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Lorentzian Kleinian Groups

Thierry Barbot∗

Abstract

Classical Kleinian groups are discrete subgroups of isometries of Hn. The well-
known theory of Kleinian groups starts with the definition of their associated limit
set in the boundary of Hn, and includes the geometric properties of the quotient
hyperbolic space.

This approach, naively applied, fails in the Lorentzian analogue anti-de Sitter
space: discrete subgroups do not act properly discontinuously, and in many cases
the set of accumulation points of orbits at the conformal boundary at infinity
depends on the orbit.

In this survey, we point out a way to extend this classical theory by introducing
causality notions: the theory of limit sets and regularity domains extend naturally
to achronal subgroups. This is closely related to the notions of globally hyper-
bolic spacetimes, and we present what is known about the classification of globally
hyperbolic spacetimes of constant curvature. We also review the close connection
revealed by G. Mess ([79]) between globally hyperbolic spacetimes of dimension
2 + 1 and Teichmüller space. This link can be understood via the space of time-
like geodesics of anti-de Sitter space, and this space has also an interesting role,
presented here, in the recent works about proper group actions on spacetimes of
constant curvature.
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1 Introduction

Kleinian groups, i.e. discrete groups of isometries of the hyperbolic space Hn, are
central objects of study in geometry, most often in low dimension, and particularly
in dimension 3. They have several ramifications in other fields of mathematics:
number theory, topology, and, of course, group theory. For nice surveys on this
very rich topic, including reports on recent results in this field, let us mention the
references [78, 82] in this series of handbooks dedicated to group actions.

The isometry group of Hn is SO(1, n), and here we consider the analogous case
of discrete subgroups of SO(2, n), that we call in this survey Lorentzian Kleinian
groups. The group SO(2, n) is naturally the group of isometries of the anti-de Sitter
space, denoted by AdS1,n. Very little is known on Lorentzian Kleinian groups, if
compared with the venerable hyperbolic case. The purpose of this survey is to
present part of this relatively young matter.

Classical Kleinian groups have several nice basic properties:
– the action on Hn is properly discontinuous;
– for any point x in Hn, the orbit of x under the action of the group accumulates

at the conformal boundary ∂Hn ≈ Sn−1 on a closed invariant set, called the limit
set, which does not depend on x.
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These properties completely fail in the AdS case: stabilizers of points are not
anymore compact. Therefore, the action is proper only in particular cases, and the
asymptotic behavior of orbits is not uniform: for example a Lorentzian Kleinian
group may have infinite orbits and other orbits reduced to a point.

Hence, at first glance, the Lorentzian case seems radically different, and some
geometers may consider it as a quite completely different field. As a matter of
fact, the first works on Lorentzian geometry in the case of constant curvature
were mostly devoted to the study of compact Lorentzian manifolds, which has
very few similarity with the Riemannian case. Even the geodesic completeness
of compact Lorentzian manifolds of constant curvature, even if true, is far from
being trivial ([32, 71]) — and as a matter of fact, compact Lorentzian manifolds
are not geodesically complete in general. Wolf’s book has long been — and still
is! — one of the main references in the field, and was mainly concerned with the
compact case. One indication on the Riemannian oriented spirit of Wolf’s book
[98] is that it is also one of the main references for the classification of Riemannian
crystallographic groups.

Nevertheless, there are several important common features between the Rie-
mannian and the Lorentzian case.

– anti-de Sitter space admits a natural conformal boundary: the Einstein uni-
verse Ein1,n−1;

– in the same way as the Euclidean space and the hyperbolic space embed
conformally in the sphere, the anti-de Sitter space embeds in the Einstein space,
and moreover, the Minkowski space and the de Sitter space, Lorentzian analogues
of the Euclidean space and the sphere, embed in Ein1,n as well.

The spirit underlying this survey is that there is a fundamental framework
in which Riemannian or Lorentzian Kleinian groups have the same nature, but
involving a notion that is unapparent because trivial in the Riemannian case: the
notion of causality.

It is good in this celebration’s year of General Relativity1 to recall that Loren-
tzian geometry is the geometry of space and time; in which the classical Rieman-
nian geometry is enclosed as the static case, i.e. the case in which the space does
not change with time.

This point of view, developped in Section 5, is that one should distinguish cer-
tain subgroups, the achronal subgroups, that have a reasonable behavior relatively
to causality. Riemannian Kleinian groups are automatically achronal, whereas
Lorentzian ones may not be — as a matter of fact, Lorentzian Kleinian groups
acting cocompactly are never achronal. Achronal Kleinian groups then appear as
completely similar to their Riemannian counterparts: they admit a limit set in the
conformal boundary, and they do act properly, not on the entire space itself, but
on a certain domain: the domain of points invisible from the limit set.

Therefore, we start this paper by a review on the causality notions (Section
2), followed by a presentation of the Lorentzian spacetimes of constant curvature
(Section 3). What appear as the true analogues of compact Riemannian spaces
of constant curvature are not the compact Lorentzian manifolds, but the maximal
globally hyperbolic spatially compact spacetimes (abbreviation MGHC), a notion

1This survey has been written in 2015.
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arising from the analytic treatment of General Relativity with the tools of Partial
Differential Equations. In Section 4, we present the classification of MGHC space-
times of constant curvature. This classification, initiated by the fundamental work
of G. Mess ([79, 5]), is quite recent, and still incomplete. It provides an interesting
framework in which many results or interrogations concerning hyperbolic Kleinian
groups may very well find in a near future a natural continuation and extension.

After Section 5 mentioned above devoted to achronal Kleinian groups (but
where we also mention links with the theory of Anosov representations), Sec-
tion 6 points out very interesting connections, initiated by the pioneering work
of Mess, between MGHC spacetimes of constant curvature and the Teichmüller
space Teich(S) of a closed surface S: it generalizes the link between hyperbolic
3-manifolds and Teich(S), appearing for example in the case of quasi-fuchsian
manifolds. But it also provides new ones, to which we propose a brief introduc-
tion. One explanation behind this phenomenon is the fact that SO(2, n) has rank
2, whereas SO(1, n) has “only” rank 1. In other words, unlike SO(1, n), SO(2, n)
has not only one, but two maximal parabolic subgroups, meaning that there is not
only one geometry, like the hyperbolic geometry, associated with SO(2, n), but
two geometries: anti-de Sitter geometry, and also the geometry of the symmetric
space T2n associated with SO(2, n), which happens to be the space of AdS timelike
geodesics. For n = 2, T4 is nothing but the product H2 ×H2. The space T2n will
appear in this survey in two situations:

— there is an interplay between the AdS MGHC spacetime MΓ associated
with a Lorentzian Kleinian group Γ and the quotient Γ\T2n, emerging through
Cauchy hypersurfaces, i.e. isometric embeddings of Riemannian hypersurfaces
in MΓ. More precisely, Γ\T2n has a natural Kähler structure, and there is an
almost correspondence between Lagrangian submanifolds in Γ\T2n and Cauchy
hypersurfaces in MΓ. Moreover, in the case n = 2, the symplectic form on Γ\T2n ≈
Γ\(H2×H2) is the difference p∗1ω0−p∗2ω0 where ω0 is the volume form on H2, and
p1, p2 the projections on the left and right factors, respectively. Therefore, typical
Lagrangian submanifolds of Γ\T2n ≈ Γ\(H2×H2) are graphs of volume preserving
maps between hyperbolic surfaces. This connection between AdS geometry and
special volume preserving maps between hyperbolic surfaces will be developed
further, but with a quite different point of view, in [45], to appear in one of the
Handbooks of group actions.

— T2n is also related to questions of proper actions: at least in dimension 2+1, a
Lorentzian Kleinian group Γ acts properly discontinuously on AdS1,2 if and only if
there is an embedded surface S in Γ\(H2×H2) such that the restriction to S of the
pseudo-Riemannian metric ghyp−ghyp is positive definite - where ghyp denotes the
hyperbolic metric, and ghyp − ghyp a simplified notation for p∗1ghyp − p∗2ghyp. This
criterion is related to the existence of Γ-invariant foliations by timelike geodesics,
and we conjecture an extension of this fact in higher dimensions (see Remark 7.4).

We conclude the survey with a quick overview on Lorentzian Kleinian groups
acting properly, even cocompactly. This topic has received recent brilliant contri-
butions by J. Danciger, F. Guéritaud and F. Kassel that we mention very briefly,
as important illustrations of the role of the space of timelike geodesics. There are
several more or less recent surveys on this topic in which the reader may find more
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substantial information ([9, 16, 91]).
The topic is currently growing quite quickly, and this survey has no pretention

to be complete. We would like to attract the attention to a very recent work,
transposing to Anti-de Sitter space the notion of Patterson-Sullivan measures,
and establishing in this context an inequality between the critical exponent and
the Hausdorff dimension of the (acausal) limit set ([53]).

