the effective coupling constants that enter the chiral SU(3)
Lagrangian at NLO are collected in Tab. 24. From PACS-CS [93] only those results are
quoted which have been corrected for finite-size effects (misleadingly labelled “w/FSE” in
their tables). For staggered data our colour-coding rule states that Mπ is to be understood
as MRMS

π . The rating of Refs. [29, 89] is based on the information regarding the RMS masses
given in Ref. [6]. Finally, Refs. [370, 371] are “hybrids” in the sense that they combine lattice
data and experimental information.

A graphical summary of the lattice results for the coupling constants L4, L5, L6 and
L8, which determine the masses and the decay constants of the pions and kaons at NLO of
the chiral SU(3) expansion, is displayed in Fig. 14, along with the two phenomenological
determinations quoted in the above tables. The overall consistency seems fairly convincing.
In spite of this apparent consistency, there is a point which needs to be clarified as soon
as possible. Some collaborations (RBC/UKQCD and PACS-CS) find that they are having
difficulties in fitting their partially quenched data to the respective formulas for pion masses
above ≃ 400 MeV. Evidently, this indicates that the data are stretching the regime of validity
of these formulas. To date it is, however, not clear which subset of the data causes the
troubles, whether it is the unitary part extending to too large values of the quark masses or
whether it is due to mval/msea differing too much from one. In fact, little is known, in the
framework of partially quenched χPT, about the shape of the region of applicability in the
mval versus msea plane for fixed Nf . This point has also been emphasized in Ref. [325].

To date only the computations MILC 10 [29] (as an obvious update of MILC 09 and MILC
09A) and HPQCD 13A [26] are free of red tags. Since they use different Nf (in the former
case Nf = 2+1, in the latter case Nf = 2+1+ 1) we stay away from averaging them. Hence
the situation remains unsatisfactory in the sense that for each Nf only a single determination
of high standing is available. Accordingly, for the phenomenologically oriented reader there
is no alternative to using the results of MILC 10 [29] for Nf = 2 + 1 and HPQCD 13A [26]
for Nf = 2 + 1 + 1, as given in Tab. 24.

5.3.1 Epilogue

In this subsection we find ourselves again in the unpleasant situation that only one qualify-
ing (“all-green”) determination is available (at a given Nf ) for several LECs in the SU(3)
framework, both at LO and at NLO. Obviously the phenomenologically oriented reader is
encouraged to use such a value (as provided in our tables) and to cite the original work.
Again our hope is that further computations would become available in forthcoming years,
such that a fair comparison of different works will become possible both at Nf = 2 + 1 and
Nf = 2 + 1 + 1.

In the large-Nc limit, the Zweig rule becomes exact, but the quarks have Nc = 3. The work
done on the lattice is ideally suited to confirm or disprove the approximate validity of this
rule for QCD. Two of the coupling constants entering the effective SU(3) Lagrangian at NLO
disappear whenNc is sent to infinity: L4 and L6. The upper part of Tab. 24 and the left panels
of Fig. 14 show that the lattice results for these quantities are in good agreement. At the scale
µ =Mρ, L4 and L6 are consistent with zero, indicating that these constants do approximately
obey the Zweig rule. As mentioned above, the ratios F/F0, B/B0 and Σ/Σ0 also test the
validity of this rule. Their expansion in powers of ms starts with unity and the contributions
of first order in ms are determined by the constants L4 and L6, but they also contain terms of
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Figure 14: Low-energy constants that enter the effective SU(3) Lagrangian at NLO, with
scale µ = 770MeV. The grey bands labelled as “FLAG average” coincide with the results of
MILC 10 [29] for Nf = 2 + 1 and with HPQCD 13A [26] for Nf = 2 + 1 + 1, respectively.
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higher order. Apart from measuring the Zweig-rule violations, an accurate determination of
these ratios will thus also allow us to determine the range ofms where the first few terms of the
expansion represent an adequate approximation. Unfortunately, at present, the uncertainties
in the lattice data on these ratios are too large to draw conclusions, both concerning the
relative size of the subsequent terms in the chiral series and concerning the magnitude of the
Zweig-rule violations. The data seem to confirm the paramagnetic inequalities [368], which
require F/F0 > 1, Σ/Σ0 > 1, and it appears that the ratio B/B0 is also larger than unity,
but the numerical results need to be improved before further conclusions can be drawn.

The matching formulae in Ref. [129] can be used to calculate the SU(2) couplings l̄i from
the SU(3) couplings Lj. Results obtained in this way are included in Tab. 21, namely the
entries explicitly labelled “SU(3)-fit” as well as MILC 10. Within the still rather large errors,
the converted LECs from the SU(3) fits agree with those directly determined within SU(2)
χPT. We plead with every collaboration performing Nf = 2 + 1 simulations to also directly
analyse their data in the SU(2) framework. In practice, lattice simulations are performed at
values of ms close to the physical value and the results are then corrected for the difference
of ms from its physical value. If simulations with more than one value of ms have been
performed, this can be done by interpolation. Alternatively one can use the technique of
re-weighting (for a review see e.g. Ref. [376]) to shift ms to its physical value.
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6 Kaon mixing

The mixing of neutral pseudoscalar mesons plays an important role in the understanding of
the physics of CP violation. In this section we discuss K0 − K̄0 oscillations, which probe
the physics of indirect CP violation. Extensive reviews on the subject can be found in
Refs. [377–379]. For the most part we shall focus on kaon mixing in the SM. The case of
Beyond-the-Standard-Model (BSM) contributions is discussed in section 6.3.

6.1 Indirect CP violation and ǫK in the SM

Indirect CP violation arises in KL → ππ transitions through the decay of the CP = +1
component of KL into two pions (which are also in a CP = +1 state). Its measure is defined
as

ǫK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
, (99)

with the final state having total isospin zero. The parameter ǫK may also be expressed in
terms of K0 − K̄0 oscillations. In particular, to lowest order in the electroweak theory, the
contribution to these oscillations arises from so-called box diagrams, in which two W bosons
and two “up-type” quarks (i.e. up, charm, top) are exchanged between the constituent down
and strange quarks of the K mesons. The loop integration of the box diagrams can be
performed exactly. In the limit of vanishing external momenta and external quark masses,
the result can be identified with an effective four-fermion interaction, expressed in terms of
the “effective Hamiltonian”

H∆S=2
eff =

G2
FM

2
W

16π2
F0Q∆S=2 + h.c. . (100)

In this expression, GF is the Fermi coupling, MW the W -boson mass, and

Q∆S=2 = [s̄γµ(1− γ5)d] [s̄γµ(1− γ5)d] ≡ OVV+AA −OVA+AV , (101)

is a dimension-six, four-fermion operator. The function F0 is given by

F0 = λ2cS0(xc) + λ2tS0(xt) + 2λcλtS0(xc, xt) , (102)

where λa = V ∗
asVad, and a = c , t denotes a flavour index. The quantities S0(xc), S0(xt) and

S0(xc, xt) with xc = m2
c/M

2
W, xt = m2

t/M
2
W are the Inami-Lim functions [380], which express

the basic electroweak loop contributions without QCD corrections. The contribution of the
up quark, which is taken to be massless in this approach, has been taken into account by
imposing the unitarity constraint λu + λc + λt = 0.

When strong interactions are included, ∆S = 2 transitions can no longer be discussed at
the quark level. Instead, the effective Hamiltonian must be considered between mesonic initial
and final states. Since the strong coupling is large at typical hadronic scales, the resulting
weak matrix element cannot be calculated in perturbation theory. The operator product
expansion (OPE) does, however, factorize long- and short- distance effects. For energy scales
below the charm threshold, the K0 − K̄0 transition amplitude of the effective Hamiltonian
can be expressed as

〈K̄0|H∆S=2
eff |K0〉 =

G2
FM

2
W

16π2

[
λ2cS0(xc)η1 + λ2tS0(xt)η2 + 2λcλtS0(xc, xt)η3

]

×
(
ḡ(µ)2

4π

)−γ0/(2β0)

exp

{∫ ḡ(µ)

0
dg

(
γ(g)

β(g)
+

γ0
β0g

)}
〈K̄0|Q∆S=2

R (µ)|K0〉 + h.c. , (103)
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where ḡ(µ) and Q∆S=2
R (µ) are the renormalized gauge coupling and four-fermion operator in

some renormalization scheme. The factors η1, η2 and η3 depend on the renormalized coupling
ḡ, evaluated at the various flavour thresholdsmt,mb,mc andMW, as required by the OPE and
RG-running procedure that separate high- and low-energy contributions. Explicit expressions
can be found in Refs. [378] and references therein, except that η1 and η3 have been recently
calculated to NNLO in Refs. [381] and [382], respectively. We follow the same conventions
for the RG equations as in Ref. [378]. Thus the Callan-Symanzik function and the anomalous
dimension γ(ḡ) of Q∆S=2 are defined by

dḡ

d lnµ
= β(ḡ) ,

dQ∆S=2
R

d lnµ
= −γ(ḡ)Q∆S=2

R , (104)

with perturbative expansions

β(g) = −β0
g3

(4π)2
− β1

g5

(4π)4
− · · · (105)

γ(g) = γ0
g2

(4π)2
+ γ1

g4

(4π)4
+ · · · .

We stress that β0, β1 and γ0 are universal, i.e. scheme independent. K0 − K̄0 mixing is
usually considered in the naive dimensional regularization (NDR) scheme of MS, and below
we specify the perturbative coefficient γ1 in that scheme:

β0 =

{
11

3
N − 2

3
Nf

}
, β1 =

{
34

3
N2 −Nf

(
13

3
N − 1

N

)}
, (106)

γ0 =
6(N − 1)

N
, γ1 =

N − 1

2N

{
−21 + 57

N
− 19

3
N +

4

3
Nf

}
.

Note that for QCD the above expressions must be evaluated for N = 3 colours, while Nf

denotes the number of active quark flavours. As already stated, Eq. (103) is valid at scales
below the charm threshold, after all heavier flavours have been integrated out, i.e. Nf = 3.

In Eq. (103), the terms proportional to η1, η2 and η3, multiplied by the contributions
containing ḡ(µ)2, correspond to the Wilson coefficient of the OPE, computed in perturbation
theory. Its dependence on the renormalization scheme and scale µ is canceled by that of the
weak matrix element 〈K̄0|Q∆S=2

R (µ)|K0〉. The latter corresponds to the long-distance effects
of the effective Hamiltonian and must be computed nonperturbatively. For historical, as well
as technical reasons, it is convenient to express it in terms of the B parameter BK, defined as

BK(µ) =

〈
K̄0
∣∣Q∆S=2

R (µ)
∣∣K0

〉

8
3f

2
Km

2
K

. (107)

The four-quark operator Q∆S=2(µ) is renormalized at scale µ in some regularization scheme,
for instance, NDR-MS. Assuming that BK(µ) and the anomalous dimension γ(g) are both
known in that scheme, the renormalization group independent (RGI) B parameter B̂K is
related to BK(µ) by the exact formula

B̂K =

(
ḡ(µ)2

4π

)−γ0/(2β0)

exp

{∫ ḡ(µ)

0
dg

(
γ(g)

β(g)
+

γ0
β0g

)}
BK(µ) . (108)
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At NLO in perturbation theory the above reduces to

B̂K =

(
ḡ(µ)2

4π

)−γ0/(2β0){
1 +

ḡ(µ)2

(4π)2

[
β1γ0 − β0γ1

2β20

]}
BK(µ) . (109)

To this order, this is the scale-independent product of all µ-dependent quantities in Eq. (103).
Lattice QCD calculations provide results for BK(µ). These results are, however, usually

obtained in intermediate schemes other than the continuum MS scheme used to calculate
the Wilson coefficients appearing in Eq. (103). Examples of intermediate schemes are the
RI/MOM scheme [383] (also dubbed the “Rome-Southampton method”) and the Schrödinger
functional (SF) scheme [153]. These schemes are used as they allow a nonperturbative renor-
malization of the four-fermion operator, using an auxiliary lattice simulation. This allows
BK(µ) to be calculated with percent-level accuracy, as described below.

In order to make contact with phenomenology, however, and in particular to use the
results presented above, one must convert from the intermediate scheme to the MS scheme
or to the RGI quantity B̂K. This conversion relies on one or two-loop perturbative matching
calculations, the truncation errors in which are, for many recent calculations, the dominant
source of error in B̂K (see, for instance, Refs. [10, 31, 44, 45, 384]). While this scheme-
conversion error is not, strictly speaking, an error of the lattice calculation itself, it must be
included in results for the quantities of phenomenological interest, namely BK(MS, 2GeV)
and B̂K. We note that this error can be minimized by matching between the intermediate
scheme and MS at as large a scale µ as possible (so that the coupling which determines the
rate of convergence is minimized). Recent calculations have pushed the matching µ up to
the range 3 − 3.5GeV. This is possible because of the use of nonperturbative RG running
determined on the lattice [10, 31, 43]. The Schrödinger functional offers the possibility to
run nonperturbatively to scales µ ∼MW where the truncation error can be safely neglected.
However, so far this has been applied only for two flavours of Wilson quarks [385].

Perturbative truncation errors in Eq. (103) also affect the Wilson coefficients η1, η2 and η3.
It turns out that the largest uncertainty comes from that in η1 [381]. Although it is now
calculated at NNLO, the series shows poor convergence. The net effect is that the uncertainty
in η1 is larger than that in present lattice calculations of BK .

In the Standard Model, ǫK receives contributions from: 1) short distance physics given
by ∆S = 2 “box diagrams” involving W± bosons and u, c and t quarks; 2) long distance
physics from light hadrons contributing to the imaginary part of the dispersive amplitude
M12 used in the two component description of K0 − K̄0 mixing; 3) the imaginary part of the
absorptive amplitude Γ12 from K0 − K̄0 mixing; and 4) Im(A0)/Re(A0). The terms in this
decomposition can vary with phase conventions. It is common to represent contribution 1 by
ImMSD

12 = Im[〈K̄0|H∆S=2
eff |K0〉] and contribution 2 by MLD

12 . Contribution 3 can be related
to Im(A0)/Re(A0), yielding [379, 386–389]

ǫK = exp(iφǫ) sin(φǫ)

[
Im[〈K̄0|H∆S=2

eff |K0〉]
∆MK

+
Im(MLD

12 )

∆MK
+

Im(A0)

Re(A0)

]
(110)

for λu real and positive; the phase of ǫK is given by

φǫ = arctan
∆MK

∆ΓK/2
. (111)
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The quantities ∆MK and ∆ΓK are the mass and decay width differences between long- and
short-lived neutral kaons, while A0 is the amplitude of the kaon decay into an isospin-0 two
pion state. Experimentally known values of the above quantities are [151]:

|ǫK | = 2.228(11) × 10−3 ,

φǫ = 43.52(5)◦ , (112)

∆MK = 3.4839(59) × 10−12 MeV ,

∆ΓK = 7.3382(33) × 10−15 GeV .

A recent analytical estimate of the contributions of MLD
12 (Refs. [388, 389]) leads to

ǫK = exp(iφǫ) sin(φǫ)
[ Im[〈K̄0|H∆S=2

eff |K0〉]
∆MK

+ ρ
Im(A0)

Re(A0)

]
. (113)

A phenomenological estimate for ξ = Im(A0)/Re(A0) can be determined using the experi-
mental value of ǫ′/ǫ [389]

ξ = −6.0(1.5) · 10−4
√
2|ǫK | = −1.9(5) · 10−4. (114)

A more precise result has been obtained from the ratio of amplitudes Im(A2)/Re(A2) com-
puted in lattice QCD [390] (where A2 denotes the ∆I = 3/2 decay amplitude for K → ππ):

ξ = −1.6(2) · 10−4. (115)

The value of ξ can then be combined with a χPT-based estimate for the long-range contribu-
tion, i.e. ρ = 0.6(3) [389]. Overall, the combination ρξ leads to a suppression of |ǫK | by 6(2)%
relative to the naive estimate (i.e. the first term in square brackets in Eq. (110)), regardless
of whether the phenomenological or lattice estimate for ξ is used. The uncertainty in the
suppression factor is dominated by the error on ρ. Although this is a small correction, we
note that its contribution to the error of ǫK is larger than that arising from the value of BK

reported below.
Efforts are under way to compute both the real and imaginary long-distance contribution

to the KL − KS mass difference in lattice QCD [391–393]. However, the results are not yet
precise enough to improve the accuracy in the determination of the parameter ρ.

6.2 Lattice computation of BK

Lattice calculations of BK are affected by the same systematic effects discussed in previous
sections. However, the issue of renormalization merits special attention. The reason is that
the multiplicative renormalizability of the relevant operator Q∆S=2 is lost once the regularized
QCD action ceases to be invariant under chiral transformations. For Wilson fermions, Q∆S=2

mixes with four additional dimension-six operators, which belong to different representations
of the chiral group, with mixing coefficients that are finite functions of the gauge coupling.
This complicated renormalization pattern was identified as the main source of systematic
error in earlier, mostly quenched calculations of BK with Wilson quarks. It can be bypassed
via the implementation of specifically designed methods, which are either based on Ward
identities [394] or on a modification of the Wilson quark action, known as twisted mass
QCD [395, 396].
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An advantage of staggered fermions is the presence of a remnant U(1) chiral symmetry.
However, at nonvanishing lattice spacing, the symmetry among the extra unphysical degrees
of freedom (tastes) is broken. As a result, mixing with other dimension-six operators cannot
be avoided in the staggered formulation, which complicates the determination of the B pa-
rameter. The effects of the broken taste symmetry are usually treated via an effective field
theory, such as staggered Chiral Perturbation Theory (SχPT).

Fermionic lattice actions based on the Ginsparg-Wilson relation [397] are invariant under
the chiral group, and hence four-quark operators such as Q∆S=2 renormalize multiplicatively.
However, depending on the particular formulation of Ginsparg-Wilson fermions, residual chi-
ral symmetry breaking effects may be present in actual calculations. For instance, in the case
of domain wall fermions, the finiteness of the extra 5th dimension implies that the decoupling
of modes with different chirality is not exact, which produces a residual nonzero quark mass in
the chiral limit. Whether or not a significant mixing with dimension-six operators is induced
as well must be investigated on a case-by-case basis.

Recent lattice QCD calculations of BK have been performed with Nf = 2+1+1 dynami-
cal quarks [42], and we want to mention a few conceptual issues that arise in this context. As
described in section 6.1, kaon mixing is expressed in terms of an effective four-quark interac-
tion Q∆S=2, considered below the charm threshold. When the matrix element of Q∆S=2 is
evaluated in a theory that contains a dynamical charm quark, the resulting estimate for BK

must then be matched to the three-flavour theory which underlies the effective four-quark
interaction.31 In general, the matching of 2 + 1-flavour QCD with the theory containing
2 + 1+ 1 flavours of sea quarks below the charm threshold can be accomplished by adjusting
the coupling and quark masses of the Nf = 2 + 1 theory so that the two theories match
at energies E < mc. The corrections associated with this matching are of order (E/mc)

2,
since the subleading operators have dimension eight [398]. When the kaon mixing amplitude
is considered, the matching also involves the relation between the relevant box graphs and
the effective four-quark operator. In this case, corrections of order (E/mc)

2 arise not only
from the charm quarks in the sea, but also from the valence sector, since the charm quark
propagates in the box diagrams. One expects that the sea quark effects are subdominant, as
they are suppressed by powers of αs. We note that the original derivation of the effective
four-quark interaction is valid up to corrections of order (E/mc)

2. While the kaon mixing
amplitudes evaluated in the Nf = 2+ 1 and 2+ 1+ 1 theories are thus subject to corrections
of the same order in E/mc as the derivation of the conventional four-quark interaction, the
general conceptual issue regarding the calculation of BK in QCD with Nf = 2+1+1 flavours
should be addressed in detail in future calculations.

Another issue in this context is how the lattice scale and the physical values of the quark
masses are determined in the 2 + 1 and 2 + 1 + 1 flavour theories. Here it is important
to consider in which way the quantities used to fix the bare parameters are affected by a
dynamical charm quark. Apart from a brief discussion in Ref. [42], these issues have not
been fully worked out in the literature, but these kinds of mismatches were seen in simple
lattice-QCD observables as quenched calculations gave way to Nf = 2 and then 2 + 1 flavour
results. Given the scale of the charm quark mass relative to the scale of BK , we expect these
errors to be modest, but a more quantitative understanding is needed as statistical errors on
BK are reduced. Within this review we will not discuss this issue further.

Below we focus on recent results for BK, obtained for Nf = 2, 2 + 1 and 2+ 1+ 1 flavours

31We thank Martin Lüscher for an interesting discussion on this issue.
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of dynamical quarks. A compilation of results is shown in Tabs. 25 and 26, as well as Fig. 15.
An overview of the quality of systematic error studies is represented by the colour coded
entries in Tabs. 25 and 26. In Appendix B.4 we gather the simulation details and results from
different collaborations, the values of the most relevant lattice parameters, and comparative
tables on the various estimates of systematic errors.

Some of the groups whose results are listed in Tabs. 25 and 26 do not quote results for
both BK(MS, 2GeV) – which we denote by the shorthand BK from now on – and B̂K. This
concerns Refs. [46, 399, 400] for Nf = 2, Refs.[10, 31, 44, 45] for 2+1 and Ref. [42] for 2+1+1
flavours. In these cases we perform the conversion ourselves by evaluating the proportionality
factor in Eq. (109) at µ = 2GeV, using the following procedure: For Nf = 2 + 1 we use the
value αs(MZ) = 0.1185 from the 2014 edition of the PDG [151] and run it across the quark
thresholds at mb = 4.18GeV and mc = 1.275GeV, and then run up in the three-flavour
theory to µ = 2GeV. All running is done using the four-loop RG β-function. The resulting
value of αMS

s (2GeV) = 0.29672 is then used to evaluate B̂K/BK in perturbation theory at
NLO, which gives B̂K/BK = 1.369 in the three-flavour theory. This value of the conversion
factor has also been applied to the result computed in QCD with Nf = 2 + 1 + 1 flavours of
dynamical quarks [42].

In two-flavour QCD one can insert the updated nonperturbative estimate for the Λ pa-
rameter by the ALPHA Collaboration [12], i.e. Λ(2) = 310(20) MeV, into the NLO expressions
for αs. The resulting value of the perturbative conversion factor B̂K/BK for Nf = 2 is then
equal to 1.386. However, since the running coupling in the MS scheme enters at several stages
in the entire matching and running procedure, it is difficult to use this estimate of αs con-
sistently without a partial reanalysis of the data in Refs. [46, 399, 400]. We have therefore
chosen to apply the conversion factor of 1.369 not only to results obtained for Nf = 2 + 1

flavours but also to the two-flavour theory (in cases where only one of B̂K and BK are quoted).
We note that the difference between 1.386 and 1.369 will produce an ambiguity of the order
of 1%, which is well below the overall uncertainties in Refs. [399, 400]. We have indicated
explicitly in Tab. 26 in which way the conversion factor 1.369 has been applied to the results
of Refs. [46, 399, 400].

Since the last edition of the FLAG review [2] several new or updated results have been
reported. For QCD with Nf = 2 + 1 + 1 there is now a published calculation from the ETM
Collaboration [42]; updated results forNf = 2+1 have been reported by several collaborations,
i.e. RBC/UKQCD14B [10], SWME13A [401], SWME14 [384] and SWME15A [45]. For Nf =
2 we now include the result from ETMC, i.e. ETM12D [46]. We briefly discuss the main
features of the most recent calculations below.

The calculation by ETM15 [42] employs Osterwalder-Seiler valence quarks on twisted-
mass dynamical quark ensembles. Both valence and sea quarks are tuned to maximal twist.
This mixed action setup guarantees that the four-fermion matrix elements are automatically
O(a) improved and free of wrong chirality mixing effects. The calculation has been carried
out at three values of the lattice spacing (a ≃ 0.06 − 0.09 fm). Light pseudoscalar mass
values are in the range 210−450MeV. The spatial lattice sizes vary between 2.1 to 2.9 fm and
correspond toMπ,minL ≃ 3.2−3.5. Finite volume effects are investigated at the coarsest lattice
spacing by controlling the consistency of results obtained at two lattice volumes at 280MeV
for the light pseudoscalar mass. The determination of the bag parameter is performed using
simultaneous chiral and continuum fits. The renormalization factors have been evaluated
using the RI/MOM technique for Nf = 4 degenerate Wilson twisted-mass dynamical quark
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gauge configurations generated for this purpose. In order to gain control over discretization
effects the evaluation of the renormalization factors has been carried out following two different
methods. The uncertainty from the RI computation is estimated at 2%. The conversion to
MS produces an additional 0.6% of systematic error. The overall uncertainty for the bag
parameter is computed from a distribution of several results, each one of them corresponding
to a variant of the analysis procedure.

The collection of results from the SWME collaboration [45, 277, 384, 401–403] have all
been obtained using a mixed action, i.e. HYP-smeared valence staggered quarks on the
Asqtad improved, rooted staggered MILC ensembles. For the latest set of results, labelled
SWME14, 15A [45, 384] an extended set of ensembles, comprising finer lattice spacings and a
smallest pion mass of 174MeV has been added to the calculation. The final estimate for BK

is obtained from a combined chiral and continuum extrapolation using the data computed for
the three finest lattice spacings. The dominant systematic error of 4.4% is associated with the
matching factor between the lattice and MS schemes. It has been computed in perturbation
theory at one loop, and its error was estimated assuming a missing two-loop matching term
of size 1×α(1/a)2, i.e. with no factors of 1/(4π) included. Different functional forms for the
chiral fits contribute another 2% to the error budget. It should also be noted that Bayesian
priors are used to constrain some of the coefficients in the chiral ansatz. The total systematic
error amounts to about 5%. Compared to the earlier calculations of SWME one finds that
“the overall error is only slightly reduced, but, more importantly, the methods of estimating
errors have been improved” [384].

The RBC and UKQCD Collaborations have updated their value for BK using Nf = 2+1
flavours of domain wall fermions [10]. Previous results came from ensembles at three different
lattice spacings with unitary pion masses in the range of 170 to 430MeV. The new work adds
an ensemble with essentially physical light and strange quark masses at two of the lattice
spacings, along with a third finer lattice with 370 MeV pion masses. This finer ensemble
provides an additional constraint on continuum extrapolations. Lattice spacings and quark
masses are determined via a combined continuum and chiral extrapolation to all ensembles.
With lattice spacings at hand, nonperturbative renormalization and nonperturbative step
scaling are used to find the renormalized value of BK at 3 GeV in the RI-SMOM(γµ, γµ)
and RI-SMOM(/q , /q) schemes for all of the ensembles. These BK values for each pion mass
are determined for the physical strange quark mass through valence strange quark interpola-
tions/extrapolations and dynamical strange quark mass reweighting. The light quark mass
dependence is then fit to SU(2) chiral perturbation theory. Because the new ensembles have
quark masses within a few percent of their physical values, the systematic error related to the
extrapolation to physical values is neglected. The new physical point ensembles have (5.5 fm)3

volumes, and chiral perturbation theory fits with and without finite volume corrections differ
by 10-20% of the statistical errors, so no finite volume error is quoted. The fits are dominated
by the physical point ensembles, which have small errors. Fits with BK normalized in both
RI-SMOM schemes are done, and the difference is used to estimate the systematic error due
to nonperturbative renormalization.

The Nf = 2 calculation described in ETM12D [46] uses a mixed action setup employing
twisted-mass dynamical quarks and Osterwalder-Seiler quarks in the valence, both tuned to
maximal twist. The work of ETM12D is an update of the calculation of ETM10A [400]. The
main addition is the inclusion of a fourth (superfine) lattice spacing (a ≃ 0.05 fm). Thus, the
computation is performed at four values of the lattice spacing (a ≃ 0.05 − 0.1 fm), and the
lightest simulated value of the light pseudoscalar mass is about 280 MeV. Final results are
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obtained with combined chiral and continuum fits. Finite volume effects are studied at one
value of the lattice spacing (a ≃ 0.08 fm), and it is found that results obtained on two lattice
volumes, namely for L = 2.2 and 2.9 fm atMπ ≈ 300MeV are in good agreement within errors.
The four- and two-fermion renormalization factors needed in the bag parameter evaluation
are computed nonperturbatively using the Rome-Southampton method. The systematic error
due to the matching of RI and MS schemes is estimated to be 2.5%.

We now describe our procedure for obtaining global averages. The rules of section 2.1
stipulate that results free of red tags and published in a refereed journal may enter an average.
Papers that at the time of writing are still unpublished but are obvious updates of earlier
published results can also be taken into account.

There is only one result for Nf = 2 + 1 + 1, computed by the ETM Collaboration [42].
Since it is free of red tags, it qualifies as the currently best global estimate, i.e.

Nf = 2 + 1 + 1 : B̂K = 0.717(18)(16) , BMS
K (2GeV) = 0.524(13)(12) Ref. [42]. (116)

The bulk of results for the kaon B parameter has been obtained for Nf = 2 + 1. As in
the previous edition of the FLAG review [2] we include the results from SWME [45, 384,
401], despite the fact that nonperturbative information on the renormalization factors is not
available. Instead, the matching factor has been determined in perturbation theory at one
loop, but with a sufficiently conservative error of 4.4%.

Thus, forNf = 2+1 our global average is based on the results of BMW11 [43], Laiho 11 [44],
RBC/UKQCD14B [10] and SWME15A [45]. The last three are the latest updates from a
series of calculations by the same collaborations. Our procedure is as follows: in a first step
statistical and systematic errors of each individual result for the RGI B parameter, B̂K, are
combined in quadrature. Next, a weighted average is computed from the set of results. For
the final error estimate we take correlations between different collaborations into account.
To this end we note that we consider the statistical and finite-volume errors of SWME15A
and Laiho 11 to be correlated, since both groups use the Asqtad ensembles generated by the
MILC Collaboration. Laiho 11 and RBC/UKQCD14B both use domain wall quarks in the
valence sector and also employ similar procedures for the nonperturbative determination of
matching factors. Hence, we treat the quoted renormalization and matching uncertainties by
the two groups as correlated. After constructing the global covariance matrix according to
Schmelling [91], we arrive at

Nf = 2 + 1 : B̂K = 0.7625(97) Refs. [10, 43–45], (117)

with χ2/d.o.f. = 0.675. After applying the NLO conversion factor B̂K/B
MS
K (2GeV) = 1.369,

this translates into

Nf = 2 + 1 : BMS
K (2GeV) = 0.5570(71) Refs. [10, 43–45]. (118)

These values and their uncertainties are very close to the global estimates quoted in the
previous edition of the FLAG review [2]. Note, however, that the statistical errors of each
calculation entering the global average have now been reduced to a level that makes them
statistically incompatible. It is only because of the relatively large systematic errors that the
weighted average produces a value of O(1) for the reduced χ2.

Passing over to describing the results computed for Nf = 2 flavours, we note that there
is only the set of results published in ETM12D [46] and ETM10A [400] that allow for an
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Figure 15: Recent unquenched lattice results for the RGI B parameter B̂K. The grey bands
indicate our global averages described in the text. For Nf = 2+ 1+ 1 and Nf = 2 the global
estimate coincide with the results by ETM12D and ETM10A, respectively.

extensive investigation of systematic uncertainties. We identify the result from ETM12D [46],
which is an update of ETM10A, with the currently best global estimate for two-flavour QCD,
i.e.

Nf = 2 : B̂K = 0.727(22)(12), BMS
K (2GeV) = 0.531(16)(19) Ref. [46]. (119)

The result in the MS scheme has been obtained by applying the same conversion factor of
1.369 as in the three-flavour theory.

6.3 Kaon BSM B parameters

We now report on lattice results concerning the matrix elements of operators that encode
the effects of physics beyond the Standard Model (BSM) to the mixing of neutral kaons. In
this theoretical framework both the SM and BSM contributions add up to reproduce the
experimentally observed value of ǫK . Since BSM contributions involve heavy but unobserved
particles, it is natural to assume that they are short-distance dominated. The effective Hamil-
tonian for generic ∆S = 2 processes including BSM contributions reads

H∆S=2
eff,BSM =

5∑

i=1

Ci(µ)Qi(µ), (120)

where Q1 is the four-quark operator of Eq. (101) that gives rise to the SM contribution to ǫK .
In the so-called SUSY basis introduced by Gabbiani et al. [410] the (parity-even) operators
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Q2, . . . , Q5 read 32

Q2 =
(
s̄a(1− γ5)da

)(
s̄b(1 − γ5)db

)
,

Q3 =
(
s̄a(1− γ5)db

)(
s̄b(1− γ5)da

)
,

Q4 =
(
s̄a(1− γ5)da

)(
s̄b(1 + γ5)d

b
)
,

Q5 =
(
s̄a(1− γ5)db

)(
s̄b(1 + γ5)d

a
)
, (121)

where a and b denote colour indices. In analogy to the case of BK one then defines the B
parameters of Q2, . . . , Q5 according to

Bi(µ) =

〈
K̄0 |Qi(µ)|

〉

Ni

〈
K̄0 |s̄γ5d| 0

〉
〈0 |s̄γ5d|K0〉 , i = 2, . . . , 5. (122)

The factors {N2, . . . , N5} are given by {−5/3, 1/3, 2, 2/3}, and it is understood that Bi(µ)
is specified in some renormalization scheme, such as MS or a variant of the regularization-
independent momentum subtraction (RI-MOM) scheme.

The SUSY basis has been adopted in Refs. [42, 46, 411]. Alternatively, one can employ the
chiral basis of Buras, Misiak and Urban [412]. The SWME Collaboration prefers the latter,
since the anomalous dimension which enters the RG running has been calculated to two loops
in perturbation theory [412]. Results obtained in the chiral basis can be easily converted to
the SUSY basis via

BSUSY
3 = 1

2

(
5Bchiral

2 − 3Bchiral
3

)
. (123)

The remaining B parameters are the same in both bases. In the following we adopt the SUSY
basis and drop the superscript.

Older quenched results for the BSM B parameters can be found in Refs. [413–415]. Re-
cent estimates for B2, . . . , B5 have been reported for QCD with Nf = 2 (ETM12D [46]),
Nf = 2 + 1 (RBC/UKQCD12E [411], SWME13A [401], SWME14C [416], SWME15A [45])
and Nf = 2+1+1 (ETM15 [42]) flavours of dynamical quarks. The main features of these cal-
culations are identical to the case of BK discussed above. We note, in particular, that SWME
perform the matching between rooted staggered quarks and the MS scheme using perturbation
theory at one loop, while RBC/UKQCD and ETMC employ nonperturbative renormalization
for domain wall and twisted-mass Wilson quarks, respectively. Control over systematic uncer-
tainties (chiral and continuum extrapolations, finite-volume effects) in B2, . . . , B5 is expected
to be at the same level as for BK, as far as the results by ETM12D, ETM15 and SWME15A
are concerned. The calculation by RBC/UKQCD12E has been performed at a single value
of the lattice spacing and a minimum pion mass of 290MeV. Thus, the results do not benefit
from the same improvements regarding control over the chiral and continuum extrapolations
as in the case of BK [10]. Recent progress from RBC/UKQCD using two values of the lattice
spacing have been reported in Refs. [417] and [418].

Results for the B parameters B2, . . . , B5 computed with Nf = 2, 2 + 1 and 2 + 1 + 1
dynamical quarks are listed and compared in Tab. 27 and Fig. 16. In general one finds that
the BSM B parameters computed by different collaborations do not show the same level of
consistency as the SM kaon mixing parameter BK discussed previously. In particular, the

32Thanks to QCD parity invariance we can ignore three more dimension-six operators whose parity con-
serving parts coincide with the corresponding parity conserving contributions of the operators Q1, Q2 and
Q3.
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results for B2, B4 and B5 from SWME [45, 401, 416], obtained using staggered quarks and
employing perturbative matching differ significantly from those quoted by the ETM [42, 46]
and RBC/UKQCD [411] Collaborations, which both determine the matching factors nonper-
turbatively. A recent update of the RBC/UKQCD calculation described in Ref. [418] provides
a hint that the nonperturbative determination of the matching factors depends strongly on
the details in the implementation of the Rome-Southampton method. The use of nonex-
ceptional momentum configurations in the calculation of the vertex functions produces a
significant modification of the renormalization factors, which in turn brings the results from
RBC/UKQCD much closer to the estimates from SWME.

Therefore, insufficient control over the renormalization and matching procedure appears
to be the most likely explanation for the observed deviations. In the absence of further
investigations that corroborate this conjecture, it is difficult to quote global estimates for the
BSM B parameters B2, . . . , B5. However, we observe that for each choice of Nf there is only
one set of results that meets the required quality criteria, i.e. ETM15 [42] for Nf = 2+1+1,
SWME15A [45] for Nf = 2 + 1, and ETM12D [46] for two-flavour QCD.
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Figure 16: Lattice results for the BSM B parameters defined in the MS scheme at a reference
scale of 3GeV, see Tab. 27.
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BK(MS, 2GeV) B̂K

ETM 15 [42] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.524(13)(12) 0.717(18)(16)1

SWME 15A [45] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.537(4)(26) 0.735(5)(36)2

RBC/UKQCD 14B [10] 2+1 A ⋆ ⋆ ◦ ⋆ b 0.5478(18)(110)3 0.7499(24)(150)

SWME 14 [384] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.5388(34)(266) 0.7379(47)(365)

SWME 13A [401] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.537(7)(24) 0.735(10)(33)

SWME 13 [402] 2+1 C ⋆ ◦ ⋆ ◦‡ − 0.539(3)(25) 0.738(5)(34)

RBC/UKQCD 12A [31] 2+1 A ◦ ⋆ ◦ ⋆ b 0.554(8)(14)3 0.758(11)(19)

Laiho 11 [44] 2+1 C ⋆ ◦ ◦ ⋆ − 0.5572(28)(150) 0.7628(38)(205)2

SWME 11A [403] 2+1 A ⋆ ◦ ◦ ◦‡ − 0.531(3)(27) 0.727(4)(38)

BMW 11 [43] 2+1 A ⋆ ⋆ ⋆ ⋆ c 0.5644(59)(58) 0.7727(81)(84)

RBC/UKQCD 10B [404] 2+1 A ◦ ◦ ⋆ ⋆ d 0.549(5)(26) 0.749(7)(26)

SWME 10 [277] 2+1 A ⋆ ◦ ◦ ◦ − 0.529(9)(32) 0.724(12)(43)

Aubin 09 [405] 2+1 A ◦ ◦ ◦ ⋆ − 0.527(6)(21) 0.724(8)(29)

RBC/UKQCD 07A, 08 [145, 406] 2+1 A � ◦ ⋆ ⋆ − 0.524(10)(28) 0.720(13)(37)

HPQCD/UKQCD 06 [407] 2+1 A � ◦∗ ⋆ � − 0.618(18)(135) 0.83(18)

‡ The renormalization is performed using perturbation theory at one loop, with a conservative estimate
of the uncertainty.

∗ This result has been obtained with only two “light” sea quark masses.

a BK is renormalized nonperturbatively at scales 1/a ∼ 2.2 − 3.3GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, the first around 1/a while the second around
3.5 GeV. The impact of the two ways to the final result is taken into account in the error budget.
Conversion to MS is at one-loop at 3 GeV.

b BK is renormalized nonperturbatively at a scale of 1.4 GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
one-loop order at 3 GeV.

c BK is renormalized and run nonperturbatively to a scale of 3.4GeV in the RI/MOM scheme.
nonperturbative and NLO perturbative running agrees down to scales of 1.8GeV within statistical
uncertainties of about 2%.

d BK is renormalized nonperturbatively at a scale of 2GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
one-loop order at 3 GeV.

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369 i.e. the one obtained with
Nf = 2 + 1.

2 B̂K is obtained from the estimate for BK(MS, 2GeV) using the conversion factor 1.369.
3 BK(MS, 2GeV) is obtained from the estimate for B̂K using the conversion factor 1.369.

Table 25: Results for the Kaon B parameter in QCD with Nf = 2 + 1 + 1 and Nf = 2 + 1
dynamical flavours, together with a summary of systematic errors. Any available information
about nonperturbative running is indicated in the column “running”, with details given at
the bottom of the table.
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BK(MS, 2GeV) B̂K

ETM 12D [46] 2 A ⋆ ◦ ◦ ⋆ e 0.531(16)(9) 0.727(22)(12)1

ETM 10A [400] 2 A ⋆ ◦ ◦ ⋆ f 0.533(18)(12)1 0.729(25)(17)

JLQCD 08 [408] 2 A � ◦ � ⋆ − 0.537(4)(40) 0.758(6)(71)

RBC 04 [399] 2 A � � �† ⋆ − 0.495(18) 0.678(25)1

UKQCD 04 [409] 2 A � � �† � − 0.49(13) 0.68(18)

† These results have been obtained at (MπL)min > 4 in a lattice box with a spatial extension L < 2 fm.

e BK is renormalized nonperturbatively at scales 1/a ∼ 2− 3.7GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [142, 400].

f BK is renormalized nonperturbatively at scales 1/a ∼ 2 − 3GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [142, 400].

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369 i.e. the one obtained with Nf =
2 + 1.

Table 26: Results for the Kaon B parameter in QCD with Nf = 2 dynamical flavours, to-
gether with a summary of systematic errors. Any available information about nonperturbative
running is indicated in the column “running”, with details given at the bottom of the table.
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B2 B3 B4 B5

ETM 15 [42] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.46(1)(3) 0.79(2)(5) 0.78(2)(4) 0.49(3)(3)

SWME 15A [45] 2+1 A ⋆ ◦ ⋆ ◦† − 0.525(1)(23) 0.772(6)(35) 0.981(3)(62) 0.751(7)(68)

SWME 14C [416] 2+1 C ⋆ ◦ ⋆ ◦† − 0.525(1)(23) 0.774(6)(64) 0.981(3)(61) 0.748(9)(79)

SWME 13A‡ [401] 2+1 A ⋆ ◦ ⋆ ◦† − 0.549(3)(28) 0.790(30) 1.033(6)(46) 0.855(6)(43)

RBC/ [411] 2+1 A � ◦ ⋆ ⋆ b 0.43(1)(5) 0.75(2)(9) 0.69(1)(7) 0.47(1)(6)
UKQCD 12E

ETM 12D [46] 2 A ⋆ ◦ ◦ ⋆ c 0.47(2)(1) 0.78(4)(2) 0.76(2)(2) 0.58(2)(2)

† The renormalization is performed using perturbation theory at one loop, with a conservative estimate
of the uncertainty.

a Bi are renormalized nonperturbatively at scales 1/a ∼ 2.2 − 3.3GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3.5 GeV for the second one. The impact of these two ways to the final result is taken into account in
the error budget. Conversion to MS is at one loop at 3 GeV.

b The B parameters are renormalized nonperturbatively at a scale of 3 GeV.

c Bi are renormalized nonperturbatively at scales 1/a ∼ 2 − 3.7GeV in the Nf = 2 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3 GeV for the second one.

‡ The computation of B4 and B5 has been revised in Refs. [45] and [416].

Table 27: Results for the BSM B parameters B2, . . . , B5 in the MS scheme at a reference scale
of 3GeV. Any available information on nonperturbative running is indicated in the column
“running”, with details given at the bottom of the Tab.
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7 D-meson decay constants and form factors

Leptonic and semileptonic decays of charmed D and Ds mesons occur via charged W -boson
exchange, and are sensitive probes of c → d and c → s quark flavour-changing transitions.
Given experimental measurements of the branching fractions combined with sufficiently pre-
cise theoretical calculations of the hadronic matrix elements, they enable the determination
of the CKM matrix elements |Vcd| and |Vcs| (within the Standard Model) and a precise test
of the unitarity of the second row of the CKM matrix. Here we summarize the status of
lattice-QCD calculations of the charmed leptonic decay constants. Significant progress has
been made in charm physics on the lattice in recent years, largely due to the availability
of gauge configurations produced using highly-improved lattice-fermion actions that enable
treating the c-quark with the same action as for the u, d, and s-quarks.

This Section updates the corresponding one in the last FLAG review [2] for results that
appeared after November 30, 2013. As already done in Ref. [2], we limit our review to re-
sults based on modern simulations with reasonably light pion masses (below approximately
500 MeV). This excludes results obtained from the earliest unquenched simulations, which
typically had two flavours in the sea, and which were limited to heavier pion masses because of
the constraints imposed by the computational resources and methods available at that time.
Recent lattice-QCD averages for D(s)-meson decay constants were also presented by the Par-
ticle Data Group in the review on “Leptonic Decays of Charged Pseudoscalar Mesons” [183].
The PDG three- and four-flavour averages for fD, fDs , and their ratio are identical to those
obtained here. This is because both reviews include the same sets of calculations in the
averages, and make the same assumptions about the correlations between the calculations.

Following our review of lattice-QCD calculations of D(s)-meson leptonic decay constants
and semileptonic form factors, we then interpret our results within the context of the Standard
Model. We combine our best-determined values of the hadronic matrix elements with the most
recent experimentally-measured branching fractions to obtain |Vcd(s)| and test the unitarity
of the second row of the CKM matrix.

7.1 Leptonic decay constants fD and fDs

In the Standard Model the decay constant fD(s)
of a charged pseudoscalar D or Ds meson is

related to the branching ratio for leptonic decays mediated by aW boson through the formula

B(D(s) → ℓνℓ) =
G2

F |Vcq|2τD(s)

8π
f2D(s)

m2
ℓmD(s)

(
1− m2

ℓ

m2
D(s)

)2

, (124)

where Vcd (Vcs) is the appropriate CKM matrix element for a D (Ds) meson. The branching
fractions have been experimentally measured by CLEO, Belle, Babar and BES with a precision
around 4-5% for both the D and the Ds-meson decay modes [183]. When combined with
lattice results for the decay constants, they allow for determinations of |Vcs| and |Vcd|.

In lattice-QCD calculations the decay constants fD(s)
are extracted from Euclidean matrix

elements of the axial current

〈0|Aµ
cq|Dq(p)〉 = ifDq p

µ
Dq

, (125)

with q = d, s and Aµ
cq = c̄γµγ5q. Results for Nf = 2, 2 + 1 and 2 + 1 + 1 dynamical flavours

are summarized in Tab. 28 and Fig. 17. Since the publication of the last FLAG review, a

116



handful of results for fD and fDs have appeared, which we are going to briefly describe here.
We consider isospin-averaged quantities, although in a few cases results for fD+ are quoted
(FNAL/MILC 11 and FNAL/MILC 14A, where the difference between fD and fD+ has been
estimated be at the 0.5 MeV level).
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fD fDs fDs/fD

FNAL/MILC 14A∗∗ [14] 2+1+1 A ⋆ ⋆ ⋆ ⋆ X 212.6(0.4)
(

+1.0
−1.2

)

249.0(0.3)
(

+1.1
−1.5

)

1.1712(10)
(

+29
−32

)

ETM 14E† [27] 2+1+1 A ⋆ ◦ ◦ ⋆ X 207.4(3.8) 247.2(4.1) 1.192(22)

ETM 13F [229] 2+1+1 C ◦ ◦ ◦ ⋆ X 202(8) 242(8) 1.199(25)

FNAL/MILC 13∇ [419] 2+1+1 C ⋆ ⋆ ⋆ ⋆ X 212.3(0.3)(1.0) 248.7(0.2)(1.0) 1.1714(10)(25)

FNAL/MILC 12B [420] 2+1+1 C ⋆ ⋆ ⋆ ⋆ X 209.2(3.0)(3.6) 246.4(0.5)(3.6) 1.175(16)(11)

χQCD 14 [17] 2+1 A ◦ ◦ ◦ ⋆ X 254(2)(4)

HPQCD 12A [47] 2+1 A ◦ ◦ ◦ ⋆ X 208.3(1.0)(3.3) 246.0(0.7)(3.5) 1.187(4)(12)

FNAL/MILC 11 [48] 2+1 A ◦ ◦ ◦ ◦ X 218.9(11.3) 260.1(10.8) 1.188(25)

PACS-CS 11 [421] 2+1 A � ⋆ � ◦ X 226(6)(1)(5) 257(2)(1)(5) 1.14(3)

HPQCD 10A [49] 2+1 A ⋆ ◦ ⋆ ⋆ X 213(4)∗ 248.0(2.5)

HPQCD/UKQCD 07 [28] 2+1 A ⋆ ◦ ◦ ⋆ X 207(4) 241 (3) 1.164(11)

FNAL/MILC 05 [422] 2+1 A ◦ ◦ ◦ ◦ X 201(3)(17) 249(3)(16) 1.24(1)(7)

TWQCD 14�� [423] 2 A � ◦ � ⋆ X 202.3(2.2)(2.6) 258.7(1.1)(2.9) 1.2788(264)

ALPHA 13B [176] 2 C ◦ ⋆ ⋆ ⋆ X 216(7)(5) 247(5)(5) 1.14(2)(3)

ETM 13B� [20] 2 A ⋆ ◦ ◦ ⋆ X 208(7) 250(7) 1.20(2)

ETM 11A [181] 2 A ⋆ ◦ ◦ ⋆ X 212(8) 248(6) 1.17(5)

ETM 09 [32] 2 A ◦ ◦ ◦ ⋆ X 197(9) 244(8) 1.24(3)

† Update of ETM 13F.
∇ Update of FNAL/MILC 12B.
∗ This result is obtained by using the central value for fDs/fD from HPQCD/UKQCD 07 and increasing

the error to account for the effects from the change in the physical value of r1.
� Update of ETM 11A and ETM 09.

�� 1 lattice spacing ≃ 0.1 fm only. Mπ,minL = 1.93.
∗∗ At β = 5.8, Mπ,minL = 3.2 but this ensemble is primarily used for the systematic error estimate.

Table 28: Decay constants of the D and Ds mesons (in MeV) and their ratio.

Two new results have appeared for Nf = 2. The averages however remain unchanged,
as we will see in the following. In Ref. [176], the ALPHA collaboration directly computed
the matrix element in Eq. (125) (for µ = 0 and q = d, s) on two Nf = 2 ensembles of
nonperturbatively O(a) improved Wilson fermions at lattice spacings of 0.065 and 0.048
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Figure 17: Decay constants of the D and Ds mesons [values in Tab. 28]. and
Eqs. 126, 127, 128]. The significance of the colours is explained in Sec. 2. The black squares
and grey bands indicate our averages.

fm. Pion masses range between 440 and 190 MeV and the condition Lmπ ≥ 4 is always
met. Chiral/continuum extrapolations are performed adopting either a fit ansatz linear in
m2

π and a2 or, for fD, by using a fit form inspired by partially quenched Heavy Meson
Chiral Perturbation Theory (HMχPT). Together with the scale setting, these extrapolations
dominate the final systematic errors. As the scale is set through another decay constant (fK),
what is actually computed is fD(s)

/fK and most of the uncertainty on the renormalization
constant of the axial current drops out. Since the results only appeared as a proceeding
contribution to the Lattice 2013 conference, they do not enter the final averages.

The TWQCD collaboration reported in Ref. [423] about the first computation of the
masses and decay constants of pseudoscalar D(s) mesons in two-flavour lattice QCD with
domain-wall fermions. This is a calculation performed at one lattice spacing only (a ≈
0.061fm) and in a rather small volume (243 × 48, with Mπ,minL ≈ 1.9). For these reasons the
quoted values of the decay constants do not qualify for the averages and should be regarded
as the result of a pilot study in view of a longer and ongoing effort, in which the remaining
systematics will be addressed through computations at different volumes as well as several
lattice spacings.

The Nf = 2 averages therefore coincide with those in the previous FLAG review and are
given by the values in ETM 13B, namely

fD = 208(7) MeV Ref. [20],

Nf = 2 : fDs = 250(7) MeV Ref. [20], (126)

fDs/fD = 1.20(2) Ref. [20].

The situation is quite similar for the Nf = 2 + 1 case, where only one new result, and
for fDs only, appeared in the last two years. The χQCD collaboration used (valence) overlap
fermions on a sea of 2+1 flavours of domain-wall fermions (corresponding to the gauge con-
figurations generated by RBC/UKQCD and described in Ref. [144]) to compute the charm-
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and the strange-quark masses as well as fDs . The decay constant is obtained by combining
the determinations from either an exactly conserved PCAC Ward identity or from the matrix
element of the local axial current. The latter needs to be renormalized and the corresponding
renormalization constant has been determined nonperturbatively in Ref. [424]. The compu-
tation of fDs has been performed at two lattice spacings (a = 0.113 and a = 0.085 fm) with
the value of the bare charm-quark mass, in lattice units, ranging between 0.3 and 0.75. Pion
masses reach down to about 300 MeV and Mπ,minL is always larger than 4. The chiral ex-
trapolation and lattice artifacts are responsible for the largest systematic uncertainties, both
being estimated to be around 1%, on top of a statistical error of about the same size. The lat-
tice spacing dependence is estimated by changing the functional form in the chiral/continuum
extrapolation by terms of O(a4). As the authors point out, it will be possible to make a more
accurate assessment of the discretization errors only once the planned ensembles at a finer
lattice spacing are available.

The RBC/UKQCD collaboration presented intermediate results for the D and Ds decay
constants with 2+1 flavours of Möbius domain-wall fermions in Ref. [425]. Since the analysis
has not been completed yet, no values for fD(s)

are quoted.
Summarizing the Nf = 2 + 1 case, the average for fD did not change with respect to the

last review and it is obtained from the HPQCD 12A and the FNAL/MILC 11 determinations,
whereas for fDs the value changes in order to include the result from the χQCD collaboration
(together with the values in HPQCD 10A and in FNAL/MILC 11). The updated estimates
then read

fD = 209.2(3.3) MeV Refs. [47, 48],

Nf = 2 + 1 : fDs = 249.8(2.3) MeV Refs. [17, 48, 49], (127)

fDs/fD = 1.187(12) Refs. [47, 48],

where the error on the Nf = 2+1 average of fDs has been rescaled by the factor
√
χ2/d.o.f. =

1.1 (see Sec. 2). In addition, the statistical errors between the results of FNAL/MILC and
HPQCD have been everywhere treated as 100% correlated since the two collaborations use
overlapping sets of configurations. The same procedure had been used in the 2013 review.

Two new determinations appeared from simulations with 2+1+1 dynamical flavours.
These are FNAL/MILC 14A and ETM 14E. The FNAL/MILC 14A results in Ref. [14] are
obtained using the HISQ ensembles with up, down, strange and charm dynamical quarks,
generated by the MILC collaboration [333] (see also Ref. [208] for the RMS pion masses)
employing HISQ sea quarks and a 1-loop tadpole improved Symanzik gauge action. The
RHMC as well as the RHMD algorithms have been used in this case. The latter is an inex-
act algorithm, where the accept/reject step at the end of the molecular-dynamics trajectory
is skipped. In Ref. [333] results for the plaquette, the bare fermion condensates and a few
meson masses, using both algorithms, are compared and found to agree within statistical
uncertainties. The relative scale is set through F4ps, the decay constant of a fictitious meson
with valence masses of 0.4ms and physical sea-quark masses. For the absolute scale fπ is
used. In FNAL/MILC 14A four different lattice spacings, ranging from 0.15 to 0.06 fm, have
been considered with all quark masses close to their physical values. The analysis includes
additional ensembles with light sea-quark masses that are heavier than in nature, and where
in some cases the strange sea-quark masses are lighter than in nature. This allowed to ac-
tually perform two different analyses; the “physical mass analysis” and the “chiral analysis”.
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The second analysis uses staggered chiral perturbation theory for all-staggered heavy-light
mesons in order to include the unphysical-mass ensembles. This results in smaller statistical
errors compared to the “physical mass analysis”. The latter is used for the central values and
the former as a cross-check and as an ingredient in the systematic error analysis. Chiral and
continuum extrapolation uncertainties are estimated by considering a total of 114 different
fits. The quark-mass and lattice-spacing dependence of the decay constants are modelled
in heavy-meson, rooted, all-staggered chiral perturbation theory (HMrASχPT) including all
NNLO and N3LO mass-dependent, analytic, terms. Fits differ in the way some of the LEC’s
are fixed, in the number of NNLO parameters related to discretization effects included, in the
use of priors, in whether the a = 0.15 fm ensembles are included or not and in the inputs used
for the quark masses and the lattice spacings. The number of parameters ranges between 23
and 28 and the number of data points varies between 314 and 366. The maximum difference
between these results and the central values is taken as an estimate of the chiral/continuum
extrapolation errors. The central fit is chosen to give results that are close to the centres of
the distributions, in order to symmetrize the errors. FNAL/MILC also provides in Ref. [14]
an estimate of strong isospin-breaking effects by computing the D meson decay constant with
the mass of the light quark in the valence set to the physical value of the down-quark mass.
The result reads fD+ − fD = 0.47(1)

(
+25
−6

)
MeV. This effect is of the size of the quoted errors,

and the number in Tab. 28 indeed corresponds to fD+. The final accuracy on the decay
constants is at the level of half-a-percent. It is therefore necessary to consider the electroweak
corrections to the decay rates when extracting |Vcd| and |Vcs| from leptonic transitions of
D(s) mesons. The most difficult to quantify is due to electromagnetic effects that depend on
the meson hadronic structure. In Ref. [14] this contribution to the decay rates is estimated
to be between 1.1% and 2.8%, by considering the corresponding contribution for π and K
decays, as computed in χPT, and allowing for a factor 2 to 5. After correcting the PDG
data for the decay rates in Ref. [151], by including the effects mentioned above with their
corresponding uncertainty, the FNAL/MILC collaboration uses the results for fD and fDs to
produce estimates for |Vcd| and |Vcs|, as well as a unitarity test of the second row of the CKM
matrix, which yields 1 − |Vcd|2 − |Vcs|2 − |Vcb|2 = −0.07(4), indicating a slight tension with
CKM unitarity.33

The ETM collaboration has also published results with 2 + 1 + 1 dynamical flavours in
Ref. [27] (ETM 14E), updating the values that appeared in the Lattice 2013 Conference
proceedings [229] (ETM 13F). The configurations have been generated using the Iwasaki
action in the gauge and the Wilson twisted mass action for sea quarks. The charm and
strange valence quarks are discretized as Osterwalder-Seiler fermions [426]. Three different
lattice spacings in the range 0.09− 0.06 fm have been considered with pion masses as low as
210 MeV in lattices of linear spatial extent of about 2 to 3 fm (see Ref. [4] for details on the
simulations). In ETM 14E fDs is obtained by extrapolating the ratio fDs/mDs , differently
from ETM 13B, where fDsr0 was extrapolated. The new choice is found to be affected
by smaller discretization effects. For the chiral/continuum extrapolation terms linear and
quadratic in ml and one term linear in a2 are included in the parameterization. Systematic
uncertainties are assessed by comparing to a linear fit in ml and by taking the difference with
the result at the finest lattice resolution. The decay constant fD is determined by fitting
the double ratio (fDs/fD)/(fK/fπ) using continuum HMχPT, as discretization effects are

33Notice that the contribution of |Vcb|2 to the unitarity relation is more than one order of magnitude below
the quoted error, and it can therefore be neglected.
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not visible, within errors, for that quantity. An alternative fit without chiral logs is used
to estimate the systematic uncertainty associated to the chiral extrapolation. The main
systematic uncertainties are due to the continuum and chiral extrapolations and to the error
on fK/fπ, which is also determined in ETM 14E. Using the experimental averages of fD|Vcd|
and fDs |Vcs| available in 2014 from PDG [151], the ETM collaboration also provides a unitarity
test of the second row of the CKM matrix, obtaining 1 − |Vcd|2 − |Vcs|2 − |Vcb|2 = −0.08(5),
which is consistent with the estimate from FNAL/MILC 14A and with the value in the latest
PDG report [183], which quotes −0.063(34) for the same combination of matrix elements.
That indicates a slight tension with three-generation unitarity.

Finally, by combining in a weighted average the FNAL/MILC 14A and the ETM 14E
results, we get the estimates

fD = 212.15(1.45) MeV Refs. [14, 27],

Nf = 2 + 1 + 1 : fDs = 248.83(1.27) MeV Refs. [14, 27], (128)

fDs/fD = 1.1716(32) Refs. [14, 27],

where the error on the average of fD has been rescaled by the factor
√
χ2/d.o.f. = 1.3.

The PDG [151] produces experimental averages of the decay constants, by combining the
measurements of fD|Vcd| and fDs |Vcs| with values of |Vcd| and |Vcs| obtained by relating them
to other CKM elements (i.e., by assuming unitarity). Given the choices detailed in Ref. [151],
the values read

f exp
D+ = 203.7(4.8) MeV, f exp

D+
s
= 257.8(4.1) MeV, (129)

which disagree with the Nf = 2 + 1 + 1 lattice averages in Eq. (128) at the two-sigma level.

7.2 Semileptonic form factors for D → πℓν and D → Kℓν

The form factors for semileptonic D → πℓν and D → Kℓν decays, when combined with
experimental measurements of the decay widths, enable determinations of the CKM matrix
elements |Vcd| and |Vcs| via:

dΓ(D→Pℓν)
dq2

=
G2
F |Vcx|2
24π3

(q2−m2
ℓ )

2
√

E2
P−m2

P

q4m2
D

[(
1 +

m2
ℓ

2q2

)
m2

D(E
2
P −m2

P )|f+(q2)|2

+
3m2

ℓ
8q2

(m2
D −m2

P )
2|f0(q2)|2

]
, (130)

where x = d, s is the daughter light quark, P = π,K is the daughter light pseudoscalar meson,
and q = (pD − pP ) is the momentum of the outgoing lepton pair. The vector and scalar form
factors f+(q

2) and f0(q
2) parameterize the hadronic matrix element of the heavy-to-light

quark flavour-changing vector current Vµ = xγµc:

〈P |Vµ|D〉 = f+(q
2)
(
pDµ + pP µ −

m2
D−m2

P
q2

qµ

)
+ f0(q

2)
m2
D−m2

P
q2

qµ , (131)

and satisfy the kinematic constraint f+(0) = f0(0). Because the contribution to the decay
width from the scalar form factor is proportional to m2

ℓ , it can be neglected for ℓ = e, µ, and
Eq. (130) simplifies to

dΓ(D→Pℓν)
dq2

=
G2
F

24π3 |~pP |3|Vcx|2|fDP
+ (q2)|2 . (132)
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In practice, most lattice-QCD calculations of D → πℓν and D → Kℓν focus on providing
the value of the vector form factor at a single value of the momentum transfer, f+(q

2 = 0),
which is sufficient to obtain |Vcd| and |Vcs|. Because the decay rate cannot be measured
directly at q2 = 0, comparison of these lattice-QCD results with experiment requires a slight
extrapolation of the experimental measurement. Some lattice-QCD calculations also provide
determinations of the D → πℓν and D → Kℓν form factors over the full kinematic range
0 < q2 < q2max = (mD − mP )

2, thereby allowing a comparison of the shapes of the lattice
simulation and experimental data. This nontrivial test in the D system provides a strong
check of lattice-QCD methods that are also used in the B-meson system.

Lattice-QCD calculations of the D → πℓν and D → Kℓν form factors typically use the
same light-quark and charm-quark actions as those of the leptonic decay constants fD and fDs .
Therefore many of the same issues arise, e.g., chiral extrapolation of the light-quark mass(es)
to the physical point, discretization errors from the charm quark, and matching the lattice
weak operator to the continuum, as discussed in the previous section. Two strategies have
been adopted to eliminate the need to renormalize the heavy-light vector current in recent
calculations of D → πℓν and D → Kℓν, both of which can be applied to simulations in which
the same relativistic action is used for the light (u, d, s) and charm quarks. The first method
was proposed by Bećirević and Haas in Ref. [427], and introduces double-ratios of lattice three-
point correlation functions in which the vector current renormalization cancels. Discretization
errors in the double ratio are of O((amh)

2) provided that the vector-current matrix elements
are O(a) improved. The vector and scalar form factors f+(q

2) and f0(q
2) are obtained by

taking suitable linear combinations of these double ratios. The second method was introduced
by the HPQCD Collaboration in Ref. [51]. In this case, the quantity (mc−mx)〈P |S|D〉, where
mx and mc are the bare lattice quark masses and S = x̄c is the lattice scalar current, does
not get renormalized. The desired form factor at q2 = 0 can be obtained by (i) using a
Ward identity to relate the matrix element of the vector current to that of the scalar current,
and (ii) taking advantage of the kinematic identity f+(0) = f0(0), such that f+(q

2 = 0) =
(mc −mx)〈P |S|D〉/(m2

D −m2
P ).

Additional complications enter for semileptonic decay matrix elements due to the nonzero
momentum of the outgoing pion or kaon. Both statistical errors and discretization errors
increase at larger meson momenta, so results for the lattice form factors are most precise
at q2max. However, because lattice calculations are performed in a finite spatial volume, the
pion or kaon three-momentum can only take discrete values in units of 2π/L when periodic
boundary conditions are used. For typical box sizes in recent lattice D- and B-meson form-
factor calculations, L ∼ 2.5–3 fm; thus the smallest nonzero momentum in most of these
analyses lies in the range pP ≡ |~pP | ∼ 400–500 MeV. The largest momentum in lattice
heavy-light form-factor calculations is typically restricted to pP ≤ 4π/L. For D → πℓν and
D → Kℓν, q2 = 0 corresponds to pπ ∼ 940 MeV and pK ∼ 1 GeV, respectively, and the
full recoil-momentum region is within the range of accessible lattice momenta.34 Therefore
the interpolation to q2 = 0 is relatively insensitive to the fit function used to parameterize
the momentum dependence, and the associated systematic uncertainty in f+(0) is small. In
contrast, determinations of the form-factor shape can depend strongly on the parameterization
of the momentum dependence, and the systematic uncertainty due to the choice of model

34This situation differs from that of calculations of the K → πℓν form factor, where the physical pion recoil
momenta are smaller than 2π/L. For K → πℓν it is now standard to use nonperiodic (“twisted”) boundary
conditions [428, 429] to simulate directly at q2 = 0; see Sec. 4.3. Some collaborations have also begun to use
twisted boundary conditions for D decays [430–433].
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function is often difficult to quantify. This is becoming relevant for D → πℓν and D → Kℓν
decays as more collaborations are beginning to present results for f+(q

2) and f0(q
2) over the

full kinematic range. The parameterization of the form-factor shape is even more important
for semileptonic B decays, for which the momentum range needed to connect to experiment
is often far from q2max.

A class of functions based on general field-theory properties, known as z-expansions,
has been introduced to allow model-independent parameterizations of the q2 dependence
of semileptonic form factors over the entire kinematic range (see, e.g., Refs. [434, 435]).
The use of such functions is now standard for the analysis of B → πℓν transitions and the
determination of |Vub| [436–439]; we therefore discuss approaches for parameterizing the q2

dependence of semileptonic form factors, including z-expansions, in Sec. 8.3. Here we briefly
summarize the aspects most relevant to calculations ofD → πℓν andD → Kℓν. In general, all
semileptonic form factors can be expressed as a series expansion in powers of z times an overall
multiplicative function that accounts for any sub-threshold poles and branch cuts, where the
new variable z is a nonlinear function of q2. The series coefficients an depend upon the physical
process (as well as the choice of the prefactors), and can only be determined empirically by
fits to lattice or experimental data. Unitarity establishes strict upper bounds on the size of
the an’s, while guidance from heavy-quark power counting provides even tighter constraints.
Some works are now using a variation of this approach, commonly referred to as “modified
z-expansion,” that is used to simultaneously extrapolate their lattice simulation data to the
physical light-quark masses and the continuum limit, and to interpolate/extrapolate their
lattice data in q2. More comments on this method are also provided in Sec. 8.3.

7.2.1 Results for f+(0)

We now review the status of lattice calculations of the D → πℓν and D → Kℓν form factors
at q2 = 0. As in the previous version of this review, although we also describe ongoing
calculations of the form-factor shapes, we do not rate these calculations, since all of them are
still unpublished, except for conference proceedings that provide only partial results.35

The most advanced Nf = 2 lattice-QCD calculation of the D → πℓν and D → Kℓν
form factors is by the ETM Collaboration [430]. This still preliminary work uses the twisted-
mass Wilson action for both the light and charm quarks, with three lattice spacings down to
a ≈ 0.068 fm and (charged) pion masses down to mπ ≈ 270 MeV. The calculation employs
the ratio method of Ref. [427] to avoid the need to renormalize the vector current, and extrap-
olates to the physical light-quark masses using SU(2) heavy-light meson χPT. ETM simulate
with nonperiodic boundary conditions for the valence quarks to access arbitrary momentum
values over the full physical q2 range, and interpolate to q2 = 0 using the Bećirević-Kaidalov
ansatz [441]. The statistical errors in fDπ

+ (0) and fDK
+ (0) are 9% and 7%, respectively, and

lead to rather large systematic uncertainties in the fits to the light-quark mass and energy
dependence (7% and 5%, respectively). Another significant source of uncertainty is from
discretization errors (5% and 3%, respectively). On the finest lattice spacing used in this
analysis amc ∼ 0.17, so O((amc)

2) cutoff errors are expected to be about 5%. This can be
reduced by including the existing Nf = 2 twisted-mass ensembles with a ≈ 0.051 fm discussed

35In Ref. [440], to be discussed below, form factors are indeed computed for several values of q2, and fitted to
a Bećirević-Kaidalov parameterization (cf. Sec. 8.3.1) to extract their values at q2 = 0. However, while results
for fit parameters are provided, the values of the form factors at q2 6= 0 are not provided, which prevents us
from performing an independent analysis of their shape using model-independent parameterizations.
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in Ref. [36]. Work is in progress by the ETM Collaboration also to compute the form factors
fDπ
+ , fDπ

0 and fDK
+ , fDK

0 for the whole kinematically available range on the Nf = 2 + 1 + 1
twisted-mass Wilson lattices [39]. This calculation will include dynamical charm-quark effects
and use three lattice spacings down to a ≈ 0.06 fm. A BCL z-parameterization is being used
to describe the q2 dependence. The latest progress report on this work, which provides values
of the form factors at q2 = 0 with statistical errors only, can be found in Ref. [442].

