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Uniform sampling in a structured branching population

Aline Marguet∗

September 19, 2016

Abstract

We are interested in the dynamic of a structured branching population where the trait of
each individual moves according to a Markov process. The rate of division of each individual is
a function of its trait and when a branching event occurs, the trait of the descendants at birth
depends on the trait of the mother and on the number of descendants. In this article, we explicitly
describe the penalized Markov process, named auxiliary process, corresponding to the dynamic
of the trait along the spine by giving its associated infinitesimal generator. We prove a Many-
to-One formula and a Many-to-One formula for forks. Furthermore, we prove that this auxiliary
process characterizes exactly the process of the trait of a uniformly sampled individual in the
large population approximation. We detail three examples of growth-fragmentation models: the
linear growth model, the exponential growth model and the parasite infection model.

Keywords: Branching Markov processes, Many-to-One formulas, Size-biased reproduction law.

A.M.S classification: 60J80, 60J85, 60J75, 92D25.

1 Introduction
The characterization of the sampling of individuals in a population is a key issue for branching pro-
cesses with several motivations in statistics and biology. The question of finding the coalescing time of
individuals in a Galton-Watson tree has been studied in [36]. We refer to [2] and [30] for more results
on this question and to [25] for results concerning the Bellman-Harris branching process. The pedigree
of a typical individual in a supercritical branching process has also been investigated asymptotically
for multi-type branching processes with a finite number of types in [18], with i.i.d life-times in [3] and
with an age-structure in [34]. The characterization of the sampling is the key to obtain asymptotic
results on the branching process ([29], [5], [13]) and to infer the parameters of the model ([19], [15],
[24]).

In this article, we consider a continuous-time structured branching Markov process where the trait
of each individual moves according to a Markov process and influences the branching events. The
purpose of this article is to characterize the trait of a typical individual uniformly sampled from the
population at time t and its associated ancestral lineage. In particular, we exhibit the bias due to the
structure of the population and to the sampling. We also describe the traits of a uniformly sampled
couple in the current population. Therefore, we provide new applications in a non-neutral framework
for cell division (Section 2.2), even for models in a varying environment.

We now describe informally the process, while its rigorous construction and characterization as a
càdlàg measure-valued process under Assumptions A and B are detailed in Section 2. We assume that
individuals behave independently and that for each individual u:

• its trait (Xu
t )t≥0 evolves as an X -valued Markov process with infinitesimal generator (G,D(G)),
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• it dies at time t at rate B(Xu
t ),

• at its death, an individual with trait x is replaced by k ∈ N individuals with probability pk(x)
and m(x) =

∑
k≥1 kpk(x),

• the trait of the jth child among k is distributed as P (k)
j (x, ·) for all 1 ≤ j ≤ k.

We use the spine representation and Many-to-One formulas, which have been developed from the
notion of size-biased tree, considered by Kallenberg [26], Chauvin and Rouault [11], Chauvin, Rouault
and Wakolbinger [12] with a Palm measure approach and Lyons, Peres and Pemantle [32]. For general
results on branching processes using these techniques, including the spinal decomposition, we refer to
[29] and [1] for discrete-time models and to [18], [20] and [13] for continuous-time branching processes.
These previous works ensure in particular that if we denote by Vt the set of individuals alive at time
t and by Nt its cardinal, we have:

E

[∑
u∈Vt

f (Xu
t )

]
= E

[
f (Yt) e

∫ t
0
B(Ys)(m(Ys)−1)ds

]
, (1.1)

where f is a non-negative measurable function and (Yt)t≥0 follows the dynamic of a tagged-particle
i.e. the same dynamic of all the particles between jumps and at a jump, the unique daughter particle
is chosen uniformly at random among all the daughter particles. This formula can be seen as a
Feynman-Kac formula [14] with a weight on the right-hand side relying on the whole ancestral lineage
of current individuals which corresponds to the growth of the population. In this case, under spectral
assumptions, the asymptotic behavior of the number of individuals has been well studied in [32],
[29], [1], [18] and [9]. We also refer to the work of Bansaye and al. [5] for law of large numbers
theorems using Many-to-One formulas. On the right-hand side of (1.1) appears a Markov process
with penalized trajectories which describes the dynamic of the trait of a typical individual. This
corresponds to a time-inhomogeneous Markov process Y (t), indexed by t ≥ 0, for which we provide
the following formula for any non-negative measurable function F on the space of càdlàg processes:

E

[∑
u∈Vt

F (Xu
s , s ≤ t)

]
= m(x, 0, t)E

[
F
(
Y (t)
s , s ≤ t

)]
, (1.2)

where for x ∈ X and 0 ≤ s ≤ t,

m(x, s, t) := E
[
Nt
∣∣Zs = δx

]
, (1.3)

and

Zt =
∑
u∈Vt

δXut ,

is the empirical measure of the process. We explicit the generator
(
A(t)
s

)
s≤t

of this auxiliary process:

for all well-chosen functions f , x ∈ X and s < t, we have:

A(t)
s f(x) = Ĝ(t)

s f(x) + B̂(t)
s (x)

∫
X

(f(y)− f(x))P̂ (t)
s (x, dy),

where

Ĝ(t)
s f(x) =

G (m(·, s, t)f) (x)− f (x)G (m(·, s, t)) (x)

m(x, s, t)
,

B̂(t)
s (x) = B(x)

∫
X

m(y, s, t)

m(x, s, t)
m(x, dy),
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P̂ (t)
s (x, dy) = m(y, s, t)m(x, dy)

(∫
X
m(y, s, t)m(x, dy)

)−1

,

where:

m(x,A) :=
∑
k≥0

pk(x)

k∑
j=1

P
(k)
j (x,A),

denotes the expected number of children with trait in the Borel set A of an individual of trait x.
Moreover, we give some very simple and interesting examples where we can find the expression of

the generator of the auxiliary process: we detail three models for the dynamic of a cell population
(see Section 2.2).

The Many-to-One formula (1.2) splits the behavior of the entire population into a term character-
izing the growth of the population and a term characterizing the dynamic of the trait. This separation
in two terms is the key to the study of the ancestral trait of a uniformly sampled individual. Indeed,
we prove in Theorem 4.1, that the auxiliary process describes the ancestral lineage of a sampled indi-
vidual in a branching population at a fixed time when the initial population is large. More precisely,
if we denote by XU(t),ν the trait of a uniformly sampled individual from a population at time t with
initial distribution ν and if νn =

∑n
i=1 δXi where Xi are i.i.d. random variables with law ν, under

some assumptions, we prove the following convergence in law:

X
U(t),νn
[0,t] −→

n→+∞
Y

(t),πt
[0,t] , where πt(dx) =

Ex(Nt)ν(dx)∫
Ex(Nt)ν(dx)

. (1.4)

This result proves that the auxiliary process is the appropriate tool for the study of the trait along
the ancestral lineage of a sampling. We notice in particular that the dependence on the trait of the
average number of individuals in the population plays a crucial part in the creation of a bias.

Finally, we are currently working on the asymptotic behavior of the process of a sampling which,
under some assumptions ensuring the ergodicity of the auxiliary process, is also described by the
asymptotic behavior of the auxiliary process.

Outline. Section 2 is devoted to the rigorous construction of our process. In Section 2.1, we first de-
scribe in detail the model and in Theorem 2.3, we prove the existence and uniqueness of the branching
process. Then, in Section 2.2, we introduce our three examples of cell division models: the size-
structured model with linear or exponential growth and the parasite infection model. In Section 3,
we detail the properties of the Markov process along the spine. In particular, in Theorem 3.1, we
prove the Many-to-One formula which describes the dynamic of a typical individual in the population.
Finally, we give two other Many-to-One formulas, one for the dynamic of the whole tree in Proposi-
tion 3.4 and an other one for the dynamic of a couple of traits in Proposition 3.5. Section 4 concerns
the ancestral lineage of a uniform sampling at a fixed time in a large population. More precisely, in
Theorem 4.1, we prove the convergence (1.4). In Section 4.2, we give explicitly the dynamic of the
auxiliary process for our three examples of cell population models. Finally, in Section 5, we give some
useful comments on the model and some other examples.

Notation. We use the classical Ulam-Harris-Neveu notation to identify each individual. Let

U =
⋃
n∈N

(N∗)n .

The first individual is labeled by ∅. When an individual u ∈ U dies, his K descendants are labeled
u1, . . . , uK. If u is an ancestor of v, we write u ≤ v.
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2 Definition and existence of the structured branching process
First, we introduce some useful notations and objects to characterize the branching process. Hence-
forth, we work on a probability space denoted by (Ω,F ,P).

Dynamic of the trait. Let X ⊂ (R+)
d be a measurable space for some d ≥ 1. It is the state space

of the Markov process describing the trait of the individuals. Let (At, t ≥ 0) be a Feller semi-group
with associated infinitesimal generator G : D(G) ⊂ C0(X )→ C0(X ), where C0(X ) denotes the space of
continuous function from X to R vanishing at infinity.

Let (Xt)t≥0 be the unique X -valued càdlàg strong Markov process solution of the martingale
problem associated with (G,D(G)).

Remark 2.1. According to the Hille-Yoshida theorem (see [16] Theorem 1.2.6), D(G) is dense in
C0(X ) for the topology of uniform convergence.

Definition 2.2. For all 0 ≤ s ≤ t, x ∈ X , let Φ(x, s, t) be the stochastic flow associated with the
generator (G,D(G)). It is a càdlàg X -valued random variable such that:

• for all f ∈ D(G), 0 ≤ s ≤ t and x ∈ X we have:

f (Φ(x, s, t))− f(x)−
∫ t

s

Gf (Φ(x, s, r)) dr, (2.1)

is a σ(Xt, t ≥ 0)-martingale.

• for each 0 ≤ s ≤ t, Φ(·, s, t) is a measurable map from X to X ,

• for each 0 ≤ r ≤ s ≤ t and all x ∈ X , Φ (Φ(x, r, s), s, t) = Φ(x, r, t), almost surely.

Division events. An individual with trait x dies at an instantaneous rate B(x), where B is a
continuous function from X to R+. It is replaced by Au(x) children, where Au(x) is a N-valued
random variable with distribution (pk (x) , k ≥ 0). For convenience, we assume that p1(x) ≡ 0 for all
x ∈ X . The trait at birth of the jth descendant among k is given by the random variable F (k)

j (x, θ),

where
(
F

(k)
j (·, ·), j ≤ k, k ∈ N

)
is a family of measurable functions from X × [0, 1] to X and θ is a

uniform random variable on [0, 1]. For all k ∈ N, let P (k)(x, ·) be the probability measure on X k
corresponding to the trait distribution at birth of the k descendants of an individual with trait x. We
denote by P (k)

j (x, ·) the jth marginal distribution of P (k) for all k ∈ N and j ≤ k i.e. for all Borel
sets A ⊂ X , we have P (k)

j (x,A) = P (k)
(
x,X j−1 ×A×X k−j

)
.

We denote by MP (X ) the set of point measures on X . Following Fournier and Méléard [17],
we work in D (R+,MP (X )), the state of càdlàg measure-valued Markov processes. For any Z ∈
D (R+,MP (X )), we write:

Zt =
∑
u∈Vt

δXut , t ≥ 0,

where Vt represents the set of individuals alive at time t. We set Nt = #Vt. Moreover, for any process
Z ∈ D (R+,MP (X )), we define recursively the associated sequence of jump times by

T0(Z) = 0 and Tk+1(Z) = inf
{
t > Tk(Z), Nt 6= NTk(Z)

}
,

with the standard convention that inf {∅} = +∞. In order to ensure the non-explosion in finite time
of such a process, we need to consider two sets of hypotheses. The first one controls what happens
regarding divisions (in term of rate of division and of mass creation).

