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1 Introduction

A brief introduction to causality notions 1 Introduction

Kleinian groups, i.e. discrete groups of isometries of the hyperbolic space H n , are central objects of study in geometry, most often in low dimension, and particularly in dimension 3. They have several ramifications in other fields of mathematics: number theory, topology, and, of course, group theory. For nice surveys on this very rich topic, including reports on recent results in this field, let us mention the references [START_REF] Martin | The geometry and arithmetic of Kleinian groups, In Handbook of Group Actions (Vol. I)[END_REF][START_REF] Ohshika | Geometric limits of Kleinian groups and their applications[END_REF] in this series of handbooks dedicated to group actions.

The isometry group of H n is SO (1, n), and here we consider the analogous case of discrete subgroups of SO(2, n), that we call in this survey Lorentzian Kleinian groups. The group SO(2, n) is naturally the group of isometries of the anti-de Sitter space, denoted by AdS 1,n . Very little is known on Lorentzian Kleinian groups, if compared with the venerable hyperbolic case. The purpose of this survey is to present part of this relatively young matter.

Classical Kleinian groups have several nice basic properties:

-the action on H n is properly discontinuous; -for any point x in H n , the orbit of x under the action of the group accumulates at the conformal boundary ∂H n ≈ S n-1 on a closed invariant set, called the limit set, which does not depend on x.

These properties completely fail in the AdS case: stabilizers of points are not anymore compact. Therefore, the action is proper only in particular cases, and the asymptotic behavior of orbits is not uniform: for example a Lorentzian Kleinian group may have infinite orbits and other orbits reduced to a point.

Hence, at first glance, the Lorentzian case seems radically different, and some geometers may consider it as a quite completely different field. As a matter of fact, the first works on Lorentzian geometry in the case of constant curvature were mostly devoted to the study of compact Lorentzian manifolds, which has very few similarity with the Riemannian case. Even the geodesic completeness of compact Lorentzian manifolds of constant curvature, even if true, is far from being trivial ( [START_REF] Carrière | Autour de la conjecture de L. Markus sur les variétés affines[END_REF][START_REF] Klingler | Complétude des variétés lorentziennes à courbure constante[END_REF]) -and as a matter of fact, compact Lorentzian manifolds are not geodesically complete in general. Wolf's book has long been -and still is! -one of the main references in the field, and was mainly concerned with the compact case. One indication on the Riemannian oriented spirit of Wolf's book [START_REF] Wolf | Spaces of constant curvature, Sixth Edtion[END_REF] is that it is also one of the main references for the classification of Riemannian crystallographic groups.

Nevertheless, there are several important common features between the Riemannian and the Lorentzian case.

-anti-de Sitter space admits a natural conformal boundary: the Einstein universe Ein1,n-1 ;

-in the same way as the Euclidean space and the hyperbolic space embed conformally in the sphere, the anti-de Sitter space embeds in the Einstein space, and moreover, the Minkowski space and the de Sitter space, Lorentzian analogues of the Euclidean space and the sphere, embed in Ein 1,n as well.

The spirit underlying this survey is that there is a fundamental framework in which Riemannian or Lorentzian Kleinian groups have the same nature, but involving a notion that is unapparent because trivial in the Riemannian case: the notion of causality.

It is good in this celebration's year of General Relativity 1 to recall that Lorentzian geometry is the geometry of space and time; in which the classical Riemannian geometry is enclosed as the static case, i.e. the case in which the space does not change with time.

This point of view, developped in Section 5, is that one should distinguish certain subgroups, the achronal subgroups, that have a reasonable behavior relatively to causality. Riemannian Kleinian groups are automatically achronal, whereas Lorentzian ones may not be -as a matter of fact, Lorentzian Kleinian groups acting cocompactly are never achronal. Achronal Kleinian groups then appear as completely similar to their Riemannian counterparts: they admit a limit set in the conformal boundary, and they do act properly, not on the entire space itself, but on a certain domain: the domain of points invisible from the limit set.

Therefore, we start this paper by a review on the causality notions (Section 2), followed by a presentation of the Lorentzian spacetimes of constant curvature (Section 3). What appear as the true analogues of compact Riemannian spaces of constant curvature are not the compact Lorentzian manifolds, but the maximal globally hyperbolic spatially compact spacetimes (abbreviation MGHC), a notion arising from the analytic treatment of General Relativity with the tools of Partial Differential Equations. In Section 4, we present the classification of MGHC spacetimes of constant curvature. This classification, initiated by the fundamental work of G. Mess ([79,[START_REF] Andersson | Notes on a paper of Mess[END_REF]), is quite recent, and still incomplete. It provides an interesting framework in which many results or interrogations concerning hyperbolic Kleinian groups may very well find in a near future a natural continuation and extension.

After Section 5 mentioned above devoted to achronal Kleinian groups (but where we also mention links with the theory of Anosov representations), Section 6 points out very interesting connections, initiated by the pioneering work of Mess, between MGHC spacetimes of constant curvature and the Teichmüller space Teich(S) of a closed surface S: it generalizes the link between hyperbolic 3-manifolds and Teich(S), appearing for example in the case of quasi-fuchsian manifolds. But it also provides new ones, to which we propose a brief introduction. One explanation behind this phenomenon is the fact that SO(2, n) has rank 2, whereas SO(1, n) has "only" rank 1. In other words, unlike SO(1, n), SO(2, n) has not only one, but two maximal parabolic subgroups, meaning that there is not only one geometry, like the hyperbolic geometry, associated with SO(2, n), but two geometries: anti-de Sitter geometry, and also the geometry of the symmetric space T 2n associated with SO(2, n), which happens to be the space of AdS timelike geodesics. For n = 2, T 4 is nothing but the product H 2 × H 2 . The space T 2n will appear in this survey in two situations:

-there is an interplay between the AdS MGHC spacetime M Γ associated with a Lorentzian Kleinian group Γ and the quotient Γ\T 2n , emerging through Cauchy hypersurfaces, i.e. isometric embeddings of Riemannian hypersurfaces in M Γ . More precisely, Γ\T 2n has a natural Kähler structure, and there is an almost correspondence between Lagrangian submanifolds in Γ\T 2n and Cauchy hypersurfaces in M Γ . Moreover, in the case n = 2, the symplectic form on Γ\T 2n ≈ Γ\(H 2 × H 2 ) is the difference p * 1 ω 0 -p * 2 ω 0 where ω 0 is the volume form on H 2 , and p 1 , p 2 the projections on the left and right factors, respectively. Therefore, typical Lagrangian submanifolds of Γ\T 2n ≈ Γ\(H 2 × H 2 ) are graphs of volume preserving maps between hyperbolic surfaces. This connection between AdS geometry and special volume preserving maps between hyperbolic surfaces will be developed further, but with a quite different point of view, in [START_REF] Fillastre | Group actions and scattering problem in Teichmüller theory, to appear in Handbook of Group Actions[END_REF], to appear in one of the Handbooks of group actions.

-T 2n is also related to questions of proper actions: at least in dimension 2+1, a Lorentzian Kleinian group Γ acts properly discontinuously on AdS 1,2 if and only if there is an embedded surface S in Γ\(H 2 ×H 2 ) such that the restriction to S of the pseudo-Riemannian metric g hyp -g hyp is positive definite -where g hyp denotes the hyperbolic metric, and g hyp -g hyp a simplified notation for p * 1 g hyp -p * 2 g hyp . This criterion is related to the existence of Γ-invariant foliations by timelike geodesics, and we conjecture an extension of this fact in higher dimensions (see Remark 7.4).

We conclude the survey with a quick overview on Lorentzian Kleinian groups acting properly, even cocompactly. This topic has received recent brilliant contributions by J. Danciger, F. Guéritaud and F. Kassel that we mention very briefly, as important illustrations of the role of the space of timelike geodesics. There are several more or less recent surveys on this topic in which the reader may find more substantial information ([9, 16, 91]).

The topic is currently growing quite quickly, and this survey has no pretention to be complete. We would like to attract the attention to a very recent work, transposing to Anti-de Sitter space the notion of Patterson-Sullivan measures, and establishing in this context an inequality between the critical exponent and the Hausdorff dimension of the (acausal) limit set ( [START_REF] Glorieux | Critical exponent and Hausdorff dimension for quasi-Fuchsian AdS manifolds[END_REF]).

Remarks on conventions and notation. A Lorentzian manifold is a manifold equipped with a pseudo-Riemannian metric of signature (1, n) for some n ≥ 1. The manifold is then of dimension n + 1: n-dimensional in space, and 1-dimensional in time. In our convention a Lorentzian metric has signature (-, +, ..., +); the value of the metric on a tangent vector v is called the norm of v -even if it would be more adequate, comparing with the Riemannian case, to call it the square of the norm. An orthonormal frame is a frame (e 0 , e 1 , ..., e n ) where e 0 as norm 1, every e i (i ≥ 2) has norm +1 and every scalar product e i , e j with i = j is 0.

We denote by SO 0 (1, n), SO 0 (2, n) the identity components of respectively SO(1, n), SO(2, n) (n ≥ 2). For any cocompact lattice Γ of SO 0 (1, n) and any Lie group G we denote by Rep(Γ, G) the moduli space of representations of Γ into G modulo conjugacy, equipped with the usual topology as an algebraic variety (see for example [START_REF] Goldman | The deformation theory of representations of fundamental groups of compact Kähler manifolds[END_REF]):

Rep(Γ, G) := Hom(Γ, G)/G.
Finally, if (M 1 , g 1 ) and (M 2 , g 2 ) are two pseudo-Riemannian manifolds, we denote by

g 1 -g 2 the metric p * 1 g 1 -p * 2 g 2 on M 1 × M 2 ,
where p 1 and p 2 are the projections onto the first and second factor, respectively. Index of notations. We introduce in this survey many objects and notions. We provide here for the reader's convenience an index of these objects, indicating the page in which each of them is introduced (the list does not include objects already introduced such as SO 0 (2, n) or T 2n ).

• c, ĉ, ċ: causal curve, extension of the causal curve, derivative (beginning of Section 2).

• [g]: conformal class of the pseudo Riemannian metric g,

• I ± , J ± : future or past; causal future or past (Section 2).

• U (p, q), U (p, q): diamond, closed diamond (Section 2).

• P (S), F (S), dev(S): past development, future development, development of the closed edgeless achronal (CEA) subset S (Section 2).

• C: a category of spacetimes (Section 2).

• M max : maximal extension of the spacetime M (Theorem 2.5).

• L(c), d lor : length of the causal curve c, Lorentzian distance (just after Remark 2.6).

• (R r,s , q r,s ) : r + s-dimensional vector space equipped with a quadratic form of signature (r, s) (Section 3).

• Ein 1,n , Ein 1,n and p : Ein

1,n
→ Ein 1,n : Einstein universes of dimension n + 1 and their universal covering (Section 3.1).

• δ and δ 0 : transformations on Ein 1,n (Section 3.1).

• E( Λ), E(Λ) : globally hyperbolic domains of Ein

1,n
or Ein 1,n associated with a CEA Λ or Λ (Section 3.1).

• Fill( Λ) : filling of the CEA Λ (Section 3.1).

• S(C n+1 ) : Klein model of Ein 1,n (Section 3.1).

• Conv(Λ) and Conv * (Λ) : convex hull of an achronal subset of Ein 1,n and its convex dual (Section 3.1).

• I + 0 : future of the origin in Minkowski space (Section 3.2).

• Mink + (x), I ± : Minkowski domain in Ein and its Penrose components (Section 3.2).

• H(x), ∂H(x) : totally geodesic hypersurface of H n+1 and its boundary defined by an element x of de Sitter space dS 1,n (Section 3.3).

• B(S n ) : space of round disks in S n (naturally identified with dS 1,n , see Section 3.3).

• DS 1,n : Klein model of de Sitter space (Section 3.3).

• ∂ ± dS 1,n : past and future conformal boundaries of dS 1,n (Section 3.3).

• ADS 1,n : Klein model of Anti-de Sitter space (Section 3.4).

• U (x) : affine domain centered at an element x of ADS 1,n (Section 3.4).

• H ± (x) : past and future hyperplanes dual to an element x of ADS 1,n (Section 3.4).

• G, K : Lie algebras of SO 0 (2, n) and of its maximal subgroup K (Remark 3.3).

• U 1,n : space of future oriented vectors tangent to AdS 1,n of norm -1 (Remark 3.3).

• λ : Liouville form on U 1,n (Remark 3.3).

• J, ω : complex structure and Kähler form on T 2n (Remark 3.3).

• ν, B, II : Gauss map, shape operator and second fundamental form of a smooth spacelike surface in AdS 1,n (end of Section 3.4).

• M Λ (Γ) = Γ\Ω(Λ) : model maximal globally hyperbolic flat spacetime (Section 4.1).

• M (Σ) : maximal globally hyperbolic de Sitter spacetime associated with the (S n , SO 0 (1, n + 1))-manifold Σ (Section 4.2).

• H ± (Λ) : past and future horizons of a globally hyperbolic domain Ω(Λ) of AdS 1,n (Section 4.3).

• E - 0 (Λ) : Past tight region of Ω(Λ) (Section 4.3).

• E(Λ k, ) : Split AdS-spacetime (end of Section 4.3).

• D(Λ) : conformal boundary of the invisible domain Ω(Λ) of AdS 1,n (Section 4.4).

• Λ Γ : limit set of an achronal group of isometries (Section 5).

• eu b (Γ) : bounded Euler class of the subgroup Γ of SO 0 (2, n) (Theorem 5.4).

• Rep an (Γ, SO 0 (1, G)) : space of Anosov representations of Γ into G (Section 5.4).

• ρ L , ρ R : left and right representations associated with a MGHC AdS 1,2 spacetime (beginning of Section 6.2).

• λ ± : pleating laminations on the boundary of the convex core (Section 6.2).

A brief introduction to causality notions

Let (M n+1 , g) be a Lorentzian manifold. A tangent vector is spacelike if its norm is positive; timelike if its norm is negative; lightlike if it is non zero and its norm is 0. We also define causal vectors as tangent vectors that are timelike or lightlike. An immersed hypersurface is spacelike if all vectors tangent to S are spacelike; it is nontimelike if tangent vectors are all spacelike or lightlike. A causal (resp. timelike) curve is an immersion c : I ⊂ R → M such that for every t in I the derivative ċ(t) is causal (resp. timelike). This notion extends naturally to nondifferentiable curves (see below, or [START_REF] Beem | Global Lorentzian Geometry[END_REF]). Such a curve is extendible if there is another causal curve ĉ : J → M and a homeomorphism φ : Past, future. The future of a subset A of M is the open set I + (A) made of final points of future oriented timelike curves not reduced to one point and starting from a point of A. The causal future J + (A) of A is the (non necessarily closed) set of final points of future oriented causal curves, possibly reduced to one point and starting from a point of A (hence A itself belongs to its causal future). The (causal) past (J -(A)) I -(A) of A is the (causal) future of A when the timeorientation of M is reversed. This induces two partial orders on M : for every p and q in M , we write p q if q lies in the causal future of p, and p ≺ q if q lies in I + (p).

I → K J such that c coincides with ĉ • φ.

Alexandrov topology.

An open diamond is a domain U (p, q) = I -(p) ∩ I + (q) that is the intersection between the future and the past of two points p, q. Open diamonds form the basis of some topology on M, the so-called Alexandrov topology (see [START_REF] Beem | Global Lorentzian Geometry[END_REF]). Every U (x, y) is open for the manifold topology, but the converse in general is false; when it holds, (M, [g]) is said strongly causal.