The first published Nf = 2 + 1 lattice-QCD calculation of the D → πℓν and D → Kℓν
form factors is by the Fermilab Lattice, MILC, and HPQCD Collaborations [440]. (Because
only two of the authors of this work are in HPQCD, and to distinguish it from other more re-
cent works on the same topic by HPQCD, we hereafter refer to this work as “FNAL/MILC.”)
This work uses asqtad-improved staggered sea quarks and light (u, d, s) valence quarks and
the Fermilab action for the charm quarks, with a single lattice spacing of a ≈ 0.12 fm. At this
lattice spacing, the staggered taste splittings are still fairly large, and the minimum RMS pion
mass is ≈ 510 MeV. This calculation renormalizes the vector current using a mostly nonper-
turbative approach, such that the perturbative truncation error is expected to be negligible
compared to other systematics. The Fermilab Lattice and MILC Collaborations present re-
sults for the D → πℓν and D → Kℓν semileptonic form factors over the full kinematic range,
rather than just at q2 = 0. In fact, the publication of this result predated the precise mea-
surements of the D → Kℓν decay width by the FOCUS [443] and Belle experiments [444],
and predicted the shape of fDK

+ (q2) quite accurately. This bolsters confidence in calculations
of the B-meson semileptonic decay form factors using the same methodology. Work is in
progress [445] to reduce both the statistical and systematic errors in fDπ

+ (q2) and fDK
+ (q2)

through increasing the number of configurations analysed, simulating with lighter pions, and
adding lattice spacings as fine as a ≈ 0.045 fm. In parallel, a much more ambitious compu-
tation of D → πℓν and D → Kℓν by FNAL/MILC is now ongoing, using Nf = 2 + 1 + 1
MILC HISQ ensembles at four values of the lattice spacing down to a = 0.042 fm and pion
masses down to the physical point. The latest report on this computation, focusing on the
form factors at q2 = 0, but without explicit values of the latter yet, can be found in Ref. [446].
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fDπ+ (0) fDK+ (0)

HPQCD 11 [50] 2+1 A ◦ ◦ ◦ ⋆ X 0.666(29)

HPQCD 10B [51] 2+1 A ◦ ◦ ◦ ⋆ X 0.747(19)

FNAL/MILC 04 [440] 2+1 A � � ◦ ◦ X 0.64(3)(6) 0.73(3)(7)

ETM 11B [430] 2 C ◦ ◦ ⋆ ⋆ X 0.65(6)(6) 0.76(5)(5)

Table 29: D → πℓν and D → Kℓν semileptonic form factors at q2 = 0.
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The most precise published calculations of the D → πℓν [50] and D → Kℓν [51] form
factors are by the HPQCD Collaboration. These analyses also use the Nf = 2 + 1 asqtad-
improved staggered MILC configurations at two lattice spacings a ≈ 0.09 and 0.12 fm, but
use the HISQ action for the valence u, d, s, and c quarks. In these mixed-action calculations,
the HISQ valence light-quark masses are tuned so that the ratio ml/ms is approximately the
same as for the sea quarks; the minimum RMS sea-pion mass is ≈ 390 MeV. They calculate
the form factors at q2 = 0 by relating them to the matrix element of the scalar current, which
is not renormalized. They use the “modified z-expansion” to simultaneously extrapolate to
the physical light-quark masses and continuum and interpolate to q2 = 0, and allow the
coefficients of the series expansion to vary with the light- and charm-quark masses. The
form of the light-quark dependence is inspired by χPT, and includes logarithms of the form
m2

πlog(m
2
π) as well as polynomials in the valence-, sea-, and charm-quark masses. Polynomials

in Eπ(K) are also included to parameterize momentum-dependent discretization errors. (See
Ref. [50] for further technical details.) The number of terms is increased until the result for
f+(0) stabilizes, such that the quoted fit error for f+(0) includes both statistical uncertainties
and those due to most systematics. The largest uncertainties in these calculations are from
statistics and charm-quark discretization errors.

The HPQCD Collaboration is now extending their work on D-meson semileptonic form
factors to determining their shape over the full kinematic range [431], and recently obtained
results for the D → Kℓν form factors f+(q

2) and f0(q
2) [432]. This analysis uses a subset of

the ensembles included in their earlier work, with two sea-quark masses at a ≈ 0.12 fm and
one sea-quark mass at a ≈ 0.09 fm, but with approximately three times more statistics on the
coarser ensembles and ten times more statistics on the finer ensemble. As above, the scalar
current is not renormalized. The spatial vector current renormalization factor is obtained by
requiring that f+(0)

H→H = 1 for H = D,Ds, ηs, and ηc. The renormalization factors for the
flavour-diagonal currents agree for different momenta as well as for charm-charm and strange-
strange external mesons within a few percent, and are then used to renormalize the flavour-
changing charm-strange and charm-light currents. The charm-strange temporal vector current
is normalized by matching to the scalar current f0(q

2
max). Also as above, they simultaneously

extrapolate to the physical light-quark masses and continuum and interpolate/extrapolate in
q2 using the modified z-expansion. In this case, however, they only allow for light-quark mass
and lattice-spacing dependence in the series coefficients, but not for charm-quark mass or
kaon energy dependence, and constrain the parameters with Bayesian priors. It is not clear,
however, that only three sea-quark ensembles at two lattice spacings are sufficient to resolve
the quark-mass and lattice spacing dependence, even within the context of constrained fitting.
The quoted error in the zero-recoil form factor f+(0) = 0.745(11) is significantly smaller than
in their 2010 work, but we are unable to understand the sources of this improvement with the
limited information provided in Ref. [432]. The preprint does not provide an error budget,
nor any information on how the systematic uncertainties are estimated. Thus we cannot rate
this calculation, and do not include it in the summary table and plot.

Table 29 summarizes the existing Nf = 2 and Nf = 2 + 1 calculations of the D → πℓν
and D → Kℓν semileptonic form factors. The quality of the systematic error studies is
indicated by the symbols. Additional tables in appendix B.5.2 provide further details on the
simulation parameters and comparisons of the error estimates. Recall that only calculations
without red tags that are published in a refereed journal are included in the FLAG average.
Of the calculations described above, only those of HPQCD 10B,11 satisfy all of the quality
criteria. Therefore our average of the D → πℓν and D → Kℓν semileptonic form factors from
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Nf = 2 + 1 lattice QCD is

fDπ
+ (0) = 0.666(29) Refs. [50],

Nf = 2 + 1 : (133)
fDK
+ (0) = 0.747(19) Refs. [51].

Fig. 18 displays the existing Nf = 2 and Nf = 2+ 1 results for fDπ
+ (0) and fDK

+ (0); the grey
bands show our average of these quantities. Section 7.3 discusses the implications of these
results for determinations of the CKM matrix elements |Vcd| and |Vcs| and tests of unitarity
of the second row of the CKM matrix.
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Figure 18: D → πℓν and D → Kℓν semileptonic form factors at q2 = 0. The HPQCD result
for fDπ

+ (0) is from HPQCD 11, the one for fDK
+ (0) represents HPQCD 10B (see Table 29).

7.3 Determinations of |Vcd| and |Vcs| and test of second-row CKM unitarity

We now interpret the lattice-QCD results for the D(s) meson decays as determinations of the
CKM matrix elements |Vcd| and |Vcs| in the Standard Model.

For the leptonic decays, we use the latest experimental averages from Rosner, Stone and
Van de Water for the Particle Data Group [183]

fD|Vcd| = 45.91(1.05) MeV , fDs |Vcs| = 250.9(4.0) MeV . (134)

By combining these with the average values of fD and fDs from the individual Nf = 2,
Nf = 2 + 1 and Nf = 2 + 1 + 1 lattice-QCD calculations that satisfy the FLAG criteria, we
obtain the results for the CKM matrix elements |Vcd| and |Vcs| in Tab. 30. For our preferred
values we use the averaged Nf = 2 and Nf = 2+1 results for fD and fDs in Eqs. (126), (127)
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Collaboration Ref. Nf from |Vcd| or |Vcs|

FNAL/MILC 14A [14] 2+1+1 fD 0.2159(12)(49)
ETM 14E [27] 2+1+1 fD 0.2214(41)(51)
HPQCD 12A [47] 2+1 fD 0.2204(36)(50)
HPQCD 11 [50] 2+1 D → πℓν 0.2140(93)(29)
FNAL/MILC 11 [48] 2+1 fD 0.2097(108)(48)
ETM 13B [20] 2 fD 0.2207(74)(50)

FNAL/MILC 14A [14] 2+1+1 fDs 1.008(5)(16)
ETM 14E [27] 2+1+1 fDs 1.015(17)(16)
HPQCD 10A [49] 2+1 fDs 1.012(10)(16)
FNAL/MILC 11 [48] 2+1 fDs 0.965(40)(16)
HPQCD 10B [51] 2+1 D → Kℓν 0.975(25)(7)
χQCD 14 [17] 2+1 fDs 0.988(17)(16)
ETM 13B [20] 2 fDs 1.004(28)(16)

Table 30: Determinations of |Vcd| (upper panel) and |Vcs| (lower panel) obtained from lattice
calculations of D-meson leptonic decay constants and semileptonic form factors. The errors
shown are from the lattice calculation and experiment (plus nonlattice theory), respectively.

and (128). We obtain

leptonic decays, Nf = 2 + 1 + 1 : |Vcd| = 0.2164(14)(49) , |Vcs| = 1.008(5)(16) , (135)

leptonic decays, Nf = 2 + 1 : |Vcd| = 0.2195(35)(50) , |Vcs| = 1.004(9)(16) , (136)

leptonic decays, Nf = 2 : |Vcd| = 0.2207(74)(50) , |Vcs| = 1.004(28)(16) , (137)

where the errors shown are from the lattice calculation and experiment (plus nonlattice the-
ory), respectively. For the Nf = 2+1 and the Nf = 2+1+1 determinations, the uncertainties
from the lattice-QCD calculations of the decay constants are smaller than the experimental
uncertainties in the branching fractions. Although the results for |Vcs| are slightly larger than
one, they are consistent with unity within errors.

The leptonic determinations of these CKM matrix elements have uncertainities that are
reaching the few-percent level. However, higher-order electroweak and hadronic corrections
to the rate have not been computed for the case of D(s) mesons, whereas they have been
estimated to be around 1–2% for pion and kaon decays [447]. It is therefore important that
such theoretical calculations are tackled soon, perhaps directly on the lattice, as proposed in
Ref. [448].

For the semileptonic decays, there is no update on the lattice side from the previous
version of our review. As experimental input for the determination of |Vcb| we use the latest
experimental averages from the Heavy Flavour Averaging Group [196]:

fDπ
+ (0)|Vcd| = 0.1425(19) , fDK

+ (0)|Vcs| = 0.728(5) . (138)

For each of fDπ
+ (0) and fDK

+ (0), there is only a single Nf = 2 + 1 lattice-QCD calculation
that satisfies the FLAG criteria. Using these results, which are given in Eq. (133), we obtain
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our preferred values for |Vcd| and |Vcs|:

|Vcd| = 0.2140(93)(29) , |Vcs| = 0.975(25)(7) , (semileptonic decays, Nf = 2 + 1) (139)

where the errors shown are from the lattice calculation and experiment (plus nonlattice the-
ory), respectively. These values are compared with individual leptonic determinations in
Tab. 30.

Table 31 summarizes the results for |Vcd| and |Vcs| from leptonic and semileptonic decays,
and compares them to determinations from neutrino scattering (for |Vcd| only) and CKM
unitarity. These results are also plotted in Fig. 19. For both |Vcd| and |Vcs|, the errors in the
direct determinations from leptonic and semileptonic decays are approximately one order of
magnitude larger than the indirect determination from CKM unitarity. Some tensions at the
2σ level are present between the direct and the indirect estimates, namely in |Vcd| using the
Nf = 2 + 1 + 1 lattice result and in |Vcs| using both the Nf = 2 + 1 and the Nf = 2 + 1 + 1
values.

In order to provide final estimates, for Nf = 2 and Nf = 2 + 1 + 1 we take the only
available results coming from leptonic decays, while for Nf = 2 + 1 we average leptonic
and semileptonic channels. For this purpose, we assume that the statistical errors are 100%
correlated between the FNAL/MILC and HPQCD computations because they use the MILC
asqtad gauge configurations. We also assume that the heavy-quark discretization errors are
100% correlated between the HPQCD calculations of leptonic and semileptonic decays because
they use the same charm-quark action, and that the scale-setting uncertainties are 100%
correlated between the HPQCD results as well. Finally, we include the 100% correlation
between the experimental inputs for the two extractions of |Vcd(s)| from leptonic decays. We
finally quote

our average, Nf = 2 + 1 + 1 : |Vcd| = 0.2164(51) , |Vcs| = 1.008(17) , (140)

our average, Nf = 2 + 1 : |Vcd| = 0.2190(60) , |Vcs| = 0.997(14) , (141)

our average, Nf = 2 : |Vcd| = 0.2207(89) , |Vcs| = 1.004(32) , (142)

where the errors include both theoretical and experimental uncertainties.
Using the lattice determinations of |Vcd| and |Vcs| in Tab. 31, we can test the unitarity of

the second row of the CKM matrix. We obtain

Nf = 2 + 1 + 1 : |Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = 0.06(3) , (143)

Nf = 2 + 1 : |Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = 0.04(3) , (144)

Nf = 2 : |Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = 0.06(7) . (145)

Again, tensions at the 2σ level with CKM unitarity are visible, as also reported in the PDG
review [183], where the value 0.063(34) is quoted for the quantity in the equations above.
Given the current level of precision, this result does not depend on |Vcb|, which is of O(10−2).
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from Ref. |Vcd| |Vcs|

Nf = 2 + 1 + 1 fD & fDs 0.2164(51) 1.008(17)
Nf = 2 + 1 fD & fDs 0.2195(61) 1.004(18)
Nf = 2 fD & fDs 0.2207(89) 1.004(32)

Nf = 2 + 1 D → πℓν and D → Kℓν 0.2140(97) 0.975(26)

PDG neutrino scattering [151] 0.230(11)
Rosner 15 (for the PDG) CKM unitarity [183] 0.2254(7) 0.9733(2)

Table 31: Comparison of determinations of |Vcd| and |Vcs| obtained from lattice methods with
nonlattice determinations and the Standard Model prediction assuming CKM unitarity.
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Figure 19: Comparison of determinations of |Vcd| and |Vcs| obtained from lattice methods
with nonlattice determinations and the Standard Model prediction based on CKM unitarity.
When two references are listed on a single row, the first corresponds to the lattice input for
|Vcd| and the second to that for |Vcs|. The results denoted by squares are from leptonic decays,
while those denoted by triangles are from semileptonic decays.
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8 B-meson decay constants, mixing parameters and form fac-

tors

The (semi)leptonic decay and mixing processes of B(s) mesons have been playing a crucial
role in flavour physics. In particular, they contain important information for the investigation
of the b−d unitarity triangle in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and can be
ideal probes to physics beyond the Standard Model. The charged-current decay channels
B+ → l+νl and B

0 → π−l+νl, where l+ is a charged lepton with νl being the corresponding
neutrino, are essential in extracting the CKM matrix element |Vub|. Similarly, the B to D(∗)

semileptonic transitions can be used to determine |Vcb|. The flavour changing neutral current
(FCNC) processes, such as B → K(∗)ℓ+ℓ− and Bd(s) → ℓ+ℓ−, occur only beyond the tree level
in weak interactions and are suppressed in the Standard Model. Therefore, these processes
can be sensitive to new physics, since heavy particles can contribute to the loop diagrams.
They are also suitable channels for the extraction of the CKM matrix elements involving the
top quark which can appear in the loop. For instance, the neutral Bd(s)-meson mixings are
FCNC processes and are dominated by the 1-loop “box” diagrams containing the top quark
and the W bosons. Thus, using the experimentally measured neutral B0

d(s)-meson oscillation
frequencies, ∆Md(s), and the theoretical calculations for the relevant hadronic mixing matrix
elements, one can obtain |Vtd| and |Vts| in the Standard Model.36

Accommodating the light quarks and the b quark simultaneously in lattice-QCD computa-
tions is a challenging endeavour. To incorporate the pion and the b hadrons with their physical
masses, the simulations have to be performed using the lattice size L̂ = L/a ∼ O(102), where
a is the lattice spacing and L is the physical (dimensionful) box size. This is a few times
larger than what one can practically afford in contemporary numerical projects. Therefore,
in addition to employing Chiral Perturbation Theory for the extrapolations in the light-quark
mass, current lattice calculations for quantities involving b hadrons often make use of effective
theories that allow one to expand in inverse powers of mb. In this regard, two general ap-
proaches are widely adopted. On the one hand, effective field theories such as Heavy-Quark
Effective Theory (HQET) and Nonrelativistic QCD (NRQCD) can be directly implemented
in numerical computations. On the other hand, a relativistic quark action can be improved á
la Symanzik to suppress cutoff errors, and then re-interpreted in a manner that is suitable for
heavy-quark physics calculations. This latter strategy is often referred to as the method of the
Relativistic Heavy-Quark Action (RHQA). The utilization of such effective theories inevitably
introduces systematic uncertainties that are not present in light-quark calculations. These
uncertainties can arise from the truncation of the expansion in constructing the effective the-
ories (as in HQET and NRQCD), or from more intricate cutoff effects (as in NRQCD and
RQHA). They can also be introduced through more complicated renormalization procedures
which often lead to significant systematic effects in matching the lattice operators to their
continuum counterparts. For instance, due to the use of different actions for the heavy and
the light quarks, it is more difficult to construct absolutely normalized bottom-light currents.

Complementary to the above “effective theory approaches”, another popular method is to
simulate the heavy and the light quarks using the same (normally improved) lattice action at
several values of the heavy-quark mass, mh, with amh < 1 and mh < mb. This enables one

36The neutral B-meson leptonic decays, Bd,s → µ+µ−, were recently observed at the LHC experiments, and
the corresponding branching fractions can be obtained by combining the data from the CMS and the LHCb
collaborations [449]. Nevertheless, the errors of these experimental results are currently too large to enable a
precise determination of |Vtd| and |Vts|.
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to employ HQET-inspired relations to extrapolate the computed quantities to the physical b
mass. When combined with results obtained in the static heavy-quark limit, this approach
can be rendered into an interpolation, instead of extrapolation, in mh. The discretization
errors are the main source of the systematic effects in this method, and very small lattice
spacings are needed to keep such errors under control.

Because of the challenge described above, the efforts that have been made to obtain
reliable, accurate lattice-QCD results for physics of the b quark have been enormous. These
efforts include significant theoretical progress in formulating QCD with heavy quarks on the
lattice. This aspect is briefly reviewed in Appendix A.1.3.

In this section, we summarize the results of the B-meson leptonic decay constants, the
neutral B-mixing parameters, and the semileptonic form factors, from lattice QCD. To be
focused on the calculations which have strong phenomenological impact, we limit the review to
results based on modern simulations containing dynamical fermions with reasonably light pion
masses (below approximately 500 MeV). Compared to the progress in the light-quark sector,
heavy-quark physics on the lattice is not as mature. Consequently, fewer collaborations have
finished calculations for these quantities. In addition, the existing results are often obtained
at coarser lattice spacings and heavier pions. Therefore, for some quantities, there is only a
single lattice calculation that satisfies the criteria to be included in our average. Nevertheless,
several collaborations are currently pursuing this line of research with various lattice b-quark
actions, finer lattice spacings, and lighter pions. Thus many new results with controlled errors
are expected to appear in the near future.

Following our review of B(s)-meson leptonic decay constants, the neutral B-meson mixing
parameters, and semileptonic form factors, we then interpret our results within the context
of the Standard Model. We combine our best-determined values of the hadronic matrix
elements with the most recent experimentally-measured branching fractions to obtain |V(u)cb|
and compare these results to those obtained from inclusive semileptonic B decays.

Recent lattice-QCD averages for B+- and Bs-meson decay constants were also presented
by the Particle Data Group (PDG) in Ref. [183]. The PDG three- and four-flavour averages for
these quantities differ from those quoted here because the PDG provides the charged-meson
decay constant, fB+ , while we present the isospin-averaged meson-decay constant, fB.

8.1 Leptonic decay constants fB and fBs

TheB andBs meson decay constants are crucial input for extracting information from leptonic
B decays. Charged B mesons can decay to the lepton-neutrino final state through the charged-
current weak interaction. On the other hand, neutral Bd(s) mesons can decay to a charged-
lepton pair via a flavour-changing neutral current (FCNC) process.

In the Standard Model the decay rate for B+ → ℓ+νℓ is described by a formula identical
to Eq. (124), with D(s) replaced by B, and the relevant CKM matrix element, Vcq, substituted
by Vub,

Γ(B → ℓνℓ) =
mB
8π G

2
F f

2
B|Vub|2m2

ℓ

(
1− m2

ℓ

m2
B

)2
. (146)

The only charged-current B meson decay that has been observed so far is B+ → τ+ντ , which
has been measured by the Belle and Babar collaborations [450, 451]. Both collaborations
have reported results with errors around 20%. These measurements can be used to determine
|Vub| when combined with lattice-QCD predictions of the corresponding decay constant.
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Neutral Bd(s)-meson decays to a charged lepton pair, Bd(s) → l+l− is a FCNC process,
and can only occur at 1-loop in the Standard Model. Hence these processes are expected to be
rare, and are sensitive to physics beyond the Standard Model. The corresponding expression
for the branching fraction has the form

B(Bq → ℓ+ℓ−) =
τBq
1+yq

G2
Fα

2

16π3 mBqf
2
Bq |V ∗

tbVtq|2m2
ℓC

SM
10

√
1− 4m2

ℓ

m2
Bq

, (147)

where the light-quark q = s or d, and the coefficient CSM
10 includes the NLO electro-weak

and NNLO QCD matching corrections [452]. The factor 1/(1 + yq), with yq = ∆ΓBq/(2ΓBq ),
accounts for the fact that the measured branching fraction corresponds to a time-integrated
rate of the oscillating Bq system to ℓ+ℓ− [453]. That correction is particularly important
for the Bs decays because of the relatively large ys = 0.06(1) [196, 454]. Evidence for both
Bs → µ+µ− and Bs → µ+µ− decays was recently observed by the CMS and the LHCb
collaborations. Combining the data from both collaborations, the branching fractions can be
extracted to be [449],

B(Bd → µ+µ−) = (3.9+1.6
−1.4) 10

−10,

B(Bs → µ+µ−) = (2.8+0.7
−0.6) 10

−9, (148)

which are compatible with the Standard Model predictions at the 2.2σ and 1.2σ level, respec-
tively.

The decay constants fBq (with q = u, d, s) parameterize the matrix elements of the corre-
sponding axial-vector currents, Aµ

bq = b̄γµγ5q, analogously to the definition of fDq in Sec. 7.1:

〈0|Aµ|Bq(p)〉 = ipµBfBq . (149)

For heavy-light mesons, it is convenient to define and analyze the quantity

ΦBq ≡ fBq
√
mBq , (150)

which approaches a constant (up to logarithmic corrections) in the mB →∞ limit according
to HQET. In the following discussion we denote lattice data for Φ(f) obtained at a heavy-
quark mass mh and light valence-quark mass mℓ as Φhℓ(fhl), to differentiate them from the
corresponding quantities at the physical b and light-quark masses.

The SU(3)-breaking ratio, fBs/fB , is of interest. This is because in lattice-QCD calcu-
lations for this quantity, many systematic effects can be partially reduced. These include
discretization errors, heavy-quark mass tuning effects, and renormalization/matching errors,
amongst others. On the other hand, this SU(3)-breaking ratio is still sensitive to the chi-
ral extrapolation. Given that the chiral extrapolation is under control, one can then adopt
fBs/fB as input in extracting phenomenologically-interesting quantities. For instance, this
ratio can be used to determine |Vts/Vtd|. In addition, it often happens to be easier to obtain
lattice results for fBs with smaller errors. Therefore, one can combine the Bs-meson decay
constant with the SU(3)-breaking ratio to calculate fB. Such strategy can lead to better
precision in the computation of the B-meson decay constant, and has been adopted by the
ETM [20] and the HPQCD collaborations [55].

It is clear that the decay constants for charged and neutral B mesons play different roles in
flavour physics phenomenology. As already mentioned above, the knowledge of the B+-meson
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decay constant, fB+, is essential for extracting |Vub| from leptonic B+ decays. The neutral B-
meson decay constants, fB0 and fBs , are inputs for obtaining |Vtd| using information from the
B-meson mixing processes. In view of this, it is desirable to include isospin-breaking effects in
lattice computations for these quantities, and have results for fB+ and fB0 . Nevertheless, as
will be discussed in detail in this section, such effects are small compared to the current errors
of the decay constants calculated using lattice QCD. In this review, we will then concentrate
on the isospin-averaged result, fB, and the Bs-meson decay constant, as well as the SU(3)-
breaking ratio, fBs/fB . For the world average for the lattice determination of fB+ and
fBs/fB+ , we refer the reader to the latest work from the Particle Data Group (PDG) [183].
Notice that the lattice results used in Ref. [183] and the current review are identical. We will
discuss this in further detail at the end of this subsection.

The status of lattice-QCD computations for B-meson decay constants and the SU(3)-
breaking ratio, using gauge-field ensembles with light dynamical fermions, is summarized in
Tabs. 32 and 33. Figs. 20 and 21 contain the graphic presentation of the collected results
and our averages. Many results in these tables and plots were already reviewed in detail in
the previous FLAG report [2]. Below we will describe the new results that appeared after
December 2013. In addition, we will comment on our updated strategies in performing the
averaging.
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Figure 20: Decay constants of the B and Bs mesons. The values are taken from Tab. 32 (the
fB entry for FNAL/MILC 11 represents fB+). The significance of the colours is explained
in Sec. 2. The black squares and grey bands indicate our averages in Eqs. (151), (152) and
(153).

Only one new Nf = 2 project for computing fB, fBs and fBs/fB was completed after
the publication of the previous FLAG review. This was carried out by the ALPHA collabo-
ration [57] (ALPHA 14 in Tabs. 32 and 33), on the CLS (Coordinated Lattice Simulations)
gauge-field ensembles which were generated using the Wilson plaquette action and Nf = 2
non-perturbatively O(a)-improved Wilson fermions with the DD-HMC [464–466] or the MP-
HMC [467] algorithm. There are three choices of lattice spacing, 0.048, 0.065 and 0.075 fm,
in these ensembles. At each lattice spacing, three to four lattice sizes are adopted in the sim-
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fB+ fB0 fB fBs

ETM 13E [455] 2+1+1 C ◦ ◦ ◦ ◦ X − − 196(9) 235(9)

HPQCD 13 [52] 2+1+1 A ⋆ ⋆ ⋆ ◦ X 184(4) 188(4) 186(4) 224(5)

RBC/UKQCD 14 [53] 2+1 A ◦ ◦ ◦ ◦ X 195.6(14.9) 199.5(12.6) − 235.4(12.2)

RBC/UKQCD 14A [54] 2+1 A ◦ ◦ ◦ ◦ X − − 219(31) 264(37)

RBC/UKQCD 13A [456] 2+1 C ◦ ◦ ◦ ◦ X − − 191(6)⋄stat 233(5)⋄stat

HPQCD 12 [55] 2+1 A ◦ ◦ ◦ ◦ X − − 191(9) 228(10)

HPQCD 12 [55] 2+1 A ◦ ◦ ◦ ◦ X − − 189(4)△ −
HPQCD 11A [56] 2+1 A ⋆ ◦ ⋆ ⋆ X − − − 225(4)∇

FNAL/MILC 11 [48] 2+1 A ◦ ◦ ⋆ ◦ X 197(9) − − 242(10)

HPQCD 09 [59] 2+1 A ◦ ◦ ◦ ◦ X − − 190(13)• 231(15)•

ALPHA 14 [57] 2 A ⋆ ⋆ ⋆ ⋆ X − − 186(13) 224(14)

ALPHA 13 [457] 2 C ⋆ ⋆ ⋆ ⋆ X − − 187(12)(2) 224(13)

ETM 13B, 13C† [20, 58] 2 A ⋆ ◦ ⋆ ◦ X − − 189(8) 228(8)

ALPHA 12A [458] 2 C ⋆ ⋆ ⋆ ⋆ X − − 193(9)(4) 219(12)

ETM 12B [459] 2 C ⋆ ◦ ⋆ ◦ X − − 197(10) 234(6)

ALPHA 11 [460] 2 C ⋆ ◦ ⋆ ⋆ X − − 174(11)(2) −
ETM 11A [181] 2 A ◦ ◦ ⋆ ◦ X − − 195(12) 232(10)

ETM 09D [461] 2 A ◦ ◦ ◦ ◦ X − − 194(16) 235(12)

⋄ Statistical errors only.
△ Obtained by combining fBs from HPQCD 11A with fBs/fB calculated in this work.
∇ This result uses one ensemble per lattice spacing with light to strange sea-quark mass ratiomℓ/ms ≈ 0.2.
• This result uses an old determination of r1 = 0.321(5) fm from Ref. [462] that has since been superseded.
† Update of ETM 11A and 12B.

Table 32: Decay constants of the B, B+, B0 and Bs mesons (in MeV). Here fB stands
for the mean value of fB+ and fB0 , extrapolated (or interpolated) in the mass of the light
valence-quark to the physical value of mud.

ulations. The hyper-cubic boxes are of the shape L3 × T , with the temporal extent T = 2L.
The smallest box used in ALPHA 14 is L ≈ 2 fm. On each of these lattice sizes, one sea-
quark mass is employed in the computation, and the condition MπL > 4 is always ensured.
This leads to subpercentage-level finite-size effects [468]. The corresponding lightest pions
composed of the sea quarks for these three values of the lattice spacing are 270, 190, and 280
MeV, respectively. In this work, the lattice-regularized HQET action and the axial current
to the order of 1/mB , as tuned in Refs. [21, 469–472] with non-perturbative matching to
QCD, are used to compute the heavy-light meson decay constant. This matching procedure
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fBs/fB+ fBs/fB0 fBs/fB

ETM 13E [455] 2+1+1 C ⋆ ◦ ◦ ◦ X − − 1.201(25)

HPQCD 13 [52] 2+1+1 A ⋆ ⋆ ⋆ ◦ X 1.217(8) 1.194(7) 1.205(7)

RBC/UKQCD 14 [53] 2+1 A ◦ ◦ ◦ ◦ X 1.223(71) 1.197(50) −
RBC/UKQCD 14A [54] 2+1 A ◦ ◦ ◦ ◦ X − − 1.193(48)

RBC/UKQCD 13A [456] 2+1 C ◦ ◦ ◦ ◦ X − − 1.20(2)⋄stat

HPQCD 12 [55] 2+1 A ◦ ◦ ◦ ◦ X − − 1.188(18)

FNAL/MILC 11 [48] 2+1 A ◦ ◦ ⋆ ◦ X 1.229(26) − −
RBC/UKQCD 10C [463] 2+1 A � � � ◦ X − − 1.15(12)

HPQCD 09 [59] 2+1 A ◦ ◦ ◦ ◦ X − − 1.226(26)

ALPHA 14 [57] 2 A ⋆ ⋆ ⋆ ⋆ X − − 1.203(65)

ALPHA 13 [457] 2 C ⋆ ⋆ ⋆ ⋆ X − − 1.195(61)(20)

ETM 13B, 13C† [20, 58] 2 A ⋆ ◦ ⋆ ◦ X − − 1.206(24)

ALPHA 12A [458] 2 C ⋆ ⋆ ⋆ ⋆ X − − 1.13(6)

ETM 12B [459] 2 C ⋆ ◦ ⋆ ◦ X − − 1.19(5)

ETM 11A [181] 2 A ◦ ◦ ⋆ ◦ X − − 1.19(5)

⋄ Statistical errors only.
† Update of ETM 11A and 12B.

Table 33: Ratios of decay constants of the B and Bs mesons (for details see Tab. 32).

removes both the logarithmic and the power divergences in the effective theory regularized
on the lattice. The valence light (up and down) quarks are implemented with the unitary
setup, such that the valence and the sea pions have identical masses. On the other hand, the
valence strange-quark mass is tuned on the CLS gauge-field ensembles employing the kaon
decay constant [12]. The static-light axial current in this work is also O(a)-improved to 1-loop
order. Using the lattice data, the ground-state contributions to the relevant correlators are
obtained through the method of the generalized eigenvalue problem (GEVP), as detailed in
Ref. [473]. With this GEVP approach in ALPHA 14, the systematic errors arising from the
excited-state contamination are typically less than one third of the statistical errors in the
extracted decay constants. Combined chiral-continuum extrapolations, adopting the NLO
HMχPT predictions, are then performed to determine the decay constants in the limit of
physical pion mass and vanishing lattice spacing. The errors of the final results in ALPHA 14
include statistical uncertainties, the discrepancy to the static-limit results, the effects of the
lattice spacing, the uncertainties from the HQET parameters in the matching procedure,

135



1.10 1.15 1.20 1.25

� �
=
�+

�+
�

� �
=
�+

�
� �

=
�

ETM 11A
ETM 12B
ALPHA 12A
ETM 13B, 13C
ALPHA 13
ALPHA 14

FLAG average for �� =�

HPQCD 09
RBC/UKQCD 10C
FNAL/MILC 11
HPQCD 12
RBC/UKQCD 13A (stat. err. only)
RBC/UKQCD 14A
RBC/UKQCD 142
RBC/UKQCD 141

FLAG average for �� =�+�

HPQCD 13
ETM 13E

FLAG average for �� =�+�+�

���/��

Figure 21: Ratio of the decay constants of the B and Bs mesons. The values are taken from
Tab. 33 (the fB entry for FNAL/MILC 11 represents fB+). The significance of the colours
is explained in Sec. 2. The black squares and grey bands indicate our averages in Eqs. (151),
(152) and (153).

and the systematic effects in the chiral extrapolations as estimated by comparing with fits
to formulae without the chiral logarithms. Since the fits to the predictions of finite-volume
HMχPT [468] have not been implemented, systematic effects resulting from the finite lattice
size are not included in the analysis. Nevertheless, given that the condition MπL > 4 is
always satisfied in ALPHA 14, these effects should be at the subpercentage level according
to the 1-loop formulae in Ref. [468].

The new result, ALPHA 14, satisfies all our criteria for being included in the averaging
process. Therefore, in the current edition of the FLAG report, two Nf = 2 calculations for the
B-meson decay constants and the SU(3)-breaking ratio contribute to our averages. The other
determination of these quantities (ETM 13B, 13C in Tabs. 32 and 33) was already reviewed
in detail in the previous FLAG publication. These two projects are based on completely
different lattice simulations, and there is no correlation between the errors quoted in them.
This gives our estimate,

fB = 188(7) MeV Refs. [20, 57, 58],

Nf = 2 : fBs = 227(7) MeV Refs. [20, 57, 58], (151)

fBs/fB = 1.206(23) Refs. [20, 57, 58].

Two groups of authors (RBC/UKQCD 14 [53] and RBC/UKQCD 14A [54] in Tabs. 32 and 33)
presented their Nf = 2+1 results for fB, fBs and fBs/fB after the publication of the previous
FLAG report in 2013. Both groups belong to the RBC/UKQCD collaboration. They use the
same gauge-field ensembles generated by this collaboration, with the Iwasaki gauge action and
domain-wall dynamical quarks [144], adopting the “RHMC II” algorithm [145]. Two values
of the lattice spacing, 0.11 and 0.086 fm, are used in the simulations, with the corresponding
lattice sizes being 243 × 64 and 323 × 64, respectively. This fixes the spatial size L ≈ 2.7
fm in all the data sets. For the coarse lattice, two choices of the sea-quark masses, with
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Mπ ≈ 328 and 420 MeV, are implemented in the simulations. On the other hand, three
values of the sea-quark masses (Mπ ≈ 289, 344, 394 MeV) are used on the fine lattice. This
makes certain that MπL > 4 is always satisfied. At each value of the lattice spacing, only one
sea strange-quark mass is implemented, which is about 10% higher than its physical value.

In RBC/UKQCD 14, the heavy-quark is described by the relativistic lattice action pro-
posed in Ref. [474]. The three parameters of this relativistic heavy-quark (RHQ) action
are tuned non-perturbatively in Ref. [475] by requiring that the spin-averaged Bs-meson
mass, MBs = (MBs + 3MB∗

s
)/4, and the hyperfine splitting, ∆MBs

= MB∗
s
− MBs equal

the PDG values, and that the lattice rest and kinetic meson masses are equal. Statistical
uncertainties in the tuned parameters are propagated to the decay constants via jackknife
resampling. Simulations with different values of the RHQ parameters are used to estimate
the remaining uncertainties in the decay constants from the tuning procedure. Regarding
valence light- and strange-quarks, the authors of RBC/UKQCD 14 adopt exactly the same
domain-wall discretization as that in the sea-quark sector. For each lattice spacing, such
valence domain-wall fermion propagators at six choices of the mass parameter are generated.
These six values straddle between the lightest and strange sea-quark masses in the gauge-
field ensembles, and several of them correspond to the unitary points. With the above lattice
setting, the heavy-meson decay constants are obtained, employing an axial current that is
O(a)-improved to 1-loop level. The renormalization of the axial current is carried out with
a mostly nonperturbative procedure proposed in Ref. [476]. Linear interpolations for the
heavy-quark action parameters, as well as the valence strange-quark mass are then performed
on these heavy-meson decay constants. As for the chiral extrapolation for the light-quark
mass, it is implemented together with the continuum extrapolation (linear in a2) adopting
SU(2)-HMχPT at NLO.37 The decay constants, fB+ and fB0 , are determined by chirally
extrapolating to the physical u- and d-quark masses, respectively, and their isospin-averaged
counterpart, fB, is not reported. Notice that only the unitary points in the light-quark mass
are used in the central procedure for the chiral extrapolation. This extrapolation serves as
the method to confirm that finite-size effects are at the subpercentage level by comparing
with the prediction of finite-volume HMχPT [468]. Furthermore, since there is no observed
sea-quark dependence in fBs , it is extrapolated to the continuum limit straight after the in-
terpolation of the valence strange-quark mass. The authors of RBC/UKQCD 14 provided
a comprehensive list of systematic errors in their work. The dominant effect is from the
chiral-continuum extrapolation. This was investigated using several alternative procedures
by varying the fit ansätze and omitting the data points at the heaviest pion mass. The error
arising from the continuum extrapolation of fBs is estimated by taking the result on the
finer lattice as the alternative. One other important source of the systematic errors is the
heavy-quark discretization effect, which is estimated using a power-counting argument in the
improvement programme.

In the other newly completed B-meson decay constants project, RBC/UKQCD 14A, the
static heavy-quark action is implemented with the HYP smearing [477] that reduces the
power divergences. As for the valence light- and strange-quarks, the same domain-wall dis-
cretization as adopted for the sea quarks is used. The masses of the valence light quarks

37The authors of RBC/UKQCD 14 claim that using the NLO SU(3)-HMχPT extrapolation formulae, ac-
ceptable fits for the decay constants can be found. On the other hand, no reasonable fit for the ratio, fBs/fB ,
can result from this procedure, because this ratio has smaller statistical errors. The NLO SU(3)-HMχPT
predictions are then used as a means to estimate the systematic effects arising from the chiral-continuum
extrapolation.
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are chosen to be at the unitary points. On the other hand, for each lattice spacing, two
values of the valence strange-quark mass are utilized, with one of them identical to that
of its sea-quark counterpart, and the other slightly smaller than the physical strange-quark
mass. Employing the propagators of these valence quarks computed on the RBC/UKQCD
gauge-field ensembles, the relevant matrix elements of the axial current are calculated to
extract the decay constant. Notice that the source and sink smearings are applied on the va-
lence light- and strange-quark propagators, in order to obtain better overlap with the ground
state. The axial current is O(a)-improved to 1-loop order, and its renormalization/matching
is performed in a two-step fashion. Namely, it is first matched from the lattice-regularized
HQET to the same effective theory in the continuum at the inverse lattice spacing, a−1, and
then matched to QCD at the physical b-quark mass, mb. At each of these two steps, the
matching is carried out at 1-loop level, and the 2-loop running between a−1 and mb is im-
plemented accordingly. Regarding the extrapolation to the physical light-quark mass, it is
achieved using SU(2)-HMχPT, after linearly interpolating the decay constants to the physical
strange-quark mass in the valence sector. Unlike RBC/UKQCD 14, here the isospin-averaged
fB, instead of the individual fB+ and fB0 , is reported in RBC/UKQCD 14A. This chiral fit
is combined with the continuum extrapolation by including a term proportional to a2 in the
HMχPT formulae. In addition, finite-size effects are also estimated by replacing the 1-loop
integrals with sums in HMχPT [468]. The predominant systematic error in fBs and fB is
from the 1-loop renormalization/matching procedure. This error is accounted for by employ-
ing a power-counting method, and is evaluated to be around 6%. Obviously, it is small for
fBs/fB . Another significant systematic effect (about 2 ∼ 3% in all relevant quantities) results
from the chiral-continuum extrapolation. This effect is estimated by omitting the chiral loga-
rithms in the fitting procedure. Finally, based upon a power-counting argument, the authors
of RBC/UKQCD 14A include a 10% error on fB(s)

, and a 2.2% error on fBs/fB, to account
for the use of the static heavy quarks in their work.

Both new computations from the RBC/UKQCD collaboration satisfy the criteria for being
considered in our averages of the relevant quantities. Since they are based on exactly the same
gauge-field configurations, we treat the statistical errors in these two results as 100% corre-
lated. It also has to be pointed out that only fB+ and fB0 are reported in RBC/UKQCD 14,
while we are concentrating on the isospin-averaged fB in our current work. For this purpose,
we regard both fB+ and fB0 in RBC/UKQCD 14 as fB, and completely correlate all the
errors.

In addition to RBC/UKQCD 14 and RBC/UKQCD 14A, a few other results in Tabs. 32
and 33 are also in our averaging procedure. These include HPQCD 12, HPQCD 11A, and
FNAL/MILC 11. Notice that there are two results of fB from HPQCD 12 in Tab. 32. Both
of these were in the averaging procedure in the last edition of the FLAG report. However, for
our current work, we only include the one with smaller error. This result is obtained by taking
fBs/fB computed with the NRQCD description of the b quark in HPQCD 12, and multiplying
it by fBs calculated employing the HISQ discretization for the heavy quarks in HPQCD 11A.
This strategy significantly reduces the systematic effect arising from the renormalization of
the axial current in Eq. (149), as compared to the “direct” determination of fB using NRQCD
heavy quarks in HPQCD 12. Since the calculations performed in FNAL/MILC 11, HPQCD 12
and HPQCD 11A all involve the gauge-field ensembles generated by the MILC collaboration,
we treat their statistical errors as 100% correlated. Following the above discussion, our
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procedure leads to the averages,

fB = 192.0(4.3) MeV Refs. [48, 53–56],

Nf = 2 + 1 : fBs = 228.4(3.7) MeV Refs. [48, 53–56], (152)

fBs/fB = 1.201(16) Refs. [48, 53–56].

There have been no new Nf = 2+ 1+ 1 results for the B-meson decay constants and the
SU(3)-breaking ratio since the release of the previous FLAG publication.38 Therefore, our
averages remain the same as those in the previous FLAG report,

fB = 186(4) MeV Refs. [52],

Nf = 2 + 1 + 1 : fBs = 224(5) MeV Refs. [52], (153)

fBs/fB = 1.205(7) Refs. [52].

The PDG recently presented their averages for the Nf = 2+1 and Nf = 2+1+1 lattice-
QCD determinations of fB+, fBs and fBs/fB+ [183]39. The lattice-computation results used
in Ref. [183] are identical to those included in our current work. Regarding our isospin-
averaged fB as the representative for fB+ , then the results from current FLAG and PDG
estimations for these quantities are well compatible. In the PDG work, they “corrected” the
isospin-averaged fB, as reported by various lattice collaborations, using the Nf = 2 + 1 + 1
strong isospin-breaking effect computed in HPQCD 13 [52] (see Tab. 32 in this subsection).
This only accounts for the contribution from the valence-quark masses. However, since the

isospin-breaking effects from the sea-quark masses appear in the form (m
(sea)
u −m(sea)

d )2, the
valence sector is the predominant source of strong isospin breaking [479].40

8.2 Neutral B-meson mixing matrix elements

Neutral B-meson mixing is induced in the Standard Model through 1-loop box diagrams to
lowest order in the electroweak theory, similar to those for short-distance effects in neutral
kaon mixing. The effective Hamiltonian is given by

H∆B=2,SM
eff =

G2
FM

2
W

16π2 (F0
dQd

1 + F0
sQs

1) + h.c. , (154)

with
Qq

1 =
[
b̄γµ(1− γ5)q

] [
b̄γµ(1− γ5)q

]
, (155)

where q = d or s. The short-distance function F0
q in Eq. (154) is much simpler compared to

the kaon mixing case due to the hierarchy in the CKM matrix elements. Here, only one term
is relevant,

F0
q = λ2tqS0(xt) (156)

where
λtq = V ∗

tqVtb, (157)

38At the Lattice 2015 conference, the Fermilab Lattice and MILC collaborations reported their on-going
project for computing the B-meson decay constants in Nf = 2+1+1 QCD [478]. However, no result has been
shown yet.

39We thank Ruth Van de Water for communication and discussion regarding the comparison of the averaging
strategies.

40We thank Ruth Van de Water and Andre Walker-Loud for helpful discussion on this point.
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and where S0(xt) is an Inami-Lim function with xt = m2
t/M

2
W , which describes the basic

electroweak loop contributions without QCD [380]. The transition amplitude for B0
q with

q = d or s can be written as

〈B̄0
q |H∆B=2

eff |B0
q 〉 =

G2
FM

2
W

16π2

[
λ2tqS0(xt)η2B

]

×
(
ḡ(µ)2

4π

)−γ0/(2β0)
exp

{∫ ḡ(µ)

0
dg

(
γ(g)
β(g) + γ0

β0g

)}
〈B̄0

q |Qq
R(µ)|B0

q 〉 + h.c. , (158)

where Qq
R(µ) is the renormalized four-fermion operator (usually in the NDR scheme of MS).

The running coupling (ḡ), the β-function (β(g)), and the anomalous dimension of the four-
quark operator (γ(g)) are defined in Eqs. (104) and (105). The product of µ dependent terms
on the second line of Eq. (158) is, of course, µ-independent (up to truncation errors arising
from the use of perturbation theory). The explicit expression for the short-distance QCD
correction factor η2B (calculated to NLO) can be found in Ref. [378].

For historical reasons the B-meson mixing matrix elements are often parameterized in
terms of bag parameters defined as

BBq (µ) =
〈B̄0

q |QqR(µ)|B0
q〉

8
3f

2
Bq

m2
B

. (159)

The RGI B parameter B̂ is defined, as in the case of the kaon, and expressed to 2-loop order
as

B̂Bq =
(
ḡ(µ)2

4π

)−γ0/(2β0)
{
1 +

ḡ(µ)2

(4π)2

[
β1γ0−β0γ1

2β2
0

]}
BBq (µ) , (160)

with β0, β1, γ0, and γ1 defined in Eq. (106). Note, as Eq. (158) is evaluated above the bottom
threshold (mb < µ < mt), the active number of flavours here is Nf = 5.

Nonzero transition amplitudes result in a mass difference between the CP eigenstates
of the neutral B-meson system. Writing the mass difference for a B0

q meson as ∆mq, its
Standard Model prediction is

∆mq =
G2
Fm

2
WmBq

6π2 |λtq|2S0(xt)η2Bf2Bq B̂Bq . (161)

Experimentally the mass difference is measured as oscillation frequency of the CP eigenstates.
The frequencies are measured precisely with an error of less than a percent. Many different
experiments have measured ∆md, but the current average [151] is based on measurements from
the B-factory experiments Belle and Babar, and from the LHC experiment LHCb. For ∆ms

the experimental average is dominated by results from LHCb [151]. With these experimental
results and lattice-QCD calculations of f2BqB̂Bq at hand, λtq can be determined. In lattice-

QCD calculations the flavour SU(3)-breaking ratio

ξ2 =
f2
Bs

BBs
f2
Bd

BBd
(162)

can be obtained more precisely than the individual Bq-mixing matrix elements because sta-
tistical and systematic errors cancel in part. With this the ratio |Vtd/Vts| can be determined,
which can be used to constrain the apex of the CKM triangle.
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Neutral B-meson mixing, being loop-induced in the Standard Model is also a sensitive
probe of new physics. The most general ∆B = 2 effective Hamiltonian that describes contri-
butions to B-meson mixing in the Standard Model and beyond is given in terms of five local
four-fermion operators:

H∆B=2
eff,BSM =

∑

q=d,s

5∑

i=1

CiQq
i , (163)

where Q1 is defined in Eq. (155) and where

Qq
2 =

[
b̄(1− γ5)q

] [
b̄(1− γ5)q

]
, Qq

3 =
[
b̄α(1− γ5)qβ

] [
b̄β(1− γ5)qα

]
,

Qq
4 =

[
b̄(1− γ5)q

] [
b̄(1 + γ5)q

]
, Qq

5 =
[
b̄α(1− γ5)qβ

] [
b̄β(1 + γ5)q

α
]
, (164)

with the superscripts α, β denoting colour indices, which are shown only when they are con-
tracted across the two bilinears. There are three other basis operators in the ∆B = 2 effective
Hamiltonian. When evaluated in QCD, however, they give identical matrix elements to the
ones already listed due to parity invariance in QCD. The short-distance Wilson coefficients
Ci depend on the underlying theory and can be calculated perturbatively. In the Standard
Model only matrix elements of Qq

1 contribute to ∆mq, while all operators do for example
for general SUSY extensions of the Standard Model [410]. The matrix elements or bag pa-
rameters for the non-SM operators are also useful to estimate the width difference in the
Standard Model, where combinations of matrix elements of Qq

1, Q
q
2, and Q

q
3 contribute to

∆Γq at O(1/mb) [480, 481].
In this section we report on results from lattice-QCD calculations for the neutral B-meson

mixing parameters B̂Bd , B̂Bs , fBd

√
B̂Bd , fBs

√
B̂Bs and the SU(3)-breaking ratios BBs/BBd

and ξ defined in Eqs. (159), (160), and (162). The results are summarized in Tabs. 34 and 35
and in Figs. 22 and 23. Additional details about the underlying simulations and systematic
error estimates are given in Appendix B.6.2. Some collaborations do not provide the RGI
quantities B̂Bq but quote instead BB(µ)

MS,NDR. In such cases we convert the results to the
RGI quantities quoted in Tab. 34 using Eq. (160). More details on the conversion factors are
provided below in the descriptions of the individual results. We do not provide the B-meson
matrix elements of the other operators Q2−5 in this report. They have been calculated in
Ref. [20] for the Nf = 2 case and in Ref. [482], which is a conference proceedings article.

There are no new results for Nf = 2 reported after the previous FLAG review. However
the paper by the ETM collaboration (ETM 13B) [20], which was a preprint, has been published
in a journal, thus, it is now eligible to enter the averages. Because this is the only result that
passes the quality criteria for Nf = 2, we quote their values as our averages in this version:

fBd

√
B̂bd = 216(10) MeV fBs

√
B̂Bs = 262(10) MeV Ref. [20], (165)

Nf = 2 : B̂Bd = 1.30(6) B̂Bs = 1.32(5) Ref. [20], (166)

ξ = 1.225(31) BBs/BBd = 1.007(21) Ref. [20]. (167)

For theNf = 2+1 case there is a new report (RBC/UKQCD 14A) [54] by the RBC/UKQCD
collaboration on the neutral B-meson mixing parameter, using domain-wall fermions for the
light quarks and the static approximation for the b quark. Used gauge configuration ensem-
bles are the Nf = 2 + 1 domain-wall fermion and Iwasaki gauge actions with two lattice
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fBd

√

B̂Bd fBs

√

B̂Bs B̂Bd B̂Bs

RBC/UKQCD 14A [54] 2+1 A ◦ ◦ ◦ ◦ X 240(15)(33) 290(09)(40) 1.17(11)(24) 1.22(06)(19)

FNAL/MILC 11A [482] 2+1 C ⋆ ◦ ⋆ ◦ X 250(23)† 291(18)† − −
HPQCD 09 [59] 2+1 A ◦ ◦∇ ◦ ◦ X 216(15)∗ 266(18)∗ 1.27(10)∗ 1.33(6)∗

HPQCD 06A [483] 2+1 A � � ⋆ ◦ X − 281(21) − 1.17(17)

ETM 13B [20] 2 A ⋆ ◦ ◦ ⋆ X 216(6)(8) 262(6)(8) 1.30(5)(3) 1.32(5)(2)

ETM 12A, 12B [459, 484] 2 C ⋆ ◦ ◦ ⋆ X − − 1.32(8)⋄ 1.36(8)⋄

† Reported f2
BB at µ = mb is converted to RGI by multiplying the 2-loop factor 1.517.

∇ Wrong-spin contributions are not included in the rSχPT fits.
∗ This result uses an old determination of r1 = 0.321(5) fm from Ref. [462] that has since been superseded.
⋄ Reported B at µ = mb = 4.35 GeV is converted to RGI by multiplying the 2-loop factor 1.521.

Table 34: Neutral B- and Bs-meson mixing matrix elements (in MeV) and bag parameters.
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Figure 22: Neutral B- and Bs-meson mixing matrix elements and bag parameters [values in
Tab. 34 and Eqs. (165), (168), (166), (169)].

spacings (a ≈ 0.09, 0.11 fm) and a minimum pion mass of about 290 MeV. Two different
static-quark actions, smeared with HYP1 [477] and HYP2 [485] are used to further constrain
the continuum limit. The operators used are 1-loop O(a)-improved with the tadpole improved
perturbation theory. Two different types of chiral formulae are adopted for the combined con-
tinuum and chiral extrapolation: SU(2) NLO HMχPT and first order polynomial in quark
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ξ BBs/BBd

RBC/UKQCD 14A [54] 2+1 A ◦ ◦ ◦ ◦ X 1.208(41)(52) 1.028(60)(49)

FNAL/MILC 12 [60] 2+1 A ◦ ◦ ⋆ ◦ X 1.268(63) 1.06(11)

RBC/UKQCD 10C [463] 2+1 A � � � ◦ X 1.13(12) −
HPQCD 09 [59] 2+1 A ◦ ◦∇ ◦ ◦ X 1.258(33) 1.05(7)

ETM 13B [20] 2 A ⋆ ◦ ◦ ⋆ X 1.225(16)(14)(22) 1.007(15)(14)
ETM 12A, 12B [459, 484] 2 C ⋆ ◦ ◦ ⋆ X 1.21(6) 1.03(2)

∇ Wrong-spin contributions are not included in the rSχPT fits.

Table 35: Results for SU(3)-breaking ratios of neutral Bd- and Bs-meson mixing matrix
elements and bag parameters.
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Figure 23: The SU(3)-breaking quantities ξ and BBs/BBd [values in Tab. 35 and Eqs. (167)
and (170)].

masses with linear O(a2) terms. The central values are determined as the average of the
results with two different chiral formulae. The systematic error is estimated as half of the full
difference of the two, with an exception for the quantity only involving B0

s , where the NLO
χPT is identical to the first order polynomial. In such cases, the fit excluding the heaviest
ud mass point is used for the estimate of the systematic error. The systematic error due to
the static approximation is estimated by the simple power counting: the size of ΛQCD/mb,
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where ΛQCD = 0.5 GeV and mb(µ = mb)
MS = 4.18 GeV (PDG) leads to 12%. This is the

dominant systematic error for individual fB
√
BB or BB . Due to this large error, the effect

of the inclusion in the FLAG averages of these quantities is small. The dominant systematic
error for the SU(3)-breaking error, instead, comes from the combined continuum and chiral
extrapolation, while the statistical uncertainty is a bit larger than that.

Due to the addition of this new result, the values for Nf = 2 + 1 are now averages from
multiple results by multiple collaborations, rather than being given by the values from a single
computation, as it was done in the previous FLAG report. Our averages are:

fBd

√
B̂Bd = 219(14)MeV fBs

√
B̂Bs = 270(16)MeV Refs. [54, 59], (168)

Nf = 2 + 1 : B̂Bd = 1.26(9) B̂Bs = 1.32(6) Refs. [54, 59], (169)

ξ = 1.239(46) BBs/BBd = 1.039(63) Refs. [54, 60]. (170)

Here Eqs. (168) and (169) are averages from HPQCD 09 [59] and RBC/UKQCD 14A [54],
while Eq. (170) is from FNAL/MILC 12 [60] and RBC/UKQCD 14A [54].

As discussed in detail in the previous FLAG review [2] HPQCD 09 does not include wrong-
spin contributions, which are staggered fermion artifacts, to the chiral extrapolation analysis.
It is possible that the effect is significant for ξ and BBs/BBd , since the chiral extrapolation
error is a dominant one for these SU(3) flavour breaking ratios. Indeed, a test done by
FNAL/MILC 12 [60] indicates that the omission of the wrong spin contribution in the chiral
analysis may be a significant source of error. We therefore took the conservative choice to
exclude ξ and BBs/BBd by HPQCD 09 from from our average and we follow the same strategy
in this report as well.

We note that the above results are all correlated with each other: the numbers in Eqs. (168)
and (169) are dominated by those from HPQCD 09 [59], while those in Eq. (170) involve
FNAL/MILC 12 [60] – the same Asqtad MILC ensembles are used in these simulations. The
results are also correlated with the averages obtained in Sec. 8.1 and shown in Eq. (152),
because the calculations of B-meson decay constants and mixing quantities are performed on
the same (or on similar) sets of ensembles, and results obtained by a given collaboration use
the same actions and setups. These correlations must be considered when using our averages
as inputs to UT fits. In the future, as more independent calculations enter the averages,
correlations between the lattice-QCD inputs to the UT fit will become less significant.

8.3 Semileptonic form factors for B decays to light flavours

The Standard Model differential rate for the decay B(s) → Pℓν involving a quark-level b→ u
transition is given, at leading order in the weak interaction, by a formula identical to the
one for D decays in Eq. (130) but with D → B(s) and the relevant CKM matrix element
|Vcq| → |Vub|:

dΓ(B(s)→Pℓν)

dq2
=

G2
F |Vub|2
24π3

(q2−m2
ℓ )

2
√

E2
P−m2

P

q4m2
B(s)

[(
1 +

m2
ℓ

2q2

)
m2

B(s)
(E2

P −m2
P )|f+(q2)|2

+
3m2

ℓ
8q2

(m2
B(s)
−m2

P )
2|f0(q2)|2

]
. (171)

Again, for ℓ = e, µ the contribution from the scalar form factor f0 can be neglected, and
one has a similar expression to Eq. (132), which in principle allows for a direct extraction
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of |Vub| by matching theoretical predictions to experimental data. However, while for D (or
K) decays the entire physical range 0 ≤ q2 ≤ q2max can be covered with moderate momenta
accessible to lattice simulations, in B → πℓν decays one has q2max ∼ 26 GeV2 and only part
of the full kinematic range is reachable. As a consequence, obtaining |Vub| from B → πℓν is
more complicated than obtaining |Vcd(s)| from semileptonic D-meson decays.

In practice, lattice computations are restricted to small values of the momentum transfer
(see Sec. 7.2) where statistical and momentum-dependent discretization errors can be con-
trolled,41 which in existing calculations roughly cover the upper third of the kinematically
allowed q2 range. Since, on the other hand, the decay rate is suppressed by phase space at
large q2, most of the semileptonic B → π events are selected in experiment at lower values
of q2, leading to more accurate experimental results for the binned differential rate in that
region.42 It is therefore a challenge to find a window of intermediate values of q2 at which
both the experimental and lattice results can be reliably evaluated.

In current practice, the extraction of CKM matrix elements requires that both experi-
mental and lattice data for the q2 dependence be parameterized by fitting data to a specific
ansatz. Before the generalization of the sophisticated ansätze that will be discussed below,
the most common procedure to overcome this difficulty involved matching the theoretical
prediction and the experimental result for the integrated decay rate over some finite interval
in q2,

∆ζ = 1
|Vub|2

∫ q22

q21

(
dΓ
dq2

)
dq2 . (172)

In the most recent literature, it has become customary to perform a joint fit to lattice and
experimental results, keeping the relative normalization |Vub|2 as a free parameter. In either
case, good control of the systematic uncertainty induced by the choice of parameterization is
crucial to obtain a precise determination of |Vub|.

8.3.1 Parameterizations of semileptonic form factors

In this section, we discuss the description of the q2 dependence of form factors, using the
vector form factor f+ of B → πℓν decays as a benchmark case. Since in this channel the
parameterization of the q2 dependence is crucial for the extraction of |Vub| from the existing
measurements (involving decays to light leptons), as explained above, it has been studied
in great detail in the literature. Some comments about the generalization of the techniques
involved will follow.

The vector form factor for B → πℓν All form factors are analytic functions of q2 outside
physical poles and inelastic threshold branch points; in the case of B → πℓν, the only pole
expected below the Bπ production region, starting at q2 = t+ = (mB +mπ)

2, is the B∗. A
simple ansatz for the q2 dependence of the B → πℓν semileptonic form factors that incorpo-
rates vector-meson dominance is the Bećirević-Kaidalov (BK) parameterization [441], which

41The variance of hadron correlation functions at nonzero three-momentum is dominated at large Euclidean
times by zero-momentum multiparticle states [486]; therefore the noise-to-signal grows more rapidly than for
the vanishing three-momentum case.

42Upcoming data from Belle II are expected to significantly improve the precision of experimental results,
in particular, for larger values of q2.
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for the vector form factor reads:

f+(q
2) = f(0)

(1−q2/m2
B∗ )(1−αq2/m2

B∗ )
. (173)

Because the BK ansatz has few free parameters, it has been used extensively to parameter-
ize the shape of experimental branching-fraction measurements and theoretical form-factor
calculations. A variant of this parameterization proposed by Ball and Zwicky (BZ) adds ex-
tra pole factors to the expressions in Eq. (173) in order to mimic the effect of multiparticle
states [487]. A similar idea, extending the use of effective poles also to D → πℓν decays, is ex-
plored in Ref. [488]. Finally, yet another variant (RH) has been proposed by Hill in Ref. [489].
Although all of these parameterizations capture some known properties of form factors, they
do not manifestly satisfy others. For example, perturbative QCD scaling constrains the be-
haviour of f+ in the deep Euclidean region [490–492], and angular momentum conservation
constrains the asymptotic behaviour near thresholds — e.g., Im f+(q

2) ∼ (q2−t+)3/2 (see, e.g.,
Ref. [435]). Most importantly, these parameterizations do not allow for an easy quantification
of systematic uncertainties.

A more systematic approach that improves upon the use of simple models for the q2

behaviour exploits the positivity and analyticity properties of two-point functions of vector
currents to obtain optimal parameterizations of form factors [434, 492–496]. Any form factor
f can be shown to admit a series expansion of the form

f(q2) = 1
B(q2)φ(q2,t0)

∞∑

n=0

an(t0) z(q
2, t0)

n , (174)

where the squared momentum transfer is replaced by the variable

z(q2, t0) =

√
t+−q2−√

t+−t0√
t+−q2+

√
t+−t0

. (175)

This is a conformal transformation, depending on an arbitrary real parameter t0 < t+, that
maps the q2 plane cut for q2 ≥ t+ onto the disk |z(q2, t0)| < 1 in the z complex plane. The
function B(q2) is called the Blaschke factor, and contains poles and cuts below t+ — for
instance, in the case of B → π decays,

B(q2) =
z(q2,t0)−z(m2

B∗ ,t0)

1−z(q2,t0)z(m2
B∗ ,t0)

= z(q2,m2
B∗) . (176)

Finally, the quantity φ(q2, t0), called the outer function, is some otherwise arbitrary function
that does not introduce further poles or branch cuts. The crucial property of this series
expansion is that the sum of the squares of the coefficients

∞∑

n=0

a2n = 1
2πi

∮
dz
z |B(z)φ(z)f(z)|2 , (177)

is a finite quantity. Therefore, by using this parameterization an absolute bound to the
uncertainty induced by truncating the series can be obtained. The aim in choosing φ is to
obtain a bound that is useful in practice, while (ideally) preserving the correct behaviour of
the form factor at high q2 and around thresholds.
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The simplest form of the bound would correspond to
∑∞

n=0 a
2
n = 1. Imposing this bound

yields the following “standard” choice for the outer function

φ(q2, t0) =
√

1
32πχ1− (0)

(√
t+ − q2 +

√
t+ − t0

)

×
(√

t+ − q2 +
√
t+ − t−

)3/2 (√
t+ − q2 +

√
t+

)−5
t+−q2

(t+−t0)1/4
,

(178)

where t− = (mB − mπ)
2, and χ1−(0) is the derivative of the transverse component of the

polarization function (i.e., the Fourier transform of the vector two-point function) Πµν(q)
at Euclidian momentum Q2 = −q2 = 0. It is computed perturbatively, using operator
product expansion techniques, by relating the B → πℓν decay amplitude to ℓν → Bπ inelastic
scattering via crossing symmetry and reproducing the correct value of the inclusive ℓν → Xb

amplitude. We will refer to the series parameterization with the outer function in Eq. (178)
as Boyd, Grinstein, and Lebed (BGL). The perturbative and OPE truncations imply that the
bound is not strict, and one should take it as

N∑

n=0

a2n . 1 , (179)

where this holds for any choice of N . Since the values of |z| in the kinematical region of
interest are well below 1 for judicious choices of t0, this provides a very stringent bound
on systematic uncertainties related to truncation for N ≥ 2. On the other hand, the outer
function in Eq. (178) is somewhat unwieldy and, more relevantly, spoils the correct large q2

behaviour and induces an unphysical singularity at the Bπ threshold.
A simpler choice of outer function has been proposed by Bourrely, Caprini and Lellouch

(BCL) in Ref. [435], which leads to a parameterization of the form

f+(q
2) = 1

1−q2/m2
B∗

N∑

n=0

an(t0)z(q
2, t0)

n . (180)

This satisfies all the basic properties of the form factor, at the price of changing the expression
for the bound to

N∑

j,k=0

Bjk(t0)aj(t0)ak(t0) ≤ 1 . (181)

The constants Bjk can be computed and shown to be |Bjk| . O(10−2) for judicious choices
of t0; therefore, one again finds that truncating at N ≥ 2 provides sufficiently stringent
bounds for the current level of experimental and theoretical precision. It is actually possible
to optimize the properties of the expansion by taking

t0 = topt = (mB +mπ)(
√
mB −

√
mπ)

2 , (182)

which for physical values of the masses results in the semileptonic domain being mapped
onto the symmetric interval |z| ∼< 0.279 (where this range differs slightly for the B± and B0

decay channels), minimizing the maximum truncation error. If one also imposes that the
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asymptotic behaviour Im f+(q
2) ∼ (q2 − t+)3/2 near threshold is satisfied, then the highest-

order coefficient is further constrained as

aN = − (−1)N

N

N−1∑

n=0

(−1)n n an . (183)

Substituting the above constraint on aN into Eq. (180) leads to the constrained BCL param-
eterization

f+(q
2) = 1

1−q2/m2
B∗

N−1∑

n=0

an
[
zn − (−1)n−N n

N zN
]
, (184)

which is the standard implementation of the BCL parameterization used in the literature.
Parameterizations of the BGL and BCL kind, to which we will refer collectively as “z-

parameterizations”, have already been adopted by the BaBar and Belle collaborations to
report their results, and also by the Heavy Flavour Averaging Group (HFAG). Some lattice
collaborations, such as FNAL/MILC and ALPHA, have already started to report their results
for form factors in this way. The emerging trend is to use the BCL parameterization as a
standard way of presenting results for the q2 dependence of semileptonic form factors. Our
policy will be to quote results for z-parameterizations when the latter are provided in the paper
(including the covariance matrix of the fits); when this is not the case, but the published form
factors include the full correlation matrix for values at different q2, we will perform our own
fit to the constrained BCL ansatz in Eq. (184); otherwise no fit will be quoted. We however
stress the importance of providing, apart from parameterization coefficients, values for the
form factors themselves (in the continuum limit and at physical quark masses) for a number
of values of q2, so that the results can be independently parameterized by the readers if so
wished.

Extension to other form factors The discussion above largely extends to the scalar form
factor in B → πℓν decays, as well as to form factors for other semileptonic transitions (e.g.,

Bs → K and B(s) → D
(∗)
(s) , and semileptonic D and K decays). As a matter of fact, after

the publication of our previous review z-parameterizations have been applied in several such
cases, as discussed in the relevant sections.

A general discussion of semileptonic meson decay in this context can be found, e.g., in
Ref. [497]. Extending what has been discussed above for B → π, the form factors for a
generic H → L transition will display a cut starting at the production threshold t+, and
the optimal value of t0 required in z-parameterizations is t0 = t+(1 −

√
1− t−/t+) (where

t± = (mH ±mL)
2). For unitarity bounds to apply, the Blaschke factor has to include all sub-

threshold poles with the quantum numbers of the hadronic current — i.e., vector (resp. scalar)
resonances in Bπ scattering for the vector (resp. scalar) form factors of B → π, Bs → K, or
Λb → p; and vector (resp. scalar) resonances in Bcπ scattering for the vector (resp. scalar)
form factors of B → D or Λb → Λc.