Assumption A. We consider the following assumptions:
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1. There exist b1, b2 ≥ 0 and γ ≥ 0 such that for all x ∈ X ,

B(x) ≤ b1 |x|γ + b2.

2. For all t ≥ 0, there exists x(t) ∈ X , increasing in t, such that for all x ∈ X , k ∈ N and θ ∈ [0, 1]:

k∑
i=1

F
(k)
i (x, θ) ≤ x ∨ x(t), componentwise.

3. There exists m ≥ 0 such that for all x ∈ X ,

m(x) =
∑
k

kpk(x) ≤ m.

4. For all x ∈ X and s ≥ 0, we have:

lim
t→+∞

∫ t

s

B (Φ (x, s, r)) dr = +∞, almost surely.

The first point controls the life-times of individuals via the division rate to ensure the non-explosion
of the number of individuals in finite time. In particular, if γ = 0, B is bounded and the non-explosion
in finite time of the number of individuals in the previously defined process is obvious. The second
point of Assumption A means that we consider a fragmentation process with a possibility of mass
creation at division when the mass is small enough. In particular, clones are allowed in the case of
bounded traits and bounded number of descendants and any finite type branching structured process
can be considered. The dependence in t of the threshold x allows us to consider models in a varying
environment. The last point of Assumption A ensures that each individual divides after a certain
time.

We make a second assumption to control the behavior of traits between divisions.

Assumption B. There exist c1, c2 ≥ 0 such that for all x ∈ X :

Ghγ(x) ≤ c1hγ(x) + c2,

where γ is defined in Assumption A and for x ∈ (R+)
d, hγ(x) = |x|γ =

(∑d
i=1 xi

)γ
.

Assumptions A(1) and B are linked via the parameter γ which controls the balance between the
growth of the population and the dynamic of the trait.

2.1 Existence and uniqueness of the structured branching process
We now prove the strong existence and uniqueness of the structured branching process. Let E =
U ×R+ × [0, 1]× [0, 1] and M (ds, du, dz, dl, dθ) be a Poisson point measure on R+ ×E with intensity
ds⊗ n(du)⊗ dz ⊗ dl⊗ dθ, where n(du) denotes the counting measure on U . Let (Φu)u∈U be a family
of independent stochastic flows satisfying (2.1) describing the individual-based dynamics. We assume
that M and (Φu)u∈U are independent. We denote by Ft the filtration generated by the Poisson point
measure M and the family of stochastic flows (Φu(x, s, t), u ∈ U , x ∈ X , s ≤ t) up to time t.

For all x ∈ X , there exists a function G(x, ·) : [0, 1]→ N such that:

G(x, l)
d
= (pk(x), k ∈ N) ,

where l is a uniform random variable on [0, 1]. For convenience, for all x ∈ X and θ, l uniform random
variables on [0, 1], we write:

Fi(x, l, θ) = F
(G(x,l))
i (x, θ).
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For all 0 ≤ s ≤ t, f ∈ D(G), x ∈ X and u ∈ U , we consider the Ft-martingale
(
Mf,u
s,t (x), t ≥ s

)
defined by:

Mf,u
s,t (x) := f(t,Φu(x, s, t))− f(s, x)−

∫ t

s

(Gf(r,Φu(x, s, r)) + ∂rf(r,Φu(x, s, r))) dr. (2.2)

Theorem 2.3. There exists a strongly unique Ft-adapted càdlàg process from R+ with values in
MP (X ) such that for all f ∈ D(G) and t ≥ 0:

〈Zt, f〉 = f (0, x0) +

∫ t

0

∫
X

(Gf(s, x) + ∂sf (s, x))Zs (dx) ds+Mf
0,t(x)

+

∫ t

0

∫
E

1u∈Vs− ,z≤B(Xu
s−)

G(Xus ,l)∑
i=1

f (s, Fi (Xu
s , l, θ))− f (s,Xu

s−)

M (ds, du, dz, dl, dθ) , (2.3)

where for all s ≥ 0 and t ≥ s:

Mf
s,t(x) =

∑
k≥1

1s≤Tk−1(Z)<t

∑
u∈VTk−1(Z)

Mf,u
Tk−1(Z),Tk(Z)∧t

(
Xu
Tk−1(Z)

)
,

is a Ft-martingale.

The proof of this theorem is split into four lemmas. First, in Lemma 2.4, we prove the existence
of a Ft-adapted càdlàg measure-valued process Z solution of (2.3) for all t ∈ [0, Tk(Z)) and all k ∈ N.
Then, in Lemma 2.5, we prove that

(
Mf
s,t, t ≥ 0

)
is a Ft-martingale. Next, in Lemma 2.6, we prove

the uniqueness of the increasing sequence (Tk(Z), k ≥ 0) corresponding to the jump times of a solution
Z to (2.3) and the uniqueness of a Ft-adapted càdlàg solution to (2.3) for t ∈ [0, Tk(Z)) for all k ∈ N.
Finally, in Lemma 2.7, we prove that the sequence of jump times tends to infinity resulting in the
existence and uniqueness of the process on R+.

Lemma 2.4. There exist a Ft-adapted càdlàg measure-valued process (Zt)t≥0 which is solution of
(2.3) for all f ∈ D(G) and for all t ∈ [0, Tk(Z)), k ∈ N.

Proof. See Section A in the appendix.

Lemma 2.5. Let Z be the measure-valued process solution of (2.3) whose construction is given in the
previous lemma. Let k ∈ N. For all 0 ≤ s ≤ t ≤ Tk(Z), x ∈ X and f ∈ D(G),

Mf
s,t(x) =

∑
k≥1

1s≤Tk−1(Z)<t

∑
u∈VTk−1

Mf,u
Tk−1(Z),Tk(Z)∧t

(
Xu
Tk−1

)
,

is an Ft-martingale.

Proof. Let k ∈ N and 0 ≤ s ≤ t ≤ Tk(Z). Let f ∈ D(G) and x ∈ X . Then, for all s ≤ r ≤ t, we have:

E
[
Mf
s,t(x)

∣∣Fr]−Mf
s,r(x)

=E

∑
k≥1

1r≤Tk−1(Z)<t

∑
u∈VTk−1(Z)

Mf,u
Tk−1(Z),Tk(Z)∧t

(
Xu
Tk−1

) ∣∣Fr


=E

∑
k≥1

1r≤Tk−1(Z)<t

∑
u∈VTk−1(Z)

E
[
Mf,u
Tk−1(Z),Tk(Z)∧t

(
Xu
Tk−1

) ∣∣FTk−1(Z)

] ∣∣Fr
 = 0,

because
(
Mf,u
s,t (x), t ≥ s

)
is a Ft-martingale.
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Next, we prove the uniqueness of the sequence of jump times (Tk(Z), k ≥ 0) associated with a
solution Z to (2.3) and the uniqueness of the solution on [0, Tk(Z)), for all k ∈ N.

Lemma 2.6. The increasing sequence (Tk(Z), k ≥ 0) corresponding to the jump times of a solution
Z to (2.3) is strongly unique. Moreover, the strong uniqueness of a Ft-adapted càdlàg measure-valued
solution to (2.3) holds, for t ∈ [0, Tk(Z)) and for all k ∈ N.

Proof. See Section B in the appendix.

Lemma 2.7. Under Assumptions A(1-3) and B, the strongly unique sequence of jump times of a
solution Z to (2.3) tends to infinity as k tends to infinity, almost surely.

Proof. Let T > 0. To shorten notation, we write Tk instead of Tk(Z). We prove that almost surely
there is no accumulation of jumps on [0, T ] of the solution of (2.3) previously constructed on [0, Tk[,
for all k ∈ N. Let k ∈ N and (Zt, t ≤ Tk) be the solution of (2.3) up to the kth division time. Using
equation (2.3) applied to the constant function equal to 1, we have for all t ≤ Tk ∧ T :

Eδx (Nt) = 1 +

∫ t

0

Eδx

(∑
u∈Vs

B (Xu
s ) (m(Xu

s )− 1)

)
ds

≤ 1 +mb1

∫ t

0

Eδx

(∑
u∈Vs

|Xu
s |
γ

)
ds+mb2

∫ t

0

Eδx (Ns) ds, (2.4)

where the inequality comes from Assumption A(1) and A(3). Recalling that hγ(x) =
(∑d

i=1 xi

)γ
, for

x ∈ (R+)
d, we have using (2.3):

Eδx

[∑
u∈Vt

|Xu
t |γ
]

=|x|γ +

∫ t

0

Eδx

[∑
u∈Vs

Ghγ(Xu
s )

]
ds

+

∫ t

0

∫
[0,1]

Eδx

∑
u∈Vs

B(Xu
s )
∑
k≥0

pk(Xu
s )

 k∑
j=1

∣∣∣F (k)
j (Xu

s , θ)
∣∣∣γ − |Xu

s |
γ

 dθds.
Next, using Assumption A(2) and B, we get that:

Eδx

[∑
u∈Vt

|Xu
t |γ
]
≤ |x|γ +

∫ t

0

Eδx

[∑
u∈Vs

(c1 |Xu
s |
γ

+ c2)

]
+ Eδx

[∑
u∈Vs

B(Xu
s ) |x(s)|γ 1|Xus |≤|x(s)|

]
ds.

Finally, using Assumption A(1) and the fact that t 7→ x(t) is increasing, we get:

Eδx

[∑
u∈Vt

|Xu
t |γ
]
≤ |x|γ + c1

∫ t

0

Eδx

[∑
u∈Vs

|Xu
s |
γ

]
ds+ (c2 + (b1 |x(t)|γ + b2) |x(t)|γ)

∫ t

0

Eδx [Ns] ds.

Adding this inequality to (2.4) we obtain for all t ≤ Tk ∧ T :

Eδx [Nt] + Eδx

[∑
u∈Vt

|Xu
t |γ
]
≤ 1 + |x|γ +A(T )

∫ t

0

(
Eδx [Ns] + Eδx

[∑
u∈Vs

|Xu
s |γ
])

ds,

where A(T ) = c1 +c2 +b1 |x(T )|2γ +b2 |x(T )|γ +(b1 +b2)m. According to Grönwall Lemma, we obtain
for all t ≤ Tk ∧ T :

Eδx [Nt] + Eδx

[∑
u∈Vt

|Xu
t |γ
]
≤ (1 + |x|γ) eA(T )t <∞.

Finally, the average number of individuals in the population at time t is bounded for t in compact
sets and there is no explosion of the population in finite time.
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Before moving to the next section , we introduce the first-moment semi-group (Rs,t, t ≥ s) asso-
ciated with the branching process: for all s ≥ 0, t ≥ s and x ∈ X , let

Rs,tf(x) = E

[∑
u∈Vt

f (Xu
t )
∣∣Zs = δx

]
, (2.5)

where f is a measurable function. Applying equation (2.3) to f ≡ 1, we obtain by taking the
expectation :

Rs,t1(x) = m(x, s, t) = 1 +

∫ t

s

E

[∑
u∈Vs

B(Xu
s )(m(Xu

s )− 1)
∣∣Zs = δx

]
ds. (2.6)

In particular, if B ≡ b and m(x) = m for all x ∈ X , we obtain m(x, s, t) = eb(m−1)(t−s).