Remarks on conventions and notation. A Lorentzian manifold is a manifold
equipped with a pseudo-Riemannian metric of signature (1, n) for some n ≥ 1. The
manifold is then of dimension n+ 1: n-dimensional in space, and 1-dimensional in
time. In our convention a Lorentzian metric has signature (−,+, ...,+); the value
of the metric on a tangent vector v is called the norm of v — even if it would be
more adequate, comparing with the Riemannian case, to call it the square of the
norm. An orthonormal frame is a frame (e0, e1, ..., en) where e0 as norm 1, every
ei (i ≥ 2) has norm +1 and every scalar product 〈ei, ej〉 with i 6= j is 0.

We denote by SO0(1, n), SO0(2, n) the identity components of respectively
SO(1, n), SO(2, n) (n ≥ 2). For any cocompact lattice Γ of SO0(1, n) and any Lie
group G we denote by Rep(Γ, G) the moduli space of representations of Γ into G
modulo conjugacy, equipped with the usual topology as an algebraic variety (see
for example [56]):

Rep(Γ, G) := Hom(Γ, G)/G.

Finally, if (M1, g1) and (M2, g2) are two pseudo-Riemannian manifolds, we
denote by g1 − g2 the metric p∗1g1 − p∗2g2 on M1 ×M2, where p1 and p2 are the
projections onto the first and second factor, respectively.

Index of notations. We introduce in this survey many objects and notions. We
provide here for the reader’s convenience an index of these objects, indicating the
page in which each of them is introduced (the list does not include objects already
introduced such as SO0(2, n) or T2n).

• c, ĉ, ċ: causal curve, extension of the causal curve, derivative (beginning of
Section 2).

• [g]: conformal class of the pseudo Riemannian metric g,

• I±, J±: future or past; causal future or past (Section 2).

• U(p, q), U(p, q): diamond, closed diamond (Section 2).

• P (S), F (S), dev(S): past development, future development, development of
the closed edgeless achronal (CEA) subset S (Section 2).

• C: a category of spacetimes (Section 2).

• Mmax: maximal extension of the spacetime M (Theorem 2.5).

• L(c), dlor: length of the causal curve c, Lorentzian distance (just after Re-
mark 2.6).
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• (Rr,s, qr,s) : r + s-dimensional vector space equipped with a quadratic form
of signature (r, s) (Section 3).

• Ein1,n, Ein
1,n

and p : Ẽin
1,n
→ Ein1,n: Einstein universes of dimension n+1

and their universal covering (Section 3.1).

• δ and δ0: transformations on Ein
1,n

(Section 3.1).

• E(Λ̃), E(Λ) : globally hyperbolic domains of Ẽin
1,n

or Ein1,n associated with

a CEA Λ̃ or Λ (Section 3.1).

• Fill(Λ̃) : filling of the CEA Λ̃ (Section 3.1).

• S(Cn+1) : Klein model of Ein1,n (Section 3.1).

• Conv(Λ) and Conv∗(Λ) : convex hull of an achronal subset of Ein1,n and its
convex dual (Section 3.1).

• I+
0 : future of the origin in Minkowski space (Section 3.2).

• Mink+(x̃), I± : Minkowski domain in Ẽin
1,n

associated with an element x̃

of Ẽin
1,n

and its Penrose components (Section 3.2).

• H(x), ∂H(x) : totally geodesic hypersurface of Hn+1 and its boundary defined
by an element x of de Sitter space dS1,n (Section 3.3).

• B(Sn) : space of round disks in Sn (naturally identified with dS1,n, see
Section 3.3).

• DS1,n : Klein model of de Sitter space (Section 3.3).

• ∂±dS1,n : past and future conformal boundaries of dS1,n (Section 3.3).

• ADS1,n : Klein model of Anti-de Sitter space (Section 3.4).

• U(x) : affine domain centered at an element x of ADS1,n (Section 3.4).

• H±(x) : past and future hyperplanes dual to an element x of ADS1,n (Section
3.4).

• G, K : Lie algebras of SO0(2, n) and of its maximal subgroup K (Remark
3.3).

• U1,n : space of future oriented vectors tangent to AdS1,n of norm−1 (Remark
3.3).

• λ : Liouville form on U1,n (Remark 3.3).

• J , ω : complex structure and Kähler form on T2n (Remark 3.3).

• ν, B, II : Gauss map, shape operator and second fundamental form of a
smooth spacelike surface in AdS1,n (end of Section 3.4).
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• MΛ(Γ) = Γ\Ω(Λ) : model maximal globally hyperbolic flat spacetime (Sec-
tion 4.1).

• M(Σ) : maximal globally hyperbolic de Sitter spacetime associated with the
(Sn,SO0(1, n+ 1))-manifold Σ (Section 4.2).

• H±(Λ) : past and future horizons of a globally hyperbolic domain Ω(Λ) of
AdS1,n (Section 4.3).

• E−0 (Λ) : Past tight region of Ω(Λ) (Section 4.3).

• E(Λk,`) : Split AdS-spacetime (end of Section 4.3).

• D(Λ) : conformal boundary of the invisible domain Ω(Λ) of AdS1,n (Section
4.4).

• ΛΓ : limit set of an achronal group of isometries (Section 5).

• eub(Γ) : bounded Euler class of the subgroup Γ of SO0(2, n) (Theorem 5.4).

• Repan(Γ,SO0(1, G)) : space of Anosov representations of Γ into G (Section
5.4).

• ρL, ρR : left and right representations associated with a MGHC AdS1,2

spacetime (beginning of Section 6.2).

• λ± : pleating laminations on the boundary of the convex core (Section 6.2).

2 A brief introduction to causality notions

Let (Mn+1, g) be a Lorentzian manifold. A tangent vector is spacelike if its norm
is positive; timelike if its norm is negative; lightlike if it is non zero and its norm
is 0. We also define causal vectors as tangent vectors that are timelike or lightlike.
An immersed hypersurface is spacelike if all vectors tangent to S are spacelike;
it is nontimelike if tangent vectors are all spacelike or lightlike. A causal (resp.
timelike) curve is an immersion c : I ⊂ R → M such that for every t in I the
derivative ċ(t) is causal (resp. timelike). This notion extends naturally to non-
differentiable curves (see below, or [18]). Such a curve is extendible if there is
another causal curve ĉ : J → M and a homeomorphism φ : I → K  J such that
c coincides with ĉ ◦ φ. The causal curve c is inextendible if it is not extendible.

Conformal Lorentzian manifolds. The notion of timelike, lightlike and causal
vectors or curves are the same for Lorentzian metrics in the same conformal
class. Therefore, all the causality notions to be presented below apply to con-
formally Lorentzian manifolds (M, [g]), where [g] denotes the conformal class of
the Lorentzian metric g.

Time orientation. We always assume that the manifold M is oriented. On
(M, [g]) we have another orientability notion: a time orientation of (M, [g]) is
a continuous choice, for every p in M , of one of the two connected components
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of the set of timelike vectors at p. When such a choice is possible, (M, [g]) is
time-orientable, and in short we will mention time orientable (conformal class of)
Lorentzian manifolds as (conformal) spacetimes. Any conformal manifold is doubly
covered by a time-orientable one. Once the time-orientation has been selected we
have a notion of future-oriented or past-oriented causal vectors, therefore of causal
curves. We also have the notion of time function: a map t : M → R which is
non decreasing along any causal curve. Note that a time function may be non
differentiable, and that a differentiable map f : M → R is a time function if and
only if its differential takes non negative values on future oriented causal vectors.

Causality notions. Two points in M are causally related if there exists a causal
curve joining them; they are strictly causally related if moreover this curve can be
chosen timelike. More generally: let E a subset of M and U an open neighborhood
of E in M . E is achronal in U if there is no timelike curve contained in U joining
two points of the subset. It is acausal, or strictly achronal in U if there is no causal
curve contained in U joining two points of E. We say simply that E is (strictly)
achronal if it is (strictly) achronal in U = M . Finally, we say that E is locally
(strictly) achronal if every point p in E admits a neighborhood U in M such that
E ∩U is (strictly) achronal in U . Spacelike hypersurfaces are locally acausal, and
nontimelike hypersurfaces are locally achronal.

Past, future. The future of a subset A of M is the open set I+(A) made of final
points of future oriented timelike curves not reduced to one point and starting
from a point of A. The causal future J+(A) of A is the (non necessarily closed)
set of final points of future oriented causal curves, possibly reduced to one point
and starting from a point of A (hence A itself belongs to its causal future). The
(causal) past (J−(A)) I−(A) of A is the (causal) future of A when the time-
orientation of M is reversed. This induces two partial orders on M : for every p
and q in M , we write p � q if q lies in the causal future of p, and p ≺ q if q lies in
I+(p).