Strong causality is equivalent to the following property (Proposition 3.11 of [START_REF] Beem | Global Lorentzian Geometry[END_REF]): for every point p in M , every neighborhood of p contains an open neighborhood U (for the usual manifold topology) of p which is causally convex, i.e. such that any causal curve in M joining two points in U is actually contained in U .

From now on, we always assume that the spacetime (M, [g]) is strongly causal. For any p, q in M the closed diamond U (p, q) is the intersection between the causal future of p and the causal past of q.

Refined causality notions. In strongly causal spacetimes, one can extend the class of causal curves in the following way: a curve c : I ⊂ R → M is causal and future oriented if it is locally non decreasing for the usual order on I and the partial order . It is strictly causal if it is locally increasing for the partial order ≺. It is an easy exercise to see that acausal curves are locally Lipschitz, but in general non smooth.

One also has the important following notion among locally achronal subsets: a locally achronal subset A is edgeless if every point p ∈ A admits a neighborhood U in M such that any causal curve contained in U and with extremities in respectively I + U (A) and I - U (A) crosses A. Then, closed edgeless achronal subsets (abbrev. CEA) are natural generalizations of (smooth) nontimelike hypersurfaces: they are locally graphs of Lipschitz maps.

Global hyperbolicity. A spacetime (M, [g]) is globally hyperbolic (abbrev. GH) if:
-it is strongly causal, -for any p, q in M the closed diamond U (p, q) is compact or empty. This definition makes clear that, in a globally hyperbolic spacetime (M, [g]), an open domain V of M is globally hyperbolic if and only if it is causally convex. Indeed, each of these notions is equivalent to the fact that for every x, y in V , the closed diamond U (x, y) in M coincides with the closed diamond in V . It follows that intersections of GH domains of (M, [g]) are still GH.

The notion of global hyperbolicity is closely related to the notion of Cauchy surfaces that we define now: let S be a spacelike hypersurface embedded in M (or, more generally, a CEA in M ). The past development P (S) (resp. the future development F (S)) is the set of points p in M such that every inextendible causal path containing p meets S in its future (resp. in its past). The Cauchy development dev(S) is the union P (S) ∪ F (S). When dev(S) is the entire M , S is a Cauchy hypersurface. An important fact, that can be considered as a generalisation of the Hopf-Rinow Theorem, is R. Geroch's Theorem ( [START_REF] Geroch | Domain of dependence[END_REF]): Theorem 2.1. A strongly causal spacetime (M, [g]) is globally hyperbolic if and only if it admits a Cauchy hypersurface. In this case, it is foliated by Cauchy hypersurfaces; more precisely, there is a smooth time function t : M → R such that every level set of t is a Cauchy hypersurface.

It follows directly from this theorem that every GH spacetime (M, g) is isometric to a product S × R equipped with a metric of the form ḡt -N dt 2 where ḡt is a one parameter family of Riemannian metrics on S and N : M →]0, +∞[ is a positive function, called the lapse function (see Proposition 6.6.8 of [START_REF] Hawking | The large scale structure of space-time[END_REF]).

In particular, Cauchy hypersurfaces in a given GH spacetime are diffeormophic to each other. Remark 2.2. There has been some imprecision in the literature concerning the proof the smoothness of the splitting of globally hyperbolic spacetimes. See [START_REF] Bernal | On smooth Cauchy hypersurfaces and Geroch's splitting theorem[END_REF][START_REF] Bernal | Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes[END_REF][START_REF] Bernal | Globally hyperbolic spacetimes can be defined as "causal" instead of "strongly causal[END_REF] for a survey on this question and a complete proof of the smoothness of the splitting M ≈ S × R. See also a more recent proof with different methods, in [START_REF] Fathi | On smooth time functions[END_REF].

Remark 2.3. The notion of global hyperbolicity in terms of Cauchy hypersurfaces has been introduced by J. Leray (1952). The key point is that the finite propagation property of the Einstein equations ensures that a metric solution of the Einstein equations is completely determined by its restriction to a neighborhood of a Cauchy hypersurface S (more precisely, by the Riemannian metric obtained by restricting the Lorentzian metric to S, and by its second fundamental form). Therefore, globally hyperbolic spacetimes form a well posed problem from the viewpoint of Partial Differential Equations.

Remark 2.4. GH spacetimes are never compact. The suitable compactness notion is spatial compactness: a spacetime is globally hyperbolic spatially compact (abbrev. GHC) if it admits a compact Cauchy hypersurface -all Cauchy hypersurfaces are then compact.

Maximal globally hyperbolic spacetimes. An isometric embedding f : M → N is a Cauchy embedding if the image by f of any Cauchy hypersurface of M is a Cauchy hypersurface of N.

In this paragraph, we have to treat separately Lorentzian spacetimes and conformal Lorentzian spacetimes. If (M, g) and (N, h) are GH Lorentzian spacetimes, a map f : M → N is a Cauchy embedding if it is an isometric embedding such that the image by f of any Cauchy hypersurface in M is a Cauchy hypersurface in N . A conformal Cauchy embedding is a conformal embedding f : M → N between conformal spacetimes mapping Cauchy hypersurfaces into Cauchy hypersurfaces. Note that a conformal Cauchy embedding might be non-isometric, therefore not a Cauchy embedding in our terminology.

Let C be a category of Lorentzian spacetimes, i.e. a class of Lorentzian spacetimes stable by isometries, by union, and restriction to open domains -for example, the category of C r spacetimes, or the category of analytic spacetimes etc. . . A GH C-spacetime (M, g) is C-maximal (abbrev. C-MGH) if every Cauchy embedding f : M → N in a C-spacetime N is surjective (hence a global isometry).

We have a similar notion of maximal conformal GH spacetimes, but where C is a category of conformal spacetimes. The two notions may differ; as we will see later, a Lorentzian spacetime may be maximal among spacetimes of constant curvature, but not maximal in the category of conformally flat spacetimes.

A Lorentzian category C is rigid if it has the following property: if p, q are points in C-spacetimes M , M such that any isometry between J -(p) and J -(q) extends to an isometry between neighborhoods of p and q. The traditional example is the category of solutions of the Einstein equations in the void, or for us, the category of constant curvature spacetimes.

One has a similar notion of rigid conformal categories: the ones for which any conformal diffeomorphism between J -(p) and J -(q) extends to a conformal diffeomorphism between neighborhoods of p and q. Theorem 2.5 ([86]). Let C be a rigid category of Lorentzian spacetimes or of conformal spacetimes. Then any GH C-spacetime M admits a Cauchy embedding f : M → M max in a C-MGH spacetime. Moreover, M max is unique up to right composition by an isometry in the case of Lorentzian categories, and up to right composition by a conformal diffeomorphism in the case of conformal categories.

Remark 2.6. This theorem was first established in the case of solutions of the Einstein equations ( [START_REF] Choquet-Bruhat | Global aspects of the Cauchy problem in general relativity[END_REF]). There is a more recent proof, with the same ideas, but a different order allowing to avoid in a clever way the use of the Zorn lemma ( [START_REF] Sbierski | On the Existence of a Maximal Cauchy Development for the Einstein Equations: a Dezornification[END_REF]). In her work [START_REF] Salvemini | Maximal extension of conformally flat globally hyperbolic space-times[END_REF], C. Rossi Salvemini observed that the proof applies tothe more general case of rigid categories of Lorentzian spacetimes, and also in the context of conformal Lorentzian categories that she introduced. Moreover, she proposed an entirely new proof, based on the notion of shadows (intersections J ± (p) ∩ S between a Cauchy hypersurface S and past/future of points). She also proved the following important result: if a GHC spacetime has nonpositive constant curvature and is maximal among spacetimes of constant curvature, then it is also maximal among conformally flat spacetimes. This statement is false in the positive constant curvature case: a GH spacetime with constant positive curvature is never maximal as a conformally flat spacetime.

Lorentzian distance. Let M be a time-oriented Lorentzian spacetime. The length-time L(c) of a causal curve c : I → M is the integral over I of the square root of -c(t)|c(t) . Observe that this is well-defined, since causal curves are always Lipschitz. The Lorentzian distance d lor (p, q) between two points p, q is Sup{L(c)/c ∈ C(p, q)} where C(p, q) is the set of causal curves with extremities p, q (see for example [START_REF] Andersson | The cosmological time function[END_REF]). By convention, if p, q are not causally related, d lor (p, q) = 0: when M is globally hyperbolic, it defines a continuous function d lor : M × M → [0, +∞[ since if q lies on the boundary of J ± (p) then there is a lightlike curve joining p to q and d lor (p, q) = 0. Theorem 2.7 (Corollary 4.7 and Theorem 6.1 of [START_REF] Beem | Global Lorentzian Geometry[END_REF]). If M is globally hyperbolic, then d lor : M × M → [0, +∞] is continuous and admits only finite values. Moreover, if p is in the causal future of q, then there exists a geodesic c with extremities p, q such that L(c) = d(x, y).

It is to obtain this theorem that one does not restrict the definition of causal curves to piecewise C 1 curves.

Cosmological time.

In any spacetime, we can define the notion of cosmological time ( [START_REF] Andersson | The cosmological time function[END_REF]): For any p in M , the cosmological time τ (p) is Sup{L(c)/c ∈ R(p)}, where R(p) is the set of past-oriented causal curves starting at p. This function could have in general a bad behavior: for example, in Minkowski space, the cosmological time is everywhere infinite. -M has finite existence time, i.e. τ (p) < ∞ for every p in M , -for every past-oriented inextendible curve c : [0, +∞[→ M, we have lim t→∞ τ (c(t)) = 0. Theorem 1.2 in [START_REF] Andersson | The cosmological time function[END_REF] expresses many nice properties of spacetimes with regular cosmological time functions. We need only the following statement: Theorem 2.9. If M has regular cosmological time, then the cosmological time is Lipschitz regular and M is globally hyperbolic.

Model spacetimes

In this section, we describe the model spacetimes for every sign of the (constant) curvature. This includes a description of their causal curves and their achronal subsets. We will end by the presentation of the space T 2n of timelike geodesics in the anti-de Sitter space that will play an important role in this survey. In the next section, we will use this material for the classification of maximal GH spacetimes of constant curvature.

An important feature is that causality notions in the model spacetimes are much easier to deal with once it is observed that they all admit a conformal embedding in the Einstein Universe. We therefore start with this central geometric model. As a reference for the content of this section, we mention [START_REF] Frances | Géométrie et dynamique lorentzienne conforme[END_REF][START_REF] Salvemini | Espaces-temps globalement hyperboliques conformément plats[END_REF] as very complete references (in French), the papers [START_REF] Frances | Lorentzian Kleinian groups[END_REF][START_REF] Salvemini | Maximal extension of conformally flat globally hyperbolic space-times[END_REF] extracted from these works, and also [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF][START_REF] Andersson | Cosmological time versus CMC time in spacetimes of constant curvature[END_REF].

On notations: all model spacetimes involve (R r,s , q r,s ), for some integers r, s, where R r,s is the r + s-dimensional vector space R r,s and q r,s a quadratic form of signature (r, s). More precisely, the first r coordinates of R r,s are denoted by u 1 , . . . , u r and the other coordinates by x 1 , . . . , x s . Elements of R r,s are denoted by x, y, . . . The quadratic form is then:

q r,s (x) = -u 2 1 -. . . -u 2 r + x 2 1 + . . . + x 2 s
The associated scalar product is denoted by . | . r,s , or simply . | . . We will also denote by (S n , ḡn ) the sphere of dimension n equipped with its usual metric ḡn : the restriction of q 0,n+1 to the unit sphere {q 0,n+1 = 1} of R 0,n+1 . The distance on S n induced by ḡn is denoted by d n .

Einstein universe

The four-dimensional Einstein universe was the first cosmological model for our universe proposed by A. Einstein soon after the birth of General Relativity. The n+1 dimensional Einstein universe Ein 1,n can be simply described as the (oriented) product S n × R of the n-dimensional sphere and the real line, equipped with the metric ḡn -dt 2 , and time-oriented so that the coordinate t is a time function.

The importance of the Einstein universe is essentially due to the following extension of the Liouville Theorem ( [START_REF] Frances | Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique[END_REF]): when n ≥ 2, any conformal transformation between two open subsets of Ein 1,n extends to a global conformal transformation. It follows that conformal Lorentzian spacetimes of dimension ≥ 2 + 1 are locally modeled on the Einstein universe. Hence we don't really consider the Einstein universe as a Lorentzian manifold, but as a conformally Lorentzian spacetime.

We also consider the product Ein 1,n = S n × S 1 equipped with the ḡn -ḡ1 . We denote by p : Ein

1,n → Ein 1,n the cyclic covering map. Let δ : Ein 1,n → Ein 1,n
be the map ( x,t) → ( x,t+2π): it generates the Galois group of p. We will also consider the quotient Ein 1,n of Ein 1,n by δ 0 : ( x,t) → (-x,t + π), even if its topology is slightly more difficult to handle. This quotient, which is doubly covered by Ein 1,n , is sometimes called Einstein universe in the literature. , they are represented by the curves t → (x(t), t), where t → x(t) is a geodesic of (S n , ḡn ). For every x in Ein n , δ 0 (x) is its first conjugate point in the future: by this, we mean that every future oriented photon exiting from x also contain δ 0 (x), and that there is no other such conjugate point in

Photons. Lightlike geodesics of Ein

J + (x) ∩ J -(δ 0 (x)).
The union of all photons containing x is the lightcone C(x). If we write x as a pair (x, t) in S n × R, the lightcone C(x) is the set of pairs ( ȳ,s) such that the difference t -s is equal to d n ( x,ȳ) modulo 2π. It is a cylinder pinched at every conjugate points δ k 0 (x) (see for example Figure 4.3 in [START_REF] Frances | Géométrie et dynamique lorentzienne conforme[END_REF]). The projections of lightcones in Ein 1,n are also called lightcones; a lightcone C(x) for x in Ein 1,n has two singular points, x and its conjugate δ 0 (x).

Causal curves. More generally, causal curves in Ein

1,n
, suitably parameterized, are the curves t → (x(t), t), where t → x(t) is a 1-Lipschitz map from an interval

I into S n -it is timelike if x is contracting, i.e.: ∀s, t ∈ R d n (x(s), x(t)) <| s -t | .
In particular, inextendible causal curves are the ones parameterized by I = R. It clearly follows that Ein Stricto sensu, there is no achronal subset in Ein 1,n since closed timelike curves through a given point cover the entire Ein 1,n . Nevertheless, we can keep track of this notion in Ein 1,n by defining "achronal" subsets of Ein 1,n as projections of genuine achronal subsets of Ein

1,n
. This definition is justified by the following results (Lemma 2.4, Corollary 2.5 in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]): The restriction of p to any achronal subset of Ein

1,n is injective. Moreover, if Λ 1 , Λ 2 are two achronal subsets of Ein 1,n
admitting the same projection in Ein 1,n , then there is an integer k such that:

Λ 1 = δ k Λ 2
In this setting, closed edgeless achronal subsets of Ein 1,n are graphs of 1-Lipschitz maps from S n into S 1 .