43 Thus, as emphasized above, the control over systematic
uncertainties brought in by using z-parameterizations strongly depends on implementation
details. This has practical consequences, in particular, when the resonance spectrum in a given
channel is not sufficiently well-known. Caveats may also apply for channels where resonances

43A more complicated analytic structure may arise in other cases, such as channels with vector mesons in
the final state. We will however not discuss form-factor parameterizations for any such process.
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with a nonnegligible width appear. A further issue is whether t+ = (mH +mL)
2 is the proper

choice for the start of the cut in cases such as Bs → Kℓν and B → Dℓν, where there are
lighter two-particle states that project on the current (B,π and Bc,π for the two processes,
respectively).44 In any such situation, it is not clear a priori that a given z-parameterization
will satisfy strict bounds, as has been seen, e.g., in determinations of the proton charge radius
from electron-proton scattering [498–500].

The HPQCD Collaboration pioneered a variation on the z-parameterization approach,
which they refer to as a “modified z-expansion,” that is used to simultaneously extrapolate
their lattice simulation data to the physical light-quark masses and the continuum limit, and
to interpolate/extrapolate their lattice data in q2. This entails allowing the coefficients an
to depend on the light-quark masses, squared lattice spacing, and, in some cases the charm-
quark mass and pion or kaon energy. Because the modified z-expansion is not derived from an
underlying effective field theory, there are several potential concerns with this approach that
have yet to be studied. The most significant is that there is no theoretical derivation relating
the coefficients of the modified z-expansion to those of the physical coefficients measured
in experiment; it therefore introduces an unquantified model dependence in the form-factor
shape. As a result, the applicability of unitarity bounds has to be examined carefully. Related
to this, z-parameterization coefficients implicitly depend on quark masses, and particular care
should be taken in the event that some state can move across the inelastic threshold as quark
masses are changed (which would in turn also affect the form of the Blaschke factor). Also, the
lattice spacing dependence of form factors provided by Symanzik effective theory techniques
may not extend trivially to z-parameterization coefficients. The modified z-expansion is now
being utilized by collaborations other than HPQCD and for quantities other than D → πℓν
and D → Kℓν, where it was originally employed. We advise treating results that utilize the
modified z-expansion to obtain form-factor shapes and CKM matrix elements with caution,
however, since the systematics of this approach warrant further study.

8.3.2 Form factors for B → πℓν

The semileptonic decay processes B → πℓν enable determinations of the CKM matrixele-
ment |Vub| within the Standard Model via Eq. (171). At the time of our previous review,
the only available results for B → πℓν form factors came from the HPQCD [501] and
FNAL/MILC [436] Collaborations. Only HPQCD provided results for the scalar form factor
f0. The last two years, however, have witnessed significant progress: FNAL/MILC have sig-
nificantly upgraded their B → πℓν results [502],45 while a completely new computation has
been provided by RBC/UKQCD [503]. All the above computations employ Nf = 2 + 1 dy-
namical configurations, and provide values for both form factors f+ and f0. Finally, HPQCD
have recently published the first Nf = 2 + 1 + 1 results for the B → πℓν scalar form factor,
working at zero recoil and pion masses down to the physical value [504]; this adds to previous
reports on ongoing work to upgrade their 2006 computation [505, 506]. Since this latter result
has no immediate impact on current |Vub| determinations, which come from the vector-form-
factor-dominated decay channels into light leptons, we will from now on concentrate on the
Nf = 2 + 1 determinations of the q2 dependence of B → π form factors.

44We are grateful to G. Herdóıza, R.J. Hill, A. Kronfeld and A. Szczepaniak for illuminating discussions on
this issue.

45Since the new FNAL/MILC results supersede Ref. [436], we will not discuss this latter work in the present
version of the review.
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Both the HPQCD and the FNAL/MILC computations of B → πℓν amplitudes use ensem-
bles of gauge configurations with Nf = 2+1 flavours of rooted staggered quarks produced by
the MILC Collaboration; however, the latest FNAL/MILC work makes a much more exten-
sive use of the currently available ensembles, both in terms of lattice spacings and light-quark
masses. HPQCD have results at two values of the lattice spacing (a ∼ 0.12, 0.09 fm), while
FNAL/MILC employs four values (a ∼ 0.12, 0.09, 0.06, 0.045 fm). Lattice-discretization
effects are estimated within HMrSχPT in the FNAL/MILC computation, while HPQCD
quotes the results at a ∼ 0.12 fm as central values and uses the a ∼ 0.09 fm results to
quote an uncertainty. The relative scale is fixed in both cases through r1/a. HPQCD set
the absolute scale through the Υ 2S–1S splitting, while FNAL/MILC uses a combination
of fπ and the same Υ splitting, as described in Ref. [48]. The spatial extent of the lattices
employed by HPQCD is L ≃ 2.4 fm, save for the lightest mass point (at a ∼ 0.09 fm) for
which L ≃ 2.9 fm. FNAL/MILC, on the other hand, uses extents up to L ≃ 5.8 fm, in order
to allow for light pion masses while keeping finite volume effects under control. Indeed, while
in the 2006 HPQCD work the lightest RMS pion mass is 400 MeV, the latest FNAL/MILC
work includes pions as light as 165 MeV — in both cases the boundmπL & 3.8 is kept. Other
than the qualitatively different range of MILC ensembles used in the two computations, the
main difference between HPQCD and FNAL/MILC lies in the treatment of heavy quarks.
HPQCD uses the NRQCD formalism, with a 1-loop matching of the relevant currents to the
ones in the relativistic theory. FNAL/MILC employs the clover action with the Fermilab in-
terpretation, with a mostly nonperturbative renormalization of the relevant currents, within
which light-light and heavy-heavy currents are renormalized nonperturbatively and 1-loop
perturbation theory is used for the relative normalization. (See Tab. 36; full details about
the computations are provided in tables in Appendix B.6.3.)

The RBC/UKQCD computation is based on Nf = 2 + 1 DWF ensembles at two values
of the lattice spacing (a ∼ 0.12, 0.09 fm), and pion masses in a narrow interval ranging
from slightly above 400 MeV to slightly below 300 MeV, keeping mπL & 4. The scale is set
using the Ω− baryon mass. Discretization effects coming from the light sector are estimated
in the 1% ballpark using HMχPT supplemented with effective higher-order interactions to
describe cutoff effects. The b quark is treated using the Columbia RHQ action, with a mostly
nonperturbative renormalization of the relevant currents. Discretization effects coming from
the heavy sector are estimated with power-counting arguments to be below 2%.

Given the large kinematical range available in the B → π transition, chiral extrapola-
tions are an important source of systematic uncertainty: apart from the eventual need to
reach physical pion masses in the extrapolation, the applicability of χPT is not guaranteed
for large values of the pion energy Eπ. Indeed, in all computations Eπ reaches values in
the 1 GeV ballpark, and chiral extrapolation systematics is the dominant source of errors.
FNAL/MILC uses SU(2) NLO HMrSχPT for the continuum-chiral extrapolation, supple-
mented by NNLO analytic terms and hard-pion χPT terms [507];46 systematic uncertainties
are estimated through an extensive study of the effects of varying the specific fit ansatz
and/or data range. RBC/UKQCD uses SU(2) hard-pion HMχPT to perform its combined
continuum-chiral extrapolation, and obtains sizeable estimates for systematic uncertainties
by varying the ansätze and ranges used in fits. HPQCD performs chiral extrapolations using
HMrSχPT formulae, and estimates systematic uncertainties by comparing the result with the
ones from fits to a linear behaviour in the light-quark mass, continuum HMχPT, and partially

46Note that issues are known to exist with hard-pion χPT, cf. Ref. [508].
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∆ζBπ

FNAL/MILC 15 [502] 2+1 A ⋆ ◦ ⋆ ◦ X BCL n/a
RBC/UKQCD 15 [503] 2+1 A ◦ ◦ ◦ ◦ X BCL 1.77(34)
HPQCD 06 [501] 2+1 A ◦ ◦ ◦ ◦ X n/a 2.07(41)(39)

Table 36: Results for the B → πℓν semileptonic form factor. The quantity ∆ζ is defined in
Eq. (172); the quoted values correspond to q1 = 4 GeV, q2 = qmax, and are given in ps−1.

quenched HMrSχPT formulae (including also data with different sea and valence light-quark
masses).

FNAL/MILC and RBC/UKQCD describe the q2 dependence of f+ and f0 by applying
a BCL parameterization to the form factors extrapolated to the continuum limit, within
the range of values of q2 covered by data. RBC/UKQCD generate synthetic data for the
form factors at some values of q2 (evenly spaced in z) from the continuous function of q2

obtained from the joint chiral-continuum extrapolation, which are then used as input for the
fits. After having checked that the kinematical constraint f+(0) = f0(0) is satisfied within
errors by the extrapolation to q2 = 0 of the results of separate fits, this constraint is imposed
to improve fit quality. In the case of FNAL/MILC, rather than producing synthetic data a
functional method is used to extract the z-parameterization directly from the fit functions
employed in the continuum-chiral extrapolation. The resulting preferred fits for both works
are quoted in Tab. 36. In the case of HPQCD, the parameterization of the q2 dependence
of form factors is somewhat intertwined with chiral extrapolations: a set of fiducial values

{E(n)
π } is fixed for each value of the light-quark mass, and f+,0 are interpolated to each of the

E
(n)
π ; chiral extrapolations are then performed at fixed Eπ (i.e. mπ and q2 are varied subject

to Eπ=constant). The interpolation is performed using a BZ ansatz. The q2 dependence of
the resulting form factors in the chiral limit is then described by means of a BZ ansatz, which
is cross-checked against BK, RH, and BGL parameterizations. Unfortunately, the correlation
matrix for the values of the form factors at different q2 is not provided, which severely limits
the possibilities of combining them with other computations into a global z-parameterization.

Based on the parameterized form factors, HPQCD and RBC/UKQCD provide values
for integrated decay rates ∆ζBπ, as defined in Eq. (172); they are quoted in Tab. 36. The
latest FNAL/MILC work, on the other hand, does not quote a value for the integrated ratio.
Furthermore, as mentioned above, the field has recently moved forward to determine CKM
matrix elements from direct joint fits of experimental results and theoretical form factors,
rather than a matching through ∆ζBπ. Thus, we will not provide here a FLAG average for
the integrated rate, and focus on averaging lattice results for the form factors themselves.

In our previous review, we averaged the results for f+(q
2) in HPQCD 06 and the su-
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perseded FNAL/MILC 2008 determination [436], fitting them jointly to our preferred BCL
z-parameterization, Eq. (184). The new results do not, however, allow for an update of such a
joint fit: RBC/UKQCD only provides synthetic values of f+ and f0 at a few values of q2 as an
illustration of their results, and FNAL/MILC does not quote synthetic values at all. In both
cases, full results for BCL z-parameterizations defined by Eq. (184) are quoted. In the case
of HPQCD 06, unfortunately, a fit to a BCL z-parameterization is not possible, as discussed
above. Our procedure to take into account all the available computations will thus proceed as
follows: we will take as input the synthetic values for f+(q

2) quoted by RBC/UKQCD, as well
as the HPQCD datum at q2 = 17.34 GeV2; and will add to these synthetic values for f+(q

2)
that we generate using FNAL/MILC’s preferred z-parameterization. The RBC/UKQCD data
are treated as fully uncorrelated to the other determinations, while a conservative 100% corre-
lation of statistical errors is introduced for FNAL/MILC and HPQCD, which are both based
on MILC Nf = 2 + 1 ensembles.

The resulting dataset is then fitted to the BCL parameterization in Eq. (184). We assess
the systematic uncertainty due to truncating the series expansion by considering fits to differ-
ent orders in z. Fig. 24 plots the FNAL/MILC, RBC/UKQCD, and HPQCD data points for
(1− q2/m2

B∗)f+(q
2) versus z; the data is highly linear, and only a simple two-parameter fit is

needed for a good χ2/d.o.f.. (Note that a fit to the constrained BCL form in Eq. (184) with
two free parameters corresponds to a polynomial through O(z2), etc.) Further, we cannot
constrain the coefficients of the z-expansion beyond this order, as evidenced by the error on
the coefficient a2 being significantly greater than 100% for a three-parameter fit. We quote
as our preferred result the outcome of the three-parameter O(z3) BCL fit:

Nf = 2 + 1 : a0 = 0.421(13) , a1 = −0.35(10) , a2 = −0.41(64) ; (185)

corr(ai, aj) =




1.000 0.306 0.084
0.306 1.000 0.856
0.084 0.856 1.000


 .

The uncertainties on a0 and a1 encompass the central values obtained from O(z2) and O(z4)
fits, and thus adequately reflect the systematic uncertainty on those series coefficients. This
can be used as the averaged FLAG result for the lattice-computed form factor f+(q

2). The
coefficient a3 can be obtained from the values for a0–a2 using Eq. (183). The fit is illustrated
in Fig. 24.

It is worth stressing that, with respect to our average in the previous edition of the FLAG
report, the relative error on a0, which dominates the theory contribution to the determination
of |Vub|, has decreased from 7.3% to 3.1%. The dominant factor in this remarkable improve-
ment is the new FNAL/MILC determination of f+. We emphasize that future lattice-QCD
calculations of semileptonic form factors should publish their full statistical and systematic
correlation matrices to enable others to use the data. It is also preferable to have direct access
to values of the form factors, since this allows for an independent analysis that avoids further
assumptions about the compatibility of the procedures to arrive at a given z-parameterization.

The above procedure could in principle be extended to f0. However, in this case sig-
nificant inconsistencies among published data exist: while the results of RBC/UKQCD and
FNAL/MILC for f0 are compatible within the quoted errors, the results in HPQCD 06 are
incompatible with the less precise RBC/UKQCD determination at the ∼ 2σ level, and with
the similarly precise FNAL/MILC determination at more than 3σ, cf. the right panel of
Fig. 18 in Ref. [502]. This situation is very different with respect to the one for f+, where the
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Figure 24: The form factor (1 − q2/m2
B∗)f+(q

2) for B → πℓν plotted versus z. (See text for
a discussion of the dataset.) The grey band displays our preferred three-parameter BCL fit
to the plotted data with errors (see Eq. (185)).

three determinations are consistent within errors, cf. the left panel of Fig. 18 in Ref. [502].
On the other hand, f0 does not enter current determinations of |Vub| in B → π transitions,
due to the lack of an experimental measurement of B → πτν processes. As a consequence, we
will refrain from providing an average of results for f0 until the reasons of the aforementioned
discrepancy are clarified.47

8.3.3 Form factors for Bs → Kℓν

Similar to B → πℓν, measurements of Bs → Kℓν enable determinations of the CKM matrix
element |Vub| within the Standard Model via Eq. (171). From the lattice point of view
the two channels are very similar — as a matter of fact, Bs → Kℓν is actually somewhat
simpler, in that the fact that the kaon mass region is easily accessed by all simulations makes
the systematic uncertainties related to chiral extrapolation smaller. On the other hand,
Bs → Kℓν channels have not been measured experimentally yet, and therefore lattice results
provide SM predictions for the relevant rates.

At the time of our previous review, only preliminary results existed for Bs → Kℓν form
factors. However, as with B → πℓν, great progress has been made during the last year,
and first full results for Bs → Kℓν form factors have been provided by HPQCD [509] and
RBC/UKQCD [502] for both form factors f+ and f0, in both cases usingNf = 2+1 dynamical
configurations. Finally, the ALPHA Collaboration determination of Bs → Kℓν form factors
with Nf = 2 is also well underway [510]; however, since the latter is so far described only in
conference proceedings which do not provide quotable results, it will not be discussed here.

47One consistency check of the form-factor computation consists in verifying whether the kinematical con-
straint f+(0) = f0(0) is satisfied. This is however of limited value in the existing computations, since the q2 = 0
point is reached by a long extrapolation from the covered region in momentum transfer. RBC/UKQCD 15
and FNAL/MILC 15 do check that f+(0) = f0(0) within the resulting large uncertainties, while HPQCD 06
make use of the f+(0) = f0(0) as part of their fits for the q

2 dependence.
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RBC/UKQCD 15 [503] 2+1 A ◦ ◦ ◦ ◦ X BCL
HPQCD 14 [509] 2+1 A ◦ ◦ ◦ ◦ X BCL†

† Results from modified z-expansion.

Table 37: Results for the Bs → Kℓν semileptonic form factor.

The RBC/UKQCD computation has been published together with the B → πℓν com-
putation discussed in Sec. 8.3.2, all technical details being practically identical. The main
difference is that errors are significantly smaller, mostly due to the reduction of systematic
uncertainties due to the chiral extrapolation; detailed information is provided in tables in
Appendix B.6.3. The HPQCD computation uses ensembles of gauge configurations with
Nf = 2 + 1 flavours of rooted staggered quarks produced by the MILC Collaboration at
two values of the lattice spacing (a ∼ 0.12, 0.09 fm), for three and two different sea-pion
masses, respectively, down to a value of 260 MeV. The b quark is treated within the NRQCD
formalism, with a 1-loop matching of the relevant currents to the ones in the relativistic
theory, omitting terms of O(αsΛQCD/mb). A HISQ action is used for the valence s quark.
The continuum-chiral extrapolation is combined with the description of the q2 dependence
of the form factors into a modified z-expansion (cf. Sec. 8.3.1) that formally coincides in the
continuum with the BCL ansatz. The dependence of form factors on the pion energy and
quark masses is fitted to a 1-loop ansatz inspired by hard-pion χPT [507], that factorizes out
the chiral logarithms describing soft physics. See Tab. 37 and the tables in Appendix B.6.3
for full details.

Both RBC/UKQCD and HPQCD quote values for integrated differential decay rates over
the full kinematically available region. However, since the absence of experiment makes the
relevant integration interval subject to change, we will not discuss them here, and focus on
averages of form factors. In order to proceed to combine the results from the two collabo-
rations, we will follow a similar approach to the one adopted above for B → πℓν: we will
take as direct input the synthetic values of the form factors provided by RBC/UKQCD, use
the preferred HPQCD parameterization to produce synthetic values, and perform a joint fit
to the two datasets. Note that, contrary to B → πℓν, there are no significant discrepancies
that prevent a meaningful averaging; this allows us to provide results that are relevant for
predictions concerning the channel Bs → Kτν. The fits will be fully independent for f+ and
f0 — in particular, we will not impose kinematical constraints at q2 = 0 — and we will treat
the two datasets as completely uncorrelated. Whenever our averages for f+ and f0 are used
together, we recommend to conservatively take a 100% correlation between the corresponding
errors.
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Figure 25: The form factors (1− q2/m2
B∗)f+(q

2) (left) and (1− q2/m2
B∗(0+))f0(q

2) (right) for

Bs → Kℓν plotted versus z. (See text for a discussion of the datasets.) The grey band displays
our preferred three-parameter BCL fit to the plotted data with errors (see Eqs. (186,187)).

For the fits we employ a BCL ansatz with t+ = (MBs +MK±)2 ≃ 34.35 GeV2 and t0 =
(MBs+MK±)(

√
MBs−

√
MK±)2 ≃ 15.27 GeV2. Our pole factors will contain a single pole in

both the vector and scalar channels, for which we take the mass valuesMB∗ = 5.325 GeV and
MB∗(0+) = 5.65 GeV.48 We quote as our preferred result the outcome of the three-parameter
O(z3) BCL fit:

Nf = 2 + 1 : a
(+)
0 = 0.363(16) , a

(+)
1 = −0.78(19) , a

(+)
2 = 1.9(1.3) ; (186)

corr(a
(+)
i , a

(+)
j ) =




1.000 0.343 0.220
0.343 1.000 0.874
0.220 0.874 1.000




for the vector form factor, and

Nf = 2 + 1 : a
(0)
0 = 0.210(18) , a

(0)
1 = −0.21(28) , a

(0)
2 = −1.4(1.3) ; (187)

corr(a
(0)
i , a

(0)
j ) =




1.000 0.306 0.084
0.306 1.000 0.856
0.084 0.856 1.000


 ,

where the uncertainties on a0 and a1 encompass the central values obtained from O(z2) fits,
and thus adequately reflect the systematic uncertainty on those series coefficients.49 These
can be used as the averaged FLAG results for the lattice-computed form factors f+(q

2) and
f0(q

2). The coefficient a3 can be obtained from the values for a0–a2 using Eq. (183). The fit
is illustrated in Fig. 25.

48The values of the scalar resonance mass in Bπ scattering taken by HPQCD and RBC/UKQCD are
MB∗(0+) = 5.6794(10) GeV and MB∗(0+) = 5.63 GeV, respectively. We use an average of the two values, and
have checked that changing it by ∼ 1% has a negligible impact on the fit results.

49In this case, O(z4) fits with just two degrees of freedom, are significantly less stable. Still, the results for
a0 and a1 are always compatible with the ones at O(z2) and O(z3) within one standard deviation.
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8.3.4 Form factors for rare and radiative B-semileptonic decays to light flavours

Lattice-QCD input is also available for some exclusive semileptonic decay channels involving
neutral-current b → q transitions at the quark level, where q = d, s. Being forbidden at tree
level in the SM, these processes allow for stringent tests of potential new physics; simple
examples are B → K∗γ, B → K(∗)ℓ+ℓ−, or B → πℓ+ℓ− where the B meson (and therefore
the light meson in the final state) can be either neutral or charged.

The corresponding SM effective weak Hamiltonian is considerably more complicated than
the one for the tree-level processes discussed above: after neglecting top-quark effects, as
many as ten dimension-six operators formed by the product of two hadronic currents or one
hadronic and one leptonic current appear.50 Three of the latter, coming from penguin and box
diagrams, dominate at short distances; supplementing this with a combination of high-energy
OPE arguments and results from Soft Collinear Effective Theory relevant at intermediate
energies, it is possible to argue that their contributions are still dominant when long-distance
physics is also taken into account. Within this approximation, the relevant long-distance
contribution thus consists of matrix elements of current operators (vector, tensor, and axial-
vector) between one-hadron states, which in turn can be parameterized in terms of a number
of form factors (see Ref. [512] for a complete description). On top of the aforementioned
approximations, the lattice computation of the relevant form factors in channels with a vector
meson in the final state faces extra challenges on top of those already present in the case of a
pseudoscalar meson: the state is unstable, and the extraction of the relevant matrix element
from correlation functions is significantly more complicated; χPT cannot be used as a guide
to extrapolate results at unphysically heavy pion masses to the chiral limit. While the field
theory procedures to take resonance effects into account are available [513–521], they have
not yet been implemented in the existing preliminary computations, which therefore suffer
from uncontrolled systematic errors in calculations of weak decay form factors into unstable
vector meson final states, such as the K∗ or ρ mesons.51

As a consequence of the complexity of the problem, the level of maturity of these compu-
tations is significantly below the one present in the SM tree-level decays discussed in other
sections of this review. Therefore, we will only provide below a short guide to the existing
results, without attempting to obtain averages for the known long-distance contributions to
the relevant amplitudes.

In channels with pseudoscalar mesons in the final state, there are results for the vector,
scalar, and tensor form factors for Bs → Kℓ+ℓ− decays by HPQCD [522], and (very re-
cent) results for both B → πℓ+ℓ− [523] and Bs → Kℓ+ℓ− [524] from FNAL/MILC. Both
computations employ MILC Nf = 2 + 1 asqtad ensembles. HPQCD has also a companion
paper [525] in which they calculate the Standard Model predictions for the differential branch-
ing fractions and other observables and compare to experiment. The HPQCD computation
employs NRQCD b quarks and HISQ valence light quarks, and parameterizes the form factors
over the full kinematic range using a model-independent z-expansion as in Sec. 8.3.1, includ-
ing the covariance matrix of the fit coefficients. In the case of the (separate) FNAL/MILC
computations, both of them use Fermilab b quarks and asqtad light quarks, and a BCL
z-parameterization of the form factors.

Concerning channels with vector mesons in the final state, Horgan et al. have obtained

50See, e.g., Ref. [511] and references therein.
51In cases such as B → D∗ transitions, that will be discussed below, this is much less of a practical problem

due to the very narrow nature of the resonance.
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the seven form factors governing B → K∗ℓ+ℓ− (as well as those for Bs → φ ℓ+ℓ−) in Ref. [526]
using NRQCD b quarks and asqtad staggered light quarks. In this work, they use a modified
z-expansion to simultaneously extrapolate to the physical light-quark masses and continuum
and extrapolate in q2 to the full kinematic range. As discussed in Sec. 7.2, the modified z-
expansion is not based on an underlying effective theory, and the associated uncertainties have
yet to be fully studied. Horgan et al. use their form-factor results to calculate the differential
branching fractions and angular distributions and discuss the implications for phenomenology
in a companion paper [527]. Finally, ongoing work on B → K∗ℓ+ℓ− and Bs → φℓ+ℓ− by
RBC/UKQCD, including first results, have recently been reported in Ref. [528].

8.4 Semileptonic form factors for B → Dℓν, B → D∗ℓν, and B → Dτν

The semileptonic processes B → Dℓν and B → D∗ℓν have been studied extensively by
experimentalists and theorists over the years. They allow for the determination of the CKM
matrix element |Vcb|, an extremely important parameter of the Standard Model. |Vcb| appears
in many quantities that serve as inputs into CKM Unitarity Triangle analyses and reducing
its uncertainties is of paramount importance. For example, when ǫK , the measure of indirect
CP violation in the neutral kaon system, is written in terms of the parameters ρ and η that
specify the apex of the unitarity triangle, a factor of |Vcb|4 multiplies the dominant term.
As a result, the errors coming from |Vcb| (and not those from BK) are now the dominant
uncertainty in the Standard Model (SM) prediction for this quantity.

The decay rates for B → D(∗)ℓν can be parameterized in terms of vector and scalar form
factors in the same way as, e.g., B → πℓν, see Sec. 8.3. Traditionally, the light channels
ℓ = e, µ have however been dealt with using a somewhat different notation, viz.

dΓB−→D0ℓ−ν̄
dw =

G2
Fm

3
D

48π3 (mB +mD)
2(w2 − 1)3/2|ηEW|2|Vcb|2|G(w)|2, (188)

dΓB−→D0∗ℓ−ν̄
dw =

G2
Fm

3
D∗

4π3 (mB −mD∗)2(w2 − 1)1/2|ηEW|2|Vcb|2χ(w)|F(w)|2, (189)

where w ≡ vB · vD(∗) , vP = pP/mP are the four-velocities of the mesons, and ηEW = 1.0066
is the 1-loop electroweak correction [529]. The function χ(w) in Eq. (189) depends upon the
recoil w and the meson masses, and reduces to unity at zero recoil [511]. These formulas do
not include terms that are proportional to the lepton mass squared, which can be neglected
for ℓ = e, µ. Until recently, most unquenched lattice calculations for B → D∗ℓν and B → Dℓν
decays focused on the form factors at zero recoil FB→D∗

(1) and GB→D(1); these can then be
combined with experimental input to extract |Vcb|. The main reasons for concentrating on
the zero recoil point are that (i) the decay rate then depends on a single form factor, and
(ii) for B → D∗ℓν, there are no O(ΛQCD/mQ) contributions due to Luke’s theorem [530].
Further, the zero recoil form factor can be computed via a double ratio in which most of
the current renormalization cancels and heavy-quark discretization errors are suppressed by
an additional power of ΛQCD/mQ. Recent work on B → D(∗)ℓν transitions has started to
explore the dependence of the relevant form factors on the momentum transfer, using a similar
methodology to the one employed in B → πℓν transitions; we refer the reader to Sec. 8.3 for
a detailed discussion.

At the time of the previous version of this review, there were no published complete
computations of the form factors for B → Dℓν decays: Nf = 2 + 1 results by FNAL/MILC
for GB→D(1) had only appeared in proceedings form [531, 532], while the (now published)
Nf = 2 study by Atoui et al. [533], that in addition to providing GB→D(1) explores the w > 1
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region, was still in preprint form. This latter work also provided the first results forBs → Dsℓν
amplitudes, again including information about the momentum transfer dependence; this will
allow for an independent determination of |Vcb| as soon as experimental data are available
for these transitions. Meanwhile, the only fully published unquenched results for FB→D∗

(1),
obtained by FNAL/MILC, dated from 2008 [534]. In the last two years, however, significant
progress has been attained in Nf = 2+1 computations: the FNAL/MILC value for FB→D∗

(1)
has been updated in Ref. [535], and full results for B → Dℓν at w ≥ 1 have been published
by FNAL/MILC [536] and HPQCD [537]. These works also provide full results for the scalar
form factor, allowing us to analyze the decay in the τ channel. In the discussion below, we
will only refer to this latest generation of results, which supersedes previous Nf = 2 + 1
determinations and allows for an extraction of |Vcb| that incorporates information about the
q2 dependence of the decay rate (cf. Sec. 8.7).

8.4.1 B(s) → D(s) decays

We will first discuss the Nf = 2+1 computations of B → Dℓν by FNAL/MILC and HPQCD
mentioned above, both based on MILC asqtad ensembles. Full details about all the compu-
tations are provided in Tab. 38 and in the tables in App. B.6.4.

The FNAL/MILC study [536] employs ensembles at four values of the lattice spacing
ranging between approximately 0.045 fm and 0.12 fm, and several values of the light-quark
mass corresponding to pions with RMS masses ranging between 260 MeV and 670 MeV (with
just one ensemble with MRMS

π ≃ 330 MeV at the finest lattice spacing). The b and c quarks
are treated using the Fermilab approach. The quantities directly studied are the form factors
h± defined by

〈D(pD)|ic̄γµb|B(pB)〉√
mDmB

= h+(w)(vB + vD)µ + h−(w)(vB − vD)µ , (190)

which are related to the standard vector and scalar form factors by

f+(q
2) = 1

2
√
r
[(1 + r)h+(w)− (1− r)h−(w)] , f0(q

2) =
√
r
[
1+w
1+r h+(w) + 1−w

1−r h−(w)
]
,

(191)
with r = mD/mB . (Recall that q

2 = (pB−pD)2 = m2
B+m2

D−2wmBmD.) The hadronic form
factor relevant for experiment, G(w), is then obtained from the relation G(w) = 4rf+(q

2)/(1+
r). The form factors are obtained from double ratios of three-point functions in which the
flavour-conserving current renormalization factors cancel. The remaining matching factor
ρV µcb

is estimated with 1-loop lattice perturbation theory. In order to obtain h±(w), a joint
continuum-chiral fit is performed to an ansatz that contains the light-quark mass and lattice
spacing dependence predicted by next-to-leading order HMrSχPT, and the leading depen-
dence on mc predicted by the heavy-quark expansion (1/m2

c for h+ and 1/mc for h−). The
w-dependence, which allows for an interpolation in w, is given by analytic terms up to (1−w)2,
as well as a contribution from the log proportional to g2D∗Dπ. The total resulting systematic
error is 1.2% for f+ and 1.1% for f0. This dominates the final error budget for the form
factors. After f+ and f0 have been determined as functions of w within the interval of values
of q2 covered by the computation, synthetic data points are generated to be subsequently
fitted to a z-expansion of the BGL form, cf. Sec. 8.3, with pole factors set to unity. This in
turn enables one to determine |Vcb| from a joint fit of this z-expansion and experimental data.
The value of the zero-recoil form factor resulting from the z-expansion is

GB→D(1) = 1.1054(4)stat(8)sys . (192)
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The HPQCD computation [537] considers ensembles at two values of the lattice spacing,
a = 0.09, 0.12 fm, and two and three values of light-quark masses, respectively. The b quark
is treated using NRQCD, while for the c quark the HISQ action is used. The form factors
studied, extracted from suitable three-point functions, are

〈D(pD)|V 0|B〉 =
√

2MBf‖ , 〈D(pD)|V k|B〉 =
√

2MBp
k
Df⊥ , (193)

where Vµ is the relevant vector current and the B rest frame is assumed. The standard vector
and scalar form factors are retrieved as

f+ = 1√
2MB

f‖ + 1√
2MB

(MB − ED)f⊥ , f0 =
√
2MB

M2
B−M2

D

[
(MB − ED)f‖ + (M2

B − E2
D)f⊥

]
.

(194)
The currents in the effective theory are matched at 1-loop to their continuum counterparts.
Results for the form factors are then fitted to a modified BCL z-expansion ansatz, that takes
into account simultaneously the lattice spacing, light-quark masses, and q2 dependence. For
the mass dependence NLO chiral logs are included, in the form obtained in hard-pion χPT.
As in the case of the FNAL/MILC computation, once f+ and f0 have been determined as
functions of q2, |Vcb| can be determined from a joint fit of this z-expansion and experimental
data. The work quotes for the zero-recoil vector form factor the result

GB→D(1) = 1.035(40) . (195)

This value is 1.8σ smaller than the FNAL/MILC result and significantly less precise. The
dominant source of errors in the |Vcb| determination by HPQCD are discretization effects and
the systematic uncertainty associated with the perturbative matching.

In order to combine the form factors determinations of HPQCD and FNAL/MILC into
a lattice average, we proceed in a similar way as with B → πℓν and Bs → Kℓν above.
FNAL/MILC quotes synthetic values for the form factors at three values of w (or, alterna-
tively, q2) with a full correlation matrix, which we take directly as input. In the case of
HPQCD, we use their preferred modified z-expansion parameterization to produce synthetic
values of the form factors at two different values of q2. This leaves us with a total of five data
points in the kinematical range w ∈ [1.00, 1.11]. As in the case of B → πℓν, we conservatively
assume a 100% correlation of statistical uncertainties between HPQCD and FNAL/MILC.
We then fit this dataset to a BCL ansatz, using t+ = (MB0 +MD±)2 ≃ 51.12 GeV2 and
t0 = (MB0 +MD±)(

√
MB0 −√MD±)2 ≃ 6.19 GeV2. In our fits, pole factors have been set

to unity — i.e., we do not take into account the effect of sub-threshold poles, which is then
implicitly absorbed into the series coefficients. The reason for this is our imperfect knowledge
of the relevant resonance spectrum in this channel, which does not allow us to decide the pre-
cise number of poles needed.52 This in turn implies that unitarity bounds do not rigorously
apply, which has to be taken into account when interpreting the results (cf. Sec. 8.3.1).

The fits to O(z2) and O(z3) are always well-behaved, and there are no qualitative differ-
ences between the vector and the scalar channels. We conservatively take the O(z3) fit as our

52As noted above, this is the same approach adopted by FNAL/MILC in their fits to a BGL ansatz. HPQCD,
meanwhile, uses one single pole in the pole factors that enter their modified z-expansion, using their spectral
studies to fix the value of the relevant resonance masses.
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Figure 26: The form factors f+(q
2) (left) and f0(q

2) (right) for B → Dℓν plotted versus
z. (See text for a discussion of the datasets.) The grey band displays our preferred three-
parameter BCL fit to the plotted data with errors (see Eqs. (196,197)).

best result and quote for the vector form factor

Nf = 2 + 1 : a
(+)
0 = 0.890(18) , a

(+)
1 = −8.47(93) , a

(+)
2 = 39(16) ; (196)

corr(a
(+)
i , a

(+)
j ) =




1.000 0.806 0.711
0.806 1.000 0.971
0.711 0.971 1.000


 ,

whereas for the scalar form factor we quote

Nf = 2 + 1 : a
(0)
0 = 0.774(14) , a

(0)
1 = −3.64(77) , a

(0)
2 = −12(14) ; (197)

corr(a
(0)
i , a

(0)
j ) =




1.000 0.848 0.777
0.848 1.000 0.974
0.777 0.974 1.000


 .

(The large values (bearing large errors) of the higher-order coefficients are likely due to the
effect of unaccounted-for resonance poles, cf. the discussion above.) These can be used as
the averaged FLAG results for the lattice-computed form factors f+(q

2) and f0(q
2). The

coefficient a3 can be obtained from the values for a0–a2 using Eq. (183). The fit is illustrated
in Fig. 26.

Ref. [533] is the only existing Nf = 2 work on B → Dℓν transitions, that furthermore
provides the only available results for Bs → Dsℓν. This computation uses the publicly
available ETM configurations obtained with the twisted-mass QCD action at maximal twist.
Four values of the lattice spacing, ranging between 0.054 fm and 0.098 fm, are considered, with
physical box lengths ranging between 1.7 fm and 2.7 fm. At two values of the lattice spacing
two different physical volumes are available. Charged-pion masses range between ≈ 270 MeV
and ≈ 490 MeV, with two or three masses available per lattice spacing and volume, save for
the a ≈ 0.054 fm point at which only one light mass is available for each of the two volumes.
The strange and heavy valence quarks are also treated with maximally twisted-mass QCD.
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The quantities of interest are again the form factors h± defined above. In order to control
discretization effects from the heavy quarks, a strategy similar to the one employed by the
ETM Collaboration in their studies of B-meson decay constants (cf. Sec. 8.1) is employed:
the value of G(w) is computed at a fixed value of mc and several values of a heavier quark

mass m
(k)
h = λkmc, where λ is a fixed scaling parameter, and step-scaling functions are built

as
Σk(w) =

G(w,λk+1mc,mc,a2)
G(w,λkmc,mc,a2)

. (198)

Each ratio is extrapolated to the continuum limit, σk(w) = lima→0 Σk(w). One then exploits
the fact that the mh →∞ limit of the step-scaling is fixed — in particular, it is easy to find
from the heavy-quark expansion that limmh→∞ σ(1) = 1. In this way, the physical result at
the b-quark mass can be reached by interpolating σ(w) between the charm region (where the
computation can be carried out with controlled systematics) and the known static limit value.

In practice, the values of mc and ms are fixed at each value of the lattice spacing such
that the experimental kaon and Ds masses are reached at the physical point, as determined
in Ref. [11]. For the scaling parameter, λ = 1.176 is chosen, and eight scaling steps are
performed, reaching mh/mc = 1.1769 ≃ 4.30, approximately corresponding to the ratio of the
physical b- and c-masses in the MS scheme at 2 GeV. All observables are obtained from ratios
that do not require (re)normalization. The ansatz for the continuum and chiral extrapolation
of Σk contains a constant and linear terms in msea and a2. Twisted boundary conditions
in space are used for valence-quark fields for better momentum resolution. Applying this
strategy the form factors are finally obtained at four reference values of w between 1.004 and
1.062, and, after a slight extrapolation to w = 1, the result is quoted

GBs→Ds(1) = 1.052(46) . (199)

The authors also provide values for the form factor relevant for the meson states with light
valence quarks, obtained from a similar analysis to the one described above for the Bs → Ds

case. Values are quoted from fits with and without a linear msea/ms term in the chiral
extrapolation. The result in the former case, which safely covers systematic uncertainties, is

GB→D(1) = 1.033(95) . (200)

Given the identical strategy, and the small sensitivity of the ratios used in their method to
the light valence- and sea-quark masses, we assign this result the same ratings in Tab. 38
as those for their calculation of GBs→Ds(1). Currently the precision of this calculation is
not competitive with that of Nf = 2 + 1 works, but this is due largely to the small number
of configurations analysed by Atoui et al. The viability of their method has been clearly
demonstrated, however, which leaves significant room for improvement on the errors of both
the B → D and Bs → Ds form factors with this approach by including either additional
two-flavour data or analysing more recent ensembles with Nf > 2.

Finally, Atoui et al. also study the scalar and tensor form factors, as well as the momentum
transfer dependence of f+,0. The value of the ratio f0(q

2)/f+(q
2) is provided at a reference

value of q2 as a proxy for the slope of G(w) around the zero-recoil limit.

8.4.2 Ratios of B → Dℓν form factors

The availability of results for the scalar form factor f0 in the latest generation of results for
B → Dℓν amplitudes allows us to study interesting observables that involve the decay in the
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τ channel. One such quantity is the ratio

R(D) = B(B → Dτν)/B(B → Dℓν) with ℓ = e, µ , (201)

which is sensitive to f0, and can be accurately determined by experiment.53 Indeed, the recent
availability of experimental results for R(D) has made this quantity particularly relevant in
the search for possible physics beyond the Standard Model. Both FNAL/MILC and HPQCD
provide values for R(D) from their recent form factor computations, discussed above. In the
FNAL/MILC case, this result supersedes their 2012 determination, which was discussed in
the previous version of this review. The quoted values by FNAL/MILC and HPQCD are

R(D) = 0.299(11) Ref. [536] , R(D) = 0.300(8) Ref. [537] . (202)

These results are in excellent agreement, and can be averaged (using the same considerations
for the correlation between the two computations as we did in the averaging of form factors)
into

R(D) = 0.300(8) , our average. (203)

This result is about 1.6σ lower than the current experimental average for this quantity. It
has to be stressed that achieving this level of precision critically depends on the reliability
with which the low-q2 region is controlled by the parameterizations of the form factors.

Another area of immediate interest in searches for physics beyond the Standard Model is
the measurement of Bs → µ+µ− decays, recently achieved by LHCb.54 In addition to the Bs

decay constant (see Sec. 8.1), one of the hadronic inputs required by the LHCb analysis is the
ratios of Bq meson (q = d, s) fragmentation fractions, fs/fd. A dedicated Nf = 2 + 1 study

by FNAL/MILC55 Ref. [538] addresses the ratios of scalar form factors f
(q)
0 (q2), and quotes:

f
(s)
0 (M2

π)/f
(d)
0 (M2

K) = 1.046(44)(15), f
(s)
0 (M2

π)/f
(d)
0 (M2

π) = 1.054(47)(17), (204)

where the first error is statistical and the second systematic. These results lead to frag-
mentation fraction ratios fs/fd that are consistent with LHCb’s measurements via other
methods [539].

8.4.3 B → D∗ decays

The most precise computation of the zero-recoil form factors needed for the determination
of |Vcb| from exclusive B semileptonic decays comes from the B → D∗ℓν form factor at zero
recoil, FB→D∗

(1), calculated by the FNAL/MILC Collaboration. The original computation,
published in Ref. [534], has now been updated [535] by employing a much more extensive
set of gauge ensembles and increasing the statistics of the ensembles originally considered,
while preserving the analysis strategy. There is currently no unquenched computation of the
relevant form factors at nonzero recoil.

This work uses the MILC Nf = 2 + 1 ensembles. The bottom and charm quarks are
simulated using the clover action with the Fermilab interpretation and light quarks are treated

53A similar ratio R(D∗) can be considered for B → D∗ transitions — as a matter of fact, the experimental
value of R(D∗) is significantly more accurate than the one of R(D). However, the absence of lattice results
for the B → D∗ scalar form factor, and indeed of results at nonzero recoil (see below), takes R(D∗) out of our
current scope.

54See Ref. [449] for the latest results, obtained from a joint analysis of CMS and LHCb data.
55This work also provided a value for R(D), now superseded by Ref. [536].
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via the asqtad staggered fermion action. At zero recoil FB→D∗
(1) reduces to a single form

factor hA1(1) coming from the axial-vector current

〈D∗(v, ǫ′)|Aµ|B(v)〉 = i
√
2mB2mD∗ ǫ′µ

∗
hA1(1), (205)

where ǫ′ is the polarization of the D∗. The form factor is accessed through a ratio of three-
point correlators, viz.

RA1 =
〈D∗|c̄γjγ5b|B〉 〈B|b̄γjγ5c|D∗〉

〈D∗|c̄γ4c|D∗〉 〈B|b̄γ4b|B〉 = |hA1(1)|2. (206)

Simulation data are obtained on MILC ensembles with five lattice spacings, ranging from
a ≈ 0.15 fm to a ≈ 0.045 fm, and as many as five values of the light-quark masses per
ensemble (though just one at the finest lattice spacing). Results are then extrapolated to the
physical, continuum/chiral, limit employing staggered χPT.

The D∗ meson is not a stable particle in QCD and decays predominantly into a D plus a
pion. Nevertheless, heavy-light meson χPT can be applied to extrapolate lattice simulation
results for the B → D∗ℓν form factor to the physical light-quark mass. The D∗ width is quite
narrow, 0.096 MeV for the D∗±(2010) and less than 2.1MeV for the D∗0(2007), making this
system much more stable and long lived than the ρ or the K∗ systems. The fact that the
D∗ −D mass difference is close to the pion mass leads to the well known “cusp” in RA1 just
above the physical pion mass [540–542]. This cusp makes the chiral extrapolation sensitive to
values used in the χPT formulas for the D∗Dπ coupling gD∗Dπ. The error budget in Ref. [535]
includes a separate error of 0.3% coming from the uncertainty in gD∗Dπ in addition to general
chiral extrapolation errors in order to take this sensitivity into account.

The final updated value presented in Ref. [535], that we quote as our average for this
quantity, is

FB→D∗

(1) = hA1(1) = 0.906(4)(12) , (207)

where the first error is statistical, and the second the sum of systematic errors added in
quadrature, making up a total error of 1.4% (down from the original 2.6% of Ref. [534]).
The largest systematic uncertainty comes from discretization errors followed by effects of
higher-order corrections in the chiral perturbation theory ansatz.

8.5 Semileptonic form factors for Λb → pℓν and Λb → Λcℓν

A recent new development in Lattice QCD computations for heavy-quark physics is the study
of semileptonic decays of the Λb baryon, with first unquenched results provided in a work
by Detmold, Lehner and Meinel [543]. The importance of this result is that, together with
a recent analysis by LHCb of the ratio of decay rates Γ(Λb → pℓν)/Γ(Λb → Λcℓν) [544], it
allows for an exclusive determination of the ratio |Vub|/|Vcb| largely independent from the
outcome of different exclusive channels, thus contributing a very interesting piece of infor-
mation to the existing tensions in the determination of third-column CKM matrix elements
(cf. Secs. 8.6,8.7). For that reason, we will discuss these results briefly, notwithstanding the
fact that baryon physics is in general out of the scope of the present review.

The amplitudes of the decays Λb → pℓν and Λb → Λcℓν receive contributions from both
the vector and the axial components of the current in the matrix elements 〈p|q̄γµ(1−γ5)b|Λb〉
and 〈Λc|q̄γµ(1 − γ5)b|Λb〉, and can be parameterized in terms of six different form factors
— see, e.g., Ref. [545] for a complete description. They split into three form factors f+, f0,
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w = 1 form factor / ratio

FNAL/MILC 14 [535] 2+1 A ⋆ ◦ ⋆ ◦ X FB→D∗

(1) 0.906(4)(12)

HPQCD 15 [537] 2+1 A ◦ ◦ ◦ ◦ X GB→D(1) 1.035(40)

FNAL/MILC 15C [536] 2+1 A ⋆ ◦ ⋆ ◦ X GB→D(1) 1.1054(4)(8)

HPQCD 15 [537] 2+1 A ◦ ◦ ◦ ◦ X R(D) 0.300(8)

FNAL/MILC 15C [536] 2+1 A ⋆ ◦ ⋆ ◦ X R(D) 0.299(11)

Atoui 13 [533] 2 A ⋆ ◦ ⋆ — X GB→D(1) 1.033(95)

Atoui 13 [533] 2 A ⋆ ◦ ⋆ — X GBs→Ds(1) 1.052(46)

Table 38: Lattice results for the B → D∗ℓν, B → Dℓν, and Bs → Dsℓν semileptonic form
factors and R(D).

f⊥ in the parity-even sector, mediated by the vector component of the current, and another
three form factors g+, g0, g⊥ in the parity-odd sector, mediated by the axial component. All
of them provide contributions that are parametrically comparable.

The computation of Detmold et al. uses RBC/UKQCD Nf = 2+1 DWF ensembles, and
treats the b and c quarks within the Columbia RHQ approach. Two values of the lattice
spacing (a ∼ 0.112, 0.085 fm) are considered, with the absolute scale set from the Υ(2S)–
Υ(1S) splitting. Sea pion masses lie in a narrow interval ranging from slightly above 400 MeV
to slightly below 300 MeV, keeping mπL & 4; however, lighter pion masses are considered
in the valence DWF action for the u, d quarks, leading to partial quenching effects in the
chiral extrapolation. More importantly, this also leads to values of Mπ,minL close to 3.0 (cf.
App B.6.3 for details); compounded with the fact that there is only one lattice volume in
the computation, an application of the FLAG criteria would lead to a � rating for finite
volume effects. It has to be stressed, however, that our criteria have been developed in the
context of meson physics, and their application to the baryon sector is not straightforward;
as a consequence, we will refrain from providing a conclusive rating of this computation for
the time being.

Results for the form factors are obtained from suitable three-point functions, and fitted to
a modified z-expansion ansatz that combines the q2 dependence with the chiral and continuum
extrapolations. The main results of the paper are the predictions (errors are statistical and
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systematic, respectively)

1
|Vub|2

∫ q2max

15 GeV2

dΓ(Λb→pµ−ν̄µ)
dq2

dq2 = 12.32(93)(80) ps−1 ,

1
|Vcb|2

∫ q2max

15 GeV2

dΓ(Λb→Λcµ−ν̄µ)
dq2

dq2 = 8.39(18)(32) ps−1 ,

(208)

which are the input for the LHCb analysis. Prediction for the total rates in all possible lepton
channels, as well as for ratios similar to R(D) (cf. Sec. 8.4) between the τ and light lepton
channels are also available.

8.6 Determination of |Vub|
We now use the lattice-determined Standard Model transition amplitudes for leptonic (Sec. 8.1)
and semileptonic (Sec. 8.3) B-meson decays to obtain exclusive determinations of the CKM
matrix element |Vub|. In this section, we describe the aspect of our work that involves ex-
perimental input for the relevant charged-current exclusive decay processes. The relevant
formulae are Eqs. (146) and (171). Among leptonic channels the only input comes from
B → τντ , since the rates for decays to e and µ have not yet been measured. In the semilep-
tonic case we only consider B → πℓν transitions (experimentally measured for ℓ = e, µ). As
discussed in Secs. 8.3 and 8.5, there are now lattice predictions for the rates of the decays
Bs → Kℓν and Λb → pℓν; however, in the former case the process has not been experimen-
tally measured yet, while in the latter case the only existing lattice computation does not
meet FLAG requirements for controlled systematics.

We first investigate the determination of |Vub| through the B → τντ transition. This is
the only experimentally measured leptonic decay channel of the charged B-meson. After the
publication of the previous FLAG report [2] in 2013, the experimental measurements of the
branching fraction of this channel, B(B− → τ−ν̄), were updated. While the results from
the BaBar collaboration remain the same as those reported before the end of 2013, the Belle
collaboration reanalysed the data and reported that the value of B(B− → τ−ν̄) obtained
with semileptonic tags changed from 1.54+0.380.29

−0.37−0.31 × 10−4 to 1.25± 0.28± 0.27× 10−4 [451].
Table 39 summarizes the current status of experimental results for this branching fraction.

Collaboration Tagging method B(B− → τ−ν̄)× 104

Belle [546] Hadronic 0.72+0.27
−0.25 ± 0.11

Belle [451] Semileptonic 1.25 ± 0.28± 0.27

BaBar [450] Hadronic 1.83+0.53
−0.49 ± 0.24

BaBar [547] Semileptonic 1.7± 0.8± 0.2

Table 39: Experimental measurements for B(B− → τ−ν̄). The first error on each result is
statistical, while the second error is systematic.

It is obvious that all the measurements listed in Tab. 39 have significance less than 5σ,
and the uncertainties are dominated by statistical errors. These measurements lead to the
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averages of experimental measurements for B(B− → τ ν̄) [450, 451],

B(B− → τ ν̄) = 0.91 ± 0.22 from Belle,

= 1.79 ± 0.48 from BaBar. (209)

We notice that minor tension between results from the two collaborations can be observed,
even in the presence of large errors. Despite this situation, in Ref. [183] the Particle Data
Group performed a global average of B(B− → τ ν̄) employing all the information in Tab. 39.
Here we choose to proceed with the strategy of quoting different values of |Vub| as determined
using inputs from the Belle and the BaBar experiments shown in Eq. (209), respectively.

Combining the results in Eq. (209) with the experimental measurements of the mass of
the τ -lepton and the B-meson lifetime and mass, the Particle Data Group presented [183]

|Vub|fB = 0.72 ± 0.09 MeV from Belle,

= 1.01 ± 0.14 MeV from BaBar, (210)

which can be used to extract |Vub|.

Nf = 2 Belle B → τντ : |Vub| = 3.83(48)(15) × 10−3 ,

Nf = 2 + 1 Belle B → τντ : |Vub| = 3.75(47)(9) × 10−3 ,

Nf = 2 + 1 + 1 Belle B → τντ : |Vub| = 3.87(48)(9) × 10−3 ;

(211)

Nf = 2 Babar B → τντ : |Vub| = 5.37(74)(21) × 10−3 ,

Nf = 2 + 1 Babar B → τντ : |Vub| = 5.26(73)(12) × 10−3 ,

Nf = 2 + 1 + 1 Babar B → τντ : |Vub| = 5.43(75)(12) × 10−3 .

where the first error comes from experiment and the second comes from the uncertainty in
fB.

Let us now turn our attention to semileptonic decays. The experimental value of |Vub|f+(q2)
can be extracted from the measured branching fractions for B0 → π±ℓν and/or B± → π0ℓν
applying Eq. (171);56 |Vub| can then be determined by performing fits to the constrained BCL
z parameterization of the form factor f+(q

2) given in Eq. (184). This can be done in two
ways: one option is to perform separate fits to lattice and experimental results, and extract
the value of |Vub| from the ratio of the respective a0 coefficients; a second option is to per-
form a simultaneous fit to lattice and experimental data, leaving their relative normalization
|Vub| as a free parameter. We adopt the second strategy, because it combines the lattice and
experimental input in a more efficient way, leading to a smaller uncertainty on |Vub|.

The available state-of-the-art experimental input, as employed, e.g., by HFAG, consists
of five datasets: three untagged measurements by BaBar (6-bin [548] and 12-bin [438]) and
Belle [437], all of which assume isospin symmetry and provide combined B0 → π− and
B+ → π0 data; and the two tagged Belle measurements of B̄0 → π+ (13-bin) and B− → π0

(7-bin ) [549]. In the previous version of the FLAG review [2] we only used the 13-bin Belle
and 12-bin BaBar datasets, and performed separate fits to them due to the lack of information
on systematic correlations between them. Now however we will follow established practice,
and perform a combined fit to all the experimental data. This is based on the existence of

56Since ℓ = e, µ the contribution from the scalar form factor in Eq. (171) is negligible.
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Figure 27: Lattice and experimental data for (1 − q2/m2
B∗)fB→π

+ (q2) versus z. The filled
green symbols denote lattice-QCD points included in the fit, while blue and indigo points
show experimental data divided by the value of |Vub| obtained from the fit. The grey band
shows the preferred three-parameter BCL fit to the lattice-QCD and experimental data with
errors.

new information about cross-correlations, that allows us to obtain a meaningful final error
estimate.57 The lattice input dataset will be the same discussed in Sec. 8.3.

A simple three-parameter constrained BCL fit (i.e., through O(z2) plus |Vub|) is enough to
describe the combined datasets satisfactorily; however, the inclusion of experimental points
allows for a better determination of the higher orders in the BCL parameterization with
respect to the lattice-only fit. In order to address the potential systematic uncertainty due
to truncating the series in z, we continue to add terms to the fit until the result for |Vub|
stabilizes, i.e., the central value settles and the errors stop increasing. We find that this
happens at O(z3), and take the value of |Vub| from the combined fit through this order as our
estimate,

Nf = 2 + 1 B → πℓν : |Vub| = 3.62(14) × 10−3 . (212)

Fig. 27 shows both the lattice and experimental data for (1− q2/m2
B∗)f+(q

2) as a function of
z(q2), together with our preferred fit; experimental data have been rescaled by the resulting
value for |Vub|2. It is worth noting the good consistency between the form factor shapes
from lattice and experimental data. This can be quantified, e.g., by computing the ratio of
the two leading coefficients in the constrained BCL parameterization: the fit to lattice form
factors yields a1/a0 = −0.83(25) (cf. Eq. (185)), while the above lattice+experiment fit yields
a1/a0 = −0.921(88).

We plot the values of |Vub| we have obtained in Fig. 29, where the determination through
inclusive decays by the Heavy Flavour Averaging Group (HFAG) [196], yielding |Vub| =
4.62(20)(29) × 10−3, is also shown for comparison. In this plot the tension between the
BaBar and the Belle measurements of B(B− → τ−ν̄) is manifest. As discussed above, it is

57See, e.g., Sec. V.D of [502] for a detailed discussion.
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for this reason that we do not extract |Vub| through the average of results for this branching
fraction from these two collaborations. In fact this means that a reliable determination of |Vub|
using information from leptonic B-meson decays is still absent; the situation will only clearly
improve with the more precise experimental data expected from Belle II. The value for |Vub|
obtained from semileptonic B decays for Nf = 2+ 1, on the other hand, is significantly more
precise than both the leptonic and the inclusive determinations, and exhibits the well-known
∼ 3σ tension with the latter.

8.7 Determination of |Vcb|
We will now use the lattice QCD results for the B → D(∗)ℓν form factors in order to ob-
tain determinations of the CKM matrix element |Vcb| in the Standard Model. The relevant
formulae are given in Eq. (189).

Let us summarize the lattice input that satisfies FLAG requirements for the control of sys-
tematic uncertainties, discussed in Sec. 8.4. In the (experimentally more precise) B → D∗ℓν
channel, there is only one Nf = 2+1 lattice computation of the relevant form factor FB→D∗

at zero recoil. Concerning the B → Dℓν channel, for Nf = 2 there is one determination of the
relevant form factor GB→D at zero recoil58; while for Nf = 2+1 there are two determinations
of the B → D form factor as a function of the recoil parameter in roughly the lowest third
of the kinematically allowed region. In this latter case, it is possible to replicate the analysis
carried out for |Vub| in Sec. 8.6, and perform a joint fit to lattice and experimental data; in
the former, the value of |Vcb| has to be extracted by matching to the experimental value for
FB→D∗

(1)ηEW|Vcb| and GB→D(1)ηEW|Vcb|.
The latest experimental average by HFAG [196] for the B → D∗ form factor at zero recoil

is

FB→D∗

(1)ηEW|Vcb| = 35.81(0.45) × 10−3 . (213)

By using ηEW = 1.00662 and the lattice value for FB→D∗
(1) in Eq. (207), we thus extract

our average

Nf = 2 + 1 B → D∗ℓν : |Vcb| = 39.27(56)(49) × 10−3 , (214)

where the first uncertainty comes from the lattice computation and the second from the
experimental input. For the zero-recoil B → D form factor, HFAG quotes

HFAG: GB→D(1)ηEW|Vcb| = 42.65(1.53) × 10−3 . (215)

This average is strongly dominated by the BaBar input. The set of experimental results for
B → Dℓν has however been significantly improved by the recent publication of a new Belle
measurement [550], which quotes

Belle 2016: GB→D(1)ηEW|Vcb| = 42.29(1.37) × 10−3 . (216)

Given the difficulties to include this latter number in a global average replicating the procedure
followed by HFAG, and the fact that the final uncertainty will be completely dominated by

58The same work provides GBs→Ds , for which there are, however, no experimental data.
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from |Vcb| × 103

our average for Nf = 2 + 1 B → D∗ℓν 39.27(56)(49)
our average for Nf = 2 + 1 B → Dℓν 40.85(98)

our average for Nf = 2 B → Dℓν 41.0(3.8)(1.5)

HFAG inclusive average B → Xcℓν 42.46(88)

Table 40: Results for |Vcb|. When two errors are quoted in our averages, the first one comes
from the lattice form factor, and the second from the experimental measurement. The HFAG
inclusive average obtained in the kinetic scheme from Ref. [196] is shown for comparison.

the error of the lattice input in Eq. (200), we will conservatively use the value in Eq. (215)
to provide an average for Nf = 2, and quote

Nf = 2 B → Dℓν : |Vcb| = 41.0(3.8)(1.5) × 10−3 . (217)

Finally, for Nf = 2 + 1 we will perform, as discussed above, a joint fit to the available
lattice data, discussed in Sec. 8.4, and state-of-the-art experimental determinations. In this
case we will combine the aforementioned recent Belle measurement [550], which provides
partial integrated decay rates in 10 bins in the recoil parameter w, with the 2010 BaBar
dataset in Ref. [551], which quotes the value of GB→D(w)ηEW|Vcb| for four values of w. The
fit is dominated by the more precise Belle data; given this, and the fact that only partial
correlations among systematic uncertainties are to be expected, we will treat both datasets
are uncorrelated.59 A constrained BCL fit through O(z3), using the same ansatz as for
lattice-only data in Sec. 8.4, yields our average

Nf = 2 + 1 B → Dℓν : |Vcb| = 40.85(98) × 10−3 , (218)

where the error combines the lattice and experimental uncertainties. The fit is illustrated in
Fig. 28.

Our results are summarized in Tab. 40, which also shows the HFAG inclusive determi-
nation of |Vcb| for comparison, and illustrated in Fig. 29. The Nf = 2 + 1 results coming
from B → D∗ℓν and B → Dℓν could in principle be averaged; we will however not do so,
due to the difficulties of properly taking into account experimental correlations. We will thus
leave them as separate exclusive estimates, which show good mutual consistence, and the
well-known tension with the inclusive determination.

59We have checked that results using just one experimental dataset are compatible within 1σ. In the case
of BaBar, we have taken into account the introduction of some EW corrections in the data.
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9 The strong coupling αs

9.1 Introduction

The strong coupling ḡ(µ) defined at scale µ, plays a key role in the understanding of QCD
and in its application for collider physics. For example, the parametric uncertainty from αs is
one of the dominant sources of uncertainty in the Standard Model prediction for the H → bb̄
partial width, and the largest source of uncertainty for H → gg. Thus higher precision
determinations of αs are needed to maximize the potential of experimental measurements at
the LHC, and for high-precision Higgs studies at future colliders [552–554]. The value of αs

also yields one of the essential boundary conditions for completions of the standard model at
high energies.

In order to determine the running coupling at scale µ

αs(µ) =
ḡ2(µ)

4π
, (219)

we should first “measure” a short-distance quantity Q at scale µ either experimentally or by
lattice calculations and then match it with a perturbative expansion in terms of a running
coupling, conventionally taken as αMS(µ),

Q(µ) = c1αMS(µ) + c2αMS(µ)
2 + · · · . (220)

The essential difference between continuum determinations of αs and lattice determinations
is the origin of the values of Q in Eq. (220).

The basis of continuum determinations are experimentally measurable cross sections from
which Q is defined. These cross sections have to be sufficiently inclusive and at sufficiently
high scales such that perturbation theory can be applied. Often hadronization corrections
have to be used to connect the observed hadronic cross sections to the perturbative ones.
Experimental data at high µ, where perturbation theory is progressively more precise, usually
have increasing experimental errors, and it is not easy to find processes which allow one to
follow the µ dependence of a single Q(µ) over a range where αs(µ) changes significantly and
precision is maintained.

In contrast, in lattice gauge theory, one can design Q(µ) as Euclidean short-distance
quantities which are not directly related to experimental observables. This allows us to follow
the µ dependence until the perturbative regime is reached and nonperturbative “corrections”
are negligible. The only experimental input for lattice computations of αs is the hadron
spectrum which fixes the overall energy scale of the theory and the quark masses. Therefore
experimental errors are completely negligible and issues such as hadronization do not occur.
We can construct many short-distance quantities that are easy to calculate nonperturbatively
in lattice simulations with small statistical uncertainties. We can also simulate at parameter
values that do not exist in nature (for example with unphysical quark masses between bottom
and charm) to help control systematic uncertainties. These features mean that precise results
for αs can be achieved with lattice gauge theory computations. Further, as in the continuum,
the different methods available to determine αs in lattice calculations with different associated
systematic uncertainties enable valuable cross-checks. Practical limitations are discussed in
the next section, but a simple one is worth mentioning here. Experimental results (and
therefore the continuum determinations) of course have all quarks present, while in lattice
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gauge theories only the light ones are included and one then is forced to use the matching at
thresholds, as discussed in the following subsection.

It is important to keep in mind that the dominant source of uncertainty in most present
day lattice-QCD calculations of αs are from the truncation of continuum/lattice perturba-
tion theory and from discretization errors. Perturbative truncation errors are of a different
nature than most other lattice (or continuum) systematics, in that they often cannot easily
be estimated from studying the data itself. Further, the size of higher-order coefficients in
the perturbative series can sometimes turn out to be larger than naive expectations based on
power counting from the behaviour of lower-order terms.

The various phenomenological approaches to determining the running coupling, α
(5)

MS
(MZ)

are summarized by the Particle Data Group [151]. The PDG review lists 4 categories of phe-
nomenological results used to obtain the running coupling using hadronic τ decays, hadronic
final states of e+e− annihilation, deep inelastic lepton–nucleon scattering and electroweak
precision data. Excluding lattice results, the PDG quotes a weighted average of

α
(5)

MS
(MZ) = 0.1175(17) , (221)

compared to α
(5)

MS
(MZ) = 0.1183(12) of the previous review [555]. For a general overview

of the various phenomenological and lattice approaches see e.g. Ref. [556]. We note that
perturbative truncation errors are also the dominant source of uncertainty in several of the
phenomenological determinations of αs. In particular, the extraction of αs from τ data,
which is the most precise and has the largest impact on the nonlattice average in Eq. (221)
is especially sensitive to the treatment of higher-order perturbative terms. This is important

to keep in mind when comparing our chosen range for α
(5)

MS
(MZ) from lattice determinations

in Eq. (265) with the nonlattice average from the PDG.

9.1.1 Scheme and scale dependence of αs and ΛQCD

Despite the fact that the notion of the QCD coupling is initially a perturbative concept, the
associated Λ parameter is nonperturbatively defined

Λ ≡ µ (b0ḡ2(µ))−b1/(2b20)e−1/(2b0 ḡ2(µ)) exp

[
−
∫ ḡ(µ)

0
dx

(
1

β(x)
+

1

b0x3
− b1
b20x

)]
, (222)

where β is the full renormalization group function in the scheme which defines ḡ, and b0 and
b1 are the first two scheme-independent coefficients of the perturbative expansion

β(x) ∼ −b0x3 − b1x5 + . . . , (223)

with

b0 =
1

(4π)2

(
11− 2

3
Nf

)
, b1 =

1

(4π)4

(
102− 38

3
Nf

)
. (224)

Thus the Λ parameter is renormalization-scheme-dependent but in an exactly computable
way, and lattice gauge theory is an ideal method to relate it to the low-energy properties of
QCD.
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The change in the coupling from one scheme, S, to another (taken here to be the MS
scheme) is perturbative,

g2
MS

(µ) = g2S(µ)(1 + c(1)g g2S(µ) + . . .) , (225)

where c
(i)
g are the finite renormalization coefficients. The scale µ must be taken high enough

for the error in keeping only the first few terms in the expansion to be small. On the other
hand, the conversion to the Λ parameter in the MS scheme is given exactly by

ΛMS = ΛS exp
[
c(1)g /(2b0)

]
. (226)

By convention αMS is usually quoted at a scale µ = MZ where the appropriate effective

coupling is the one in the 5-flavour theory: α
(5)

MS
(MZ). In order to obtain it from a result with

fewer flavours, one connects effective theories with different number of flavours as discussed
by Bernreuther and Wetzel [557]. For example one considers the MS scheme, matches the
3-flavour theory to the 4-flavour theory at a scale given by the charm-quark mass, runs with
the 4-loop β-function of the 4-flavour theory to a scale given by the b-quark mass and there
matches to the 5-flavour theory, after which one runs up to µ = MZ . For the matching
relation at a given quark threshold we use the mass m⋆ which satisfies m⋆ = mMS(m⋆), where
m is the running mass (analogous to the running coupling). Then

ḡ2Nf−1(m⋆) = ḡ2Nf (m⋆)× [1 + t2 ḡ
4
Nf

(m⋆) + t3 ḡ
6
Nf

(m⋆) + . . .] (227)

with [558]

t2 =
1

(4π2)2
11

72
(228)

t3 =
1

(4π2)3

[
−82043

27648
ζ3 +

564731

124416
− 2633

31104
(Nf − 1)

]
(229)

(where ζ3 is the Riemann zeta-function) provides the matching at the thresholds in the MS
scheme. While t2, t3 are numerically small coefficients, the charm threshold scale is also
relatively low and so there are nonperturbative uncertainties in the matching procedure,
which are difficult to estimate but which we assume here to be negligible. Obviously there is
no perturbative matching formula across the strange “threshold”; here matching is entirely
nonperturbative. Model dependent extrapolations of ḡ2Nf from Nf = 0, 2 to Nf = 3 were
done in the early days of lattice gauge theory. We will include these in our listings of results
but not in our estimates, since such extrapolations are based on untestable assumptions.

9.1.2 Overview of the review of αs

We begin by explaining lattice-specific difficulties in Sec. 9.2 and the FLAG criteria designed
to assess whether the associated systematic uncertainties can be controlled and estimated in
a reasonable manner. We then discuss, in Sec. 9.3 – Sec. 9.8, the various lattice approaches.
For completeness, we present results from calculations with Nf = 0, 2, 3, and 4 flavours.

Finally, in Sec. 9.9, we present averages together with our best estimates for α
(5)

MS
. These are

determined from 3- and 4-flavour QCD simulations. The earlier Nf = 0, 2 works obtained
results for Nf = 3 by extrapolation in Nf . Because this is not a theoretically controlled
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procedure, we do not include these results in our averages. For the Λ parameter, we also
give results for other number of flavours, including Nf = 0. Even though the latter numbers
should not be used for phenomenology, they represent valuable nonperturbative information
concerning field theories with variable numbers of quarks.

9.1.3 Differences compared to the FLAG 13 report

For the benefit of the readers which are familiar with our previous report, we list here where
changes and additions can be found which go beyond slight improvements of the presentation.

Our criteria are unchanged as far as the explicit ratings on renormalization scale, per-
turbative behaviour and continuum extrapolation are concerned. However, where we discuss
the criteria, we emphasize that it is also important whether finite-size effects and topology
sampling are under control. In a few cases, this influences our decision on which computations
enter our ranges and averages.