2.2 Some growth-fragmentation models for cell population dynamics
In this section, we consider growth-fragmentation processes: at division, the trait of the mother is
distributed among the children and the number of individual in the population increases. Moreover,
we focus on models where the trait moves according to a diffusion given by its associated generator
of following form:

Gf(x) = r(x)f ′(x) + σ2(x)f ′′(x),

where r and σ are measurable functions. This class covers several dynamics for the trait. Here, we
present three of them. In particular, we give an explicit formula for the average number of individuals
in the population at time t. We first give a useful equation concerning models with such a dynamic.
For all s ≥ 0, t ≥ s and x ∈ X , applying (2.3) to f(x) = x and taking the expectation, we obtain:

Rs,tId(x) = x+

∫ t

s

Rs,ur(x)du, (2.7)

where (Rs,t)t≥s is defined in (2.5).

2.2.1 Linear growth model

We consider here a size-structured model. More precisely, the size of each cell grows linearly at a rate
a > 0 supposed to be identical for each cell and divisions occur at rate B(x) = αx, α > 0. At fission,
the cell splits into two daughter cells of size x

2 , when x denotes the size of the mother at splitting.
Using the previous notation, the process (Xt, t ≥ 0) describing the size of a cell starting from x0 is
given by:

Xt = x0 + at,

and the associated generator is given for any function f ∈ C1(R+) by:

Gf(x) = af ′(x).

Then, the branching process (Zt, t ≥ 0) is solution of the following equation, for any function f ∈
C1(R+) and any x ∈ X :

〈Zt, f〉 = 〈Z0, f〉+

∫ t

0

∫
R+

af ′(x)Zs(dx)ds

+

∫ t

0

∫
U×R+

1u∈Vs− ,z≤αXus−

(
2f

(
Xu
s−

2

)
− f (Xu

s−)

)
M(ds, du, dz),
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where M is a Poisson point measure on R+ × U × R+ with intensity ds ⊗ n(du) ⊗ dz. The validity
of Assumptions A and B is trivial for this model with γ = 1. Let us compute the average number of
individuals in the population at time t. For all s ≤ t and x ∈ R, we have using (2.6):

m(x, s, t) = 1 + α

∫ t

s

E

(∑
u∈Vr

Xu
r

∣∣Zs = δx

)
dr. (2.8)

Combining (2.7) and (2.8), we obtain:

m(x, s, t) = 1 + α

∫ t

s

(
x+ a

∫ r

s

m(x, s, τ)dτ

)
dr,

and for all x ∈ X and s ≥ 0, m(x, s, ·) is the solution of the following Cauchy problem with unknown
f : {

f ′′(t) = aαf(t),

f(s) = 1, f ′(s) = αx.

with explicit solution given by:

m(x, s, t) =
1

2

(
ea(t−s) + e−a(t−s)

)
+
x

2

√
α

a

(
ea(t−s) − e−a(t−s)

)
,

where a =
√
aα. The population size is exponential in time as in the neutral case.

2.2.2 Exponential growth model in a varying environment

We assume here that the growth of the cells is exponential at rate a. This exponential growth model
has been studied in [15] in the case of a specific growth rate for each individual in order to infer
the division rate of the population. Here, we assume that the division rate is a function of time,
mimicking a varying environment. More precisely, we set B(x, t) = α(t)x, with α a positive function.
The generator for the dynamic of the size is given for any function f ∈ C1(R+) by:

Gf(x) = axf ′(x).

Then, the branching process (Zt, t ≥ 0) is solution of the following equation, for any function f ∈
C1(R+) and any x ∈ X :

〈Zt, f〉 = 〈Z0, f〉+

∫ t

0

∫
R+

axf ′(x)Zs(dx)ds

+

∫ t

0

∫
U×R+

1u∈Vs− ,z≤α(s)Xu
s−

(
2f

(
Xu
s−

2

)
− f (Xu

s−)

)
M(ds, du, dz),

where M is a Poisson point measure on R+ × U × R+ with intensity ds ⊗ n(du) ⊗ dz. Moreover, we
have using (2.7) with r(x) = ax:

E

(∑
u∈Vt

Xu
t

∣∣Zs = δx

)
= xea(t−s).

Combining this with equation (2.6), we obtain:

m(x, s, t) = 1 + x

∫ t

s

α(r)ea(r−s)dr.

In particular, if α(r) ≡ α with α a positive constant, we obtain:

m(x, s, t) = 1 +
αx

a

(
ea(t−s) − 1

)
.

The growth is again exponentially fast in time.
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2.2.3 Parasite infection model

This model is a continuous version of Kimmel’s multilevel model for plasmids [27] which has already
been studied in the case of a constant or monotone division rate by Bansaye and Tran in [6]. It models
the proliferation of a parasite infection in a cell population. More precisely, we assume here that the
trait (Xt, t ≥ 0) is a Markov process describing the quantity of parasites in each cell which evolves as
a Feller diffusion process:

Xt = X0 +

∫ t

0

gXsds+

∫ t

0

√
2σ2XsdBs,

where (Bs)s≥0 is standard Brownian motion and g, σ > 0 are some fixed parameters. The generator
for the dynamic of the quantity of parasites is given for any function f ∈ C2(R+) by:

Gf(x) = gxf ′(x) + σ2xf ′′(x).

We assume here that a cell with a quantity x of parasites will potentially divide at a rate B(x) = αx+β,
α, β > 0 into two daughter cells with a quantity δx and (1− δ)x of parasites respectively, where δ is
a random variable with uniform distribution on [0, 1]. We need β to be strictly positive so that even
cells without any parasites divide after some time. The branching process (Zt, t ≥ 0) is then solution
of the following equation, for any function f ∈ C2(R+) and any x ∈ X :

〈Zt, f〉 = 〈Z0, f〉+

∫ t

0

∫
R+

(
gxf ′(x) + σ2xf ′′(x)

)
Zs(dx)ds+

∫ t

0

∑
u∈Vs

√
2σ2Xu

s f
′(Xu

s )dBus

+

∫ t

0

∫
U×R+×[0,1]

1u∈Vs− ,z≤αXus−+β (f (δXu
s−) + f ((1− δ)Xu

s−)− f (Xu
s−))M(ds, du, dz, dδ),

where M is a Poisson point measure on R+ ×U ×R+ × [0, 1] with intensity ds⊗ n(du)⊗ dz ⊗ dδ and
(Bus , s ≥ 0)u∈U is a family of standard Brownian motions. In particular, the generator corresponding
to first moment semi-group is given for any function f ∈ C2(R) and x ∈ X by:

Finff(x) = gxf ′(t ≥ sx) + σ2xf ′′(x) + (αx+ β)

(∫ 1

0

[f (δx) + f ((1− δ)x)] dδ − f(x)

)
.

Therefore, we notice that if (V, λ) are eigenelements of Finf, we have FinfV (0) = βV (0) so that
V (0) = 0 if λ 6= β and we cannot apply usual techniques using eigenelements.

Let us compute the average number of individuals in the population after time t. We have using
(2.6):

m(x, s, t) = 1 + α

∫ t

s

E

[∑
u∈Vr

Xu
r

∣∣Zs = δx

]
dr + β

∫ t

s

m(x, s, r)dr.

Again, using (2.7), we obtain:

E

[∑
u∈Vr

Xu
r

∣∣Zs = δx

]
= xeg(r−s).

Then, combining the two previous equations, we get after differentiation:

∂tm(x, s, t) = αxeg(t−s) + βm(x, s, t),

and finally:

m(x, s, t) =
αx

g − β
eg(t−s) +

(
1− αx

g − β

)
eβ(t−s),

if g 6= β and:
m(x, s, t) = (1 + α(t− s))xeβ(t−s),
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if g = β. In our three examples above, the mean number of individuals in the population is an
affine function of the trait of the initial individual. However, this is not the rule. For example, Cloez
developed in [13](Corollary 6.1.) the case of a dynamic of the trait following an Ornstein-Uhlenbeck
process where the dependence in x is not affine.

For other examples and comments, including a link with the integro-differential model, we refer to
Section 5.

3 The trait of sampled individuals at a fixed time : Many-to-
One formulas

In order to characterize the trait of a uniformly sampled individual, the spinal approach ([11],[32]),
consists in following a "typical" individual in the population whose behavior summarizes the behavior
of the entire population. Biggins [8] used this approach for the study of branching random walks
extending Kingman results [28]. The spinal approach has then been extended to various frameworks
([22],[29],[20]). In particular, Georgii and Baake [18] used spine techniques in a spectral framework to
describe the asymptotic distribution of the trait of a uniformly sampled individual in the population
and its ancestral lineage in the case of a finite set of possible trait.

In this section, we specify the generator of the process describing the trait along the spine. The
existence of our auxiliary process does not rely on the existence of spectral elements for the mean
operator of the branching process.

With a slight abuse of notation, for all u ∈ Vt and s < t, we denote by Xu
s the trait of the unique

ancestor living at time s of u.

3.1 The auxiliary process
Let us define

D(A) = {f ∈ D(G) s.t. m(·, s, t)f ∈ D(G) ∀t ≥ 0, ∀s ≤ t} .

From now on, we assume that for all x ∈ X , t ≥ 0 and s ≤ t, m(x, s, t) 6= 0.
We now recall the operator and functions needed for the definition of the auxiliary process, and

introduce additional notations. For all f ∈ D(A), x ∈ X and s < t, we write:

Ĝ(t)
s f(x) =

G (m(·, s, t)f) (x)− f (x)G (m(·, s, t)) (x)

m(x, s, t)
, (3.1)

B̂(t)
s (x) = B(x)Λ(x, s, t), (3.2)

P̂ (t)
s (x, dy) = Λ−1(x, s, t)

m(y, s, t)

m(x, s, t)
m(x, dy), (3.3)

where:
Λ(x, s, t) =

∫
X

m(y, s, t)

m(x, s, t)
m(x, dy).

In order to prove a Many-to-One formula, we need to consider the following assumption:

Assumption C. There exists a function C such that for all j ≤ k, j, k ∈ N and 0 ≤ s ≤ t, we have:

sup
x∈X

sup
s∈[0,t]

∫
X

m(y, s, t)

m(x, s, t)
P

(k)
j (x, dy) ≤ C(t), ∀t ≥ 0.
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This assumption tells us that we control uniformly in x the benefit or the penalty of a division.

Assumption D. For all t ≥ 0 we have:

- for all x ∈ X , s 7→ m(x, s, t) is differentiable on [0, t] and its derivative is continuous on [0, t],

- for all x ∈ X , f ∈ D(A), s 7→ G(m(·, s, t)f)(x) is continuous,

- for all s ≤ t, m(·, s, t) ∈ D(G),

- D(A) is dense in C0(X ) for the topology of uniform convergence.

These are technical assumptions which are in particular satisfied in our examples (see Section 2.2).
The last item allows us to extend our formulas to all measurable functions with respect to the Sko-

rokod topology using a monotone class argument. Moreover, combining the third point of Assumption
D and Remark 2.1, the last item is in particular satisfied if D(G) is stable by product.

Theorem 3.1. Under assumptions A(1-3), B, C and D, for all t ≥ 0, for all x0 ∈ X and for all
non-negative measurable functions F : D ([0, t],X )→ R+ we have:

Eδx0

[∑
u∈Vt

F (Xu
s , s ≤ t)

]
= m(x0, 0, t)Ex0

[
F
(
Y (t)
s , s ≤ t

)]
, (3.4)

where
(
Y

(t)
s , s ≤ t

)
is a time-inhomogeneous Markov process whose law is characterized by its associ-

ated infinitesimal generators
(
A(t)
s

)
s≤t

given for f ∈ D(A) and x ∈ X by:

A(t)
s f(x) =Ĝ(t)

s f(x) + B̂(t)
s (x)

∫
X

(f (y)− f (x)) P̂ (t)
s (x, dy) . (3.5)

Formula (3.4) has a natural interpretation in terms of semi-groups. If f is a non-negative measur-
able function, we set for any 0 ≤ r ≤ s ≤ t and any x ∈ X :

P (t)
r,s f(x) :=

E
[∑

u∈Vt f (Xu
s )
∣∣Zr = δx

]
m(x, r, t)

= E
[
f
(
Y (t)
s

)
|Y (t)
r = x

]
. (3.6)

In other words,
(
P

(t)
r,s

)
r≤s≤t

is a conservative (non-homogeneous) semi-group and the auxiliary process

Y (t) is its time-inhomogeneous associated Markov process corresponding to the right-hand side of (1.1).
We can exhibit this process using a change of probability measure.