Globally hyperbolic domains. Let Λ be a closed achronal subset of Ein

1,n , i.e. the graph of a 1-Lipschitz map f : Λ 0 → R where Λ 0 is a closed subset of S n .
Define two functions f -, f + : S n → R as follows:

f + (x) := Inf ȳ∈Λ0 {f (ȳ) + d n ( x,ȳ)}, f -(x) := Sup ȳ∈Λ0 {f (ȳ) -d n ( x,ȳ)}, f + (respectively f -) is the maximal (respectively minimal) 1-Lipschitz map from S n into R that coincides with f on Λ 0 .
Then, the set of points of Ein

1,n
which are not causally related to any point of Λ is:

E( Λ) = {( x,t) ∈ S n × R | f -(x) < t < f + (x)}.
Observe that if x and ȳ are two points in Λ 0 such that |f (x) -f (ȳ)| = d n (x, ȳ), then the restrictions of f + and f -to any minimizing d n -geodesic segment between x and ȳ coincide. Let Fill(Λ 0 ) be the union of Λ 0 with the union of all minimizing d n -geodesic segments joining two elements x, ȳ of Λ 0 such that |f (x) -f (ȳ)| = d n (x, ȳ), and let Fill(f ) be the restriction of

f ± to Fill(Λ 0 ): the graph of Fill(f ) is a CEA of Ein 1,n
that we denote by Fill( Λ) and that we call the filling of Λ. Then we have E( Λ) = E(Fill( Λ)). In other words, we can restrict ourselves to filled CEA, i.e. CEA equal to their own fillings (see [START_REF] Barbot | Deformations of Fuchsian AdS representations are Quasi-Fuchsian[END_REF]Remark 3.19]).

The domain E( Λ) may be empty, but exactly in the case where the filling Fill( Λ) is the entire sphere S n . A particular case when this happens is the case where Λ is purely lightlike, i.e. the case where Λ 0 contains two antipodal points x0 and -x 0 such that the equality f (x 0 ) = f (-x 0 ) + π holds (Lemma 3.6 in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]). Purely lightlike achronal subsets are precisely the ones admitting as filling the union of lightlike geodesics joining two antipodal points of Ein n .

If non-empty, the invisible domain E( Λ) is globally hyperbolic (indeed, it is easy to see that for any p, q in E( Λ), the closed diamond U (p, q) is contained in E( Λ)). More precisely, the Cauchy hypersurfaces of E( Λ) are precisely graphs Λ F of 1-Lipschitz maps F : S n \ Fill(Λ 0 ) → R such that the extension of F to Fill(Λ 0 ) coincides with Fill(f ).

In the limit case Λ 0 = ∅, we have f + = +∞ and f -= -∞, and the Cauchy development of the graph of any 1-Lipschitz map F : S n → R defined on the entire sphere is the entire Einstein universe Ein As for achronal subsets, even if Ein 1,n is not strongly causal, one can abusively project the notion of globally hyperbolic domains into Ein 1,n , thanks to the following lemma:

Lemma 3.1. For every (non-empty) closed achronal set Λ ⊂ Ein 1,n , the projection of E( Λ) onto E(Λ) = p(E( Λ)) is one-to-one.
Klein model. Einstein universe can also be defined in the following way: let C n+1 be the null-cone in (R 2,n+1, q 2,n+1 ), and let S(C n+1 ) be its projection in the space S(R 2,n+1 ) of rays in R 2,n+1 . S(R 2,n+1 ) is a double covering of the usual projective space P(R2,n+1 ), therefore we call it, slightly abusively, the projectivization of R 2,n+1 . Observe that the convexity is well defined in S(R 2,n+1 ): one can simply define convex subsets of S(R 2,n+1 ) as radial projections of convex cones in R 2,n+1 . In particular, convex hulls Conv(B) of subsets B of S(R 2,n+1 ), in particular, of subsets of S(C n+1 ), are well defined (but we don't mean that they are contained in S(C n+1 )!).

The quadratic form q 2,n+1 induces a natural conformally Lorentzian structure on S(C n+1 ). More precisely, for any section σ : S(C n+1 ) → C n+1 , the pull-back σ * q 2,n+2 is a Lorentzian metric g σ , and the conformal class [g σ ] does not depend on σ. This conformally Lorentzian metric happens to be conformally isometric to (Ein 1,n , ḡn -ḡ1 ).

The pair (S(C n+1 ), [g σ ]) is the Klein model of Ein → Ein 1,n defined previously. Therefore, there is a central exact sequence:

1 → Z → SO 0 (2, n + 1) → SO 0 (2, n + 1) → 1
Observe that SO 0 (2, n + 1) is not the universal covering of SO 0 (2, n + 1): there is a retraction of SO 0 (2, n + 1) onto SO(2) × SO(n) hence the fundamental group of SO(2, n + 1) is not cyclic but isomorphic 2 to Z × (Z/2Z). Remark 3.2. Concerning the notation: in the sequel, we always have in mind the identifications Ein 1,n ≈ S(C n+1 ), and we frequently switch from one model to the other. We denote by x elements of Ein, using the notation x when we want to insist on the Klein model.

Causality notions in the Klein model. Two elements x, y of Ein are causally related if and only if x | y ≥ 0. In particular, a subset Λ ⊆ Ein is achronal (respectively acausal) if and only if for every distinct x, y ∈ Λ the scalar product x | y is non-positive (respectively negative).

Photons are projections on S(P ) of isotropic 2-planes of R 2,n+1 . The lightcone C(x) of a point x is the projection of C n+1 ∩ x ⊥ , where x ⊥ is the q 2,n+1 -orthogonal of any representative x of x.

Finally, for every achronal subset Λ of Ein 1,n ≈ S(C n+1 ), the invisible domain

E(Λ) is: E(Λ) = {x ∈ S(C n+1 ) | ∀ y ∈ Λ x | y < 0}.
Recall that the dual of a convex subset S(C) of S(R 2,n ) is:

C * = {x ∈ S(C n+1 ) | ∀ y ∈ C x | y ≤ 0}.
Hence, E(Λ) coincides with the interior of S(C n+1 ) ∩ Conv * (Λ), where Conv * (Λ) is the convex subset of S(R 2,n ) dual to the convex hull Conv(Λ): it is the intersection between a quadric and a convex subset of the projective space S(R 2,n ) (cf. [17, section 3.3]).

Minkowski space

For this section, we indicate as references [START_REF] Barbot | Globally hyperbolic flat space-times[END_REF][START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surface[END_REF][START_REF] Barbot | Domaines globalement hyperboliques de l'espace de Minkowski et de l'espace anti-de[END_REF]. The Minkowski space is the affine space of dimension n + 1 equipped with the quadratic form q 1,n on the underlying vector space R 1,n (for n ≥ 1). We slightly abuse notations, denoting it by R 1,n , whereas it should really considered as an affine space, and not linear. We also use a coordinate system (t, x 1 , . . . , x n ) such that:

q 1,n (x) = -t 2 + x 2 1 + . . . + x 2 n .
The causal structure of the Minkowski space is particularly simple, because of its affine structure. It is convenient to see it as the product (R × R n , -dt 2 + |dx| 2 ) of the line R "of time" and the Euclidian plane R n , whose elements are denoted by x. A time orientation is obtained by requiring the time coordinate t to be a time function.

Let us fix an origin 0, identifying Minkowski space with its underlying linear space R 1,n . Let I + 0 be the set of future-oriented timelike tangent vectors at 0. Then I + 0 coincides with the future I + (0) through the canonical identification between T 0 R 1,n and R 

(R 1,n ), isomorphic to SO 0 (1, n) R 1,n .
Concerning the causality notions, almost all the discussion above in the case of Einstein universe applies, replacing the sphere (S n , ḡn ) by the Euclidean plane (R 0,n , q 0,n ): up to reparametrization, causal (resp. timelike) curves are maps t ∈ I ⊆ R → x(t) where x : I → R 0,n is 1-Lipschitz (resp. 1-contracting). For inextendible curves we have I = R. Every horizontal hyperplane {t = Const.} is a Cauchy surface. The geodesics of Minkowski space are affine lines. The achronal (resp. acausal) subsets are graphs Λ f of 1-Lipschitz (respectively 1-contracting) maps f : Λ 0 ⊆ R 0,n → R, closed edgeless achronal subsets are graphs Λ f of 1-Lipschitz maps defined on the entire Λ 0 = R 0,n -but as we will se later, it is not always a Cauchy hypersurface for R 1,n .

Conformal model. Minkowski space admits a conformal embedding in Einstein universe; actually, it is conformally isometric to the complement in Ein : the "extreme diamond", intersection

I + (δ -1 0 (x 0 ))∩I -(δ -1 0 (x 0 )
), which we denote by Mink + (x 0 ). If can take x0 = (x 0 , 0), then Mink + (x 0 ) is the set of points (x, t) such that |t| < d n (x, x0 ).

The boundary of Mink + (x 0 ) in Ein 1,n can therefore be seen as a conformal boundary of the Minkowski space, that has already been introduced by R. Penrose ( [START_REF] Penrose | Conformal treatment of infinity[END_REF]). It decomposes in several parts:

-the point δ -1 0 (x 0 ), denoted by i -by Penrose: Mink + (x 0 ) is entirely contained in the future of i -, -the point δ 0 (x 0 ), also denoted by i + : Mink + (x 0 ) is entirely contained in the past of i + , -the point i 0 := x0 , called the "spatial infinity", -the complement of these three points is the union of two lightlike cylinders S n-1 × R, one in the future of Mink + (x 0 ) and denoted by I + , and the other, I -, in the past of Mink + (x 0 ).

See The intersection between Mink + (x 0 ) and the lightcone C(x) of any point in I ± is an affine hyperplane H(x) in Mink + (x 0 ) ≈ R 1,n . More precisely: if x ∈ I + , then Mink + (x 0 ) ∩ I -(x) is the past of H(x) in R 1,n , and if x ∈ I -, then Mink + (x 0 ) ∩ I + (x) is the future of H(x) in R 1,n . Therefore, I -can be seen as the space of half affine Minkowski spaces, that are equal to their own future, and bounded by a lightlike hyperplane.

De Sitter space

The de Sitter space dS 1,n is the hypersurface {x ∈ R 1,n+1 /q 1,n+1 (x) = +1} endowed with the Lorentzian metric obtained by restriction of q 1,n+1 . Hence, for the coordinates (t, x 1 , . . . , x n ) we have:

dS 1,n := {(t, x 1 , . . . , x n ) | -t 2 + x 2 1 + . . . + x 2 n = +1}.
We equip dS 1,n with the time orientation for which t (or, more generally, for every u ∈ H n+1 , the map x → -x | u ) is a time function. The geodesics are the intersections between dS 1,n and 2-planes in R 1,n+1 . Two points x, y in dS Duality with the hyperbolic space. For every x in dS 1,n , the intersection x ⊥ ∩ H n is a totally geodesic hypersurface H(x) of hyperbolic space H n+1 . More precisely, {y ∈ H n+1 | y | x > 0} is a half-hyperbolic space bounded by H(x); in other words, dS 1,n can be seen as the space of transversely oriented half hyperbolic spaces.

De Sitter space is the space of round disks in S n . Every H(x) is characterized by its conformal boundary ∂H(x) in ∂H n+1 ≈ S n . Therefore, and this will be important later, dS 1,n can be identified with the space B(S n ) of round disks in S n .

Klein model. The Klein model DS 1,n is the projection of dS 1,n to S(R 1,n+1 ) i.e.

DS 1,n := {x ∈ S(R 1,n+1 ) / x | x > 0}.
This is the complement in S(R 1,n+1 ) of the closures of two Klein models H n+1 ± :

H n+1 ± := {x ∈ S(R 1,n+1 ) / x | x < 0, ±t > 0}.
Conformal model De Sitter space dS 1,n is conformally equivalent to the domain dS 1,n := S n ×] -π, +π[ ⊆ Ein 1,n . It immediately follows that dS 1,n is a globally hyperbolic domain of Ein 1,n , hence globally hyperbolic. The achronal subsets are the graphs of 1-Lipschitz maps f : Λ 0 ⊆ S n →] -π, +π[. The boundary of dS 1,n has two components: the component S n × {-π} is the past conformal boundary ∂ -dS 1,n , and the component S n × {+π} is the future conformal boundary ∂ + dS 1,n . For every x in dS 1,n , the intersection between the future (resp. the past) of x in Ein 1,n and ∂ + dS 1,n (resp. ∂ -dS 1,n ) is a round ball B + (x) (resp. B -(x)). This is another way -actually, two other waysto identify dS 1,n with B(S n ). For each of them, the causality relation in dS 1,n corresponds to the inclusion relation in B(S n ).

Anti-de Sitter space

Anti-de Sitter space AdS 1,n is the hypersurface {x ∈ R 2,n /q 2,n (x) = -1} endowed with the Lorentzian metric obtained by restriction of q 2,n . We use a coordinate system (u, v, x 1 , . . . , x n ) such that:

q 2,n (x) := -u 2 -v 2 + x 2 1 + . . . + x 2 n .
We will also consider the coordinates (r, θ, x 1, . . . , x n ) with:

u = r cos(θ), v = r sin(θ).
We equip AdS 1,n with the time orientation defined by the vector field ∂ ∂θ , i.e. the time orientation such that the timelike vector field ∂ ∂θ is everywhere future oriented.

Observe the analogy with the definition of Hyperbolic space H n . Moreover, for every real number θ 0 , the subset H θ0 := {(r, θ, x 1 , . . . , x n )/θ = θ 0 } ⊂ R 2,n is a totally geodesic copy of H n embedded in AdS 1,n . More generally, the totally geodesic subspaces of dimension k in AdS 1,n are the connected components of the intersections of AdS 1,n with the linear subspaces of dimension (k + 1) in R 2,n . In particular, geodesics are intersections with 2-planes.

Conformal model Anti-de Sitter space AdS 1,n is conformally equivalent to the domain D n × S 1 ⊆ Ein 1,n , where D n is the open upper hemisphere of S n . The boundary of this domain is ∂D n × S 1 ≈ S n-1 × S 1 , hence conformally isometric to the Einstein universe Ein 1,n-1 with one dimension less. In other words, AdS 1,n is one of the two connected components of Ein 1,n \ Ein 1,n-1 for the natural conformal embedding of Ein 1,n-1 in Ein 1,n . In other words, one can see Ein is not globally hyperbolic: for example, diamonds J -(x 0 , t) ∩ J + (x 0 , 0) are not compact as soon as t ≥ 2π.

Klein model. The Klein model ADS 1,n is the projection of AdS 1,n to S(R 2,n ) i.e. : ADS 1,n := {x ∈ S(R 2,n ) / x | x < 0}.
The topological boundary of ADS 1,n in S(R 2,n ) is the Klein model S(C n ) of Ein 1,n-1 . Observe that for any subset Λ of Ein 1,n-1 ≈ S(C n ), the convex hull Conv(Λ) is contained in the conformal compactification AdS 1,n ∪∂ AdS 1,n if and only if Λ is achronal in Ein 1,n-1 .

Affine domains. For every x = S(x) in ADS 1,n , we define the affine domain (also denoted by U (x)):

U (x) := {y ∈ ADS 1,n / x | y < 0}.
In other words, U (x) is the connected component of ADS 1,n \ S(x ⊥ ) containing x.

The boundary S(x ⊥ ) ∩ ADS 1,n of U (x) in ADS 1,n has two components that are totally geodesic copies of the (Klein model of) hyperbolic space H n . One distinguish the past component H -(x) and the future component H + (x) characterized by the following property: future oriented timelike geodesics enter U (x) through H -(x) and exit through H + (x). They are also called hyperplanes dual to x, and we distinguish the hyperplane past-dual H -(x) from the hyperplane future-dual H + (x).

Every affine domain U (x), seen as a subset of Ein 1,n , and lifted in AdS . It follows that dev(S) is contained in an affine domain too. In particular, dev(S) is never the entire anti-de Sitter space: this is another proof that AdS

1,n ≈ D n × R, is isometric to a region D n ×] -π/2, +π/2[.