New computations which are reviewed here are

Karbstein 14 [559] and Bazavov 14 [61] based on the static-quark potential (Sec. 9.4),

FlowQCD 15 [560] based on a tadpole-improved bare coupling (Sec. 9.6),

HPQCD 14A [5] based on heavy-quark current two-point functions (Sec. 9.7).

They influence the final ranges marginally.

9.2 Discussion of criteria for computations entering the averages

As in the PDG review, we only use calculations of αs published in peer-reviewed journals, and
that use NNLO or higher-order perturbative expansions, to obtain our final range in Sec. 9.9.
We also, however, introduce further criteria designed to assess the ability to control important
systematics which we describe here. Some of these criteria, e.g. that for the continuum ex-
trapolation, are associated with lattice-specific systematics and have no continuum analogue.
Other criteria, e.g. that for the renormalization scale, could in principle be applied to nonlat-
tice determinations. Expecting that lattice calculations will continue to improve significantly
in the near future, our goal in reviewing the state of the art here is to be conservative and
avoid prematurely choosing an overly small range.

In lattice calculations, we generally take Q to be some combination of physical amplitudes
or Euclidean correlation functions which are free from UV and IR divergences and have a
well-defined continuum limit. Examples include the force between static quarks and 2-point
functions of quark bilinear currents.

In comparison to values of observables Q determined experimentally, those from lattice
calculations require two more steps. The first step concerns setting the scale µ in GeV, where
one needs to use some experimentally measurable low-energy scale as input. Ideally one
employs a hadron mass. Alternatively convenient intermediate scales such as

√
t0, w0, r0, r1,

[136, 244, 245, 561] can be used if their relation to an experimental dimensionful observable is
established. The low-energy scale needs to be computed at the same bare parameters where
Q is determined, at least as long as one does not use the step-scaling method (see below).
This induces a practical difficulty given present computing resources. In the determination of
the low-energy reference scale the volume needs to be large enough to avoid finite-size effects.
On the other hand, in order for the perturbative expansion of Eq. (220) to be reliable, one
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has to reach sufficiently high values of µ, i.e. short enough distances. To avoid uncontrollable
discretization effects the lattice spacing a has to be accordingly small. This means

L≫ hadron size ∼ Λ−1
QCD and 1/a≫ µ , (230)

(where L is the box size) and therefore

L/a≫ µ/ΛQCD . (231)

The currently available computer power, however, limits L/a, typically to L/a = 20 − 64.
Unless one accepts compromises in controlling discretization errors or finite-size effects, this
means one needs to set the scale µ according to

µ≪ L/a× ΛQCD ∼ 5− 20GeV . (232)

Therefore, µ can be 1 − 3GeV at most. This raises the concern whether the asymptotic
perturbative expansion truncated at 1-loop, 2-loop, or 3-loop in Eq. (220) is sufficiently ac-
curate. There is a finite-size scaling method, usually called step-scaling method, which solves
this problem by identifying µ = 1/L in the definition of Q(µ), see Sec. 9.3.

For the second step after setting the scale µ in physical units (GeV), one should compute
Q on the lattice, Qlat(a, µ) for several lattice spacings and take the continuum limit to obtain
the left hand side of Eq. (220) as

Q(µ) ≡ lim
a→0
Qlat(a, µ) with µ fixed . (233)

This is necessary to remove the discretization error.
Here it is assumed that the quantity Q has a continuum limit, which is regularization-

independent up to discretization errors. The method discussed in Sec. 9.6, which is based on
the perturbative expansion of a lattice-regulated, divergent short-distance quantity Wlat(a)
differs in this respect and must be treated separately.

In summary, a controlled determination of αs needs to satisfy the following:

1. The determination of αs is based on a comparison of a short-distance quantity Q at scale
µ with a well–defined continuum limit without UV and IR divergences to a perturbative
expansion formula in Eq. (220).

2. The scale µ is large enough so that the perturbative expansion in Eq. (220) is precise to
the order at which it is truncated, i.e. it has good asymptotic convergence.

3. If Q is defined by physical quantities in infinite volume, one needs to satisfy Eq. (231).

Nonuniversal quantities need a separate discussion, see Sec. 9.6.

Conditions 2. and 3. give approximate lower and upper bounds for µ respectively. It is
important to see whether there is a window to satisfy 2. and 3. at the same time. If it exists,
it remains to examine whether a particular lattice calculation is done inside the window or
not.

Obviously, an important issue for the reliability of a calculation is whether the scale µ
that can be reached lies in a regime where perturbation theory can be applied with confi-
dence. However, the value of µ does not provide an unambiguous criterion. For instance,
the Schrödinger Functional, or SF-coupling (Sec. 9.3) is conventionally taken at the scale
µ = 1/L, but one could also choose µ = 2/L. Instead of µ we therefore define an effective
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αeff . For schemes such as SF (see Sec. 9.3) or qq (see Sec. 9.4) this is directly the coupling
of the scheme. For other schemes such as the vacuum polarization we use the perturbative
expansion Eq. (220) for the observable Q to define

αeff = Q/c1 . (234)

If there is an αs-independent term it should first be subtracted. Note that this is nothing but
defining an effective, regularization-independent coupling, a physical renormalization scheme.

Let us now comment further on the use of the perturbative series. Since it is only an
asymptotic expansion, the remainder Rn(Q) = Q −∑i≤n ciα

i
s of a truncated perturbative

expression Q ∼∑i≤n ciα
i
s cannot just be estimated as a perturbative error k αn+1

s . The error
is nonperturbative. Often one speaks of “nonperturbative contributions”, but nonperturbative
and perturbative cannot be strictly separated due to the asymptotic nature of the series (see
e.g. Ref. [562]).

Still, we do have some general ideas concerning the size of nonperturbative effects. The
known ones such as instantons or renormalons decay for large µ like inverse powers of µ and
are thus roughly of the form

exp(−γ/αs) , (235)

with some positive constant γ. Thus we have, loosely speaking,

Q = c1αs + c2α
2
s + . . .+ cnα

n
s +O(αn+1

s ) +O(exp(−γ/αs)) . (236)

For small αs, the exp(−γ/αs) is negligible. Similarly the perturbative estimate for the mag-
nitude of relative errors in Eq. (236) is small; as an illustration for n = 3 and αs = 0.2 the
relative error is ∼ 0.8% (assuming coefficients |cn+1/c1| ∼ 1).

For larger values of αs nonperturbative effects can become significant in Eq. (236). An
instructive example comes from the values obtained from τ decays, for which αs ≈ 0.3.
Here, different applications of perturbation theory (fixed order, FOPT, and contour improved,
CIPT) each look reasonably asymptotically convergent but the difference does not seem to
decrease much with the order (see, e.g., the contribution of Pich in Ref. [556]). In addition
nonperturbative terms in the spectral function may be nonnegligible even after the integration
up to mτ (see, e.g., Ref. [563], Golterman in Ref. [556]). All of this is because αs is not really
small.

Since the size of the nonperturbative effects is very hard to estimate one should try to
avoid such regions of the coupling. In a fully controlled computation one would like to verify
the perturbative behaviour by changing αs over a significant range instead of estimating the
errors as ∼ αn+1

s . Some computations try to take nonperturbative power ‘corrections’ to the
perturbative series into account by including such terms in a fit to the µ dependence. We
note that this is a delicate procedure, both because the separation of nonperturbative and
perturbative is theoretically not well defined and because in practice a term like, e.g., αs(µ)

3

is hard to distinguish from a 1/µ2 term when the µ-range is restricted and statistical and
systematic errors are present. We consider it safer to restrict the fit range to the region where
the power corrections are negligible compared to the estimated perturbative error.

The above considerations lead us to the following special criteria for the determination of
αs.

• Renormalization scale
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⋆ all points relevant in the analysis have αeff < 0.2

◦ all points have αeff < 0.4 and at least one αeff ≤ 0.25

� otherwise

• Perturbative behaviour

⋆ verified over a range of a factor 4 change in αnl
eff without power corrections or alter-

natively αnl
eff = 0.01 is reached

◦ agreement with perturbation theory over a range of a factor 2.25 in αnl
eff possibly

fitting with power corrections or alternatively αnl
eff = 0.02 is reached

� otherwise

Here nl is the loop order to which the connection of αeff to the MS scheme is known.
The β-function of αeff is then known to nl + 1 loop order.60

• Continuum extrapolation

At a reference point of αeff = 0.3 (or less) we require

⋆ three lattice spacings with µa < 1/2 and full O(a) improvement,
or three lattice spacings with µa ≤ 1/4 and 2-loop O(a) improvement,
or µa ≤ 1/8 and 1-loop O(a) improvement

◦ three lattice spacings with µa < 1.5 reaching down to µa = 1 and full O(a) improve-
ment,
or three lattice spacings with µa ≤ 1/4 and 1-loop O(a) improvement

� otherwise

• Finite-size effects

These are a less serious issue for the determination of αs since one looks at short-
distance observables where such effects are expected to be suppressed. We therefore
have no special criterion in our tables, but do check that volumes are not too small and
in particular the scale is determined in large enough volume.61 Remarks are added in
the text when appropriate.

• Topology sampling

In principle a good way to improve the quality of determinations of αs is to push to very
small lattice spacings thus enabling large µ. It is known that the sampling of field space
becomes very difficult for the HMC algorithm when the lattice spacing is small and one
has the standard periodic boundary conditions. In practice, for all known discretizations
the topological charge slows down dramatically for a ≈ 0.05 fm and smaller [68, 71–
75, 350]. Open boundary conditions solve the problem [76] but are rarely used. Since
the effect of the freezing is generally not known, we also do need to pay attention to this
issue. Remarks are added in the text when appropriate.

60Once one is in the perturbative region with αeff , the error in extracting the Λ parameter due to the
truncation of perturbation theory scales like α

nl
eff , as seen e.g. in Eq. (222). In order to well detect/control

such corrections, one needs to change the correction term significantly; we require a factor of four for a ⋆ and
a factor 2.25 for a ◦. In comparison to FLAG 13, where nl = 2 was taken as the default, we have made the
nl dependence explicit and list it in Tabs. 152 – 155. An exception to the above is the situation where the
correction terms are small anyway, i.e. αnl

eff ≈ 0.02 is reached.
61 Note also that the determination of the scale does not need to be very precise, since using the lowest-order

β-function shows that a 3% error in the scale determination corresponds to a ∼ 0.5% error in αs(MZ). So as
long as systematic errors from chiral extrapolation and finite-volume effects are below 3% we do not need to
be concerned about those. This covers most cases.
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We assume that quark-mass effects of light quarks (including strange) are negligible in
the effective coupling itself where large, perturbative, µ is considered.

We also need to specify what is meant by µ. Here are our choices:

Schrödinger Functional : µ = 1/L ,

heavy quark-antiquark potential : µ = 2/r ,

observables in momentum space : µ = q ,

moments of heavy-quark currents : µ = 2m̄h (237)

where q is the magnitude of the momentum and m̄h the heavy-quark mass. We note again
that the above criteria cannot be applied when regularization dependent quantities Wlat(a)
are used instead of O(µ). These cases are specifically discussed in Sec. 9.6.

A popular scale choice is the intermediate r0 scale, although one should also bear in
mind that its determination from physical observables has also to be taken into account.
The phenomenological value of r0 was originally determined as r0 ≈ 0.49 fm through po-
tential models describing quarkonia [136]. Recent determinations from 2-flavour QCD are
r0 = 0.420(14) − 0.450(14) fm by the ETM collaboration [32, 36], using as input fπ and fK
and carrying out various continuum extrapolations. On the other hand, the ALPHA collabo-
ration [12] determined r0 = 0.503(10) fm with input from fK , and the QCDSF Collaboration
[564] cites 0.501(10)(11) fm from the mass of the nucleon (no continuum limit). Recent de-
terminations from 3-flavour QCD are consistent with r1 = 0.313(3) fm and r0 = 0.472(5) fm
[29, 249, 565]. Due to the uncertainty in these estimates, and as many results are based di-
rectly on r0 to set the scale, we shall often give both the dimensionless number r0ΛMS, as well
as ΛMS. In the cases where no physical r0 scale is given in the original papers or we convert
to the r0 scale, we use the value r0 = 0.472 fm. In case r1ΛMS is given in the publications, we
use r0/r1 = 1.508 [565] to convert, neglecting the error on this ratio. In some, mostly early,
computations the string tension,

√
σ was used. We convert to r0 using r20σ = 1.65 − π/12,

which has been shown to be an excellent approximation in the relevant pure gauge theory
[566, 567]. The new scales t0, w0 based on the Wilson flow are very attractive alternatives to
r0 but have not yet been used as much and their discretization errors are still under discussion
[568–571]. We remain with r0 as our main reference scale for now.

The attentive reader will have noticed that bounds such as µa < 1.5 or at least one value of
αeff ≤ 0.25 which we require for a ◦ are not very stringent. There is a considerable difference
between ◦ and ⋆. We have chosen the above bounds, unchanged as compared to FLAG 13,
since not too many computations would satisfy more stringent ones at present. Nevertheless,
we believe that the ◦ criteria already give reasonable bases for estimates of systematic errors.
In the future, we expect that we will be able to tighten our criteria for inclusion in the average,
and that many more computations will reach the present ⋆ rating in one or more categories.

In principle one should also account for electro-weak radiative corrections. However, both
in the determination of αs at intermediate scales µ and in the running to high scales, we
expect electro-weak effects to be much smaller than the presently reached precision. Such
effects are therefore not further discussed.
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9.3 αs from the Schrödinger Functional

9.3.1 General considerations

The method of step-scaling functions avoids the scale problem, Eq. (230). It is in principle
independent of the particular boundary conditions used and was first developed with periodic
boundary conditions in a two-dimensional model [572]. However, at present most applications
in QCD use Schrödinger functional boundary conditions [153, 573]. An important reason is
that these boundary conditions avoid zero modes for the quark fields and quartic modes [574]
in the perturbative expansion in the gauge fields. Furthermore the corresponding renormal-
ization scheme is well studied in perturbation theory [575–577] with the 3-loop β-function
and 2-loop cutoff effects (for the standard Wilson regularization) known.

Let us first briefly review the step-scaling strategy. The essential idea is to split the deter-
mination of the running coupling at large µ and of a hadronic scale into two lattice calculations
and connect them by ‘step scaling’. In the former part, we determine the running coupling
constant in a finite-volume scheme, in practice a ‘Schrödinger Functional (SF) scheme’ in
which the renormalization scale is set by the inverse lattice size µ = 1/L. In this calculation,
one takes a high renormalization scale while keeping the lattice spacing sufficiently small as

µ ≡ 1/L ∼ 10 . . . 100GeV , a/L≪ 1 . (238)

In the latter part, one chooses a certain ḡ2max = ḡ2(1/Lmax), typically such that Lmax is
around 0.5 fm. With a common discretization, one then determines Lmax/a and (in a large
volume L ≥ 2−3 fm) a hadronic scale such as a hadron mass,

√
t0/a or r0/a at the same bare

parameters. In this way one gets numbers for Lmax/r0 and by changing the lattice spacing a
carries out a continuum limit extrapolation of that ratio.

In order to connect ḡ2(1/Lmax) to ḡ2(µ) at high µ, one determines the change of the
coupling in the continuum limit when the scale changes from L to L/2, starting from L = Lmax

and arriving at µ = 2k/Lmax. This part of the strategy is called step scaling. Combining
these results yields ḡ2(µ) at µ = 2k r0

Lmax
r−1
0 , where r0 stands for the particular chosen hadronic

scale.
In order to have a perturbatively well-defined scheme, the SF scheme uses Dirichlet bound-

ary condition at time t = 0 and t = T . These break translation invariance and permit
O(a) counter terms at the boundary through quantum corrections. Therefore, the lead-
ing discretization error is O(a). Improving the lattice action is achieved by adding counter
terms at the boundaries whose coefficients are denoted as ct, c̃t. In practice, these coefficients
are computed with 1-loop or 2-loop perturbative accuracy. A better precision in this step
yields a better control over discretization errors, which is important, as can be seen, e.g., in

Refs. [566, 578]. The finite c
(i)
g , Eq. (225), are known for i = 1, 2 [576, 577].

Also computations with Dirichlet boundary conditions do in principle suffer from the in-
sufficient change of topology in the HMC algorithm at small lattice spacing. However, in a
small volume the weight of nonzero charge sectors in the path integral is exponentially sup-
pressed [579] 62 and one practically should not sample any nontrivial topology. Considering
the suppression quantitatively Ref. [580] finds a strong suppression below L ≈ 0.8 fm. There-
fore the lack of topology change of the HMC is not a real issue in the computations discussed

62We simplify here and assume that the classical solution associated with the used boundary conditions has
charge zero. In practice this is the case.
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here. A mix of Dirichlet and open boundary conditions is expected to remove this worry [581]
and may be considered in the future.

9.3.2 Discussion of computations

In Tab. 41 we give results from various determinations of the Λ parameter. For a clear
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scale ΛMS[MeV] r0ΛMS

ALPHA 10A [582] 4 A ⋆ ⋆ ⋆ only running of αs in Fig. 4
Perez 10 [583] 4 P ⋆ ⋆ ◦ only step-scaling function in Fig. 4

PACS-CS 09A [62] 2+1 A ⋆ ⋆ ◦ mρ 371(13)(8)(+0
−27)

# 0.888(30)(18)(+0
−65)

†

A ⋆ ⋆ ◦ mρ 345(59)## 0.824(141)†

ALPHA 12∗ [12] 2 A ⋆ ⋆ ⋆ fK 310(20) 0.789(52)

ALPHA 04 [584] 2 A � ⋆ ⋆ r0 = 0.5 fm§ 245(16)(16)§ 0.62(2)(2)§

ALPHA 01A [585] 2 A ⋆ ⋆ ⋆ only running of αs in Fig. 5

CP-PACS 04& [578] 0 A ⋆ ⋆ ◦ only tables of g2SF
ALPHA 98†† [586] 0 A ⋆ ⋆ ◦ r0 = 0.5fm 238(19) 0.602(48)

Lüscher 93 [575] 0 A ⋆ ◦ ◦ r0 = 0.5fm 233(23) 0.590(60)§§

# Result with a constant (in a) continuum extrapolation of the combination Lmaxmρ.
† In conversion to r0ΛMS, r0 is taken to be 0.472 fm.

## Result with a linear continuum extrapolation in a of the combination Lmaxmρ.
∗ Supersedes ALPHA 04.
§ The Nf = 2 results were based on values for r0/a which have later been found to be too small by [12].

The effect will be of the order of 10–15%, presumably an increase in Λr0. We have taken this into
account by a � in the renormalization scale.

& This investigation was a precursor for PACS-CS 09A and confirmed two step-scaling functions as well
as the scale setting of ALPHA 98.

†† Uses data of Lüscher 93 and therefore supersedes it.
§§ Converted from αMS(37r

−1
0 ) = 0.1108(25).

Table 41: Results for the Λ parameter from computations using step scaling of the SF-
coupling. Entries without values for Λ computed the running and established perturbative
behaviour at large µ.

assessment of the Nf dependence, the last column also shows results that refer to a common
hadronic scale, r0. As discussed above, the renormalization scale can be chosen large enough
such that αs < 0.2 and the perturbative behaviour can be verified. Consequently only ⋆ is
present for these criteria except for early work where the nl = 2 loop connection to MS was
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not yet known. With dynamical fermions, results for the step-scaling functions are always
available for at least a/L = µa = 1/4, 1/6, 1/8. All calculations have a nonperturbativelyO(a)
improved action in the bulk. For the discussed boundary O(a) terms this is not so. In most
recent calculations 2-loop O(a) improvement is employed together with at least three lattice
spacings.63 This means a ⋆ for the continuum extrapolation. In the other contributions only
1-loop ct was available and we arrive at ◦. We note that the discretization errors in the step-
scaling functions are usually found to be very small, at the percent level or below. However,
the overall desired precision is very high as well, and the results in CP-PACS 04 [578] show
that discretization errors at the below percent level cannot be taken for granted. In particular
with staggered fermions (unimproved except for boundary terms) few percent effects are seen
in Perez 10 [583].

In the work by PACS-CS 09A [62], the continuum extrapolation in the scale setting
is performed using a constant function in a and with a linear function. Potentially the
former leaves a considerable residual discretization error. We here use, as discussed with the
collaboration, the continuum extrapolation linear in a, as given in the second line of PACS-CS
09A [62] results in Tab. 41.

A single computation, PACS-CS 09A [62], quotes also αMS(MZ). We take the linear
continuum extrapolation as discussed above:

α
(5)

MS
(MZ) = 0.118(3) , (239)

where the conversion from a 3-flavour result to 5-flavours was done perturbatively (see
Sec. 9.2). Other results do not have a sufficient number of quark flavours (ALPHA 10A
[582], Perez 10 [583]) or do not yet contain the conversion of the scale to physical units. Thus

no value for α
(5)

MS
(MZ) is quoted.

More results for α
(5)

MS
(MZ) using step-scaling functions can be expected soon. Their pre-

cision is likely to be much better than what we were able to report on here. A major reason
is the use of the gradient flow [244] in definitions of finite volume schemes [587, 588].

9.4 αs from the potential at short distances

9.4.1 General considerations

The basic method was introduced in Ref. [589] and developed in Ref. [590]. The force or
potential between an infinitely massive quark and antiquark pair defines an effective coupling
constant via

F (r) =
dV (r)

dr
= CF

αqq(r)

r2
. (240)

The coupling can be evaluated nonperturbatively from the potential through a numerical dif-
ferentiation, see below. In perturbation theory one also defines couplings in different schemes
αV̄ , αV via

V (r) = −CF
αV̄ (r)

r
, or Ṽ (Q) = −CF

αV (Q)

Q2
, (241)

63With 2-loop O(a) improvement we here mean ct including the g40 term and c̃t with the g20 term. For gluonic
observables such as the running coupling this is sufficient for cutoff effects being suppressed to O(g6a).
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where one fixes the unphysical constant in the potential by limr→∞ V (r) = 0 and Ṽ (Q) is the
Fourier transform of V (r). Nonperturbatively, the subtraction of a constant in the potential
introduces an additional renormalization constant, the value of V (rref) at some distance rref .
Perturbatively, it is believed to entail a renormalon ambiguity. In perturbation theory, these
definitions are all simply related to each other, and their perturbative expansions are known
including the α4

s and α5
s logαs terms [591–598].

The potential V (r) is determined from ratios of Wilson loops, W (r, t), which behave as

〈W (r, t)〉 = |c0|2e−V (r)t +
∑

n 6=0

|cn|2e−Vn(r)t , (242)

where t is taken as the temporal extension of the loop, r is the spatial one and Vn are
excited-state potentials. To improve the overlap with the ground state, and to suppress the
effects of excited states, t is taken large. Also various additional techniques are used, such
as a variational basis of operators (spatial paths) to help in projecting out the ground state.
Furthermore some lattice-discretization effects can be reduced by averaging over Wilson loops
related by rotational symmetry in the continuum.

In order to reduce discretization errors it is of advantage to define the numerical derivative
giving the force as

F (rI) =
V (r)− V (r − a)

a
, (243)

where rI is chosen so that at tree level the force is the continuum force. F (rI) is then a
‘tree-level improved’ quantity and similarly the tree-level improved potential can be defined
[599].

Lattice potential results are in position space, while perturbation theory is naturally
computed in momentum space at large momentum. Usually, the Fourier transform is then
taken of the perturbation expansion to match to the lattice data.

Finally, as was noted in Sec. 9.2, a determination of the force can also be used to determine
the r0 scale, by defining it from the static force by

r20F (r0) = 1.65 , (244)

and with r21F (r1) = 1 the r1 scale.

9.4.2 Discussion of computations

In Tab. 42, we list results of determinations of r0ΛMS (together with ΛMS using the scale
determination of the authors). Since the last review, FLAG 13, there have been two new
computations, Karbstein 14 [559] and Bazavov 14 [61].

The first determinations in the three-colour Yang Mills theory are by UKQCD 92 [590]
and Bali 92 [603] who used αqq as explained above, but not in the tree-level improved form.
Rather a phenomenologically determined lattice artifact correction was subtracted from the
lattice potentials. The comparison with perturbation theory was on a more qualitative level
on the basis of a 2-loop β-function (nl = 1) and a continuum extrapolation could not be
performed as yet. A much more precise computation of αqq with continuum extrapolation
was performed in Refs. [566, 599]. Satisfactory agreement with perturbation theory was found
[599] but the stability of the perturbative prediction was not considered sufficient to be able
to extract a Λ parameter.
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scale ΛMS[MeV] r0ΛMS

Bazavov 14 [61] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fma 315(+18
−12)

b 0.746(+42
−27)

Bazavov 12 [600] 2+1 A ◦† ◦ ◦# r0 = 0.468 fm 295(30) ⋆ 0.70(7)⋆⋆

Karbstein 14 [559] 2 A ◦ ◦ ◦ r0 = 0.42 fm 331(21) 0.692(31)

ETM 11C [601] 2 A ◦ ◦ ◦ r0 = 0.42 fm 315(30)§ 0.658(55)

Brambilla 10 [602] 0 A ◦ ⋆ ◦†† 266(13)+ 0.637(+32
−30)

††

UKQCD 92 [590] 0 A ⋆ ◦++
�

√
σ = 0.44 GeV 256(20) 0.686(54)

Bali 92 [603] 0 A ⋆ ◦++
�

√
σ = 0.44 GeV 247(10) 0.661(27)

a Determination on lattices with mπL = 2.2− 2.6. About 10 changes of topological charge on the finest
lattice [350]. Scale from r1 [350] as determined from fπ in Ref. [29].

b α
(3)

MS
(1.5GeV) = 0.336(+12

−8 ), α
(5)

MS
(MZ) = 0.1166(+12

−8 ).
† Since values of αeff within our designated range are used, we assign a ◦ despite values of αeff up to
αeff = 0.5 being used.

# Since values of 2a/r within our designated range are used, we assign a ◦ although only values of
2a/r ≥ 1.14 are used at αeff = 0.3.

⋆ Using results from Ref. [565].
⋆⋆ α

(3)

MS
(1.5GeV) = 0.326(19), α

(5)

MS
(MZ) = 0.1156(+21

−22).
§ Both potential and r0/a are determined on a small (L = 3.2r0) lattice.

†† Uses lattice results of Ref. [566], some of which have very small lattice spacings where according to
more recent investigations a bias due to the freezing of topology may be present.

+ Only r0ΛMS is given, our conversion using r0 = 0.472 fm.
++ We give a ◦ because only a NLO formula is used and the error bars are very large; our criterion does

not apply well to these very early calculations.

Table 42: Short-distance potential results.

In Brambilla 10 [602] the same quenched lattice results of Ref. [599] were used and a
fit was performed to the continuum potential, instead of the force. Perturbation theory to
nl = 3 loop was used including a resummation of terms α3

s(αs lnαs)
n and α4

s(αs lnαs)
n. Close

agreement with perturbation theory was found when a renormalon subtraction was performed.
Note that the renormalon subtraction introduces a second scale into the perturbative formula
which is absent when the force is considered.

Bazavov 14 [61] is an update of Bazavov 12 [600] and modify this procedure somewhat.
They consider the well-defined perturbative expansion for the force, where renormalon prob-
lems disappear. They set µ = 1/r to eliminate logarithms and then integrate the force to
obtain an expression for the potential. The resulting integration constant is fixed by requir-
ing the perturbative potential to be equal to the nonperturbative one exactly at a reference
distance rref and the two are then compared at other values of r. As a further check, the
force is also used directly.
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For the quenched calculation Brambilla 10 [602] very small lattice spacings were available,
a ∼ 0.025 fm, [599]. For ETM 11C [601], Bazavov 12 [600], Karbstein 14 [559] and Bazavov
14 [61] using dynamical fermions such small lattice spacings are not yet realized (Bazavov 14
reaches down to a ∼ 0.041 fm). They all use the tree-level improved potential as described
above. We note that the value of ΛMS in physical units by ETM 11C [601] is based on a value
of r0 = 0.42 fm. This is at least 10% smaller than the large majority of other values of r0.
Also the value of r0/a or r1/a on the finest lattices in ETM 11C [601] and Bazavov 14 [61]
come from rather small lattices with mπL ≈ 2.4, 2.2 respectively.

Instead of the procedure discussed previously, Karbstein 14 [559] reanalyzes the data of
ETM 11C [601] by first estimating the Fourier transform Ṽ (p) of V (r) and then fits the
perturbative expansion of Ṽ (p) in terms of αMS(p). Of course, the Fourier transform cannot
be computed without modelling the r-dependence of V (r) at short and at large distances. The
authors fit a linearly rising potential at large distances together with string-like corrections of
order r−n and define the potential at large distances by this fit.64 Recall that for observables
in momentum space we take the renormalization scale entering our criteria as µ = p, Eq. (237).
The analysis (as in ETM 11C [601]) is dominated by the data at the smallest lattice spacing,
where a controlled determination of the overall scale is difficult due to possible finite-size
effects.

One of the main issues for all these computations is whether the perturbative running
of the coupling constant has been reached. While for quenched or Nf = 0 fermions this
seems to be the case at the smallest distances, for dynamical fermions at present there is no
consensus. Brambilla 10 [602], Bazavov 12 [600] and Bazavov 14 [61] report good agreement
with perturbation theory after the renormalon is subtracted or eliminated, but Ref. [604] uses
the force directly, where no renormalon contributes, and finds that far shorter distances are
needed than are presently accessible for dynamical fermion simulations in order to match to
perturbation theory. Further work is needed to clarify this point.

A second issue is the coverage of configuration space in some of the simulations, which use
very small lattice spacings with periodic boundary conditions. Affected are the smallest two
lattice spacings of Bazavov 14 [61] where very few tunnelings of the topological charge occur
[350]. With present knowledge, it also seems possible that the older data by Refs. [566, 599]
used by Brambilla 10 [602] are partially done in (close to) frozen topology.

9.5 αs from the vacuum polarization at short distances

9.5.1 General considerations

The vacuum polarization function for the flavour nonsinglet currents Ja
µ (a = 1, 2, 3) in the

momentum representation is parameterized as

〈Ja
µJ

b
ν〉 = δab[(δµνQ

2 −QµQν)Π
(1)(Q)−QµQνΠ

(0)(Q)] , (245)

where Qµ is a space like momentum and Jµ ≡ Vµ for a vector current and Jµ ≡ Aµ for an

axial-vector current. Defining ΠJ(Q) ≡ Π
(0)
J (Q) + Π

(1)
J (Q), the operator product expansion

64Note that at large distances, where string breaking is known to occur, this is not any more the ground
state potential defined by Eq. (242).
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(OPE) of the vacuum polarization function ΠV+A(Q) = ΠV (Q) + ΠA(Q) is given by

ΠV+A|OPE(Q
2, αs)

= c+ C1(Q
2) + CV+A

m (Q2) m̄
2(Q)
Q2 +

∑

q=u,d,s

CV+A
q̄q (Q2)

〈mq q̄q〉
Q4

+CGG(Q
2) 〈αsGG〉

Q4 +O(Q−6) , (246)

for large Q2. CV+A
X (Q2) =

∑
i≥0

(
CV+A
X

)(i)
αi
s(Q

2) are the perturbative coefficient functions

for the operators X (X = 1, q̄q, GG) and m̄ is the running mass of the mass-degenerate up
and down quarks. C1 is known including α4

s in a continuum renormalization scheme such
as the MS scheme [605–607]. Nonperturbatively, there are terms in CX which do not have
a series expansion in αs. For an example for the unit operator see Ref. [608]. The term c
is Q–independent and divergent in the limit of infinite ultraviolet cutoff. However the Adler
function defined as

D(Q2) ≡ −Q2dΠ(Q
2)

dQ2
, (247)

is a scheme-independent finite quantity. Therefore one can determine the running coupling
constant in the MS scheme from the vacuum polarization function computed by a lattice-
QCD simulation. In more detail, the lattice data of the vacuum polarization is fitted with the
perturbative formula Eq. (246) with fit parameter ΛMS parameterizing the running coupling
αMS(Q

2).
While there is no problem in discussing the OPE at the nonperturbative level, the ‘con-

densates’ such as 〈αsGG〉 are ambiguous, since they mix with lower-dimensional operators
including the unity operator. Therefore one should work in the high-Q2 regime where power
corrections are negligible within the given accuracy. Thus setting the renormalization scale
as µ ≡

√
Q2, one should seek, as always, the window ΛQCD ≪ µ≪ a−1.

9.5.2 Discussion of computations

Results using this method are, to date, only available using overlap fermions. These are
collected in Tab. 43 for Nf = 2, JLQCD/TWQCD 08C [610] and for Nf = 2+ 1, JLQCD 10
[609]. At present, only one lattice spacing a ≈ 0.11 fm has been simulated.

The fit to Eq. (246) is done with the 4-loop relation between the running coupling and
ΛMS. It is found that without introducing condensate contributions, the momentum scale
where the perturbative formula gives good agreement with the lattice results is very narrow,
aQ ≃ 0.8 − 1.0. When condensate contributions are included the perturbative formula gives
good agreement with the lattice results for the extended range aQ ≃ 0.6 − 1.0. Since there
is only a single lattice spacing there is a � for the continuum limit. The renormalization
scale µ is in the range of Q = 1.6 − 2GeV. Approximating αeff ≈ αMS(Q), we estimate that
αeff = 0.25 − 0.30 for Nf = 2 and αeff = 0.29 − 0.33 for Nf = 2 + 1. Thus we give a ◦
and � for Nf = 2 and Nf = 2 + 1 respectively for the renormalization scale and a � for the
perturbative behaviour.

We note that more investigations of this method are in progress [611].
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scale ΛMS[MeV] r0ΛMS

JLQCD 10 [609] 2+1 A � � � r0 = 0.472 fm 247(5)† 0.591(12)

JLQCD/TWQCD 08C [610] 2 A ◦ � � r0 = 0.49 fm 234(9)(+16
−0 ) 0.581(22)(+40

−0 )

† α
(5)

MS
(MZ) = 0.1118(3)(+16

−17).

Table 43: Vacuum polarization results.

9.6 αs from observables at the lattice spacing scale

9.6.1 General considerations

The general method is to evaluate a short-distance quantity Q at the scale of the lattice
spacing ∼ 1/a and then determine its relationship to αMS via a power series expansion.

This is epitomized by the strategy of the HPQCD collaboration [612, 613], discussed here
for illustration, which computes and then fits to a variety of short-distance quantities, Y ,

Y =
nmax∑

n=1

cnα
n
V′(q∗) . (248)

Y is taken as the logarithm of small Wilson loops (including some nonplanar ones), Creutz
ratios, ‘tadpole-improved’ Wilson loops and the tadpole-improved or ‘boosted’ bare coupling
(O(20) quantities in total). cn are perturbative coefficients (each depending on the choice of
Y ) known to n = 3 with additional coefficients up to nmax being numerically fitted. αV′ is
the running coupling constant related to αV from the static-quark potential (see Sec. 9.4).65

The coupling constant is fixed at a scale q∗ = d/a. This is chosen as the mean value of ln q
with the one gluon loop as measure [614, 615]. (Thus a different result for d is found for every
short-distance quantity.) A rough estimate yields d ≈ π, and in general the renormalization
scale is always found to lie in this region.

For example for the Wilson loop Wmn ≡ 〈W (ma,na)〉 we have

ln

(
Wmn

u
2(m+n)
0

)
= c1αV′(q∗) + c2α

2
V′(q∗) + c3α

3
V′(q∗) + · · · , (249)

for the tadpole-improved version, where c1, c2 , . . . are the appropriate perturbative coefficients

and u0 = W
1/4
11 . Substituting the nonperturbative simulation value in the left hand side, we

can determine αV′(q∗), at the scale q∗. Note that one finds empirically that perturbation

65 αV′ is defined by ΛV′ = ΛV and bV
′

i = bVi for i = 0, 1, 2 but bV
′

i = 0 for i ≥ 3.
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theory for these tadpole-improved quantities have smaller cn coefficients and so the series has
a faster apparent convergence.

Using the β-function in the V′ scheme, results can be run to a reference value, chosen
as α0 ≡ αV′(q0), q0 = 7.5GeV. This is then converted perturbatively to the continuum MS
scheme

αMS(q0) = α0 + d1α
2
0 + d2α

3
0 + · · · , (250)

where d1, d2 are known one and two loop coefficients.
Other collaborations have focused more on the bare ‘boosted’ coupling constant and di-

rectly determined its relationship to αMS. Specifically, the boosted coupling is defined by

αP(1/a) =
1

4π

g20
u40
, (251)

again determined at a scale ∼ 1/a. As discussed previously since the plaquette expectation
value in the boosted coupling contains the tadpole diagram contributions to all orders, which
are dominant contributions in perturbation theory, there is an expectation that the perturba-
tion theory using the boosted coupling has smaller perturbative coefficients [614], and hence
smaller perturbative errors.

9.6.2 Continuum limit

Lattice results always come along with discretization errors, which one needs to remove by a
continuum extrapolation. As mentioned previously, in this respect the present method differs
in principle from those in which αs is determined from physical observables. In the general
case, the numerical results of the lattice simulations at a value of µ fixed in physical units can
be extrapolated to the continuum limit, and the result can be analyzed as to whether it shows
perturbative running as a function of µ in the continuum. For observables at the cutoff-scale
(q∗ = d/a), discretization effects cannot easily be separated out from perturbation theory, as
the scale for the coupling comes from the lattice spacing. Therefore the restriction aµ ≪ 1
(the ‘continuum extrapolation’ criterion) is not applicable here. Discretization errors of order
a2 are, however, present. Since a ∼ exp(−1/(2b0g20)) ∼ exp(−1/(8πb0α(q∗)), these errors now
appear as power corrections to the perturbative running, and have to be taken into account
in the study of the perturbative behaviour, which is to be verified by changing a. One thus
usually fits with power corrections in this method.

In order to keep a symmetry with the ‘continuum extrapolation’ criterion for physical
observables and to remember that discretization errors are, of course, relevant, we replace it
here by one for the lattice spacings used:

• Lattice spacings

⋆ 3 or more lattice spacings, at least 2 points below a = 0.1 fm

◦ 2 lattice spacings, at least 1 point below a = 0.1 fm

� otherwise

9.6.3 Discussion of computations

Note that due to µ ∼ 1/a being relatively large the results easily have a ⋆ or ◦ in the rating
on renormalization scale.
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The work of El-Khadra 92 [616] employs a 1-loop formula to relate α
(0)

MS
(π/a) to the

boosted coupling for three lattice spacings a−1 = 1.15, 1.78, 2.43GeV. (The lattice spac-

ing is determined from the charmonium 1S-1P splitting.) They obtain Λ
(0)

MS
= 234MeV,

corresponding to αeff = α
(0)

MS
(π/a) ≈ 0.15 - 0.2. The work of Aoki 94 [617] calculates α

(2)
V

and α
(2)

MS
for a single lattice spacing a−1 ∼ 2GeV again determined from charmonium 1S-1P

splitting in 2-flavour QCD. Using 1-loop perturbation theory with boosted coupling, they

obtain α
(2)
V = 0.169 and α

(2)

MS
= 0.142. Davies 94 [618] gives a determination of αV from the

expansion

− lnW11 ≡ 4π
3 α

(Nf )
V (3.41/a) × [1− (1.185 + 0.070Nf )α

(Nf )
V ] , (252)

neglecting higher-order terms. They compute the Υ spectrum in Nf = 0, 2 QCD for single
lattice spacings at a−1 = 2.57, 2.47GeV and obtain αV(3.41/a) ≃ 0.15, 0.18 respectively.

Extrapolating the inverse coupling linearly in Nf , a value of α
(3)
V (8.3GeV) = 0.196(3) is

obtained. SESAM 99 [619] follows a similar strategy, again for a single lattice spacing. They

linearly extrapolated results for 1/α
(0)
V , 1/α

(2)
V at a fixed scale of 9GeV to give α

(3)
V , which

is then perturbatively converted to α
(3)

MS
. This finally gave α

(5)

MS
(MZ) = 0.1118(17). Wingate

95 [620] also follow this method. With the scale determined from the charmonium 1S-1P
splitting for single lattice spacings in Nf = 0, 2 giving a−1 ≃ 1.80GeV for Nf = 0 and

a−1 ≃ 1.66GeV for Nf = 2 they obtain α
(0)
V (3.41/a) ≃ 0.15 and α

(2)
V ≃ 0.18 respectively.

Extrapolating the coupling linearly in Nf , they obtain α
(3)
V (6.48GeV) = 0.194(17).

The QCDSF/UKQCD collaborations, QCDSF/UKQCD 05 [621], [622–624], use the 2-loop
relation (re-written here in terms of α)

1

αMS(µ)
=

1

αP(1/a)
+ 4π(2b0 ln aµ− tP1 ) + (4π)2(2b1 ln aµ− tP2 )αP(1/a) , (253)

where tP1 and tP2 are known. (A 2-loop relation corresponds to a 3-loop lattice β-function.)
This was used to directly compute αMS, and the scale was chosen so that the O(α0

P) term
vanishes, i.e.

µ∗ =
1

a
exp [tP1 /(2b0)] ≈

{
2.63/a Nf = 0
1.4/a Nf = 2

. (254)

The method is to first compute αP(1/a) and from this using Eq. (253) to find αMS(µ
∗). The

RG equation, Eq. (222), then determines µ∗/ΛMS and hence using Eq. (254) leads to the
result for r0ΛMS. This avoids giving the scale in MeV until the end. In the Nf = 0 case
7 lattice spacings were used [566], giving a range µ∗/ΛMS ≈ 24 - 72 (or a−1 ≈ 2 - 7GeV)
and αeff = αMS(µ

∗) ≈ 0.15 - 0.10. Neglecting higher-order perturbative terms (see discussion
after Eq. (255) below) in Eq. (253) this is sufficient to allow a continuum extrapolation of
r0ΛMS. A similar computation for Nf = 2 by QCDSF/UKQCD 05 [621] gave µ∗/ΛMS ≈ 12
- 17 (or roughly a−1 ≈ 2 - 3GeV) and αeff = αMS(µ

∗) ≈ 0.20 - 0.18. The Nf = 2 results of
QCDSF/UKQCD 05 [621] are affected by an uncertainty which was not known at the time
of publication: It has been realized that the values of r0/a of Ref. [621] were significantly too
low [12]. As this effect is expected to depend on a, it influences the perturbative behaviour
leading us to assign a � for that criterion.

Since FLAG 13, there has been one new result for Nf = 0 by FlowQCD 15 [560]. They
also use the techniques as described in Eqs. (253), (254), but together with the gradient flow
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scale ΛMS[MeV] r0ΛMS

HPQCD 10a§ [9] 2+1 A ◦ ⋆ ⋆ r1 = 0.3133(23) fm 340(9) 0.812(22)

HPQCD 08Aa [613] 2+1 A ◦ ⋆ ⋆ r1 = 0.321(5) fm†† 338(12)⋆ 0.809(29)

Maltman 08a [63] 2+1 A ◦ ◦ ⋆ r1 = 0.318 fm 352(17)† 0.841(40)
HPQCD 05Aa [612] 2+1 A ◦ ◦ ◦ r1

†† 319(17)⋆⋆ 0.763(42)

QCDSF/UKQCD 05[621] 2 A ⋆ � ⋆ r0 = 0.467(33) fm 261(17)(26) 0.617(40)(21)b

SESAM 99c [619] 2 A ◦ � � cc̄(1S-1P)

Wingate 95d [620] 2 A ⋆ � � cc̄(1S-1P)
Davies 94e [618] 2 A ⋆ � � Υ

Aoki 94f [617] 2 A ⋆ � � cc̄(1S-1P)

FlowQCD 15 [560] 0 P ⋆ ⋆ ⋆ w0.4 = 0.193(3) fmi 258(6)i 0.618(11)i

QCDSF/UKQCD 05[621] 0 A ⋆ ◦ ⋆ r0 = 0.467(33) fm 259(1)(20) 0.614(2)(5)b

SESAM 99c [619] 0 A ⋆ � � cc̄(1S-1P)

Wingate 95d [620] 0 A ⋆ � � cc̄(1S-1P)
Davies 94e [618] 0 A ⋆ � � Υ

El-Khadra 92g [616] 0 A ⋆ � ◦ cc̄(1S-1P) 234(10) 0.560(24)h

a The numbers for Λ have been converted from the values for α
(5)
s (MZ).

§ α
(3)

MS
(5 GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1184(6), only update of intermediate scale and c-, b-quark

masses, supersedes HPQCD 08A.
† α

(5)

MS
(MZ) = 0.1192(11).

⋆ α
(3)
V (7.5GeV) = 0.2120(28), α

(5)

MS
(MZ) = 0.1183(8), supersedes HPQCD 05.

†† Scale is originally determined from Υ mass splitting. r1 is used as an intermediate scale. In conversion
to r0ΛMS, r0 is taken to be 0.472 fm.

⋆⋆ α
(3)
V (7.5GeV) = 0.2082(40), α

(5)

MS
(MZ) = 0.1170(12).

b This supersedes Refs. [622–624]. α
(5)

MS
(MZ) = 0.112(1)(2). The Nf = 2 results were based on values

for r0/a which have later been found to be too small [12]. The effect will be of the order of 10–15%,
presumably an increase in Λr0.

c α
(5)

MS
(MZ) = 0.1118(17).

d α
(3)
V (6.48GeV) = 0.194(7) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.107(5).

e α
(3)
P (8.2GeV) = 0.1959(34) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.115(2).

f Estimated α
(5)

MS
(MZ) = 0.108(5)(4).

g This early computation violates our requirement that scheme conversions are done at the 2-loop level.
Λ

(4)

MS
= 160(+47

−37)MeV, α
(4)

MS
(5GeV) = 0.174(12). We converted this number to give α

(5)

MS
(MZ) = 0.106(4).

h We used r0 = 0.472 fm to convert to r0ΛMS.
i Reference scale w0.4 where wx is defined by t∂t[t

2〈E(t)〉]
∣

∣

t=w2
x

= x in terms of the action density E(t) at

positive flow time t [560]. Our conversion to r0 scale using [560] r0/w0.4 = 2.587(45) and r0 = 0.472 fm.

Table 44: Wilson loop results.
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scale w0 (rather than the r0 scale). The continuum limit is estimated by extrapolating the
data at 9 lattice spacings linearly in a2. The data range used is µ∗/ΛMS ≈ 40 - 120 (or a−1 ≈ 3
- 11GeV) and αMS(µ

∗) ≈ 0.12 - 0.09. Since a very small value of αMS is reached, there is a
⋆ in the perturbative behaviour. Note that our conversion to the common r0 scale leads to a
significant increase of the error of the Λ parameter compared to66 w0.4ΛMS = 0.2388(5)(13).

The work of HPQCD 05A [612] (which supersedes the original work [625]) uses three
lattice spacings a−1 ≈ 1.2, 1.6, 2.3GeV for 2+ 1 flavour QCD. Typically the renormalization
scale q ≈ π/a ≈ 3.50− 7.10GeV, corresponding to αV′ ≈ 0.22 − 0.28.

In the later update HPQCD 08A [613] twelve data sets (with six lattice spacings) are now
used reaching up to a−1 ≈ 4.4GeV corresponding to αV′ ≈ 0.18. The values used for the scale
r1 were further updated in HPQCD 10 [9]. Maltman 08 [63] uses most of the same lattice
ensembles as HPQCD 08A [613], but considers a much smaller set of quantities (three versus
22) that are less sensitive to condensates. They also use different strategies for evaluating the
condensates and for the perturbative expansion, and a slightly different value for the scale r1.
The central values of the final results from Maltman 08 [63] and HPQCD 08A [613] differ by
0.0009 (which would be decreased to 0.0007 taking into account a reduction of 0.0002 in the
value of the r1 scale used by Maltman 08 [63]).

As mentioned before, the perturbative coefficients are computed through 3-loop order [626],
while the higher-order perturbative coefficients cn with nmax ≥ n > 3 (with nmax = 10) are
numerically fitted using the lattice-simulation data for the lattice spacings with the help of
Bayesian methods. It turns out that corrections in Eq. (249) are of order |ci/c1|αi = 5–15%
and 3–10% for i = 2, 3, respectively. The inclusion of a fourth-order term is necessary to
obtain a good fit to the data, and leads to a shift of the result by 1 – 2 sigma. For all but one
of the 22 quantities, central values of |c4/c1| ≈ 2− 4 were found, with errors from the fits of
≈ 2.

An important source of uncertainty is the truncation of perturbation theory. In HPQCD
08A [613], 10 [9] it is estimated to be about 0.4% of αMS(MZ). In FLAG 13 we included
a rather detailed discussion of the issue with the result that we prefer for the time being a
more conservative error based on the above estimate |c4/c1| = 2. From Eq. (248) this gives
an estimate of the uncertainty in αeff of

∆αeff(µ1) =

∣∣∣∣
c4
c1

∣∣∣∣α
4
eff(µ1) , (255)

at the scale µ1 where αeff is computed from the Wilson loops. This can be used with a
variation in Λ at lowest order of perturbation theory and also applied to αs evolved to a
different scale µ2

67,

∆Λ

Λ
=

1

8πb0αs

∆αs

αs
,

∆αs(µ2)

∆αs(µ1)
=
α2
s(µ2)

α2
s(µ1)

. (256)

We shall later use this with µ2 = MZ and αs(µ1) = 0.2 as a typical value extracted from
Wilson loops in HPQCD 10 [9], HPQCD 08A [613].

Again we note that the results of QCDSF/UKQCD 05 [621] (Nf = 0) and FlowQCD
15 [560] may be affected by frozen topology as they have lattice spacings significantly below
a = 0.05 fm. The associated additional systematic error is presently unknown.

66The scale w0.4 used in FlowQCD 15 [560] is a modified w0 Wilson flow scale. With this notation w0 ≡ w0.3.
67From Eq. (227) we see that αs is continuous and differentiable across the mass thresholds (at the same

scale). Therefore to leading order αs and ∆αs are independent of Nf .
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Tab. 44 summarizes the results.

9.7 αs from current two-point functions

9.7.1 General considerations

The method has been introduced in Ref. [152] and updated in Ref. [9], see also Ref. [627].
Since FLAG 13 a new application, HPQCD 14A [5], with 2+1+1 flavours has appeared.
There the definition for larger-n moments is somewhat simplified and we describe it here.
The previously used one can be found in FLAG 13.

The basic observable is constructed from a current

J(x) = im0hψh(x)γ5ψh′(x) (257)

of two mass-degenerate heavy-valence quarks, h, h′. The pre-factorm0h denotes the bare mass
of the quark. With a residual chiral symmetry, J(x) is a renormalization group invariant local
field, i.e. it requires no renormalization. Staggered fermions and twisted mass fermions have
such a residual chiral symmetry. The (Euclidean) time-slice correlation function

G(x0) = a3
∑

~x

〈J†(x)J(0)〉 , (258)

(J†(x) = im0hψh′(x)γ5ψh(x)) has a ∼ x−3
0 singularity at short distances and moments

Gn = a

T/2−a∑

t=−(T/2−a)

tnG(t) , (259)

are nonvanishing for even n and furthermore finite for n ≥ 4. Here T is the time extent of
the lattice. The moments are dominated by contributions at t of order 1/m0h. For large
mass m0h these are short distances and the moments become increasingly perturbative for

decreasing n. Denoting the lowest-order perturbation theory moments by G
(0)
n , one defines

the normalized moments

R̃n =





G4/G
(0)
4 for n = 4 ,

G
1/(n−4)
n

m0c

(

G
(0)
n

)1/(n−4) for n ≥ 6 ,
(260)

of even order n. Note that Eq. (257) contains the variable (bare) heavy-quark mass m0h,
while Eq. (260) is defined with the charm-quark mass, tuned to its physical value. The

normalization m0c

(
G

(0)
n

)1/(n−4)
in Eq. (260) ensures that R̃n remains renormalization group

invariant, but introduces a mass scale. In the continuum limit the normalized moments can
then be parameterized in terms of functions

R̃n ≡
{
r4(αs(µ)) for n = 4 ,

rn(αs(µ))
m̄c(µ)

for n ≥ 6 ,
(261)

with m̄c(µ) being the renormalized charm-quark mass. The reduced moments rn have a
perturbative expansion

rn = 1 + rn,1αs + rn,2α
2
s + rn,3α

3
s + . . . , (262)
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where the written terms rn,i(µ/m̄h(µ)), i ≤ 3 are known for low n from Refs. [628–632]. In
practice, the expansion is performed in the MS scheme. Matching nonperturbative lattice
results for the moments to the perturbative expansion, one determines an approximation
to αMS(µ) as well as m̄c(µ). With the lattice spacing (scale) determined from some extra
physical input, this calibrates µ. As usual suitable pseudoscalar masses determine the bare
quark masses, here in particular the charm mass, and then through Eq. (261) the renormalized
charm-quark mass.

A difficulty with this approach is that large masses are needed to enter the perturbative
domain. Lattice artefacts can then be sizeable and have a complicated form. The ratios in
Eq. (260) use the tree-level lattice results in the usual way for normalization. This results in
unity as the leading term in Eq. (262), suppressing some of the kinematical lattice artefacts.
We note that in contrast to e.g. the definition of αqq, here the cutoff effects are of order
akαs, while there the tree-level term defines αs and therefore the cutoff effects after tree-level
improvement are of order akα2

s.
Finite-size effects (FSE) due to the omission of |t| > T/2 in Eq. (259) grow with n as

(mpT/2)
n exp (−mpT/2). In practice, however, since the (lower) moments are short-distance

dominated, the FSE are expected to be irrelevant at the present level of precision.
Moments of correlation functions of the quark’s electromagnetic current can also be ob-

tained from experimental data for e+e− annihilation [633, 634]. This enables a nonlattice
determination of αs using a similar analysis method. In particular, the same continuum
perturbation theory computation enters both the lattice and the phenomenological determi-
nations.

9.7.2 Discussion of computations

The method has originally been applied in HPQCD 08B [152] and in HPQCD 10 [9], based
on the MILC ensembles with 2 + 1 flavours of Asqtad staggered quarks and HISQ valence
quarks. The scale was set using r1 = 0.321(5) fm in HPQCD 08B [152] and the updated
value r1 = 0.3133(23) fm in HPQCD 10 [9]. The effective range of couplings used is here
given for n = 4, which is the moment most dominated by short (perturbative) distances and
important in the determination of αs. The range is similar for other ratios. With r4,1 = 0.7427
and R4 = 1.28 determined in the continuum limit at the charm mass in Ref. [152], we have
αeff = 0.38 at the charm-quark mass, which is the mass value where HPQCD 08B [152]
carries out the analysis. In HPQCD 10 [9] a set of masses is used, with R4 ∈ [1.09, 1.29]
which corresponds to αeff ∈ [0.12, 0.40].

The available data of HPQCD 10 [9] is summarized in the left panel of Fig. 30 where we plot
αeff against mpr1. For the continuum limit criterion, we choose the scale µ = 2m̄h ≈ mp/1.1,
where we have taken m̄h in the MS scheme at scale m̄h and the numerical value 1.1 was
determined in HPQCD 10B [51].

The data in Fig. 30 are grouped according to the range of aµ that they cover. The vertical
spread of the results for αeff at fixed r1mp in the figure measures the discretization errors
seen: in the continuum we would expect all the points to lie on one universal curve. The plots
illustrate the selection applied by our criterion for the continuum limit with our choices for
µ. Fig. 30 gives reason for concern, since it shows that the discretization errors that need to
be removed in the continuum extrapolation are not small.

With our choices for µ, the continuum limit criterion is satisfied for 3 lattice spacings
when αeff ≤ 0.3 and n = 4. Larger-n moments are more influenced by nonperturbative
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Figure 30: αeff for R4 from HPQCD 10 data (left) and from HPQCD 14A (right). A similar
graph for R6/R8 is shown in FLAG 13. Symbols correspond to ◦ for data with 1 ≤ aµ ≤ 1.5
and � for aµ > 1.5, while ⋆ (aµ < 1/2) is not present. This corresponds exactly to the
aµ part of our continuum limit criterion, but does not consider how many lattice spacings
are present. Note that mistunings in the quark masses have not been accounted for, but,
estimated as in HPQCD 14A [5], they are smaller than the size of the symbols in the graphs.

effects. For the n values considered, adding a gluon condensate term only changed error bars
slightly in HPQCD’s analysis. We note that HPQCD in their papers perform a global fit
to all data using a joint expansion in powers of αn

s , (Λ/(mp/2))
j to parameterize the heavy-

quark mass dependence, and (amp/2)
2i to parameterize the lattice-spacing dependence. To

obtain a good fit, they must exclude data with amp > 1.95 and include lattice-spacing terms
a2i with i greater than 10. Because these fits include many more fit parameters than data
points, HPQCD uses their expectations for the sizes of coefficients as Bayesean priors. The
fits include data with masses as large as amp/2 ∼ 0.86, so there is only minimal suppression
of the many high-order contributions for the heavier masses. It is not clear, however, how
sensitive the final results are to the larger amp/2 values in the data. The continuum limit
of the fit is in agreement with a perturbative scale dependence (a 5-loop running αMS with
a fitted 5-loop coefficient in the β-function is used). Indeed, Fig. 2 of Ref. [9] suggests that
HPQCD’s fit describes the data well.

The new computation, HPQCD 14A [5], is based on MILC’s 2+1+1 HISQ staggered en-
sembles. Compared to HPQCD 10 [9] valence- and sea-quarks now use the same discretization
and the scale is set through the gradient flow scale w0, determined to w0 = 0.1715(9) fm in
Ref. [635].

We again show the values of αeff as a function of the physical scale. Discretization errors
are noticeable. A number of data points, satisfy our continuum limit criterion aµ < 1.5, at
two different lattice spacings. This does not by itself lead to a ◦ but the next-larger lattice
spacing does not miss the criterion by much, see Tab. 160. We therefore assign a ◦ in that
criterion.

The other details of the analysis by HPQCD 10 [9] are very similar to the ones described
above, with one noteworthy exception. The new definition of the moments does not involve
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the pseudoscalar hh̄ mass anymore. Therefore its relation to the quark mass does not need
to be modeled in the fit. Since it is now replaced by the renormalized charm-quark mass, the
analysis produces a result for αs and the charm-quark mass at the same time. Here we only
discuss the result for αs.

In Tab. 45 we list the current two-point function results. Thus far, only one group has used
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scale ΛMS[MeV] r0ΛMS

HPQCD 14A [5] 2+1+1 A ◦ ⋆ ◦ w0 = 0.1715(9) fma 294(11)bc 0.703(26)

HPQCD 10 [9] 2+1 A ◦ ⋆ ◦ r1 = 0.3133(23) fm† 338(10)⋆ 0.809(25)

HPQCD 08B [152] 2+1 A � � � r1 = 0.321(5) fm† 325(18)+ 0.777(42)

a Scale determined in [26] using fπ .
b α

(4)

MS
(5GeV) = 0.2128(25), α

(5)

MS
(MZ) = 0.11822(74).

c Our conversion for ΛMS for Nf = 4. We also used r0 = 0.472 fm.
† Scale is determined from Υ mass splitting.
⋆ α

(3)

MS
(5GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1183(7).

+ α
(4)

MS
(3GeV) = 0.251(6), α

(5)

MS
(MZ) = 0.1174(12).

Table 45: Current two-point function results.

this approach, which models complicated and potentially large cutoff effects together with a
perturbative coefficient. We therefore are waiting to see confirmation by other collaborations
of the small systematic errors obtained (cf. discussion in Sec. 9.9.2). (We note that more
investigations of this method are in progress [173].) We do, however, include the values of
αMS(MZ) and ΛMS of HPQCD 10 [9] and HPQCD 14A [5] in our final range.

9.8 αs from QCD vertices

9.8.1 General considerations

The most intuitive and in principle direct way to determine the coupling constant in QCD is to
compute the appropriate three- or four-point gluon vertices or alternatively the quark-quark-
gluon vertex or ghost-ghost-gluon vertex (i.e. qqA or ccA vertex respectively). A suitable
combination of renormalization constants then leads to the relation between the bare (lat-
tice) and renormalized coupling constant. This procedure requires the implementation of
a nonperturbative renormalization condition and the fixing of the gauge. For the study of
nonperturbative gauge fixing and the associated Gribov ambiguity, we refer to Refs. [636–
638] and references therein. In practice the Landau gauge is used and the renormalization
constants are defined by requiring that the vertex is equal to the tree level value at a certain
momentum configuration. The resulting renormalization schemes are called ‘MOM’ scheme
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(symmetric momentum configuration) or ‘M̃OM’ (one momentum vanishes), which are then
converted perturbatively to the MS scheme.

A pioneering work to determine the three-gluon vertex in theNf = 0 theory is Alles 96 [639]
(which was followed by Ref. [640] for two flavour QCD); a more recent Nf = 0 computation
was Ref. [641] in which the three-gluon vertex as well as the ghost-ghost-gluon vertex was
considered. (This requires in general a computation of the propagator of the Faddeev–Popov
ghost on the lattice.) The latter paper concluded that the resulting ΛMS depended strongly
on the scheme used, the order of perturbation theory used in the matching and also on
nonperturbative corrections [642].

Subsequently in Refs. [643, 644] a specific M̃OM scheme with zero ghost momentum for
the ghost-ghost-gluon vertex was used. In this scheme, dubbed the ‘MM’ (Minimal MOM) or
‘Taylor’ (T) scheme, the vertex is not renormalized, and so the renormalized coupling reduces
to

αT(µ) = Dgluon
lat (µ, a)Dghost

lat (µ, a)2
g20(a)

4π
, (263)

where Dghost
lat and Dgluon

lat are the (bare lattice) dressed ghost and gluon ‘form factors’ of these
propagator functions in the Landau gauge,

Dab(p) = −δab D
ghost(p)

p2
, Dab

µν(p) = δab
(
δµν −

pµpν
p2

)
Dgluon(p)

p2
, (264)

and we have written the formula in the continuum with Dghost/gluon(p) = D
ghost/gluon
lat (p, 0).

Thus there is now no need to compute the ghost-ghost-gluon vertex, just the ghost and gluon
propagators.

9.8.2 Discussion of computations

For the calculations considered here, to match to perturbative scaling, it was first necessary
to reduce lattice artifacts by an H(4) extrapolation procedure (addressing O(4) rotational
invariance), e.g. ETM 10F [650] or by lattice perturbation theory, e.g. Sternbeck 12 [648]. To
match to perturbation theory, collaborations vary in their approach. In ETM 10F [650] it was
necessary to include the operator A2 in the OPE of the ghost and gluon propagators, while in
Sternbeck 12 [648] very large momenta are used and a2p2 and a4p4 terms are included in their
fit to the momentum dependence. A further later refinement was the introduction of higher
nonperturbative OPE power corrections in ETM 11D [647] and ETM 12C [646]. Although
the expected leading power correction, 1/p4, was tried, ETM finds good agreement with their
data only when they fit with the next-to-leading-order term, 1/p6. The update ETM 13D
[645] investigates this point in more detail, using better data with reduced statistical errors.
They find that after again including the 1/p6 term they can describe their data over a large
momentum range from about 1.75 GeV to 7 GeV.

In all calculations except for Sternbeck 10 [649], Sternbeck 12 [648] , the matching with the
perturbative formula is performed including power corrections in the form of condensates, in
particular 〈A2〉. Three lattice spacings are present in almost all calculations with Nf = 0, 2,
but the scales ap are rather large. This mostly results in a � on the continuum extrapolation
(Sternbeck 10 [649], Boucaud 01B [640] for Nf = 2. Ilgenfritz 10 [651], Boucaud 08 [644],
Boucaud 05 [641], Becirevic 99B [656], Becirevic 99A [657], Boucaud 98B [658], Boucaud 98A
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scale ΛMS[MeV] r0ΛMS

ETM 13D [645] 2+1+1 A ◦ ◦ � fπ 314(7)(14)(10)§ 0.752(18)(34)(81)†

ETM 12C [646] 2+1+1 A ◦ ◦ � fπ 324(17)§ 0.775(41)†

ETM 11D [647] 2+1+1 A ◦ ◦ � fπ 316(13)(8)(+0
−9)

⋆ 0.756(31)(19)(+0
−22)

†

Sternbeck 12 [648] 2+1 C only running of αs in Fig. 4

Sternbeck 12 [648] 2 C Agreement with r0ΛMS value of [12]
Sternbeck 10 [649] 2 C ◦ ⋆ � 251(15)# 0.60(3)(2)
ETM 10F [650] 2 A ◦ ◦ ◦ fπ 330(23)(22)(+0

−33) 0.72(5)+

Boucaud 01B [640] 2 A ◦ ◦ � K∗ −K 264(27)⋆⋆ 0.669(69)

Sternbeck 12 [648] 0 C Agreement with r0ΛMS value of [602]

Sternbeck 10 [649] 0 C ⋆ ⋆ � 259(4)# 0.62(1)
Ilgenfritz 10 [651] 0 A ⋆ ⋆ � only running of αs in Fig. 13
Boucaud 08 [644] 0 A ◦ ⋆ �

√
σ = 445MeV 224(3)(+8

−5) 0.59(1)(+2
−1)

Boucaud 05 [641] 0 A � ⋆ �
√
σ = 445MeV 320(32) 0.85(9)

Soto 01 [652] 0 A ◦ ◦ ◦ √
σ = 445MeV 260(18) 0.69(5)

Boucaud 01A [653] 0 A ◦ ◦ ◦ √
σ = 445MeV 233(28) MeV 0.62(7)

Boucaud 00B [654] 0 A ◦ ◦ ◦ only running of αs
Boucaud 00A [655] 0 A ◦ ◦ ◦ √

σ = 445MeV 237(3)(+ 0
−10) 0.63(1)(+0

−3)
Becirevic 99B[656] 0 A ◦ ◦ �

√
σ = 445MeV 319(14)(+10

−20) 0.84(4)(+3
−5)

Becirevic 99A[657] 0 A ◦ ◦ �
√
σ = 445MeV . 353(2)(+25

−15) . 0.93(+7
−4)

Boucaud 98B [658] 0 A � ◦ �
√
σ = 445MeV 295(5)(15) 0.78(4)

Boucaud 98A [659] 0 A � ◦ �
√
σ = 445MeV 300(5) 0.79(1)

Alles 96 [639] 0 A � � �
√
σ = 440MeV++ 340(50) 0.91(13)

† We use the 2+1 value r0 = 0.472 fm.
§ α

(5)

MS
(MZ) = 0.1200(14).

⋆ First error is statistical; second is due to the lattice spacing and third is due to the chiral extrapolation.
α
(5)

MS
(MZ) = 0.1198(9)(5)(+0

−5).
# In the paper only r0ΛMS is given, we converted to MeV with r0 = 0.472 fm.
+ The determination of r0 from the fπ scale is found in Ref. [36].
⋆⋆ α

(5)

MS
(MZ) = 0.113(3)(4).

++ The scale is taken from the string tension computation of Ref. [603].

Table 46: Results for the gluon–ghost vertex.

[659], Alles 96 [639] for Nf = 0). A ◦ is reached in the Nf = 0 computations Boucaud
00A [655], 00B [654], 01A [653], Soto 01 [652] due to a rather small lattice spacing, but
this is done on a lattice of a small physical size. The Nf = 2 + 1 + 1 calculation, fitting
with condensates, is carried out for two lattice spacings and with ap > 1.5, giving � for the
continuum extrapolation as well. In ETM 10F [650] we have 0.25 < αeff < 0.4, while in ETM
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11D [647], ETM 12C [646] (and ETM 13 [33]) we find 0.24 < αeff < 0.38 which gives a green
circle in these cases for the renormalization scale. In ETM 10F [650] the values of ap violate
our criterion for a continuum limit only slightly, and we give a ◦.

In Sternbeck 10 [649], the coupling ranges over 0.07 ≤ αeff ≤ 0.32 for Nf = 0 and
0.19 ≤ αeff ≤ 0.38 for Nf = 2 giving ⋆ and ◦ for the renormalization scale respectively. The
fit with the perturbative formula is carried out without condensates, giving a satisfactory
description of the data. In Boucaud 01A [653], depending on a, a large range of αeff is used
which goes down to 0.2 giving a ◦ for the renormalization scale and perturbative behaviour,
and several lattice spacings are used leading to ◦ in the continuum extrapolation. The Nf = 2
computation Boucaud 01B [653], fails the continuum limit criterion because both aµ is too
large and an unimproved Wilson fermion action is used. Finally in the conference proceedings
Sternbeck 12 [648], theNf = 0, 2, 3 coupling αT is studied. Subtracting 1-loop lattice artefacts
and subsequently fitting with a2p2 and a4p4 additional lattice artefacts, agreement with the
perturbative running is found for large momenta (r20p

2 > 600) without the need for power
corrections. In these comparisons, the values of r0ΛMS from other collaborations are used.
As no numbers are given, we have not introduced ratings for this study.

In Tab. 46 we summarize the results. Presently there are no Nf ≥ 3 calculations of αs

from QCD vertices that satisfy the FLAG criteria to be included in the range.

9.9 Summary

9.9.1 The present situation

We first summarize the status of lattice-QCD calculations of the QCD scale ΛMS. Fig. 31
shows all results for r0ΛMS discussed in the previous sections.

Many of the numbers are the ones given directly in the papers. However, when only ΛMS

in physical units (MeV) is available, we have converted them by multiplying with the value
of r0 in physical units. The notation used is full green squares for results used in our final
average, while a lightly shaded green square indicates that there are no red squares in the
previous colour coding but the computation does not enter the ranges because either it has
been superseded by an update or it is not published. Red open squares mean that there is at
least one red square in the colour coding.

For Nf = 0 there is relatively little spread in the more recent numbers, even in those
which do not satisfy our criteria.