Before proving Theorem 3.1, we give some links between our approach and previous works on this
subject. In the neutral case, i.e. B and (pk)k∈N constants, the auxiliary process coincides with the
one in [5] i.e. for all f ∈ D(G) and x ∈ X , the infinitesimal generator of the auxiliary process is given
by:

Af(x) = Gf(x) +Bm
∑
k≥0

p̂k

1

k

k∑
j=1

∫
X

(f(y)− f(x))P
(k)
j (x, dy)

 ,

where p̂k = kpkm
−1 denote the biased reproduction law. The dynamic of this auxiliary process heavily

depends on the comparison between m(x, s, t) and m(y, s, t), for x, y ∈ X . It emphasizes several bias
due to growth of the population. First, the auxiliary process jumps more than the original process,
if jumping is beneficial in terms of number of descendants. This phenomenon of time-acceleration
also appears for examples in [11], [32] or [20]. Moreover, the reproduction law favors the creation of
a large number of descendant as in [5] and the non-neutrality favors individuals with an "efficient"
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trait at birth in terms of number of descendants. Finally, a new bias appears on the dynamic of the
trait because of the combination of the random evolution of the trait and non-neutrality. Indeed, if
the dynamic of the trait is deterministic, we have Ĝ(t)

s f(x) = Gf(x).
The auxiliary process has been guessed through a discretization of the model using the expression

of the auxiliary process in [4]. However, the proof of Theorem 3.1 does not rely on a discretization
argument but on the uniqueness of the solution to the integro-differential equation (3.8). The proof
is decomposed in four parts: first, in Lemma 3.2, we prove that the integro-differential equation (3.8)
admits a unique solution which corresponds to the semi-group of the auxiliary process defined in
(3.6). Afterwards, in Lemma 3.3, we prove that the infinitesimal generator of this auxiliary process
verifies (3.5). Then, we prove Theorem 3.1 for any function such that F (x) = f1(xt1) . . . fk(xtk),
x ∈ D([0, t],X ), by induction on k ∈ N. Finally, we extend the set of functions for which (3.4) is
satisfied using a monotone class argument.

Let t ≥ 0. We define the following family of semi-groups for f ∈ D(A):

Q(t)
s,rf(x) =

Ar−s(m(·, r, t)f)(x)

m(x, s, t)
, s ≤ r ≤ t.

We also define:

G̃(t)
s f(x) =

G(m(·, s, t)f)(x) + f(x)∂sm(x, s, t)

m(x, s, t)
. (3.7)

Lemma 3.2. Let t ≥ 0. Under Assumptions A(1-3), B, C and D, for all x0 ∈ X , the family of
probability measures

(
P

(t)
0,s(x0, ·), s ≤ t

)
is the unique solution of the following equation with unknown

(µs(x0, ·), s ≤ t):

µs (x0, f) =f (0, x0) +

∫ s

0

∫
X

(
G̃(t)
r f(r, x) + ∂rf(r, x)

)
µr (x0, dx) dr

+

∫ s

0

∫
X

[
B̂(t)
r (x)

∫
X
f (r, y) P̂ (t)

r (x, dy)−B(x)f (r, x)

]
µr (x0, dx) dr, (3.8)

for all function f such that, f(s, ·) ∈ D(A) for all s ≥ 0 and s 7→ f(s, x) is continuously differentiable
for all x ∈ X .

Proof. Let t ≥ 0 and let f be as in the statement of the lemma. The proof falls naturally into two
parts. We first prove that

(
P

(t)
0,s(x0, ·), s ≤ t

)
is a solution of (3.8). We show that for all s ≤ t, x0 ∈ X ,

m(x0, 0, t)P
(t)
0,sf(0, x0) = Eδx0 (〈Zs, f(s, ·)m(·, s, t)〉) .

Indeed, from (3.6), the left-hand side of the above equation is equal to:

m(x0, 0, t)P
(t)
0,sf(0, x0) = Eδx0

∑
v∈Vs

∑
u∈Vt
u≥v

f (s,Xv
s )

 = Eδx0

∑
v∈Vs

f (s,Xv
s )Eδx0

∑
u∈Vt
u≥v

1
∣∣∣Fs



= Eδx0

[∑
v∈Vs

f (s,Xv
s )Eδx0

(∑
u∈Vt

1
∣∣∣Zs = δXus

)]

= Eδx0

[∑
v∈Vs

f (s,Xv
s )m (Xv

s , s, t)

]
.
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Then, applying (2.3) to the function f(s, ·)m(·, s, t) and taking the expectation, we obtain:

Eδx0

[∑
v∈Vs

f (s,Xv
s )m (Xv

s , s, t)

]
= m(x0, 0, t)f (0, x0)

+

∫ s

0

∫
X

(G (f(r, ·)m(·, r, t)) (x) + f(r, x)∂rm(x, r, t) + ∂rf(r, x)m(x, r, t))R0,r(x0, dx)dr

+

∫ s

0

∫
X
B(x)

∑
k≥0

pk(x)

k∑
j=1

∫
X
f (r, y)m (y, r, t)P

(k)
j (x, dy)− f (r, x)m (x, r, t)

R0,r(x0, dx)dr.

(3.9)

Finally, dividing by m(x0, 0, t), we obtain that
(
P

(t)
0,s(x0, ·), s ≤ t

)
is a solution of (3.8).

We now prove the uniqueness of a solution to (3.8). This part of the proof is adapted from [6]. Let(
γ1
s,t, s ≤ t

)
and

(
γ2
s,t, s ≤ t

)
be two solutions of equation (3.8). Let us recall that the total variation

norm is given for all measures γ1, γ2 on X with finite mass by:∥∥γ1 − γ2
∥∥
TV

= sup
φ∈Cb(X ,R),‖φ‖∞≤1

∣∣γ1(φ)− γ2 (φ)
∣∣ ,

where Cb (X ,R) denotes the set of continuous bounded functions from X to R. The idea is to find
a function which cancels the first integral in (3.8). Let x ∈ X , t ≥ 0 and r ≤ t. We begin by
computing the differential of

(
Q

(t)
s,rf(x), s ≤ r ≤ t

)
with respect to s. First, s 7→ Ar−s(m(·, r, t)f)(x)

is differentiable because x 7→ m(x, r, t)f(x) ∈ D(G) and according to the backward equation, its
derivative is s 7→ G(Ar−s(m(·, r, t)f))(x) = Ar−s(G(m(·, r, t)f))(x) which is continuous. Furthermore,
s 7→ m(x, s, t)−1 is differentiable according to Assumption D and because m(x, s, t) 6= 0 for all x ∈ X ,
t ≥ 0 and s ≤ t and its derivative is s 7→ ∂sm(x, s, t)m(x, s, t)−1 is continuous on [0, t] according to
Assumption D. Then, we have for all s, h ≥ 0 and r ≥ s+ h:

Q
(t)
s+h,rf(x) =

Ar−s−h (m(·, r, t)f) (x)

m(x, s+ h, t)

= Q(t)
s,rf(x)− G (Ar−s (m(·, r, t)f)) (x)

m(x, s, t)
h− ∂sm(x, s, t)

m(x, s, t)

Ar−s (m(·, r, t)f) (x)

m(x, s, t)
h+ o(h)

= Q(t)
s,rf(x)−

G
(
m(·, r, t)Q(t)

s,rf
)

(x)

m(x, s, t)
+
∂sm(x, s, t)

m(x, s, t)
Q(t)
s,rf(x)

h+ o(h).

Therefore, for all s ≤ t, f ∈ D (A), we have:

∂sQ
(t)
s,rf(x) = −G̃(t)

s Q(t)
s,rf(x). (3.10)

Let f ∈ D (A) be such that ‖f‖∞ ≤ 1. Let τn(x) = inf {t ≥ 0, Xt /∈ B(x, n)} where B(x, n) is the
X -ball of radius n and centered in x. Let us define for all x ∈ X , s ≤ r ≤ t and n ∈ N:

Q(t),n
s,r f(x) =

Ex
[
m(Xr∧τn(x)−s, r ∧ τn(x), t)f(Xr∧τn(x)−s)

]
m(x, s, t)

.

We still have ∂sQ
(t),n
s,r f(x) = −G̃(t)

s Q
(t),n
s,r f(x). Moreover, for all s ≤ r ≤ t and all x ∈ X , we have:∣∣∣Q(t),n

s,r f(x)
∣∣∣ ≤ Ex

[
m(Xr∧τn(x)−s, r ∧ τn(x), t)

]
m(x, s, t)

≤
Ex
[
m(Xr∧τn(x)−s, r ∧ τn(x), t)

]
E
[
1Ωr∧τn(x)

m(X∅r∧τn(x), r ∧ τn(x), t)
∣∣Zs = δx

] ,
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where Ωr = {T1(Z) > r}. Conditioning with respect to σ (Xs, s ≤ r ∧ τn(x)) on the denominator we
obtain: ∣∣∣Q(t),n

s,r f(x)
∣∣∣ ≤ Ex

[
m(Xr∧τn(x)−s, r ∧ τn(x), t)

]
E
[
exp

(
−
∫ r∧τn(x)

0
B(Xu)du

)
m(X∅r∧τn(x), r ∧ τn(x), t)

∣∣X∅s = x
]

≤
E
[
m(Xr∧τn(x), r ∧ τn(x), t)

∣∣Xs = x
]

exp
(
−rBn(x)

)
E
[
m(X∅r∧τn(x), r ∧ τn(x), t)

∣∣X∅s = x
] ≤ erBn(x), (3.11)

where Bn(x) = supy∈B(x,n)B (y).
Let Tn = inf

{
s ≤ t, γ1

s,t (x0,B(x0, n)c) + γ2
s,t (x0,B(x0, n)c) > 0

}
where B(x0, n)c is the comple-

mentary of the X -ball of radius n and centered in x0 with the convention that inf ∅ = +∞. Then,
using that

(
γis,t, s ≤ t

)
, for i = 1, 2, are solutions of (3.8), we have for all s ≤ r ≤ t:〈

γis∧Tn,t(x0, ·), Q(t),n
s∧Tn,rf

〉
= Q

(t),n
0,r f(x0)

+

∫ s∧Tn

0

∫
X

[
B̂(t)
u (x)

∫
X
Q(t),n
u,r f(y)P̂ (t)

u (x, dy)−B(x)Q(t),n
u,r f(x)

]
γiu,t (x0, dx) du.