Alexandrov topology. An open diamond is a domain U(p, q) = I−(p) ∩ I+(q)
that is the intersection between the future and the past of two points p, q. Open
diamonds form the basis of some topology on M, the so-called Alexandrov topology
(see [18]). Every U(x, y) is open for the manifold topology, but the converse in
general is false; when it holds, (M, [g]) is said strongly causal.

Strong causality is equivalent to the following property (Proposition 3.11 of
[18]): for every point p in M , every neighborhood of p contains an open neighbor-
hood U (for the usual manifold topology) of p which is causally convex, i.e. such
that any causal curve in M joining two points in U is actually contained in U .

From now on, we always assume that the spacetime (M, [g]) is strongly causal.
For any p, q in M the closed diamond U(p, q) is the intersection between the

causal future of p and the causal past of q.

Refined causality notions. In strongly causal spacetimes, one can extend the
class of causal curves in the following way: a curve c : I ⊂ R → M is causal
and future oriented if it is locally non decreasing for the usual order on I and the
partial order �. It is strictly causal if it is locally increasing for the partial order



Lorentzian Kleinian Groups 9

≺. It is an easy exercise to see that acausal curves are locally Lipschitz, but in
general non smooth.

One also has the important following notion among locally achronal subsets: a
locally achronal subset A is edgeless if every point p ∈ A admits a neighborhood U
inM such that any causal curve contained in U and with extremities in respectively
I+
U (A) and I−U (A) crosses A. Then, closed edgeless achronal subsets (abbrev. CEA)

are natural generalizations of (smooth) nontimelike hypersurfaces: they are locally
graphs of Lipschitz maps.

Global hyperbolicity. A spacetime (M, [g]) is globally hyperbolic (abbrev. GH)
if:

- it is strongly causal,
- for any p, q in M the closed diamond U(p, q) is compact or empty.
This definition makes clear that, in a globally hyperbolic spacetime (M, [g]),

an open domain V of M is globally hyperbolic if and only if it is causally convex.
Indeed, each of these notions is equivalent to the fact that for every x, y in V , the
closed diamond U(x, y) in M coincides with the closed diamond in V . It follows
that intersections of GH domains of (M, [g]) are still GH.

The notion of global hyperbolicity is closely related to the notion of Cauchy
surfaces that we define now: let S be a spacelike hypersurface embedded in M
(or, more generally, a CEA in M). The past development P (S) (resp. the future
development F (S)) is the set of points p in M such that every inextendible causal
path containing p meets S in its future (resp. in its past). The Cauchy development
dev(S) is the union P (S) ∪ F (S). When dev(S) is the entire M , S is a Cauchy
hypersurface. An important fact, that can be considered as a generalisation of the
Hopf-Rinow Theorem, is R. Geroch’s Theorem ([51]):

Theorem 2.1. A strongly causal spacetime (M, [g]) is globally hyperbolic if and
only if it admits a Cauchy hypersurface. In this case, it is foliated by Cauchy
hypersurfaces; more precisely, there is a smooth time function t : M → R such
that every level set of t is a Cauchy hypersurface.

It follows directly from this theorem that every GH spacetime (M, g) is iso-
metric to a product S ×R equipped with a metric of the form ḡt −Ndt2 where ḡt
is a one parameter family of Riemannian metrics on S and N : M →]0,+∞[ is a
positive function, called the lapse function (see Proposition 6.6.8 of [67]).

In particular, Cauchy hypersurfaces in a given GH spacetime are diffeormophic
to each other.

Remark 2.2. There has been some imprecision in the literature concerning the
proof the smoothness of the splitting of globally hyperbolic spacetimes. See [20,
21, 22] for a survey on this question and a complete proof of the smoothness of
the splitting M ≈ S × R. See also a more recent proof with different methods, in
[44].

Remark 2.3. The notion of global hyperbolicity in terms of Cauchy hypersurfaces
has been introduced by J. Leray (1952). The key point is that the finite propa-
gation property of the Einstein equations ensures that a metric solution of the
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Einstein equations is completely determined by its restriction to a neighborhood
of a Cauchy hypersurface S (more precisely, by the Riemannian metric obtained
by restricting the Lorentzian metric to S, and by its second fundamental form).
Therefore, globally hyperbolic spacetimes form a well posed problem from the
viewpoint of Partial Differential Equations.

Remark 2.4. GH spacetimes are never compact. The suitable compactness no-
tion is spatial compactness: a spacetime is globally hyperbolic spatially compact
(abbrev. GHC) if it admits a compact Cauchy hypersurface — all Cauchy hyper-
surfaces are then compact.

Maximal globally hyperbolic spacetimes. An isometric embedding f : M →
N is a Cauchy embedding if the image by f of any Cauchy hypersurface of M is a
Cauchy hypersurface of N.

In this paragraph, we have to treat separately Lorentzian spacetimes and con-
formal Lorentzian spacetimes. If (M, g) and (N,h) are GH Lorentzian spacetimes,
a map f : M → N is a Cauchy embedding if it is an isometric embedding such that
the image by f of any Cauchy hypersurface in M is a Cauchy hypersurface in N .
A conformal Cauchy embedding is a conformal embedding f : M → N between
conformal spacetimes mapping Cauchy hypersurfaces into Cauchy hypersurfaces.
Note that a conformal Cauchy embedding might be non-isometric, therefore not a
Cauchy embedding in our terminology.

Let C be a category of Lorentzian spacetimes, i.e. a class of Lorentzian space-
times stable by isometries, by union, and restriction to open domains — for exam-
ple, the category of Cr spacetimes, or the category of analytic spacetimes etc. . . A
GH C-spacetime (M, g) is C-maximal (abbrev. C-MGH) if every Cauchy embed-
ding f : M → N in a C-spacetime N is surjective (hence a global isometry).

We have a similar notion of maximal conformal GH spacetimes, but where C
is a category of conformal spacetimes. The two notions may differ; as we will
see later, a Lorentzian spacetime may be maximal among spacetimes of constant
curvature, but not maximal in the category of conformally flat spacetimes.

A Lorentzian category C is rigid if it has the following property: if p, q are
points in C-spacetimes M , M ′ such that any isometry between J−(p) and J−(q)
extends to an isometry between neighborhoods of p and q. The traditional example
is the category of solutions of the Einstein equations in the void, or for us, the
category of constant curvature spacetimes.

One has a similar notion of rigid conformal categories: the ones for which
any conformal diffeomorphism between J−(p) and J−(q) extends to a conformal
diffeomorphism between neighborhoods of p and q.

Theorem 2.5 ([86]). Let C be a rigid category of Lorentzian spacetimes or of
conformal spacetimes. Then any GH C-spacetime M admits a Cauchy embedding
f : M → Mmax in a C-MGH spacetime. Moreover, Mmax is unique up to right
composition by an isometry in the case of Lorentzian categories, and up to right
composition by a conformal diffeomorphism in the case of conformal categories.

Remark 2.6. This theorem was first established in the case of solutions of the
Einstein equations ([35]). There is a more recent proof, with the same ideas, but a
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different order allowing to avoid in a clever way the use of the Zorn lemma ([88]).
In her work [86], C. Rossi Salvemini observed that the proof applies tothe more
general case of rigid categories of Lorentzian spacetimes, and also in the context
of conformal Lorentzian categories that she introduced. Moreover, she proposed
an entirely new proof, based on the notion of shadows (intersections J±(p) ∩ S
between a Cauchy hypersurface S and past/future of points). She also proved the
following important result: if a GHC spacetime has nonpositive constant curvature
and is maximal among spacetimes of constant curvature, then it is also maximal
among conformally flat spacetimes. This statement is false in the positive constant
curvature case: a GH spacetime with constant positive curvature is never maximal
as a conformally flat spacetime.

Lorentzian distance. Let M be a time-oriented Lorentzian spacetime. The
length-time L(c) of a causal curve c : I → M is the integral over I of the square
root of −〈c(t)|c(t)〉. Observe that this is well-defined, since causal curves are
always Lipschitz. The Lorentzian distance dlor(p, q) between two points p, q is
Sup{L(c)/c ∈ C(p, q)} where C(p, q) is the set of causal curves with extremities p,
q (see for example [4]). By convention, if p, q are not causally related, dlor(p, q) = 0:
when M is globally hyperbolic, it defines a continuous function dlor : M ×M →
[0,+∞[ since if q lies on the boundary of J±(p) then there is a lightlike curve
joining p to q and dlor(p, q) = 0.