Achronal subsets. The description of achronal subsets of AdS

1,n
is not globally hyperbolic. Observe that ∂S is purely lightlike if and only if f S (x) = d n ( x,x ∞ ) + t 0 where t 0 is a real number and x∞ some point in

∂D n ⊂ S n .
The space of timelike geodesics. The content of this paragraph is mostly extracted from [START_REF] Barbot | Deformations of Fuchsian AdS representations are Quasi-Fuchsian[END_REF]Section 4.5]. Timelike geodesics in AdS 1,n are intersections between AdS 1,n ⊂ R 2,n and 2-planes P in R 2,n such that the restriction of q 2,n to P is negative definite. The action of SO 0 (2, n) on negative 2-planes is transitive, and the stabilizer of the (u, v)-plane is SO(2) × SO(n). Therefore, the space of timelike geodesics is the symmetric space:

T 2n := SO 0 (2, n)/ SO(2) × SO(n).
Remark 3.3. Let S be a closed edgeless achronal subset of AdS 1,n such that ∂S ⊂ Ein 1,n is not purely lightlike. Then, every timelike geodesic of AdS 1,n intersects E(∂S) (cf. Lemma 3.5 in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]), and since E(∂S) is convex, this intersection is connected, i.e. is a single inextendible timelike geodesic of E(∂S). In other words, one can consider T 2n as the space of timelike geodesics of E(∂S) for any CEA S.

T 2n has dimension 2n. We equip it with the Riemannian metric g T induced by the Killing form of SO 0 (2, n). It is well known that T 2n has nonpositive curvature, and rank 2: the maximal flats (i.e. totally geodesic embedded Euclidean subspaces) have dimension 2. It is also naturally Hermitian. More precisely: let G = so(2, n) be the Lie algebra of G = SO 0 (2, n), and let K be the Lie algebra of the maximal compact subgroup K := SO(2) × SO(n). We have the Cartan decomposition:

G = K ⊕ K ⊥
where K ⊥ is the orthogonal of K for the Killing form. Then, K ⊥ is naturally identified with the tangent space at the origin of G/K. The adjoint action of the SO(2) term in the stabilizer defines a K-invariant complex structure on K ⊥ ≈ T K (G/K) that propagates through left translations to a genuine complex structure J on T 2n = G/K. Therefore, T 2n is naturally equipped with a structure of ndimensional complex manifold, together with a J-invariant Riemannian metric, i.e. a Kähler structure.

Here our purpose is to give another way to define this Kähler structure, starting from the anti-de Sitter space and clarifying the geometric nature of the associated symplectic form.

Let U 1,n be the space of future oriented timelike tangent vectors of norm -1 of AdS 1,n . Since the tangent space of AdS 1,n at a point x is naturally identified with x ⊥ , there is a natural identification between U 1,n and the pairs (x,y) of elements of AdS 1,n satisfying y ∈ H + (x). The tangent bundle of U 1,n at a point (x,y) is naturally identified with elements ( ẋ,ẏ) of R 2,n × R 2,n satisfying:

ẋ | x = 0, ẏ | y = 0, ẋ | y + ẏ | x = 0.
There is a canonical SO 0 (2, n)-invariant pseudo-Riemannian metric . on U 1,n : ( ẋ,ẏ) := q 2,n (ẋ) + q 2,n (ẏ).

A quick computation shows that . is Lorentzian. Moreover, it is preserved by the geodesic flow Φ t on U 1,n that can be defined by: Φ t (x,y) = (cos(t)x + sin(t)y, -sin(t)x + cos(t)y).

The Killing vector field generating Φ t is Z(x,y) = (y, -x), hence of . -norm -2: the . -orthogonal Z ⊥ is therefore spacelike. Now T 2n is naturally identified with the orbit space of Φ t : we write elements of T 2n as equivalence classes [x,y] of the orbital relation on U 1,n . We have a natural way to define an SO 0 (2, n)-invariant Riemannian metric . on T 2n : for every [x,y] and every tangent vector ξ at [x,y], select a representative (x,y) of [x,y] and the unique vector v tangent to T 2n , orthogonal to Z(x,y), and projecting onto ξ. Define (ξ) as v : since Φ is isometric, this value does not depend on the choice of (x,y). This defines a Riemannian metric on T 2n that happens to be (up to a constant factor) the metric on the symmetric space T 2n := SO 0 (2, n)/ SO(2) × SO(n).

The symplectic form ω associated with the Kähler-Hermitian structure of T 2n can be described as follows: the Liouville 1-form λ on U 1,n is defined by:

λ (x,y) ( ẋ,ẏ) = -ẋ | y = ẏ | x .
The contact hyperplane, kernel of λ, is the orthogonal Z ⊥ . The geodesic flow Φ t is actually the Reeb flow for λ: we have λ(Z) = +1 and L Z λ = 0, so the exterior derivative ω = dλ is Φ t -invariant and for any v in

Z ⊥ we have ω(Z, v) = i Z dλ(v) = i Z dλ(v) + di Z λ = L Z λ = 0.
Hence we can define on T 2n the 2-form ω(ξ, ξ ) = ω(v, v ) where v, v are the lifts of ξ, ξ above v, v orthogonal to Z. This 2-form is closed and non-degenerate, i.e. a symplectic form on T 2n .

Finally, we define the complex structure: first observe that there is a natural complex structure on each contact hyperplane Z(x,y) ⊥ : this hyperplane is identified with the set of pairs ( ẋ,ẏ) with ẋ and ẏ both in x ⊥ ∩ y ⊥ . Then ( ẋ,ẏ) → ( ẏ, -ẋ) is an involution in Z(x,y) ⊥ , commuting with the geodesic flow, and induces the complex structure J on T 2n . Observe that J satisfies ω(v, J(v)) = v : it is a calibration between ω and . . Gauss map. Let S be a differentiable Cauchy hypersurface in a GH domain E(∂S). The Gauss map of S is the map ν : S → T 2n (ρ) that sends every element x of S to the unique timelike geodesic orthogonal to S at x.

Since every timelike geodesic intersects S at most once, the Gauss map is always injective. The image of the Gauss map is actually the set of timelike geodesics that are orthogonal to S. Since every timelike geodesic intersects S, it follows easily that the image of the Gauss map is closed, and that the Gauss map is actually an embedding.

Assume that S is the image of a smooth spacelike embedding x : Σ → AdS 1,n . Then it induces a map y : Σ → AdS 1,n where y(p) is the dual of the unique totally geodesic hypersurface tangent to S at x(p), and ν(p) = [x(p), y(p)]. Here we point out that the linear map dx( ṗ) → dy( ṗ) is the shape operator B at x(p), so that the second fundamental form is

II( ṗ) = dx( ṗ) | B(dx( ṗ)) = dx( ṗ) | dy( ṗ) .
We also point out the following consequence of the equality dx( ṗ) | y(p)) = 0 : the image of the Gauss map is a Lagrangian submanifold of ω. Conversely, let ϕ : Σ → T 2n be a Lagrangian immersion for some n-dimensional simply connected manifold Σ. One can lift ϕ to some immersion φ : Σ → U 1,n orthogonal to Z: indeed, select a base point p 0 in Σ, and for any p in Σ let α : [0, 1] → Σ and β : [0, 1] → Σ be two path with α(0) = β(0) = p 0 and α(1) = β(1) = p. Then, lift them to paths α, β in U 1,n orthogonal to Z and such that [α(t)] = ϕ(α(t)) and [ β(t)] = ϕ(β(t)). Assume α(1) and β(1) are both above α(1) = β(1) = p, hence there is a real number t such that β(1) = Φ t (α(1)). The loop obtained by composing α, the portion of the Φ-orbit between α(1) and β(1) and the inverse of β is homotopically trivial, hence the boundary of a disk D. Then, since the integral of λ along the portion of Φ-orbit is t, we have:

D ϕ * ω = α λ + t - β λ.
Now observe that α λ = β λ = 0, hence, since D ϕ * ω = 0 (because ϕ is Lagrangian) we get t = 0. The equality α(1) = β(1) follows: we can define φ(p) = α(1). The immersion φ : Σ → U 1,n is spacelike for (since it is orthogonal to Z). Write φ(p) = (x(p), y(p)). It may happen that p → x(p) is not an immersion at some point p 0 , but then, near p 0 , simply replace φ by φt = Φ t • φ by any non zero real number t (it amounts to replacing x(p) by cos(t)x(p) + sin(t)y(p)): after this modification, p → x(p) becomes a spacelike immersion near p 0 , whose Gauss map is the restriction of ϕ near p 0 . Of course, this construction is local and we may fail to find a t valid over the entire Σ.

The classification of MGHC spacetimes

In this section, we present the classification of MGHC spacetimes with constant curvature. This classification has been initiated by G. Mess who introduced many ideas ( [START_REF] Mess | Lorentz Spacetimes of Constant Curvature[END_REF]), and continued by several authors ( [START_REF] Barbot | Globally hyperbolic flat space-times[END_REF][START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surface[END_REF][START_REF] Scannell | Flat conformal structures and the classification of de Sitter manifolds[END_REF]). This classification is almost complete, but there are some remaining questions.

The flat case

The simplest example of MGHC flat spacetime is the quotient of the entire Minkowski space by a discrete group Γ of translations, such that the translation vectors of Γ form a lattice in R 0,n . These spacetimes are geodesically complete. They are isometric to the product (T n , h0 ) × (R, -dt 2 ), where (T n , h0 ) is a flat torus. We call them translation spacetimes.

The most fundamental example of MGHC flat spacetime is the quotient of the cone

I + 0 in R 1,n by a cocompact lattice Γ of SO 0 (1, n): M 0 (Γ) = Γ\I + 0 .
The restriction of -q 1,n to I + 0 is a time function whose levels sets are Cauchy hypersurfaces -in particular, the hyperboloid model H n of the hyperbolic space which is the 1-level set.

We call this example the standard conformally static example.

Identify R 1,n with the domain Mink + (x 0 ) of Ein 

) = Ein 1,n \ (J -(∂H n ) ∪ J + (∂H n )).
More generally, let Λ be a (non edgeless) closed achronal subset of Ein

1,n contained in the conformal boundary I + of a Minkowski domain Mink + (x 0 ) ≈ R 1,n , invariant by a torsionfree discrete subgroup Γ of Isom(R 1,n ). Then, Ω(Λ) = E(Λ)∩ Mink + (x 0
) is globally hyperbolic, Γ-invariant, and the action of Γ on Ω(Λ) is free and proper. The quotient M Λ (Γ) is a globally hyperbolic spacetime, but not necessarily Cauchy compact. The cosmological time of Ω(Λ) -that is the lift of the cosmological time of M Λ (Γ) -is regular. Moreover, if Λ contains no proper Γ-invariant closed subset, then M Λ (Γ) is maximal among flat GH spacetimes. Finally, M Λ (Γ) is future complete, in the sense that any future oriented timelike ray is geodesically complete.

We have observed that elements of I + correspond to past-half spaces in R 1,n , and Ω(Λ) is obtained by removing all the half-spaces corresponding to elements of Λ. It follows that Ω(Λ) is an intersection of half-spaces, hence convex. We recover the notion of regular domain as defined in [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surface[END_REF]. The boundary of Ω(Λ) in R 1,n is very interesting: it is a CEA, that is, the graph of a 1-Lipschitz map f whose differential has norm 1 almost everywhere.

Observe that if we replace I + by I -, the result will be a similar spacetime, but that is past complete and not future complete.

The following Theorem was proved by Mess in dimension 2 + 1 ([79]), by Bonsante in the case where the holonomy is assumed to have a discrete cocompact linear part in SO 0 (1, n) ( [START_REF] Bonsante | Flat spacetimes with compact hyperbolic Cauchy surface[END_REF]), and independently and in full generality in [START_REF] Barbot | Globally hyperbolic flat space-times[END_REF]: Theorem 4.1. Up to finite coverings, every MGHC flat spacetime is isometric to either a translation spacetime, or a quotient M Λ (Γ), where Γ is a discrete subgroup of Isom(R 1,2 ).

We want to describe further M Λ (Γ) when it is Cauchy compact. Most of the following claims are non-trivial and we refer to [START_REF] Barbot | Globally hyperbolic flat space-times[END_REF] for their proofs. Notice first that in this case, the achronal subset Λ of I ± ≈ R×S n-1 is necessarily a topological sphere, the graph of a continuous map f : S n-1 → R. The invisible domain E(Λ) is then contained in Min + (x 0 ), hence we have Ω(Λ) = E(Λ).

Consider first the proper case, i.e. the case where the closure of Ω(Λ) does not contain any affine line of R 1,n : Γ is then isomorphic to a cocompact lattice of SO 0 (1, n). More precisely, the linear part homomorphism Isom(R 1,n ) → SO 0 (1, n) is faithful and has discrete and cocompact image. In this case, we call M Λ (Γ) a standard spacetime.

In general, excluding the particular case of Misner spacetimes, up to finite coverings, a MGHC spacetime is a twisted product over a standard spacetime by flat tori. In particular, Cauchy hypersurfaces are always finite covers of products of hyperbolic closed manifolds by tori. See [START_REF] Barbot | Globally hyperbolic flat space-times[END_REF] for more details.

There is also an interesting case of flat MGH spacetime, but not Cauchy compact: the unipotent spacetimes. A unipotent spacetime is the quotient of either a half-space in R 1,n bounded by a lightlike hyperplane, or the region between two parallel lightlike hyperplanes, by a discrete nilpotent group Γ whose linear part is a discrete subgroup of the stabilizer in SO 0 (1, n) of a point of ∂H n . For more details, see [START_REF] Barbot | Globally hyperbolic flat space-times[END_REF].

The dS case

In some way, MGHC Cauchy compact spacetimes locally modeled on dS 1,n first appeared in a paper by Kulkarni and Pinkall ( §3.4 of [START_REF] Kulkarni | A canonical metric for Möbius structures and its applications[END_REF]), but the authors did not insist on the de Sitter nature of the spaces they were considering, and, presumably, were not aware of their interpretation as globally hyperbolic spacetimes. The fact that these examples give the complete list of MGHC de Sitter spacetimes was proved by K. Scannell ([89]), involving some ideas of Mess. There is also an alternative description in [START_REF] Andersson | Cosmological time versus CMC time in spacetimes of constant curvature[END_REF] which is the one we use here.

Unlike the other two cases (the flat and anti-de Sitter cases), locally de Sitter MGHC spacetimes are not in general quotients of open domains in dS 1,n .

The crucial point is that locally de Sitter MGHC spacetimes are in one-toone correspondence with closed Möbius manifolds, i.e. closed manifolds locally modeled on the conformal sphere S n . This correspondence involves the identification of dS 1,n with the space of round discs in S n . It goes as follows: let Σ be a closed manifold of dimension n, locally modeled on (S n , SO 0 (1, n + 1)). Let D : Σ → S n be the developing map of this (S n , SO 0 (1, n + 1))-structure, and let ρ : Γ = π 1 (Σ) → SO 0 (1, n + 1) be the holonomy representation. Let B( Σ) be the space of open domains B in Σ such that the restriction of D to B is a homeomorphism onto a round disc of S n . Then the action of Γ on B( Σ) is free and proper: let B(Σ) be the quotient space. The developing map D induces a Γ-equivariant local homeomorphism D : B( Σ) → B(S n ) ≈ dS 1,n , hence a locally de Sitter structure on B(Σ). As a locally de Sitter manifold, B(Σ) is maximal globally hyperbolic.

Actually, we observed that there are two ways to identify dS 1,n with B(S n ): for one of them the spacetime B(Σ) is geodesically complete in the future, and for the other one, B(Σ) is geodesically complete in the past. Theorem 4.2 (K. Scannell [START_REF] Scannell | Flat conformal structures and the classification of de Sitter manifolds[END_REF]). Every maximal globally hyperbolic Cauchy compact locally de Sitter spacetime is isometric to the spacetime M (Σ) associated with a (S n , SO 0 (1, n + 1))-manifold Σ.