Using (3.11), we get: we have:∣∣∣γ1
s∧Tn,t

(
x0, Q

(t),n
s∧Tn,rf

)
− γ2

s∧Tn,t

(
x0, Q

(t),n
s∧Tn,rf

)∣∣∣
=

∣∣∣∣∣
∫ s∧Tn

0

∫
X

[
B̂(t)
u (x)

∫
X
Q(t),n
u,r f (y) P̂ (t)

u (x, dy)−B(x)Q(t),n
u,r f (x)

] (
γ1
u,t − γ2

u,t

)
(x0, dx) du

∣∣∣∣∣
=

∣∣∣∣∣
∫ s∧Tn

0

∫
X
B(x)

[∫
X
Q(t),n
u,r f (y)

m(y, u, t)

m(x, u, t)
m(x, dy)−Q(t),n

u,r f (x)

] (
γ1
u,t − γ2

u,t

)
(x0, dx) du

∣∣∣∣∣
≤ (C(t)m+ 1)erBr(n,x0)(x0)Bn(x0)

∫ s∧Tn

0

∥∥γ1
u,t − γ2

u,t

∥∥
TV

du

≤ (C(t)m+ 1)erBr(n,x0))(x0)Bn(x0)

∫ s

0

∥∥γ1
u∧Tn,t − γ

2
u∧Tn,t

∥∥
TV

du,

where r(n, x0) = 2n+2|x0|+x(s) and C(t) is defined in Assumption C. Then Grönwall’s lemma implies
that

∥∥γ1
s∧Tn,t − γ

2
s∧Tn,t

∥∥
TV

= 0. Taking the limit as n tends to +∞, we obtain
∥∥γ1

s,t − γ2
s,t

∥∥
TV

= 0

and the uniqueness of the solution to (3.8).

Lemma 3.3. Let t ≥ 0. Under Assumption D, the generator of the semi-group
(
P

(t)
r,s , r ≤ s ≤ t

)
defined in (3.6) is

(
A(t)
s , s ≤ t

)
defined on D(A).

Proof. Let t ≥ 0 and f ∈ D(A). If we take the expectation of (2.3) and differentiate with respect to
t, we get that:

∂tRs,tf(x, s) = Gf(x, s) + ∂sf(x, s) +B(x)

∑
k≥0

pk(x)

k∑
j=1

∫ 1

0

f(y, s)P
(k)
j (x, dy)− f(x, s)

 := Rf(x, s),

for all x ∈ X and s ≤ t, because t 7→ E [〈Zt, f〉] is continuous whenever f is continuous. Then due to
Assumption D, we have the following first order Taylor expansion: for all x ∈ X , r < t and h > 0,

P
(t)
r,r+hf(x) =

Rr,r+h(m(·, r + h, t)f)(x)

m(x, r, t)

= f(x) +
R(m(·, r, t)f)(x)

m(x, r, t)
h+

∂rm(x, r, t)f(x)

m(x, r, t)
h+ o(h).
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Then

lim
h→0

P
(t)
r,r+hf(x)− f(x)

h
=
R(m(·, r, t)f)(x)

m(x, r, t)
+
∂rm(x, r, t)f(x)

m(x, r, t)
.

However, taking f ≡ 1 in (3.9) and differentiating with respect to s yields:

∂sm(x, s, t)−B (x)m(x, s, t)

= −G (m(·, s, t)) (x)−B (x)
∑
k≥0

pk (x)

k∑
j=1

∫
X
m(y, s, t)P

(k)
j (x, dy) . (3.12)

Combining the two previous equations, we obtain formula (3.5) for the generator of the auxiliary
process.

Proof of Theorem 3.1. We prove the result by induction on k ∈ N for any separable function F =
f1 . . . fk with fi ∈ D(A) for all i = 1 . . . k. We consider the following proposition denoted by Hk: for
all 0 < s1 ≤ s2 ≤ . . . ≤ sk ≤ t, for all x0 ∈ X and f1, . . . , fk ∈ D(A):

Eδx0

[∑
u∈Vt

f1

(
Xu
s1

)
. . . fk

(
Xu
sk

)]
= m (x0, 0, t)Ex0

[
f1

(
Y (t)
s1

)
. . . fn

(
Y (t)
sk

)]
.

First, H1 holds by (3.6). Assuming that Hk−1 is true for some k > 1, we now prove Hk. Let
0 < s1 ≤ s2 ≤ . . . ≤ sk ≤ t and f1, . . . , fk be measurable non-negative functions such that fi ∈ D(A)
for all 1 ≤ i ≤ k. We have using the Markov property:

Eδx0

[∑
u∈Vt

f1

(
Xu
s1

)
. . . fk

(
Xu
sk

)]

= Eδx0

 ∑
u∈Vsk−1

f1

(
Xu
s1

)
. . . fk−1

(
Xu
sk−1

)
E

∑
v∈Vt
v≥u

fk
(
Xv
sk

) ∣∣∣Fsk−1




= Eδx0

 ∑
u∈Vsk−1

f1

(
Xu
s1

)
. . . fk−1

(
Xu
sk−1

)
E

[∑
v∈Vt

fk
(
Xv
sk

) ∣∣∣Zsk−1
= δXusk−1

] .
We can now use the result proved in the case k = 1 and the last term on the right hand side is equal
to:

Eδx0

 ∑
u∈Vsk−1

f1

(
Xu
s1

)
. . . fk−1

(
Xu
sk−1

)
m
(
Xu
sk−1

, sk−1, t
)
E
[
fk

(
Y (t)
sk

) ∣∣∣Y (t)
sk−1

= Xu
sk−1

]
= Eδx0

[∑
u∈Vt

f1

(
Xu
s1

)
. . . fk−1

(
Xu
sk−1

)
E
[
fk

(
Y (t)
sk

) ∣∣∣Y (t)
sk−1

= Xu
sk−1

]]
= m(x0, 0, t)Ex0

[
f1

(
Y (t)
s1

)
. . . fk−1

(
Y (t)
sk−1

)
E
[
fk

(
Y (t)
sk

) ∣∣∣Y (t)
sk−1

]]
,

where the last equality is obtained using the induction hypothesis.
Finally, using the last point of Assumption D and a monotone-class argument, we extend the result

to all measurable function with respect to the Skorokod topology.

We now develop two other Many-to-One formulas: one to characterize the trait of the individuals
over the whole tree and the other to characterize the trait of a couple of individuals.
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3.2 A Many-to-One formula for the whole tree
We denote by:

T =
⋃
s≥0

Vs ⊂ U ,

the set of all individuals in the population. Let us recall that for u ∈ T , α(u) and β(u) are random
variables representing respectively the time of birth and death of u.

Proposition 3.4. Under Assumptions A,B, C and D, for all x0 ∈ X and for any non-negative
measurable function F : D (R+,X )× R+ → R+, we have:

Eδx0

[∑
u∈T

F
(
Xu

[0,β(u)), β(u)
)]

=

∫ +∞

0

m(x0, 0, s)Ex0

[
F
(
Y

(s)
[0,s), s

)
B
(
Y (s)
s

)]
ds. (3.13)

Proof. We follow [13] (Lemma 3.8) and provide a proof for the whole trajectories. First, we recall
that for any u ∈ T and any Borel set A ⊂ R+:

P
(
β(u) ∈ A

∣∣∣(Xu
s )s≥0 , α(u)

)
=

∫
A

B (Xu
t ) exp

(
−
∫ t

α(u)

B (Xu
s ) ds

)
dt.

Then, for all non-negative measurable functions f : D(R+,X )→ R+, we have:

Eδx0

[
1{u∈T }

∫ β(u)

α(u)

F
(
Xu

[0,s), s
)
B (Xu

s ) ds

]

=Eδx0

[
1{u∈T }

∫ +∞

α(u)

(∫ τ

α(u)

F
(
Xu

[0,s), s
)
B (Xu

s ) ds

)
B (Xu

τ ) exp

(
−
∫ τ

α(u)

B (Xu
r ) dr

)
dτ

]
.

Next, using Fubini’s Theorem, we obtain that the right-hand side of the above equation is:

Eδx0

[
1{u∈T }

∫ +∞

α(u)

(∫ +∞

s

B (Xu
τ ) exp

(
−
∫ τ

α(u)

B (Xu
r ) dr

)
dτ

)
F
(
Xu

[0,s), s
)
B (Xu

s ) ds

]

=Eδx0

[
1{u∈T }

∫ +∞

α(u)

exp

(
−
∫ s

α(u)

B (Xu
r ) dr

)
F
(
Xu

[0,s), s
)
B (Xu

s ) ds

]
=Eδx0

[
1{u∈T }F

(
Xu

[0,β(u)), β(u)
)]
, (3.14)

where the first equality is comes from of Assumption A(4). But {α(u) ≤ s < β(u), u ∈ T } = {u ∈ Vs},
then:

Eδx0

[
1{u∈T }

∫ β(u)

α(u)

F
(
Xu

[0,s), s
)
B (Xu

s ) ds

]
= Eδx0

[∫ +∞

0

1{u∈Vs}F
(
Xu

[0,s), s
)
B (Xu

s ) ds

]
. (3.15)

Finally combining (3.14) and (3.15) we get:

Eδx0

[∑
u∈T

f
(
Xu

[0,β(u)), β(u)
)]

=
∑
u∈U

Eδx0
[
1{u∈T }F

(
Xu

[0,β(u)), β(u)
)]

=
∑
u∈U

Eδx0

[∫ +∞

0

1{u∈Vs}F
(
Xu

[0,s), s
)
B (Xu

s ) ds

]

=

∫ +∞

0

Eδx0

[∑
u∈Vs

F
(
Xu

[0,s), s
)
B (Xu

s )

]
ds

=

∫ +∞

0

m(x0, 0, s)Ex0

[
F
(
Y

(s)
[0,s), s

)
B
(
Y (s)
s

)]
ds,
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where the last equality comes from the Many-to-One formula (3.4).

3.3 Many-to-One formulas for forks
In this section, we characterize the law of a couple of lineage coming from two individuals alive at
time t. For former results on the subject, we refer to [5] for such formulas in the neutral case and
to [21] for many-to-few-formulas on weighted k-fold sums over particles. We aim at characterizing
the dynamic of the trait of a couple of individual along the spine using our auxiliary process. Those
formulas has already proved useful to control the variance of estimators [24].

For any two functions f, g, defined respectively on two intervals If , Ig, for any [a, b) ⊂ If , [c, d) ⊂
Ig, we define the concatenation [f[a,b), g[c,d)] by:

[f[a,b), g[c,d)](t) =

{
f(t) , if t ∈ [a, b),

g(t+ c− b) , if t ∈ [b, b+ (d− c)).

Proposition 3.5. Under assumptions A, B, C and D, for any t ≥ 0, x0 ∈ X and for any non-negative
measurable function F : D([0, t],X )2 → R+:

Eδx0

 ∑
u,v∈Vt
u6=v

F
(
Xu

[0,t], X
v
[0,t]

) =

∫ t

0

m(x0, 0, s)Ex0

[
B
(
Y (s)
s

)
Js,tF

(
Y

(s)
[0,s]

)]
ds, (3.16)

where for (xr, r ≤ s) ∈ D([0, s],X ):

Js,tF (x) =
∑
a 6=b∈N

∑
k≥max(a,b)

pk (xs)

∫ 1

0

m
(
F (k)
a (xs, θ) , s, t

)
m
(
F

(k)
b (xs, θ) , s, t

)
Hs,tF

(
x, F (k)

a (xs, θ) , F
(k)
b (xs, θ)

)
dθ,

and for all s ≤ t , (xs, s ≤ t) ∈ D ([0, t],X ) and y1, y2 ∈ X :

Hs,tF (x, y1, y2) = E
[
F
(

[x[0,s);Y
(t),1
[s,t] ], [x[0,s);Y

(t),2
[s,t] ]

) ∣∣ (Y (t),1
s , Y (t),2

s

)
= (y1, y2)

]
,

and (Y
(t),1
s , s ≤ t), (Y (t),2

s , s ≤ t) are two independent copies of (Y
(t)
s , s ≤ t).