Theorem 2.7 (Corollary 4.7 and Theorem 6.1 of [18]). If M is globally hyperbolic,
then dlor : M ×M → [0,+∞] is continuous and admits only finite values. More-
over, if p is in the causal future of q, then there exists a geodesic c with extremities
p, q such that L(c) = d(x, y).

It is to obtain this theorem that one does not restrict the definition of causal
curves to piecewise C1 curves.

Cosmological time. In any spacetime, we can define the notion of cosmological
time ([4]): For any p in M , the cosmological time τ(p) is Sup{L(c)/c ∈ R(p)},
where R(p) is the set of past-oriented causal curves starting at p. This func-
tion could have in general a bad behavior: for example, in Minkowski space, the
cosmological time is everywhere infinite.

Definition 2.8. A Lorentzian spacetime (M, g) is said to have regular cosmolog-
ical time if:

– M has finite existence time, i.e. τ(p) <∞ for every p in M ,

– for every past-oriented inextendible curve c : [0,+∞[→M, we have limt→∞τ(c(t)) =
0.

Theorem 1.2 in [4] expresses many nice properties of spacetimes with regular
cosmological time functions. We need only the following statement:

Theorem 2.9. If M has regular cosmological time, then the cosmological time is
Lipschitz regular and M is globally hyperbolic.
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3 Model spacetimes

In this section, we describe the model spacetimes for every sign of the (constant)
curvature. This includes a description of their causal curves and their achronal
subsets. We will end by the presentation of the space T2n of timelike geodesics in
the anti-de Sitter space that will play an important role in this survey. In the next
section, we will use this material for the classification of maximal GH spacetimes
of constant curvature.

An important feature is that causality notions in the model spacetimes are
much easier to deal with once it is observed that they all admit a conformal
embedding in the Einstein Universe. We therefore start with this central geometric
model. As a reference for the content of this section, we mention [46, 85] as very
complete references (in French), the papers [48, 86] extracted from these works,
and also [15, 6].

On notations: all model spacetimes involve (Rr,s, qr,s), for some integers r, s,
where Rr,s is the r + s-dimensional vector space Rr,s and qr,s a quadratic form
of signature (r, s). More precisely, the first r coordinates of Rr,s are denoted by
u1, . . . , ur and the other coordinates by x1, . . . , xs. Elements of Rr,s are denoted
by x, y, . . . The quadratic form is then:

qr,s(x) = −u2
1 − . . .− u2

r + x2
1 + . . .+ x2

s

The associated scalar product is denoted by 〈. | .〉r,s, or simply 〈. | .〉.
We will also denote by (Sn, ḡn) the sphere of dimension n equipped with its

usual metric ḡn: the restriction of q0,n+1 to the unit sphere {q0,n+1 = 1} of R0,n+1.
The distance on Sn induced by ḡn is denoted by dn.

3.1 Einstein universe

The four-dimensional Einstein universe was the first cosmological model for our
universe proposed by A. Einstein soon after the birth of General Relativity. The

n+1 dimensional Einstein universe Ẽin
1,n

can be simply described as the (oriented)
product Sn × R of the n-dimensional sphere and the real line, equipped with the
metric ḡn − dt2, and time-oriented so that the coordinate t is a time function.

The importance of the Einstein universe is essentially due to the following ex-
tension of the Liouville Theorem ([47]): when n ≥ 2, any conformal transformation

between two open subsets of Ẽin
1,n

extends to a global conformal transformation.
It follows that conformal Lorentzian spacetimes of dimension ≥ 2 + 1 are locally
modeled on the Einstein universe. Hence we don’t really consider the Einstein
universe as a Lorentzian manifold, but as a conformally Lorentzian spacetime.

We also consider the product Ein1,n = Sn × S1 equipped with the ḡn − ḡ1. We

denote by p : Ẽin
1,n
→ Ein1,n the cyclic covering map. Let δ : Ẽin

1,n
→ Ẽin

1,n
be

the map (x̄,t) 7→ (x̄,t+2π): it generates the Galois group of p. We will also consider

the quotient Ein
1,n

of Ẽin
1,n

by δ0 : (x̄,t) 7→ (−x̄,t + π), even if its topology is
slightly more difficult to handle. This quotient, which is doubly covered by Ein1,n,
is sometimes called Einstein universe in the literature.
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Photons. Lightlike geodesics of Ein1,n, Ẽin
1,n

or Ein
1,n

, considered as non-
parameterized curves, do not depend on the choice of the representative of the

conformal class. They are called photons. In Ẽin
1,n

, they are represented by the
curves t 7→ (x̄(t), t), where t 7→ x̄(t) is a geodesic of (Sn, ḡn). For every x̃ in Ẽinn,
δ0(x) is its first conjugate point in the future: by this, we mean that every future
oriented photon exiting from x̃ also contain δ0(x̃), and that there is no other such
conjugate point in J+(x̃) ∩ J−(δ0(x̃)).

The union of all photons containing x̃ is the lightcone C(x̃). If we write x̃ as
a pair (x̄, t) in Sn × R, the lightcone C(x̃) is the set of pairs (ȳ,s) such that the
difference t − s is equal to dn(x̄,ȳ) modulo 2π. It is a cylinder pinched at every
conjugate points δk0 (x̃) (see for example Figure 4.3 in [46]).

The projections of lightcones in Ein1,n are also called lightcones; a lightcone
C(x) for x in Ein1,n has two singular points, x and its conjugate δ0(x).

Causal curves. More generally, causal curves in Ẽin
1,n

, suitably parameterized,
are the curves t 7→ (x̄(t), t), where t 7→ x̄(t) is a 1-Lipschitz map from an interval
I into Sn — it is timelike if x̄ is contracting, i.e.:

∀s, t ∈ R dn(x̄(s), x̄(t)) <| s− t | .

In particular, inextendible causal curves are the ones parameterized by I = R. It

clearly follows that Ẽin
1,n

is globally hyperbolic spatially compact: every level set
{t = Const.} is a Cauchy hypersurface.

Achronal subsets. Achronal subsets of Ẽin
1,n

are precisely the graphs of 1-
Lipschitz functions f : Λ0 → R where Λ0 is a subset of Sn. The achronal set is
acausal if and only if f is 1-contracting. It is closed if and only if Λ0 is closed,
and edgeless if and only if Λ0 is open. In particular, closed edgeless achronal
subsets are exactly the graphs of the 1-Lipschitz functions f : Sn → R: they are
topological n-spheres, which are all Cauchy hypersurfaces.

Stricto sensu, there is no achronal subset in Ein1,n since closed timelike curves
through a given point cover the entire Ein1,n. Nevertheless, we can keep track
of this notion in Ein1,n by defining “achronal” subsets of Ein1,n as projections of

genuine achronal subsets of Ẽin
1,n

. This definition is justified by the following
results (Lemma 2.4, Corollary 2.5 in [15]): The restriction of p to any achronal

subset of Ẽin
1,n

is injective. Moreover, if Λ̃1, Λ̃2 are two achronal subsets of Ẽin
1,n

admitting the same projection in Ein1,n, then there is an integer k such that:

Λ̃1 = δkΛ̃2

In this setting, closed edgeless achronal subsets of Ein1,n are graphs of 1-Lipschitz
maps from Sn into S1.

Globally hyperbolic domains. Let Λ̃ be a closed achronal subset of Ẽin
1,n
,

i.e. the graph of a 1-Lipschitz map f : Λ0 → R where Λ0 is a closed subset of Sn.
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Define two functions f−, f+ : Sn → R as follows:

f+(x̄) := Infȳ∈Λ0
{f(ȳ) + dn(x̄,ȳ)},

f−(x̄) := Supȳ∈Λ0
{f(ȳ)− dn(x̄,ȳ)},

f+ (respectively f−) is the maximal (respectively minimal) 1-Lipschitz map from
Sn into R that coincides with f on Λ0.

Then, the set of points of Ẽin
1,n

which are not causally related to any point of
Λ̃ is:

E(Λ̃) = {(x̄,t) ∈ Sn × R | f−(x̄) < t < f+(x̄)}.

Observe that if x̄ and ȳ are two points in Λ0 such that |f(x̄)−f(ȳ)| = dn(x̄, ȳ),
then the restrictions of f+ and f− to any minimizing dn-geodesic segment between
x̄ and ȳ coincide. Let Fill(Λ0) be the union of Λ0 with the union of all minimizing
dn-geodesic segments joining two elements x̄, ȳ of Λ0 such that |f(x̄) − f(ȳ)| =
dn(x̄, ȳ), and let Fill(f) be the restriction of f± to Fill(Λ0): the graph of Fill(f)

is a CEA of Ẽin
1,n

that we denote by Fill(Λ̃) and that we call the filling of Λ̃.