When two flavours of quarks are included, the numbers extracted by the various groups
show a considerable spread, as in particular older computations did not yet control the sys-
tematics sufficiently. This illustrates the difficulty of the problem and emphasizes the need
for strict criteria. The agreement among the more modern calculations with three or more
flavours, however, is quite good.

We now turn to the status of the essential result for phenomenology, α
(5)

MS
(MZ). In Tab. 47

and Fig. 32 we show all the results for α
(5)

MS
(MZ) (i.e. αMS at the Z mass) obtained from

Nf = 2 + 1 and Nf = 2 + 1 + 1 simulations. For comparison, we also include results from
Nf = 0, 2 simulations, which are not relevant for phenomenology. For the Nf ≥ 3 simulations,
the conversion from Nf = 3 or Nf = 4 to Nf = 5 is made by matching the coupling constant
at the charm and bottom quark thresholds and using the scale as determined or used by the
authors. For Nf = 0, 2 the results for αMS in the summary table come from evaluations of
αMS at a relatively low scale and are extrapolated in Nf to Nf = 3.
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αMS(MZ) Method Table

HPQCD 14A [5] 2+1+1 A ◦ ⋆ ◦ 0.11822(74) current two points 45
ETM 13D [645] 2+1+1 A ◦ ◦ � 0.1196(4)(8)(16) gluon-ghost vertex 46
ETM 12C [646] 2+1+1 A ◦ ◦ � 0.1200(14) gluon-ghost vertex 46
ETM 11D [647] 2+1+1 A ◦ ◦ � 0.1198(9)(5)(+0

−5) gluon-ghost vertex 46

Bazavov 14 [61] 2+1 A ◦ ⋆ ◦ 0.1166(+12
−8 ) Q-Q̄ potential 42

Bazavov 12 [600] 2+1 A ◦ ◦ ◦ 0.1156(+21
−22) Q-Q̄ potential 42

HPQCD 10 [9] 2+1 A ◦ ⋆ ◦ 0.1183(7) current two points 45
HPQCD 10 [9] 2+1 A ◦ ⋆ ⋆ 0.1184(6) Wilson loops 44
JLQCD 10 [609] 2+1 A � � � 0.1118(3)(+16

−17) vacuum polarization 43

PACS-CS 09A [62] 2+1 A ⋆ ⋆ ◦ 0.118(3)# Schrödinger functional 41
Maltman 08 [63] 2+1 A ◦ ◦ ⋆ 0.1192(11) Wilson loops 44
HPQCD 08B [152] 2+1 A � � � 0.1174(12) current two points 45
HPQCD 08A [613] 2+1 A ◦ ⋆ ⋆ 0.1183(8) Wilson loops 44
HPQCD 05A [612] 2+1 A ◦ ◦ ◦ 0.1170(12) Wilson loops 44

QCDSF/UKQCD 05[621] 0, 2 → 3 A ⋆ � ⋆ 0.112(1)(2) Wilson loops 44
Boucaud 01B [640] 2 → 3 A ◦ ◦ � 0.113(3)(4) gluon-ghost vertex 46
SESAM 99 [619] 0, 2 → 3 A ⋆ � � 0.1118(17) Wilson loops 44
Wingate 95 [620] 0, 2 → 3 A ⋆ � � 0.107(5) Wilson loops 44
Davies 94 [618] 0, 2 → 3 A ⋆ � � 0.115(2) Wilson loops 44
Aoki 94 [617] 2 → 3 A ⋆ � � 0.108(5)(4) Wilson loops 44
El-Khadra 92 [616] 0 → 3 A ⋆ � ◦ 0.106(4) Wilson loops 44

# Result with a linear continuum extrapolation in a.

Table 47: Results for αMS(MZ). Nf = 3 results are matched at the charm and bottom
thresholds and scaled to MZ to obtain the Nf = 5 result. The arrows in the Nf column
indicates which Nf (Nf = 0, 2 or a combination of both) were used to first extrapolate to
Nf = 3 or estimate the Nf = 3 value through a model/assumption. The exact procedures
used vary and are given in the various papers.

As can be seen from the tables and figures, at present there are several computations satis-
fying the criteria to be included in the FLAG average. Since FLAG 13 two new computations

of α
(5)

MS
(MZ), Bazavov 14 [61] and HPQCD 14A [5], pass all our criteria with a ◦. We note

that none of those calculations of α
(5)

MS
(MZ) satisfy all of our more stringent criteria: a ⋆ for

the renormalization scale, perturbative behaviour and continuum extrapolation. The results,
however, are obtained from four different methods that have different associated systematics,
and agree quite well within the stated uncertainties.
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Figure 31: r0ΛMS estimates for Nf = 0, 2, 3, 4 flavours. Full green squares are used in our
final ranges, pale green squares also indicate that there are no red squares in the colour coding
but the computations were superseded by later more complete ones or not published, while
red open squares mean that there is at least one red square in the colour coding.

9.9.2 Our range for α
(5)

MS

We now explain the determination of our range. We only include those results without a
red tag and that are published in a refereed journal. We also do not include any numbers
which were obtained by extrapolating from theories with less than three flavours. There is
no real basis for such extrapolations; rather they use ad hoc assumptions on the low-energy
behaviour of the theories. One also notices from the published results that the estimated
numbers are quite significantly below those with at least 2+1 flavours.

A general issue with most recent determinations of αMS, both lattice and nonlattice, is
that they are dominated by perturbative truncation errors, which are difficult to estimate.
Further, all results discussed here except for those of Secs. 9.3, 9.6 are based on extractions of
αMS that are largely influenced by data with αeff ≥ 0.3. At smaller αs the momentum scale
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Figure 32: α
(5)

MS
(MZ), the coupling constant in the MS scheme at the Z mass. The results

labeled Nf = 0, 2 use estimates for Nf = 3 obtained by first extrapolating in Nf from
Nf = 0, 2 results. Since this is not a theoretically justified procedure, these are not included
in our final estimate and are thus given a red symbol. However, they are shown to indicate
the progress made since these early calculations. The PDG entry indicates the outcome of
their analysis excluding lattice results (see section 9.9.4).

µ quickly is at or above a−1. We have included computations using aµ up to 1.5 and αeff

up to 0.4, but one would ideally like to be significantly below that. Accordingly we choose
at this stage to estimate the error ranges in a conservative manner, and not simply perform
weighted averages with the individual errors estimated by each group.

Many of the methods have thus far only been applied by a single collaboration, and with
simulation parameters that could still be improved. We therefore think that the following
aspects of the individual calculations are important to keep in mind, and look forward to
additional clarification and/or corroboration in the future.

• The potential computations Brambilla 10 [602], ETM 11C [601] and Bazavov 12 [600] give
evidence that they have reached distances where perturbation theory can be used. However,
in addition to Λ, a scale is introduced into the perturbative prediction by the process of
subtracting the renormalon contribution. This subtraction is avoided in Bazavov 14 [61] by
using the force and again agreement with perturbative running is reported. The extractions
of Λ are dominated by data with αeff ≥ 0.3. In contrast, Ref. [604], which studies the force
instead of the potential and therefore does not need a renormalon subtraction, finds that
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significantly smaller lattice spacings would be needed in order for perturbation theory to be
reliable in a region of µ = 1/r where discretization errors are controlled. Further study is still
needed to clarify the situation.

• In the determination of αs from observables at the lattice spacing scale, there is an interplay
of higher-order perturbative terms and lattice artefacts. In HPQCD 05A [612], HPQCD 08A
[613] and Maltman 08 [63] both lattice artifacts (which are power corrections in this approach)
and higher-order perturbative terms are fitted. We note that, Maltman 08 [63] and HPQCD
08A [613] analyze largely the same data set but use different versions of the perturbative
expansion and treatments of nonperturbative terms. After adjusting for the slightly different
lattice scales used, the values of αMS(MZ) differ by 0.0004 to 0.0008 for the three quantities
considered. In fact the largest of these differences (0.0008) comes from a tadpole-improved
loop, which is expected to be best behaved perturbatively.

• Other computations with very small errors are HPQCD 10 [9] and HPQCD 14A [5], where
correlation functions of heavy quarks are used to construct short-distance quantities. Due to
the large quark masses needed to reach the region of small coupling, considerable discretization
errors are present, see Fig. 30. These are treated by fits to the perturbative running (a 5-loop
running αMS with a fitted 5-loop coefficient in the β-function is used) with high-order terms
in a double expansion in a2Λ2 and a2m2

h supplemented by priors which limit the size of the
coefficients. The priors play an especially important role in these fits given the much larger
number of fit parameters than data points. We note, however, that the size of the coefficients
does not prevent high-order terms from contributing significantly, since the data includes
values of amp/2 that are rather close to 1.

As previously mentioned α
(5)

MS
(MZ) is summarized in Tab. 47 and Fig. 32. A number of

calculations that include at least the effect of the strange quark make up our final estimate.
These are Bazavov 14 [61], HPQCD 14A [5], HPQCD 10 [9] (Wilson loops and current two-
point correlators), PACS-CS 09A [62], Maltman 08 [63] while HPQCD 08A/05A [612, 613]
and Bazavov 12 [600] have been superseded by more recent calculations. We obtain the central
value for our range,

α
(5)

MS
(MZ) = 0.1182(12) , (265)

from the weighted average of the six results.68 Of the results that enter our range, those
from Wilson loops (HPQCD 10 [9], and Maltman 08 [63]) and current two-point correlators
(HPQCD 10 [9]) presently have the smallest quoted errors. We have just listed reasons to
be careful in estimating the present overall uncertainty. We therefore take a larger range

for α
(5)

MS
(MZ) than one would obtain from the weighted average, or even from the most

precise individual calculation. We arrive at its value as follows. We make a conservative
estimate of the perturbative uncertainty in the calculation of αs from small Wilson loops. One
approach for making such an estimate would be to take the largest of the differences between
the calculations of Maltman 08 [63] and HPQCD 08A [613], 0.0008, which comes from the
quantity computed by both groups that is expected to be best behaved perturbatively. This is
somewhat larger than some of the estimates in the individual papers. Our choice is instead to
take an estimate of the perturbative truncation error as the overall uncertainty. As explained
in Sec. 9.6 the first unknown coefficient in the perturbative series was estimated in the fits

68We have symmetrized the asymmetric error bars of Bazavov 14 [61] to 0.1166(10) in taking the average.
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to be |c4/c1| ≈ 2. Using it in Eqs. (255,256) 69 yields ∆α
(5)

MS
(MZ) = 0.0012. This is larger

than the estimate of 0.0008 above and is what we adopt as the uncertainty of the Wilson loop
results. The second number with small errors entering the average comes from the analysis of
moments of heavy quark correlators. Here an independent estimate of the uncertainty due to
the fit to the a-dependence (see Fig. 30) is much more difficult to make; as discussed above,
and in the absence of confirmation by other groups, we are not yet ready to use the result of
HPQCD 10 [9] from the analysis of moments to reduce the size of our range. Thus the overall

size of the range is determined by our estimate of the uncertainty of α
(5)

MS
(MZ) from Wilson

loops. It is further reassuring to see that almost all central values that qualify for averaging
are within the so-determined range.

The range for α
(5)

MS
(MZ) presented here is based on results with rather different systematics

(apart from the matching across the charm threshold). We therefore believe that the true
value is quite likely to lie within this range.

We emphasize once more that all computations which enter this range rely on a perturba-
tive inclusion of the charm and beauty quarks. While perturbation theory for the matching
of ḡ2Nf and ḡ2Nf−1 looks very well behaved even at the mass of the charm, this scale is rather
low and we have no accurate information about the precision of perturbation theory. Non-
perturbative studies are not yet precise enough [90]. However, it seems unlikely that the
associated uncertainty is comparable with the present errors. With future improved preci-
sion, this will become a relevant issue. Note that this uncertainty is also present in some of
the phenomenological determinations, in particular from τ decays.

9.9.3 Ranges for [r0Λ]
(Nf ) and ΛMS

In the present situation, we give ranges for [r0Λ]
(Nf ) and ΛMS, discussing their determination

case by case. We include results withNf < 3 because it is interesting to see theNf -dependence
of the connection of low- and high-energy QCD. This aids our understanding of the field
theory and helps in finding possible ways to tackle it beyond the lattice approach. It is also
of interest in providing an impression on the size of the vacuum polarization effects of quarks,
in particular with an eye on the still difficult-to-treat heavier charm and beauty quarks. Even
if this information is rather qualitative, it may be valuable, given that it is of a completely
nonperturbative nature. We emphasize that results for [r0Λ]

(0) and [r0Λ]
(2) are not meant to

be used in phenomenology.
For Nf = 2+1+ 1, we presently do not quote a range as there is a single result: HPQCD

14A [5] found [r0Λ]
(4) = 0.70(3).

For Nf = 2 + 1, we take as a central value the weighted average of Bazavov 14 [61],
HPQCD 10 [9] (Wilson loops and current two-point correlators), PACS-CS 09A [62] and
Maltman 08 [63]. Since the uncertainty in r0 is small compared to that of Λ, we can directly
propagate the error from Eq. (265) and arrive at

[r0ΛMS]
(3) = 0.80(5) . (266)

It is in good agreement with all 2+1 results without red tags. In physical units, using
r0 = 0.472 fm and neglecting its error, this means

Λ
(3)

MS
= 336(19)MeV . (267)

69More precisely, we use α
(3)

MS
(5GeV) = 0.203 corresponding to Eq. (267) and α

(5)

MS
(MZ) = 0.1182 in

Eqs. (255,256).
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For Nf = 2, at present there is one computation with a ⋆ rating for all criteria, ALPHA
12 [12]. We adopt it as our central value and enlarge the error to cover the central values
of the other three results with filled green boxes. This results in an asymmetric error. Our
range is unchanged as compared to FLAG 13,

[r0ΛMS]
(2) = 0.79(+ 5

−13) , (268)

and in physical units, using r0 = 0.472fm,

Λ
(2)

MS
= 330(+21

−54)MeV . (269)

A weighted average of the four eligible numbers would yield [r0ΛMS]
(2) = 0.709(22), not

covering the best result and in particular leading to a smaller error than we feel is justified,
given the issues discussed previously in Sec. 9.4.2 (Karbstein 14 [559], ETM 11C [601]) and
Sec. 9.8.2 (ETM 10F [650]). Thus we believe that our estimate is a conservative choice; the
low value of ETM 11C [601] leads to a large downward error. We hope that future work will
improve the situation.

For Nf = 0 we take into account ALPHA 98 [586], QCDSF/UKQCD 05 [621], and Bram-
billa 10 [602] for forming a range. We exclude the older estimates shown in the graph which
have a limited control of the systematic errors due to power law corrections and discretization
errors.70 None of the computations have a full set of ⋆ and has P for publication status.
Taking a weighted average of the three numbers, we obtain [r0ΛMS]

(0) = 0.615(5), dominated
by the QCDSF/UKQCD 05 [621] result.

Since we are not yet convinced that such a small uncertainty has been reached, we prefer
to presently take a range which encompasses all four central values and whose uncertainty
comes close to our estimate of the perturbative error in QCDSF/UKQCD 05 [621]: based on
|c4/c1| ≈ 2 as before, we find ∆[r0ΛMS]

(0) = 0.018. We then have

[r0ΛMS]
(0) = 0.62(2) . (270)

Converting to physical units, again using r0 = 0.472 fm yields

Λ
(0)

MS
= 260(7)MeV . (271)

While the conversion of the Λ parameter to physical units is quite unambiguous for Nf = 2+1,
our choice of r0 = 0.472 fm also for smaller numbers of flavour amounts to a convention, in
particular for Nf = 0. Indeed, in the Tabs. 41–46 somewhat different numbers in MeV are
found.

How sure are we about our ranges for [r0ΛMS]
(Nf )? In one case we have a result, Eq. (268)

which easily passes our criteria, in another one (Eq. (270)) we have three compatible results
which are close to that quality and agree. For Nf = 2+1 the range (Eq. (266)) takes account
of results with rather different systematics. We therefore find it difficult to imagine that the
ranges could be violated by much.

70We have assigned a ◦ for the continuum limit, in Boucaud 00A [655], 00B [654], 01A [653], Soto 01
[652] but these results are from lattices of a very small physical size with finite-size effects that are not easily
quantified.
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9.9.4 Conclusions

With the present results our range for the strong coupling is (repeating Eq. (265))

α
(5)

MS
(MZ) = 0.1182(12) Refs. [5, 9, 61–63],

and the associated Λ parameter

Λ
(5)

MS
= 211(14) MeV Refs. [5, 9, 61–63]. (272)

These have changed little compared to the previous FLAG review. As can be seen from
Fig. 32, when surveying the green data points, the individual lattice results agree within their
quoted errors. Furthermore those points are based on different methods for determining αs,
each with its own difficulties and limitations. Thus the overall consistency of the lattice αs

results engenders confidence in our range.
It is interesting to compare to the new Particle Data Group world average, which appeared

in February 2016 [151]. The PDG performs their averages, both of lattice determinations and
of different categories of phenomenological determinations of αs, in a way differing significantly
from how we determine our range. They perform an unweighted average of the mean values.
As its error they use the average of the quoted errors of the different determinations that went
into the average. This procedure leads to larger final uncertainties than the one used in the
previous edition [555]. When one applies this method to the numbers entering Eq. (265), i.e.

the ones satisfying our criteria, one obtains α
(5)

MS
(MZ) = 0.1181(12) . This number is close to

our result Eq. (265). It differs a little from the value quoted by the PDG since in a couple of
cases we used updated results and because not all determinations entering the PDG average
satisfy our citeria. For comparison, the PDG number for lattice results is 0.1187(12), and
their average of all phenomenological results is 0.1175(17).

Our range for the lattice determination of αMS(MZ) in Eq. (265) is in excellent agree-
ment with the PDG nonlattice average Eq. (221). This is an excellent check for the subtle
interplay of theory, phenomenology and experiments in the nonlattice determinations. The
work done on the lattice provides an entirely independent determination, with negligible ex-
perimental uncertainty, which reaches a better precision even with our conservative estimate
of its uncertainty.

We finish by commenting on perspectives for the future. In the next few years we anticipate
that a growing number of lattice calculations of αs from different quantities and by different
collaborations will enable increasingly precise determinations, coupled with stringent cross-
checks. The determination of αs from observables at the lattice spacing scale may improve due
to a further reduction of the lattice spacing. This reduces αeff and thus the dominating error
in αMS as long as perturbative results for the simulated action are available to high order.
Schrödinger functional methods for Nf = 2+1 will certainly reach the precision of the present
Nf = 2 results soon, as this just requires an application of the presently known techniques.
Furthermore, we may expect a significant reduction of errors due to new definitions of running
couplings [587, 588] using the Yang Mills gradient flow [244]. Factors of two and more in
precision are certainly possible. At this point it will then also be necessary to include the
charm quark in the computations such that the perturbative matching of Nf = 2 + 1 and
2 + 1 + 1 theories at the charm quark threshold is avoided. First generation Nf = 2 + 1 + 1
simulations are presently being carried out.
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A Glossary

A.1 Lattice actions

In this appendix we give brief descriptions of the lattice actions used in the simulations and
summarize their main features.

A.1.1 Gauge actions

The simplest and most widely used discretization of the Yang-Mills part of the QCD action
is the Wilson plaquette action [660]:

SG = β
∑

x

∑

µ<ν

(
1− 1

3Re TrW 1×1
µν (x)

)
, (273)

where β ≡ 6/g20 (with g0 the bare gauge coupling) and the plaquette W 1×1
µν (x) is the product

of link variables around an elementary square of the lattice, i.e.

W 1×1
µν (x) ≡ Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)−1Uν(x)

−1. (274)

This expression reproduces the Euclidean Yang-Mills action in the continuum up to cor-
rections of order a2. There is a general formalism, known as the “Symanzik improvement
programme” [64, 65], which is designed to cancel the leading lattice artifacts, such that ob-
servables have an accelerated rate of convergence to the continuum limit. The improvement
programme is implemented by adding higher-dimensional operators, whose coefficients must
be tuned appropriately in order to cancel the leading lattice artifacts. The effectiveness of
this procedure depends largely on the method with which the coefficients are determined.
The most widely applied methods (in ascending order of effectiveness) include perturbation
theory, tadpole-improved (partially resummed) perturbation theory, renormalization group
methods, and the nonperturbative evaluation of improvement conditions.

In the case of Yang-Mills theory, the simplest version of an improved lattice action is
obtained by adding rectangular 1× 2 loops to the plaquette action, i.e.

Simp
G = β

∑

x

{
c0
∑

µ<ν

(
1− 1

3Re TrW 1×1
µν (x)

)
+ c1

∑

µ,ν

(
1− 1

3Re TrW 1×2
µν (x)

)}
, (275)

where the coefficients c0, c1 satisfy the normalization condition c0 + 8c1 = 1. The Symanzik-

improved [661], Iwasaki [662], and DBW2 [663, 664] actions are all defined through Eq. (275)
via particular choices for c0, c1. Details are listed in Table 48 together with the abbreviations
used in the summary tables. Another widely used variant is the tadpole Symanzik-improved

[614, 665] action which is obtained by adding additional 6-link parallelogram loopsW 1×1×1
µνσ (x)

to the action in Eq. (275), i.e.

StadSym
G = Simp

G + β
∑

x

c2
∑

µ<ν<σ

(
1− 1

3Re TrW 1×1×1
µνσ (x)

)
, (276)

where

W 1×1×1
µνσ (x) ≡ Uµ(x)Uν(x+aµ̂)Uσ(x+aµ̂+aν̂)Uµ(x+aσ̂+aν̂)

−1Uν(x+aσ̂)
−1Uσ(x)

−1 (277)

allows for one-loop improvement [661].
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Abbrev. c1 Description

Wilson 0 Wilson plaquette action

tlSym −1/12 tree-level Symanzik-improved gauge action

tadSym variable tadpole Symanzik-improved gauge action

Iwasaki −0.331 Renormalization group improved (“Iwasaki”) action

DBW2 −1.4088 Renormalization group improved (“DBW2”) action

Table 48: Summary of lattice gauge actions. The leading lattice artifacts are O(a2) or better
for all discretizations.

A.1.2 Light-quark actions

If one attempts to discretize the quark action, one is faced with the fermion doubling problem:
the naive lattice transcription produces a 16-fold degeneracy of the fermion spectrum.

Wilson fermions

Wilson’s solution to the fermion doubling problem is based on adding a dimension-5
(irrelevant) operator to the lattice action. The Wilson-Dirac operator for the massless case
reads [660, 666]

Dw =
1

2
γµ(∇µ +∇∗

µ) + a∇∗
µ∇µ, (278)

where ∇µ, ∇∗
µ denote the covariant forward and backward lattice derivatives, respectively.

The addition of the Wilson term a∇∗
µ∇µ, results in fermion doublers acquiring a mass pro-

portional to the inverse lattice spacing; close to the continuum limit these extra degrees of
freedom are removed from the low-energy spectrum. However, the Wilson term also results
in an explicit breaking of chiral symmetry even at zero bare quark mass. Consequently, it
also generates divergences proportional to the UV cutoff (inverse lattice spacing), besides the
usual logarithmic ones. Therefore the chiral limit of the regularized theory is not defined
simply by the vanishing of the bare quark mass but must be appropriately tuned. As a
consequence quark-mass renormalization requires a power subtraction on top of the standard
multiplicative logarithmic renormalization. The breaking of chiral symmetry also implies that
the nonrenormalization theorem has to be applied with care [667, 668], resulting in a normal-
ization factor for the axial current which is a regular function of the bare coupling. On the
other hand, vector symmetry is unaffected by the Wilson term and thus a lattice (point split)
vector current is conserved and obeys the usual nonrenormalization theorem with a trivial
(unity) normalization factor. Thus, compared to lattice fermion actions which preserve chiral
symmetry, or a subgroup of it, the Wilson regularization typically results in more complicated
renormalization patterns.

Furthermore, the leading-order lattice artifacts are of order a. With the help of the
Symanzik improvement programme, the leading artifacts can be cancelled in the action by
adding the so-called “Clover” or Sheikholeslami-Wohlert (SW) term [669]. The resulting
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expression in the massless case reads

Dsw = Dw + ia
4 cswσµν F̂µν , (279)

where σµν = i
2 [γµ, γν ], and F̂µν is a lattice transcription of the gluon field strength tensor

Fµν . The coefficient csw can be determined perturbatively at tree-level (csw = 1; tree-level
improvement or tlSW for short), via a mean field approach [614] (mean-field improvement
or mfSW) or via a nonperturbative approach [670] (nonperturbatively improved or npSW).
Hadron masses, computed using Dsw, with the coefficient csw determined nonperturbatively,
will approach the continuum limit with a rate proportional to a2; with tlSW for csw the rate
is proportional to g20a.

Other observables require additional improvement coefficients [669]. A common example
consists in the computation of the matrix element 〈α|Q|β〉 of a composite field Q of dimension-
d with external states |α〉 and |β〉. In the simplest cases, the above bare matrix element
diverges logarithmically and a single renormalization parameter ZQ is adequate to render it
finite. It then approaches the continuum limit with a rate proportional to the lattice spacing a,
even when the lattice action contains the Clover term. In order to reduce discretization errors
to O(a2), the lattice definition of the composite operator Qmust be modified (or “improved”),
by the addition of all dimension-(d+1) operators with the same lattice symmetries as Q. Each
of these terms is accompanied by a coefficient which must be tuned in a way analogous to
that of csw. Once these coefficients are determined nonperturbatively, the renormalized matrix
element of the improved operator, computed with a npSW action, converges to the continuum
limit with a rate proportional to a2. A tlSW improvement of these coefficients and csw will
result in a rate proportional to g20a.

It is important to stress that the improvement procedure does not affect the chiral prop-
erties of Wilson fermions; chiral symmetry remains broken.

Finally, we mention “twisted-mass QCD” as a method which was originally designed to ad-
dress another problem of Wilson’s discretization: the Wilson-Dirac operator is not protected
against the occurrence of unphysical zero modes, which manifest themselves as “exceptional”
configurations. They occur with a certain frequency in numerical simulations with Wilson
quarks and can lead to strong statistical fluctuations. The problem can be cured by intro-
ducing a so-called “chirally twisted” mass term. The most common formulation applies to a
flavour doublet ψ̄ = (u d) of mass-degenerate quarks, with the fermionic part of the QCD
action in the continuum assuming the form [395]

Stm;cont
F =

∫
d4xψ(x)(γµDµ +m+ iµqγ5τ

3)ψ(x). (280)

Here, µq is the twisted-mass parameter, and τ3 is a Pauli matrix in flavour space. The
standard action in the continuum can be recovered via a global chiral field rotation. The
physical quark mass is obtained as a function of the two mass parameters m and µq. The
corresponding lattice regularization of twisted-mass QCD (tmWil) for Nf = 2 flavours is
defined through the fermion matrix

Dw +m0 + iµqγ5τ
3 . (281)

Although this formulation breaks physical parity and flavour symmetries, resulting in non-
degenerate neutral and charged pions, is has a number of advantages over standard Wilson
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fermions. Firstly, the presence of the twisted-mass parameter µq protects the discretized the-
ory against unphysical zero modes. A second attractive feature of twisted-mass lattice QCD
is the fact that, once the bare mass parameter m0 is tuned to its “critical value” (correspond-
ing to massless pions in the standard Wilson formulation), the leading lattice artifacts are
of order a2 without the need to add the Sheikholeslami-Wohlert term in the action, or other
improving coefficients [671]. A third important advantage is that, although the problem of
explicit chiral symmetry breaking remains, quantities computed with twisted fermions with a
suitable tuning of the mass parameter µq, are subject to renormalization patterns which are
simpler than the ones with standard Wilson fermions. Well known examples are the pseu-
doscalar decay constant and BK.

Staggered Fermions

An alternative procedure to deal with the doubling problem is based on so-called “stag-
gered” or Kogut-Susskind fermions [672–675]. Here the degeneracy is only lifted partially,
from 16 down to 4. It has become customary to refer to these residual doublers as “tastes”
in order to distinguish them from physical flavours. Taste changing interactions can occur
via the exchange of gluons with one or more components of momentum near the cutoff π/a.
This leads to the breaking of the SU(4) vector symmetry among tastes, thereby generating
order a2 lattice artifacts.

The residual doubling of staggered quarks (four tastes per flavour) is removed by taking
a fractional power of the fermion determinant [676] — the “fourth-root procedure,” or, some-
times, the “fourth root trick.” This procedure would be unproblematic if the action had full
SU(4) taste symmetry, which would give a Dirac operator that was block-diagonal in taste
space. However, the breaking of taste symmetry at nonzero lattice spacing leads to a variety
of problems. In fact, the fourth root of the determinant is not equivalent to the determinant
of any local lattice Dirac operator [677]. This in turn leads to violations of unitarity on the
lattice [678–681].

According to standard renormalization group lore, the taste violations, which are asso-
ciated with lattice operators of dimension greater than four, might be expected go away in
the continuum limit, resulting in the restoration of locality and unitarity. However, there is
a problem with applying the standard lore to this nonstandard situation: the usual renor-
malization group reasoning assumes that the lattice action is local. Nevertheless, Shamir
[682, 683] shows that one may apply the renormalization group to a “nearby” local theory,
and thereby gives a strong argument that that the desired local, unitary theory of QCD is
reproduced by the rooted staggered lattice theory in the continuum limit.

A version of chiral perturbation that includes the lattice artifacts due to taste violations
and rooting (“rooted staggered chiral perturbation theory”) can also be worked out [328,
684, 685] and shown to correctly describe the unitarity-violating lattice artifacts in the pion
sector [679, 686]. This provides additional evidence that the desired continuum limit can
be obtained. Further, it gives a practical method for removing the lattice artifacts from
simulation results. Versions of rooted staggered chiral perturbation theory exist for heavy-
light mesons with staggered light quarks but nonstaggered heavy quarks [687], heavy-light
mesons with staggered light and heavy quarks [688, 689], staggered baryons [690], and mixed
actions with a staggered sea [275, 277], as well as the pion-only version referenced above.

There is also considerable numerical evidence that the rooting procedure works as desired.
This includes investigations in the Schwinger model [691–693], studies of the eigenvalues of
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the Dirac operator in QCD [694–697], and evidence for taste restoration in the pion spectrum
as a→ 0 [89, 107].

Issues with the rooting procedure have led Creutz [698–704] to argue that the continuum
limit of the rooted staggered theory cannot be QCD. These objections have however been
answered in Refs. [86–88, 697, 705–708]. In particular, a claim that the continuum ’t Hooft
vertex [709, 710] could not be properly reproduced by the rooted theory has been refuted
[697, 706].

Overall, despite the lack of rigorous proof of the correctness of the rooting procedure, we
think the evidence is strong enough to consider staggered QCD simulations on a par with
simulations using other actions. See the following reviews for further evidence and discussion:
Refs. [85–89].

Improved Staggered Fermions

An improvement program can be used to suppress taste-changing interactions, leading
to “improved staggered fermions,” with the so-called “Asqtad” [711], “HISQ” [712], “Stout-
smeared” [713], and “HYP” [477] actions as the most common versions. All these actions
smear the gauge links in order to reduce the coupling of high-momentum gluons to the quarks,
with the main goal of decreasing taste-violating interactions. In the Asqtad case, this is
accomplished by replacing the gluon links in the derivatives by averages over 1-, 3-, 5-, and
7-link paths. The other actions reduce taste changing even further by smearing more. In
addition to the smearing, the Asqtad and HISQ actions include a three-hop term in the
action (the “Naik term” [714]) to remove order a2 errors in the dispersion relation, as well as
a “Lepage term” [715] to cancel other order a2 artifacts introduced by the smearing. In both
the Asqtad and HISQ actions, the leading taste violations are of order α2

Sa
2, and “generic”

lattices artifacts (those associated with discretization errors other than taste violations) are
of order αSa

2. The overall coefficients of these errors are, however, significantly smaller with
HISQ than with Asqtad. With the Stout-smeared and HYP actions, the errors are formally
larger (order αSa

2 for taste violations and order a2 for generic lattices artifacts). Nevertheless,
the smearing seems to be very efficient, and the actual size of errors at accessible lattice
spacings appears to be at least as small as with HISQ.

Although logically distinct from the light-quark improvement program for these actions, it
is customary with the HISQ action to include an additional correction designed to reduce dis-
cretization errors for heavy quarks (in practice, usually charm quarks) [712]. The Naik term
is adjusted to remove leading (amc)

4 and αS(amc)
2 errors, where mc is the charm-quark

mass and “leading” in this context means leading in powers of the heavy-quark velocity v
(v/c ∼ 1/3 for Ds). With these improvements, the claim is that one can use the staggered
action for charm quarks, although it must be emphasized that it is not obvious a priori how
large a value of amc may be tolerated for a given desired accuracy, and this must be studied
in the simulations.

Ginsparg-Wilson fermions

Fermionic lattice actions, which do not suffer from the doubling problem whilst preserving
chiral symmetry go under the name of “Ginsparg-Wilson fermions”. In the continuum the
massless Dirac operator (D) anti-commutes with γ5. At nonzero lattice spacing a chiral
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symmetry can be realized if this condition is relaxed to [716–718]

{D, γ5} = aDγ5D, (282)

which is now known as the Ginsparg-Wilson relation [397]. The Nielsen-Ninomiya theo-
rem [719], which states that any lattice formulation for which D anticommutes with γ5 nec-
essarily has doubler fermions, is circumvented since {D, γ5} 6= 0.

A lattice Dirac operator which satisfies Eq. (282) can be constructed in several ways. The
so-called “overlap” or Neuberger-Dirac operator [720] acts in four space-time dimensions and
is, in its simplest form, defined by

DN = 1
a (1− ǫ(A)) , where ǫ(A) ≡ A(A†A)−1/2, A = 1 + s− aDw, a = a

1+s , (283)

Dw is the massless Wilson-Dirac operator and |s| < 1 is a tunable parameter. The overlap
operator DN removes all doublers from the spectrum, and can readily be shown to satisfy
the Ginsparg-Wilson relation. The occurrence of the sign function ǫ(A) in DN renders the
application ofDN in a computer program potentially very costly, since it must be implemented
using, for instance, a polynomial approximation.

The most widely used approach to satisfying the Ginsparg-Wilson relation Eq. (282) in
large-scale numerical simulations is provided by Domain Wall Fermions (DWF) [721–723]
and we therefore describe this in some more detail. Following early exploratory studies [724].
this approach has been developed into a practical formulation of lattice QCD with good chiral
and flavour symmetries leading to results which contribute significantly to this review. In this
formulation, the fermion fields ψ(x, s) depend on a discrete fifth coordinate s = 1, . . . , N as
well as the physical 4-dimensional space-time coordinates xµ, µ = 1 · · · 4 (the gluon fields do
not depend on s). The lattice on which the simulations are performed, is therefore a five-
dimensional one of size L3×T ×N , where L, T and N represent the number of points in the
spatial, temporal and fifth dimensions respectively. The remarkable feature of DWF is that
for each flavour there exists a physical light mode corresponding to the field q(x):

q(x) = 1+γ5

2 ψ(x, 1) + 1−γ5

2 ψ(x,N) (284)

q̄(x) = ψ(x,N)1+γ5

2 + ψ(x, 1)1−γ5

2 . (285)

The left and right-handed modes of the physical field are located on opposite boundaries
in the 5th dimensional space which, for N → ∞, allows for independent transformations of
the left and right components of the quark fields, that is for chiral transformations. Unlike
Wilson fermions, where for each flavour the quark-mass parameter in the action is fine-tuned
requiring a subtraction of contributions of O(1/a) where a is the lattice spacing, with DWF
no such subtraction is necessary for the physical modes, whereas the unphysical modes have
masses of O(1/a) and decouple.

In actual simulations N is finite and there are small violations of chiral symmetry which
must be accounted for. The theoretical framework for the study of the residual breaking of
chiral symmetry has been a subject of intensive investigation (for a review and references to
the original literature see e.g. [725]). The breaking requires one or more crossings of the fifth
dimension to couple the left and right-handed modes; the more crossings that are required
the smaller the effect. For many physical quantities the leading effects of chiral symmetry
breaking due to finite N are parameterized by a residual mass, mres. For example, the PCAC
relation (for degenerate quarks of mass m) ∂µAµ(x) = 2mP (x), where Aµ and P represent
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the axial current and pseudoscalar density respectively, is satisfied with m = mDWF +mres,
where mDWF is the bare mass in the DWF action. The mixing of operators which transform
under different representations of chiral symmetry is found to be negligibly small in current
simulations. The important thing to note is that the chiral symmetry breaking effects are
small and that there are techniques to mitigate their consequences.

The main price which has to be paid for the good chiral symmetry is that the simulations
are performed in 5 dimensions, requiring approximately a factor of N in computing resources
and resulting in practice in ensembles at fewer values of the lattice spacing and quark masses
than is possible with other formulations. The current generation of DWF simulations is
being performed at physical quark masses so that ensembles with good chiral and flavour
symmetries are being generated and analysed [31]. For a discussion of the equivalence of
DWF and overlap fermions see Refs. [726, 727].

A third example of an operator which satisfies the Ginsparg-Wilson relation is the so-
called fixed-point action [728–730]. This construction proceeds via a renormalization group
approach. A related formalism are the so-called “chirally improved” fermions [731].

Smearing

A simple modification which can help improve the action as well as the computational
performance is the use of smeared gauge fields in the covariant derivatives of the fermionic
action. Any smearing procedure is acceptable as long as it consists of only adding irrelevant
(local) operators. Moreover, it can be combined with any discretization of the quark action.
The “Asqtad” staggered quark action mentioned above [711] is an example which makes use
of so-called “Asqtad” smeared (or “fat”) links. Another example is the use of n-HYP smeared
[477, 732], stout smeared [733, 734] or HEX (hypercubic stout) smeared [735] gauge links in
the tree-level clover improved discretization of the quark action, denoted by “n-HYP tlSW”,
“stout tlSW” and “HEX tlSW” in the following.

In Table 49 we summarize the most widely used discretizations of the quark action and their
main properties together with the abbreviations used in the summary tables. Note that in
order to maintain the leading lattice artifacts of the actions as given in the table in nonspectral
observables (like operator matrix elements) the corresponding nonspectral operators need to
be improved as well.

A.1.3 Heavy-quark actions

Charm and bottom quarks are often simulated with different lattice-quark actions than up,
down, and strange quarks because their masses are large relative to typical lattice spacings
in current simulations; for example, amc ∼ 0.4 and amb ∼ 1.3 at a = 0.06 fm. Therefore,
for the actions described in the previous section, using a sufficiently small lattice spacing to
control generic (amh)

n discretization errors is computationally costly, and in fact prohibitive
at the physical b-quark mass.

One approach for lattice heavy quarks is direct application of effective theory. In this case
the lattice heavy-quark action only correctly describes phenomena in a specific kinematic
regime, such as Heavy-Quark Effective Theory (HQET) [736–738] or Nonrelativistic QCD
(NRQCD) [739, 740]. One can discretize the effective Lagrangian to obtain, for example,
Lattice HQET [469] or Lattice NRQCD [741, 742], and then simulate the effective theory
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Abbrev. Discretization Leading lattice
artifacts

Chiral symmetry Remarks

Wilson Wilson O(a) broken

tmWil twisted-mass Wilson O(a2) at
maximal twist

broken flavour-symmetry breaking:
(M0

PS)
2 − (M±

PS)
2 ∼ O(a2)

tlSW Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1

n-HYP
tlSW

Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1,
n-HYP smeared gauge links

stout
tlSW

Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1,
stout smeared gauge links

HEX
tlSW

Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1,
HEX smeared gauge links

mfSW Sheikholeslami-Wohlert O(g2a) broken mean-field impr.

npSW Sheikholeslami-Wohlert O(a2) broken nonperturbatively impr.

KS Staggered O(a2) U(1)×U(1) subgr.
unbroken

rooting for Nf < 4

Asqtad Staggered O(a2) U(1)×U(1) subgr.
unbroken

Asqtad smeared gauge links,
rooting for Nf < 4

HISQ Staggered O(a2) U(1)×U(1) subgr.
unbroken

HISQ smeared gauge links,
rooting for Nf < 4

DW Domain Wall asymptotically
O(a2)

remnant breaking
exponentially suppr.

exact chiral symmetry and
O(a) impr. only in the limit
Ls → ∞

oDW optimal Domain Wall asymptotically
O(a2)

remnant breaking
exponentially suppr.

exact chiral symmetry and
O(a) impr. only in the limit
Ls → ∞

M-DW Moebius Domain Wall asymptotically
O(a2)

remnant breaking
exponentially suppr.

exact chiral symmetry and
O(a) impr. only in the limit
Ls → ∞

overlap Neuberger O(a2) exact

Table 49: The most widely used discretizations of the quark action and some of their proper-
ties. Note that in order to maintain the leading lattice artifacts of the action in nonspectral
observables (like operator matrix elements) the corresponding nonspectral operators need to
be improved as well.
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numerically. The coefficients of the operators in the lattice-HQET and lattice-NRQCD actions
are free parameters that must be determined by matching to the underlying theory (QCD)
through the chosen order in 1/mh or v2h, where mh is the heavy-quark mass and vh is the
heavy-quark velocity in the the heavy-light meson rest frame.

Another approach is to interpret a relativistic quark action such as those described in
the previous section in a manner suitable for heavy quarks. One can extend the standard
Symanzik improvement program, which allows one to systematically remove lattice cutoff
effects by adding higher-dimension operators to the action, by allowing the coefficients of the
dimension 4 and higher operators to depend explicitly upon the heavy-quark mass. Different
prescriptions for tuning the parameters correspond to different implementations: those in
common use are often called the Fermilab action [743], the relativistic heavy-quark action
(RHQ) [474], and the Tsukuba formulation [744]. In the Fermilab approach, HQET is used
to match the lattice theory to continuum QCD at the desired order in 1/mh.

More generally, effective theory can be used to estimate the size of cutoff errors from the
various lattice heavy-quark actions. The power counting for the sizes of operators with heavy
quarks depends on the typical momenta of the heavy quarks in the system. Bound-state
dynamics differ considerably between heavy-heavy and heavy-light systems. In heavy-light
systems, the heavy quark provides an approximately static source for the attractive binding
force, like the proton in a hydrogen atom. The typical heavy-quark momentum in the bound-
state rest frame is |~ph| ∼ ΛQCD, and heavy-light operators scale as powers of (ΛQCD/mh)

n.
This is often called “HQET power-counting”, although it applies to heavy-light operators in
HQET, NRQCD, and even relativistic heavy-quark actions described below. Heavy-heavy
systems are similar to positronium or the deuteron, with the typical heavy-quark momentum
|~ph| ∼ αSmh. Therefore motion of the heavy quarks in the bound state rest frame cannot be
neglected. Heavy-heavy operators have complicated power counting rules in terms of v2h [742];
this is often called “NRQCD power counting.”

Alternatively, one can simulate bottom or charm quarks with the same action as up, down,
and strange quarks provided that (1) the action is sufficiently improved, and (2) the lattice
spacing is sufficiently fine. These qualitative criteria do not specify precisely how large a
numerical value of amh can be allowed while obtaining a given precision for physical quan-
tities; this must be established empirically in numerical simulations. At present, both the
HISQ and twisted-mass Wilson actions discussed previously are being used to simulate charm
quarks. Simulations with HISQ quarks have employed heavier-quark masses than those with
twisted-mass Wilson quarks because the action is more highly improved, but neither action
can be used to simulate at the physical amb for current lattice spacings. Therefore calcula-
tions of heavy-light decay constants with these actions still rely on effective theory to reach
the b-quark mass: the ETM Collaboration interpolates between twisted-mass Wilson data
generated near amc and the static point [181], while the HPQCD Collaboration extrapolates
HISQ data generated below amb up to the physical point using an HQET-inspired series ex-
pansion in (1/mh)

n [56].

Heavy-quark effective theory

HQET was introduced by Eichten and Hill in Ref. [737]. It provides the correct asymp-
totic description of QCD correlation functions in the static limit mh/|~ph|→∞. Subleading
effects are described by higher dimensional operators whose coupling constants are formally
of O((1/mh)

n). The HQET expansion works well for heavy-light systems in which the heavy-

214



quark momentum is small compared to the mass.
The HQET Lagrangian density at the leading (static) order in the rest frame of the heavy

quark is given by
Lstat(x) = ψh(x)D0 ψh(x) , (286)

with

P+ψh = ψh , ψhP+ = ψh , P+ =
1 + γ0

2
. (287)

A bare quark mass mstat
bare has to be added to the energy levels Estat computed with this

Lagrangian to obtain the physical ones. For example, the mass of the B meson in the static
approximation is given by

mB = Estat +mstat
bare . (288)

At tree-level mstat
bare is simply the (static approximation of the) b-quark mass, but in the

quantized lattice formulation it has to further compensate a divergence linear in the inverse
lattice spacing. Weak composite fields are also rewritten in terms of the static fields, e.g.

A0(x)
stat = Zstat

A

(
ψ(x)γ0γ5ψh(x)

)
, (289)

where the renormalization factor of the axial current in the static theory Zstat
A is scale-

dependent. Recent lattice-QCD calculations using static b quarks and dynamical light quarks
[181, 463] perform the operator matching at one-loop in mean-field improved lattice pertur-
bation theory [745, 746]. Therefore the heavy-quark discretization, truncation, and matching
errors in these results are of O(a2Λ2

QCD), O(ΛQCD/mh), and O(α2
s, α

2
saΛQCD).

In order to reduce heavy-quark truncation errors in B-meson masses and matrix elements
to the few-percent level, state-of-the-art lattice-HQET computations now include corrections
of O(1/mh). Adding the 1/mh terms, the HQET Lagrangian reads

LHQET(x) = Lstat(x)− ωkinOkin(x)− ωspinOspin(x) , (290)

Okin(x) = ψh(x)D
2ψh(x) , Ospin(x) = ψh(x)σ ·Bψh(x) . (291)

At this order, two other parameters appear in the Lagrangian, ωkin and ωspin. The normaliza-
tion is such that the tree-level values of the coefficients are ωkin = ωspin = 1/(2mh). Similarly
the operators are formally expanded in inverse powers of the heavy-quark mass. The time
component of the axial current, relevant for the computation of mesonic decay constants is
given by

AHQET
0 (x) = ZHQET

A

(
Astat

0 (x) +

2∑

i=1

c
(i)
A A

(i)
0 (x)

)
, (292)

A
(1)
0 (x) = ψ 1

2γ5γk(∇k −
←−∇k)ψh(x), k = 1, 2, 3 (293)

A
(2)
0 = −∂kAstat

k (x) , Astat
k = ψ(x)γkγ5ψh(x) , (294)

and depends on two additional parameters c
(1)
A and c

(2)
A .

A framework for nonperturbative HQET on the lattice has been introduced in Refs. [469,
471]. As pointed out in Refs. [747, 748], since αs(mh) decreases logarithmically with mh,
whereas corrections in the effective theory are power-like in Λ/mh, it is possible that the
leading errors in a calculation will be due to the perturbative matching of the action and the
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currents at a given order (Λ/mh)
l rather than to the missing O((Λ/mh)

l+1) terms. Thus, in
order to keep matching errors below the uncertainty due to truncating the HQET expansion,
the matching is performed nonperturbatively beyond leading order in 1/mh. The asymptotic
convergence of HQET in the limit mh →∞ indeed holds only in that case.

The higher dimensional interaction terms in the effective Lagrangian are treated as space-
time volume insertions into static correlation functions. For correlators of some multi-local
fields Q and up to the 1/mh corrections to the operator, this means

〈Q〉 = 〈Q〉stat + ωkina
4
∑

x

〈QOkin(x)〉stat + ωspina
4
∑

x

〈QOspin(x)〉stat , (295)

where 〈Q〉stat denotes the static expectation value with Lstat(x) + Llight(x). Nonperturba-
tive renormalization of these correlators guarantees the existence of a well-defined continuum
limit to any order in 1/mh. The parameters of the effective action and operators are then
determined by matching a suitable number of observables calculated in HQET (to a given
order in 1/mh) and in QCD in a small volume (typically with L ≃ 0.5 fm), where the full
relativistic dynamics of the b-quark can be simulated and the parameters can be computed
with good accuracy. In Refs. [471, 472] the Schrödinger Functional (SF) setup has been
adopted to define a set of quantities, given by the small volume equivalent of decay constants,
pseudoscalar-vector splittings, effective masses and ratio of correlation functions for different
kinematics, that can be used to implement the matching conditions. The kinematical condi-
tions are usually modified by changing the periodicity in space of the fermions, i.e. by directly
exploiting a finite-volume effect. The new scale L, which is introduced in this way, is chosen
such that higher orders in 1/mhL and in ΛQCD/mh are of about the same size. At the end of
the matching step the parameters are known at lattice spacings which are of the order of 0.01
fm, significantly smaller than the resolutions used for large volume, phenomenological, appli-
cations. For this reason a set of SF-step scaling functions is introduced in the effective theory
to evolve the parameters to larger lattice spacings. The whole procedure yields the nonper-
turbative parameters with an accuracy which allows to compute phenomenological quantities
with a precision of a few percent (see Refs. [458, 749] for the case of the B(s) decay constants).
Such an accuracy can not be achieved by performing the nonperturbative matching in large
volume against experimental measurements, which in addition would reduce the predictivity
of the theory. For the lattice-HQET action matched nonperturbatively through O(1/mh),
discretization and truncation errors are of O(aΛ2

QCD/mh, a
2Λ2

QCD) and O((ΛQCD/mh)
2).

The noise-to-signal ratio of static-light correlation functions grows exponentially in Eu-
clidean time, ∝ eµx0 . The rate µ is nonuniversal but diverges as 1/a as one approaches
the continuum limit. By changing the discretization of the covariant derivative in the static
action one may achieve an exponential reduction of the noise to signal ratio. Such a strategy
led to the introduction of the Sstat

HYP1,2 actions [485], where the thin links in D0 are replaced
by HYP-smeared links [477]. These actions are now used in all lattice applications of HQET.

Nonrelativistic QCD

Nonrelativistic QCD (NRQCD) [741, 742] is an effective theory that can be matched
to full QCD order by order in the heavy-quark velocity v2h (for heavy-heavy systems) or in
ΛQCD/mh (for heavy-light systems) and in powers of αs. Relativistic corrections appear as
higher-dimensional operators in the Hamiltonian.
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As an effective field theory, NRQCD is only useful with an ultraviolet cutoff of order
mh or less. On the lattice this means that it can be used only for amh > 1, which means
that O(an) errors cannot be removed by taking a → 0 at fixed mh. Instead heavy-quark
discretization errors are systematically removed by adding additional operators to the lattice
Hamiltonian. Thus, while strictly speaking no continuum limit exists at fixed mh, continuum
physics can be obtained at finite lattice spacing to arbitrarily high precision provided enough
terms are included, and provided that the coefficients of these terms are calculated with
sufficient accuracy. Residual discretization errors can be parameterized as corrections to the
coefficients in the nonrelativistic expansion, as shown in Eq. (298). Typically they are of
the form (a|~ph|)n multiplied by a function of amh that is smooth over the limited range of
heavy-quark masses (with amh > 1) used in simulations, and can therefore can be represented
by a low-order polynomial in amh by Taylor’s theorem (see Ref. [750] for further discussion).
Power-counting estimates of these effects can be compared to the observed lattice spacing
dependence in simulations. Provided that these effects are small, such comparisons can be
used to estimate and correct the residual discretization effects.

An important feature of the NRQCD approach is that the same action can be applied to
both heavy-heavy and heavy-light systems. This allows, for instance, the bare b-quark mass
to be fixed via experimental input from Υ so that simulations carried out in the B or Bs

systems have no adjustable parameters left. Precision calculations of the Bs-meson mass (or
of the mass splitting MBs −MΥ/2) can then be used to test the reliability of the method
before turning to quantities one is trying to predict, such as decay constants fB and fBs ,
semileptonic form factors or neutral B mixing parameters.

Given the same lattice-NRQCD heavy-quark action, simulation results will not be as
accurate for charm quarks as for bottom (1/mb < 1/mc, and vb < vc in heavy-heavy systems).
For charm, however, a more serious concern is the restriction that amh must be greater than
one. This limits lattice-NRQCD simulations at the physical amc to relatively coarse lattice
spacings for which light-quark and gluon discretization errors could be large. Thus recent
lattice-NRQCD simulations have focused on bottom quarks because amb > 1 in the range of
typical lattice spacings between ≈ 0.06 and 0.15 fm.

In most simulations with NRQCD b-quarks during the past decade one has worked with an
NRQCD action that includes tree-level relativistic corrections through O(v4h) and discretiza-
tion corrections through O(a2),

SNRQCD = a4
∑

x

{
Ψ†

tΨt −Ψ†
t

(
1− aδH

2

)
t

(
1− aH0

2n

)n
t

× U †
t (t− a)

(
1− aH0

2n

)n
t−a

(
1− aδH

2

)
t−a

Ψt−a

}
, (296)

where the subscripts “t” and “t− a” denote that the heavy-quark, gauge, E, and B-fields are
on time slices t or t− a, respectively. H0 is the nonrelativistic kinetic energy operator,

H0 = −
∆(2)

2mh
, (297)

217



and δH includes relativistic and finite-lattice-spacing corrections,

δH = −c1 (∆(2))2

8m3
h

+ c2
ig

8m2
h

(
∇ · Ẽ− Ẽ · ∇

)

−c3 g
8m2

h
σ · (∇̃ × Ẽ− Ẽ× ∇̃)

−c4 g
2mh

σ · B̃+ c5
a2∆(4)

24mh
− c6 a(∆(2))2

16nm2
h
. (298)

mh is the bare heavy-quark mass, ∆(2) the lattice Laplacian, ∇ the symmetric lattice deriva-
tive and ∆(4) the lattice discretization of the continuum

∑
iD

4
i . ∇̃ is the improved symmetric

lattice derivative and the Ẽ and B̃ fields have been improved beyond the usual clover leaf con-
struction. The stability parameter n is discussed in Ref. [742]. In most cases the ci’s have been
set equal to their tree-level values ci = 1. With this implementation of the NRQCD action,
errors in heavy-light-meson masses and splittings are of O(αSΛQCD/mh), O(αS(ΛQCD/mh)

2),
O((ΛQCD/mh)

3), and O(αsa
2Λ2

QCD), with coefficients that are functions of amh. One-loop
corrections to many of the coefficients in Eq. (298) have now been calculated, and are starting
to be included in simulations [751–753].

Most of the operator matchings involving heavy-light currents or four-fermion operators
with NRQCD b-quarks and AsqTad or HISQ light quarks have been carried out at one-loop
order in lattice perturbation theory. In calculations published to date of electroweak ma-
trix elements, heavy-light currents with massless light quarks have been matched through
O(αs,ΛQCD/mh, αs/(amh), αsΛQCD/mh), and four-fermion operators through
O(αs,ΛQCD/mh, αs/(amh)). NRQCD/HISQ currents with massive HISQ quarks are also of
interest, e.g. for the bottom-charm currents in B → D(∗), lν semileptonic decays and the rel-
evant matching calculations have been performed at one-loop order in Ref. [754]. Taking all
the above into account, the most significant systematic error in electroweak matrix elements
published to date with NRQCD b-quarks is the O(α2

s) perturbative matching uncertainty.
Work is therefore underway to use current-current correlator methods combined with very
high order continuum perturbation theory to do current matchings nonperturbatively [755].

Relativistic heavy quarks

An approach for relativistic heavy-quark lattice formulations was first introduced by El-
Khadra, Kronfeld, and Mackenzie in Ref. [743]. Here they showed that, for a general lattice
action with massive quarks and non-Abelian gauge fields, discretization errors can be factor-
ized into the form f(mha)(a|~ph|)n, and that the function f(mha) is bounded to be of O(1)
or less for all values of the quark mass mh. Therefore cutoff effects are of O(aΛQCD)

n and
O((a|~ph|)n), even for amh ∼> 1, and can be controlled using a Symanzik-like procedure. As in
the standard Symanzik improvement program, cutoff effects are systematically removed by
introducing higher-dimension operators to the lattice action and suitably tuning their coeffi-
cients. In the relativistic heavy-quark approach, however, the operator coefficients are allowed
to depend explicitly on the quark mass. By including lattice operators through dimension
n and adjusting their coefficients cn,i(mha) correctly, one enforces that matrix elements in
the lattice theory are equal to the analogous matrix elements in continuum QCD through
(a|~ph|)n, such that residual heavy-quark discretization errors are of O(a|~ph|)n+1.

The relativistic heavy-quark approach can be used to compute the matrix elements of
states containing heavy quarks for which the heavy-quark spatial momentum |~ph| is small
compared to the lattice spacing. Thus it is suitable to describe bottom and charm quarks in
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both heavy-light and heavy-heavy systems. Calculations of bottomonium and charmonium
spectra serve as nontrivial tests of the method and its accuracy.

At fixed lattice spacing, relativistic heavy-quark formulations recover the massless limit
when (amh) ≪ 1, recover the static limit when (amh) ≫ 1, and smoothy interpolate be-
tween the two; thus they can be used for any value of the quark mass, and, in particular,
for both charm and bottom. Discretization errors for relativistic heavy-quark formulations
are generically of the form αk

sf(amh)(a|~ph|)n, where k reflects the order of the perturbative
matching for operators of O((a|~ph|)n). For each n, such errors are removed completely if the
operator matching is nonperturbative. When (amh) ∼ 1, this gives rise to nontrivial lattice-
spacing dependence in physical quantities, and it is prudent to compare estimates based on
power-counting with a direct study of scaling behaviour using a range of lattice spacings. At
fixed quark mass, relativistic heavy-quark actions possess a smooth continuum limit without
power-divergences. Of course, as mh → ∞ at fixed lattice spacing, the power divergences of
the static limit are recovered (see, e.g. Ref. [756]).

The relativistic heavy-quark formulations in use all begin with the anisotropic Sheikholeslami-
Wohlert (“clover”) action [757]:

Slat = a4
∑

x,x′

ψ̄(x′)

(
m0 + γ0D0 + ζ~γ · ~D − a

2 (D
0)2 − a

2ζ(
~D)2 +

∑

µ,ν

ia
4 cSWσµνFµν

)

x′x

ψ(x) ,

(299)
where Dµ is the lattice covariant derivative and Fµν is the lattice field-strength tensor. Here
we show the form of the action given in Ref. [474]. The introduction of a space-time anisotropy,
parameterized by ζ in Eq. (299), is convenient for heavy-quark systems because the charac-
teristic heavy-quark four-momenta do not respect space-time axis exchange (~ph < mh in the
bound-state rest frame). Further, the Sheikoleslami-Wohlert action respects the continuum
heavy-quark spin and flavour symmetries, so HQET can be used to interpret and estimate
lattice discretization effects [756, 758, 759]. We discuss three different prescriptions for tuning
the parameters of the action in common use below. In particular, we focus on aspects of the
action and operator improvement and matching relevant for evaluating the quality of the
calculations discussed in the main text.

The meson energy-momentum dispersion relation plays an important role in relativistic
heavy-quark formulations:

E(~p) =M1 +
~p2

2M2
+O(~p4) , (300)

where M1 and M2 are known as the rest and kinetic masses, respectively. Because the lattice
breaks Lorentz invariance, there are corrections proportional to powers of the momentum.
Further, the lattice rest masses and kinetic masses are not equal (M1 6= M2), and only
become equal in the continuum limit.

The Fermilab interpretation [743] is suitable for calculations of mass splittings and ma-
trix elements of systems with heavy quarks. The Fermilab action is based on the hopping-
parameter form of the Wilson action, in which κh parameterizes the heavy-quark mass. In
practice, κh is tuned such that the the kinetic meson mass equals the experimentally-measured
heavy-strange meson mass (mBs for bottom and mDs for charm). In principle, one could also
tune the anisotropy parameter such that M1 =M2. This is not necessary, however, to obtain
mass splittings and matrix elements, which are not affected by M1 [758]. Therefore in the
Fermilab action the anisotropy parameter is set equal to unity. The clover coefficient in the
Fermilab action is fixed to the value cSW = 1/u30 from mean-field improved lattice pertur-
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bation theory [614]. With this prescription, discretization effects are of O(αsa|~ph|, (a|~ph|)2).
Calculations of electroweak matrix elements also require improving the lattice current and
four-fermion operators to the same order, and matching them to the continuum. Calculations
with the Fermilab action remove tree-level O(a) errors in electroweak operators by rotat-
ing the heavy-quark field used in the matrix element and setting the rotation coefficient to
its tadpole-improved tree-level value (see e.g. Eqs. (7.8) and (7.10) of Ref. [743]). Finally,
electroweak operators are typically renormalized using a mostly nonperturbative approach in
which the flavour-conserving light-light and heavy-heavy current renormalization factors Z ll

V

and Zhh
V are computed nonperturbatively [476]. The flavour-conserving factors account for

most of the heavy-light current renormalization. The remaining correction is expected to be
close to unity due to the cancellation of most of the radiative corrections including tadpole
graphs [756]; therefore it can be reliably computed at one-loop in mean-field improved lattice
perturbation theory with truncation errors at the percent to few-percent level.

The relativistic heavy-quark (RHQ) formulation developed by Li, Lin, and Christ builds
upon the Fermilab approach, but tunes all the parameters of the action in Eq. (299) nonper-
turbatively [474]. In practice, the three parameters {m0a, cSW, ζ} are fixed to reproduce the
experimentally-measured Bs meson mass and hyperfine splitting (mB∗

s
−mBs), and to make

the kinetic and rest masses of the lattice Bs meson equal [475]. This is done by computing
the heavy-strange meson mass, hyperfine splitting, and ratio M1/M2 for several sets of bare
parameters {m0a, cSW, ζ} and interpolating linearly to the physical Bs point. By fixing the
Bs-meson hyperfine splitting, one loses a potential experimental prediction with respect to
the Fermilab formulation. However, by requiring that M1 =M2, one gains the ability to use
the meson rest masses, which are generally more precise than the kinetic masses, in the RHQ
approach. The nonperturbative parameter-tuning procedure eliminates O(a) errors from the
RHQ action, such that discretization errors are of O((a|~ph|)2). Calculations of B-meson de-
cay constants and semileptonic form factors with the RHQ action are in progress [760, 761],
as is the corresponding one-loop mean-field improved lattice perturbation theory [762]. For
these works, cutoff effects in the electroweak vector and axial-vector currents will be removed
through O(αsa), such that the remaining discretization errors are of O(α2

sa|~ph|, (a|~ph|)2).
Matching the lattice operators to the continuum will be done following the mostly nonper-
turbative approach described above.

The Tsukuba heavy-quark action is also based on the Sheikholeslami-Wohlert action in
Eq. (299), but allows for further anisotropies and hence has additional parameters: specifi-
cally the clover coefficients in the spatial (cB) and temporal (cE) directions differ, as do the
anisotropy coefficients of the ~D and ~D2 operators [744]. In practice, the contribution to the
clover coefficient in the massless limit is computed nonperturbatively [763], while the mass-
dependent contributions, which differ for cB and cE , are calculated at one-loop in mean-field
improved lattice perturbation theory [764]. The hopping parameter is fixed nonperturbatively
to reproduce the experimentally-measured spin-averaged 1S charmonium mass [421]. One of
the anisotropy parameters (rt in Ref. [421]) is also set to its one-loop perturbative value,
while the other (ν in Ref. [421]) is fixed noperturbatively to obtain the continuum dispersion
relation for the spin-averaged charmonium 1S states (such that M1 = M2). For the renor-
malization and improvement coefficients of weak current operators, the contributions in the
chiral limit are obtained nonperturbatively [95, 765], while the mass-dependent contributions
are estimated using one-loop lattice perturbation theory [766]. With these choices, lattice
cutoff effects from the action and operators are of O(α2

sa|~p|, (a|~ph|)2).
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Light-quark actions combined with HQET

The heavy-quark formulations discussed in the previous sections use effective field theory
to avoid the occurence of discretization errors of the form (amh)

n. In this section we describe
methods that use improved actions that were originally designed for light-quark systems for
B physics calculations. Such actions unavoidably contain discretization errors that grow as
a power of the heavy-quark mass. In order to use them for heavy-quark physics, they must
be improved to at least O(amh)

2. However, since amb > 1 at the smallest lattice spacings
available in current simulations, these methods also require input from HQET to guide the
simulation results to the physical b-quark mass.

The ETM collaboration has developed two methods, the “ratio method” [461] and the
“interpolation method” [767, 768]. They use these methods together with simulations with
twisted-mass Wilson fermions, which have discretization errors of O(amh)

2. In the interpo-
lation method Φhs and Φhℓ (or Φhs/Φhℓ) are calculated for a range of heavy-quark masses
in the charm region and above, while roughly keeping amh

<∼0.5. The relativistic results are
combined with a separate calculation of the decay constants in the static limit, and then
interpolated to the physical b quark mass. In ETM’s implementation of this method, the
heavy Wilson decay constants are matched to HQET using NLO in continuum perturbation
theory. The static limit result is renormalized using one-loop mean-field improved lattice
perturbation theory, while for the relativistic data PCAC is used to calculate absolutely nor-
malized matrix elements. Both, the relativistic and static limit data are then run to the
common reference scale µb = 4.5GeV at NLO in continuum perturbation theory. In the ratio
method, one constructs physical quantities P (mh) from the relativistic data that have a well-
defined static limit (P (mh) → const. for mh → ∞) and evaluates them at the heavy-quark
masses used in the simulations. Ratios of these quantities are then formed at a fixed ratio
of heavy quark masses, z = P (mh)/P (mh/λ) (where 1 < λ<∼ 1.3), which ensures that z is
equal to unity in the static limit. Hence, a separate static limit calculation is not needed
with this method. In ETM’s implementation of the ratio method for the B-meson decay
constant, P (mh) is constructed from the decay constants and the heavy-quark pole mass as

P (mh) = fhℓ(mh) · (mpole
h )1/2. The corresponding z-ratio therefore also includes ratios of per-

turbative matching factors for the pole mass to MS conversion. For the interpolation to the
physical b-quark mass, ratios of perturbative matching factors converting the data from QCD
to HQET are also included. The QCD-to-HQET matching factors improve the approach to
the static limit by removing the leading logarithmic corrections. In ETM’s implementation
of this method (ETM 11 and 12) both conversion factors are evaluated at NLO in continuum
perturbation theory. The ratios are then simply fit to a polynomial in 1/mh and interpolated
to the physical b-quark mass. The ratios constructed from fhℓ (fhs) are called z (zs). In
order to obtain the B meson decay constants, the ratios are combined with relativistic decay
constant data evaluated at the smallest reference mass.

The HPQCD collaboration has introduced a method in Ref. [56] which we shall re-
fer to as the “heavy HISQ” method. The first key ingredient is the use of the HISQ
action for the heavy and light valence quarks, which has leading discretization errors of
O
(
αs(v/c)(amh)

2, (v/c)2(amh)
4
)
. With the same action for the heavy and light valence

quarks it is possible to use PCAC to avoid renormalization uncertainties. Another key in-
gredient is the availability of gauge ensembles over a large range of lattice spacings, in this
case in the form of the library of Nf = 2 + 1 asqtad ensembles made public by the MILC
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collaboration which includes lattice spacings as small as a ≈ 0.045 fm. Since the HISQ action
is so highly improved and with lattice spacings as small as 0.045 fm, HPQCD is able to use a
large range of heavy-quark masses, from below the charm region to almost up to the physical
b quark mass with amh

<∼0.85. They then fit their data in a combined continuum and HQET
fit (i.e. using a fit function that is motivated by HQET) to a polynomial in 1/mH (the heavy
pseudo scalar meson mass of a meson containing a heavy (h) quark).

In Table 50 we list the discretizations of the quark action most widely used for heavy c and
b quarks together with the abbreviations used in the summary tables. We also summarize the
main properties of these actions and the leading lattice discretization errors for calculations
of heavy-light meson matrix quantities with them. Note that in order to maintain the leading
lattice artifacts of the actions as given in the table in nonspectral observables (like operator
matrix elements) the corresponding nonspectral operators need to be improved as well.

A.2 Setting the scale

In simulations of lattice QCD quantities such as hadron masses and decay constants are
obtained in “lattice units” i.e. as dimensionless numbers. In order to convert them into
physical units they must be expressed in terms of some experimentally known, dimensionful
reference quantity Q. This procedure is called “setting the scale”. It amounts to computing
the nonperturbative relation between the bare gauge coupling g0 (which is an input parameter
in any lattice simulation) and the lattice spacing a expressed in physical units. To this end
one chooses a value for g0 and computes the value of the reference quantity in a simulation:
This yields the dimensionless combination, (aQ)|g0 , at the chosen value of g0. The calibration
of the lattice spacing is then achieved via

a−1 [MeV] =
Q|exp [MeV]

(aQ)|g0
, (301)

where Q|exp denotes the experimentally known value of the reference quantity. Common
choices for Q are the mass of the nucleon, the Ω baryon or the decay constants of the pion
and the kaon. Vector mesons, such as the ρ or K∗-meson, are unstable and therefore their
masses are not very well suited for setting the scale, despite the fact that they have been used
over many years for that purpose.