Proof. Let t ≥ 0 and x0 ∈ X . First we prove (3.16) for F (x, y) = f1(x)f2(y), where fi : D([0, t],X )→
R+ are non-negative measurable functions for i = 1, 2. Let us denote by A the left-hand side of (3.16).
We explicit the most recent common ancestor w of two individuals u, v living at time t and we obtain:

A = Eδx0

∑
w∈U

∑
a1 6=a2∈N

∑
ũ,ṽ∈T

1{t≥β(w)}1wa1ũ∈Vt1wa2ṽ∈Vt
∏
i=1,2

fi

([
Xw

[0,β(w));X
waiũ
[β(w),t]

])

= Eδx0

 ∑
wa1 6=wa2∈T
a1,a2∈N

1{t≥β(w)}E

 ∏
i=1,2

∑
ui∈Vt
ui≥wai

fi

([
Xw

[0,β(w));X
ui
[β(w),t]

]) ∣∣∣Fβ(w)


 .
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Then, applying successively the branching property and the Markov property, we have:

A =Eδx0

 ∑
wa1 6=wa2∈T
a1,a2∈N

1{t≥β(w)}
∏
i=1,2

E

 ∑
ui∈Vt
ui≥wai

fi

([
Xw

[0,β(w));X
ui
[β(w),t]

]) ∣∣∣Xwai
[0,β(w)]




=Eδx0

 ∑
wa1 6=wa2∈T
a1,a2∈N

1{t≥β(w)}
∏
i=1,2

E

 ∑
ui∈Vt
ui≥wai

fi

([
x̃;Xui

[β(w),t]

]) ∣∣∣Xwai
β(w)


x̃=Xw

[0,β(w))

 .
Next, we use the Many-to-One formula (3.4) and we explicit the distribution of the trait at birth of
wa and wb:

A = Eδx0

 ∑
wa1 6=wa2∈T
a1,a2∈N

1{t≥β(w)}
∏
i=1,2

m
(
Xwai
β(w), β(w), t

)
E
[
fi

([
x̃;Y

(t)
[β(w),t]

]) ∣∣∣Y (t)
β(w) = Xwai

β(w)

]
x̃=Xw

[0,β(w))


= Eδx0

[ ∑
wa1 6=wa2∈T
a1,a2∈N

1{t≥β(w)}
∑

k≥max(a1,a2)

pk

(
Xw
β(w)

)∫ 1

0

∏
i=1,2

m
(
F (k)
ai

(
Xw
β(w), θ

)
, β(w), t

)

× E
[
fi

([
x̃;Y

(t)
[β(w),t]

]) ∣∣∣Y (t)
β(w) = F (k)

ai

(
Xw
β(w)− , θ

)]
x̃=Xw

[0,β(w))

dθ

]
.

Applying the Many-to-One formula over the whole tree (3.13) yields:

A =

∫ t

0

m(x0, 0, s)Ex

[
B
(
Y (s)
s

) ∑
a1 6=a2∈N

∑
k≥max(a1,a2)

pk

(
Y (s)
s

)
∫ 1

0

∏
i=1,2

m
(
F (k)
ai

(
Y (s)
s , θ

)
, s, t

)
E
[
fi

([
x̃;Y

(t)
[s,t]

]) ∣∣∣Y (t)
s = F (k)

ai

(
Y (s)
s , θ

)]
|x̃=Y

(s)

[0,s)

dθ

]
ds

=

∫ t

0

m(x0, 0, s)Ex0

[
B
(
Y (s)
s

)
Js,t (f1 ⊗ f2)

(
Y

(s)
[0,s)

)]
ds,

where f1 ⊗ f2(x) = f1(x)f2(x). Finally, we obtain (3.16) using a monotone class argument.

Let us explicit a particular case of formula (3.16). We define:

J2(f, g)(x) =
∑
a6=b

∑
k≥max(a,b)

pk (x)

∫ 1

0

f
(
F (k)
a (x, θ)

)
g
(
F

(k)
b (x, θ)

)
dθ. (3.17)

J2 represents the trait at birth of two uniformly chosen children from an individual of type x. For
simplicity of notation, we write J2f(x) instead of J2(f, f)(x). Let us recall that:

P (t)
r,s f(x) = E

[
f
(
Y (t)
s

) ∣∣Y (t)
r = x

]
.

19



Corollary 3.6. Under assumptions A,B, C and D, for any non-negative measurable functions ft, gt
from X × R+ to R and any x0 ∈ X we have for s ≤ t:

Eδx0

 ∑
u,v∈Vt
u6=v

ft (Xu
s ) gt (Xv

s )

 =

∫ t

s

m(x0, 0, r)Ex0

[
ft ⊗ gt

(
Y (r)
s

)
B ⊗ J2m (·, r, t)

(
Y (r)
r

)]
dr

∫ s

0

m(x0, 0, r)Ex0

[
B ⊗ J2

(
m(·, r, t)P (t)

r,s ft,m(·, r, t)P (t)
r,s gt

)(
Y (r)
r

)]
dr. (3.18)

4 Ancestral lineage of a uniform sampling at a fixed time in a
large population

The Many-to-One formula (3.4) gives us the law of the trait of a uniformly sampled individual in
an "average" population. But the characterization of the law of the trait of a uniformly sampled
individual in the effective population is more complex because the number of individuals alive at time
t is stochastic and depends on the dynamic of the trait of individuals. As the auxiliary process takes
into account the bias in the population due to the number of individuals, it characterizes the law of
a uniformly sampled individual only when the bias are in place i.e. when there is a certain amount
of individuals. That is why we now look at the ancestral lineage of a uniform sampling in a large
population.

4.1 Convergence of the sampling process on a fixed time interval
It only makes sense to speak of a uniformly sampled individual at time t if the population does not
become extinct before time t. For all t ≥ 0, let Ωt = {Nt > 0} denote the event of survival of the
population. Let ν ∈MP (X ) be such that:

Pν(Ωt) > 0. (4.1)

We set

νn :=

n∑
i=1

δXi , (4.2)

where Xi are i.i.d. random variables with distribution ν. For t ≥ 0, we denote by U(t) the random
variable with uniform distribution on Vt conditionally on Ωt and by

(
X
U(t)
s , s ≤ t

)
the process de-

scribing the trait of a sampling along its ancestral lineage. If X is a stochastic process, we denote by
Xν the process with initial distribution ν ∈MP (X ) and for all 0 ≤ s ≤ t,

m(ν, s, t) = E (Nt|Zs = ν) ,

denote the average number of individuals in the population after time t starting from a population
distributed as ν at time s.

Theorem 4.1. Under Assumptions A(1-3),B, C and D, for any t ≥ 0, the sequence
(
X
U(t),νn
[0,t]

)
n≥0

converges in law in D ([0, t],X ) to Y (t),πt
[0,t] where:

πt(dx) =
m(x, 0, t)ν(dx)

m(ν, 0, t)
.
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Proof. Let t ≥ 0. Let (Xi)1≤i≤n be i.i.d random variables with distribution ν and νn =
∑n
i=1 δXi .

Let F : D ([0, t],X )→ R+ be a bounded measurable function. First, we notice that:

1

n
Nνn
t =

1

n

n∑
i=1

N
(i)
t , (4.3)

where N (i)
t are independent copies of Nt with initial distribution δXi . According to the law of large

numbers, (4.3) converges almost surely as n tends to infinity to m(ν, 0, t) =
∫
X m(x, 0, t)ν(dx). Next,

let Ωt(νn) = {Nνn
t > 0}. (Ωt(νn))n≥0 is a increasing sequence. According to (4.1), there exists

0 < ε(t) ≤ 1 such that:
P(Ωt(νn)C) ≤ (1− ε(t))n −→

n→+∞
0,

so that:

1Ωt(νn)C −→
n→+∞

0, almost surely.

We have:

E
[
F
(
X
U(t),νn
[0,t]

)]
= E

1Ωt(νn)
1

Nνn
t

∑
u∈V νnt

F
(
Xu

[0,t]

)P (Ωt(νn))
−1
.

Let V (i)
t , i = 1 . . . n be independent identically distributed populations at time t coming from an

individual with trait Xi ∼ ν at 0. Then:

E

1Ωt(νn)
1

Nνn
t

∑
u∈V νnt

F
(
Xu

[0,t]

) = E

1Ωt(νn)
1

Nνn
t

n∑
i=1

∑
u∈V (i)

t

F
(
Xu

[0,t]

) . (4.4)

According to the law of large numbers,
n∑
i=1

∑
u∈V (i)

t

F
(
Xu

[0,t]

)
−→

n→+∞
Eν

[∑
u∈Vt

F
(
Xu

[0,t]

)]
, almost surely.

Taking the limit in (4.4) as n tends to infinity, we have by dominated convergence:

E
[
F
(
X
U(t),νn
[0,t]

)]
−→

n→+∞

1

m(ν, 0, t)

∫
X
Ex

[∑
u∈Vt

F
(
Xu

[0,t]

)]
ν(dx),

because P (Ωt(νn)) → 1 as n tends to infinity. Finally, applying the Many-to-one formula (3.4), we
obtain:

E
[
F
(
X
U(t),νn
[0,t]

)]
−→

n→+∞

∫
X m(x, 0, t)Ex

[
F
(
Y

(t)
[0,t]

)]
ν(dx)

m(ν, 0, t)
.

Remark 4.2. If we start with n individuals with the same trait x, we obtain:

E
[
F
(
X
U(t),νn
[0,t]

)]
−→

n→+∞
Ex
[
F
(
Y

(t)
[0,t]

)]
.

Therefore, the auxiliary process describes exactly the dynamic of the trait of a uniformly sampled
individual in the large population limit, if all the starting individuals have the same trait. If the
initial individuals have different traits at the beginning, the large population approximation of a
uniformly sampled individual is a linear combination of the auxiliary process.
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Remark 4.3. One can easily generalizes this results to a k-tuple of individuals uniformly picked at
time t. But if you start with a population of size n and you pick k individuals uniformly at random at
time t, when n tends to infinity, the probability that those k individuals comes from the same initial
individual is zero. Then, the trajectories of their traits are independent and we get for example in the
case k = 2, for any f, g : D ([0, t],X )→ R+ bounded measurable functions:

E
[
f
(
X
U1(t),νn
[0,t]

)
g
(
X
U2(t),νn
[0,t]

)]
−→

n→+∞
Ex
[
f
(
Y

(t),1
[0,t]

)
g
(
Y

(t),2
[0,t]

)]
,

where U1(t), U2(t) are independent random variables with uniform distribution on Vt and the processes(
Y

(t),1
s , s ≤ t

)
,
(
Y

(t),2
s , s ≤ t

)
are i.i.d. distributed as

(
Y

(t)
s , s ≤ t

)
.

Remark 4.4. An other way of characterizing the trait of a uniformly sampled individual via the
auxiliary process is to look at the long time behavior of the process instead of looking at the large
population behavior. We are currently working on this characterization which uses the ergodicity of
the auxiliary process.

4.2 The trait of a uniformly sampled individual for growth-fragmentation
models

The auxiliary process is a good way of getting simulated random variables corresponding to the trait
of a uniformly sampled individual. Indeed, it is much more quicker to simulate one trajectory of
the auxiliary process rather than the dynamic of an entire population. In this section, we detail the
auxiliary process for our three examples introduced in Section 2.2.

4.2.1 Linear growth model

For the linear growth model with binary division (Section 2.2.1), Assumption C is satisfied for C ≡ 1
and the large population limit of the ancestral process of a sampling grows linearly between two jumps
and jumps at time s at rate

B̂(t)
s (x) = αx

(
1 +

1 + e2
√
α(t−s)

1− x
√

α
a + e2

√
α(t−s)

(
1 + x

√
α
a

)) .
At a jump, there is a unique descendant with trait x

2 if x is the trait of its parent at the splitting
time. In particular, the rate of division of the limiting process is bigger than the rate of division in a
cell line for the original process. It means that in the large population limit, a typical individual has
overcome more division than any individual.