Then we have E(Λ̃) = E(Fill(Λ̃)). In other words, we can restrict ourselves to
filled CEA, i.e. CEA equal to their own fillings (see [17, Remark 3.19]).

The domain E(Λ̃) may be empty, but exactly in the case where the filling

Fill(Λ̃) is the entire sphere Sn. A particular case when this happens is the case

where Λ̃ is purely lightlike, i.e. the case where Λ0 contains two antipodal points
x̄0 and −x̄0 such that the equality f(x̄0) = f(−x̄0) +π holds (Lemma 3.6 in [15]).
Purely lightlike achronal subsets are precisely the ones admitting as filling the
union of lightlike geodesics joining two antipodal points of Ẽinn.

If non-empty, the invisible domain E(Λ̃) is globally hyperbolic (indeed, it is

easy to see that for any p, q in E(Λ̃), the closed diamond U(p, q) is contained in

E(Λ̃)). More precisely, the Cauchy hypersurfaces of E(Λ̃) are precisely graphs ΛF
of 1-Lipschitz maps F : Sn\ Fill(Λ0)→ R such that the extension of F to Fill(Λ0)
coincides with Fill(f).

In the limit case Λ0 = ∅, we have f+ = +∞ and f− = −∞, and the Cauchy
development of the graph of any 1-Lipschitz map F : Sn → R defined on the entire

sphere is the entire Einstein universe Ẽin
1,n

.

In summary, the theory of globally hyperbolic domains of Ẽin
1,n

coincides with
the theory of 1-Lipschitz maps on Sn.

As for achronal subsets, even if Ein1,n is not strongly causal, one can abu-
sively project the notion of globally hyperbolic domains into Ein1,n, thanks to the
following lemma:

Lemma 3.1. For every (non-empty) closed achronal set Λ̃ ⊂ Ẽin
1,n

, the projection

of E(Λ̃) onto E(Λ) = p(E(Λ̃)) is one-to-one.

Klein model. Einstein universe can also be defined in the following way: let Cn+1

be the null-cone in (R2,n+1,q2,n+1), and let S(Cn+1) be its projection in the space
S(R2,n+1) of rays in R2,n+1. S(R2,n+1) is a double covering of the usual projective
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space P(R2,n+1), therefore we call it, slightly abusively, the projectivization of
R2,n+1. Observe that the convexity is well defined in S(R2,n+1): one can simply
define convex subsets of S(R2,n+1) as radial projections of convex cones in R2,n+1.
In particular, convex hulls Conv(B) of subsets B of S(R2,n+1), in particular, of
subsets of S(Cn+1), are well defined (but we don’t mean that they are contained
in S(Cn+1)!).

The quadratic form q2,n+1 induces a natural conformally Lorentzian structure
on S(Cn+1). More precisely, for any section σ : S(Cn+1) → Cn+1, the pull-back
σ∗q2,n+2 is a Lorentzian metric gσ, and the conformal class [gσ] does not depend
on σ. This conformally Lorentzian metric happens to be conformally isometric to
(Ein1,n, ḡn − ḡ1).

The pair (S(Cn+1), [gσ]) is the Klein model of Ein1,n.

Isometry group. It is clear from the Klein model that the group of conformal
transformations of Ein1,n preserving the orientation and the time orientation is

SO0(2, n+1). Let S̃O0(2, n+1) be the group of conformal transformations of Ẽin
1,n

preserving the orientation and the time orientation. There is a natural projection
from S̃O0(2, n+1) into SO0(2, n+1) whose kernel is spanned by the transformation

δ generating the Galois group of p : Ẽin
1,n
→ Ein1,n defined previously. Therefore,

there is a central exact sequence:

1→ Z→ S̃O0(2, n+ 1)→ SO0(2, n+ 1)→ 1

Observe that S̃O0(2, n+ 1) is not the universal covering of SO0(2, n+ 1): there is
a retraction of SO0(2, n+ 1) onto SO(2)× SO(n) hence the fundamental group of
SO(2, n+ 1) is not cyclic but isomorphic2 to Z× (Z/2Z).

Remark 3.2. Concerning the notation: in the sequel, we always have in mind
the identifications Ein1,n ≈ S(Cn+1), and we frequently switch from one model to
the other. We denote by x elements of Ein, using the notation x when we want to
insist on the Klein model.

Causality notions in the Klein model. Two elements x, y of Ein are causally
related if and only if 〈x | y〉 ≥ 0. In particular, a subset Λ ⊆ Ein is achronal
(respectively acausal) if and only if for every distinct x, y ∈ Λ the scalar product
〈x | y〉 is non-positive (respectively negative).

Photons are projections on S(P ) of isotropic 2-planes of R2,n+1. The lightcone
C(x) of a point x is the projection of Cn+1 ∩ x⊥, where x⊥ is the q2,n+1-orthogonal
of any representative x of x.

Finally, for every achronal subset Λ of Ein1,n ≈ S(Cn+1), the invisible domain
E(Λ) is:

E(Λ) = {x ∈ S(Cn+1) | ∀ y ∈ Λ 〈x | y〉 < 0}.

Recall that the dual of a convex subset S(C) of S(R2,n) is:

C∗ = {x ∈ S(Cn+1) | ∀ y ∈ C 〈x | y〉 ≤ 0}.
2We thank the referee to have pointed out this fact to us.



16 Thierry Barbot

Hence, E(Λ) coincides with the interior of S(Cn+1)∩Conv∗(Λ), where Conv∗(Λ) is
the convex subset of S(R2,n) dual to the convex hull Conv(Λ): it is the intersection
between a quadric and a convex subset of the projective space S(R2,n) (cf. [17,
section 3.3]).

3.2 Minkowski space

For this section, we indicate as references [10, 23, 11]. The Minkowski space is
the affine space of dimension n+ 1 equipped with the quadratic form q1,n on the
underlying vector space R1,n (for n ≥ 1). We slightly abuse notations, denoting
it by R1,n, whereas it should really considered as an affine space, and not linear.
We also use a coordinate system (t, x1, . . . , xn) such that:

q1,n(x) = −t2 + x2
1 + . . .+ x2

n.

The causal structure of the Minkowski space is particularly simple, because of
its affine structure. It is convenient to see it as the product (R×Rn,−dt2 + |dx̄|2)
of the line R “of time” and the Euclidian plane Rn, whose elements are denoted
by x̄. A time orientation is obtained by requiring the time coordinate t to be a
time function.

Let us fix an origin 0, identifying Minkowski space with its underlying linear
space R1,n. Let I+

0 be the set of future-oriented timelike tangent vectors at 0. Then
I+
0 coincides with the future I+(0) through the canonical identification between
T0R1,n and R1,n. Two elements x, y are causally related if and only if y − x is
timelike, and y ∈ I+(x) if and only if y− x lies in I+

0 .
The isometry group (as always, preserving all orientations) is the Poincaré

group Isom0(R1,n), isomorphic to SO0(1, n)nR1,n.
Concerning the causality notions, almost all the discussion above in the case

of Einstein universe applies, replacing the sphere (Sn, ḡn) by the Euclidean plane
(R0,n, q0,n): up to reparametrization, causal (resp. timelike) curves are maps
t ∈ I ⊆ R 7→ x̄(t) where x̄ : I → R0,n is 1-Lipschitz (resp. 1-contracting). For
inextendible curves we have I = R. Every horizontal hyperplane {t = Const.} is a
Cauchy surface. The geodesics of Minkowski space are affine lines. The achronal
(resp. acausal) subsets are graphs Λf of 1-Lipschitz (respectively 1-contracting)
maps f : Λ0 ⊆ R0,n → R, closed edgeless achronal subsets are graphs Λf of 1-
Lipschitz maps defined on the entire Λ0 = R0,n — but as we will se later, it is not
always a Cauchy hypersurface for R1,n.

Conformal model. Minkowski space admits a conformal embedding in Einstein

universe; actually, it is conformally isometric to the complement in Ein
1,n

of any
lightcone. It is actually more convenient to see it as one connected component of

the complement of the lightcone C(x̃0) of some point x̃0 in Ẽin
1,n

: the “extreme
diamond”, intersection I+(δ−1

0 (x̃0))∩I−(δ−1
0 (x̃0)), which we denote by Mink+(x̃0).

If can take x̃0 = (x̄0, 0), then Mink+(x̃0) is the set of points (x̄, t) such that
|t| < dn(x̃, x̃0).