Another widely used quantity to set the scale is the hadronic radius r0, which can be
determined from the force between static quarks via the relation [136]

F (r0)r
2
0 = 1.65. (302)

If the force is derived from potential models describing heavy quarkonia, the above relation
determines the value of r0 as r0 ≈ 0.5 fm. A variant of this procedure is obtained [561] by
using the definition F (r1)r

2
1 = 1.00, which yields r1 ≈ 0.32 fm. It is important to realize that

both r0 and r1 are not directly accessible in experiment, so that their values derived from phe-
nomenological potentials are necessarily model-dependent. Inspite of the inherent ambiguity
whenever hadronic radii are used to calibrate the lattice spacing, they are very useful quanti-
ties for performing scaling tests and continuum extrapolations of lattice data. Furthermore,
they can be easily computed with good statistical accuracy in lattice simulations.
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Abbrev. Discretization Leading lattice artifacts
and truncation errors
for heavy-light mesons

Remarks

tmWil twisted-mass Wilson O
(

(amh)
2
)

PCAC relation for axial-
vector current

HISQ Staggered O
(

αS(amh)
2(v/c),

(amh)
4(v/c)2

)

PCAC relation for axial-
vector current; Ward iden-
tity for vector current

static static effective action O
(

a2Λ2
QCD,ΛQCD/mh,

α2
s, α

2
saΛQCD

)

implementations use APE,
HYP1, and HYP2 smearing

HQET Heavy-Quark Effective Theory O
(

aΛ2
QCD/mh, a

2Λ2
QCD,

(ΛQCD/mh)
2
)

Nonperturbative matching
through O(1/mh)

NRQCD Nonrelativistic QCD O
(

αSΛQCD/mh,
αS(ΛQCD/mh)

2,
(ΛQCD/mh)

3, αsa
2Λ2

QCD

)

Tree-level relativistic correc-
tions through O(v4h) and dis-
cretization corrections through
O(a2)

Fermilab Sheikholeslami-Wohlert O
(

αsaΛQCD, (aΛQCD)
2
)

Hopping parameter tuned non-
perturbatively; clover coeffi-
cient computed at tree-level in
mean-field-improved lattice per-
turbation theory

RHQ Sheikholeslami-Wohlert O
(

α2
saΛQCD, (aΛQCD)

2
)

Hopping parameter, anisop-
tropy and clover coefficient
tuned nonperturbatively by
fixing the Bs-meson hyperfine
splitting

Tsukuba Sheikholeslami-Wohlert O
(

α2
saΛQCD, (aΛQCD)

2
)

NP clover coefficient at ma =
0 plus mass-dependent correc-
tions calculated at one-loop in
lattice perturbation theory; ν
calculated NP from dispersion
relation; rs calculated at one-
loop in lattice perturbation the-
ory

Table 50: Discretizations of the quark action most widely used for heavy c and b quarks and
some of their properties.
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A.3 Matching and running

The lattice formulation of QCD amounts to introducing a particular regularization scheme.
Thus, in order to be useful for phenomenology, hadronic matrix elements computed in lattice
simulations must be related to some continuum reference scheme, such as the MS-scheme of
dimensional regularization. The matching to the continuum scheme usually involves running
to some reference scale using the renormalization group.

In principle, the matching factors which relate lattice matrix elements to the MS-scheme,
can be computed in perturbation theory formulated in terms of the bare coupling. It has been
known for a long time, though, that the perturbative expansion is not under good control.
Several techniques have been developed which allow for a nonperturbative matching between
lattice regularization and continuum schemes, and are briefly introduced here.

Regularization-independent Momentum Subtraction

In the Regularization-independent Momentum Subtraction (“RI/MOM” or “RI”) scheme
[383] a nonperturbative renormalization condition is formulated in terms of Green functions
involving quark states in a fixed gauge (usually Landau gauge) at nonzero virtuality. In this
way one relates operators in lattice regularization nonperturbatively to the RI scheme. In a
second step one matches the operator in the RI scheme to its counterpart in the MS-scheme.
The advantage of this procedure is that the latter relation involves perturbation theory for-
mulated in the continuum theory. The uncontrolled use of lattice perturbation theory can
thus be avoided. A technical complication is associated with the accessible momentum scales
(i.e. virtualities), which must be large enough (typically several GeV) in order for the per-
turbative relation to MS to be reliable. The momentum scales in simulations must stay well
below the cutoff scale (i.e. 2π over the lattice spacing), since otherwise large lattice artifacts
are incurred. Thus, the applicability of the RI scheme traditionally relies on the existence of
a “window” of momentum scales, which satisfy

ΛQCD . p . 2πa−1. (303)

However, solutions for mitigating this limitation, which involve continuum limit, nonpertur-
bative running to higher scales in the RI/MOM scheme, have recently been proposed and
implemented [7, 8, 404, 769].

Schrödinger functional

Another example of a nonperturbative matching procedure is provided by the Schrödinger
functional (SF) scheme [153]. It is based on the formulation of QCD in a finite volume. If
all quark masses are set to zero the box length remains the only scale in the theory, such
that observables like the coupling constant run with the box size L. The great advantage is
that the RG running of scale-dependent quantities can be computed nonperturbatively using
recursive finite-size scaling techniques. It is thus possible to run nonperturbatively up to
scales of, say, 100GeV, where one is sure that the perturbative relation between the SF and
MS-schemes is controlled.

Perturbation theory
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The third matching procedure is based on perturbation theory in which higher order are
effectively resummed [614]. Although this procedure is easier to implement, it is hard to
estimate the uncertainty associated with it.

Mostly nonperturbative renormalization

Some calculations of heavy-light and heavy-heavy matrix elements adopt a mostly non-
perturbative matching approach. Let us consider a weak decay process mediated by a current
with quark flavours h and q, where h is the initial heavy quark (either bottom or charm) and
q can be a light (ℓ = u, d), strange, or charm quark. The matrix elements of lattice current
Jhq are matched to the corresponding continuum matrix elements with continuum current
Jhq by calculating the renormalization factor ZJhq . The mostly nonperturbative renormaliza-
tion method takes advantage of rewriting the current renormalization factor as the following
product:

ZJhq = ρJhq

√
ZV 4

hh
ZV 4

qq
(304)

The flavour-conserving renormalization factors ZV 4
hh

and ZV 4
qq

can be obtained nonperturba-
tively from standard heavy-light and light-light meson charge normalization conditions. ZV 4

hh

and ZV 4
qq

account for the bulk of the renormalization. The remaining correction ρJhq is ex-
pected to be close to unity because most of the radiative corrections, including self-energy
corrections and contributions from tadpole graphs, cancel in the ratio [756, 759]. The one-
loop coefficients of ρJhq have been calculated for heavy-light and heavy-heavy currents for
Fermilab heavy and both (improved) Wilson light [756, 759] and asqtad light [770] quarks.
In all cases the one-loop coefficients are found to be very small, yielding sub-percent to few
percent level corrections.

In Table 51 we list the abbreviations used in the compilation of results together with a short
description.

Abbrev. Description

RI regularization-independent momentum subtraction scheme

SF Schrödinger functional scheme

PT1ℓ matching/running computed in perturbation theory at one loop

PT2ℓ matching/running computed in perturbation theory at two loops

mNPR mostly nonperturbative renormalization

Table 51: The most widely used matching and running techniques.

A.4 Chiral extrapolation

As mentioned in the introduction, Symanzik’s framework can be combined with Chiral Per-
turbation Theory. The well-known terms occurring in the chiral effective Lagrangian are then
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supplemented by contributions proportional to powers of the lattice spacing a. The additional
terms are constrained by the symmetries of the lattice action and therefore depend on the
specific choice of the discretization. The resulting effective theory can be used to analyse
the a-dependence of the various quantities of interest – provided the quark masses and the
momenta considered are in the range where the truncated chiral perturbation series yields an
adequate approximation. Understanding the dependence on the lattice spacing is of central
importance for a controlled extrapolation to the continuum limit.

For staggered fermions, this program has first been carried out for a single staggered
flavour (a single staggered field) [684] at O(a2). In the following, this effective theory is
denoted by SχPT. It was later generalized to an arbitrary number of flavours [328, 329],
and to next-to-leading order [685]. The corresponding theory is commonly called Rooted
Staggered chiral perturbation theory and is denoted by RSχPT.

For Wilson fermions, the effective theory has been developed in [326, 327, 771] and is
called WχPT, while the theory for Wilson twisted-mass fermions [84, 772, 773] is termed
tmWχPT.

Another important approach is to consider theories in which the valence and sea quark
masses are chosen to be different. These theories are called partially quenched. The acronym
for the corresponding chiral effective theory is PQχPT [774–777].

Finally, one can also consider theories where the fermion discretizations used for the sea
and the valence quarks are different. The effective chiral theories for these “mixed action”
theories are referred to as MAχPT [273–276, 778–780].

Finite-Volume Regimes of QCD

Once QCD with Nf nondegenerate flavours is regulated both in the UV and in the IR,
there are 3 + Nf scales in play: The scale ΛQCD that reflects “dimensional transmutation”
(alternatively, one could use the pion decay constant or the nucleon mass, in the chiral limit),
the inverse lattice spacing 1/a, the inverse box size 1/L, as well as Nf meson masses (or
functions of meson masses) that are sensitive to the Nf quark masses, e.g. M2

π , 2M
2
K −M2

π

and the spin-averaged masses of 1S states of quarkonia.
Ultimately, we are interested in results with the two regulators removed, i.e. physical

quantities for which the limits a→ 0 and L→∞ have been carried out. In both cases there
is an effective field theory (EFT) which guides the extrapolation. For the a→ 0 limit, this is a
version of the Symanzik EFT which depends, in its details, on the lattice action that is used,
as outlined in Sec. A.1. The finite-volume effects are dominated by the lightest particles,
the pions. Therefore, a chiral EFT, also known as χPT, is appropriate to parameterize
the finite-volume effects, i.e. the deviation of masses and other observables, such as matrix
elements, in a finite-volume from their infinite volume, physical values. Most simulations of
phenomenological interest are carried out in boxes of size L≫ 1/Mpi, that is in boxes whose
diameter is large compared to the Compton wavelength that the pion would have, at the
given quark mass, in infinite volume. In this situation the finite-volume corrections are small,
and in many cases the ratio Mhad(L)/Mhad or f(L)/f , where f denotes some generic matrix
element, can be calculated in χPT, such that the leading finite-volume effects can be taken
out analytically. In the terminology of χPT this setting is referred to as the p-regime, as the
typical contributing momenta p ∼ Mπ ≫ 1/L. A peculiar situation occurs if the condition
L≫ 1/Mπ is violated (while LΛQCD ≫ 1 still holds), in other words if the quark mass is taken
so light that the Compton wavelength that the pion would have (at the given mq) in infinite
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volume, is as large or even larger than the actual box size. Then the pion zero-momentum
mode dominates and needs to be treated separately. While this setup is unlikely to be useful
for standard phenomenological computations, the low-energy constants of χPT can still be
calculated, by matching to a re-ordered version of the chiral series, and following the details of
the reordering such an extreme regime is called the ǫ- or δ-regime, respectively. Accordingly,
further particulars of these regimes are discussed in subsection 5.1 of this report.

A.5 Summary of simulated lattice actions

In the following tables we summarize the gauge and quark actions used in the various calcu-
lations with Nf = 2, 2 + 1 and 2 + 1 + 1 quark flavours. The calculations with Nf = 0 quark
flavours mentioned in Sec. 9 all used the Wilson gauge action and are not listed. Abbrevia-
tions are explained in Secs. A.1.1, A.1.2 and A.1.3, and summarized in Tabs. 48, 49 and 50.

Collab. Ref. Nf
gauge
action

quark
action

ALPHA 01A, 04, 05, 12, 13A [12, 135, 238, 584, 585] 2 Wilson npSW

Aoki 94 [617] 2 Wilson KS

Bernardoni 10 [344] 2 Wilson npSW †

Bernardoni 11 [342] 2 Wilson npSW

Brandt 13 [37] 2 Wilson npSW

Boucaud 01B [640] 2 Wilson Wilson

CERN-TOV 06 [357] 2 Wilson Wilson/npSW

CERN 08 [301] 2 Wilson npSW

CP-PACS 01 [134] 2 Iwasaki mfSW

Davies 94 [618] 2 Wilson KS

Dürr 11 [132] 2 Wilson npSW

Engel 14 [38] 2 Wilson npSW

† The calculation uses overlap fermions in the valence quark sector.

Table 52: Summary of simulated lattice actions with Nf = 2 quark flavours.
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Collab. Ref. Nf
gauge
action

quark
action

ETM 07, 07A, 08, 09, 09A-
D, 10B, 10D, 10F, 11C, 12,
13, 13A

[11, 25, 32, 33, 36,
41, 83, 133, 214,
331, 341, 345,
461, 601, 650]

2 tlSym tmWil

ETM 10A, 12D [46, 400] 2 tlSym tmWil ∗

ETMC 14D, 15A [160, 332] 2 Iwasaki tmWil with npSW

Gülpers 13, 15 [354, 355] 2 Wilson npSW

Hasenfratz 08 [346] 2 tadSym n-HYP tlSW

JLQCD 08 [408] 2 Iwasaki overlap

JLQCD 02, 05 [141, 217] 2 Wilson npSW

JLQCD/TWQCD 07, 08A, 10 [138, 337, 347] 2 Iwasaki overlap

QCDSF 07, 13 [215, 352] 2 Wilson npSW

QCDSF/UKQCD 04, 06, 06A, 07 [137, 139, 240, 362] 2 Wilson npSW

RBC 04, 06, 07 [105, 216, 399] 2 DBW2 DW

RBC/UKQCD 07 [213] 2 Wilson npSW

RM123 11, 13 [16, 166] 2 tlSym tmWil

Sesam 99 [619] 2 Wilson Wilson

Sternbeck 10, 12 [648, 649] 2 Wilson npSW

SPQcdR 05 [140] 2 Wilson Wilson

TWQCD 11, 11A [248, 343] 2 Wilson optimal DW

UKQCD 04 [213, 409] 2 Wilson npSW

Wingate 95 [620] 2 Wilson KS

∗ The calculation uses Osterwalder-Seiler fermions [426] in the valence quark sector.

Table 52: (cntd.) Summary of simulated lattice actions with Nf = 2 quark flavours.
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Collab. Ref. Nf
gauge
action

quark
action

Aubin 08, 09 [235, 405] 2 + 1 tadSym Asqtad †

Blum 10 [103] 2 + 1 Iwasaki DW

BMW 10A-C, 11, 13 [7, 8, 35, 43, 115] 2 + 1 tlSym 2-level HEX tlSW

BMW 10 [30] 2 + 1 tlSym 6-level stout tlSW

Boyle 14 [371] 2 + 1 Iwasaki,
Iwasaki+DSDR

DW

CP-PACS/JLQCD 07 [146] 2 + 1 Iwasaki npSW

FNAL/MILC 12, 12I [23, 60] 2 + 1 tadSym Asqtad

HPQCD 05, 05A, 08A, 13A [26, 147, 612, 613] 2 + 1 tadSym Asqtad

HPQCD 10 [9] 2 + 1 tadSym Asqtad ∗

HPQCD/UKQCD 06 [407] 2 + 1 tadSym Asqtad

HPQCD/UKQCD 07 [28] 2 + 1 tadSym Asqtad ∗

HPQCD/MILC/UKQCD 04 [148] 2 + 1 tadSym Asqtad

JLQCD 09, 10 [336, 609] 2 + 1 Iwasaki overlap

JLQCD 11, 12, 14, 15A [210, 211, 358, 359] 2 + 1 Iwasaki (fixed topology) overlap

JLQCD 15B [173] 2 + 1 Iwasaki M-DW

JLQCD/TWQCD 08B, 09A [234, 340] 2 + 1 Iwasaki overlap

JLQCD/TWQCD 10 [337] 2 + 1, 3 Iwasaki overlap

† The calculation uses domain wall fermions in the valence-quark sector.
∗ The calculation uses HISQ staggered fermions in the valence-quark sector.

Table 53: Summary of simulated lattice actions with Nf = 2 + 1 or Nf = 3 quark flavours.
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Collab. Ref. Nf
gauge
action

quark
action

Laiho 11 [44] 2 + 1 tadSym Asqtad †

LHP 04 [361] 2 + 1 tadSym Asqtad †

Maltman 08 [63] 2 + 1 tadSym Asqtad

MILC 04, 07, 09, 09A, 10, 10A [13, 29, 89, 107, 148,
781]

2 + 1 tadSym Asqtad

NPLQCD 06 [237] 2 + 1 tadSym Asqtad †

PACS-CS 08, 08A, 09, 09A, 10, 11A, 12 [62, 93–95, 236, 360] 2 + 1 Iwasaki npSW

QCDSF/UKQCD 15 [165] 2 + 1 tlSym npSW

RBC/UKQCD 07, 08, 08A,
10, 10A-B, 11, 12, 13

[31, 144, 145,
209, 212, 338,
404, 406, 782]

2 + 1 Iwasaki,
Iwasaki+DSDR

DW

RBC/UKQCD 12E [411] 2 + 1 Iwasaki DW

RBC/UKQCD 14B, 15A, 15E [10, 24, 334] 2 + 1 Iwasaki,
Iwasaki+DSDR

DW, M-DW

Sternbeck 12 [648] 2 + 1 tlSym npSW

SWME 10, 11, 11A, 13, 13A,
14A, 14C, 15A

[45, 277, 384, 401–
403, 416, 783]

2 + 1 tadSym Asqtad+

TWQCD 08 [339] 2 + 1 Iwasaki DW

† The calculation uses domain wall fermions in the valence-quark sector.
+ The calculation uses HYP smeared improved staggered fermions in the valence-quark sector.

Table 53: (cntd.) Summary of simulated lattice actions with Nf = 2 + 1 or Nf = 3 quark
flavours.

230



Collab. Ref. Nf
gauge
action

quark
action

ALPHA 10A [582] 4 Wilson npSW

Bazavov 12 [600] 2 + 1 + 1 tlSym HISQ

ETM 10, 10E, 11, 11D, 12C,
13, 13A, 13D

[33, 39, 232, 331,
351, 645–647]

2 + 1 + 1 Iwasaki tmWil

ETM 14A, 14B, 15, 15C [42, 175, 179, 207] 2 + 1 + 1 Iwasaki tmWil +

FNAL/MILC 12B, 13, 13C, 13E, 14A [14, 22, 208, 419, 420] 2 + 1 + 1 tadSym HISQ

HPQCD 14A, 15B [5, 335] 2 + 1 + 1 tadSym HISQ

MILC 13A [230] 2 + 1 + 1 tadSym HISQ

Perez 10 [583] 4 Wilson npSW

+ The calculation uses Osterwalder-Seiler fermions [426] in the valence-quark sector.

Table 54: Summary of simulated lattice actions with Nf = 4 or Nf = 2+1+1 quark flavours.

Collab. Ref. Nf Gauge Quark actions
action sea light valence heavy

ALPHA 11, 12A, 13, 14,
14B

[57, 457, 458, 460,
510]

2 plaquette npSW npSW HQET

ALPHA 13C [176] 2 plaquette npSW npSW npSW

Atoui 13 [533] 2 tlSym tmWil tmWil tmWil

ETM 09, 09D, 11B, 12A,
12B, 13B, 13C

[20, 32, 58, 430,
459, 461, 484]

2 tlSym tmWil tmWil tmWil

ETM 11A [181] 2 tlSym tmWil tmWil tmWil, static

TWQCD 14 [423] 2 plaquette oDW oDW oDW

Table 55: Summary of lattice simulations Nf = 2 sea quark flavours and with b and c valence
quarks.
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Collab. Ref. Nf Gauge Quark actions
action sea light valence heavy

χQCD 14 [17] 2+1 Iwasaki DW overlap overlap

FNAL/MILC 04, 04A,
05, 08, 08A, 10, 11, 11A,
12, 13B

[48, 60, 422, 436,
440, 482, 531,
532, 534, 784]

2+1 tadSym Asqtad Asqtad Fermilab

FNAL/MILC 14, 15C [535, 536] 2+1 tadSym Asqtad Asqtad∗ Fermilab∗

FNAL/MILC 15 [502] 2+1 tadSym Asqtad Asqtad Fermilab

HPQCD 06, 06A, 08B,
09, 13B

[59, 152, 180, 483,
501]

2+1 tadSym Asqtad Asqtad NRQCD

HPQCD 12 [55] 2+1 tadSym Asqtad HISQ NRQCD

HPQCD 15 [537] 2+1 tadSym Asqtad HISQ† NRQCD†

HPQCD/UKQCD 07,
HPQCD 10A, 10B, 11,
11A, 12A, 13C

[28, 47, 49–51, 56,
433]

2+1 tadSym Asqtad HISQ HISQ

PACS-CS 11 [421] 2+1 Iwasaki npSW npSW Tsukuba

RBC/UKQCD 10C, 14A [54, 463] 2+1 Iwasaki DW DW static

RBC/UKQCD 13A, 14, 15 [53, 456, 503] 2+1 Iwasaki DW DW RHQ

ETM 13E, 13F, 14E [27, 229, 455] 2+1+1 Iwasaki tmWil tmWil tmWil

FNAL/MILC 12B, 13, 14A [14, 419, 420] 2+1+1 tadSym HISQ HISQ HISQ

HPQCD 13 [52] 2+1+1 tadSym HISQ HISQ NRQCD

∗ Asqtad for u, d and s quark; Fermilab for b and c quark.
† HISQ for u, d, s and c quark; NRQCD for b quark.

Table 56: Summary of lattice simulations with Nf = 2+1 or Nf = 2+1+1 sea quark flavours
and b and c valence quarks.
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B Notes

B.1 Notes to section 3 on quark masses

Collab. Ref. Nf a [fm] Description

HPQCD 14A [5] 2+1+1 0.15, 0.12, 0.09, 0.06 Scale set through the Wilson
flow parameter w0.

FNAL/MILC 14A [14] 2+1+1 0.06, 0.09, 0.12, 0.15 HISQ action for both valence and sea
quarks. Absolute scale though fπ .

ETM 14 [4] 2+1+1 0.062, 0.082, 0.089 Scale set through fπ. Automatic O(a)
improvement, flavour symmetry break-
ing: (M0

PS)
2 − (M±

PS)
2 ∼ O(a2). Dis-

cretization and volume effects due to the
π0 − π± mass splitting are taken into
account through χPT for twisted mass
fermions.

Table 57: Continuum extrapolations/estimation of lattice artifacts in determinations of mud,
ms and, in some cases mu and md, with Nf = 2 + 1 + 1 quark flavours.

Collab. Ref. Nf a [fm] Description

QCDSF/UKQCD 15 [165] 2+1 0.07 Scale set through the gradient
flow parameter w0.

RBC/UKQCD 14B [10] 2+1 0.063, 0.084, 0.114, 0.144 Scale set through MΩ.

RBC/UKQCD 12 [31] 2+1 0.085, 0.113, 0.144 Scale set through MΩ.

PACS-CS 12 [143] 1+1+1 0.09 Reweighting of PACS-CS 08
Nf = 2+ 1 QCD configurations
with e.m. and mu 6= md.

Laiho 11 [44] 2+1 0.06, 0.09, 0.15 MILC staggered ensembles [13],
scale set using r1 determined
by HPQCD with Υ splittings,
pseudoscalar decay constants,
through r1 [249].

Table 58: Continuum extrapolations/estimation of lattice artifacts in determinations of mud,
ms and, in some cases mu and md, with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf a [fm] Description

PACS-CS 10 [95] 2+1 0.09 cf. PACS-CS 08

MILC 10A [13] 2+1 cf. MILC 09, 09A

BMW 10A, 10B [7, 8] 2+1 0.054, 0.065,
0.077, 0.093,
0.116

Scale set via Mπ ,MK ,MΩ.

RBC/UKQCD 10A [144] 2+1 0.114, 0.087 Scale set through MΩ.

Blum 10 [103] 2+1 0.11 Relies on RBC/UKQCD 08
scale setting.

PACS-CS 09 [94] 2+1 0.09 Scale setting via MΩ.

HPQCD 09A, 10 [9, 18] 2+1 0.045, 0.06,
0.09, 0.12, 0.15

Scale set through r1 and Υ and
continuum extrapolation based
on RSχPT. See MILC 09 for de-
tails.

MILC 09A, 09 [6, 89] 2+1 0.045, 0.06, 0.09 Scale set through r1 and Υ and
continuum extrapolation based
on RSχPT.

PACS-CS 08 [93] 2+1 0.09 Scale set through MΩ. Non-
perturbatively O(a)-improved.

RBC/UKQCD 08 [145] 2+1 0.11 Scale set through MΩ. Au-
tomatic O(a)-improvement due
to appoximate chiral symme-
try. (ΛQCDa)

2 ≈ 4% system-
atic error due to lattice artifacts
added.

CP-PACS/JLQCD 07 [146] 2+1 0.07, 0.10, 0.12 Scale set through MK or
Mφ. Non-perturbatively O(a)-
improved.

HPQCD 05 [147] 2+1 0.09, 0.12 Scale set through the Υ − Υ′

mass difference.

HPQCD/MILC/UKQCD 04,
MILC 04

[107, 148] 2+1 0.09, 0.12 Scale set through r1 and Υ and
continuum extrapolation based
on RSχPT.

Table 58: (cntd.) Continuum extrapolations/estimation of lattice artifacts in determinations
of mud, ms and, in some cases mu and md, with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf a [fm] Description

ETM 14D [160] 2 0.094 Scale set through Fπ, r0, t0 and w0.
Twisted Wilson fermions plus clover
term. Automatic O(a) improvement.

RM123 13 [16] 2 0.098, 0.085,
0.067, 0.054

cf. ETM 10B

ALPHA 12 [12] 2 0.076, 0.066,
0.049

Scale set through FK .

RM123 11 [166] 2 0.098, 0.085,
0.067, 0.054

cf. ETM 10B

Dürr 11 [132] 2 0.076, 0.072,
0.060

Scale for light-quark masses set through
mc.

ETM 10B [11] 2 0.098, 0.085,
0.067, 0.054

Scale set through Fπ.

JLQCD/TWQCD 08A [138] 2 0.12 Scale set through r0.

RBC 07 [105] 2 0.12 Scale set through Mρ.

ETM 07 [133] 2 0.09 Scale set through Fπ.

QCDSF/UKQCD 06 [139] 2 0.065-0.09 Scale set through r0.

SPQcdR 05 [140] 2 0.06, 0.08 Scale set through MK∗ .

ALPHA 05 [135] 2 0.07-0.12 Scale set through r0.

QCDSF/UKQCD 04 [137] 2 0.07-0.12 Scale set through r0.

JLQCD 02 [141] 2 0.09 Scale set through Mρ.

CP-PACS 01 [134] 2 0.11, 0.16, 0.22 Scale set through Mρ.

Table 59: Continuum extrapolations/estimation of lattice artifacts in determinations of mud,
ms and, in some cases mu and md, with Nf = 2 quark flavours.
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Collab. Ref. Nf Mπ,min [MeV] Description

HPQCD 14A [5] 2+1+1 128π,5 (173RMS) Sea quark masses linearly extrapo-
lated/interpolated to physical values.
ms determined from physical ms/mc and
mc.

FNAL/MILC 14A [14] 2+1+1 128π,5 (143RMS) Linear interpolation to physical point. The
lightest RMS mass is from the a = 0.06 fm
ensemble and the lightest Nambu-Goldstone
mass is from the a = 0.09 fm ensemble.

ETM 14 [4] 2+1+1 180π0 (220π± ) Chiral extrapolation performed through
SU(2) χPT or polynomial fit.

Table 60: Chiral extrapolation/minimum pion mass in determinations of mud, ms and, in
some cases, mu and md, with Nf = 2 + 1 + 1 quark flavours.

Collab. Ref. Nf Mπ,min [MeV] Description

QCDSF/UKQCD 15 [165] 2+1 205 (val.) Expansion around the symmetric point
mu = md = ms.

RBC/UKQCD 14B [10] 2+1 139 NLO PQ SU(2) χPT as well as analytic
ansätze.

RBC/UKQCD 12 [31] 2+1 170 Combined fit to Iwasaki and
Iwasaki+DSDR gauge action ensembles.

PACS-CS 12 [143] 1+1+1 cf. PACS-CS 08

Laiho 11 [44] 2+1 210 (val.)
280 (sea-RMS)

NLO SU(3), mixed-action χPT [275],
with N2LO-N4LO analytic terms.

PACS-CS 10 [95] 2+1 cf. PACS-CS 08

MILC 10A [13] 2+1 NLO SU(2) SχPT. cf. also MILC 09A,
09.

BMW 10A, 10B [7, 8] 2+1 135 Interpolation to the physical point.

RBC/UKQCD 10A [144] 2+1 290 NLO PQ SU(2) χPT as well as analytic
ansätze.

Blum 10 [103, 145] 2+1 242 (valence),
330 (sea)

Extrapolation done on the basis of
PQχPT formulae with virtual photons.

Table 61: Chiral extrapolation/minimum pion mass in determinations of mud, ms and, in
some cases mu and md, with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf Mπ,min [MeV] Description

PACS-CS 09 [94] 2+1 135 Physical point reached by reweight-
ing technique, no chiral extrapolation
needed.

HPQCD 09A, 10 [9, 18] 2+1 cf. MILC 09

MILC 09A, 09 [6, 89] 2+1 177, 224 NLO SU(3) RSχPT, continuum χPT
at NNLO and NNNLO and NNNNLO
analytic terms. The lightest Nambu-
Goldstone mass is 177 MeV (09A) and
224 MeV (09) (at a =0.09fm) and
the lightest RMS mass is 258MeV (at
a =0.06fm).

PACS-CS 08 [93] 2+1 156 NLO SU(2) χPT and SU(3)
(Wilson)χPT.

RBC/UKQCD 08 [145] 2+1 242 (valence),
330 (sea)

SU(3) PQχPT and heavy kaon NLO
SU(2) PQχPT fits.

CP-PACS/JLQCD 07 [146] 2+1 620 NLOWilson χPT fits to meson masses.

HPQCD 05 [147] 2+1 240 PQ RSχPT fits.

HPQCD/MILC/UKQCD 04,
MILC 04

[107, 148] 2+1 240 PQ RSχPT fits.

Table 61: (cntd.) Chiral extrapolation/minimum pion mass in determinations of mud, ms

and, in some cases mu and md, with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf Mπ,min [MeV] Description

ETM 14D [160] 2 140 Charged/neutral pion mass breaking,
M2
πpm − M2

π0 ∼ O(a2), estimated to be
≃ 20 MeV.

RM123 13 [16] 2 270 Fits based on NLO χPT and Symanzik ex-
pansion up to O(a2). O(α) e.m. effects in-
cluded.

ALPHA 12 [12] 2 270 NLO SU(2) and SU(3) χPT and O(a2) on
LO LEC.

RM123 11 [166] 2 270 Fits based on NLO χPT and Symanzik ex-
pansion up to O(a2).

Dürr 11 [132] 2 285 mc/ms determined by quadratic or cubic ex-
trapolation in Mπ .

ETM 10B [11] 2 270 Fits based on NLO χPT and Symanzik ex-
pansion up to O(a2).

JLQCD/TWQCD 08A [138] 2 290 NLO χPT fits.

RBC 07 [105] 2 440 NLO fit including O(α) effects.

ETM 07 [133] 2 300 Polynomial and PQχPT fits.

QCDSF/UKQCD 06 [139] 2 520 (valence),
620 (sea)

NLO (PQ)χPT fits.

SPQcdR 05 [140] 2 600 Polynomial fit.

ALPHA 05 [135] 2 560 LO χPT fit.

QCDSF/UKQCD 04 [137] 2 520 (valence),
620 (sea)

NLO (PQ)χPT fits.

JLQCD 02 [141] 2 560 Polynomial and χPT fits.

CP-PACS 01 [134] 2 430 Polynomial fits.

Table 62: Chiral extrapolation/minimum pion mass in determinations of mud, ms and, in
some cases mu and md, with Nf = 2 quark flavours.
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Collab. Ref. Nf L [fm] Mπ,minL Description

HPQCD 14A [5] 2+1+1 2.5-5.8 3.7

FNAL/MILC 14A [14] 2+1+1 2.8-5.8 3.9RMS(3.7π,5) Includes error estimate from
NNLO SχPT.

ETM 14 [4] 2+1+1 2.0 - 3.0 2.7π0 (3.3π± ) FV effect for the pion is corrected
through resummed NNLO χPT
for twisted mass fermions, which
takes into account the effects due
to the π0 − π± mass splitting.

Table 63: Finite volume effects in determinations of mud, ms and, in some cases mu and md,
with Nf = 2 + 1 + 1 quark flavours.

Collab. Ref. Nf L [fm] Mπ,minL Description

QCDSF/UKQCD 15 [165] 2+1 1.7, 2.2, 3.4 Effective field theory used
to extrapolate to infinite
volume.

RBC/UKQCD 14B [10] 2+1 2.0, 2.7, 4.6, 5.4 3.8 Uses FV chiral perturba-
tion theory to estimate
the error, which is deemed
negligible and omitted.

RBC/UKQCD 12 [31] 2+1 2.7, 4.6 & 4.0 Uses FV chiral perturba-
tion theory to estimate the
error.

PACS-CS 12 [143] 1+1+1 cf. PACS-CS 08

Laiho 11 [44] 2+1 2.5, 2.9, 3.0,
3.6, 3.8, 4.8

4.1 (val.)
4.1 (sea)

Data corrected using NLO
SU(3) χPT finite-V for-
mulae.

Table 64: Finite volume effects in determinations of mud, ms and, in some cases mu and md,
with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf L [fm] Mπ,minL Description

PACS-CS 10 [95] 2+1 cf. PACS-CS 08

MILC 10A [13] 2+1 cf. MILC 09A, 09

BMW 10A, 10B [7, 8] 2+1 & 5.0 & 4.0 FV corrections below 5
per mil on the largest lat-
tices.

RBC/UKQCD 10A [144] 2+1 2.7 & 4.0

Blum 10 [103] 2+1 1.8, 2.7 — Simulations done with
quenched photons; large
finite volume effects ana-
lytically corrected for, but
not related to MπL.

PACS-CS 09 [94] 2+1 2.9 2.0 Only one volume.

HPQCD 09A, 10 [9, 18] 2+1 cf. MILC 09

MILC 09A, 09 [6, 89] 2+1 2.5, 2.9, 3.4,
3.6, 3.8, 5.8

4.1, 3.8

PACS-CS 08 [93] 2+1 2.9 2.3 Correction for FV from
χPT using [82].

RBC/UKQCD 08 [145] 2+1 1.8, 2.7 4.6 Various volumes for com-
parison and correction for
FV from χPT [82, 256,
257].

CP-PACS/JLQCD 07 [146] 2+1 2.0 6.0 Estimate based on the
comparison to a L = 1.6
fm volume assuming pow-
erlike dependence on L.

HPQCD 05 [147] 2+1 2.4, 2.9 3.5

HPQCD/MILC/UKQCD 04,
MILC 04

[107, 148] 2+1 2.4, 2.9 3.5 NLO SχPT.

Table 64: (cntd.) Finite volume effects in determinations of mud, ms and, in some cases mu

and md, with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 14D [160] 2 2.2, 4.5 3.2

RM123 13 [16] 2 & 2.0 3.5 One volume L = 1.7 fm at
mπ = 495, a = 0.054fm.

ALPHA 12 [12] 2 2.1–3.2 4.2 Roughly 2 distinct volumes;
no analysis of FV effects.

RM123 11 [166] 2 & 2.0 3.5 One volume L = 1.7 fm at
mπ = 495, a = 0.054fm.

Dürr 11 [132] 2 1.22-2.30 2.8 A number of volumes in de-
termination of mc/ms, but all
but one have L < 2 fm.

ETM 10B [11] 2 & 2.0 3.5 One volume L = 1.7 fm at
mπ = 495, a = 0.054fm.

JLQCD/TWQCD 08A [138] 2 1.9 2.8 Corrections for FV based on
NLO χPT.

RBC 07 [105] 2 1.9 4.3 Estimate of FV effect based
on a model.

ETM 07 [133] 2 2.1 3.2 NLO PQχPT

QCDSF/UKQCD 06 [139] 2 1.4–1.9 4.7

SPQcdR 05 [140] 2 1.0–1.5 4.3 Comparison between 1.0 and
1.5 fm.

ALPHA 05 [135] 2 2.6 7.4

QCDSF/UKQCD 04 [137] 2 1.7–2.0 4.7

JLQCD 02 [141] 2 1.8 5.1 Numerical study with three
volumes.

CP-PACS 01 [134] 2 2.0–2.6 5.7

Table 65: Finite volume effects in determinations of mud, ms and, in some cases mu and md,
with Nf = 2 quark flavours.
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Collab. Ref. Nf Description

HPQCD 14A [5] 2+1+1 Renormalization not required
through the use of the ratio
mc/ms.

FNAL/MILC 14A [14] 2+1+1 Renormalization not required for
ms/mud.

ETM 14 [4] 2+1+1 Non-perturbative renormaliza-
tion (RI/MOM).

Table 66: Renormalization in determinations of mud, ms and, in some cases mu and md, with
Nf = 2 + 1 + 1 quark flavours.
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Collab. Ref. Nf Description

QCDSF/UKQCD 15 [165] 2+1 Non-perturbative renormalization (RI/MOM).

RBC/UKQCD 14B [10] 2+1 Non-perturbative renormalization (RI/SMOM).

RBC/UKQCD 12 [31] 2+1 Non-perturbative renormalization (RI/SMOM).

PACS-CS 12 [143] 1+1+1 cf. PACS-CS 10

Laiho 11 [44] 2+1 ZA from AWI and ZA/ZS−1 from 1-loop, tadpole-
improved, perturbation theory.

PACS-CS 10 [95] 2+1 Non-perturbative renormalization and running;
Schrödinger functional method.

MILC 10A [13] 2+1 cf. MILC 09A, 09

BMW 10A, 10B [7, 8] 2+1 Non-perturbative renormalization (tree-level im-
proved RI-MOM), nonperturbative running.

RBC/UKQCD 10A [144] 2+1 Non-perturbative renormalization (RI/SMOM).

Blum 10 [103] 2+1 Relies on nonperturbative renormalization factors
calculated by RBC/UKQCD 08; no QED renor-
malization.

PACS-CS 09 [94] 2+1 Non-perturbative renormalization; Schrödinger
functional method.

HPQCD 09A, 10 [9, 18] 2+1 Lattice calculation of ms/mc: ms derived from a
perturbative determination of mc.

MILC 09A, 09 [6, 89] 2+1 2-loop perturbative renormalization.

PACS-CS 08 [93] 2+1 1-loop perturbative renormalization.

RBC/UKQCD 08 [145] 2+1 Non-perturbative renormalization, 3-loop pertur-
bative matching.

CP-PACS/JLQCD 07 [146] 2+1 1-loop perturbative renormalization, tadpole im-
proved.

HPQCD 05 [147] 2+1 2-loop perturbative renormalization.

HPQCD/MILC/UKQCD 04,
MILC 04

[107, 148] 2+1 1-loop perturbative renormalization.

Table 67: Renormalization in determinations of mud, ms and, in some cases mu and md, with
Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf Description

ETM 14D [160] 2 Renormalization not required for ms/mud.

RM123 13 [16] 2 Non-perturbative renormalization.

ALPHA 12 [12] 2 Non-perturbative renormalization.

RM123 11 [166] 2 Non-perturbative renormalization.

Dürr 11 [132] 2 Lattice calculation of ms/mc: ms derived from a
perturbative determination of mc.

ETM 10B [11] 2 Non-perturbative renormalization.

JLQCD/TWQCD 08A [138] 2 Non-perturbative renormalization.

RBC 07 [105] 2 Non-perturbative renormalization.

ETM 07 [133] 2 Non-perturbative renormalization.

QCDSF/UKQCD 06 [139] 2 Non-perturbative renormalization.

SPQcdR 05 [140] 2 Non-perturbative renormalization.

ALPHA 05 [135] 2 Non-perturbative renormalization.

QCDSF/UKQCD 04 [137] 2 Non-perturbative renormalization.

JLQCD 02 [141] 2 1-loop perturbative renormalization.

CP-PACS 01 [134] 2 1-loop perturbative renormalization.

Table 68: Renormalization in determinations of mud, ms and, in some cases mu and md, with
Nf = 2 quark flavours.
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Collab. Ref. Nf a [fm] Description

HPQCD 14A [5] 2+1+1 0.06, 0.09, 0.12, 0.15 Scale set through the Wilson
flow parameter w0.

ETM 14 [4] 2+1+1 0.062, 0.082, 0.089 Scale set through Fπ.

ETM 14A [175] 2+1+1 0.062, 0.082, 0.089 Scale set through the nucleon
mass MN .

JLQCD 15B [173] 2+1 0.044, 0.055. 0.083 Möbius domain wall fermions.

χQCD 14 [17] 2+1 0.087, 0.11 Overlap valence fermions on
domain-wall sea quarks from
[144]. The lattice scale is set
together with the strange and
charm quark masses using the
experimental values of the Ds,
D∗
s and J/ψ meson masses.

HPQCD 10 [9] 2+1 0.044, 0.059, 0.085, 0.12, 0.15 Scale set through the static-
quark potential parameter r1.

HPQCD 08B [152] 2+1 0.06, 0.09, 0.12, 0.15 Scale set through the static-
quark potential parameter r1.

ALPHA 13B [176] 2 0.048, 0.065 Scale set through FK .

ETM 11F [174] 2 cf. ETM 10B

ETM 10B [11] 2 0.054, 0.067, 0.085, 0.098 Scale set through Fπ.

Table 69: Continuum extrapolations/estimation of lattice artifacts in the determinations of
mc.
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Collab. Ref. Nf Mπ,min [MeV] Description

HPQCD 14A [5] 2+1+1 128π,5 (173RMS)

ETM 14 [4] 2+1+1 180π0 (220π± )

ETM 14A [175] 2+1+1 210 cf. ETM 14

JLQCD 15B [173] 2+1

χQCD 14 [17] 2+1 290

HPQCD 10 [9] 2+1 260

HPQCD 08B [152] 2+1

ALPHA 13B [176] 2 190

ETM 11F [174] 2 cf. ETM 10B

ETM 10B [11] 2 270

Table 70: Chiral extrapolation/minimum pion mass in the determinations of mc.

Collab. Ref. Nf L [fm] Mπ,minL Description

HPQCD 14A [5] 2+1+1 2.5 - 5.8 3.7

ETM 14 [4] 2+1+1 2.0 - 3.0 2.7π0 (3.3π± )

ETM 14A [175] 2+1+1 2.0 - 3.0 2.7π0 (3.3π± )

JLQCD 15B [173] 2+1 2.7

χQCD 14 [17] 2+1 2.8 4.1

HPQCD 10 [9] 2+1 2.3 - 3.4 3.8

HPQCD 08B [152] 2+1

ALPHA 13B [176] 2 4.2 4.0

ETM 11F [174] 2 cf. ETM 10B

ETM 10B [11] 2 & 2.0 3.5

Table 71: Finite volume effects in the determinations of mc.
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Collab. Ref. Nf Description

HPQCD 14A [5] 2+1+1 Renormalization not required.

ETM 14 [4] 2+1+1 Non-perturbative renormalization (RI/MOM).

ETM 14A [175] 2+1+1 Non-perturbative renormalization (RI/MOM).

JLQCD 15B [173] 2+1 Renormalization not required.

χQCD 14 [17] 2+1 Non-perturbative renormalization (RI/MOM).

HPQCD 10 [9] 2+1 Renormalization not required.

HPQCD 08B [152] 2+1 Renormalization not required.

ALPHA 13B [176] 2 Non-perturbative renormalization (RI/MOM)
plus 1-loop PT estimate for the improvement
b-coefficients.

ETM 11F [174] 2 Renormalization not required.

ETM 10B [11] 2 Non-perturbative renormalization (RI/MOM).

Table 72: Renormalization in the determinations of mc.

247



Collab. Ref. Nf a [fm] Description

HPQCD 14B [19] 2+1+1 0.09, 0.12, 0.15 Scale set through the Υ′ − Υ
mass splitting.

ETM 14B [179] 2+1+1 0.062, 0.082, 0.089 Scale set through Fπ.

HPQCD 14A [5] 2+1+1 0.06, 0.09, 0.12, 0.15 Scale set through the Wilson
flow parameter w0.

HPQCD 13B [180] 2+1 0.084, 0.12 Scale set through the static-
quark potential parameter r1.

HPQCD 10 [9] 2+1 0.044, 0.059, 0.084, 0.12, 0.15 Scale set through the static-
quark potential parameter r1.

ETM 13B [20] 2 0.054, 0.067, 0.085, 0.098 Scale set through the static-
quark potential parameter r0.

ALPHA 13C [21] 2 0.048, 0.065, 0.075 Scale set through FK .

ETM 11A [181] 2 0.054, 0.067, 0.085, 0.098 Scale set through Fπ.

Table 73: Continuum extrapolations/estimation of lattice artifacts in the determinations of
mb.

Collab. Ref. Nf Mπ,min [MeV]

HPQCD 14B [19] 2+1+1 306, 128

ETM 14B [179] 2+1+1 210

HPQCD 14A [5] 2+1+1 128π,5 (173RMS)

HPQCD 13B [180] 2+1 345

HPQCD 10 [9] 2+1 260

ETM 13B [20] 2 280

ALPHA 13C [21] 2 190

ETM 11A [181] 2 280

Table 74: Chiral extrapolation/minimum pion mass in the determinations of mb.
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Collab. Ref. Nf L [fm] Mπ,minL

HPQCD 14B [19] 2+1+1 2.4-7.8 3.0-3.8

ETM 14B [179] 2+1+1 1.9-2.8 3.0-5.8

HPQCD 14A [5] 2+1+1 2.5-5.8 3.7

HPQCD 13B [180] 2+1 2.4, 3.4 4.1

HPQCD 10 [9] 2+1 2.3 - 3.4 3.8

ETM 13B [20] 2 & 2.0 3.5

ALPHA 13C [21] 2 2.3-3.6 4.1

ETM 11A [181] 2 & 2.0 3.5

Table 75: Finite volume effects in the determinations of mb.
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Collab. Ref. Nf Description

HPQCD 14B [19] 2+1+1 Renormalization not required.

ETM 14B [179] 2+1+1 Non-perturbative renormaliza-
tion (RI/MOM).

HPQCD 14A [5] 2+1+1 Renormalization not required.

HPQCD 13B [180] 2+1 Renormalization not required.

HPQCD 10 [9] 2+1 Renormalization not required.

ETM 13B [20] 2 Non-perturbative renormaliza-
tion (RI/MOM).

ALPHA 13C [21] 2 Non-perturbatively matched
and renormalized HQET.

ETM 11A [181] 2 Renormalization not required.

Table 76: Lattice renormalization in the determinations of mb.
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B.2 Notes to section 4 on |Vud| and |Vus|

Collab. Ref. Nf a [fm] Description

ETM 15C [207] 2+1+1 0.062, 0.082, 0.089 Scale set through fπ . Automatic O(a) im-
provement.

FNAL/MILC 13E [22] 2+1+1 0.06, 0.09, 0.12, 0.15 HISQ action for both sea and valence
quarks. Relative scale through r1, phys-
ical scale from pseudoscalar decay con-
stants calculated with Asqtad fermions.
The ensemble with a ≃ 0.06 fm is used
only for cross-checking discretization ef-
fects.

FNAL/MILC 13C [208] 2+1+1 0.09, 0.12, 0.15 Relative scale through r1, physical scale
from fπ calculated by MILC 09A at Nf =
2 + 1.

RBC/UKQCD 15A [24] 2+1 0.08, 0.11 Scale set through Ω mass.

FNAL/MILC 12I [23] 2+1 0.09, 0.12 Relative scale r1, physical scale deter-
mined from a mixture of fπ, fK , radial
excitation of Υ and mDs − 1

2
mηc .

RBC/UKQCD 13 [209] 2+1 0.09, 0.11, 0.14 Scale set through Ω mass.

JLQCD 12 [210] 2+1 0.112 Scale set through Ω mass.

JLQCD 11 [211] 2+1 0.112 Scale set through Ω mass.

RBC/UKQCD 07,10[212, 213] 2+1 0.114(2) Scale fixed through Ω baryon mass. Add
(ΛQCDa)

2 ≈ 4% systematic error for lat-
tice artifacts. Fifth dimension with exten-
sion Ls = 16, therefore small residual chi-
ral symmetry breaking and approximate
O(a)-improvement.

ETM 10D [214] 2 0.05, 0.07,
0.09, 0.10

Scale set through fπ. Automatic O(a)
impr., flavour symmetry breaking:
(M0

PS)
2 − (M±

PS)
2 ∼ O(a2).

ETM 09A [25] 2 0.07, 0.09, 0.10 Scale set through fπ. Automatic O(a)
impr., flavour symmetry breaking:
(M0

PS)
2 − (M±

PS)
2 ∼ O(a2).

Three lattice spacings only for pion mass
470MeV.

QCDSF 07 [215] 2 0.075 Scale set with r0. Non-perturbatively
O(a)-improved Wilson fermions, not clear
whether currents improved.

RBC 06 [216] 2 0.12 Scale set through Mρ. Automatic O(a)-
improvement due to approximate chiral
symmetry of the action.

JLQCD 05 [217] 2 0.0887 Scale set throughMρ. Non-perturbatively
O(a)-improved Wilson fermions.

Table 77: Continuum extrapolations/estimation of lattice artifacts in the determinations of
f+(0).
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Collab. Ref. Nf Mπ,min [MeV] Description

ETM 15C [207] 2+1+1 180π0 (220π± ) Chiral extrapolation performed through
SU(2) or SU(3) χPT.

FNAL/MILC 13E [22] 2+1+1 173RMS(128π,5) NLO SU(3) PQ staggered χPT with con-
tinuum χPT at NNLO. Lightest Nambu-
Goldstone mass is 128 MeV and lightest
RMS mass is 173 MeV for the same gauge
ensemble with a ≃ 0.09 fm.

FNAL/MILC 13C [208] 2+1+1 173RMS(128π,5) NLO SU(3) PQ staggered χPT with con-
tinuum χPT at NNLO. Lightest Nambu-
Goldstone mass is 128 MeV and lightest
RMS mass is 173 MeV for the same gauge
ensemble with a ≃ 0.09 fm.

RBC/UKQCD 15A [24] 2+1 140 NLO SU(3) χPT with phenomenological
ansatz for higher orders or polynomial mod-
els.

FNAL/MILC 12I [23] 2+1 378RMS(263π,5) NLO SU(3) PQ staggered χPT with either
phenomenological NNLO ansatz or NNLO
χPT. Lightest Nambu-Goldstone mass is
263 MeV with a = 0.12 fm and lightest RMS
mass is 378 MeV with a = 0.09 fm.

RBC/UKQCD 13 [209] 2+1 170 NLO SU(3) χPT with phenomenological
ansatz for higher orders.

JLQCD 12 [210] 2+1 290 NLO SU(3) χPT with phenomenological
ansatz for higher orders.

JLQCD 11 [211] 2+1 290 NLO SU(3) χPT with phenomenological
ansatz for higher orders.

RBC/UKQCD 07,10[212, 213] 2+1 330 NLO SU(3) χPT with phenomenological
ansatz for higher orders.

ETM 10D [214] 2 210π0 (260π± ) NLO heavy kaon SU(2) χPT and NLO
SU(3) χPT and phenomenological ansatz for
higher orders. Average of f+(0)-fit and joint
f+(0)-fK/fπ-fit.

ETM 09A [25] 2 210π0 (260π± ) NLO heavy kaon SU(2) χPT and NLO
SU(3) χPT and phenomenological ansatz for
higher orders.

QCDSF 07 [215] 2 591 Only one value for the pion mass.

RBC 06 [216] 2 490 NLO SU(3) χPT and phenomenological
ansatz for higher orders.

JLQCD 05 [217] 2 550 NLO SU(3) χPT and phenomenological
ansatz for higher orders.

Table 78: Chiral extrapolation/minimum pion mass in determinations of f+(0). The sub-
scripts RMS and π, 5 in the case of staggered fermions indicate the root-mean-square mass
and the Nambu-Goldstone boson mass, respectively. In the case of twisted-mass fermions π0

and π± indicate the neutral and charged pion mass where applicable.
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Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 15C [207] 2+1+1 2.0–3.0 2.7π0(3.3π± ) FSE observed only in the slopes of
the vector and scalar form factors.

FNAL/MILC 13E [22] 2+1+1 2.9–5.8 4.9RMS(3.6π,5) The values correspond to
Mπ,RMS = 173 MeV and
Mπ,5 = 128 MeV, respectively.

FNAL/MILC 13C [208] 2+1+1 2.9–5.8 4.9RMS(3.6π,5) The values correspond to
Mπ,RMS = 173 MeV and
Mπ,5 = 128 MeV, respectively.

RBC/UKQCD 15A [24] 2+1 2.6, 5.2 3.9

FNAL/MILC 12I [23] 2+1 2.4–3.4 6.2RMS(3.8π,5) The values correspond to
Mπ,RMS = 378 MeV and
Mπ,5 = 263 MeV, respectively.

RBC/UKQCD 13 [209] 2+1 2.7, 4.6 3.9

JLQCD 12 [210] 2+1 1.8, 2.7 4.1

JLQCD 11 [211] 2+1 1.8, 2.7 4.1

RBC/UKQCD 07,10[212, 213] 2+1 1.8,2.7 4.7 Two volumes for all but the lightest
pion mass.

ETM 10D [214] 2 2.1–2.8 3.0π0(3.7π± )

ETM 09A [25] 2 2.1, 2.8 3.0π0(3.7π± ) Two volumes at Mπ = 300MeV and
χPT-motivated estimate of the error
due to FSE.

QCDSF 07 [215] 2 1.9 5.4

RBC 06 [216] 2 1.9 4.7

JLQCD 05 [217] 2 1.8 4.9

Table 79: Finite volume effects in determinations of f+(0). The subscripts RMS and π, 5 in
the case of staggered fermions indicate the root-mean-square mass and the Nambu-Goldstone
boson mass, respectively. In the case of twisted-mass fermions π0 and π± indicate the neutral
and charged pion mass where applicable.
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Collab. Ref. Nf a [fm] Description

ETM 14E [27] 2+1+1 0.062, 0.082, 0.089 Scale set through fπ. Automatic O(a)
improvement, flavour symmetry break-
ing: (M0

PS)
2 − (M±

PS)
2 ∼ O(a2). Dis-

cretization and volume effects due to the
π0 − π± mass splitting are taken into
account through χPT for twisted-mass
fermions.

FNAL/MILC 14A [14] 2+1+1 0.06, 0.09, 0.12, 0.15 HISQ action for both valence and sea
quarks. Absolute scale though fπ .

HPQCD 13A [26] 2+1+1 0.09, 0.12, 0.15 Relative scale through Wilson flow and
absolute scale through fπ .

MILC 13A [230] 2+1+1 0.06, 0.09, 0.12, 0.15 Absolute scale though fπ .

ETM 13F [229] 2+1+1 0.062, 0.082, 0.089 Scale set through fπ. Automatic O(a)
improvement, flavour symmetry break-
ing: (M0

PS)
2 − (M±

PS)
2 ∼ O(a2). Dis-

cretization and volume effects due to the
π0 − π± mass splitting are taken into
account through χPT for twisted-mass
fermions.

ETM 10E [232] 2+1+1 0.061, 0.078 Scale set through fπ/mπ. Two lattice
spacings but a-dependence ignored in all
fits. Finer lattice spacing from [351].

MILC 11 [231] 2+1+1 0.09, 0.12 Relative scale through fPS/mPS = fixed,
absolute scale though fπ .

Table 80: Continuum extrapolations/estimation of lattice artifacts in determinations of
fK/fπ for Nf = 2 + 1 + 1 simulations.
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Collab. Ref. Nf a [fm] Description

RBC/UKQCD 14B [10] 2+1 0.063, 0.085, 0.114 Scale set through mΩ.

RBC/UKQCD 12 [31] 2+1 0.09, 0.11, 0.14 Scale set through mΩ.

Laiho 11 [44] 2+1 0.06, 0.09, 0.125 Scale set through r1 and Υ and contin-
uum extrapolation based on MAχPT.

JLQCD/TWQCD 10 [233] 2+1 0.112 Scale set through MΩ.

RBC/UKQCD 10A [144] 2+1 0.087, 0.114 Scale set through MΩ.

MILC 10 [29] 2+1 0.045, 0.06, 0.09 3 lattice spacings, continuum extrapola-
tion by means of RSχPT.

BMW 10 [30] 2+1 0.07, 0.08,
0.12

Scale set through MΩ,Ξ. Perturbative
O(a)-improvement.

JLQCD/TWQCD 09A [138] 2+1 0.1184(3)(21) Scale set through Fπ. Automatic O(a)-
improvement due to chiral symmetry of
action.

PACS-CS 09 [94] 2+1 0.0900(4) Scale set through MΩ.

MILC 09A [6] 2+1 0.045, 0.06, 0.09 Scale set through r1 and Υ and contin-
uum extrapolation based on RSχPT.

MILC 09 [89] 2+1 0.045, 0.06,
0.09, 0.12

Scale set through r1 and Υ and contin-
uum extrapolation based on RSχPT.

Aubin 08 [235] 2+1 0.09, 0.12 Scale set through r1 and Υ and contin-
uum extrapolation based on MAχPT.

PACS-CS 08, 08A [93, 236] 2+1 0.0907(13) Scale set through MΩ. Non-
perturbatively O(a)-improved.

HPQCD/UKQCD 07 [28] 2+1 0.09, 0.12, 0.15 Scale set through r1 and Υ and contin-
uum extrapolation on continuum-χPT
motivated ansatz. Taste breaking of sea
quarks ignored.

RBC/UKQCD 08 [145] 2+1 0.114(2) Scale set through MΩ. Automatic O(a)-
improvement due to appoximate chiral
symmetry. (ΛQCDa)

2 ≈ 4% systematic
error due to lattice artifacts added.

NPLQCD 06 [237] 2+1 0.125 Scale set through r0 and Fπ. Taste
breaking of sea quarks ignored.

MILC 04 [107] 2+1 0.09, 0.12 Scale set through r1 and Υ and contin-
uum extrapolation based on RSχPT.

Table 81: Continuum extrapolations/estimation of lattice artifacts in determinations of
fK/fπ for Nf = 2 + 1 simulations.
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Collab. Ref. Nf a [fm] Description

ETM 14D [160] 2 0.094 Scale set through Fπ, r0, t0 and w0.
Twisted Wilson fermions plus clover
term. Automatic O(a) improvement.

ALPHA 13A [238] 2 0.05, 0.065, 0.075 Scale set through Fπ. O(a)-improved
Wilson action.

BGR 11 [239] 2 0.135 Scale set through r0 = 0.48 fm. Chirally
improved Dirac operator.

ETM 10D [214] 2 0.05, 0.07,
0.09, 0.10

Scale set through Fπ. Automatic
O(a) impr., flavour symmetry breaking:
(M0

PS)
2 − (M±

PS)
2 ∼ O(a2).

ETM 09 [32] 2 0.07, 0.09, 0.10 Scale set through Fπ. Automatic
O(a) impr., flavour symmetry breaking:
(M0

PS)
2 − (M±

PS)
2 ∼ O(a2).

QCDSF/UKQCD 07 [240] 2 0.06, 0.07 Scale set through Fπ. Non-perturbative
O(a)-improvement.

Table 82: Continuum extrapolations/estimation of lattice artifacts in determinations of
fK/fπ for Nf = 2 simulations.

Collab. Ref. Nf Mπ,min [MeV] Description

ETM 14E [27] 2+1+1 180π0 (220π± ) Chiral extrapolation performed through
SU(2) χPT or polynomial fit.

FNAL/MILC 14A [14] 2+1+1 143RMS(128π,5) Linear interpolation to physical point. The
lightest RMS mass is from the a = 0.06 fm
ensemble and the lightest Nambu-Goldstone
mass is from the a = 0.09 fm ensemble.

HPQCD 13A [26] 2+1+1 173RMS(128π,5) NLO χPT supplemented by model for
NNLO. Both the lightest RMS and the light-
est Nambu-Goldstone mass are from the
a = 0.09 fm ensemble.

MILC 13A [230] 2+1+1 143RMS(128π,5) Linear interpolation to physical point. The
lightest RMS mass is from the a = 0.06 fm
ensemble and the lightest Nambu-Goldstone
mass is from the a = 0.09 fm ensemble.

ETM 13F [229] 2+1+1 180π0 (220π± ) Chiral extrapolation performed through
SU(2) χPT or polynomial fit.

ETM 10E [232] 2+1+1 215π0 (265π± )

MILC 11 [231] 2+1+1 173RMS(128π,5) Quoted result from polynomial interpolation
to the physical point. The lightest RMS
mass is from the a = 0.06 fm ensemble and
lightest the Nambu-Goldstone mass is from
the a = 0.09 fm ensemble.

Table 83: Chiral extrapolation/minimum pion mass in determinations of fK/fπ for Nf =
2+1+1 simulations. The subscripts RMS and π, 5 in the case of staggered fermions indicate
the root-mean-square mass and the Nambu-Goldstone boson mass. In the case of twisted-
mass fermions π0 and π± indicate the neutral and charged pion mass and, where applicable,
“val” and “sea” indicate valence and sea pion masses.
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Collab. Ref. Nf Mπ,min [MeV] Description

RBC/UKQCD 14B [10] 2+1 139 NLO PQ SU(2) χPT as well as analytic
ansätze.

RBC/UKQCD 12 [31] 2+1 171sea , 143val NLO PQ SU(2) χPT as well as analytic
ansätze.

Laiho 11 [44] 2+1 250RMS(220π,5) NLO MAχPT.

JLQCD/TWQCD 10 [233] 2+1 290 NNLO χPT.

RBC/UKQCD 10A [144] 2+1 290 Results are based on heavy kaon NLO SU(2)
PQχPT.

MILC 10 [29] 2+1 258RMS(177π,5) Lightest Nambu-Goldstone mass is 177MeV
(at 0.09 fm) and lightest RMS mass is
258MeV (at 0.06 fm). NLO rSχPT and
NNLO χPT.

BMW 10 [30] 2+1 190 Comparison of various fit-ansätze: SU(3)
χPT, heavy kaon SU(2) χPT, polynomial.

JLQCD/TWQCD 09A [138] 2+1 290 NNLO SU(3) χPT.

PACS-CS 09 [94] 2+1 156 NNLO χPT.

MILC 09A [6] 2+1 258RMS(177π,5) NLO SU(3) RSχPT, continuum χPT at
NNLO and up to NNNNLO analytic terms.
Heavy kaon SU(2) RSχPT with NNLO con-
tinuum chiral logs on a sub-set of the lat-
tices. The lightest Nambu-Goldstone mass
is 177MeV (at a = 0.09 fm) and the lightest
RMS mass is 258MeV (at a = 0.06 fm).

MILC 09 [89] 2+1 258RMS(224π,5) NLO SU(3) RSχPT with continuum χPT
NNLO and NNNLO analytic terms added.
According to [6] the lightest sea Nambu-
Goldstone mass is 224MeV and the lightest
RMS mass is 258MeV (at a = 0.06 fm).

Table 84: Chiral extrapolation/minimum pion mass in determinations of fK/fπ for Nf = 2+1
simulations. The subscripts RMS and π, 5 in the case of staggered fermions indicate the
root-mean-square mass and the Nambu-Goldstone boson mass. In the case of twisted-mass
fermions π0 and π± indicate the neutral and charged pion mass and where applicable, “val”
and “sea” indicate valence and sea pion masses.
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Collab. Ref. Nf Mπ,min [MeV] Description

Aubin 08 [235] 2+1 329RMS(246π,5) NLO MAχPT. According to [6] the lightest
sea Nambu-Goldstone mass is 246MeV (at
a = 0.09 fm) and the lightest RMS mass is
329MeV (at a = 0.09 fm).

PACS-CS 08, 08A [93, 236] 2+1 156 NLO SU(2) χPT and SU(3) (Wilson)χPT.

HPQCD/UKQCD 07 [28] 2+1 375RMS(263π,5) NLO SU(3) chiral perturbation theory with
NNLO and NNNLO analytic terms. The
lightest RMS mass is from the a = 0.09 fm
ensemble and the lightest Nambu-Goldstone
mass is from the a = 0.12 fm ensemble.

RBC/UKQCD 08 [145] 2+1 330sea , 242val While SU(3) PQχPT fits were studied, final
results are based on heavy kaon NLO SU(2)
PQχPT.

NPLQCD 06 [237] 2+1 300 NLO SU(3) χPT and some NNLO terms.
The sea RMS mass for the employed lattices
is heavier.

MILC 04 [107] 2+1 400RMS(260π,5) PQ RSχPT fits. The lightest sea Nambu-
Goldstone mass is 260MeV (at a = 0.12 fm)
and the lightest RMS mass is 400MeV (at
a = 0.09 fm).

Table 84: (cntd.) Chiral extrapolation/minimum pion mass in determinations of fK/fπ for
Nf = 2 + 1 simulations. The subscripts RMS and π, 5 in the case of staggered fermions
indicate the root-mean-square mass and the Nambu-Goldstone boson mass. In the case of
twisted-mass fermions π0 and π± indicate the neutral and charged pion mass and where
applicable, “val” and “sea” indicate valence and sea pion masses.

Collab. Ref. Nf Mπ,min [MeV] Description

ETM 14D [160] 2 140 Charged/neutral pion mass breaking,
M2
π± −M2

π0 ∼ O(a2), estimated to be ≃ 20
MeV.

ALPHA 13A [238] 2 190 NLO SU(3) χPT and phenomenological
ansatz for higher orders.

BGR 11 [239] 2 250 NLO SU(2) χPT. Strange quark mass fixed
by reproducing the Ω mass.

ETM 10D [214] 2 210π0 (260π± ) NLO SU(3) χPT and phenomenological
ansatz for higher orders. Joint f+(0)-fK/fπ-
fit.

ETM 09 [32] 2 210π0 (260pi± ) NLO heavy meson SU(2) χPT and NLO
SU(3) χPT.

QCDSF/UKQCD 07 [240] 2 300 Linear extrapolation of lattice data.

Table 85: Chiral extrapolation/minimum pion mass in determinations of fK/fπ for Nf = 2
simulations. The subscripts RMS and π, 5 in the case of staggered fermions indicate the
root-mean-square mass and the Nambu-Goldstone boson mass. In the case of twisted-mass
fermions π0 and π± indicate the neutral and charged pion mass and where applicable, “val”
and “sea” indicate valence and sea pion masses.

258



Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 14E [27] 2+1+1 2.0 - 3.0 2.7π0(3.3π± ) FSE for the pion is corrected
through resummed NNLO χPT
for twisted-mass fermions, which
takes into account the effects due
to the π0 − π± mass splitting.

FNAL/MILC 14A [14] 2+1+1 2.8-5.8 3.9RMS(3.7π,5)

HPQCD 13A [26] 2+1+1 2.5-5.8 4.9RMS(3.7π,5)

MILC 13A [230] 2+1+1 2.8-5.8 3.9RMS(3.7π,5)

ETM 13F [229] 2+1+1 2.0 - 3.0 2.7π0(3.3π± ) FSE for the pion is corrected
through resummed NNLO χPT
for twisted-mass fermions, which
takes into account the effects due
to the π0 − π± mass splitting.

ETM 10E [232] 2+1+1 1.9 - 2.9 3.1π0(3.9π± ) Simulation parameters from [351,
785].

MILC 11 [231] 2+1+1 5.6, 5.7 4.9RMS(3.7π,5)

Table 86: Finite volume effects in determinations of fK/fπ for Nf = 2+1+1. The subscripts
RMS and π, 5 in the case of staggered fermions indicate the root-mean-square mass and the
Nambu-Goldstone boson mass. In the case of twisted-mass fermions π0 and π± indicate the
neutral and charged pion mass and where applicable, “val” and “sea” indicate valence and
sea pion masses.

259



Collab. Ref. Nf L [fm] Mπ,minL Description

RBC/UKQCD 14B [10] 2+1 2.0, 2.7, 4.6, 5.4 3.8

RBC/UKQCD 12 [31] 2+1 2.7, 4.6 3.3 For partially quenched Mπ =
143MeV, MπL = 3.3 and for
unitary Mπ = 171MeV, MπL =
4.0.

Laiho 11 [44] 2+1 2.5–4.0 4.9RMS(4.3π,5)

JLQCD/TWQCD 10 [233] 2+1 1.8, 2.7 4.0

RBC/UKQCD 10A [144] 2+1 2.7 4.0 MπL = 4.0 for lightest sea
quark mass and MπL = 3.1
for lightest partially quenched
quark mass.

MILC 10 [29] 2+1 2.5-3.8 7.0RMS(4.0π,5) L≥2.9 fm for the lighter masses.

BMW 10 [30] 2+1 2.0–5.3 4.0 Various volumes for compari-
son and correction for FSE from
χPT using [82].

JLQCD/TWQCD 09A [138] 2+1 1.9 2.8 Estimate of FSE using χPT [82,
786].

PACS-CS 09 [94] 2+1 2.9 2.28 After reweighting to the physi-
cal point Mπ,minL = 1.97.

MILC 09A [6] 2+1 2.5–5.8 7.0RMS(4.1π,5)

MILC 09 [89] 2+1 2.4–5.8 7.0RMS(4.8π,5) Various volumes for comparison
and correction for FSEs from
(RS)χPT [82].

Aubin 08 [235] 2+1 2.4–3.6 4.0 Correction for FSE from
MAχPT.

PACS-CS 08, 08A [93, 236] 2+1 2.9 2.3 Correction for FSE from χPT
using [82].

HPQCD/UKQCD 07 [28] 2+1 2.4–2.9 4.1RMS(3.8π,5) Correction for FSE from χPT
using [82].

RBC/UKQCD 08 [145] 2+1 1.8, 2.7 4.6sea, 3.4rval Various volumes for compari-
son and correction for FSE from
χPT [82, 256, 257].

NPLQCD 06 [237] 2+1 2.5 3.8 Correction for FSE from SχPT
[328, 329].

MILC 04 [107] 2+1 2.4, 3.0 4.8RMS(3.8π,5) NLO SχPT.