4.2.2 Exponential growth model in a varying environment

For the exponential growth model in a varying environment with binary division (Section 2.2.2),
Assumption C is satisfied for C ≡ 1 and the associated auxiliary process grows exponentially between
two jumps and jumps at time s at rate

B̂(t)
s (x) = (α(s)x+ β)

(
1 +

1

1 + x
∫ t
s
α(r)e(a−β)(r−s)dr

)
.

The rate of division of the limiting process is again bigger than the division rate of any individual. At
a jump, there is a unique descendant with trait x

2 if x is the trait of its parent at the splitting time.
This example is a good illustration of the fact that the large population limit of the size of a

uniformly sampled individual does not correspond to the size of a tagged cell, i.e. the size along
a lineage where at each division, you choose randomly one daughter cell. In fact, as the division
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Figure 4.1: Distribution of the number of divisions in the lineage of a uniformly sampled individual
(black bars), of the auxiliary process (red bars) and of a tagged cell (blue bars). For each case,
we used 5000 realizations of each process until time t = 50 with parameters a = 0.1 and x0 = 1.
The distribution of the number of divisions almost coincides for the auxiliary process and a sampled
individual. However, the distribution of the number of divisions for a tagged cell is different from the
two previous ones. Indeed, it is more likely to sample an individual whose ancestors divided many
times, that is why, the distributions of the number of divisions for the auxiliary process and for a
uniformly sampled individual are centered on bigger values than the distribution of the number of
divisions for a tagged cell.

rate of the auxiliary process is larger than B, the number of divisions along the lineage of a uniformly
sampled individual is bigger than the number of divisions along the lineage of tagged cell, resulting in a
difference on the size of the individuals. However, the distribution of the number of divisions along the
lineage of a uniformly sampled individual coincides with the one for the auxiliary process. On figure
4.2.2, we can see those distributions: the two first distributions, corresponding to the distribution
of the number of divisions along the lineage of a uniformly sampled individual and of the auxiliary
process, are centered on a bigger number of divisions than the third distribution corresponding to a
tagged cell.

4.2.3 Parasite infection model

For this cell division model with parasite infection, Assumption C is satisfied for C ≡ 1 and the
auxiliary process evolves as a Feller diffusion with infinitesimal generator:

F (t)
s f(x) =

(
gx+ 2σ2 αx

(
eg(t−s) − eβ(t−s))

αx
(
eg(t−s) − eβ(t−s)

)
+ (g − β)eβ(t−s)

)
f ′(x) + σ2xf ′′(x),

so that the drift of the limit of the process of the ancestral trait of a sampling is bigger than the
original drift in the population. Then, the limiting process jumps at time s at rate

B̂(t)
s (x) = (αx+ β)

(
1 +

1

1 + αx
g−β

(
e(g−β)(t−s) − 1

)) ,
so that the division rate of the limiting process is also bigger than the rate of division in a cell line for
the original process.
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The trait of the newborn cell is distributed according to the following probability law:

P̂ (t)
s (x, dy) = 10≤y≤x

2(g − β) + 2αy
(
e(g−β)(t−s) − 1

)
2(g − β) + αx

(
e(g−β)(t−s) − 1

) dy
x
.

In fact, because cells divide faster when they have more parasites inside them, it is a good strategy,
in order to have a lot of descendants in a long time scale, to choose to give a lot of parasites to your
daughter cell. Moreover, the evolution of the trait is biased: the drift in the Feller diffusion is more
important for the auxiliary process because a cell with more parasites divides faster so that it produces
more descendants.

5 Miscellaneous comments
We can apply the results of this work to various models and we choose to detail in this article only
three of them based on biological and computational considerations. However, we review in this
section some other interesting models.

5.1 The age-structured population model
In this model, the quantity of interest is the age of each individual which grows linearly. The life-time
of each individual is a random variable with cumulative distribution function G. Such models have
been first introduced by Bellman and Harris in [7] and have recently been studied in order to infer
the division rate [24]. Let B : R+ → R be the rate of division of each cell defined via:

G(t) = 1− exp

(
−
∫ t

0

B(s)ds

)
.

The branching process (Zt)t≥0 is solution of the following equation, for any function f ∈ C1(R+) and
any x ∈ X :

〈Zt, f〉 = 〈Z0, f〉+

∫ t

0

∫
R+

f ′(x)Zs(dx)ds

+

∫ t

0

∫
U×R+×N

1u∈Vs− ,θ≤B(Xu
s−) (kf (0)− f (Xu

s−))M(ds, du, dθ, dk),

where M is a Poisson point measure on R+ × U × R+ × N with intensity ds ⊗ n(du) ⊗ dθ ⊗ p(dk),
where p denotes the distribution of the number of descendants.

In order to get information on the average number of individuals in the population at time t, we
follow Harris in [23] (Chap. 6) and we obtain:

m(0, 0, t) = 1−G(t) +m

∫ t

0

m(0, 0, t− u)dG(u),

where m is the average number of descendants at division. Using the life-time distribution conditioned
to be greater than x for the first individual we have:

m(x, 0, t) =
m(0, 0, t+ x)−m

∫ x
0
m(0, 0, t+ x− u)dG(u)

1−G(x)
. (5.1)

We cannot find an explicit solution to this renewal equation except in the case of an exponentially
distributed life-time but we know the asymptotic behavior of a solution (see [23]). In particular, if G
is non-lattice and m > 1, let α be the positive root of:

m

∫ ∞
0

e−αtdG(t) = 1.
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Then,

m(0, 0, t) ∼
t→+∞

c(α,m)n1e
αt,

where

c(α,m) =
m− 1

αm2
∫∞

0
te−αtdG(t)

,

and n1 is explicitly given in [23] Theorem 17.1 and the rate of division of the auxiliary process is given
for large t by:

B̂(t)
s ∼ B(x)

e−αx(1−G(x))

1−m
∫ x

0
e−αudG(u)

.

5.2 Multi-type branching process and switching
An example of phenomenon that we would like to understand using a model on a finite state space is
the phenotypic switching, i.e. the capacity to achieve multiple internal states in response to a single
set of external inputs. Examples of studies of switching can be found in [35] or [31]. For an asymptotic
characterization of the ancestral lineage of a typical individual for models with a trait on a finite state
space, we refer to [18]. We assume here that an individual can be in state 0 or 1 which is constant
during its lifetime. An individual in state x = 0, 1 divide at rate B(x) = bx and at division, it is
replaced by 2 individuals. We denote by p the probability of switching at birth. We assume that this
probability does not depend on the trait. Therefore, the trait only affects the lifetime of individuals.
We obtain for the generator of the first moment semi-group for any function f taking values in {0, 1}
and any x ∈ {0, 1}:

Fswitchf(x) = B(x) (2f(x)(1− p) + 2f(x)p− f(x)) ,

where x = 1− x. Moreover we have:

Eδx

[∑
u∈Vt

B(Xu
t )

]
= (b1 − b0)Eδx

[∑
u∈Vt

Xu
t

]
+ b0Eδx [Nt] .

and after calculations, we obtain:

Eδx

[∑
u∈Vt

Xu
t

]
= x+ (b1(1− 2p)− 2pb0)

∫ t

0

Eδx

[∑
u∈Vs

Xu
s

]
ds+ 2pb0

∫ t

0

Eδx [Ns] ds.

Then if we write:

µ(t) = Eδx [Nt] , ν(t) = Eδx

[∑
u∈Vt

Xu
t

]
, ∀t ≥ 0,

we obtain: (
∂tµ
∂tν

)
=

(
b0 b1 − b0

2pb0 b1(1− 2p)− 2pb0

)(
µ
ν

)
.

For example, for p = 0.5, writing γ = b0
b1
, we have:

m(1, s, t) = m(0, s, t) +
[
e
√
b0b1(t−s) − e−

√
b0b1(t−s)

] 1

2
√
γ

(1− γ).

In particular, the transition kernel of the auxiliary process is given by:

P̂ (t)
s (x, dy) =

m(x, s, t)δx(dy) +m(x, s, t)δx(dy)

m(x, s, t) +m(x, s, t)
,

so that if γ > 1, i.e. b0 > b1, the auxiliary process switches more from 1 to 0 at a jump because
m(0, s, t) > m(1, s, t).
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5.3 Markovian jump processes for the dynamic of the trait
The dynamic of some characteristics of a cell are non-continuous and thus cannot be described by a
diffusion type process. For example, this is the case for the dynamic of populations inside a cell such
as plasmids or extra-chromosomal DNA. Then, an other generalization of Kimmel’s multilevel model
for plasmids [27] is the following: we assume that the trait of each individual evolves as a birth and
death process with birth rate λ > 0 and death rate µ > 0. We assume here that λ − µ > 0. The
generator of the process corresponding to the dynamic of the trait is then given for any measurable
function f : N→ R+ and any x ∈ N by:

Gf(x) = λ(f(x+ 1)− f(x)) + µ(f(x− 1)− f(x)).

We assume that a cell with x plasmids divides at a rate B(x) and that at division, the plasmids are
randomly allocated to one of the two daughter cell. The branching process (Zt)t≥0 is solution of the
following equation, for any measurable function f : N→ R+ and any x ∈ X :

〈Zt, f〉 = 〈Z0, f〉+

∫ t

0

∫
R+

∑
u∈Vs

[
1θ≤λXus (f(Xu

s + 1)− f(Xu
s ))

+1λXus ≤θ≤(λ+µ)Xus
(f(Xu

s − 1)− f(Xu
s ))
]
Qu(ds, dθ)

+

∫ t

0

∫
U×R+×[0,1]

1u∈Vs− ,z≤B(Xu
s−) (f (δXu

s−) + f ((1− δ)Xu
s−)− f (Xu

s−))M(ds, du, dz, dδ),

where (Qu)u∈U is a family of Poisson point measure on R+ × R+ with intensity ds ⊗ dθ and M is a
Poisson point measure on R+ × U × R+ × [0, 1] with intensity ds⊗ n(du)⊗ dz ⊗ dδ.

For example, for the division rate B(x) = x, we obtain for the average number of individuals in
the population after a time t:

m(x, s, t) = 1 +
x

λ− µ

(
e(λ−µ)t − 1

)
.

In particular, the motion of the auxiliary process between jumps is given by the following generator:

Ĝ(t)
s f(x) =λ

[
1 +

e(λ−µ)(t−s) − 1

λ− µ+ x
(
e(λ−µ)(t−s) − 1

)] (f(x+ 1)− f(x))

+ µ

[
1− e(λ−µ)(t−s) − 1

λ− µ+ x
(
e(λ−µ)(t−s) − 1

)] (f(x− 1)− f(x)) .

The birth rate of the plasmid population for the auxiliary process is bigger than λ and the death rate
is smaller than µ. This can be explained again by the fact that cells with a lot of plasmids divides
more so that they are more represented at sampling.

5.4 Link with the integro-differential model
The study of the average process associated with Z is interesting in the sense that it characterizes the
macroscopic evolution of the population. For a more detailed study of this link see for example [10].

Corollary 5.1. Let f ∈ D (G), s ≥ 0 and x0 ∈ X . Under Assumptions A(1-3) and B, the measure
(Rs,t(x0, ·))t≥0 is the unique solution to the following integro-differential equation:

Rs,tf(s, x0) = f (s, x0) +

∫ t

s

∫
X

(Gf(r, x) + ∂rf (r, x))Rs,r(x0, dx)ds

+

∫ t

s

∫
X
B(x)

∑
k≥0

pk(x)

k∑
j=1

∫
X
f (r, y)P

(k)
j (x, dy)− f (r, x)

Rs,r(x0, dx)ds, (5.2)

where (Rs,t)t≥s is defined in (2.5).
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One can prove this result taking the expectation in (2.3) and using the same arguments as in the
proof of Corollary 2.4 in [13].