The boundary of Mink+(x0) in Ein1,n can therefore be seen as a conformal
boundary of the Minkowski space, that has already been introduced by R. Pen-
rose ([83]). It decomposes in several parts:
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– the point δ−1
0 (x̃0), denoted by i− by Penrose: Mink+(x̃0) is entirely contained

in the future of i−,
– the point δ0(x̃0), also denoted by i+: Mink+(x̃0) is entirely contained in the

past of i+,
– the point i0 := x̃0, called the “spatial infinity”,
– the complement of these three points is the union of two lightlike cylinders

Sn−1 ×R, one in the future of Mink+(x̃0) and denoted by I+, and the other, I−,
in the past of Mink+(x̃0).

See Figure 1 (borrowed from [46, Figure 4.3]) where several Minkowski compo-
nents Mink+(ik) are depicted, where every ik is a point conjugate to i0 = x̃0 (i.e.
iterates of x̃0 under δ0).

Figure 1: Several Minkowski components.

The intersection between Mink+(x̃0) and the lightcone C(x̃) of any point in
I± is an affine hyperplane H(x̃) in Mink+(x̃0) ≈ R1,n. More precisely: if x̃ ∈
I+, then Mink+(x̃0) ∩ I−(x̃) is the past of H(x̃) in R1,n, and if x̃ ∈ I−, then
Mink+(x̃0) ∩ I+(x̃) is the future of H(x̃) in R1,n. Therefore, I− can be seen as
the space of half affine Minkowski spaces, that are equal to their own future, and
bounded by a lightlike hyperplane.

3.3 De Sitter space

The de Sitter space dS1,n is the hypersurface {x ∈ R1,n+1/q1,n+1(x) = +1}
endowed with the Lorentzian metric obtained by restriction of q1,n+1. Hence, for
the coordinates (t, x1, . . . , xn) we have:

dS1,n := {(t, x1, . . . , xn) | −t2 + x2
1 + . . .+ x2

n = +1}.

We equip dS1,n with the time orientation for which t (or, more generally, for every
u ∈ Hn+1, the map x → −〈x | u〉) is a time function. The geodesics are the
intersections between dS1,n and 2-planes in R1,n+1. Two points x, y in dS1,n are
causally related if and only if 〈x | y〉 ≥ 1.
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Isometry group. The group of orientation preserving, time-orientation preserv-
ing isometries of dS1,n is SO0(1, n+ 1).

Duality with the hyperbolic space. For every x in dS1,n, the intersection
x⊥ ∩ Hn is a totally geodesic hypersurface H(x) of hyperbolic space Hn+1. More
precisely, {y ∈ Hn+1 | 〈y | x〉 > 0} is a half-hyperbolic space bounded by H(x);
in other words, dS1,n can be seen as the space of transversely oriented half
hyperbolic spaces.

De Sitter space is the space of round disks in Sn. Every H(x) is characterized
by its conformal boundary ∂H(x) in ∂Hn+1 ≈ Sn. Therefore, and this will be
important later, dS1,n can be identified with the space B(Sn) of round disks in Sn.

Klein model. The Klein model DS1,n is the projection of dS1,n to S(R1,n+1) i.e.

DS1,n := {x ∈ S(R1,n+1) / 〈x | x〉 > 0}.

This is the complement in S(R1,n+1) of the closures of two Klein models Hn+1
± :

Hn+1
± := {x ∈ S(R1,n+1) / 〈x | x〉 < 0, ±t > 0}.

Conformal model De Sitter space dS1,n is conformally equivalent to the domain
dS1,n := Sn×] − π,+π[ ⊆ Ein1,n. It immediately follows that dS1,n is a globally
hyperbolic domain of Ein1,n, hence globally hyperbolic. The achronal subsets are
the graphs of 1-Lipschitz maps f : Λ0 ⊆ Sn →]− π,+π[.

The boundary of dS1,n has two components: the component Sn × {−π} is the
past conformal boundary ∂−dS

1,n, and the component Sn × {+π} is the future
conformal boundary ∂+dS

1,n. For every x in dS1,n, the intersection between the
future (resp. the past) of x in Ein1,n and ∂+dS

1,n (resp. ∂−dS
1,n) is a round

ball B+(x) (resp. B−(x)). This is another way — actually, two other ways —
to identify dS1,n with B(Sn). For each of them, the causality relation in dS1,n

corresponds to the inclusion relation in B(Sn).

3.4 Anti-de Sitter space

Anti-de Sitter space AdS1,n is the hypersurface {x ∈ R2,n/q2,n(x) = −1} en-
dowed with the Lorentzian metric obtained by restriction of q2,n. We use a coor-
dinate system (u, v, x1, . . . , xn) such that:

q2,n(x) := −u2 − v2 + x2
1 + . . .+ x2

n.

We will also consider the coordinates (r, θ, x1, . . . , xn) with:

u = r cos(θ), v = r sin(θ).

We equip AdS1,n with the time orientation defined by the vector field ∂
∂θ , i.e.

the time orientation such that the timelike vector field ∂
∂θ is everywhere future

oriented.
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Observe the analogy with the definition of Hyperbolic space Hn. Moreover,
for every real number θ0, the subset Hθ0 := {(r, θ, x1, . . . , xn)/θ = θ0} ⊂ R2,n is
a totally geodesic copy of Hn embedded in AdS1,n. More generally, the totally
geodesic subspaces of dimension k in AdS1,n are the connected components of the
intersections of AdS1,n with the linear subspaces of dimension (k + 1) in R2,n. In
particular, geodesics are intersections with 2-planes.

Conformal model Anti-de Sitter space AdS1,n is conformally equivalent to the
domain Dn × S1 ⊆ Ein1,n, where Dn is the open upper hemisphere of Sn. The
boundary of this domain is ∂Dn× S1 ≈ Sn−1× S1, hence conformally isometric to
the Einstein universe Ein1,n−1 with one dimension less. In other words, AdS1,n is
one of the two connected components of Ein1,n \Ein1,n−1 for the natural conformal
embedding of Ein1,n−1 in Ein1,n. In other words, one can see Ein1,n−1 as the
conformal boundary ∂AdS1,n.

As Ein1,n, AdS1,n is not strongly causal; it contains many timelike geodesic

loops. But, its universal covering ÃdS
1,n

, conformally equivalent to Dn × R, is

strongly causal. Its conformal boundary is Ẽin
1,n−1

.

However, ÃdS
1,n

is not globally hyperbolic: for example, diamonds J−(x̄0, t)∩
J+(x̄0, 0) are not compact as soon as t ≥ 2π.

Klein model. The Klein model ADS1,n is the projection of AdS1,n to S(R2,n)
i.e. :

ADS1,n := {x ∈ S(R2,n) / 〈x | x〉 < 0}.

The topological boundary of ADS1,n in S(R2,n) is the Klein model S(Cn) of
Ein1,n−1. Observe that for any subset Λ of Ein1,n−1 ≈ S(Cn), the convex hull
Conv(Λ) is contained in the conformal compactification AdS1,n ∪∂AdS1,n if and
only if Λ is achronal in Ein1,n−1.

Affine domains. For every x = S(x) in ADS1,n, we define the affine domain (also
denoted by U(x)):

U(x) := {y ∈ ADS1,n / 〈x | y〉 < 0}.

In other words, U(x) is the connected component of ADS1,n \S(x⊥) containing
x.

The boundary S(x⊥)∩ADS1,n of U(x) in ADS1,n has two components that are
totally geodesic copies of the (Klein model of) hyperbolic space Hn. One distin-
guish the past component H−(x) and the future component H+(x) characterized
by the following property: future oriented timelike geodesics enter U(x) through
H−(x) and exit through H+(x). They are also called hyperplanes dual to x, and
we distinguish the hyperplane past-dual H−(x) from the hyperplane future-dual
H+(x).

Every affine domain U(x), seen as a subset of Ein1,n, and lifted in ÃdS
1,n
≈

Dn × R, is isometric to a region Dn×]− π/2,+π/2[.

Achronal subsets. The description of achronal subsets of ÃdS
1,n

follows easily

from the description of achronal subsets of Ẽin
1,n

: they are the graphs of 1-
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Lipschitz maps from Dn into R. They are all contained in some affine domain as
defined just previously.

Globally hyperbolic domains. Let S be a closed edgeless achronal subset of

ÃdS
1,n

. In the conformal model, S is the graph of a 1-Lipschitz map fS : Dn → R:
this map uniquely extends to the boundary ∂Dn. The graph of this extension is

a closed achronal edgeless subset ∂S of ∂ÃdS
1,n

, and the Cauchy development

dev(S) is the intersection ÃdS
1,n
∩ E(∂S) where E(∂S) is the invisible domain

of ∂S in Ẽin
1,n

. It follows that dev(S) is contained in an affine domain too. In
particular, dev(S) is never the entire anti-de Sitter space: this is another proof

that ÃdS
1,n

is not globally hyperbolic. Observe that ∂S is purely lightlike if and
only if fS(x̄) = dn(x̄,x̄∞) + t0 where t0 is a real number and x̄∞ some point in
∂Dn ⊂ Sn.