ETM 14D [160] 2 2.2, 4.5 3.2

ALPHA 13A [238] 2 2.1, 2.4, 3.1 4.0

BGR 11 [239] 2 2.1, 2.2 2.7

ETM 10D [214] 2 2.1–2.8 3.0π0 (3.7π± )

ETM 09 [32] 2 2.0–2.7 3.0π0 (3.7π± ) Correction for FSE from χPT
[82, 256, 257].

QCDSF/UKQCD 07 [240] 2 1.4,. . . ,2.6 4.2 Correction for FSE from χPT.

Table 87: Finite volume effects in determinations of fK/fπ for Nf = 2 + 1 and Nf = 2.
The subscripts RMS and π, 5 in the case of staggered fermions indicate the root-mean-square
mass and the Nambu-Goldstone boson mass. In the case of twisted-mass fermions π0 and π±

indicate the neutral and charged pion mass and where applicable, “val” and “sea” indicate
valence and sea pion masses.
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B.3 Notes to section 5 on Low-Energy Constants

Collab. Ref. Nf a [fm] Description

HPQCD 13A, 15B [26, 335] 2+1+1 0.09–0.15 Configurations are shared with MILC.

ETM 11, 13 [33, 351] 2+1+1 0.0607–0.0863 3 lattice spacings fixed through Fπ/Mπ .

ETM 10 [39] 2+1+1 0.078, 0.086 Fixed through Fπ/Mπ.

JLQCD 15A [358] 2+1 0.112 Fixed through Ω baryon mass

RBC/UKQCD 14B, 15E [10, 334] 2+1 a−1 =1.730–3.148 Fixed through mπ, mK , and mΩ.

Boyle 14 [371] 2+1 a−1 =1.37, 2.31 Shared with RBC/UKQCD 12.

BMW 13 [35] 2+1 0.054–0.093 Scale set through Ω baryon mass.

RBC/UKQCD 12 [31] 2+1 0.086, 0.114
and 0.144 for
MmRmin
π

Scale set through mΩ.

Borsanyi 12 [34] 2+1 0.097–0.284 Scale fixed through Fπ/Mπ .

NPLQCD 11 [40] 2+1 0.09, 0.125 Configurations are shared with MILC
09 [89].

MILC 09, 09A, 10,
10A

[6, 13, 29,
89]

2+1 0.045–0.18 3 lattice spacings, continuum extrapo-
lation by means of RSχPT.

JLQCD(/TWQCD)
08B, 09, 10A, 14

[336, 337,
340, 359]

2+1, 3 0.11 One lattice spacing, fixed through mΩ.

RBC/UKQCD 09, 10A [144, 372] 2+1 0.1106(27),
0.0888(12)

Two lattice spacings. Data combined
in global chiral-continuum fits.

TWQCD 08 [339] 2+1 0.122(3) Scale fixed through mρ, r0.

PACS-CS 08, 11A [93, 360] 2+1 0.0907 One lattice spacing.

RBC/UKQCD 08A, 08 [145, 338] 2+1 0.114 One lattice spacing, attempt to esti-
mate cut-off effects via formal argu-
ment.

NPLQCD 06 [237] 2+1 0.125 One lattice spacing, continuum χPT
used.

LHP 04 [361] 2+1 ≃ 0.12 Only one lattice spacing, mixed dis-
cretization approach.

Table 88: Continuum extrapolations/estimation of lattice artifacts in Nf = 2+1+1 and 2+1
determinations of the Low-Energy Constants.
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Collab. Ref. Nf a [fm] Description

ETMC 15A [332] 2 0.0914(3)(15) Weighted average using mπ, fπ , fK ,
mN .

Gülpers 15 [354] 2 0.050, 0.063, 0.079 Scale fixed through mΩ.

Engel 14 [38] 2 0.0483(4), 0.0652(6),
0.0749(8)

Scale fixed through FK .

Gülpers 13 [355] 2 0.063 Scale fixed through mΩ.

Brandt 13 [37] 2 0.05–0.08 Configurations are shared with CLS.

QCDSF 13 [352] 2 0.06–0.076 Scale fixed through r0 = 0.50(1) fm.

Bernardoni 11 [342] 2 0.0649(10) Configurations are shared with CLS.

TWQCD 11A, 11 [248, 343] 2 0.1034(1)(2) Scale fixed through r0.

Bernardoni 10 [344] 2 0.0784(10) Scale fixed through MK . Non-
perturbative O(a) improvement. No
estimate of systematic error.

ETM 09B [345] 2 0.063, 0.073 Automatic O(a) impr. r0 = 0.49 fm
used.

ETM 09C, 12, 13 [33, 36,
341]

2 0.051–0.1 Automatic O(a) impr. Scale fixed
through Fπ. 4 lattice spacings, contin-
uum extrapolation.

ETM 08 [41] 2 0.07-0.09 Automatic O(a) impr. Two lattice
spacings. Scale fixed through Fπ.

JLQCD/TWQCD 07,
07A, 08A, 09, 10A
JLQCD 08A

[138, 337,
347, 348,
356], [373]

2 0.1184(3)(21) Automatic O(a) impr., exact chiral
symmetry. Scale fixed through r0.

CERN 08 [301] 2 0.0784(10) Scale fixed through MK . Non-
perturbative O(a) improvement.

Hasenfratz 08 [346] 2 0.1153(5) Tree level O(a) improvement. Scale
fixed through r0. Estimate of lattice
artifacts via WχPT [787].

CERN-TOV 06 [357] 2 0.0717(15),
0.0521(7),
0.0784(10)

Scale fixed through MK . The lattice
with a = 0.0784(10) is obtained with
non-perturbative O(a) improvement.

QCDSF/UKQCD 06A [362] 2 0.07-0.115 5 lattice spacings. Non-perturbative
O(a) improvement. Scale fixed through
r0.

Table 89: Continuum extrapolations/estimation of lattice artifacts in Nf = 2 determinations
of the Low-Energy Constants.
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Collab. Ref. Nf Mπ,min [MeV] Description

HPQCD 15B [335] 2+1+1 175 Simulated at physical point.

HPQCD 13A [26] 2+1+1 175 NLO chiral fit.

ETM 13 [33] 2+1+1 270 Linear fit in the quark mass.

ETM 11 [351] 2+1+1 270 NLO SU(2) chiral fit.

ETM 10 [39] 2+1+1 270 SU(2) NLO and NNLO fits.

Table 90: Chiral extrapolation/minimum pion mass in Nf = 2 + 1 + 1 determinations of the
Low-Energy Constants.
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Collab. Ref. Nf Mπ,min [MeV] Description

RBC/UKQCD 15E [334] 2+1 117.3(4.4) GMOR for Σ, NNLO PQ SU(2)
χPT.

JLQCD 15A [358] 2+1 290 Dynamical overlap, NNLO SU(3).

RBC/UKQCD 14B [10] 2+1 139.2 GMOR for Σ, global cont./chiral fit.

JLQCD 14 [359] 2+1 99 ǫ expansion.

Boyle 14 [371] 2+1 171 Combines latt/pheno.

BMW 13 [35] 2+1 120 NLO and NNLO SU(2) fits tested
with x and ξ expansion.

RBC/UKQCD 12 [31] 2+1 293 plus run at
171, 246

NLO SU(2) χPT incl. finite-V and
some discr. effects

Borsanyi 12 [34] 2+1 135 NNLO SU(2) chiral fit.

NPLQCD 11 [40] 2+1 235 NNLO SU(2) mixed action χPT.

PACS-CS 11A [360] 2+1 296 Additional test runs at physical
point.

JLQCD/TWQCD 09, 10A [337] 2+1,3 100(ǫ-reg.),
290(p-reg.)

Nf = 2 + 1 runs both in ǫ- and
p-regime; Nf = 3 runs only in p-
regime. NLO χPT fit of the spec-
tral density interpolating the two
regimes.

RBC/UKQCD 09, 10A [144, 372] 2+1 290–420 Valence pions mass is 225-420 MeV.
NLO SU(2) χPT fit.

MILC 09, 09A, 10, 10A [6, 13, 29, 89] 2+1 258 Lightest Nambu-Goldstone mass is
224MeV and lightest RMS mass is
258MeV (at 0.06 fm).

TWQCD 08 [339] 2+1 mud = ms/4,
ms ∼ phys.

Quark condensate extracted from
topological susceptibility, LO chiral
fit.

PACS-CS 08 [93] 2+1 156 Simulation at physical point.

RBC/UKQCD 08 [145] 2+1 330 Lightest velence pion mass is
242MeV.

RBC/UKQCD 08A [338] 2+1 330 Computed at one pion mass.

NPLQCD 06 [237] 2+1 460 Value refers to lightest RMS mass at
a = 0.125 fm as quoted in [6].

LHP 04 [361] 2+1 318 Vector meson dominance fit.

Table 91: Chiral extrapolation/minimum pion mass in 2+1 determinations of the Low-Energy
Constants.
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Collab. Ref. Nf Mπ,min [MeV] Description

ETMC 15A [332] 2 134 Simulation at physical point.

Gülpers 15 [354] 2 193 NLO SU(2) fit.

Engel 14 [38] 2 193 NLO SU(2) fit, Dirac op. and GMOR
for Σ.

Gülpers 13 [355] 2 280 NLO χPT fit.

Brandt 13 [37] 2 280 Configurations are shared with CLS.

QCDSF 13 [352] 2 130 Fit with χPT + analytic.

ETM 12, 13 [33, 341] 2 260 Confs shared with ETM 09C.

Bernardoni 11 [342] 2 312 Overlap varence + O(a) improved Wil-
son sea, mixed regime χPT.

TWQCD 11 [248] 2 230 NLO SU(2) χPT fit.

TWQCD 11A [343] 2 220 NLO χPT.

Bernardoni 10 [344] 2 297, 377, 426 NLO SU(2) fit of χtop.

JLQCD/TWQCD 10A [337] 2
√
2mminΣ/F=120 (ǫ-

reg.), 290 (p-reg.)
Data both in the p and ǫ-regime. NLO
chiral fit of the spectral density inter-
polating the two regimes.

JLQCD/TWQCD 09 [356] 2 290 LECs extracted from NNLO chiral fit
of vector and scalar radii 〈r2〉πV,S .

ETM 09B [345] 2
√
2mminΣ/F=85 NLO SU(2) ǫ-regime fit.

ETM 09C [36] 2 280 NNLO SU(2) fit.

ETM 08 [41] 2 260 From pion form factor using NNLO
χPT and exp. value of 〈r2〉πS .

JLQCD/TWQCD 08A
JLQCD 08A

[138]
[373]

2 290 NNLO SU(2) fit.

CERN 08 [301] 2 mq,min=13 MeV NLO SU(2) fit for the mode number.

Hasenfratz 08 [346] 2
√
2mminΣ/F=220 NLO SU(2) ǫ-regime fit.

JLQCD/TWQCD 07 [347] 2
√
2mminΣ/F=120 NLO SU(2) ǫ-regime fit.

JLQCD/TWQCD 07A [348] 2 mud = ms/6−ms Σ from χt, LO chiral fit.

CERN-TOV 06 [357] 2 403, 381, 377 NLO SU(2) fit.

QCDSF/UKQCD 06A [362] 2 400 Several fit functions to extrapolate the
pion form factor.

Table 92: Chiral extrapolation/minimum pion mass in Nf = 2 determinations of the Low-
Energy Constants.
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Collab. Ref. Nf L [fm] Mπ,minL Description

HPQCD 15B [335] 2+1+1 4.8

HPQCD 13A [26] 2+1+1 4.8–5.5 3.3 3 volumes are compared.

ETM 13 [33] 2+1+1 1.9–2.8 3.0 4 volumes compared.

ETM 10, 11 [39, 351] 2+1+1 1.9-2.8 3.0 FSE estimate using [82].
Mπ+L & 4, but Mπ0L ∼ 2.

RBC/UKQCD 15E [334] 2+1 3.78 1 volume.

JLQCD 15A [358] 2+1 3.88 1 volume.

RBC/UKQCD 14B [10] 2+1 5.476 1 volume.

JLQCD 14 [359] 2+1 1.8 ǫ-regime

Boyle 14 [371] 2+1 4.6 1 volume.

BMW 13 [35] 2+1 2.1 3.0 3 volumes are compared.

RBC/UKQCD 12 [31] 2+1 2.7–4.6 > 4 FSE seem to be very small.

Borsanyi 12 [34] 2+1 3.9 3.3 Expected to be less than 1%.

NPLQCD 11 [40] 2+1 2.5–3.5 3.6 Expected to be less than 1%.

MILC 09, 09A, 10, 10A [6, 13, 29, 89] 2+1 2.52 3.5–4.11 L≥2.9 fm for lighter masses.

JLQCD/TWQCD 09, 10A [337] 2+1, 3 1.9, 2.7 2 volumes are compared for a
fixed quark mass.

RBC/UKQCD 09, 10A [144, 372] 2+1 2.7 ≃ 4 FSE estimated using χPT.

TWQCD 08 [339] 2+1 1.95 - No estimate of FSE.

PACS-CS 08, 11A [93, 360] 2+1 2.9 2.3 FSE is the main concern of the
authors. Additional test runs on
644.

RBC/UKQCD 08 [145] 2+1 2.74 4.6 FSE by means of χPT.

RBC/UKQCD 08A [338] 2+1 2.74 4.6 FSE estimated to be < 1%.

NPLQCD 06 [237] 2+1 2.5 3.7 Value refers to lightest valence
pion mass.

LHP 04 [361] 2+1 ≃ 2.4 3.97 Value refers to domain-wall va-
lence pion mass.

Table 93: Finite volume effects in Nf = 2+1+1 and 2+1 determinations of the Low-Energy
Constants.
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Collab. Ref. Nf L [fm] Mπ,minL Description

ETMC 15A [332] 2 4.39 2 volumes.

Gülpers 15 [354] 2 4.09 3 volumes, CLS confs.

Engel 14 [38] 2 4.2 3 volumes, CLS confs.

Gülpers 13 [355] 2 4–6 4.3 Configs. shared with CLS.

Brandt 13 [37] 2 ∼ 5 4 Configs. shared with CLS.

QCDSF 13 [352] 2 1.8–2.4 2.7 NLO χPT is used for FSE.

Bernardoni 11 [342] 2 1.56 2.5 Mixed regime χPT for FSE
used.

TWQCD 11 [248] 2 1.65 1.92 SU(2) χPT is used for FSE.

TWQCD 11A [343] 2 1.65 1.8 No estimate of FSE.

Bernardoni 10 [344] 2 1.88 2.8 FSE included in the NLO chi-
ral fit.

JLQCD/TWQCD 10A [337] 2 1.8-1.9 FSE estimated from different
topological sectors.

JLQCD/TWQCD 09 [356] 2 1.89 2.9 FSE by NLO χPT, Addi-
tional FSE for fixing topology
[788].

ETM 09B [345] 2 1.3, 1.5 ǫ-regime Topology: not fixed. 2 vol-
umes.

ETM 09C, 12, 13 [33, 36, 341] 2 2.0-2.5 3.2–4.4 Several volumes. Finite-
volume effects estimated
through [82].

ETM 08 [41] 2 2.1, 2.8 3.4, 3.7 Only data with MπL & 4 are
considered.

JLQCD/TWQCD 08A
JLQCD 08A

[138]
[373]

2 1.89 2.9 FSE estimates through [82].
Additional FSE for fixing
topology [788].

CERN 08 [301] 2 1.88, 2.51 - Two volumes compared.

Hasenfratz 08 [346] 2 1.84, 2.77 ǫ-regime Topology: not fixed, 2 vol-
umes.

JLQCD/TWQCD 07 [347] 2 1.78 ǫ-regime Topology: fixed to ν = 0.

JLQCD/TWQCD 07A [348] 2 1.92 - Topology fixed to ν = 0 [788].

CERN-TOV 06 [357] 2 1.72, 1.67, 1.88 3.5, 3.2, 3.6 No estimate for FSE.

QCDSF/UKQCD 06A [362] 2 1.4-2.0 3.8 NLO χPT estimate for FSE
[789].

Table 94: Finite volume effects in Nf = 2 determinations of the Low-Energy Constants.
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Collab. Ref. Nf Description

HPQCD 15B [335] 2+1+1 —

HPQCD 13A [26] 2+1+1 —

ETM 10,11, 13 [33, 39, 351] 2+1+1 Non-perturbative

RBC/UKQCD 15E [334] 2+1 RI-SMOM

JLQCD 15A [358] 2+1 RI-MOM

RBC/UKQCD 14B [10] 2+1 RI-SMOM

JLQCD 14 [359] 2+1 —

Boyle 14 [371] 2+1 —

BMW 13 [35] 2+1 Non-perturbative

RBC/UKQCD 12 [31] 2+1 Non-perturbative (RI/SMOM)

Borsanyi 12 [34] 2+1 Indirectly non-perturbative through [7] for Σ; no
renormalization needed for F , since only Fπ/F
computed and scale set through Fπ.

NPLQCD 11 [40] 2+1 Not needed (no result for Σ).

JLQCD/TWQCD 10A [337] 2+1, 3 Non-perturbative

MILC 09, 09A, 10, 10A [6, 13, 29, 89] 2+1 2 loop

RBC/UKQCD 10A [144] 2+1 Non-perturbative

JLQCD 09 [336] 2+1 Non-perturbative

TWQCD 08 [339] 2+1 Non-perturbative

PACS-CS 08 [93] 2+1 1 loop

RBC/UKQCD 08, 08A [145, 338] 2+1 Non-perturbative

NPLQCD 06 [237] 2+1 —

LHP 04 [361] 2+1 —

All collaborations 2 Non-perturbative

Table 95: Renormalization in determinations of the Low-Energy Constants.
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B.4 Notes to section 6 on Kaon mixing

B.4.1 Kaon B-parameter BK

Collab. Ref. Nf a [fm] Description

ETM 15 [42] 2+1+1 0.09, 0.08, 0.06 Combined chiral and continuum extrap-
olation. Systematic error of 2.0% is ob-
tained from the distribution of results
over analyses which differ by O(a2) ef-
fects.

SWME 15A [45] 2+1 0.12, 0.09, 0.06, 0.045 The three finest lattice spacings are used
for the combined chiral and continnum
extrapolation. Residual combined dis-
cretization, sea-quark extrapolation and
αs matching error of 4.4% from differ-
ence between linear fit in a2, msea and a
fit where αs dependence is added.

RBC/UKQCD 14B [10] 2+1 0.111, 0.083,
0.063, 0.114,
0.084

The three first lattice spacings use differ-
ent action from the last two ones. Com-
bined continuum and chiral fits.

SWME 14 [384] 2+1 0.082, 0.059, 0.044 Residual combined discretization and
sea-quark extrapolationg error of 0.9%
from difference between linear fit in a2,
msea and a constrained nine-parameter
extrapolation.

SWME 13A [401] 2+1 0.09, 0.06, 0.045 Residual combined discretization, sea-
quark extrapolation and αs matching er-
ror of 4.4% from difference between lin-
ear fit in a2, msea and a fit where αs
dependence is added.

SWME 13 [402] 2+1 0.12, 0.09, 0.06, 0.045 Continuum extrapolation with the coars-
est lattice spacing omitted; residual com-
bined discretization and sea-quark ex-
trapolationg error of 1.1% from differ-
ence between linear fit in a2, msea and
a constrained nine-parameter extrapola-
tion.

RBC/UKQCD 12A [31] 2+1 0.146, 0.114, 0.087 Coarsest lattice spacing uses different ac-
tion. Combined continuum and chiral
fits.

Table 96: Continuum extrapolations/estimation of lattice artifacts in determinations of BK .
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Collab. Ref. Nf a [fm] Description

Laiho 11 [44] 2+1 0.12, 0.09, 0.06 Combined continuum and chiral extrap-
olation based on SU(3) mixed-action
partially quenched χPT.

SWME 11, 11A [403,
783]

2+1 0.12, 0.09, 0.06, 0.045 Continuum extrapolation with the coars-
est lattice spacing omitted; residual dis-
cretization error of 1.9% from difference
between fit to a constant and a con-
strained five-parameter extrapolation.

BMW 11 [43] 2+1 0.093, 0.077,
0.065, 0.054

Combined continuum and chiral extrap-
olation; discretization error of 0.1% from
comparison of O(αsa) and O(a2) extrap-
olations.

RBC/UKQCD 10B [404] 2+1 0.114, 0.087 Two lattice spacings. Combined chiral
and continuum fits.

SWME 10 [277] 2+1 0.12, 0.09, 0.06 Continuum extrapolation of results ob-
tained at four lattice spacings; residual
discretization error of 0.21% from differ-
ence to result at smallest lattice spacing.

Aubin 09 [405] 2+1 0.12, 0.09 Two lattice spacings; quote 0.3% dis-
cretization error, estimated from various
a2-terms in fit function

RBC/UKQCD 07A, 08 [145,
406]

2+1 0.114(2) Single lattice spacing; quote 4% dis-
cretization error, estimated from the dif-
ference between computed and experi-
mental values of fπ.

HPQCD/UKQCD 06 [407] 2+1 0.12 Single lattice spacing; 3% discretization
error quoted without providing details.

ETM 12D [46] 2 0.1, 0.09, 0.07, 0.05 Four lattice spacings; systematic quoted
obtained from the difference between the
finest lattice spacing and the continuum
limit and comparing results using two
evaluations of the RCs that differ by
O(a2) effects.

ETM 10A [400] 2 0.1, 0.09, 0.07 Three lattice spacings; 1.2% error
quoted.

JLQCD 08 [408] 2 0.118(1) Single lattice spacing; no error quoted.

RBC 04 [399] 2 0.117(4) Single lattice spacing; no error quoted.

UKQCD 04 [409] 2 0.10 Single lattice spacing; no error quoted.

Table 97: (cntd.) Continuum extrapolations/estimation of lattice artifacts in determinations
of BK .
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Collab. Ref. Nf Mπ,min [MeV] Description

ETM 15 [42] 2+1+1 245, 239, 211 Each Mπ,min entry corresponds to a differ-
ent lattice spacing. Simultaneous chiral &
continuum extrapolations, based on poly-
nomial and χPT at NLO, are carried out
leads to systematic error of 0.8% .

SWME 15A [45] 2+1 222/372,
206/174,
195/222,
206/316

Valence/sea RMS Mπ,min entries corre-
spond to the four lattice spacings (the last
three are used for the chiral-continuum ex-
trapolation). Chiral extrapolations based
on SU(2) staggered χPT at NNLO (with
some coefficients fixed by Bayesian priors),
and also including one analytic NNNLO
term. Residual error of 0.05% from chang-
ing the Bayesian priors and fit method.

RBC/UKQCD 14B [10] 2+1 337, 302,
371, 139,
139

Mπ,min entries correspond to the five lat-
tice spacings. Combined chiral & contin-
uum extrapolation, using Mπ < 260 MeV
and Mπ < 370 MeV.

SWME 14 [384] 2+1 206/174,
195/222,
207/316

Valence/sea RMS Mπ,min entries corre-
spond to the three lattice spacings. Chiral
extrapolations based on SU(2) staggered
χPT at NNLO (with some coefficients
fixed by Bayesian priors), and also includ-
ing one analytic NNNLO term. Resid-
ual error of 0.1% error from doubling the
widths of Bayesian priors.

SWME 13A [401] 2+1 207/243,
196/262,
207/316

Valence/sea RMS Mπ,min entries corre-
spond to the three lattice spacings. Chiral
extrapolations based on SU(2) staggered
χPT at NNLO (with some coefficients
fixed by Bayesian priors), and also includ-
ing one analytic NNNLO term. Residual
error of 0.1% from doubling the widths of
Bayesian priors.

SWME 13 [402] 2+1 442/445,
299/273,
237/256,
222/334

Valence/sea RMS Mπ,min entries corre-
spond to the four lattice spacings. Chiral
extrapolations based on SU(2) staggered
χPT at NNLO (with some coefficients
fixed by Bayesian priors), and also includ-
ing one analytic NNNLO term. Resid-
ual error of 0.33% error from doubling the
widths of Bayesian priors.

RBC/UKQCD 12A [31] 2+1 140/170,
240/330,
220/290

Valence/sea Mπ,min entries correspond to
the three lattice spacings. Combined chiral
& continuum extrapolation, using Mπ <
350 MeV.

Table 98: Chiral extrapolation/minimum pion mass in determinations of BK .
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Collab. Ref. Nf Mπ,min [MeV] Description

Laiho 11 [44] 2+1 210/280 Mπ,min entries correspond to the smallest
valence/sea quark masses. Chiral & con-
tinuum fits based on NLO mixed action
χPT, including a subset of NNLO terms.
Systematic error estimated from spread
arising from variations in the fit function.

SWME 11, 11A [403, 783] 2+1 442/445,
299/325,
237/340,
222/334

Valence/sea RMS Mπ,min entries corre-
spond to the four lattice spacings. Chiral
extrapolations based on SU(2) staggered
χPT at NNLO (with some coefficients
fixed by Bayesian priors), and also includ-
ing one analytic NNNLO term. Resid-
ual error of 0.33% error from doubling the
widths of Bayesian priors.

BMW 11 [43] 2+1 219, 182,
120, 131

Mπ,min entries correspond to the four lat-
tice spacings used in the final result. Com-
bined fit to the chiral and continuum be-
haviour. Systematics investigated by ap-
plying cuts to the maximum pion mass
used in fits. Uncertainty of 0.1% assigned
to chiral fit.

RBC/UKQCD 10B [404] 2+1 240/330,
220/290

Valence/sea Mπ,min entries correspond to
the two lattice spacings. Combined chiral
and continuum extrapolations.

SWME 10 [277] 2+1 442/445,
299/325,
237/340

Valence/sea Mπ,min entries correspond to
the three lattice spacings. Chiral extrap-
olations based on SU(2) staggered χPT
at NLO, including some analytic NNLO
terms. SU(3) staggered χPT as cross-
check. Combined 1.1% error from various
different variations in the fit procedure.

Aubin 09 [405] 2+1 240/370 Mπ,min entries correspond to the smallest
valence/sea quark masses. Chiral & con-
tinuum fits based on NLO mixed action
χPT at NLO, including a subset of NNLO
terms. Systematic error estimated from
spread arising from variations in the fit
function.

RBC/UKQCD 07A, 08 [145, 406] 2+1 330 Fits based on SU(2) PQχPT at NLO. Ef-
fect of neglecting higher orders estimated
at 6% via difference between fits based on
LO and NLO expressions.

Table 98: (cntd.) Chiral extrapolation/minimum pion mass in determinations of BK .
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Collab. Ref. Nf Mπ,min [MeV] Description

HPQCD/UKQCD 06 [407] 2+1 360 3% uncertainty from chiral extrapolation
quoted, without giving further details.

ETM 12D [46] 2 400, 280,
300, 280

Each Mπ,min entry corresponds to a differ-
ent lattice spacing. Simultaneous chiral &
continuum extrapolations, based on poly-
nomial and χPT at NLO, are carried out.
Systematic error from several sources, in-
cluding lattice calibration, quark mass cal-
ibration, chiral and continuum extrapola-
tion etc., estimated at 3.0%.

ETM 10A [400] 2 400, 280,
300

Each Mπ,min entry corresponds to a differ-
ent lattice spacing. Simultaneous chiral &
continuum extrapolations, based on χPT
at NLO, are carried out. Systematic error
from several sources, including lattice cali-
bration, quark mass calibration, chiral and
continuum extrapolation etc., estimated at
3.1%.

JLQCD 08 [408] 2 290 Fits based on NLO PQχPT. Range of va-
lidity investigated. Fit error included in
statistical uncertainty.

RBC 04 [399] 2 490 Fits based on NLO PQχPT. Fit error in-
cluded in statistical uncertainty.

UKQCD 04 [409] 2 780 Fits to continuum chiral behaviour at fixed
sea quark mass. Separate extrapolation in
sea quark mass. Fit error included in over-
all uncertainty.

Table 98: (cntd.) Chiral extrapolation/minimum pion mass in determinations of BK .
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Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 15 [42] 2+1+1 2.1–2.8, 2.6,
3.0

3.5, 3.2, 3.2 Each L entry corresponds to a dif-
ferent lattice spacing, with two vol-
umes at the coarsest lattice spacing;
results from these two volumes at
Mπ ∼ 280 MeV are compatible.

SWME 15A [45] 2+1 2.4–3.4,
2.5–5.8,
2.9–3.9, 2.9

& 3.8 L entries correspond to the four lat-
tice spacings, with several volumes
in most cases. Finite-volume effects
estimated using NLO SU(2) SχPT.

RBC/UKQCD 14B [10] 2+1 2.7, 2.7,
2.0, 5.5, 5.3

& 3.8 L entries correspond to the five lat-
tice spacings. Finite volume effects
estimated using NLO χPT; negligi-
ble with comparison to the statisti-
cal error.

SWME 14 [384] 2+1 2.8–5.4, 2.8–
3.8, 2.8

5.6, 3.7, 2.9 L entries correspond to the three
lattice spacings, with several vol-
umes in most cases. Finite-volume
effects estimated using NLO χPT.

SWME 13A [401] 2+1 2.4–3.4, 2.8–
3.8, 2.8

3.5, 3.3, 2.9 L entries correspond to the three
lattice spacings, with several vol-
umes in most cases. Finite-volume
effects estimated using NLO χPT.

SWME 13 [402] 2+1 2.4–3.3, 2.4–
5.5, 2.8–3.8,
2.8

& 3.2 L entries correspond to the four lat-
tice spacings, with several volumes
in most cases. Finite-volume effects
estimated using NLO χPT.

RBC/UKQCD 12A [31] 2+1 4.6, 2.7, 2.8 & 3.2 L entries correspond to the three
lattice spacings. Finite volume ef-
fects estimated using NLO χPT.

Laiho 11 [44] 2+1 2.4, 3.4, 3.8 & 3.5 L entries correspond to the three
lattice spacings. Finite volume ef-
fects estimated using NLO χPT.

SWME 11, 11A [403,
783]

2+1 2.4/3.3, 2.4,
2.8, 2.8

& 3.2 L entries correspond to the four lat-
tice spacings, with two volumes at
the coarsest lattice. Finite-volume
effects estimated using NLO χPT.

BMW 11 [43] 2+1 6.0, 4.9, 4.2,
3.5

& 3.8, 3.0 L entries correspond to the four lat-
tice spacings, and are the largest
of several volumes at each a.
Mπ,minL ≈ 3.0 for the ensemble at
a ≈ 0.08 fm. Finite volume effects
estimated in χPT and by combined
fit to multiple volumes.

Table 99: Finite volume effects in determinations of BK . If partially-quenched fits are used,
the quoted Mπ,minL is for lightest valence (RMS) pion.
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Collab. Ref. Nf L [fm] Mπ,minL Description

RBC/UKQCD 10B [404] 2+1 2.7, 2.8 & 3.1 L entries correspond to the three
lattice spacings. Finite volume ef-
fects estimated using NLO χPT.

SWME 10 [277] 2+1 2.4/3.3,
2.4,2.8

& 3.4 L entries correspond to the three
lattice spacings, with two volumes
for the coarsest spacing. Finite-
volume error of 0.9% estimated
from difference obtained these two
volumes.

Aubin 09 [405] 2+1 2.4, 3.4 3.5 L entries correspond to the two lat-
tice spacings. Keep mπL >∼ 3.5; no
comparison of results from different
volumes; 0.6% error estimated from
mixed action χPT correction.

RBC/UKQCD 07A, 08[145,
406]

2+1 1.83/2.74 4.60 Each L entry corresponds to a dif-
ferent volume at the same lattice
spacing; 1% error from difference in
results on two volumes.

HPQCD/UKQCD 06 [407] 2+1 2.46 4.49 Single volume; no error quoted.

ETM 12D [46] 2 2.1,
2.2/2.9,
2.2, 2.6

5,
3.3/4.3,
3.3, 3.5

Each L entry corresponds to a dif-
ferent lattice spacing, with two vol-
umes at the second less coarse lat-
tice spacing. Results from these
two volumes at Mπ ∼ 300 MeV are
compatible.

ETM 10A [400] 2 2.1,
2.2/2.9,
2.2

5,
3.3/4.3,
3.3

Each L entry corresponds to a dif-
ferent lattice spacing, with two vol-
umes at the intermediate lattice
spacing. Results from these two
volumes at Mπ ∼ 300 MeV are
compatible.

JLQCD 08 [408] 2 1.89 2.75 Single volume; data points with
mval < msea excluded; 5% error
quoted as upper bound of PQχPT
estimate of the effect.

RBC 04 [399] 2 1.87 4.64 Single volume; no error quoted.

UKQCD 04 [409] 2 1.6 6.51 Single volume; no error quoted.

Table 99: (cntd.) Finite volume effects in determinations of BK
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running
Collab. Ref. Nf Ren.

match.
Description

ETM 15 [42] 2+1+1 RI PT1ℓ Uncertainty from RI renormaliza-
tion estimated at 2%. Additional
error of 0.6% for the conversion to
MS.

SWME 15A [45] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher
orders estimated at 4.4% by iden-
tifying the unknown 2-loop coeffi-
cient with result at the smallest lat-
tice spacing.

RBC/UKQCD 14B [10] 2+1 RI PT1ℓ Two different RI-SMOM schemes
used to estimate 2% systematic er-
ror in conversion to MS.

SWME 14 [384] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher
orders estimated at 4.4% by iden-
tifying the unknown 2-loop coeffi-
cient with result at the smallest lat-
tice spacing.

SWME 13A [401] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher
orders estimated at 4.4% (in combi-
nation with systematic uncertainty
from CL and chiral extrapolation
fit) by identifying the unknown 2-
loop coefficient with result at the
smallest lattice spacing.

SWME 13 [402] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher
orders estimated at 4.4% by iden-
tifying the unknown 2-loop coeffi-
cient with result at the smallest lat-
tice spacing.

RBC/UKQCD 12A [31] 2+1 RI PT1ℓ Two different RI-SMOM schemes
used to estimate 2% systematic er-
ror in conversion to MS.

Laiho 11 [44] 2+1 RI PT1ℓ Total uncertainty in matching &
running of 3%. Perturbative trun-
cation error in the conversion to
MS, RGI schemes is dominant un-
certainty.

SWME 11, 11A [403, 783] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher
orders estimated at 4.4% by iden-
tifying the unknown 2-loop coeffi-
cient with result at the smallest lat-
tice spacing.

Table 100: Running and matching in determinations of BK for Nf = 2+1+1 and Nf = 2+1.
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running
Collab. Ref. Nf Ren.

match.
Description

BMW 11 [43] 2+1 RI PT1ℓ Uncertainty of 0.05% in the de-
termination of the renormalization
factor included. 1% error estimated
due to truncation of perturbative
matching to MS and RGI schemes
at NLO.

RBC/UKQCD 10B [404] 2+1 RI PT1ℓ Variety of different RI-MOM
schemes including non-exceptional
momenta. Residual uncertainty
of 2% uncertainty in running &
matching.

SWME 10 [277] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher
orders estimated at 5.5% by iden-
tifying the unknown 2-loop coeffi-
cient with result at the smallest lat-
tice spacing.

Aubin 09 [405] 2+1 RI PT1ℓ Total uncertainty in matching &
running of 3.3%, estimated from a
number of sources, including chi-
ral extrapolation fit ansatz for n.p.
determination, strange sea quark
mass dependence, residual chiral
symmetry breaking, perturbative
matching & running.

RBC/UKQCD 07A, 08 [145, 406] 2+1 RI PT1ℓ Uncertainty from n.p. determina-
tion of ren. factor included in sta-
tistical error; 2% systematic error
from perturbative matching to MS
estimated via size of correction it-
self.

HPQCD/UKQCD 06 [407] 2+1 PT1ℓ PT1ℓ Uncertainty due to neglecting 2-
loop order in perturbative matching
and running estimated by multiply-
ing result by α2.

Table 100: (cntd.) Running and matching in determinations of BK for Nf = 2 + 1 + 1 and
Nf = 2 + 1.
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running
Collab. Ref. Nf Ren.

match.
Description

ETM 12D [46] 2 RI PT1ℓ Uncertainty from RI renormaliza-
tion estimated at 2.5%.

ETM 10A [400] 2 RI PT1ℓ Uncertainty from RI renormaliza-
tion estimated at 2.5%.

JLQCD 08 [408] 2 RI PT1ℓ Uncertainty from n.p. determina-
tion of ren. factor included in sta-
tistical error; 2.3% systematic error
from perturbative matching to MS
estimated via size of correction it-
self.

RBC 04 [399] 2 RI PT1ℓ Uncertainty from n.p. determina-
tion of ren. factor included.

UKQCD 04 [409] 2 PT1ℓ PT1ℓ No error quoted.

Table 101: Running and matching in determinations of BK for Nf = 2.

278



B.4.2 Kaon BSM B-parameters

Collab. Ref. Nf a [fm] Description

ETM 15 [42] 2+1+1 0.09, 0.08, 0.06 Combined chiral and continuum extrapo-
lation. Systematic errors to Bi from about
4% to 6% are obtained from the distribu-
tion of results over analyses which differ by
O(a2) effects.

SWME 15A [45] 2+1 0.12, 0.09, 0.06, 0.045 The three finest lattice spacings are used
for the combined chiral and continnum
extrapolation. Residual combined dis-
cretization, sea-quark extrapolation and
αs matching error from about 4.4% to 9.6%
is reported for Bi and is obtained from the
difference between linear fit in a2,msea and
a fit where αs dependence is added.

SWME 14C [416] 2+1 0.082, 0.059, 0.044 Residual combined discretization and sea-
quark extrapolationg error of 1–8% from
difference between linear fit in a2,msea and
a constrained nighteen-parameter extrapo-
lation.

SWME 13A [401] 2+1 0.09, 0.06, 0.045 Residual combined discretization, sea-
quark extrapolation and αs matching error
for Bi varies from 4.5% to -5.7% , from dif-
ference between linear fit in a2, msea and
a fit where αs dependence is added.

RBC/UKQCD 12E [411] 2+1 0.087 Computation at only one value of the lat-
tice spacing. Estimate for the systematic
discretisation error of about 1.5% based on
the corresponding estimate from the BK
computation.

ETM 12D [46] 2 0.1, 0.09, 0.07, 0.05 Four lattice spacings; Estimates of sys-
tematic uncertainties obtained from the
half difference of the distance between the
finest lattice spacing and the continuum
limit.

Table 102: Continuum extrapolations/estimation of lattice artifacts in determinations of the
BSM Bi parameters.
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Collab. Ref. Nf Mπ,min [MeV] Description

ETM 15 [42] 2+1+1 245, 239, 211 Each Mπ,min entry corresponds to a differ-
ent lattice spacing. Simultaneous chiral &
continuum extrapolations, based on poly-
nomial and χPT at NLO, are carried out
leads to systematic errors of 1.1−2.6% de-
pending on the bag parameter.

SWME 15A [45] 2+1 222/372,
206/174,
195/222,
206/316

Valence/sea RMS Mπ,min entries corre-
spond to the four lattice spacings (the last
three are used for the chiral-continuum ex-
trapolation). Chiral extrapolations based
on SU(2) staggered χPT at NNLO (with
some coefficients fixed by Bayesian priors),
and also including one analytic NNNLO
term. Residual error of 0.4-1.2% depend-
ing on the bag parameter from changing
the Bayesian priors and fit method.

SWME 14C [416] 2+1 206/174,
195/222,
207/316

Valence/sea RMS Mπ,min entries corre-
spond to the three lattice spacings. Chi-
ral extrapolations performed via Bi-ratios
that do not show SU(2) NLO χPT con-
tribution and assuming various terms up
to NNLO (with some coefficients fixed by
Bayesian priors).

SWME 13A [401] 2+1 207/243,
196/262,
207/316

Valence/sea RMS Mπ,min entries corre-
spond to the three lattice spacings. Chi-
ral extrapolations performed via Bi-ratios
that do not show SU(2) NLO χPT con-
tribution and assuming various terms up
to NNLO (with some coefficients fixed by
Bayesian priors). Residual error in the
valence of about 0.1% from doubling the
widths of Bayesian priors. In the sea a
combined error with the matching proce-
dure of 4.4-5.6% is reported.

RBC/UKQCD 12E [411] 2+1 290/290 Chiral extrapolations based on polynomial
and χPT fits at NLO are carried out. Cen-
tral values are obtained from polynomial
fits. Mild dependence on the quark mass.
Systematic uncertainties are estimated to
about 4% for all Bi’s.

ETM 12D [46] 2 400, 270,
300, 270

Each Mπ,min entry corresponds to a differ-
ent lattice spacing. Simultaneous chiral &
continuum extrapolations, based on poly-
nomial and χPT at NLO, are carried out.

Table 103: Chiral extrapolation/minimum pion mass in determinations of the BSM Bi pa-
rameters.
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Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 15 [42] 2+1+1 2.1–2.8, 2.6,
3.0

3.5, 3.2, 3.2 Each L entry corresponds to a dif-
ferent lattice spacing, with two vol-
umes at the coarsest lattice spacing;
results from these two volumes at
Mπ ∼ 280 MeV are compatible.

SWME 15A [45] 2+1 2.4–3.4,
2.5–5.8,
2.9–3.9, 2.9

& 3.8 L entries correspond to the four lat-
tice spacings, with several volumes
in most cases. Finite-volume effects
estimated using NLO SU(2) SχPT.

SWME 14C [416] 2+1 2.8–5.4, 2.8–
3.8, 2.8

5.6, 3.7, 2.9 L entries correspond to the three
lattice spacings, with several vol-
umes in most cases. Finite-volume
effects estimated using NLO χPT.

SWME 13A [401] 2+1 2.4–3.4, 2.8–
3.3, 2.8

3.5, 3.3, 2.9 L entries correspond to the three
lattice spacings, with several vol-
umes in most cases. Finite-volume
effects estimated using NLO χPT.

RBC/UKQCD 12E [411] 2+1 2.8 & 4.0 The L value corresponds to the
unique lattice spacing. Finite vol-
ume effects, estimated using NLO
χPT are small, as it has also been
found in the BK computation, and
they have thus been neglected in
the final error budget analysis.

ETM 12D [46] 2 2.1,
2.2/2.9,
2.2, 2.6

5,
3.3/4.3,
3.3, 3.5

Each L entry corresponds to a dif-
ferent lattice spacing, with two vol-
umes at the second less coarse lat-
tice spacing. Results from these
two volumes at Mπ ∼ 300 MeV are
compatible.

Table 104: Finite volume effects in determinations of the BSM Bi parameters. If partially-
quenched fits are used, the quoted Mπ,minL is for lightest valence (RMS) pion.
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running
Collab. Ref. Nf Ren.

match.
Description

ETM 15 [42] 2+1+1 RI PT1ℓ Uncertainty from RI renormaliza-
tion combined with discretisation
effects estimates are reported to be
from about 4% to 6% . Additional
error from 1.8 to 3.9% (dependind
on the bag parameter) for the con-
version to MS at the scale of 3 GeV.

SWME 15A [45] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher
orders estimated from about 4.4%
to 9.6% (depending on the bag
parameter) by identifying the un-
known 2-loop coefficient with result
at the smallest lattice spacing.

SWME 14C [416] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher
orders estimated at 4.4% by iden-
tifying the unknown 2-loop coeffi-
cient with result at the smallest lat-
tice spacing.

SWME 13A [401] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher
orders estimated at 4.4% (in combi-
nation with systematic uncertainty
from CL and chiral extrapolation
fit) by identifying the unknown 2-
loop coefficient with result at the
smallest lattice spacing.

RBC/UKQCD 12E [411] 2+1 RI PT1ℓ Computation in RI-MOM scheme.
Systematic error from the conver-
sion to MS is estimated by taking
the half of the difference between
the LO and the NLO result.

ETM 12D [46] 2 RI PT1ℓ Uncertainty from RI renormaliza-
tion estimated at 2.5%.

Table 105: Running and matching in determinations of the BSM Bi parameters.
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B.5 Notes to section 7 on D-meson decay constants and form factors

In the following, we summarize the characteristics (lattice actions, pion masses, lattice spac-
ings, etc.) of the recent Nf = 2 + 1 + 1, Nf = 2 + 1 and Nf = 2 runs. We also provide
brief descriptions of how systematic errors are estimated by the various authors. We focus on
calculations with either preliminary or published quantitative results.

B.5.1 D(s)-meson decay constants

Collab. Ref. Nf Mπ,min [MeV] Description

FNAL/MILC 14A [14] 2+1+1 311, 241, 173,
143

The lightest pions (not RMS) are around
130 MeV. Analyses are performed either
by interpolating to the physical point or
by using HMrASχPT formulae to include
heavier masses and non-unitary points.
The latter procedure gives more accurate,
and final, results.

ETM 13F
ETM 14E

[27, 229] 2+1+1 245, 239, 211 fDs

√
mDs in ETM 13F and fDs/mDs in

ETM 14E are extrapolated using both
a quadratic and a linear fit in ml plus
O(a2) terms. Then the double ratio
(fDs/fD)/(fK/fπ) is fitted in continuum
HMχPT, as no lattice spacing depen-
dence is visible within statistical errors.

FNAL/MILC 12B
FNAL/MILC 13

[419, 420] 2+1+1 310, 245, 179,
145

Chiral and continuum extrapolations are
peformed simultaneously. Central val-
ues are produced using a fit function
quadratic in a2 and linear in the sea-
quark mass. In FNAL/MILC 13 terms
of O(a4) are included.

Table 106: Chiral extrapolation/minimum pion mass in Nf = 2+1+1 determinations of the
D and Ds meson decay constants. For actions with multiple species of pions, masses quoted
are the RMS pion masses (where available). The different Mπ,min entries correspond to the
different lattice spacings.
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Collab. Ref. Nf Mπ,min [MeV] Description

χQCD 14 [17] 2+1 334, 296 Chiral and continuum extrapolations are
peformed simultaneously using linear fits
in ml (and quadratic or including par-
tially quenched chiral logs, in order to as-
sess the systematic error) plus terms up
to O(a2) and O(a4m4

c).

HPQCD 12A [47] 2+1 460, 329 Chiral and continuum extrapolations
are peformed simultaneously using
PQHMχPT augmented by a dependent
terms: c0(amc)

2 + c1(amc)
4.

FNAL/MILC 11 [48] 2+1 570, 440, 320 Chiral and continuum extrapolations are
peformed simultaneously using HMχPT
for rooted staggered quarks. Effects of
hyperfine and flavour splittings are also
included.

PACS-CS 11 [421] 2+1 152 Simulations are reweighted in the light-
and strange-quark masses to the physical
point.

HPQCD 10A [49] 2+1 542, 460, 329,
258, 334

Chiral and continuum extrapolations are
performed simultaneously. Polynomials

up to
(

mq,sea−mq,phys

mq,phys

)2

for q = s, l and

up to (amc)
8 are kept.

HPQCD/UKQCD 07 [28] 2+1 542, 460, 329 Combined chiral and continuum extrapo-
lations using HMχPT at NLO augmented
by second and third-order polynomial
terms in mq and terms up to a4.

FNAL/MILC 05 [422] 2+1 > 440 , 440 , 400 Chiral extrapolations are first performed
at each lattice spacing uisng NLO
HMχPT for rooted staggered quarks.
Lattice artefacts are then extrapolated
linearly in a2.

Table 107: Chiral extrapolation/minimum pion mass in Nf = 2 + 1 determinations of the
D and Ds meson decay constants. For actions with multiple species of pions, masses quoted
are the RMS pion masses (where available). The different Mπ,min entries correspond to the
different lattice spacings.
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Collab. Ref. Nf Mπ,min [MeV] Description

TWQCD 14 [423] 2 260 Comparison of NLO HMχPT fits for
fD(s)

and for fD(s)

√mD(s)
in order to

asses systematic error.

ALPHA 13B [176] 2 190 , 270 Linear fits (inm2
π and in a2) and partially

quenched HMχPT functional forms, in-
cluding terms linear in a2, are used in
the combined chiral/continuum extrapo-
lation.

ETM 09
ETM 11A
ETM 13B

[20, 32, 181] 2 410, 270, 310,
270

Mπ,min refers to the charged pions.
NLO SU(2) HMχPT supplemented by
terms linear in a2 and in mDa

2 is used
in the combined chiral/continuum ex-
trapolation. To estimate the system-
atic due to chiral extrapolation, once
fDs

√
mDs and fDs

√
mDs/(fD

√
mD) and

once fDs

√
mDs/fK and fDs

√
mDs/fK ×

fπ/(fD
√
mD) are fitted. In ETM 13 the

double ratio (fDs/fD)/(fK/fπ) is fitted
in HMχPT.

Table 108: Chiral extrapolation/minimum pion mass in Nf = 2 determinations of the D and
Ds meson decay constants. For actions with multiple species of pions, masses quoted are the
RMS pion masses (where available). The different Mπ,min entries correspond to the different
lattice spacings.

Collab. Ref. Nf L [fm] Mπ,minL Description

FNAL/MILC 14A [14] 2+1+1 2.38-4.83,
2.90-5.82,
2.95-5.62,
2.94-5.44

7.6, 7, 4.9,
3.9

3 values of L (2.9, 3.9 and 4.9 fm)
at mπ = 220 MeV and a = 0.12
fm.

ETM 13F
ETM 14E

[27, 229] 2+1+1 2.13/2.84,
1.96/2.61,
2.97

3.5, 3.2, 3.2 The comparison of two different
volumes at the two largest lattice
spacings indicates that FV effects
are below the statistical errors.

FNAL/MILC 12B
FNAL/MILC 13

[419, 420] 2+1+1 2.4/4.8,
2.88/5.76,
2.88/5.76,
2.88/5.76

7.6, 7,
4.9, 3.9

FV errors estimated in χPT at
NLO and, in FNAL/MILC 12B,
by analyzing otherwise identi-
cal ensembles with three different
spatial sizes at a = 0.12 fm and
ml/ms = 0.1.

Table 109: Finite volume effects in Nf = 2 + 1 + 1 determinations of the D and Ds meson
decay constants. Each L-entry corresponds to a different lattice spacing, with multiple spatial
volumes at some lattice spacings. For actions with multiple species of pions, the RMS masses
are used (where available).
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Collab. Ref. Nf L [fm] Mπ,minL Description

χQCD 14 [17] 2+1 2.7, 2.7 4.6, 4.1 No explicit discussion of FV ef-
fects.

HPQCD 12A [47] 2+1 2.4/2.8,
2.4/3.4

6.7, 4.2 FV errors estimated by compar-
ing finite and infinite volume
χPT.

FNAL/MILC 11 [48] 2+1 2.4, 2.4/2.88,
2.52/3.6

6.9, 6.4, 5.8 FV errors estimated using finite-
volume χPT.

PACS-CS 11 [421] 2+1 2.88 2.2 (before
reweight-
ing)

No discussion of FV effects.

HPQCD 10A [49] 2+1 2.4,
2.4/2.88/3.36,
2.52, 2.88, 2.82

6.6, 6.7,
4.2, 3.8, 4.8

FV errors estimated using finite-
vs infinite-volume χPT.

HPQCD/UKQCD 07 [28] 2+1 2.4, 2.4/2.88,
2.52

6.6, 6.7, 4.2 FV errors estimated using finite-
vs infinite-volume χPT.

FNAL/MILC 05 [422] 2+1 2.8, 2.9, 2.5 > 6, 6.4, 5 FV errors estimated to be 1.5%
or less from χPT.

Table 110: Finite volume effects in Nf = 2+ 1 determinations of the D and Ds meson decay
constants. Each L-entry corresponds to a different lattice spacing, with multiple spatial
volumes at some lattice spacings. For actions with multiple species of pions, the RMS masses
are used (where available).

Collab. Ref. Nf L [fm] Mπ,minL Description

TWQCD 14 [423] 2 1.5 1.92 No explicit discussion of FV ef-
fects.

ALPHA 13B [176] 2 2.1/3.1/4.2,
2.3/3.1

4, 4.2 No explicit discussion of FV ef-
fects, but mπL > 4 always.

ETM 09
ETM 11A
ETM 13B

[20, 32, 181] 2 2.4, 2.0/2.7,
2.1, 2.6

5, 3.7, 3.3,
3.5

FV errors are found to be neg-
ligible by comparing results at
mπL = 3.3 and mπL = 4.3 for
mπ ≃ 310 MeV.

Table 111: Finite volume effects in Nf = 2 determinations of the D and Ds meson decay
constants. Each L-entry corresponds to a different lattice spacing, with multiple spatial
volumes at some lattice spacings. For actions with multiple species of pions, the RMS masses
are used (where available).

286



Collab. Ref. Nf a [fm] Continuum extrapolation Scale Setting

FNAL/MILC 14A [14] 2+1+1 0.15,
0.12,
0.09,
0.06

Interpolations around the
physical light masses used
to fix the ratio of quark
masses. Subsequent chiral
and continuum extrapola-
tions for the charm decay
constants performed sim-
ulatenously using different
NLO HMrASχPT fits.

Relative scale through
F4ps, the decay constant
at valence masses = 0.4
ms and physical sea-
quark masses. Abso-
lute scale set through
fπ ; the uncertainty is
propagated into the fi-
nal error.

ETM 13F
ETM 14E

[27, 229] 2+1+1 0.09,
0.08,
0.06

Chiral and continuum ex-
trapolations performed si-
multaneously by adding an
O(a2) term to the chiral
fits.

Relative scale set
through Mc′s′ , the mass
of a fictitious meson
made of valence quarks
of mass r0ms′ = 0.22 and
r0mc′ = 2.4. Absoulte
scale through fπ.

FNAL/MILC 12B
FNAL/MILC 13

[419, 420] 2+1+1 0.15,
0.12,
0.09,
0.06

Chiral and continuum ex-
trapolations performed si-
multaneously. Central val-
ues produced using a fit
function quadratic in a2

and linear in the sea quark
mass. In FNAL/MILC 13
terms of O(a4) are in-
cluded.

Absolute scale set
through fπ; the uncer-
tainty is propagated
into the final error.

Table 112: Lattice spacings and description of actions used in Nf = 2+1+ 1 determinations
of the D and Ds meson decay constants.
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Collab. Ref. Nf a [fm] Continuum extrapolation Scale Setting

χQCD 14 [17] 2+1 0.113,
0.085

Chiral and continuum ex-
trapolations performed in
global fits including linear
terms in ml and terms up
to O(a2) and O(a4m4

c).

Relative scale set
through r0, fixed to-
gether with the charm
and strange quark
masses using mDs , mD∗

s

amd mJ/ψ as inputs.

HPQCD 12A [47] 2+1 0.12,
0.09

Chiral and continuum
extrapolations peformed
simultaneously using
PQHMχPT augmentd
by a dependent terms:
c0(amc)

2 + c1(amc)
4.

Relative scale set
through r1; absolute
scale from fπ , fK and
the Υ splitting. Uncer-
tainties from both r1
and r1/a propagated.

FNAL/MILC 11 [48] 2+1 0.15,
0.12,
0.09

Chiral and continuum ex-
trapolations peformed si-
multaneously using one-
loop HMχPT for rooted
staggered quarks. Effects
of hyperfine and flavour
splittings are also included.

Relative scale set
through r1 =
0.3117(22). The er-
ror in r1 comes from
the spread of different
absolute scale determi-
nations using fπ , fK
and the Υ splitting.

PACS-CS 11 [421] 2+1 0.09 Cutoff effects from the
heavy-quark action esti-
mated by naive power
counting to be at the per-
cent level.

Scale set through mΩ.

HPQCD 10A [49] 2+1 0.15,
0.12,
0.09,
0.06,
0.044

Chiral and continuum ex-
trapolations performed si-
multaneously. Polynomials
up to am8

c are kept (even
powers only).

See the discussion for
HPQCD 12A.

HPQCD/UKQCD 07 [28] 2+1 0.15,
0.12,
0.09

Combined chiral and
continuum extrapolations
using HMχPT at NLO
augmented by second and
third-order polynomial
terms in mq and terms up
to a4.

Scale set through r1
obtained from the Υ
spectrum using the
non-relativistic QCD
action for b quarks.
Uncertainty propagated
among the systematics.

FNAL/MILC 05 [422] 2+1 0.175,
0.121,
0.086

Most light-quark cutoff ef-
fects are removed through
NLO HMχPT for rooted
staggered quarks. Contin-
uum values are then ob-
tained by averaging the
a ≈ 0.12 and a ≈ 0.09 fm
results.

Scale set through r1 ob-
tained from the Υ spec-
trum using the non-
relativistic QCD action
for b quarks.

Table 113: Lattice spacings and description of actions used in Nf = 2 + 1 determinations of
the D and Ds meson decay constants.
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Collab. Ref. Nf a [fm] Continuum extrapolation Scale Setting

TWQCD 14 [423] 2 0.061 Uncertainties associated
to scale setting and
discretization effects esti-
mated by performig the
chiral fits once in physical
and once in lattice units
(≈ 2 MeV on fDs).

Scale set through the
Wilson flow and r0 set
to 0.49 fm.

ALPHA 13B [176] 2 0.065,
0.048

Linear fits (in m2
π and in

a2) and partially quenched
HMχPT functional forms,
including terms linear in
a2, are used in the com-
bined chiral/continuum ex-
trapolation.

Scale set through fK .

ETM 09
ETM 11A
ETM 13B

[20, 32, 181] 2 0.10,
0.085,
0.065,
0.054

NLO SU(2) HMχPT sup-
plemented by terms lin-
ear in a2 and in mDa

2

is used in the combined
chiral/continuum extrapo-
lation.

Scale set through fπ.

Table 114: Lattice spacings and description of actions used in Nf = 2 determinations of the
D and Ds meson decay constants.
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Collab. Ref. Nf Ren. Description

FNAL/MILC 14A [14] 2+1+1 − The axial current is absolutely normalized.

ETM 13F, 14E [27, 229] 2+1+1 − The axial current is absolutely normalized.

FNAL/MILC 12B, 13 [419, 420] 2+1+1 − The axial current is absolutely normalized.

χQCD 14 [17] 2+1 RI The decay constant is extracted from an exact
lattice Ward identity and from the NP renormal-
ized axial current.

HPQCD 12A [47] 2+1 − The axial current is absolutely normalized.

FNAL/MILC 11 [48] 2+1 mNPR Two-loop and higher-order perturbative trunca-
tion errors estimated to be the full size of the
one-loop term.

PACS-CS 11 [421] 2+1 PT1ℓ+NP Mass dependent part of the renormalization con-
stant of the axial current computed at one-loop;
the NP contribution is added in the chiral limit.

HPQCD 10A [49] 2+1 − The axial current is absolutely normalized.

HPQCD/UKQCD 07 [28] 2+1 − The axial current is absolutely normalized.

FNAL/MILC 05 [422] 2+1 mNPR Errors due to higher order corrections in the per-
turbative part are estimated to be 1.3%.

TWQCD 14 [423] 2 − The decay constant is extracted from an exact
lattice Ward identity.

ALPHA 13B [176] 2 SF NP renormalization and improvement of the ax-
ial current (am terms included at 1-loop).

ETM 09, 11A, 13B [20, 32, 181] 2 − The axial current is absolutely normalized.

Table 115: Operator renormalization in determinations of the D and Ds meson decay con-
stants.
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Collab. Ref. Nf Action Description

FNAL/MILC 14A [14] 2+1+1 HISQ (on HISQ) 0.22 < amc < 0.84. Discretization errors
estimated to be ≈ 1 MeV using the spread
of 108 different chiral/continuum fits (for
example by including or not some NNLO
discretization effects in HMrASχPT).

ETM 13F, 14E [27, 229] 2+1+1 tmWil 0.15<∼ amc
<∼ 0.20.

FNAL/MILC 12B
FNAL/MILC 13

[419, 420] 2+1+1 HISQ (on HISQ) 0.29 < amc < 0.7. Discretization er-
rors estimated using different fit ansätze
to be ≈ 1.5% for fD(s)

.

Table 116: Heavy-quark treatment in Nf = 2+ 1+ 1 determinations of the D and Ds meson
decay constants.

Collab. Ref. Nf Action Description

χQCD 14 [17] 2+1 Overlap on DW 0.29 < amc < 0.75. Heavy-quark
discretization errors estimated by includ-
ing (amc)

2 and amc)
4 terms in the chi-

ral/continuum extrapolation.

HPQCD 12A [47] 2+1 HISQ 0.41 < amc < 0.62. Heavy-quark dis-
cretization errors estimated using different
fit ansätze to be ≈ 1.2%.

FNAL/MILC 11 [48] 2+1 Fermilab Discretization errors from charm quark es-
timated through a combination of Heavy
Quark and Symanzik Effective Theories to
be around 3% for fD(s)

and negligible for
the ratio.

PACS-CS 11 [421] 2+1 Tsukuba amc ≈ 0.57. Heavy-quark discretization
errors estimated to be at the percent level
by power counting.

HPQCD 10A [49] 2+1 HISQ 0.193 < amc < 0.825. Heavy-quark dis-
cretization errors estimated by changing
the fit-inputs to be ≈ 0.4%.

HPQCD/UKQCD 07 [28] 2+1 HISQ 0.43 < amc < 0.85. Heavy-quark dis-
cretization errors estimated from the chi-
ral/continuum fits to be ≈ 0.5%.

FNAL/MILC 05 [422] 2+1 Fermilab Discretization errors from charm quark es-
timated via heavy-quark power-counting
at 4.2% for fD(s)

and 0.5% for the ratio.

Table 117: Heavy-quark treatment in Nf = 2 + 1 determinations of the D and Ds meson
decay constants.
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Collab. Ref. Nf Action Description

TWQCD 14 [423] 2 DW amc ≤ 0.55. Optimal Domain Wall
fermions [790] preserving chiral symmetry.

ALPHA 13B [176] 2 npSW amc ≤ 0.28. Axial current non-
perturbatively improved (O(am) at 1-
loop).

ETM 09, 11A,
13B

[20, 32, 181] 2 tmWil 0.16 < amc < 0.23. D(amin) ≈ 5% in
ETM 09.

Table 118: Heavy-quark treatment in Nf = 2 determinations of the D and Ds meson decay
constants.
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B.5.2 D → πℓν and D → Kℓν form factors

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

HPQCD 10B, 11 [50, 51] 2+1 0.09,
0.12

Modified z-expansion fit
combining the continuum
and chiral extrapolations
and the momentum trans-
fer dependence. Leading
discretization errors from
(amc)

n charm-mass effects
(see Table 123). Sub-
leading (aE)n discretiza-
tion corrections estimated
to be 1.0% for both D → π
and D → K.

Relative scale r1/a set
from the static-quark po-
tential. Absolute scale r1
set from several quanti-
ties including fπ , fK , and
Υ 2S − 1S splitting c.f.
HPQCD 09B [249]. Scale
uncertainty estimated to
be 0.7% in D → π and and
0.2% in D → K.

FNAL/MILC 04 [440] 2+1 0.12 Discretization effects from
light-quark sector esti-
mated to be 4% by power
counting. Discretization
effects from final-state
pion and kaon energies
estimated to be 5%.

Scale set through Υ 2S −
1S splitting c.f. HPQCD
03 [791]. Error in a−1 es-
timated to be 1.2%, but
scale error in dimensionless
form factor negligible com-
pared to other uncertain-
ties.

ETM 11B [430] 2 0.068,
0.086,
0.102

Discretization errors esti-
mated to be 5% for D →
π and 3% for D → K
from comparison of results
in the continuum limit to
those at the finest lattice
spacing.

Scale set through fπ
c.f. ETM 07A [83] and
ETM 09C [36].

Table 119: Continuum extrapolations/estimation of lattice artifacts in determinations of the
D → πℓν and D → Kℓν form factors.
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Collab. Ref. Nf Mπ,min [MeV] Description

HPQCD 10B, 11 [50, 51] 2+1 390, 390 Modified z-expansion fit combining the
continuum and chiral extrapolations and
the momentum transfer dependence. Con-
tributions to error budget from light va-
lence and sea-quark mass dependence esti-
mated to be 2.0% for D → π and 1.0% for
D → K.

FNAL/MILC 04 [440] 2+1 510 Fit to SχPT, combined with the Becirevic-
Kaidalov ansatz for the momentum trans-
fer dependence of form factors. Error es-
timated to be 3% for D → π and 2% for
D → K by comparing fits with and with-
out one extra analytic term.

ETM 11B [430] 2 270 SU(2) tmHMχPT plus Becirevic-Kaidalov
ansatz for fits to the momentum trans-
fer dependence of form factors. Fit un-
certainty estimated to be 7% for D → π
and 5% for D → K by considering fits
with and without NNLO corrections of
order O(m4

π) and/or higher-order terms
through E5, and by excluding data with
E ∼> 1 GeV.

Table 120: Chiral extrapolation/minimum pion mass in determinations of the D → πℓν and
D → Kℓν form factors. For actions with multiple species of pions, masses quoted are the
RMS pion masses. The different Mπ,min entries correspond to the different lattice spacings.

Collab. Ref. Nf L [fm] Mπ,minL Description

HPQCD 10B, 11 [50, 51] 2+1 2.4, 2.4/2.9 & 3.8 Finite volume effects estimated to
be 0.04% for D → π and 0.01%
for D → K by comparing the
“m2

πlog(m
2
π)” term in infinite and

finite volume.

FNAL/MILC 04 [440] 2+1 2.4/2.9 & 3.8 No explicit estimate of FV error,
but expected to be small for sim-
ulation masses and volumes.

ETM 11B [430] 2 2.2, 2.1/2.8,
2.4

& 3.7 Finite volume uncertainty esti-
mated to be at most 2% by con-
sidering fits with and without the
lightest pion mass point at mπL ≈
3.7.

Table 121: Finite volume effects in determinations of the D → πℓν and D → Kℓν form
factors. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes
at some lattice spacings. For actions with multiple species of pions, the lightest pion masses
are quoted.

294



Collab. Ref. Nf Ren. Description

HPQCD 10B, 11 [50, 51] 2+1 — Form factor extracted from absolutely
normalized scalar-current matrix element
then using kinematic constraint at zero
momentum-transfer f+(0) = f0(0).

FNAL/MILC 04 [440] 2+1 mNPR Size of two-loop correction to current
renormalization factor assumed to be neg-
ligible.

ETM 11B [430] 2 — Form factors extracted from double ratios
insensitive to current normalization.

Table 122: Operator renormalization in determinations of the D → πℓν and D → Kℓν form
factors.

Collab. Ref. Nf Action Description

HPQCD 10B, 11 [50, 51] 2+1 HISQ Bare charm-quark mass amc ∼ 0.41–0.63.
Errors of (amc)

n estimated within modi-
fied z-expansion to be 1.4% for D → K
and 2.0% for D → π. Consistent with
expected size of dominant one-loop cut-
off effects on the finest lattice spacing,
O(αS(amc)

2(v/c)) ∼ 1.6%.

FNAL/MILC 04 [440] 2+1 Fermilab Discretization errors from charm quark es-
timated via heavy-quark power-counting
to be 7%.

ETM 11B [430] 2 tmWil Bare charm-quark mass amc ∼ 0.17–0.30.
Expected size of O((amc)

2) cutoff effects
on the finest lattice spacing consistent with
quoted 5% continuum-extrapolation un-
certainty.

Table 123: Heavy quark treatment in determinations of the D → πℓν and D → Kℓν form
factors.
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B.6 Notes to section 8 on B-meson decay constants and mixing parameters

In the following, we summarize the characteristics (lattice actions, pion masses, lattice spac-
ings, etc.) of the recent Nf = 2 + 1 + 1, Nf = 2 + 1 and Nf = 2 runs. We also provide
brief descriptions of how systematic errors are estimated by the various authors. We focus on
calculations with either preliminary or published quantitative results.

B.6.1 B(s)-meson decay constants

Collab. Ref. Nf Mπ,min [MeV] Description

ETM 13E [455] 2+1+1 245, 239,
211

Mπ,min refers to the charged pions. Linear and
NLO (full QCD) HMχPT supplemented by an a2

term is used for the SU(3) breaking ratios.The
chiral fit error is estimated from the difference be-
tween the NLO HMχPT and linear fits with half
the difference used as estimate of the systematic
error. The ratio zs is fit using just linear HMχPT
supplemented by an a2 term.

HPQCD 13 [52] 2+1+1 310, 294,
173

Two or three pion masses at each lattice spacing,
one each with a physical mass GB pion. NLO
(full QCD) HMχPT supplemented by generic a2

and a4 terms is used to interpolate to the physical
pion mass.

Table 124: Chiral extrapolation/minimum pion mass in determinations of the B and Bs

meson decay constants for Nf = 2 + 1 + 1 simulations. For actions with multiple species
of pions, masses quoted are the RMS pion masses (where available). The different Mπ,min

entries correspond to the different lattice spacings.
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Collab. Ref. Nf Mπ,min [MeV] Description

RBC/UKQCD 14
RBC/UKQCD 13

[53]
[456]

2+1 329, 289 Two or three light quark masses per lattice
spacing. In RBC/UKQCD 14, three to four
light valence-quark masses that are heavier than
the sea-quark masses are also employed to have
partially-quenched points. NLO SU(2) HMχPT
is used. In RBC/UKQCD 14, the fit with only
the unitary points is the central analysis proce-
dure, and the systematic errors in the conbined
chiral-continuum extrapolation are estimated to
be from 3.1% to 5.9% in the decay constants and
the SU(3) breaking ratios.

RBC/UKQCD 14A [54] 2+1 327, 289 Two or three light quark masses per lattice spac-
ing. NLO SU(2) HMχPT is used in the com-
bined chiral-continuum extrapolation. The sys-
tematic errors in this extrapolation are estimated
to be 3.54% for fB, 1.98% for fBs , and 2.66% for
fBs/fB .

HPQCD 12 [55] 2+1 390, 390 Two or three pion masses at each lattice spac-
ing. NLO (full QCD) HMχPT supplemented by
NNLO analytic terms and generic a2 and a4 terms
is used. The systematic error is estimated by vary-
ing the fit Ansatz, in particular for the NNLO an-
alytic terms and the a2n terms.