Thurston observed that (S 2 , SO 0 (1, 3))-manifolds are in one-to-one correspondence with hyperbolic ends, i.e. hyperbolic 3-manifolds homeomorphic to Σ × [0, +∞[ with a concave boundary Σ × { 0} and complete at the end Σ × {+∞} (for more details, see for example [START_REF] Benedetti | Canonical Wick rotations in 3-dimensional gravity[END_REF]). This generalizes in any dimension: every locally de Sitter MGHC spacetime M (Σ) has an associated dual hyperbolic manifold homeomorphic to Σ × [0, +∞[. See [START_REF] Andersson | Cosmological time versus CMC time in spacetimes of constant curvature[END_REF] for more details.

We point out particular elementary cases:

-the elliptic case: this is the case where Σ is the round sphere S n ; M (Σ) is then the de Sitter space;

-the parabolic case: this is the case where Σ is a quotient of the flat conformal Euclidean space R n , i.e. the once punctured sphere. Then, in the geodesically future complete case, M (Σ) is a quotient of the complement in dS 1,n of the past of a point in the future conformal boundary. It is dual to the hyperbolic end corresponding to one hyperbolic cusp. In particular, Cauchy surfaces are finite quotients of umbilic tori.

In the remaining non-elementary hyperbolic case, M (Γ) has a regular cosmological time.

The AdS case

A convenient recent reference for the content of this section is [START_REF] Barbot | Deformations of Fuchsian AdS representations are Quasi-Fuchsian[END_REF]. Let Λ be a closed edgeless achronal subset of ∂ AdS . We call Ω( Λ) the first component. We can write:

Ω( Λ) =: AdS 1,n \ J -( Λ) ∪ J + ( Λ)
We denote by Ω(Λ) the projection of Ω( Λ) in AdS 1,n (cf. Lemma 3.1). The domains Ω(Λ) and Ω( Λ) are isometric to each other. They have regular cosmological time, in particular, they are GH.

Let Γ be a torsionfree discrete subgroup of SO 0 (2, n) preserving Λ. Then, the action of Γ on Ω(Λ) is free and properly discontinuous, and preserves the cosmological time τ . The quotient M Λ (Γ) := Γ\Ω(Λ) is a MGH spacetime locally modeled on the anti-de Sitter space. We call it a regular MGH anti-de Sitter spacetime.

Theorem 4.3. Every locally anti-de Sitter MGHC spacetime is isometric to a regular MGHC AdS spacetime.

We now give a more detailed presentation of the geometric features of these spacetimes. In the conformal model, Ω( Λ) is the region in D n × R between the graphs of two 1-Lipschitz maps f ± : D n → R that are extensions of the map f Λ : ∂D n → R whose graph is Λ. The graph of f -(respectively f + ) is a closed achronal subset of AdS 1,n that we call the lifted past (respectively future) horizon of Ω( Λ), and denote by H -(Λ) (respectively H + (Λ)). The projections in AdS 1,n of H ± (Λ) are called past and future horizons of Ω(Λ), and denoted by H ± (Λ).

Consider now Λ as a closed subset in S(C n ) ⊂ S(R 2,n ), boundary of the Klein model ADS 1,n : since Λ is achronal, the convex hull Conv(Λ) is contained in the closure of ADS 1,n . Actually, its intersection with S(C n ) is precisely Λ; in particular, E(Λ) characterizes Λ. It happens ( [START_REF] Andersson | Cosmological time versus CMC time in spacetimes of constant curvature[END_REF]) that E(Λ) is the interior of the dual Conv(Λ) * -in particular, E(Λ) contains the interior of Conv(Λ) * .

The Fuchsian case. There is a particular case: the case where Λ is the boundary of a totally geodesic copy of H n in AdS 1,n . THis means that Λ is the graph of an affine map. Then, Conv(Λ) has empty interior, and the complement of Λ in Conv(Λ) is the totally geodesic subspace bounded by Λ. The group Λ is then a discrete subgroup of a conjugate of SO 0 (1, n) in SO 0 (2, n). We call this case the Fuchsian case.

Past tight region. From now on, we assume that Λ is not Fuchsian. Its complement in the boundary ∂ Conv(Λ) has two connected components. Both are closed achronal subsets of AdS 1,n . More precisely, in the conformal model their lifs to AdS

1,n are graphs of 1-Lipschitz maps F + , F -from D n into R such that f -≤ F -≤ F + ≤ f + . ( 1 
)
The graph of F -is the past component S -(Λ) and the graph of F -is the future component S + (Λ). The region between the past horizon H -(Λ) and the future component S + (Λ) is the past tight region and it is denoted by E - 0 (Λ). Since E(Λ) and Conv(Λ) are convex and dual to each other, for every element x in S -(Λ) (respectively S + (Λ)) there is an element p of Λ or H + (Λ) (respectively H -(Λ)) such that H -(p) (respectively H + (p)) is a support hyperplane for S -(Λ) (respectively S + (Λ)) at x: these support hyperplanes are either totally geodesic copies of

H n (if p ∈ AdS 1,n ) or degenerate (if p ∈ Λ).
Similarly, at every element

x of H -(Λ) (respectively H + (Λ)) there is a sup- port hyperplane H -(p) (respectively H + (p)) where p is an element of S + (Λ) ∪ Λ (respectively S -(Λ) ∪ Λ). See Figure 2.
Cosmological lines. The past tight region E - 0 (Λ) is precisely the region where the cosmological time τ takes value < π/2:

E - 0 (Λ) = {τ < π/2}.
For every x in E - 0 (Λ) there is a unique realizing geodesic for x. More precisely, there is one and only one element r(x) in the past horizon H -(Λ) -called the cosmological retract of x -such that the segment ]r(x), x] is a timelike geodesic whose Lorentzian length is precisely the cosmological time τ (x). The restriction of τ to E - 0 (Λ) is C 1,1 , i.e. it is differentiable with locally Lipschitz derivative) (see [START_REF] Mess | Lorentz Spacetimes of Constant Curvature[END_REF][START_REF] Benedetti | Canonical Wick rotations in 3-dimensional gravity[END_REF] for the case n = 2, and [START_REF] Barbot | Deformations of Fuchsian AdS representations are Quasi-Fuchsian[END_REF] for the general case). The realizing geodesics are orthogonal to the level sets of τ . The space of realizing geodesics is then an n-dimensional closed embedded Lipschitz submanifold. We denote it by Σ(Λ) and call it the space of cosmological lines.

The initial singularity. For every p in H -(Λ), H + (p) is a support hyperplane for Conv(Λ), but it could be at a point in Λ. Elements of H -(Λ) that are dual to support hyperplanes for Conv(Λ) at a point inside AdS 1,n , i.e. in S + (Λ), form an interesting subset of H -(Λ), the initial singularity set (cf. [START_REF] Benedetti | Canonical Wick rotations in 3-dimensional gravity[END_REF]).

Split AdS-spacetimes. Consider the sum R 1,k ⊕ R 1, with k + = n, equipped with the quadratic form q 1,k + q 1, . It is isometric to (R 2,n, q 2,n ). It provides an embedding of SO 0 (1, k) × SO 0 (1, ) in SO 0 (2, n). It preserves in ∂ AdS 1,n an achronal topological sphere Λ k, , link of two spheres S k-1 and S -1 , where every point in S k-1 is linked to every point in S -1 by the unique future oriented lightlike segment in ∂ AdS 1,n going from the point in S k-1 towards the point in S -1 . The associated domain E(Λ k, ) is then globally hyperbolic, and for every cocompact lattice Γ in SO 0 (1, k) × SO 0 (1, ) the quotient Γ\E(Λ k, ) is a MGHC AdS-spacetime, called a split AdS-spacetime. Observe that the achronal sphere Λ k, is not acausal. A natural conjecture is that any MGHC AdS-spacetimes either is a split AdS-spacetime, or has an associated achronal subset Λ that is acausal. For more details, see [START_REF] Frances | Lorentzian Kleinian groups[END_REF] or [START_REF] Barbot | Deformations of Fuchsian AdS representations are Quasi-Fuchsian[END_REF].

Invisible domains

Let Λ be a non-purely lightlike closed achronal subset of ∂ AdS 1,n ≈ Ein 1,n-1 , but not necessarily edgeless: Λ is the graph of a 1-Lipschitz map f : Λ 0 → R where Λ 0 is a closed subset of S n-1 . Assume that it is preserved by a torsionfree discrete subgroup Γ of SO 0 (2, n). We consider it as a subset of Ein 1,n : let E(Λ) be the invisible domain in Ein 1,n , D(Λ) be the restriction of E(Λ) to Ein 1,n-1 and Ω(Λ) be its restriction to AdS 1,n . Then, the quotient M (Λ) := Γ\Ω(Λ) is a strongly causal spacetime, diffeomorphic to a product S × R, but not globally hyperbolic if Λ 0 = S n-1 : some causal curves may escape from it by some point in Γ\D(Λ).

Actually, one can consider Γ\D(Λ) as the conformal boundary of M (Λ). The past of Γ\D(Λ) in M (Λ) is the quotient of J -(D(Λ)) ∩ Ω(Λ) by Γ. Its complement in M (Λ) is globally hyperbolic: it is the quotient of Ω(Λ + ) by Γ, where Λ + is the future boundary of D(Λ), i.e. the graph of the maximal 1-Lipschitz extension of f on S n-1 .

In Section 6.3 we will give a geometrico-relativistic interpretation of this feature as idealistic models of spacetimes containing black-holes.

Discrete groups of isometries

In this section, we explore how the notion of global hyperbolicity may help to understand actions of groups of isometries on the model spacetimes, in a way similar to the traditional theory of Kleinian groups. We focus on the notion of achronal subgroups, and show how they allow to develop a theory similar to the classical theory of groups of isometries of the hyperbolic space H n , in particular, that such a subgroup has always a canonical limit set in the conformal boundary.

We then clarify the relation between achronal subgroups and Anosov representations in the context of isometry groups of spacetimes of constant curvature. Definition 5.1. Let Γ be a group of isometries of a spacetime (M, g). An orbit Γ.p is achronal if for every non-trivial element γ of Γ the iterate γp is not in the strict future or past I ± (p) of p. The group Γ itself is achronal if it admits an achronal orbit.

In some way, one may extend this notion to any pseudo-Riemannian metric, and it happens that isometry groups of Riemannian spaces are always achronal since there is no timelike tangent vectors in this case.

Remark 5.2. We do not assume Γ to be a discrete subgroup, even if it is the main case we have in mind. Discreteness is not necessary for this basic theory of limit sets.

The de Sitter case

In this case Γ is a subgroup of SO 0 (1, n + 1), hence can be seen as a group of isometries of H n+1 . The key observation is that, in our framework, Γ is always achronal.

Indeed, the boundary of dS 1,n in Ein

1,n
is the union of two spacelike spheres: the past and future conformal boundaries ∂ ± dS 1,n which are achronal. Actually, every component of ∂ dS 1,n is conformally equivalent to S n ≈ ∂H n+1 , and the classical theory of limit sets for groups of hyperbolic isometries provides a limit set Λ Γ , usually defined as the set of points in ∂H n+1 that are accumulation points of any orbit in H n+1 .

Here, we have two copies of the limit set in ∂ dS 1,n : one Λ + Γ in ∂ + dS 1,n , and the other one Λ - Γ in ∂ -dS 1,n . Each of them is acausal in Ein

1,n
, hence we can define as before the (non-empty) regions Ω ± (Λ Γ ), intersections between dS . The union Ω(Λ Γ ) of Ω + (Λ Γ ) and Ω -(Λ Γ ) can be characterized as the interior of the set of points in dS 1,n with achronal Γ-orbit, and Λ Γ = Λ + Γ ∪ Λ - Γ is the set of non-trivial accumulation points of achronal orbits Γ.p in dS 1,n Λ Γ := Γ.p \ Γp, for any p with achronal Γ-orbit. Λ Γ is empty if and only if Γ is relatively compact in SO 0 (1, n), in which case one can take Ω(∅) as the entire de Sitter space -actually, in this case Γ is conjugate to a subgroup of the maximal subgroup SO(n) of SO 0 (1, n): it preserves a foliation by umbilical spacelike spheres: every orbit is acausal, and the action on dS 1,n is proper.

When Γ is discrete, Ω(Λ Γ ) can be seen as the natural domain of dS 1,n on which Γ acts properly discontinuously.

Remark 5.3. Consider the Klein model in P(R 1,n+1 ): the convex hull Conv(Λ Γ ) is contained in the Klein model P({q 1,n+1 < 0}) of the hyperbolic space, and Ω(Λ Γ ) is the intersection between the Klein model P({q 1,n+1 > 0}) of the de Sitter space and the interior of the dual Conv(Λ Γ ) * . Actually, it was already observed in Thurston's book on the geometry of topology of three-manifolds ( [START_REF] Thurston | Three-dimensional geometry and topology[END_REF]) that the action of Γ is proper not only on H n , but also in the bigger region Conv(Λ Γ ) * .

The flat case

In the flat case, the subgroup Γ is not always achronal -for example, consider the case of a cocompact lattice in the group of translations of R 1,n . Nevertheless, as in the de Sitter case, one can show that achronal subgroups are subgroups of Isom(R 1,n ) that preserve a closed achronal subset Λ Γ in the Penrose conformal boundary ∂Mink + (x 0 ) = C(x 0 ) of a point x 0 in Ein 1,n . More precisely, such a group always preserves the "spatial infinity" i 0 = x 0 , hence we have to be more precise and distinguish several cases:

-Case (1): Γ is relatively compact: then Γ is achronal and no Γ-orbit accumulates at the conformal boundary; the limit set Λ Γ is then the empty set, and if Γ is discrete, the action of Γ on R 1,n = Ω(∅) is proper.

-Case (2): Γ is not relatively compact, but its linear part is relatively compact in SO 0 (1, n): then, Γ preserves a flat euclidian metric in R 1,n ; hence a foliation by parallel spacelike hyperplanes. Every Γ-orbit is achronal, and accumulates at the spatial infinity i 0 , that we define to be the limit set. If Γ is discrete, the action on the entire Minkowski space, which is the invisible domain for x 0 , is proper. Observe that according to the Bieberbach Theorem, if Γ is discrete, then, up to finite index, Γ is a group of spacelike translations.

-Case (3): the linear part of Γ is not relatively compact in SO 0 (1, n) and admits a limit set Λ 0 Γ in S n-1 . Then, Γ is achronal if and only if it preserves an achronal set in I + . The set of accumulation points in

I ± ≈ S n-1 × R is a limit set Λ ±
Γ , which is the graph of a map f : Λ 0 Γ → R (not necessarily Lipschitz). The interior of the set of achronal Γ-orbits in the set Ω(Λ Γ ), which is the union of the two globally hyperbolic domains Ω(Λ ± Γ ), on which, if it is discrete, Γ acts properly.

The anti-de Sitter case

In the anti-de Sitter case, we still have the situation that subgroups of SO 0 (2, n) may fail to be achronal. The criterion is simpler than in the flat case: Γ is achronal if and only if it preserves a closed achronal subset in ∂ AdS 1,n . Then, one can define a limit set Λ Γ as the set of accumulation points of achronal orbits. This is a closed achronal subset, contained in any Γ-invariant closed achronal subset of ∂ AdS 1,n . The interior of the set of achronal Γ-orbits in AdS 1,n is the invisible domain Ω(Λ) = E(Λ) ∩ AdS 1,n , on which Γ acts properly, even if the quotient is not always globally hyperbolic (it is globally hyperbolic if and only if Λ Γ is edgeless, i.e. is the graph of a 1-Lipschitz map defined on the entire sphere S n-1 ).