The space of timelike geodesics. The content of this paragraph is mostly
extracted from [17, Section 4.5]. Timelike geodesics in AdS1,n are intersections
between AdS1,n ⊂ R2,n and 2-planes P in R2,n such that the restriction of q2,n to
P is negative definite. The action of SO0(2, n) on negative 2-planes is transitive,
and the stabilizer of the (u, v)-plane is SO(2) × SO(n). Therefore, the space of
timelike geodesics is the symmetric space:

T2n := SO0(2, n)/SO(2)× SO(n).

Remark 3.3. Let S be a closed edgeless achronal subset of AdS1,n such that ∂S ⊂
Ein1,n is not purely lightlike. Then, every timelike geodesic of AdS1,n intersects
E(∂S) (cf. Lemma 3.5 in [15]), and since E(∂S) is convex, this intersection is
connected, i.e. is a single inextendible timelike geodesic of E(∂S). In other words,
one can consider T2n as the space of timelike geodesics of E(∂S) for any CEA S.

T2n has dimension 2n. We equip it with the Riemannian metric gT induced
by the Killing form of SO0(2, n). It is well known that T2n has nonpositive cur-
vature, and rank 2: the maximal flats (i.e. totally geodesic embedded Euclidean
subspaces) have dimension 2. It is also naturally Hermitian. More precisely: let
G = so(2, n) be the Lie algebra of G = SO0(2, n), and let K be the Lie algebra
of the maximal compact subgroup K := SO(2) × SO(n). We have the Cartan
decomposition:

G = K ⊕K⊥

where K⊥ is the orthogonal of K for the Killing form. Then, K⊥ is naturally
identified with the tangent space at the origin of G/K. The adjoint action of
the SO(2) term in the stabilizer defines a K-invariant complex structure on K⊥ ≈
TK(G/K) that propagates through left translations to a genuine complex structure
J on T2n = G/K. Therefore, T2n is naturally equipped with a structure of n-
dimensional complex manifold, together with a J-invariant Riemannian metric,
i.e. a Kähler structure.

Here our purpose is to give another way to define this Kähler structure, starting
from the anti-de Sitter space and clarifying the geometric nature of the associated
symplectic form.
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Let U1,n be the space of future oriented timelike tangent vectors of norm −1 of
AdS1,n. Since the tangent space of AdS1,n at a point x is naturally identified with
x⊥, there is a natural identification between U1,n and the pairs (x,y) of elements
of AdS1,n satisfying y ∈ H+(x). The tangent bundle of U1,n at a point (x,y) is
naturally identified with elements (ẋ,ẏ) of R2,n × R2,n satisfying:

〈ẋ | x〉 = 0,

〈ẏ | y〉 = 0,

〈ẋ | y〉+ 〈ẏ | x〉 = 0.

There is a canonical SO0(2, n)-invariant pseudo-Riemannian metric ‖.‖ on U1,n:

‖(ẋ,ẏ)‖ := q2,n(ẋ) + q2,n(ẏ).

A quick computation shows that ‖.‖ is Lorentzian. Moreover, it is preserved
by the geodesic flow Φt on U1,n that can be defined by:

Φt(x,y) = (cos(t)x + sin(t)y,− sin(t)x + cos(t)y).

The Killing vector field generating Φt is Z(x,y) = (y,− x), hence of ‖.‖-norm −2:
the ‖.‖-orthogonal Z⊥ is therefore spacelike.

Now T2n is naturally identified with the orbit space of Φt: we write elements of
T2n as equivalence classes [x,y] of the orbital relation on U1,n. We have a natural
way to define an SO0(2, n)-invariant Riemannian metric ‖.‖ on T2n: for every [x,y]
and every tangent vector ξ at [x,y], select a representative (x,y) of [x,y] and the
unique vector v tangent to T2n, orthogonal to Z(x,y), and projecting onto ξ. Define
‖(ξ)‖ as ‖v‖: since Φ is isometric, this value does not depend on the choice of (x,y).
This defines a Riemannian metric on T2n that happens to be (up to a constant
factor) the metric on the symmetric space T2n := SO0(2, n)/SO(2)× SO(n).

The symplectic form ω associated with the Kähler-Hermitian structure of T2n

can be described as follows: the Liouville 1-form λ on U1,n is defined by:

λ(x,y)(ẋ,ẏ) = −〈ẋ | y〉 = 〈ẏ | x〉.

The contact hyperplane, kernel of λ, is the orthogonal Z⊥. The geodesic flow
Φt is actually the Reeb flow for λ: we have λ(Z) = +1 and LZλ = 0, so the
exterior derivative ω̂ = dλ is Φt-invariant and for any v in Z⊥ we have ω̂(Z, v) =
iZdλ(v) = iZdλ(v) + diZλ = LZλ = 0. Hence we can define on T2n the 2-form
ω(ξ, ξ′) = ω̂(v, v′) where v, v′ are the lifts of ξ, ξ′ above v, v′ orthogonal to Z.
This 2-form is closed and non-degenerate, i.e. a symplectic form on T2n.

Finally, we define the complex structure: first observe that there is a natural
complex structure on each contact hyperplane Z(x,y)⊥: this hyperplane is identi-
fied with the set of pairs (ẋ,ẏ) with ẋ and ẏ both in x⊥ ∩ y⊥. Then (ẋ,ẏ) 7→ (ẏ,− ẋ)
is an involution in Z(x,y)⊥, commuting with the geodesic flow, and induces the
complex structure J on T2n. Observe that J satisfies ω(v, J(v)) = ‖v‖: it is a
calibration between ω and ‖.‖.
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Gauss map. Let S be a differentiable Cauchy hypersurface in a GH domain
E(∂S). The Gauss map of S is the map ν : S → T2n(ρ) that sends every element
x of S to the unique timelike geodesic orthogonal to S at x.

Since every timelike geodesic intersects S at most once, the Gauss map is always
injective. The image of the Gauss map is actually the set of timelike geodesics that
are orthogonal to S. Since every timelike geodesic intersects S, it follows easily
that the image of the Gauss map is closed, and that the Gauss map is actually an
embedding.

Assume that S is the image of a smooth spacelike embedding x : Σ→ AdS1,n.
Then it induces a map y : Σ→ AdS1,n where y(p) is the dual of the unique totally
geodesic hypersurface tangent to S at x(p), and ν(p) = [x(p), y(p)]. Here we point
out that the linear map dx(ṗ)→ dy(ṗ) is the shape operator B at x(p), so that the
second fundamental form is II(ṗ) = 〈dx(ṗ) | B(dx(ṗ))〉 = 〈dx(ṗ) | dy(ṗ)〉.

We also point out the following consequence of the equality 〈dx(ṗ) | y(p))〉 = 0 :
the image of the Gauss map is a Lagrangian submanifold of ω. Conversely, let
ϕ : Σ→ T2n be a Lagrangian immersion for some n-dimensional simply connected
manifold Σ. One can lift ϕ to some immersion ϕ̂ : Σ → U1,n orthogonal to Z:
indeed, select a base point p0 in Σ, and for any p in Σ let α : [0, 1] → Σ and
β : [0, 1] → Σ be two path with α(0) = β(0) = p0 and α(1) = β(1) = p. Then,

lift them to paths α̂, β̂ in U1,n orthogonal to Z and such that [α̂(t)] = ϕ(α(t))

and [β̂(t)] = ϕ(β(t)). Assume α̂(1) and β̂(1) are both above α(1) = β(1) = p,

hence there is a real number t such that β̂(1) = Φt(α̂(1)). The loop obtained by

composing α̂, the portion of the Φ-orbit between α̂(1) and β̂(1) and the inverse

of β̂ is homotopically trivial, hence the boundary of a disk D. Then, since the
integral of λ along the portion of Φ-orbit is t, we have:∫

D

ϕ∗ω =

∫
α̂

λ+ t−
∫
β̂

λ.

Now observe that
∫
α̂
λ =

∫
β̂
λ = 0, hence, since

∫
D
ϕ∗ω = 0 (because ϕ is

Lagrangian) we get t = 0. The equality α̂(1) = β̂(1) follows: we can define
ϕ̂(p) = α̂(1).