HPQCD 11A [56] 2+1 570, 450,
390, 330,
330

One light sea quark mass only at each lattice spac-
ing. The sea-quark mass dependence is assumed
to be negligible, based on the calculation of fDs in
Ref. [49], where the sea quark extrapolation error
is estimated as 0.34%.

FNAL/MILC 11 [48] 2+1 570, 440,
320

Three to five sea-quark masses per lattice spacing,
and 9− 12 valence light quark masses per ensem-
ble. NLO partially quenched HMrSχPT including
1/m terms and supplemented by NNLO analytic
and α2

sa
2 terms is used. The systematic error is

estimated by varying the fit Ansatz, in particular
the NNLO analytic terms and the chiral scale.

RBC/UKQCD 10C [463] 2+1 430 Three light quark masses at one lattice spacing.
NLO SU(2) χPT is used. The systematic error is
estimated from the difference between NLO χPT
and linear fits as ∼ 7%.

HPQCD 09 [59] 2+1 440, 400 Four or two pion masses per lattice spacing. NLO
(full QCD) HMrSχPT supplemented by NNLO
analytic terms and αsa

2, a4 terms is used. The
chiral fit error is estimated by varying the fit
Ansatz, in particular, by adding or removing
NNLO and discretization terms.

Table 125: Chiral extrapolation/minimum pion mass in determinations of theB andBs meson
decay constants for Nf = 2+1 simulations. For actions with multiple species of pions, masses
quoted are the RMS pion masses (where available). The different Mπ,min entries correspond
to the different lattice spacings.
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Collab. Ref. Nf Mπ,min [MeV] Description

ALPHA 14
ALPHA 13
ALPHA 12A

[57]
[457]
[458]

2 280, 190,
270

LO and NLO HMχPT supplemented by a term
linear in a2 are used. In ALPHA 13 and ALPHA
12A, the final result is an average between LO and
NLO with half the difference used as estimate of
the systematic error. In ALPHA 14, the NLO
fit is used as the central analysis procedure, and
the LO results are used to estimate the systematic
errors (0.9% MeV for fBs , 1.1% for fB , and 1.6%
for fBs/fB).

ETM 13B, 13C
ETM 12B
ETM 11A

[20, 58]
[459]
[181]

2 410, 275,
300, 270

Mπ,min refers to the charged pions. Linear and
NLO (full QCD) HMχPT supplemented by an a2

term is used.The chiral fit error is estimated from
the difference between the NLO HMχPT and lin-
ear fits with half the difference used as estimate
of the systematic error. For the static limit cal-
culation in ETM 11A, Φstat

s is extrapolated as-
suming a constant in light quark mass. The ra-
tio Φstat

s /Φstat
ℓ is fit using three different chiral fit

forms (NLO HMχPT, linear, and quadratic) to
estimate the chiral fir error.

ALPHA 11 [460] 2 331, 268,
267

Linear and NLO (full QCD) HMχPT supple-
mented by a term linear in a2 are used. The final
result is an average between linear and NLO fits
with half the difference used as estimate of the
systematic error.

ETM 09D [461] 2 410, 275,
300

Mπ,min refers to the charged pions. Linear and
NLO (full QCD) HMχPT is used. The final result
given by the average of NLO HMChiPT and linear
Ansätze ± half the difference).

Table 126: Chiral extrapolation/minimum pion mass in determinations of theB andBs meson
decay constantsfor Nf = 2 simulations. For actions with multiple species of pions, masses
quoted are the RMS pion masses (where available). The different Mπ,min entries correspond
to the different lattice spacings.
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Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 13E [455] 2+1+1 2.84/2.13,
2.61/1.96,
2.97

3.5, 3.2,
3.2

FV error estimated how?

HPQCD 13 [52] 2+1+1 2.4/3.5/4.7,
2.9/3.8/5.8,
2.8/5.6

7.4, 8.6,
4.9

The analysis uses finite-volume
χPT.

RBC/UKQCD 14
RBC/UKQCD 13

[53]
[456]

2+1 2.64, 2.75 4.4, 4.0 In RBC/UKQCD 14, finite-volume
effects are estimated to be neglegi-
ble for fBs , 0.4% for fB0 , 0.5% for
fB+ and the SU(3) breaking ra-
tios.

RBC/UKQCD 14A [54] 2+1 2.74, 2.76 4.5, 4.0 Finite-volume effects are estimated
to be neglegible for fBs , 0.82% for
fB , and 1% for fBs/fB .

HPQCD 12 [55] 2+1 2.4/2.9,
2.5/3.6

5.7, 7.1 FV error is taken from Ref. [28]
for HPQCD’s D meson analysis,
where it was estimated using finite
volume χPT .

HPQCD 11A [56] 2+1 2.4, 2.4, 2.5,
2.9, 2.9

6.9, 5.5,
4.9, 4.8,
4.8

FV error is assumed to negligible.

FNAL/MILC 11 [48] 2+1 2.4, 2.4/2.9,
2.5/3.6

6.9, 6.4,
5.8

FV error is estimated using finite-
volume χPT.

RBC/UKQCD 10C [463] 2+1 1.8 3.9 FV error estimated using finite-
volume χPT to be 1% for SU(3)
breaking ratios.

HPQCD 09 [59] 2+1 2.4/2.9, 2.5 6.5, 5.1 FV error is assumed to negligible.

ALPHA 14
ALPHA 13
ALPHA 12A
ALPHA 11

[57]
[457]
[458]
[460]

2 2.4/3.6,
2.1/3.1/4.2,
2.3/3.1

5.2, 4.1,
4.2

No explicit estimate of FV errors,
but expected to be much smaller
than other uncertainties.

ETM 13B, 13C
ETM 12B
ETM 11A

[20, 58]
[459]
[181]

2 2.4, 2.0/2.7,
2.1, 1.7/2.6

5.0, 3.7,
3.3, 3.5

FV errors are found to be negligi-
ble by comparing results atmπL =
3.3 and mπL = 4.3 for mπ ≃ 310
MeV.

Table 127: Finite volume effects in determinations of the B and Bs meson decay constants.
Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes at some
lattice spacings.
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Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

ETM 13E [455] 2+1+1 0.89,
0.82,
0.62

Combined continuum and chi-
ral extrapolation, linear in a2.

Scale set from fπ. Scale set-
ting uncertainty included in
combined statistical and sys-
tematic error.

HPQCD 13 [52] 2+1+1 0.15,
0.12,
0.09

Combined continuum and chi-
ral extrapolation. Continuum
extrapolation errors estimated
to be 0.7%.

Scale set from Υ(2S-1S) split-
ting, see Ref. [753]. Scale un-
certainty included in statisti-
cal error.

Table 128: Continuum extrapolations/estimation of lattice artifacts in determinations of the
B and Bs meson decay constants for Nf = 2 + 1 + 1 simulations.

300



Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

RBC/UKQCD 14
RBC/UKQCD 13

[53]
[456]

2+1 0.11,
0.086

Combined continuum and chi-
ral extrapolation with linear in
a2 term. In RBC/UKQCD 14,
the systematic errors from this
procedure are estimated to be
from 3.1% to 5.9% in the de-
cay constants and the SU(3)-
breaking ratios.

Scale set by the Ω baryon
mass. In RBC/UKQCD 14,
scale uncertainty estimated to
be 1.5% in the decay con-
stants, and 0.1% in the SU(3)-
breaking ratios.

RBC/UKQCD 14A [54] 2+1 0.11,
0.086

Chiral-continuum extrapola-
tion with linear in a2 term is
employed, with the systematic
errors estimated to be from
1.98% to 3.54% in the decay
constants and fBs/fB . Dis-
cretization errors at O(αsa)
in the static-light system are
estimated to be 1% in the
decay constants, and 0.2% in
fBs/fB .

Scale set by the Ω baryon
mass.

HPQCD 12 [55] 2+1 0.12,
0.09

Combined continuum and chi-
ral extrapolation. Continuum
extrapolation errors estimated
to be 0.9%.

Relative scale r1/a from the
static-quark potential. Ab-
solute scale r1 from fπ, fK ,
and Υ(2S-1S) splitting. Scale
uncertainty estimated to be
1.1%.

HPQCD 11A [56] 2+1 0.15,
0.12,
0.09,
0.06,
0.045

amQ ≈ 0.2 − 0.85. Com-
bined continuum and HQET
fit. Continuum extrapolation
error estimated by varying the
fit ansatz and the included
data points to be 0.63%. Dis-
cretization errors appear to de-
crease with increasing heavy-
meson mass.

Relative scale r1/a from the
static-quark potential. Ab-
solute scale r1 from fπ, fK ,
and Υ(2S-1S) splitting. Scale
uncertainty estimated to be
0.74%.

FNAL/MILC 11 [48] 2+1 0.15,
0.12,
0.09

Combined continuum and chi-
ral extrapolation. Continuum
extrapolation errors estimated
to be 1.3%.

Relative scale r1/a from the
static-quark potential. Ab-
solute scale r1 from fπ, fK ,
and Υ(2S-1S) splitting. Scale
uncertainty estimated to be
1 MeV.

RBC/UKQCD 10C [463] 2+1 0.11 One lattice spacing with dis-
cretization errors estimated by
power counting as 3%.

Scale set by the Ω baryon
mass. Combined scale and
mass tuning uncertainties on
fBs/fB estimated as 1%

HPQCD 09 [59] 2+1 0.12,
0.09

Combined continuum and chi-
ral extrapolation. Continuum
extrapolation errors estimated
to be 3%.

Relative scale r1/a from the
static-quark potential. Abso-
lute scale r1 from the Υ(2S-1S)
splitting. Scale uncertainty es-
timated to be 2.3%.

Table 129: Continuum extrapolations/estimation of lattice artifacts in determinations of the
B and Bs meson decay constants for Nf = 2 + 1 simulations.
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Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

ALPHA 14
ALPHA 13
ALPHA 12A
ALPHA 11

[57]
[457]
[458]
[460]

2 0.075,
0.065,
0.048

Combined continuum and chi-
ral extrapolation with linear in
a2 term. Continuum extrap-
olation errors estimated to be
5 MeV in ALPHA 11. The
continuum extrapolation with
a term linear in a also inver-
stigated in ALPHA 14, and
within the statistical error no
discernable difference was ob-
served.

Relative scale set from r0. Ab-
solute scale set from fK . Scale
setting uncertainty included in
combined statistical and ex-
trapolation error.

ETM 13B, 13C
ETM 12B
ETM 11A

[20, 58]
[459]
[181]

2 0.098,
0.085,
0.067,
0.054

Combined continuum and chi-
ral extrapolation, with a term
linear in a2. ETM 12 and 13
include a heavier masses than
ETM 11A. Discretization error
included in combined statisti-
cal and systematic error, esti-
mated by dropping the data at
the coarsest lattice spacing as
∼ 0.5− 1%.

Scale set from fπ. Scale set-
ting uncertainty included in
combined statistical and sys-
tematic error.

ETM 09D [461] 2 0.098,
0.085,
0.067

Combined continuum and chi-
ral extrapolation with a term
linear in a2.

Scale set from fπ. Scale set-
ting uncertainty included in
combined statistical and sys-
tematic error.

Table 130: Continuum extrapolations/estimation of lattice artifacts in determinations of the
B and Bs meson decay constants for Nf = 2 simulations.
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Collab. Ref. Nf Ren. Description

ETM 13E [455] 2+1+1 –, PT1ℓ The current used for the relativistic decay constants is
absolutely normalized. The ratio is constructed from
the relativistic decay constant data and the heavy-
quark pole masses. Ratios of pole-to-MS mass con-
version factors are included at NLO in continuum per-
turbation theory.

HPQCD 13 [52] 2+1+1 PT1ℓ The NRQD effective current is matched through
O(1/m) and renormalized using one-loop PT. In-
cluded are all terms though O(αs), O(αs a),
O(ΛQCD/M), O(αs/aM) , O(αs ΛQCD/M). The
dominant error is due unknown O(α2

s) contributions
to the current renormalization. The perturbation the-
ory used in this work is the same as in HPQCD 09 and
12, but is rearranged to match the mNPR method.
Using the fact that the heavy-heavy temporal vector
current is normalized, and that the light-light HISQ
vector current receives a small one-loop correction,
the error is estimated as ∼ 1.4%.

Table 131: Description of the renormalization/matching procedure adopted in the determi-
nations of the B and Bs meson decay constants for Nf = 2 + 1 + 1 simulations.
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Collab. Ref. Nf Ren. Description

RBC/UKQCD 14
RBC/UKQCD 13

[53]
[456]

2+1 mNPR In RBC/UKQCD 14, the error is dominated by the
perturbative aspect, and is estimated to be 1.7% for
the decay constants by taking the full size of the one-
loop correction for the fine lattice.

RBC/UKQCD 14A [54] 2+1 PT1ℓ A two-step matching procedure is employed, first
from QCD to HQET in the continuum at mb, then to
HQET on the lattice at a−1 with O(pa) and O(mqa)
errors included. Both matching steps are accurate
to one-loop, and the running between mb and a−1 is
performed at two-loop accordingly. The error is esti-
mated using a power-counting argument to be 6% for
the decay constants.

HPQCD 12/09 [55, 59] 2+1 PT1ℓ The NRQD effective current is matched through
O(1/m) and renormalized using one-loop PT. In-
cluded are all terms though O(αs), O(αs a),
O(ΛQCD/M), O(αs/aM) , O(αs ΛQCD/M). The
dominant error is due unknown O(α2

s) contributions
to the current renormalization. The authors take the
perturbative error as ∼ 2ρ0 α

2
s, where ρ0 is the coef-

ficient of the one-loop correction to the leading term,
which yields an error of ∼ 4%.

HPQCD 11A [56] 2+1 – This work uses PCAC together with an absolutely
normalized current.

FNAL/MILC 11 [48] 2+1 mNPR The authors’ estimate of the perturbative errors is
comparable in size to the actual one-loop corrections.

RBC/UKQCD 10C [463] 2+1 PT1ℓ The static-light current is matched through
O(αsa, αs) and renormalized using one-loop tad-
pole improved PT. For massless light quarks, the
renormalization factors cancel in the ratio of decay
constants.

Table 132: Description of the renormalization/matching procedure adopted in the determi-
nations of the B and Bs meson decay constants for Nf = 2 + 1 simulations.
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Collab. Ref. Nf Ren. Description

ALPHA 14
ALPHA 13
ALPHA 12A
ALPHA 11

[57]
[457]
[458]
[460]

2 NPR The authors use the Schrödinger functional for the
NP matching.

ETM 13B, 13C
ETM 12B
ETM 11A

[20, 58]
[459]
[181]

2 –, PT1ℓ The current used for the relativistic decay constants
is absolutely normalized. Interpolation method:

The static limit current renormalization is calculated
in one-loop mean field improved perturbation theory,
there half the correction is used to estimate the error.
Ratio method: The ratio is constructed from the
relativistic decay constant data and the heavy-quark
pole masses. Ratios of pole-to-MS mass conversion
factors are included at NLO in continuum perturba-
tion theory.

Table 133: Description of the renormalization/matching procedure adopted in the determi-
nations of the B and Bs meson decay constants for Nf = 2 simulations.

Collab. Ref. Nf Action Description

ETM 13E [455] 2+1+1 tmWil The estimate of the discretization effects is described
in the continuum table. The relativistic data are
matched to HQET using NLO continuum PT in an
intermediate step, and converted back to QCD at the
end. The error due to HQET matching (estimated
by replacing the NLO expressions with LO) is a very
small contribution to the systematic error due to the
heavy quark mass dependence.

HPQCD 13 [52] 2+1+1 NRQCD The leading HQ truncation effects are of
O(Λ2

QCD/m
2
h) and O(α2

sΛQCD/mh), and the er-
rors are at the subpercentage level.

Table 134: Heavy quark treatment in Nf = 2+ 1+ 1 determinations of the B and Bs meson
decay constants.

305



Collab. Ref. Nf Action Description

RBC/UKQCD 14
RBC/UKQCD 13

[53]
[456]

2+1 RHQ In RBC/UKQCD 14, the heavy-quark discretization
errors are estimated to be 1.7% in the decay con-
stants, and 0.3% in the SU(3) breaking ratios.

RBC/UKQCD 14A [54] 2+1 Static Static-limit computation, with O(ΛQCD/mh) errors
estimated to be 10% for the decay constants, and
2.2% for fBs/fB .

HPQCD 12 [55] 2+1 NRQCD HQ truncation effects estimated as in HPQCD 09 to
be 1.0%

HPQCD 11A [56] 2+1 HISQ The analysis uses a combined continuum and 1/m
extrapolation.

FNAL/MILC 11 [48] 2+1 Fermilab HQ discretization effects are included in the combined
chiral and continuum fits, and are estimated by vary-
ing the fit Ansatz and excluding the data at the coars-
est lattice spacing to be ∼ 2%, consistent with simple
power counting estimates but larger than the residual
discretization errors observed in the data.

RBC/UKQCD 10C [463] 2+1 Static Truncation effects of O(1/mh) on the SU(3) breaking
ratios are estimated by power counting to be 2%.

HPQCD 09 [59] 2+1 NRQCD The leading HQ truncation effects are of
O(αsΛQCD/mh) due to the tree-level coefficient
of the σ · B term. The error is estimated by calcu-
lating the B∗ −B hyperfine splitting and comparing
with experiment as 1%.

ALPHA 14
ALPHA 13
ALPHA 12A
ALPHA 11

[57]
[457]
[458]
[460]

2 HQET NP improved through O(1/mh). Truncation errors
of O

[

(ΛQCD/mh)
2
]

are not included.

ETM 13B, 13C
ETM 12B
ETM 11A

[20, 58]
[459]
[181]

2 tmWil The estimate of the discretization effects is described
in the continuum table. In both methods the rela-
tivistic data are matched to HQET using NLO con-
tinuum PT in an intermediate step, and converted
back to QCD at the end. The error due to HQET
matching (estimated by replacing the NLO expres-
sions with LO) is a very small contribution to the
systematic error due to the heavy quark mass depen-
dence. The variation observed from adding heavier
masses to their data and/or including 1/m3

h terms is
0.4− 1.3%.

Table 135: Heavy quark treatment in Nf = 2 + 1 and Nf = 2 determinations of the B and
Bs meson decay constants.
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B.6.2 B(s)-meson mixing matrix elements

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

RBC/UKQCD 14A [54] 2+1 0.11,
0.086

Combined continuum and chi-
ral extrapolation with SU(2)
NLO HMχPT and linear in
quark mass both with O(a2)
terms. The combined con-
tinuum and chiral extrapola-
tion uncertainty is estimated
as 2.55, 2.13 and 3.08% for
fB

√
BB , fBs

√

BBs and ξ re-
spectively.

Scale is set using the Ω− mass
as input [144]. The scale un-
certainty is estimated as 1.84,
1.86 and 0.05% for fB

√
BB ,

fBs

√

BBs and ξ respectively.

FNAL/MILC 12 [60] 2+1 0.12,
0.09

Combined continuum and chi-
ral extrapolation with NLO
rHMSχPT, NNLO analytic
and generic O(α2

sa
2, a4) terms.

Combined statistical, chiral
and light-quark discretization
error is estimated, by examin-
ing the variation with different
fit Ansätze to be 3.7% on ξ.

Relative scale r1/a is set via
static-quark potential. Abso-
lute scale r1 = 0.3117(22) fm
is determined [48] through av-
eraging the fπ input and the
estimate of HPQCD collabo-
ration [249]. The scale un-
certainty on ξ is estimated as
0.2%.

FNAL/MILC 11A [482] 2+1 0.12,
0.09,
0.06

Combined continuum and chi-
ral extrapolation with NLO
rHMSχPT, NNLO analytic
and and generic O(α2

sa
2, a4)

terms.

See above. The error in r1
yields a 3% uncertainty on
f2
BBB.

RBC/UKQCD 10C [463] 2+1 0.11 Only one lattice spacing is
used. Discretization error is
estimated to be 4% on ξ by
power counting.

Scale is set using the Ω− mass
as input [145].The error on ξ
due to the combined scale and
light quark mass uncertainties
is estimated as 1%.

HPQCD 09 [59] 2+1 0.12,
0.09

Combined continuum and chi-
ral extrapolation with NLO
rHMSχPT and NNLO ana-
lytic terms. Light-quark dis-
cretization error is estimated
as 3, 2 and 0.3% for fB

√
BB ,

fBs

√

BBs and ξ respectively.

Relative scale r1/a is set via
static-quark potential. Abso-
lute scale r1 = 0.321(5) fm
is determined through Υ mass
[462]. The error on fB

√
BB

due to the scale uncertainty is
estimated as 2.3%.

HPQCD 06A [483] 2+1 0.12 Only one lattice spacing is
used. Light-quark discretiza-
tion error on f2

Bs
BBs is esti-

mated as 4% by power count-
ing.

Scale is set using the Υ 2S−1S
splitting as input [462]. The
error on f2

BBB due to the
scale uncertainty is estimated
as 5%.

Table 136: Continuum extrapolations/estimation of lattice artifacts in determinations of the
neutral B-meson mixing matrix elements for Nf = 2 + 1 simulations.
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Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

ETM 13B [20] 2 0.098,
0.085,
0.067,
0.054

Combined chiral and contin-
uum extrapolation, with a
term linear in a2. Discretiza-
tion error is estimated by
omitting the coarsest lattice
as 0.5, 1.7, 1.3 and 1.0 %
for BBs , BB , BBs/BB and
ξ respectively. The heavy-
quark masses vary in the range
0.13<∼ amh

<∼ 0.85.

See below.

ETM 12A, 12B [459, 484] 2 0.098,
0.085,
0.067

Combined chiral and contin-
uum extrapolation, with a
term linear in a2. Discretiza-
tion error included in com-
bined statistical, chiral and
continuum extrapolation error
and estimated as 4.5%. The
heavy-quark masses vary in
the range 0.25<∼ amh

<∼ 0.6.

Relative scale r0/a set from
the static-quark potential.
Absolute scale set from fπ.
Scale setting uncertainty in-
cluded in combined statistical
and systematic error.

Table 137: Continuum extrapolations/estimation of lattice artifacts in determinations of the
neutral B-meson mixing matrix elements for Nf = 2 simulations.
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Collab. Ref. Nf Mπ,min [MeV] Description

RBC/UKQCD 14A [54] 2+1 327, 289 Combined continuum and chiral extrapola-
tion with SU(2) NLO HMχPT and linear
in quark mass both with O(a2) terms. The
chiral fit error is estimated from difference
between the NLO HMχPT and linear fits,
and further from eliminating the heaviest
ud quark mass point.

FNAL/MILC 12 [60] 2+1 440, 320 Combined continuum and chiral extrapola-
tion with NLO rHMSχPT and NNLO an-
alytic terms. See the entry in Table 136.
The omission of wrong-spin contributions
[792] in the HMrSχPT is treated as a sys-
tematic error and estimated to be 3.2% for
ξ.

FNAL/MILC 11A [482] 2+1 440, 320, 250 Combined continuum and chiral extrapola-
tion with NLO rHMSχPT and NNLO an-
alytic terms.

RBC/UKQCD 10C [463] 2+1 430 Linear fit matched with SU(2) NLO
HMχPT at the lightest ud mass point is
used as the preferred fit. Many different
fit Ansätze are considered. The system-
atic error is estimated from the difference
between the SU(2) HMχPT fit described
above and a linear fit.

HPQCD 09 [59] 2+1 440, 400 Combined continuum and chiral extrapola-
tion with NLO rHMSχPT and NNLO an-
alytic terms.

HPQCD 06A [483] 2+1 510 Two sea ud quark masses mud/ms = 0.25
and 0.5 are used to calculate the matrix el-
ement for Bs meson at the predetermined
value of the strange quark mass. No sig-
nificant sea quark mass dependence is ob-
served and the value at the lighter sea ud
mass is taken as the result.

ETM 13B
ETM 12A,12B

[20]
[459,
484]

2 410, 275, 300,
270

Mπ,min refers to the charged pions, where
270 MeV on the finest lattice only included
in ETM 13B. Linear and NLO (full QCD)
HMχPT supplemented by an a2 term is
used. The chiral fit error is estimated from
the difference between the NLO HMχPT
and linear fits.

Table 138: Chiral extrapolation/minimum pion mass in determinations of the neutral B-
meson mixing matrix elements. For actions with multiple species of pions, masses quoted
are the RMS pion masses (where available). The different Mπ,min entries correspond to the
different lattice spacings.
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Collab. Ref. Nf L [fm] Mπ,minL Description

RBC/UKQCD 14A [54] 2+1 2.74, 2.76 4.5, 4.0 FV error is estimated from SU(2)
χPT to be 0.76, 0, 1.07% for fB

√
BB ,

fBs

√

BBs and ξ respectively.

FNAL/MILC 12 [60] 2+1 2.4/2.9, 2.5 6.4, 5.1 FV error is estimated to be less than
0.1% for SU(3) breaking ratios from
FV HMrSχPT.

FNAL/MILC 11A [482] 2+1 2.4/2.9,
2.5/2.9/3.6,
3.8

6.4, 5.8, 4.9 FV error on fB
√
BB is estimated to

be less than 1%, which is inferred from
the study of the B-meson decay con-
stant using FV HMχPT [48].

RBC/UKQCD 10C [463] 2+1 1.8 3.9 FV error estimated through FV
HMχPT as 1% for SU(3) breaking ra-
tios.

HPQCD 09 [59] 2+1 2.4/2.9, 2.5 6.4, 5.1 No explicit estimate of FV error, but
expected to be much smaller than
other uncertainties.

HPQCD 06A [483] 2+1 2.4 6.2 No explicit estimate of FV error, but
expected to be much smaller than
other uncertainties.

ETM 13B
ETM 12A,12B

[20]
[459,
484]

2 2.4, 2.0/2.7,
2.1, 1.7/2.6

5.0, 3.7, 3.3,
3.5

L = 1.7/2.6 fm only included in
ETM 13B. FV error is assumed to be
negligible based on the study of D-
meson decay constants in Ref. [32].

Table 139: Finite volume effects in determinations of the neutral B-meson mixing matrix ele-
ments. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes
at some lattice spacings. For actions with multiple species of pions, masses quoted are the
RMS pion masses (where available).
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Collab. Ref. Nf Ren. Description

RBC/UKQCD 14A [54] 2+1 PT1l Static-light four-quark operators are renor-
malized with one-loop mean field improved
PT. The errors due to neglected higher or-
der effects are estimated for purely Oα2

s to
be 6% on the matrix elements or 1.2% on
ξ and for Oα2

sa
2 to be 1% or 0.2% respec-

tively.

FNAL/MILC 12 [60] 2+1 PT1l One-loop mean-field improved PT is used
to renormalize the four-quark operators
with heavy quarks rotated to eliminate
tree-level O(a) errors. The error from ne-
glecting higher order corrections is esti-
mated to be 0.5% on ξ.

FNAL/MILC 11A [482] 2+1 PT1l One-loop mean-field improved PT is used
to renormalize the four-quark operators
with heavy quarks rotated to eliminate
tree-level O(a) errors. The error from
neglected higher order corrections is esti-
mated to be 4% on fB

√
BB.

RBC/UKQCD 10C [463] 2+1 PT1l Static-light four-quark operators are renor-
malized with one-loop mean field improved
PT. The error due to neglected higher or-
der effects is estimated to be 2.2% on ξ.

HPQCD 09 [59] 2+1 PT1l Four-quark operators in lattice NRQCD
are matched to QCD through order αs,
ΛQCD/M and αs/(aM) [793] using one-
loop PT. The error due to neglected higher
order effects is estimated to be 4% on
fB

√
BB and 0.7% on ξ.

HPQCD 06A [483] 2+1 PT1l Four-quark operators in lattice NRQCD
are matched to full QCD through order αs,
ΛQCD/M and αs/(aM) [793]. The error is
estimated as ∼ 1 · α2

s to be 9% on f2
Bs
BBs

ETM 13B, 12A, 12B [20, 459, 484] 2 NPR The bag parameters are nonperturbatively
renormalized in the RI’-MOM scheme.
They are calculated as functions of the
(MS) heavy-quark mass (renormalized
nonperturbatively in RI/MOM).

Table 140: Operator renormalization in determinations of the neutral B-meson mixing matrix
elements.
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Collab. Ref. Nf Action Description

RBC/UKQCD 14A [54] 2+1 Static Two different static-quark actions with HYP1 and HYP2
smearings are used and the continuum extrapolation is
constrained so the two values converges in the limit. The
error due to the missing 1/mb corrections is estimated to
be 12% for individual matrix elements or 2.2% on ξ using
power-counting.

FNAL/MILC 12 [60] 2+1 Fermilab The heavy-quark discretization error on ξ is estimated to
be 0.3 %. The error on ξ due to the uncertainty in the
b-quark mass is are estimated to be 0.4 %.

FNAL/MILC 11A [482] 2+1 Fermilab The heavy-quark discretization error on fB
√
BB is esti-

mated as 4% using power-counting.

RBC/UKQCD 10C [463] 2+1 Static Two different static-quark actions with Ape and HYP
smearings are used. The discretization error on ξ is es-
timated as ∼ 4% and the error due to the missing 1/mb

corrections as ∼ 2%, both using power-counting.

HPQCD 09 [59] 2+1 NRQCD Heavy-quark truncation errors due to relativistic correc-
tions are estimated to be 2.5, 2.5 and 0.4 % for fB

√
BB ,

fBs

√

BBs and ξ respectively.

HPQCD 06A [483] 2+1 NRQCD Heavy-quark truncation errors due to relativistic correc-
tions are estimated to be 3% for f2

Bs
BBs .

ETM 13B
ETM 12A,12B

[20]
[459,
484]

2 tmWil The ratio method is used to perform an interpolation
to the physical b quark mass from the simulated heavy
mass and the known static limit. In an intermediate step,
the ratios include HQET matching factors calculated to
tree-level, leading-log, and next-to-leading-log (ETM 13B
only) in continuum PT. The interpolation uses a polyno-
mial up to quadratic in the inverse quark-mass. The sys-
tematic errors added together with those of the chiral fit
are estimated as 1.3− 1.6% for bag parameters for ETM
13B, while they are estimated from changing the inter-
polating polynomial as 2% and from changing the order
of HQET matching factors as 3% for ETM 12A and 12B.

Table 141: Heavy-quark treatment in determinations of the neutral B-meson mixing matrix
elements.
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B.6.3 Form factors entering determinations of |Vub| (B → πlν, Bs → Klν, Λb → plν)

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

FNAL/MILC 15 [502] 2+1 0.045, 0.06,
0.09, 0.12

Fit to HMrSχPT to re-
move light-quark discretiza-
tion errors. Residual heavy-
quark discretization errors es-
timated with power-counting.
Total (stat + chiral extrap +
HQ discretization + gB∗Bπ)
error estimated to be 3.1% for
f+ and 3.8% for f0 at q2 =
20 GeV2.

Relative scale r1/a
set from the static-
quark potential. Ab-
solute scale r1, in-
cluding related un-
certainty estimates,
taken from [48].

Detmold 15
Λb → p

[543] 2+1 0.0849(12),
0.1119(17)

Joint chiral-continuum ex-
trapolation, combined with
fit to q2 dependence of form
factors in a “modified” z-
expansion. Systematics esti-
mated by varying fit form and
O(a) improvement parameter
values.

Set from Υ(2S)–
Υ(1S) splitting,
cf. [794].

RBC/UKQCD 15 [503] 2+1 0.086,0.11 Joint chiral-continuum ex-
trapolation using SU(2) hard-
pion HMχPT. Systematic un-
certainty estimated by vary-
ing fit ansatz and form of coef-
ficients, as well as implement-
ing different cuts on data;
ranges from 5.0% to 10.9% for
B → π form factors, and 2.5%
to 5.1% for Bs → K. Light-
quark and gluon discretiza-
tion errors estimated at 1.1%
and 1.3%, respectively.

Scale implicitly set in
the light-quark sector
using the Ω− mass,
cf. [144].

HPQCD 14 [509] 2+1 0.09,0.12 Combined chiral-continuum
extrapolation using hard-pion
rHMSχPT. (No explicit
estimate of discretization
effects.)

Relative scale r1/a
set from the static-
quark potential. Ab-
solute scale r1 set to
0.3133(23) fm.

HPQCD 06 [501] 2+1 0.09,0.12 Central values obtained from
data at a = 0.12 fm. Dis-
cretization errors observed to
be within the statistical error
by comparison with data at
a = 0.09 fm.

Relative scale r1/a
set from the static-
quark potential. Ab-
solute scale r1 set
through Υ 2S − 1S
splitting c.f. HPQCD
05B [462].

Table 142: Continuum extrapolations/estimation of lattice artifacts in determinations of
B → πℓν, Bs → Kℓν, and Λb → pℓν form factors.
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Collab. Ref. Nf Mπ,min [MeV] Description

FNAL/MILC 15 [502] 2+1 330, 260, 280,
470

Simultaneous chiral-continuum
extrapolation and q2 interpolation
using NNLO SU(2) hard-pion
HMrSχPT. Systematic error es-
timated by adding higher-order
analytic terms and varying the
B∗-B-π coupling.

Detmold 15
Λb → p

[543] 2+1 227, 245 (va-
lence pions)

Joint chiral-continuum extrapola-
tion, combined with fit to q2 depen-
dence of form factors in a “mod-
ified” z-expansion. Only analytic
NLO terms ∝ (m2

π − m2
π,phys) in-

cluded in light mass dependence.
Systematic uncertainty estimated
by repeating fit with added higher-
order terms.

RBC/UKQCD 15 [503] 2+1 289, 329 Joint chiral-continuum extrap-
olation using SU(2) hard-pion
HMχPT. Systematic uncertainty
estimated by varying fit ansatz
and form of coefficients, as well
as implementing different cuts on
data; ranges from 5.0% to 10.9%
for B → π form factors, and 2.5%
to 5.1% for Bs → K.

HPQCD 14 [509] 2+1 295, 260 Combined chiral-continuum extrap-
olation using hard-pion rHMSχPT.
(No explicit estimate of extrapola-
tion systematics.)

HPQCD 06 [501] 2+1 400, 440 First interpolate data at fixed quark
mass to fiducial values of Eπ using
the Becirevic-Kaidalov and Ball-
Zwicky ansätze, then extrapolate
data at fixed Eπ to physical quark
masses using SU(3) rHMSχPT.
Systematic error estimated by vary-
ing interpolation and extrapolation
fit functions.

Table 143: Chiral extrapolation/minimum pion mass in determinations of B → πℓν, Bs →
Kℓν, and Λb → pℓν form factors. For actions with multiple species of pions, masses quoted
are the RMS pion masses. The different Mπ,min entries correspond to the different lattice
spacings.
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Collab. Ref. Nf L [fm] Mπ,minL Description

FNAL/MILC 15 [502] 2+1 2.9,
2.9/3.4/3.8,
2.5/2.9/3.6/5.8,
2.4/2.9

& 3.8 FV effects estimated by replac-
ing infinite-volume chiral logs with
sums over discrete momenta, found
to be negligible.

Detmold 15
Λb → p

[543] 2+1 2.7, 2.7 & 3.1 (valence sector) FV effect estimated at 3% from ex-
perience on χPT estimates of FV
effects for heavy-baryon axial cou-
plings.

RBC/UKQCD 15[503] 2+1 2.8, 2.6 4.0, 4.4 FV effects estimated by correction
to chiral logs due to sums over dis-
crete momenta; quoted 0.3-0.5% for
f+ and 0.4-0.7% for f0 for B → π,
and 0.2% for f+ and 0.1-0.2% for f0
for Bs → K.

HPQCD 14 [509] 2+1 2.5, 2.4/2.9 & 3.8 FV effects estimated by shift of pion
log, found to be negligible.

HPQCD 06 [501] 2+1 2.4/2.9 & 3.8 No explicit estimate of FV error,
but expected to be much smaller
than other uncertainties.

Table 144: Finite volume effects in determinations of B → πℓν, Bs → Kℓν, and Λb → pℓν
form factors. Each L-entry corresponds to a different lattice spacing, with multiple spatial
volumes at some lattice spacings. For actions with multiple species of pions, the lightest
masses are quoted.
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Collab. Ref. Nf Ren. Description

FNAL/MILC 15 [502] 2+1 mNPR Perturbative truncation error estimated at
1% with size of 1-loop correction on next-
to-finer ensemble.

Detmold 15
Λb → p

[543] 2+1 mNPR Perturbative truncation error estimated at
1% with size of 1-loop correction on next-
to-finer ensemble.

RBC/UKQCD 15 [503] 2+1 mNPR Perturbative truncation error estimated
as largest of power counting, effect from
value of αs used, numerical integration.
Non-perturbative normalization of flavour-
diagonal currents computed by fixing val-
ues of ratios of meson two-point functions
to three-point functions with an extra cur-
rent inversion, cf. [53]

HPQCD 14 [509] 2+1 mNPR Currents matched using one-loop HISQ
lattice perturbation theory, omitting
O(αsΛQCD/mb. Systematic uncertainty
resulting from one-loop matching and
neglecting O(Λ2

QCD/m
2
b terms estimated

at 4% from power counting.

HPQCD 06 [501] 2+1 PT1ℓ Currents included through O(αSΛQCD/M ,
αS/(aM), αS aΛQCD). Perturbative
truncation error estimated from power-
counting.

Table 145: Operator renormalization in determinations ofB → πℓν, Bs → Kℓν, and Λb → pℓν
form factors.
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Collab. Ref. Nf Action Description

FNAL/MILC 15 [502] 2+1 Fermilab Total statistical + chiral extrapolation + heavy-quark
discretization + gB∗Bπ error estimated to be 3.1% for f+
and 3.8% for f0 at q2 = 20 GeV2.

Detmold 15
Λb → p

[543] 2+1 Columbia RHQ Discretization errors discussed as part of combined chiral-
continuum-q2 fit, stemming from a2|p|2 terms.

RBC/UKQCD 15[503] 2+1 Columbia RHQ Discretization errors estimated by power counting to be
1.8% for f+ and 1.7% for f0.

HPQCD 14 [509] 2+1 NRQCD Currents matched using one-loop HISQ lattice perturba-
tion theory, omitting O(αsΛQCD/mb. Systematic uncer-
tainty resulting from one-loop matching and neglecting
O(Λ2

QCD/m
2
b terms estimated at 4% from power count-

ing.

HPQCD 06 [501] 2+1 NRQCD Discretization errors in f+(q
2) estimated to be

O(αs(aΛQCD)
2) ∼ 3%. Relativistic errors estimated to

be O((ΛQCD/M)2) ∼ 1%.

Table 146: Heavy quark treatment in determinations of B → πℓν, Bs → Kℓν, and Λb → pℓν
form factors.
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B.6.4 Form factors entering determinations of |Vcb| (B → D∗lν, B → Dlν, Bs →
Dslν, Λb → Λclν) and R(D))

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

HPQCD 15 [537] 2+1 0.09, 0.12 Combined chiral-continuum
extrapolation as part of
modified z-expansion of
form factors, which also
includes uncertainty related
to matching of NRQCD and
relativistic currents.

Implicitly set from
r1.

FNAL/MILC 15C [536] 2+1 0.045, 0.06,
0.09, 0.12

Combined chiral-continuum
extrapolation using
HMrSχPT. Form factors
fitted to NLO χPT, with chi-
ral logs taken from staggered
version of the Chow-Wise
result, modified to include
taste-breaking terms. O(a2)
terms introduced based on
power-counting arguments.
Total uncertainty estimated
at 0.6% for f+ and 0.5% for
f0 for the largest recoil.

Relative scale r1/a
set from the static-
quark potential.
Absolute scale r1,
including related
uncertainty esti-
mates, taken from
[48]. Uncertainty re-
lated to scale setting
estimated at 0.2%.

Detmold 15
Λb → Λc

[543] 2+1 0.0849(12),
0.1119(17)

Joint chiral-continuum ex-
trapolation, combined with
fit to q2 dependence of form
factors in a “modified” z-
expansion. Systematics esti-
mated by varying fit form and
O(a) improvement parameter
values.

Set from Υ(2S)–
Υ(1S) splitting,
cf. [794].

FNAL/MILC 14 [535] 2+1 0.045, 0.06,
0.09, 0.12,
0.15

Combined chiral-continuum
extrapolation using
HMrSχPT. Total uncer-
tainty quoted at 0.5%.

Relative scale r1/a
set from the static-
quark potential.
Absolute scale r1,
including related
uncertainty esti-
mates, taken from
[48]. Uncertainty re-
lated to scale setting
estimated at 0.1%.

Atoui 13 [533] 2 0.054, 0.067,
0.085, 0.098

Combined continuum and chi-
ral extrapolation, with linear
terms in a2 and msea. No
dependence on a or msea ob-
served within errors. Stability
of results vs fits with no msea

dependence checked.

Scale set through Fπ.

Table 147: Continuum extrapolations/estimation of lattice artifacts in determinations of
B → Dℓν, B → D∗ℓν, Bs → Dsℓν, and Λb → Λcℓν form factors, and of R(D).
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Collab. Ref. Nf Mπ,min [MeV] Description

HPQCD 15 [537] 2+1 295, 260 Combined chiral-continuum extrap-
olation as part of modified z-
expansion of form factors. Hard-
pion χPT for light mass dependence
used to estimate systematic uncer-
tainty to be 1.14%.

FNAL/MILC 15C [536] 2+1 330, 260, 280,
470

Combined chiral-continuum extrap-
olation using HMrSχPT. Form fac-
tors fitted to NLO χPT, with chi-
ral logs taken from staggered ver-
sion of the Chow-Wise result, modi-
fied to include taste-breaking terms.
O(a2) terms introduced based on
power-counting arguments. Total
uncertainty estimated at 0.6% for
f+ and 0.5% for f0 for the largest
recoil.

Detmold 15
Λb → Λc

[543] 2+1 227, 245 (va-
lence pions)

Joint chiral-continuum extrapola-
tion, combined with fit to q2 depen-
dence of form factors in a “mod-
ified” z-expansion. Only analytic
NLO terms ∝ (m2

π − m2
π,phys) in-

cluded in light mass dependence.
Systematic uncertainty estimated
by repeating fit with added higher-
order terms.

FNAL/MILC 14 [535] 2+1 330, 260, 280,
470, 590

Combined chiral-continuum extrap-
olation using HMrSχPT. System-
atic errors estimated by adding
higher-order analytic terms and
varying the D∗-D-π coupling. To-
tal uncertainty quoted at 0.5%.

Atoui 13 [533] 2 270, 300, 270,
410

Combined continuum and chiral ex-
trapolation, with linear terms in a2

and msea. No dependence on a or
msea observed within errors. Sta-
bility of results vs fits with no msea

dependence checked.

Table 148: Chiral extrapolation/minimum pion mass in determinations of B → Dℓν, B →
D∗ℓν, Bs → Dsℓν, and Λb → Λcℓν form factors, and of R(D). For actions with multiple
species of pions, masses quoted are the RMS pion masses. The different Mπ,min entries
correspond to the different lattice spacings.
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Collab. Ref. Nf L [fm] Mπ,minL Description

HPQCD 15 [537] 2+1 2.5, 2.4/2.9 & 3.8 FV effects estimated to be negli-
gible.

FNAL/MILC 15C[536] 2+1 2.9, 2.9–3.8,
2.5–5.8,
2.4/2.9

& 3.8 FV error estimated to be negligi-
ble in [538].

Detmold 15
Λb → Λc

[543] 2+1 2.7, 2.7 & 3.1 (valence sector) FV effect estimated at 1.5% from
experience on χPT estimates of
FV effects for heavy-baryon axial
couplings.

FNAL/MILC 14 [535] 2+1 2.9, 2.9–3.8,
2.4–5.5,
2.4/2.9, 2.4

& 3.8 FV error estimated to be negligi-
ble.

Atoui 13 [533] 2 1.7/2.6, 2.1,
2.0/2.7, 2.4

& 3.6 No volume dependence observed
within errors.

Table 149: Finite volume effects in determinations of B → Dℓν, B → D∗ℓν, Bs → Dsℓν,
and Λb → Λcℓν form factors, and of R(D). Each L-entry corresponds to a different lattice
spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple
species of pions, the lightest pion masses are quoted.
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Collab. Ref. Nf Ren. Description

HPQCD 15 [537] 2+1 One loop. One-loop matching of currents taken
from [754].

FNAL/MILC 15C [536] 2+1 mNPR Form factors extracted from ratios of corre-
lators that renormalize with ratios of cur-
rent normalizations, computed at one-loop
in perturbation theory. Dependence of
renormalization factor on recoil parame-
ter w neglected. Systematic uncertainty
due to perturbative truncation and w-
dependence estimated by power counting
to 0.7%.

Detmold 15
Λb → Λc

[543] 2+1 mNPR Perturbative truncation error estimated at
1% with size of 1-loop correction on next-
to-finer ensemble.

FNAL/MILC 14 [535] 2+1 mNPR Majority of current renormalization factor
cancels in double ratio of lattice correla-
tion functions. Remaining correction cal-
culated with 1-loop tadpole-improved lat-
tice perturbation theory. Systematic un-
certainty estimated at 0.4%.

Atoui 13 [533] 2 — Observables obtained from ratios that do
not require renormalization. Checks per-
formed by comparing with results coming
from currents that are renormalized sepa-
rately with non-perturbative ZV.

Table 150: Operator renormalization in determinations of B → Dℓν, B → D∗ℓν, Bs → Dsℓν,
and Λb → Λcℓν form factors, and of R(D).
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Collab. Ref. Nf Action Description

HPQCD 15 [537] 2+1 NRQCD for b quark,
HISQ for c quark

Discretization errors estimated via power
counting to be 2.59%.

FNAL/MILC 15C [536] 2+1 Fermilab Discretization errors of form factors esti-
mated via power counting to be 0.4%.

Detmold 15
Λb → Λc

[543] 2+1 Columbia RHQ Discretization errors discussed as part of
combined chiral-continuum-q2 fit, stem-
ming from a2|p|2 terms.

FNAL/MILC 14 [535] 2+1 Fermilab Discretization errors estimated via power
counting to be 1%.

Atoui 13 [533] 2 tmWil Results obtained from step-scaling in
heavy quark mass via the ratio method.
Separate continuum limit extrapolations
with mild a2 dependence carried out for
each mass point separately. Result at
physical value of mb obtained by interpola-
tion between data region and known exact
HQET limit.

Table 151: Heavy quark treatment in determinations of B → Dℓν, B → D∗ℓν, Bs → Dsℓν,
and Λb → Λcℓν form factors, and of R(D).
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B.7 Notes to section 9 on the strong coupling αs

B.7.1 Renormalization scale and perturbative behaviour

Collab. Ref. Nf αeff nl Description

FlowQCD 15 [560] 0 0.09-0.12 2 αMS(2.63/a) computed from the boosted coupling. The phys-
ical volume ranges from 2.4 ∼ 3.8 fm.

Sternbeck 12 [648] 0 0.11-0.18 3 αT(p) for p = 5 − 40GeV. Fitted to PT without power cor-
rections. (β = 6.0, 6.4, 6.7, 6.92.)

Ilgenfritz 10 [651] 0 0.07-0.9 3 αT(p) for p = 1− 240GeV. (β = 5.8, 6.0, 6.2, 6.4, 9.0.)

Sternbeck 10 [649] 0 0.07-0.32 3 αT for p = 2.5−140 GeV, fitted to PT partially on very small
lattices.

Brambilla 10 [602] 0 0.22-0.47 3 αqq(1/r) for the range r/r0 = 0.15 − 0.5. Fit of V (r) to PT
with renormalon subtraction and resummation reproduces
the static potential for r/r0 = 0.15− 0.45 well.

Boucaud 08 [644] 0 0.18-0.35 3 αT(p) with p = 3−6 GeV. Fitted to PT with 1/p2 correction.

Boucaud 05 [641] 0 0.22-0.55 3 Λ
M̃OMg,c

using gluon and ghost propagators with 2 ≤ µ ≤ 6

GeV. Fit to perturbation theory.

QCDSF-
UKQCD 05

[621] 0 0.10-0.15 2 αMS(2.63/a) computed from the boosted coupling.

CP-PACS 04 [578] 0 0.08-0.28 2 αSF(1/L) step-scaling functions at αeff = 0.08, 0.19, study
of continuum limit. Agreement of continuum limit with AL-
PHA 98.

Boucaud 01A [653] 0 0.18-0.45 2 αMOM with p = 2.5 − 10 GeV. Consistency check of nl = 2
loop perturbation formula with gluon condensate. 〈A2〉 from
αMOM and gluon propagator are consistent.

Soto 01 [652] 0 0.25-0.36,
0.3-0.36,
0.19-0.24

2 α
M̃OM

for p = 3 − 10 GeV. Fit with nl = 2 loop formula
with gluon condensate. (Without condensate does not fit the
lattice data.) (β = 6.0, 6.2, 6.8.)

Boucaud 00A [655] 0 0.35-0.55,
0.25-0.45,
0.22-0.28,
0.18-0.22

2 α
M̃OM

with p = 2− 10 GeV. Fitted to nl = 2 loop perturba-
tion theory with power correction. (β = 6.0, 6.2, 6.4, 6.8.)

Boucaud 00B [654] 0 0.35-0.55,
0.25-0.45,
0.22-0.28,
0.18-0.22

2 αMOM with 2 ≤ µ ≤ 10 GeV. Consistency check of nl = 2
loop perturbation formula with gluon condensate. βMOM

2 =

1.5× βM̃OM
2 is needed. (β = 6.0, 6.2, 6.4, 6.8.)

Table 152: Renormalization scale and perturbative behaviour of αs determinations forNf = 0.
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Collab. Ref. Nf αeff nl Description

Becirevic 99A[657] 0 0.25-0.4 2 α
M̃OM

with p = 2.5 - 5.5 GeV.

Becirevic 99B[656] 0 0.18-0.25 2 α
M̃OM

from a single lattice spacing with p = 5.6 - 9.5 GeV.

SESAM 99 [619] 0 0.15 1 αV(3.41/a) computed from the boosted coupling.

ALPHA 98 [586] 0 0.07-0.28 2 αSF(1/L) step scaling, agreement with perturbative running
(nl = 2) for αeff < 0.15.

Boucaud 98A [659] 0 0.35-0.5 1,2 αMOM, with 2.1 ≤ µ ≤ 3.9 GeV. nl = 1 for αMOM, nl = 2 for
α
M̃OM

.

Boucaud 98B [658] 0 0.27-0.50 2 α
M̃OM

with µ = 2.2− 4.5 GeV.

Alles 96 [639] 0 0.35-0.71 1 α
M̃OM

(p) with p = 1.8− 3.0 GeV.

Wingate 95 [620] 0 0.15 1 αV (3.41/a) computed from the boosted coupling.

Davies 94 [618] 0 0.15 1 αV (3.41/a) computed from the boosted coupling.

Lüscher 93 [575] 0 0.09-0.28 1 αSF(1/L) step scaling, agreement with perturbative running
(nl = 1) for αeff < 0.17.

UKQCD 92 [590] 0 0.17-0.40 1 αqq(1/r) for a single lattice spacing. Fit of αqq(1/r) to a NLO
formula.

Bali 92 [603] 0 0.15-0.35 1 αqq(1/r) for the lattice spacing used in the analysis. Box size
L ≈ 1.05 fm. Fit of αqq(1/r) to a NLO formula. ΛMS is found
to depend on the fit-range.

El-Khadra 92 [616] 0 0.12-0.15 1 αMS(π/a) from 1-loop boosted perturbation theory.

Table 152: (contd.) Renormalization scale and perturbative behaviour of αs determinations
for Nf = 0.
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Collab. Ref. Nf αeff nl Description

Karbstein 14 [559] 2 0.28 - 0.41 3 αV (p) for momentum 1.5 < p < 3.0GeV. Values computed
from the quoted Λ parameter with the 2-loop β function;
larger values (0.32 − 0.62) are obtained with 3-loop running.
As with ETM 11C central values are taken from a = 0.042 fm
lattice with L = 1.3 fm and mπ = 350MeV.

ALPHA 12 [12] 2 see
ALPHA 04

2 Determination of ΛMS/fK using ALPHA 04

Sternbeck 12 [648] 2 0.17-0.23 3 αT for (r0p)
2 = 200 − 2000. Fit to PT without condensate.

Deviation at higher energy is observed.

ETM 11C [601] 2 0.26-0.96 3 αqq(1/r) as computed by us from ΛMS = 315MeV.
Fit of V (r) to PT with renormalon subtraction and resum-
mation reproduces the static potential for r/r0 = 0.2 − 0.6
well. One fit-range, using r/a = 2 − 4 at the smallest lat-
tice spacing corresponds to αeff = 0.26 − 0.40. In the MS
scheme one has αMS(1/r) = 0.24 − 0.63 and for the re-
stricted fit αMS(1/r) = 0.24−0.36. Central values taken from
a = 0.042 fm lattice with L = 1.3 fm and mπ = 350MeV.

ETM 10F [650] 2 0.24-0.45 3 αT for momentum up to 2.6 - 5.6GeV. Fitted to PT with
gluon condensate correction term.

Sternbeck 10 [649] 2 0.19-0.38 3 αT for 1 ≤ (ap)2 ≤ 10. Fitted with nl = 3 loop formula.

JLQCD 08 [610] 2 0.25-0.30 1
αMS(Q) for 0.65 < (aQ)2 < 1.32. Fit with the perturbative
formula with power corrections.

QCDSF-
UKQCD 05

[621] 2 0.18-0.20 2 αMS(1.4/a) computed from the boosted coupling.

ALPHA 04 [584] 2 0.078-0.44 2 αSF(1/L) step scaling, agreement with nl = 2 looprunning
for αs < 0.2

ALPHA 01 [585] 2 0.078-0.44 2 αSF(1/L) step scaling, agreement with nl = 2 loop running
for αs < 0.2

Boucaud 01B[640] 2 0.25-0.5 3 α
M̃OM

for momentum up to 7GeV. Fitted with nl = 3 loop
formula with and without power correction, leading to dif-
ferent results for Λ

(2)

MS
. Extrapolation of αs(1.3 GeV) in Nf

from Nf = 0, 2 to Nf = 3 is made.

SESAM 99 [619] 2 0.17 1 The boosted coupling αP(3.41/a).

Wingate 95 [620] 2 0.18 1 αV(3.41/a) computed from the boosted coupling.

Aoki 94 [617] 2 0.14 1 αMS(π/a) computed from the boosted coupling.

Davies 94 [618] 2 0.18 1 αV(3.41/a) computed from lnW11.

Table 153: Renormalization scale and perturbative behaviour of αs determinations forNf = 2.

325



Collab. Ref. Nf αeff nl Description

Bazavov 14 [61] 2+1 0.19-0.41 3 Update of Bazavov 12 including finer lattices down to a =
0.041 fm. Fit range r/r1 = 0.12 − 0.50 (r/r0 = 0.08 −
0.33). Perturbative expansion of the force F (r) integrated
to determine potential.

Bazavov 12 [600] 2+1 0.23-0.57 3 αqq computed by us from ΛMSr0 = 0.70. Fit of V (r) to PT
with renormalon subtraction and resummation reproduces
the static potential for r/r0 = 0.135 − 0.5 well.

Sternbeck 12 [648] 2+1 0.19-0.25 3 αT for (pr0)
2 = 200 − 2000. Comparison with 4-loop for-

mula.

JLQCD 10 [609] 2+1 0.29-0.35 2
αMS(Q) for 0.4 < (aQ)2 < 1.0. Fit with the perturbative
formula with power corrections.

HPQCD 10 [9] 2+1 2 Uses method of section 9.6. Update of r1 and r1/a in
HPQCD 08A.

HPQCD 10 [9] 2+1 0.12-0.42 2 Uses method of section 9.7. αeff from R4 and R6/R8. Fit of
Rn, n = 4 . . . 10 to PT including (am)2i terms with i ≤ 10;
coefficients constrained by priors.

PACS-CS 09A [62] 2+1 0.08-0.27 2 αSF(1/L) step scaling, agreement with 3-loop running for
αs ≤ 0.27

HPQCD 08B [152] 2+1 0.38 2 Fit of the ratios to PT at the charm mass including (am)2i

terms with i ≤ 2 . . . 4; coefficients constrained by priors.

HPQCD 08A [613] 2+1 0.15-0.4 2 αV(q
∗) for a variety of short-distance quantities, using same

method as in HPQCD 05A.

Maltman 08 [63] 2+1 2 Re-analysis of HPQCD 05A for a restricted set of short-
distance quantities with similar results.

HPQCD 05A [612] 2+1 0.2-0.4 2 αV(q
∗) for a variety of short-distance quantities.

Table 154: Renormalization scale and perturbative behaviour of αs determinations forNf = 3.
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Collab. Ref. Nf αeff nl Description

HPQCD 14A [5] 2+1+1 0.11-0.33 2 Range given for αeff from R̃4. Fit of ratios Rn n = 4 . . . 10
to perturbation theory including (am)2i terms with i ≤
10 − 20 and higher-order perturbative terms; coefficients
constrained by priors.

ETM 13D [645] 2+1+1 0.26-0.7 3 αT(p)= for p = 1.6−6.5 GeV. Update of [646] with improved
power law determination.

ETM 12C [646] 2+1+1 0.24-0.38 3 αT(p) for p = 1.7− 6.8 GeV. Fit to PT with gluon conden-
sate correction or higher power.

ALPHA 10A [582] 4 0.07-0.28 2 αSF(1/L). Comparison to PT with 2-, 3-loop β-function.

ETM 11D [647] 2+1+1 0.24-0.4 3 αT(p) for p = 3.8−7.1GeV with H(4)-procedure. Fit to PT
with gluon condensate correction.

Perez 10 [583] 4 0.06-0.28 2 αSF(1/L). Comparison with 1-, 2-, 3-loop β-function.

Table 155: Renormalization scale and perturbative behaviour of αs determinations forNf = 4.
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B.7.2 Continuum limit

Collaboration Ref. Nf a µ Description

FlowQCD 15 [560] 0 9 lattice spacings with a =
0.06 - 0.02 fm.

w0.4/a, together with r0 = 0.5 fm and con-
version factor r0/w0.4 = 2.587(45).

Sternbeck 12 [648] 0 4 lattice spacings a ≤ 0.1 fm At αs = 0.18, ap = 2.7, 1.5 for β = 6.0, 6.4.

Brambilla 10 [602] 0 At least 3 lattice spacings
with 0.2 ≤ 2a/r ≤ 1.1

Extrapolation of potential differences
V (r)− V (0.51r0) linear in a

2 performed in
[566] with several lattice spacings.

Ilgenfritz 10 [651] 0 a = 0.136, 0.093, 0.068,
0.051 fm (β = 5.8, 6.0, 6.2,
6.4), while no value of a is
given for β = 9.0

At αs = 0.3, ap = 2.0, 1.4, 1.0, 0.8 (β =
5.8, 6.0, 6.2, 6.4). For β = 9.0 at ap = 1.4,
αs = 0.082.

Sternbeck 10 [649] 0 8 lattice spacings a = 0.004
- 0.087 fm (r0 = 0.467 fm)

√
3 < ap <

√
12.

Boucaud 08 [644] 0 a = 0.1, 0.07, 0.05 fm At αs = 0.3 the data have ap = 2.6, 1.9, 1.5.

QCDSF/UKQCD 05[621] 0 7 lattice spacings with a =
0.10 - 0.028 fm.

r0/a, together with r0 = 0.467 fm.

Boucaud 05 [641] 0 a = 0.1, 0.07, 0.05 fm At αs ≤ 0.3 ap = 1.9, 1.4, 1.0.

CP-PACS 04 [578] 0 4 spacings, a/L = 1/12 −
1/4.

Iwasaki and Lüscher Weisz tree-level im-
proved bulk actions; boundary improve-
ment at tree-level, 1-loop and with two dif-
ferent choices of implementation.

Soto 01 [652] 0 a = 0.07, 0.05, 0.03 fm At αs ≤ 0.3, the data have ap =
1.4, 1.0, 0.6.

Boucaud 01A [653] 0 a = 0.1, 0.07, 0.05, 0.03 fm At αs ≤ 0.3 ap = 1.9, 1.4, 1.0, 0.6.

Boucaud 00A [655] 0 a = 0.1, 0.07, 0.05, 0.03 fm At αs ≤ 0.3 ap = 1.9, 1.4, 1.0, 0.6.

Boucaud 00B [654] 0 a = 0.1, 0.07, 0.05, 0.03 fm At αs ≤ 0.3 ap = 1.9, 1.4, 1.0, 0.6.

Table 156: Continuum limit for αs determinations with Nf = 0.
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Collaboration Ref. Nf aµ Description

SESAM 99 [619] 0 1 lattice spacing with a =
0.086 fm

Υ spectrum splitting.

Becirevic 99A [657] 0 a = 0.07, 0.05 fm At αs ≤ 0.3 ap = 1.4, 1.0.

Becirevic 99B [656] 0 a = 0.1, 0.07, 0.03 fm Only a = 0.03fm used to extract αs. At αs ≤ 0.3,
ap = 0.6− 1.5.

ALPHA 98 [586] 0 4 to 6 spacings, a/L =
1/12 − 1/5 in step-scaling
functions (SSF)

1-loop O(a) boundary improvement, linear ex-
trapolation in a/L.
a/L = 1/8− 1/5 for αs ≤ 0.11 SSF,
a/L = 1/12 − 1/5 for 0.12 ≤ αs ≤ 0.20 SSF.
Lmax/r0 from [795], where several lattice spacings
were used.

Boucaud 98A [659] 0 a = 0.1, 0.07, 0.05 fm At αs ≤ 0.3, ap = 1.9, 1.4, 1.0.

Boucaud 98B [658] 0 a = 0.1, 0.07, 0.05 fm At αs ≤ 0.3, ap = 1.9, 1.4, 1.0.

Alles 96 [639] 0 a ≤ 0.1 fm At αs = 0.35, ap = 1.5.

Wingate 95 [620] 0 1 lattice spacing with a =
0.11 fm

Charmonium 1S-1P splitting.

Davies 94 [618] 0 1 lattice spacing with a =
0.077 fm

Υ spectrum splitting.

Lüscher 93 [575] 0 4 or 5 lattice spacings,
a/L = 1/12 − 1/5 in step-
scaling functions

1-loop O(a) boundary improvement, linear ex-
trapolation in a/L. a/L = 1/8−1/5 for αs ≤ 0.11
SSF, a/L = 1/10− 1/5 for 0.11 ≤ αs ≤ 0.22 SSF,
a/L = 1/12 − 1/6 for 0.22 ≤ αs ≤ 0.28 SSF,
a/L = 1/8.5 − 1/4.5 for continuum extrapolation
of Lmax/

√
K.

UKQCD 92 [590] 0 One lattice spacing with
0.44 ≤ 2a/r ≤ 1.6

No continuum limit.

Bali 92 [603] 0 One lattice spacing with
0.4 ≤ 2a/r ≤ 1.6

No continuum limit.

El-Khadra 92 [616] 0 3 lattice spacings with a =
0.17, 0.11, 0.08 fm

Charmonium 1S-1P splitting.

Table 157: Continuum limit for αs determinations with Nf = 0 continued.
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Collab. Ref. Nf a µ Description

Karbstein 14 [559] 2 0.32 – 1.19
0.63 – 1.19

at p = 1.5GeV
at p = 3GeV, roughly coincides with αs = 0.3.

ALPHA 12 [12] 2 a = 0.049, 0.066, 0.076fm
from fK

2-loop O(a) boundary improvement, linear extrap-
olation of LmaxfK in a2.

Sternbeck 12 [648] 2 a = 0.073, 0.07, 0.06 fm At αs = 0.23, ap = 2.1, 2.0, 1.7.

ETM 11C [601] 2 0.30 ≤ 2a/r ≤ 1.0
0.67 ≤ 2a/r ≤ 1.26 when
αs = 0.3

Four lattice spacings; continuum limit studied with
a particular range in r; central result from the
smallest lattice spacing, a = 0.042fm.

ETM 10F [650] 2 a = 0.05, 0.07, 0.08 fm. Dif-
ferent lattice spacings are
patched together.

At αs = 0.3, ap = 1.6, 1.3, 1.1.

Sternbeck 10 [649] 2 a = 0.068, 0.076, 0.082 fm At αs ≤ 0.3, ap ≥ 1.7.

JLQCD 08 [610] 2 a = 0.12 fm from r0 =
0.49 fm

Single lattice spacing, 0.64 < (aQ)2 < 1.32. At
αs = 0.3, ap = 0.81.

QCDSF-
UKQCD 05

[621] 2 4 lattice spacings with a =
0.10 - 0.066 fm

r0, together with r0 = 0.467 fm.

ALPHA 04 [584] 2 a/L = 1/8, 1/6, 1/5, 1/4 1-loop (at weak coupling) and 2-loop O(a) bound-
ary improvement, linear extrapolation of SSF in
(a/L)2

ALPHA 01A [585] 2 a/L = 1/6, 1/5, 1/4 1-loop (at weak coupling) and 2-loop O(a) bound-
ary improvement, weighted average of SSF with
a/L = 1/5, 1/6.

Boucaud 01B[640] 2 a = 0.05, 0.07, 0.09 fm.
Data at different lattice
spacings are patched to-
gether

At αs = 0.3, ap = 1.6, 1.3, 0.9; plain Wilson action
with O(a) errors.

SESAM 99 [619] 2 1 lattice spacing with a =
0.079 fm

Υ spectrum splitting.

Wingate 95 [620] 2 1 lattice spacing with a =
0.11 fm

Charmonium 1S-1P splitting.

Aoki 94 [617] 2 1 lattice spacing with a =
0.10 fm

Charmonium 1P − 1S splitting

Davies 94 [618] 2 1 lattice spacing with a =
0.08 fm

Υ spectrum splitting.

Table 158: Continuum limit for αs determinations with Nf = 2.
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Collab. Ref. Nf aµ Description

Bazavov 14 [61] 2+1 2a/r = 0.52 − 3.2 5 lattice spacings; 3 used for determination.
At αeff = 0.3, then 0.86 < aµ = 2a/r < 1.3.
mπL = 2.4, 2.6, 2.2 at smallest three lattice
spacings of a = 0.060, 0.049, 0.041fm respec-
tively [350]; adequate coverage of topological
sectors is not clear.

Bazavov 12 [600] 2+1 2a/r = 0.6− 2.0 7 lattice spacings; 4 lattice spacings with
1.14 ≤ 2a/r ≤ 1.5 when αs(1/r) = 0.3.
2a/r = 2 when αs(1/r) = 0.23 (on the finest
lattice).

Sternbeck 12 [648] 2+1 a = 0.07 fm At αs = 0.23, ap = 2.1.

HPQCD 10 [9] 2+1 aµ = 2am̄h = 0.61 − 1.75 5 lattice spacings; 3 lattice spacings with 1.0 ≤
aµ ≤ 1.5 when αR4(µ) ≤ 0.3; 3 lattice spacings
with 1.0 ≤ aµ ≤ 1.5 when αR6/R8

(µ) ≤ 0.33.

JLQCD 10 [609] 2+1 a = 0.11 fm from r0 = 0.49 fm Single lattice spacing, 0.4 < (aQ)2 < 1.0 for
the momentum fit range. At αs = 0.3, ap =
0.89.

HPQCD 10 [9] 2+1 Update of r1 and r1/a in HPQCD 08A.

PACS-CS 09A [62] 2+1 a/L = 1/8, 1/6, 1/4 Tree-level O(a) boundary improvement, which
has been seen to behave better than 1-loop in
simulations [578]; weighted average of a/L =
1/8, 1/6 for step-scaling function which agrees
with a linear extrapolation in a/L of all data
points of the SSF. Linear extrapolation in a/L
of Lmaxmρ with a/Lmax = 1/8, 1/6, 1/4.

HPQCD 08B [152] 2+1 aµ = 2am̄h = 0.8, 1.2, 1.7,
2.1

4 lattice spacings with heavy quark mass ap-
proximately the charm mass, where αR4(µ) =
0.38.

HPQCD 08A [613] 2+1 6 lattice spacings with a =
0.18 - 0.045 fm

r1 using Υ spectrum splitting.

Maltman 08 [63] 2+1 5 lattice spacings with a =
0.18 - 0.06 fm

Re-analysis of HPQCD 05A with additional
lattice spacings a = 0.06, 0.15 fm.

HPQCD 05A [612] 2+1 3 lattice spacings with a =
0.18 - 0.09 fm

r1 using Υ spectrum splitting.

Table 159: Continuum limit for αs determinations with Nf = 3.
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Collab. Ref. Nf a µ Description

HPQCD 14A [5] 2+1+1 aµ = 2am̄h = 0.78 − 2.09 4 lattice spacings; 2 lattice spacings with aµ ≤
1.5 and one more lattice spacing with aµ<∼ 1.6
when αR4(µ) ≤ 0.3.

ETM 13D [645] 2+1+1 a = 0.060, 0.068 fm from fπ For αs ≤ 0.3, ap = 1.5, 1.7. Update of [646].

ETM 12C [646] 2+1+1 a = 0.061, 0.078 fm from fπ Global fit with (ap)2 discretization effects. For
αs ≤ 0.3, ap = 1.5, 2.2.

ETM 11D [647] 2+1+1 a = 0.061, 0, 078 fm For αs ≤ 0.3, ap = 1.5, 2.0.

ALPHA 10A [582] 4 a/L = 1/4, 1/6, 1/8 Constant or global linear fit in (a/L)2.

Perez 10 [583] 4 a/L = 1/4, 1/6, 1/8 Linear extrapolation in (a/L)2. 1-loop im-
provement at the boundary.

Table 160: Continuum limit for αs determinations with Nf = 4.
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