There is a very interesting criterion for achronality, involving a particular element of the bounded cohomology of SO 0 (2, n). Recall the exact sequence:

0 → Z → SO 0 (2, n) → SO 0 (2, n) → 0
where the Z is the cyclic group generated by the Galois automorphism δ. Then, there is a canonical non-algebraic section s : SO 0 (2, n) → SO 0 (2, n): loosely speaking, s(g) is the only lift of g ∈ SO 0 (2, n) such that for every affine domain U in AdS 1,n , the intersection U ∩ s(g)U is never empty. Then, for every g 1 , g 2 in SO 0 (2, n), let c(g 1 , g 2 ) be the integer in {-1, 0, +1} characterized by s(g 1 g 2 ) = δ c(g1,g2) s(g 1 )s(g 2 ). Then, c is a cocycle, representing an bounded cohomology class in H 2 b (SO 0 (2, n), Z), called the bounded Euler class. Then, for every subgroup Γ of SO 0 (2, n) the restriction of c to Γ is an element of H 2 b (Γ, Z), called the bounded Euler class of Γ and denoted by eu b (Γ).

Theorem 5.4 ([17]). A subgroup Γ of SO 0 (2, n) preserves a closed achronal subset of ∂ AdS 1,n if and only if eu b (Γ) = 0.

Anosov representations

Recall that for any Lie group G, we denote by Rep(Γ, G) the modular space of representations of Γ in G up to conjugacy in the target G.

Rep(Γ, G) := Hom(Γ, G)/G.
In this section, we restrict to the case where Γ is a Gromov hyperbolic group. We denote by ∂Γ the Gromov boundary of Γ, and by ( U Γ, φt ) the geodesic flow of Γ (see [START_REF] Champetier | Petite simplification dans les groupes hyperboliques[END_REF][START_REF] Mineyev | Flows and joins of metric spaces[END_REF]): there is a proper cocompact action of Γ on U Γ commuting with φt such that the induced flow φ t on the quotient space U Γ := Γ\ U Γ has a hyperbolic behavior. In particular, there are two Γ-equivariant maps ξ ± : U Γ → ∂Γ which are constant along the orbits of φt ; more precisely, one can see ξ + (p) (respectively ξ -(p)) as the limit of φt (p) for t → +∞ (respectively for t → -∞). There is also a map ν + defined on U Γ that associates with every p a metric ν + (p) in a neighborhood of ξ + (p), such that for every γ in Γ, the action of γ on ∂Γ is an isometry between the metric ν + (p) near ξ + (γ) and the metric ν + (γ.p) near ξ + (γ.p). Moreover, ν + ( φt (p)) increases exponentially with t.

Let X be a manifold on which G acts analytically, typically, a homogeneous manifold G/H. A representation ρ : Γ → G is (G, X)-Anosov if the properties of the geodesic flow still hold when we replace ∂Γ by X. More precisely:

-there is a continuous equivariant map f : ∂Γ → X, where ∂Γ is the Gromov boundary of Γ, -there is a continuous Γ-equivariant family of metrics ν + ρ (p) parameterized by U Γ, so that ν + ρ (p) is a metric on X near f (ξ + (p)) that increases exponentially along the orbits of φt .

For more details or other presentations of the notion of Anosov representations, see [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF][START_REF] Guichard | Tameness of Riemannian locally symmetric spaces arising from Anosov representations[END_REF][START_REF] Guéritaud | Anosov representations and proper actions[END_REF] or the section 2.1 of [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] or also the article [START_REF] Canary | Dynamics on Character Varieties: A Survey, In Handbook of Group Actions[END_REF].

The notion of Anosov representations was introduced by Labourie ( [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF]). It has several interesting features:

-Anosov representations form an open domain Rep an (Γ, G) of Rep(Γ, G), -Anosov representations are always faithful with discrete image. Labourie proved in particular that for any n ≥ 2, and in the case where Γ is the fundamental group of a closed surface, one connected component (the so-called Hitchin component) of Rep(Γ, PSL(n, R)) is made of (PSL(n, R), F n )-Anosov representations, where F n is the variety of complete flags in R n .

The de Sitter case. Once more, de Sitter space is the dual of hyperbolic space H n+1 . It is well-known (see [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF][START_REF] Canary | Dynamics on Character Varieties: A Survey, In Handbook of Group Actions[END_REF]) that for any subgroup Γ of SO 0 (1, n + 1), the inclusion Γ ⊂ SO 0 (1, n + 1) is (SO 0 (1, n + 1), S n )-Anosov if and only if it is convex cocompact.

A particular interesting family of convex cocompact subgroups are the quasi-Fuchsian subgroups, i.e. discrete subgroups isomorphic to a cocompact lattice of SO 0 (1, n + 1) such that the limit set Λ Γ is a topologically embedded sphere in ∂H n+1 .

We point out here an interesting characterization of convex cocompact subgroups appearing in our framework: a non-elementary discrete subgroup Γ of SO 0 (1, n + 1) is convex cocompact if and only the locally de Sitter globally hyperbolic domain Γ\Ω ± (Λ Γ ) is spatially compact.

In other words, one can characterize (SO 0 (1, n+1), S n )-Anosov representations as the holonomy representations of MGHC de Sitter spacetimes that are quotients of hyperbolic domains of dS 1,n (observe that this last condition is restrictive: there are closed Möbius manifolds whose developing map is not injective; therefore their associated MGHC de Sitter spacetimes have also a non-injective developing map).

Remark 5.5. Unlike the other cases (see below), Rep an (Γ, SO 0 (1, n + 1)) is not a closed subset of Rep(Γ, SO 0 (1, n + 1)). Indeed, quasi-Fuchsian subgroups can be continuously deformed to the trivial subgroup. It follows that the holonomy representation of a MGHC de Sitter spacetime, even if it is Gromov hyperbolic, is not necessarily (SO 0 (1, n + 1), S n )-Anosov.

The anti-de Sitter case. The de Sitter case has been fully treated in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]: Theorem 5.6 (Theorem 1.2 in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]). Let Γ be the fundamental group of a closed manifold of dimension n. Assume that Γ is Gromov hyperbolic. Then, a represen-

tation ρ : Γ → SO 0 (2, n) is (SO 0 (2, n), Ein 1,n-1 )-Anosov if and only if it preserves a closed edgeless acausal subset Λ of Ein 1,n-1 .
Remark 5.7. If Γ is a discrete subgroup acting on AdS 1,n and preserving a closed edgeless acausal subset Λ of Ein 1,n-1 such that the quotient Γ\Ω(Λ) is spatially compact, then it is Gromov hyperbolic (see Section 8.3.2 in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]). Therefore, (SO 0 (2, n), Ein 1,n-1 )-Anosov representations are precisely holonomy representations of MGHC AdS-spacetimes whose limit set is acausal, and not simply achronal.

Remark 5.8. Split AdS-spacetimes have a fundamental group isomorphic to a lattice of SO 0 (1, k) × SO 0 (1, ), hence are not Gromov hyperbolic. We already mentioned that they may be exactly the MGHC AdS-spacetimes with non-acausal limit set.

Finally, we have the following: Theorem 5.9 ( [START_REF] Barbot | Deformations of Fuchsian AdS representations are Quasi-Fuchsian[END_REF]). Let Γ be a Gromov hyperbolic group, isomorphic to the fundamental group of a closed n-dimensional manifold. Then, if not empty, the space Rep an (Γ, SO 0 (2, n)) of Anosov representations is open and closed in the space Rep(Γ, SO 0 (2, n)). In particular, it is a union of components of Rep(Γ, SO 0 (2, n)).

One of the main intermediate steps in the proof of this theorem is the following result: if Γ ⊂ SO 0 (2, n) is a Gromov hyperbolic group and the holonomy group of a MGHC AdS 1,n -spacetime, then any achronal Γ-invariant closed edgeless achronal subset of ∂ AdS 1,n is automatically acausal.

The flat case. This is the only case that has not been yet completely studied. The only published result is the work of S. Ghosh ( [START_REF] Ghosh | The Pressure Metric on the Margulis Multiverse[END_REF]): let Γ be a discrete subgroup of Isom(R 1,2 ), acting properly discontinuously on R 1,2 , and admitting as linear part a convex cocompact subgroup of SO 0 (1, 2). Then, the inclusion Γ ⊂ Isom(R 1,2 ) is (Isom(R 1,2 ), I + )-Anosov. This result is the starting point for the construction of a certain metric on the space of such representations, involving the thermodynamical formalism, the pressure metric.

We propose here the following conjecture: let Γ be a Gromov hyperbolic group. Then a representation ρ : Γ → Isom(R 1,n ) is (Isom(R 1,n ), I + )-Anosov if and only if it is achronal and the associated globally hyperbolic domain Ω(Λ) is proper. 3These representations should also be characterized by the following property: their linear part L ρ : Γ → SO 0 (1, n) is faithful and convex cocompact. [START_REF] Andersson | Cosmological time versus CMC time in spacetimes of constant curvature[END_REF] The three-dimensional case: links with Teichmüller space

In this section, we describe the several connections between the Teichmüller space and MGHC AdS 1,2 -spacetimes revealed in Mess's work ( [START_REF] Mess | Lorentz Spacetimes of Constant Curvature[END_REF][START_REF] Andersson | Notes on a paper of Mess[END_REF]) and followers.

There are also similar links with MGHC spacetimes of constant curvature 0 or +1, but we have decided to focus on the AdS case. For more information on this topic, see [START_REF] Carlip | Quantum Gravity in 2 + 1 Dimensions[END_REF][START_REF] Benedetti | Canonical Wick rotations in 3-dimensional gravity[END_REF][START_REF] Scarinci | Symplectic Wick rotations between moduli spaces of 3-manifolds[END_REF].

6.1 Anti-de Sitter space as a space of matrices

An alternative description of AdS 1,2 . Consider the linear space Mat(2, R) of two-by-two matrices with real coefficients, equipped with the quadratic form -det. This space is isometric to (R 2,2 , q 2,2 ), hence AdS 1,2 is naturally identified with the space of matrices of determinant 1, i.e. SL(2, R).

We have also the formula -det(A)Id = A A = AA where Id is the identity matrix and A the transpose of the matrix of cofactors. Therefore the bilinear form associated with -det is:

X | Y = Tr( XY )/2 = Tr(X Y )/2
where Tr denotes the trace.

The isometry group. The actions of SL(2, R) on itself by left and right translations are isometric, and they provide a natural identification between SO 0 (2, 2) and the quotient of SL(2, R)× SL(2, R) by the group of order two generated by (-Id, -Id). Therefore, a representation ρ : Γ → SO 0 (2, 2) splits in two representations ρ L , ρ R from Γ into PSL(2, R).

The Minkowski space and the hyperbolic plane. Let M be the 3-dimensional linear subspace of Mat(2, R) consisting of matrices with null trace. This is the tangent space of SL(2, R) at the identity map. The restriction of -det to M has index [START_REF] Aminneborg | Making anti-de Sitter Black holes[END_REF][START_REF] Aminneborg | Black holes and wormholes in 2 + 1 dimensions[END_REF], hence (M, -det) is a model for R 1,2 . Observe also that for X in M , -det(X) coincides with Tr(X 2 )/2 in M . In particular, the hyperbolic plane H 2 is naturally identified with the space of matrices of determinant 1 and trace 0, therefore, with the space of complex structures J on R 2 (since J 2 + Id = 0). In this model, the isometric action of an element A of SL(2, R) is the action by conjugacy J → AJA -1 .

The Einstein spacetime Ein 1,1 . The Klein model of the boundary of AdS 1,2 is the projectivization of the -det null cone in Mat(2, R), i.e. of non zero noninvertible matrices. Such a matrix determines two lines in R 2 : its image and its kernel; moreover the left action PSL(2, R) preserves the kernel and the right action PSL(2, R) preserves the image. Therefore, there is a canonical identification ) is also ruled by two families of lines: they are these two families of lightlike geodesics. This description of Ein 1,1 as a product of two circles is different from the analogous decomposition for its double cover Ein 1,1 , which was defined as the product S 1 × S 1 equipped with the metric ḡ1 -ḡ1 . The factors { * } × RP 1 and RP 1 × { * } can be seen, locally, as the diagonal and anti-diagonal in S 1 × S 1 .

Achronal subsets of Ein 1,1 . Every closed acausal subset of Ein 1,1 intersects every circle RP 1 × { * } and { * } × RP 1 in at most one point. Therefore, these sets are graphs of increasing maps from RP 1 into RP 1 . In particular, closed edgeless acausal subsets are precisely the graphs of the homeomorphisms of RP 1 . At the limit, every achronal subset Λ is a generalized graph of a semi-conjugacy. By this we mean that Λ is the union of the graph of a non-decreasing map f : Λ 0 → RP 1 (Λ 0 is a closed subset of RP 1 ) and some vertical segments { * } × I where I is a closed segment in RP 1 (there is also the limiting case of purely lightlike subsets, where Λ 0 = ∅ and where Λ is one factor { * } × RP 1 ).

We hope that the reader will easily agree with the idea that the less awkward definition of "generalized graph of generalized maps from RP 1 onto RP 1 " is the first definition given here, as closed achronal subsets of Ein ) is isometric (up to a constant factor) to H 2 × H 2 equipped with the product metric. This correspondence is expressed in the following way: the timelike geodesic corresponding to an element (x, y) of H 2 × H 2 is the unique timelike geodesic preserved by the subgroup of PSL(2, R)× PSL(2, R) fixing (x, y), namely made of pairs (g, h) where g is a rotation at x and h a rotation at y. In particular, for every g in PSL(2, R) ≈ AdS 1,2 , the set of timelike geodesics containing g is the graph of g in

H 2 × H 2 .
The symplectic form ω is ω 0 -ω 0 where ω 0 is the volume form on H 2 .

The following observation will be useful later: Let (x 1 , y 1 ) and (x 2 , y 2 ) be two elements of H 2 × H 2 . Then, the associated timelike geodesics of AdS 1,2 have a common point if and only if the hyperbolic distance between x 1 and x 2 is equal to the distance between y 1 and y 2 -common points are then the elements of PSL(2, R) mapping x 1 to y 1 and x 2 to y 2 .

Timelike geodesics 2: more explicit computations. Recall that U 1,2 is the space of future oriented timelike vectors of AdS 1,2 . In our matrix model, U 1,2 is the space of pairs of matrices (A, C) satisfying:

-det(A) = det(C) = 1, -A and C are orthogonal for -det.

The last condition is equivalent to Tr(AC -1 ) = 0. But recall that the space of matrices of trace zero and determinant 1 is a model for H 2 . Therefore, (A, C) → (J L , J R ), where J L := AC -1 and J R := C -1 A, defines a map between U 1,2 and H 2 × H 2 . This map is constant along the geodesic flow, and induces (up to a scalar constant) the SO 0 (2, 2)-equivariant isometry between T 4 and H 2 × H 2 -it is clear that J L (respectively J R ) is invariant by right translations (respectively left translations).

AdS 1,2 globally hyperbolic spacetimes

References adapted to the content of this section are [START_REF] Benedetti | Canonical Wick rotations in 3-dimensional gravity[END_REF] and more recently [START_REF] Scarinci | Symplectic Wick rotations between moduli spaces of 3-manifolds[END_REF].

Mess's parametrization by Teich(Σ)×Teich(Σ). Let M Λ (Γ) = Γ\Ω(Λ) be a MGHC spacetime locally modeled on AdS 1,2 . Then Λ is the generalized graph of a semi-conjugacy between the projection Γ L of Γ in the left factor PSL(2, R) and the projection Γ R of the projection in the right factor. It follows that these projections are injective and that Γ L and Γ R are both discrete subgroups of PSL(2, R). Moreover, these groups are isomorphic to the fundamental group of Cauchy surfaces of M Λ (Γ), hence of a closed surface. It follows that Γ L and Γ R are cocompact lattices, and that Λ is the graph of the unique homeomorphism conjugating Γ L and Γ R -in particular, it is acausal.