Let n(t, ·) = R0,t(x0, ·). Equation (5.2) can be rewritten as:{
∂tn(t, x) = GTn(t, x) +

∑
k≥0

∑k
j=1K

(k)
j (Bpkn(t, ·))−B(x)n(t, x),

n(0, x)dx = δx0(dx).

where GT is the adjoint operator of G and K(k)
j is the adjoint operator of f 7→

∫
X f (y)P

(k)
j (x, dy)

as in [13].
For example, in the case of the cell division model with exponential growth introduced in Section

2.2.2, we obtain in a weak sense:

∂tn(t, x) + ∂x (axn(t, x)) = 4B(2x)n(t, 2x)−B(x)n(t, x).

This is a classical growth-fragmentation equation as the one studied in [33] or [10]. The solutions of
the associated eigenvalue problem permit in particular to quantify the asymptotic global growth rate
of the population.
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A Proof of Lemma 2.4
We give a recursive construction of the solution to (2.3). For all u ∈ U , we denote the birth time and
the death time of u respectively by α(u) and β(u). Let x0 ∈ X be given. We construct a structured
population Y k =

(
Zk, (Xu

s , s ≥ Tk(Zk), u ∈ VTk(Zk))
)
, where Zk ∈ D (R+,MP (X )) is such that

Tk+1 = +∞. We set α(∅) = 0, X∅0 = x0, V0 = {∅} and Z0
t ≡ δx0 for all t ≥ 0, so that:

Y 0 = (Z0, (Φ∅(x0, 0, t), t ≥ 0)).

Let k ≥ 1. We now construct Y k+1. For all u ∈ VTk(Zk) such that α(u) = Tk(Zk), we set Xu
t =

Φu(Xu
α(u), α(u), t), for all t ≥ α(u). For all u ∈ VTk(Zk), let:

β(u) = inf

{
t > α(u),

∫ t

α(u)

∫
R+

1z≤B(Xu
s−

)M(ds, {u} , dz, [0, 1], [0, 1]) > 0

}
.

Let T = inf
{
β(u), u ∈ VTk(Zk)

}
. Let (T,Uk+1, θk+1, Lk+1, Ak+1) be the unique quintuplet of random

variables such that M ({T}, {Uk+1}, {θk+1}, {Lk+1}, {Ak+1}) = 1. Let:

VT = VT− \ {Uk+1}
⋃
{Uk+11, . . . , Uk+1G(Uk+1, T, Lk+1)} ,

and for all i = 1, . . . , G
(
X
Uk+1

T , Lk+1

)
, we set α(Uk+1i) = T and:

X
Uk+1i
α(Uk+1i)

= Fi

(
X
Uk+1

T , Lk+1, Ak+1

)
.

We set

Zk+1
t = Zkt , for all t ∈ [0, Tk(Zk)],

Zk+1
t =

∑
u∈V

Tk(Zk)

δXut , for all t ∈ [Tk(Zk), T [,

Zk+1
t =

∑
u∈VT

δXuT , for all t ≥ T.
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Finally, we set Y k+1 = (Zk+1, (Xu
s , s ≥ T, u ∈ VT )) so that Tk+1(Zk+1) = T .

Let Z be the measure-valued branching process on R+ satisfying for all k ∈ N and all t ≥ 0:

Zt∧Tk(Zk) = Zkt .

Therefore, Tk(Z) = Tk(Zk) for all k ∈ N. To shorten notation, we write Tk instead of Tk(Z) until the
end of the proof.

Let f ∈ D(G). We now prove by induction the following property:

Hk : {∀t ∈ [Tk, Tk+1), 〈Zt, f〉 is a solution to (2.3).}

First, H0 is obviously true. Assume that Hk−1 is true. Let t ∈ [Tk, Tk+1). We recall that Uk denotes
the individual who dies at time Tk. We denote by:

Vt,1 = VTk−1
\ {Uk} , Vt,2 = {u ∈ Vt|α(u) = Tk} ,

the set of all individuals born strictly before Tk except Uk and the descendants of Uk, respectively.
We have: ∑

u∈Vt

f (t,Xu
t ) =

∑
u∈Vt,1

f (t,Xu
t ) +

∑
u∈Vt,2

f (t,Xu
t ) ,

and

f (t,Xu
t ) = f

(
t,Φu

(
XTk−1

, Tk−1, t
))
.

As none of the individuals in VTk−1
\ {Uk} divides on [Tk−1, t], we obtain using (2.2):

f (t,Xu
t ) = f

(
Tk−1, X

u
Tk−1

)
+

∫ t

Tk−1

(Gf(s,Xu
s ) + ∂sf (s,Xu

s )) ds+Mf,u
Tk−1,t

(
Xu
Tk−1

)
.

Then, we split both the integral term and the martingale in two terms to separate the behavior of the
population before Tk and after Tk. We add and subtract the contribution corresponding to Uk to get
a sum over all individuals alive at time Tk−1:

∑
u∈Vt,1

f (t,Xu
t ) =

∑
u∈VTk−1

[
f
(
Tk−1, X

u
Tk−1

)
+

∫ Tk

Tk−1

(Gf(s,Xu
s ) + ∂sf (s,Xu

s )) ds+Mf,u
Tk−1,Tk

(
Xu
Tk−1

)]

− f
(
T−k , X

Uk
T−k

)
+

∑
u∈VTk−1

\{Uk}

[∫ t

Tk

(Gf(s,Xu
s ) + ∂sf (s,Xu

s )) ds+Mf,u
Tk,t

(
Xu
Tk

)]
. (A.1)

Using the induction hypothesis, we have:∑
u∈VTk−1

f
(
Tk−1, X

u
Tk−1

)
= f (0, x0) +

∫ Tk−1

0

∫
X

(Gf(s, x) + ∂sf (s, x))Zs (dx) ds+Mf
0,Tk−1

(x0)

+

∫ Tk−1

0

∫
E

1u∈Vs− ,z≤B(Xu
s−)

G(Xus ,l)∑
i=1

f (s, Fi (Xu
s , l, θ))− f (s,Xu

s−)

M (ds, du, dz, dl, dθ) . (A.2)

Moreover, for all s ∈ [Tk−1, Tk[, Vs = VTk−1
, so that we have:

∑
u∈VTk−1

∫ Tk

Tk−1

(Gf(s,Xu
s ) + ∂sf (s,Xu

s )) ds =

∫ Tk

Tk−1

∑
u∈Vs

(Gf(s,Xu
s ) + ∂sf (s,Xu

s )) ds. (A.3)
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Finally, we obtain combining (A.1), (A.2) and (A.3):∑
u∈Vt,1

f (t,Xu
t )

= f (0, x0) +

∫ Tk

0

∫
X

(Gf(s, x) + ∂sf (s, x))Zs (dx) ds+Mf
0,Tk−1

(x0) +
∑

u∈VTk−1

Mf,u
Tk−1,Tk

(
Xu
Tk−1

)

+

∫ Tk−1

0

∫
E

1u∈Vs− ,z≤B(Xu
s−)

G(Xus ,l)∑
i=1

f (s, Fi (Xu
s , l, θ))− f (s,Xu

s−)

M (ds, du, dz, dl, dθ)

− f
(
T−k , X

Uk
T−k

)
+

∑
u∈VTk−1

\{Uk}

[∫ t

Tk

(Gf(s,Xu
s ) + ∂sf (s,Xu

s )) ds+Mf,u
Tk,t

(
Xu
Tk

)]
. (A.4)

Next, using again (2.2), we have:

∑
u∈Vt,2

f (t,Xu
t ) =

∑
u∈Vt,2

[
f(Tk, X

u
Tk

) +

∫ t

Tk

(Gf(s,Xu
s ) + ∂sf (s,Xu

s )) ds+Mf,u
Tk,t

(
Xu
Tk

)]
. (A.5)

Moreover, by definition of Vt,2:

∑
u∈Vt,2

f(Tk, X
u
Tk

) =

∫ t

Tk−1

∫
E

1z≤B(Xus )

G(Xus ,l)∑
i=1

f(Fi(X
u
s , l, θ))M(ds, du, dz, dl, dθ). (A.6)

Adding the martingale terms of (A.4) and (A.5), we obtain:

Mf
0,Tk−1

(x0) +
∑

u∈VTk−1

Mf,u
Tk−1,Tk

(
Xu
Tk−1

)
+

∑
u∈VTk−1

\{Uk}

Mf,u
Tk−1,t

(
Xu
Tk−1

)
+

∑
u∈VTk ,α(u)=Tk

Mf,u
Tk,t

(
Xu
Tk

)
= Mf

0,Tk
(x0). (A.7)

Finally, we obtain the result combining (A.5),(A.6) and (A.7).

B Proof of Lemma 2.6
Let

(
Z(1)

)
and

(
Z(2)

)
be two solutions of (2.3) associated with the previously defined family of flows

and Poisson point measure. For all k ∈ N, we write T (i)
k = Tk(Z(i)), i = 1, 2. We assume that

Z
(1)
0 = Z

(2)
0 = δx, for some x ∈ X . We have T (1)

0 = T
(2)
0 = 0. We prove by induction on k ∈ N the

following proposition:

Hk : T
(1)
k+1 = T

(2)
k+1 and ∀t ∈ [T

(1)
k , T

(1)
k+1), ∀f ∈ D(G),

〈
Z

(1)
t , f

〉
=
〈
Z

(2)
t , f

〉
.

First, H0 is true because:

T
(1)
1 = T

(2)
1 = inf

{
t > 0,

∫ t

0

∫
R+

1z≤B(Φ∅(x,0,s))M(ds, {∅} , dz, [0, 1], [0, 1]) > 0

}
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and for all t ∈ [0, T1), Z(1)
t = Z

(2)
t = δΦu(x,0,t). Let us assume that Hk−1 is true. We first prove the

second point of Hk. By (2.3), we have for i = 1, 2:〈
Z

(i)

T
(1)
k

, f

〉
=

〈
Z

(i)

T
(1)
k−1

, f

〉
+

∫ T
(1)
k

T
(1)
k−1

∫
X

(Gf(s, x) + ∂sf (s, x))Z(i)
s (dx) ds+M

f,(i)

T
(1)
k−1,T

(1)
k

(x) (B.1)

+

∫ T
(1)
k

T
(1)
k−1

∫
E

1
u∈V (i)

s−
,z≤B

(
X
u,(i)

s−

)
G(Xus ,l)∑

i=1

f (s, Fi (Xu
s , l, θ))− f

(
s,X

u,(i)
s−

)M (ds, du, dz, dl, dθ) .

(B.2)

As the jump integral (B.2) depends only on the process strictly before T (1)
k , we obtain, using the induc-

tion hypothesis, that
〈
Z

(1)

T
(1)
k

, f

〉
=

〈
Z

(2)

T
(1)
k

, f

〉
. The evolution of the trait for t ∈

[
T

(1)
k , T

(1)
k+1 ∧ T

(2)
k+1

)
only depends on the family of flows given at the beginning and which are the same for both solutions.
Hence, it remains to prove that T (1)

k+1 = T
(2)
k+1. And it is the case because this jump time only depend

on the state of the population at T (1)
k , on the flows and on the Poisson point measure M . Finally, for

all t ∈
[
T

(1)
k , T

(1)
k+1

)
, we have:

〈
Z

(1)
t , f

〉
=
〈
Z

(2)
t , f

〉
.

Moreover, the measure-valued process is entirely characterized by {〈Zt, f〉 , f ∈ D(G)} according
to Remark 2.1. Therefore, there is a unique càdlàg measure-valued strong solution to (2.3) up to the
kth jump time for all k ∈ N.
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