Conversely, given any pair ρ L , ρ R of faithful and discrete representations into PSL(2, R) of the fundamental group Γ of a closed surface, the quotient of Ω(Λ) (where Λ is the graph of the unique conjugacy between ρ L and ρ R ) by the image of the representation (ρ

L , ρ R ) from Γ into (PSL(2, R) × PSL(2, R))/(-Id, -Id) ≈ SO 0 (2, 2) is MGHC.
Therefore, for every closed surface Σ, there is a canonical one-to-one correspondence between the space of AdS MGHC spacetimes diffeomorphic to Σ × R up to isometry, and the product Teich(Σ) × Teich(Σ).

Diallo's parametrization by Teich(Σ)×Teich(Σ). The boundary of the convex hull Conv(Λ) in AdS 1,2 is the union of two spacelike surfaces S ± (Λ) (its past and future components). Even if they are not smooth, the metric induced on each of them is isometric to H 2 , therefore the quotient surfaces Γ\S ± (Λ) represents two hyperbolic closed surfaces, i.e. a point in Teich(Σ) × Teich(Σ) (not to be confused with the Mess parameters). In his Ph D. thesis ( [START_REF] Diallo | Prescribing metrics on the boundary of convex cores of globally hyperbolic maximal compact AdS manifolds[END_REF]) B. Diallo proved that any element of Teich(Σ) × Teich(Σ) can be obtained in this way, but the uniqueness of the AdS 1,2 spacetime realizing this pair of metrics is still an open question. This result is the Lorentzian analogue of Epstein-Marden's Theorem establishing the realization of any element of Teich(Σ) × Teich(Σ) as the metric induced on the boundary of the convex core of quasi-Fuchsian hyperbolic 3-manifolds ( [START_REF] Epstein | Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces[END_REF]).

Mess parametrization by measured geodesic laminations. As in the classical situation of quasi-Fuchsian hyperbolic manifolds, the future and past components S ± (Λ) are pleated surfaces , embedded isometric copies of H 2 bended in AdS 1,2 along some measured geodesic lamination λ ± . The pair of laminations (λ + , λ -) is filling i.e. any closed curve c in S which is not homotopically trivial has non-zero intersection with either λ + or λ -. Mess proved that the map associating with every AdS 1,2 MGHC spacetime the measured geodesic lamination (Γ\S + (Λ), λ + ) (or (Γ\S -(Λ), λ -)) realizes a one-to-one correspondence.

One can also forget the hyperbolic metric on Γ\S ± (Λ). In [START_REF] Bonsante | Fixed points of composition of eartquakes[END_REF] Bonsante and Schlenker proved that any filling pair of measured laminations (λ + , λ -) (but forgetting the hyperbolic metrics) is realized as a pair of pleated laminations on the convex core of a MGHC AdS-spacetime.

AdS 1,2 -spacetimes and earthquakes. In [START_REF] Mess | Lorentz Spacetimes of Constant Curvature[END_REF] Mess pointed out a connection between AdS spacetimes and the notion of earthquake introduced by Thurston (see [START_REF] Kerckhoff | The Nielsen realization problem[END_REF]). Let λ be a measured geodesic lamination on H 2 . A convenient way to see λ is to see it as a stratification of H 2 , with one-dimensional strata (the geodesics in λ) and 2-dimensional strata (the closure of the components of H 2 \ Supp(λ), where Supp(λ) is the support of λ). The (left) earthquake defined by λ is a non-continuous map E λ : H 2 → H 2 that is an isometry on each 2-dimensional stratum, but for which each 1-dimensional stratum is a rift on which E λ may be non continuous. When λ is a rational lamination, i.e. a locally finite collection of weighted geodesic, we can give a more precise definition: if C 1 and C 2 are two 2-dimensional strata bounding the same leaf of λ, and if g 1 and g 2 are the isometries of H 2 coinciding with E λ on C 1 and C 2 , respectively, then g 2 = h a • g 1 where h a is the element of PSL(2, R) defined as follows:

-orient the geodesic so that C 1 is on the left of , and C 2 on the right of , -let a be the weight of for λ, then h a is the unique hyperbolic element preserving so that for every x in the image h a (x) is the unique element of in the direction of the orientation of and at distance a. The right earthquake is obtained with the other orientation of . Earthquakes for general measured laminations are then defined by a limiting process, at least in the case of measured geodesic laminations invariant by a cocompact lattice of PSL(2, R), involving the density of rational laminations.

Earthquakes have then a natural extension to the boundary ∂H 2 . When λ is preserved by a cocompact lattice, this extension is a homeomorphism, but if not, this extension in general is merely a "generalized semi-conjugacy", i.e. in the point of view adopted in this survey, a closed edgeless achronal subset of ∂H 2 × ∂H 2 . A celebrated theorem by Thurston is that any homeomorphism of the circle is realized by a left earthquake, and our purpose here is to point out that this theorem is well explained in our AdS-background. Moreover, our presentation has the advantage of providing a simpler and more direct definition of earthquakes avoiding the technical difficulties associated with the step between rational measured laminations and general ones.

Indeed, let Λ be a closed achronal edgeless subset of Ein 1,1 (for example, the graph of a homeomorphism). Consider the globally hyperbolic domain E(Λ). Then, the space Σ(Λ) of cosmological lines is a closed embedded locally Lipschitz disk in T 4 ≈ H 2 × H 2 . This is not the graph of a map from H 2 into H 2 but almost: this is directly the left earthquake. Indeed, this is the set of timelike geodesics orthogonal to support hyperplanes of the future component S + (Λ) of the convex hull of Λ, i.e. the level set {τ = π/2} of the cosmological time. The geodesics orthogonal to a totally geodesic face of the pleated surface S + (Λ) form a region of Σ(Λ) which is the graph of the restriction of an element of PSL(2, R) to a region of H 2 bounded by geodesics of H 2 , whereas the timelike geodesics orthogonal to S + (Λ) at the bending locus λ + form some "vertical bands" made of points (x, y) where x describes a geodesic 1 of H 2 and y some segment I in a geodesic 2 of H 2 . The hyperbolic length of I is the measure of the associated leaf of λ + .

In summary, in this vision, a left earthquake is the set of timelike geodesics orthogonal to a pleated surface, and the main idea of Thurston's Earthquake Theorem reduces to the fact that the boundary of the convex hull of a closed edgeless achronal subset is a pleated surface.

Cauchy surfaces and volume preserving maps. Anti-de Sitter geometry also proposes a new vision on area preserving maps between hyperbolic surfaces. Indeed, let M Λ (Γ) be a MGHC AdS 1,2 spacetime, defined by two Fuchsian representations ρ L , ρ R : Γ → PSL(2, R). For every Cauchy surface S of M Λ (Γ), the Gauss map of S provides a Γ-equivariant map ν : S → H 2 × H 2 whose image is ω-Lagrangian. Since ω = ω 0 -ω 0 , in the region where ν( S) is locally the graph of a map f from H 2 into H 2 , f is a volume preserving map.

We can be actually more precise: recall that the map U 1,2 → H 2 × H 2 is given, in term of two-by-two matrices, by (A, C) → (J L = AC -1 , J R = C -1 A). The derivative of this map at a point (A, C) is given by:

JL = ȦC -1 -AC -1 ĊC -1 = [ Ȧ -J L Ċ]C -1 JR = C -1 [ Ȧ -ĊJ R ]. Hence the hyperbolic norm -det( JL ) is -det( Ȧ-J L Ċ) and the norm of -det( JL ) is -det( Ȧ -ĊJ R ).
Now let p → (A(p), C(p)) be the spacelike immersion induced by a smooth spacelike immersion from a surface S into AdS 1,2 : A(p) ⊥ ∩ C(p) ⊥ is the plane tangent to A(S) at A(p). Then:

-The map X → J L X preserves A(p) ⊥ ∩ C(p) ⊥ : for X ∈ A(p) ⊥ ∩ C(p) ⊥ , we have:

Tr( AJ L X) = Tr(A -1 AC -1 X) = Tr(C -1 X) = 0, and, since J 2 L = -I 2 :

Tr( CJ L X) = Tr(C -1 AC -1 X) = Tr(A -1 AC -1 AC -1 X = Tr(A -1 X) = 0.
-For X ∈ A(p) ⊥ ∩ C(p) ⊥ we have:

J L X | X = Tr(J L X X) = det(X) Tr(J L ) = 0.
It follows that J L is the complex structure on the tangent space associated with the metric I on S induced by the AdS-metric.

-Similar computations show that X → -XJ R is also this complex structure, therefore:

∀X ∈ A(p) ⊥ ∩ C(p) ⊥ XJ R = -J L X. Therefore: JL = [ Ȧ -J L Ċ]C -1 JR = C -1 [ Ȧ + J L Ċ].
We deduce the formula relating the metric I, the associated complex structure J L , the shape operator B and the left or right hyperbolic metrics g L , g R induced by the composition of the Gauss map with the projection T 4 ≈ H 2 × H 2 on the left factor (compare with [90, Lemma 2.9]):

g L (v) = I(v -J L B(v)) g R (v) = I(v + J L B(v)).
In particular, ν( S) fails to be transverse to the fiber of the left or right factor if and only if there is a non zero tangent vector v at p satisfying B(v) = ±J L (v). If this happens, then, since B is self-adjoint and this basis is orthogonal, the symmetric matrix expressing B in the basis (v, J L (v)) is:

± 0 1 1 0 .
In other words, ν( S) is not locally the graph of a map from H 2 into H 2 near p ∈ S if and only its mean curvature at p vanishes and its scalar curvature is -1. This condition can also be formulated in another way: it means that S is tangent at order two to the space of timelike geodesics orthogonal to a given spacelike geodesic (compare with the previous study of Gauss maps of pleated surfaces).

In particular, if the shape operator B satisfies I(B(v)) < I(v) everywhere, i.e. if the absolute values of the principal curvatures of S are all < 1, then ν( S) is the graph of a volume preserving function f :

H 2 → H 2 .
Conversely, let f : ρ L (Γ)\H 2 → ρ R (Γ)\H 2 be any volume preserving smooth map, lifting to a conjugacy f : H 2 → H 2 between ρ L and ρ R . The graph of f is a Γ-invariant embedded Lagrangian submanifold. At the end of Section 3 we have seen that f provides a map ϕ : H 2 → U 1,2 , where U 1,2 is the space of future oriented timelike vectors of AdS 1,2 . We claim that furthermore, this map is Γequivariant. This is not completely obvious since what is immediate is that for every γ in Γ, we have ϕ • γ = Φ t(γ) • ϕ for some real number t(γ) which a priori might be non-trivial. But t : Γ → R is then a homomorphism, and if it is not trivial, then it would have arbitrary big values, and this would contradict the fact that Γ preserves a closed edgeless achronal subset of AdS 1,n . Therefore, the composition of ϕ with the bundle map U 1,2 → AdS 1,2 is a Γequivariant map from H 2 into AdS 1,2 , which is "almost spacelike" as explained at the end of Section 3.

For a more complete treatment (but with a different presentation) of the link between Cauchy surfaces in MGHC AdS 1,2 -spacetimes and volume preserving maps between hyperbolic surfaces, with a list of special types of spacelike surfaces with remarkable associated volume preserving maps between hyperbolic surfaces, see [START_REF] Bonsante | Maximal surfaces and the universal teichmüller space[END_REF][START_REF] Scarinci | Symplectic Wick rotations between moduli spaces of 3-manifolds[END_REF] and also [START_REF] Fillastre | Group actions and scattering problem in Teichmüller theory, to appear in Handbook of Group Actions[END_REF] to appear in this Handbook of Group actions.

BTZ-multi black holes

In this section, we summarize the content of [START_REF] Barbot | Causal properties of AdS-isometry groups. I. Causal actions and limit sets[END_REF][START_REF] Barbot | Causal properties of AdS-isometry groups. II. BTZ multi-blackholes[END_REF], to which we refer for further details (see also [START_REF] Aminneborg | Making anti-de Sitter Black holes[END_REF][START_REF] Aminneborg | Black holes and wormholes in 2 + 1 dimensions[END_REF][START_REF] Aminneborg | A spinning anti-de Sitter wormhole[END_REF][START_REF] Banados | The Black hole in three-dimensional spacetime[END_REF][START_REF] Banados | Geometry of the 2 + 1 black hole[END_REF][START_REF] Brill | Multi-black-hole geometries in (2 + 1)-dimensional gravity[END_REF][START_REF] Brill | Black holes and wormholes in 2+1 dimensions, Mathematical and quantum aspects of relativity and cosmology[END_REF] in the physics literature). Consider the case of domains Ω(Λ) of AdS 1,2 associated with closed achronal subsets Λ of Ein 1,1 , but not necessarily edgeless. Then, the invisible domain E 0 (Λ) in Ein 1,1 can be interpreted as the conformal boundary of Ω(Λ). When Λ is preserved by a discrete subgroup Γ of SO 0 (2, 2), the quotient of E 0 (Λ) by Γ is a conformal boundary for M Λ (Γ).

In this case, Γ is the image of a representation (ρ L , ρ R ) : Γ → PSL(2, R) × PSL(2, R) ≈ SO 0 (2, 2), and Λ is the (generalized) graph of a (semi-)conjugacy between ρ L and ρ R .

Let Λ + , Λ -be the future (respectively past) boundary of E 0 (Λ). Then, Ω(Λ + ) and Ω(Λ -) are globally hyperbolic domains in Ω(Λ) that can be respectively interpreted as (multi)black holes and (multi)white holes. Indeed, Ω(Λ + ) is the region in Ω(Λ) which is invisible from the conformal boundary where the observer is assumed to be located.

Despite the fact that it has not been done anywhere in the literature (as far as we know), this vision can be extended in higher dimensions, where an n + 1dimensional AdS multi black hole could be defined as a locally AdS 1,n -spacetime admitting a compact convex core, and as conformal boundary a finite union of MGHC conformally flat spacetimes. Presumably, this theory coincides with the theory of convex cocompact subgroups of SO 0 (2, n). Such a theory would be a natural analogue of the theory of Schottky groups, where convex cocompact means (SO 0 (2, n), Ein 1,n-1 )-Anosov.

Proper actions

In this last section, we review what is known about discrete isometry groups acting properly on the entire model spacetime. We will briefly mention results in this direction, once more focusing on the connection with the space of timelike geodesics.

Cocompact actions

This section is essentially a concise extract from a previous survey [START_REF] Barbot | Group actions on Lorentz spaces, mathematical aspects: a survey[END_REF]. One of the most important results is the completeness of Lorentzian manifolds of constant curvature. The following result is much more difficult to prove than in the wellknown Riemannian case: The de Sitter case. The de Sitter case is essentially trivial, due to the Calabi-Markus phenomenom: a group acting properly discontinuously on dS 1,n is necessarily finite. Indeed, let S be the umbilical sphere, that is the intersection between dS 1,n ⊂ R 1,n+1 and a spacelike hyperplane H of R 1,n . Then for any g in SO 0 (1, n + 1), the iterate gH is a hyperplane, hence it intersects non-trivially H, and H ∩ gH ∩ dS 1,n is non-empty.

Therefore, since a finite group cannot act cocompactly on dS 1,n , there is no closed Lorentzian manifold of positive constant curvature.

The flat case. Theorem 7.2 ([49,[START_REF] Goldman | The fundamental group of a compact Lorentz space is virtually polycyclic[END_REF][START_REF] Grunewald | Transitive and quasi-transitive actions of affine groups preserving a generalized Lorentz structure[END_REF]). Let M = Γ\R 1,n be a closed Lorentzian flat manifold. Then, up to finite covers, Γ is a lattice in a solvable subgroup G of Isom(R 1,n ) acting simply transitively on R 1,n .

There are many possibilities for the solvable Lie group G, see [START_REF] Epstein | Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces[END_REF] for concrete constructions in the case of the 3-dimensional Heisenberg and SOL groups, and [START_REF] Grunewald | Transitive and quasi-transitive actions of affine groups preserving a generalized Lorentz structure[END_REF][START_REF] Guediri | Compact flat spacetimes[END_REF] for a general study.

The anti-de Sitter case AdS 1,n for n ≥ 3. According to the Chern-Gauss-Bonnet formula ( [START_REF] Chern | On the curvature integral in Riemannian manifolds[END_REF]), for even-dimensional anti de Sitter manifolds, the Euler number equals the volume, up to a non-trivial multiplicative constant. But any compact Lorentz manifold has a vanishing Euler number, since it possesses a direction field. Therefore, AdS 1,n may admit a compact quotient only when n is even.

Conversely, for any even integer n = 2d, we have a natural inclusion of U (1, d) in SO 0 (2, 2d), and U (1, d) acts transitively and properly discontinuously on AdS 1,2d . Therefore, for any cocompact lattice Γ of U (1, d), the quotient Γ\ AdS 1,2d is a compact Lorentzian manifold of dimension 1 + 2d. In [START_REF] Zeghib | On closed anti de Sitter spacetimes[END_REF] Zeghib conjectured that any closed Lorentzian manifold of constant negative curvature and of odd dimension ≥ 5 is of this form (observe that by the inclusion Γ ⊂ U (1, d) ⊂ SO 0 (2, 2d) is rigid ( [START_REF] Raghunathan | On the first cohomology of discrete subgroups of semisimple Lie groups[END_REF][START_REF] Weil | Remarks on the cohomology of groups[END_REF]), i.e. any deformation of Γ in SO 0 (2, 2d) is contained in a conjugate of U (1, d) in SO 0 (2, 2d)).

The case of AdS 1,2 . Lattices of U (1, 1) ≈ SO 0 (2, 2) still provide compact quotients of AdS 1,2 , but there are other examples. This was first observed by Goldman ([54]). Kulkarni and Raymond proved the following important structure theorem: let Γ be a subgroup of PSL(2, R)× PSL(2, R) acting properly discontinuously on PSL(2, R). Then, up to finite coverings, Γ is isomorphic to the fundamental group Γ g of a closed surface, and more precisely, the image of some faithful representation (ρ, r) : Γ g → PSL(2, R) × PSL(2, R), where (up to swapping the factors) ρ is a Fuchsian representation. In his thesis Salein ([87]) studied these representations and found some new examples, based on the following criterion: a representation (ρ, r) : Γ g → PSL(2, R) × PSL(2, R) where ρ is Fuchsian acts properly discontinuously on PSL(2, R) if and only if there is a 1-contracting map f : H 2 → H 2 such that:

∀γ ∈ Γ g f • ρ(γ) = r(γ) • f.

In her thesis ( [START_REF] Kassel | Quotients compacts d' espaces homogènes réels ou p-adiques[END_REF][START_REF] Kassel | Deformation of proper actions on reductive homogeneous spaces[END_REF]) F. Kassel proved that this criterion is equivalent to the strict domination of r by ρ, i.e. to the requirement that for every γ in Γ g , the translation length of r(g) is strictly dominated by the translation length of ρ(γ) (with the convention that elliptic and parabolic elements have zero translation length). Recently, Guéritaud, Kassel and Wolf proved that every connected component of Rep(Γ g , PSL(2, R)), except the two Teichmüller components, contains an element r strictly dominated by some Fuchsian representation ρ, providing many new examples ( [START_REF] Guéritaud | Compact anti-de Sitter 3-manifolds and folded hyperbolic structures on surfaces[END_REF], see also [START_REF] Deroin | Dominating surface group representations by Fuchsian ones[END_REF][START_REF] Tholozan | Dominating surface group representations and deforming closed AdS 3-manifolds[END_REF]).

Remark 7.3. Salein's criterion has a very nice interpretation in terms of timelike geodesics, pointed out in [START_REF] Danciger | Geometry and topology of complete Lorentz spacetimes of constant curvature[END_REF], and that we can state in the following way: there is a Γ-equivariant 1-contracting map f : H 2 → H 2 if and only there is a Γ-invariant foliation of AdS 1,2 by timelike geodesics. Indeed, the graph of f in H 2 × H 2 ≈ T 4 is a family of timelike geodesics such that for every (x 1 , y 1 ), (x 2 , y 2 ) in this family we have d(y 1 , y 2 ) = d(x 1 , x 2 ). We have seen at the end of Section 6.1 that this means precisely that the corresponding timelike geodesics are pairwise disjoint.

Observe that this criterion is very different from the one concerning Gauss maps of Cauchy surfaces: a contracting map f cannot preserve the volume, which was the condition to be the Gauss image of a Cauchy surface.

Remark 7.4. The preceding remark may very well have an extension in the higher dimensional case. It seems related to Zeghib's conjecture about compact quotients of SO 0 (2, 2d): indeed, U (1, d) can be characterized as the subgroup of SO 0 (2, 2d) preserving a foliation of AdS 1,2d by special timelike geodesics: the intersections between AdS 1,2d and J-complex lines in R 2,2d ≈ C 1,d for some complex structure J calibrated with q 2,2d . Hence it sounds reasonable to split Zeghib's conjectures in two, let us say, half-conjectures:

-a discrete subgroup Γ of SO 0 (2, n) acts properly discontinuously and cocompactly on AdS 1,2d if and only if it preserves a foliation by timelike geodesics;

-if a discrete subgroup Γ of SO 0 (2, n) preserves a foliation by timelike geodesics, then it preserves the foliation by timelike geodesics associated with a complex structure calibrated with q 2,2d .

Margulis spacetimes

For a very nice recent review of most of this section (in French), see Schlenker's text for the Séminaire Bourbaki ( [START_REF] Schlenker | Variétés lorentziennes plates vues comme limites de variétés anti-de sitter[END_REF]).

As mentioned above, compact complete flat manifolds have (virtually) solvable fundamental groups. In [START_REF] Milnor | On fundamental groups of complete affinely flat manifolds[END_REF] Milnor asked the following question: does the free group admit a proper action on R 1,2 ? In [START_REF] Margulis | Free completely discontinuous groups of affine transformations[END_REF][START_REF] Margulis | it Complete affine locally flat manifolds with a free fundamental group[END_REF], following a very partial hint in [START_REF] Milnor | On fundamental groups of complete affinely flat manifolds[END_REF], Margulis gave a positive answer to this question. Since then, quotients of R 1,2 by torsion-free discrete groups of isometries are called Margulis spacetimes.

Afterwards, Drumm introduced the notion of crooked planes, giving a more intuitive geometric vision on these spacetimes ( [START_REF] Drumm | Fundamental polyhedra for Margulis space-times[END_REF]), and extended considerably the list of Margulis spacetimes by proving that every discrete free subgroup of SO 0 (1, 2) is the linear part of the holonomy of a Margulis spacetime ( [START_REF] Drumm | Linear holonomy of Margulis space-times[END_REF]).

In [START_REF] Goldman | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF], Goldman, Labourie and Margulis provided a necessary and sufficient criterion on the so-called Margulis invariant for the action of a discrete subgroup of Isom(R 1,2 ) to be properly discontinuous.

In their remarkable recent work [START_REF] Danciger | Geometry and topology of complete Lorentz spacetimes of constant curvature[END_REF][START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF] Danciger, Guéritaud and Kassel elucidated the most important remaining questions on Margulis spacetimes, at least in the case where the linear part of the group is convex cocompact (i.e. in the case where the inclusion Γ ⊂ Isom(R 1,2 ) is Anosov, even if this remark has no fundamental importance in their work):

-these spacetimes are foliated by timelike geodesics, in particular, they are diffeomorphic to the interior of a handlebody, -they all admit a fundamental domain delimited by crooked planes, -they can be seen as infinitesimal versions of Margulis AdS-spacetimes in a very precise geometric way.

Concerning the last item, let us note that Margulis AdS-spacetimes are quotients of AdS 1,2 by discrete subgroups of PSL(2, R) × PSL(2, R), images of faithful representations (ρ, r) : F → PSL(2, R) × PSL(2, R), where F is a free group and ρ : F → PSL(2, R) a convex cocompact representation -hence, once more, (ρ, r) is (SO 0 (2, 2), Ein 1,1 )-Anosov. Let us mention the last paper ( [START_REF] Danciger | Fundamental domains for free groups acting on anti-de Sitter 3-space[END_REF]) where the authors prove that, unlike flat Margulis spacetimes, Margulis AdS spacetimes do not necessarily admit "crooked fundamental domains".

Finally, for extensions of these results to proper affine actions on flat affine spaces in higher dimensions (but then escaping from the Lorentzian framework), see [START_REF] Smilga | Fundamental domains for properly discontinuous affine groups[END_REF][START_REF] Smilga | Proper affine actions on semisimple Lie algebras[END_REF][START_REF] Smilga | Proper affine actions in non-swinging representations[END_REF].

Definition 2 . 8 .

 28 A Lorentzian spacetime (M, g) is said to have regular cosmological time if:

  is globally hyperbolic spatially compact: every level set {t = Const.} is a Cauchy hypersurface.Achronal subsets. Achronal subsets of Ein 1,n are precisely the graphs of 1-Lipschitz functions f : Λ 0 → R where Λ 0 is a subset of S n . The achronal set is acausal if and only if f is 1-contracting. It is closed if and only if Λ 0 is closed, and edgeless if and only if Λ 0 is open. In particular, closed edgeless achronal subsets are exactly the graphs of the 1-Lipschitz functions f : S n → R: they are topological n-spheres, which are all Cauchy hypersurfaces.

  the theory of globally hyperbolic domains of Ein 1,n coincides with the theory of 1-Lipschitz maps on S n .

Figure 1 (

 1 borrowed from[START_REF] Frances | Géométrie et dynamique lorentzienne conforme[END_REF] Figure 4.3]) where several Minkowski components Mink + (i k ) are depicted, where every i k is a point conjugate to i 0 = x0 (i.e. iterates of x0 under δ 0 ).

Figure 1 :

 1 Figure 1: Several Minkowski components.

  the description of achronal subsets of Ein 1,n : they are the graphs of 1-Lipschitz maps from D n into R. They are all contained in some affine domain as defined just previously. Globally hyperbolic domains. Let S be a closed edgeless achronal subset of AdS 1,n . In the conformal model, S is the graph of a 1-Lipschitz map f S : D n → R: this map uniquely extends to the boundary ∂D n . The graph of this extension is a closed achronal edgeless subset ∂S of ∂ AdS 1,n , and the Cauchy development dev(S) is the intersection AdS 1,n ∩ E(∂S) where E(∂S) is the invisible domain of ∂S in Ein 1,n

.

  Assume that it is not purely lightlike. Then, the invisible domain E( Λ) in Ein 1,n has two connected components: one contained in AdS 1,n and the other in the second anti-de Sitter component of Ein

Figure 2 :

 2 Figure 2: The global situation. The dotted hyperboloid represents the boundary of an affine domain of AdS 1,n containing the invisible domain E(Λ). The limset Λ is represented by a topological circle turning around the hyperboloid, and Conv(Λ) • is a convex subset inside the (dual) convex subset E(Λ). The future-dual plane H + (p) for p in the past horizon H -(Λ) is a support hyperplane of S + (Λ).

of Ein 1 , 1 with RP 1 ×

 111 RP 1 , where the left factor of PSL(2, R)× PSL(2, R) acts trivially on the left factor RP 1 , and the right factor acts trivially on the right factor RP 1 . The lightlike geodesics of Ein 1,2 are the factors { * } × RP 1 and the factors RP 1 × { * }. The image of the isotropic cone P(C 2 )) in P(R 2,2

1 , 1 .

 11 Timelike geodesics. We invite the reader to keep in mind the content of the end of Section 3.4. See also the reference[START_REF] Barbot | Causal properties of AdS-isometry groups. I. Causal actions and limit sets[END_REF] Section 7.3]. In this low dimension, the space of timelike geodesics T 4 := SO 0 (2, 2)/(SO(2) × SO(2)) ≈ (PSL(2, R) × PSL(2, R))/(SO(2) × SO[START_REF] Aminneborg | Black holes and wormholes in 2 + 1 dimensions[END_REF]

Theorem 7 . 1 (

 71 [START_REF] Carrière | Autour de la conjecture de L. Markus sur les variétés affines[END_REF][START_REF] Klingler | Complétude des variétés lorentziennes à courbure constante[END_REF]). Every closed Lorentzian manifold of constant curvature is geodesically complete. This theorem implies that closed Lorentzian manifolds are quotients by discrete groups of isometries of the simply connected model spacetimes R 1,n , dS 1,n or AdS 1,n . The classification of closed Lorentzian manifolds of constant curvature therefore reduces to the classification of groups acting properly and cocompactly. It is essentially solved, except in the AdS case.

  The causal curve c is inextendible if it is not extendible. When such a choice is possible, (M, [g]) is time-orientable, and in short we will mention time orientable (conformal class of) Lorentzian manifolds as (conformal) spacetimes. Any conformal manifold is doubly covered by a time-orientable one. Once the time-orientation has been selected we have a notion of future-oriented or past-oriented causal vectors, therefore of causal curves. We also have the notion of time function: a map t : M → R which is non decreasing along any causal curve. Note that a time function may be non differentiable, and that a differentiable map f : M → R is a time function if and only if its differential takes non negative values on future oriented causal vectors.Causality notions. Two points in M are causally related if there exists a causal curve joining them; they are strictly causally related if moreover this curve can be chosen timelike. More generally: let E a subset of M and U an open neighborhood

	Conformal Lorentzian manifolds. The notion of timelike, lightlike and causal
	vectors or curves are the same for Lorentzian metrics in the same conformal
	class. Therefore, all the causality notions to be presented below apply to con-
	formally Lorentzian manifolds (M, [g]), where [g] denotes the conformal class of
	the Lorentzian metric g.

Time orientation. We always assume that the manifold M is oriented. On (M, [g]) we have another orientability notion: a time orientation of (M, [g]) is a continuous choice, for every p in M , of one of the two connected components of the set of timelike vectors at p. of E in M . E is achronal in U if there is no timelike curve contained in U joining two points of the subset. It is acausal, or strictly achronal in U if there is no causal curve contained in U joining two points of E. We say simply that E is (strictly) achronal if it is (strictly) achronal in U = M . Finally, we say that E is locally (strictly) achronal if every point p in E admits a neighborhood U in M such that E ∩ U is (strictly) achronal in U . Spacelike hypersurfaces are locally acausal, and nontimelike hypersurfaces are locally achronal.

  1,n , Ein

	1,n	or Ein 1,n , considered as non-
	parameterized curves, do not depend on the choice of the representative of the
	conformal class. They are called photons. In Ein 1,n

  Isometry group. The group of orientation preserving, time-orientation preserving isometries of dS 1,n is SO 0 (1, n + 1).

1,n are causally related if and only if x | y ≥ 1.

  1,n-1 as the conformal boundary ∂ AdS 1,n .

	1,n-1	.
	However, AdS 1,n	

As Ein 1,n , AdS 1,n is not strongly causal; it contains many timelike geodesic loops. But, its universal covering AdS 1,n , conformally equivalent to D n × R, is strongly causal. Its conformal boundary is Ein

This survey has been written in

We thank the referee to have pointed out this fact to us.

Recall that Ω(Λ) is proper if its closure contains no affine line.
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