The immersion ϕ̂ : Σ → U1,n is spacelike for ‖ (since it is orthogonal to Z).
Write ϕ̂(p) = (x(p), y(p)). It may happen that p 7→ x(p) is not an immersion at
some point p0, but then, near p0, simply replace ϕ̂ by ϕ̂t = Φt ◦ ϕ̂ by any non zero
real number t (it amounts to replacing x(p) by cos(t)x(p) + sin(t)y(p)): after this
modification, p 7→ x(p) becomes a spacelike immersion near p0, whose Gauss map
is the restriction of ϕ near p0. Of course, this construction is local and we may
fail to find a t valid over the entire Σ.

4 The classification of MGHC spacetimes

In this section, we present the classification of MGHC spacetimes with constant
curvature. This classification has been initiated by G. Mess who introduced many
ideas ([79]), and continued by several authors ([10, 23, 89]). This classification is
almost complete, but there are some remaining questions.
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4.1 The flat case

The simplest example of MGHC flat spacetime is the quotient of the entire Min-
kowski space by a discrete group Γ of translations, such that the translation vectors
of Γ form a lattice in R0,n. These spacetimes are geodesically complete. They are
isometric to the product (Tn, h̄0) × (R,−dt2), where (Tn, h̄0) is a flat torus. We
call them translation spacetimes.

The most fundamental example of MGHC flat spacetime is the quotient of the
cone I+

0 in R1,n by a cocompact lattice Γ of SO0(1, n):

M0(Γ) = Γ\I+
0 .

The restriction of −q1,n to I+
0 is a time function whose levels sets are Cauchy

hypersurfaces — in particular, the hyperboloid model Hn of the hyperbolic space
which is the 1-level set.

We call this example the standard conformally static example.

Identify R1,n with the domain Mink+(x0) of Ẽin
1,n

. The closure of Hn in Ẽin
1,n

is then the union of Hn with a closed edgeless achronal set ∂Hn ⊆ I+. Then, I+
0

coincides with the invisible domain E(∂Hn) = Ẽin
1,n
\ (J−(∂Hn) ∪ J+(∂Hn)).

More generally, let Λ be a (non edgeless) closed achronal subset of Ẽin
1,n

contained in the conformal boundary I+ of a Minkowski domain Mink+(x0) ≈
R1,n, invariant by a torsionfree discrete subgroup Γ of Isom(R1,n). Then, Ω(Λ) =
E(Λ)∩ Mink+(x0) is globally hyperbolic, Γ-invariant, and the action of Γ on Ω(Λ)
is free and proper. The quotient MΛ(Γ) is a globally hyperbolic spacetime, but
not necessarily Cauchy compact. The cosmological time of Ω(Λ) — that is the lift
of the cosmological time of MΛ(Γ) — is regular. Moreover, if Λ contains no proper
Γ-invariant closed subset, then MΛ(Γ) is maximal among flat GH spacetimes.
Finally, MΛ(Γ) is future complete, in the sense that any future oriented timelike
ray is geodesically complete.

We have observed that elements of I+ correspond to past-half spaces in R1,n,
and Ω(Λ) is obtained by removing all the half-spaces corresponding to elements of
Λ. It follows that Ω(Λ) is an intersection of half-spaces, hence convex. We recover
the notion of regular domain as defined in [23]. The boundary of Ω(Λ) in R1,n

is very interesting: it is a CEA, that is, the graph of a 1-Lipschitz map f whose
differential has norm 1 almost everywhere.

Observe that if we replace I+ by I−, the result will be a similar spacetime,
but that is past complete and not future complete.

The following Theorem was proved by Mess in dimension 2 + 1 ([79]), by
Bonsante in the case where the holonomy is assumed to have a discrete cocompact
linear part in SO0(1, n) ([23]), and independently and in full generality in [10]:

Theorem 4.1. Up to finite coverings, every MGHC flat spacetime is isometric to
either a translation spacetime, or a quotient MΛ(Γ), where Γ is a discrete subgroup
of Isom(R1,2).

We want to describe further MΛ(Γ) when it is Cauchy compact. Most of the
following claims are non-trivial and we refer to [10] for their proofs. Notice first
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that in this case, the achronal subset Λ of I± ≈ R×Sn−1 is necessarily a topological
sphere, the graph of a continuous map f : Sn−1 → R. The invisible domain E(Λ)
is then contained in Min+(x0), hence we have Ω(Λ) = E(Λ).

Consider first the proper case, i.e. the case where the closure of Ω(Λ) does
not contain any affine line of R1,n: Γ is then isomorphic to a cocompact lattice of
SO0(1, n). More precisely, the linear part homomorphism Isom(R1,n)→ SO0(1, n)
is faithful and has discrete and cocompact image. In this case, we call MΛ(Γ) a
standard spacetime.

In general, excluding the particular case of Misner spacetimes, up to finite
coverings, a MGHC spacetime is a twisted product over a standard spacetime by
flat tori. In particular, Cauchy hypersurfaces are always finite covers of products
of hyperbolic closed manifolds by tori. See [10] for more details.

There is also an interesting case of flat MGH spacetime, but not Cauchy com-
pact: the unipotent spacetimes. A unipotent spacetime is the quotient of either a
half-space in R1,n bounded by a lightlike hyperplane, or the region between two
parallel lightlike hyperplanes, by a discrete nilpotent group Γ whose linear part
is a discrete subgroup of the stabilizer in SO0(1, n) of a point of ∂Hn. For more
details, see [10].

4.2 The dS case

In some way, MGHC Cauchy compact spacetimes locally modeled on dS1,n first
appeared in a paper by Kulkarni and Pinkall (§3.4 of [74]), but the authors did not
insist on the de Sitter nature of the spaces they were considering, and, presumably,
were not aware of their interpretation as globally hyperbolic spacetimes. The fact
that these examples give the complete list of MGHC de Sitter spacetimes was
proved by K. Scannell ([89]), involving some ideas of Mess. There is also an
alternative description in [6] which is the one we use here.

Unlike the other two cases (the flat and anti-de Sitter cases), locally de Sitter
MGHC spacetimes are not in general quotients of open domains in dS1,n.

The crucial point is that locally de Sitter MGHC spacetimes are in one-to-
one correspondence with closed Möbius manifolds, i.e. closed manifolds locally
modeled on the conformal sphere Sn. This correspondence involves the identi-
fication of dS1,n with the space of round discs in Sn. It goes as follows: let Σ
be a closed manifold of dimension n, locally modeled on (Sn,SO0(1, n + 1)). Let

D : Σ̃ → Sn be the developing map of this (Sn,SO0(1, n + 1))-structure, and let

ρ : Γ = π1(Σ) → SO0(1, n + 1) be the holonomy representation. Let B(Σ̃) be the

space of open domains B in Σ̃ such that the restriction of D to B is a homeomor-
phism onto a round disc of Sn. Then the action of Γ on B(Σ̃) is free and proper: let
B(Σ) be the quotient space. The developing map D induces a Γ-equivariant local

homeomorphism D̂ : B(Σ̃) → B(Sn) ≈ dS1,n, hence a locally de Sitter structure
on B(Σ). As a locally de Sitter manifold, B(Σ) is maximal globally hyperbolic.

Actually, we observed that there are two ways to identify dS1,n with B(Sn):
for one of them the spacetime B(Σ) is geodesically complete in the future, and for
the other one, B(Σ) is geodesically complete in the past.
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Theorem 4.2 (K. Scannell [89]). Every maximal globally hyperbolic Cauchy com-
pact locally de Sitter spacetime is isometric to the spacetime M(Σ) associated with
a (Sn,SO0(1, n+ 1))-manifold Σ.

Thurston observed that (S2,SO0(1, 3))-manifolds are in one-to-one correspon-
dence with hyperbolic ends, i.e. hyperbolic 3-manifolds homeomorphic to Σ ×
[0,+∞[ with a concave boundary Σ × { 0} and complete at the end Σ × {+∞}
(for more details, see for example [19]). This generalizes in any dimension: ev-
ery locally de Sitter MGHC spacetime M(Σ) has an associated dual hyperbolic
manifold homeomorphic to Σ× [0,+∞[. See [6] for more details.

We point out particular elementary cases:

– the elliptic case: this is the case where Σ is the round sphere Sn; M(Σ) is
then the de Sitter space;

– the parabolic case: this is the case where Σ is a quotient of the flat conformal
Euclidean space Rn, i.e. the once punctured sphere. Then, in the geodesically
future complete case, M(Σ) is a quotient of the complement in dS1,n of the past
of a point in the future conformal boundary. It is dual to the hyperbolic end
corresponding to one hyperbolic cusp. In particular, Cauchy surfaces are finite
quotients of umbilic tori.

In the remaining non-elementary hyperbolic case, M(Γ) has a regular cosmo-
logical time.

4.3 The AdS case

A convenient recent reference for the content of this section is [17]. Let Λ̃ be a

closed edgeless achronal subset of ∂ÃdS
1,n
≈ Ẽin

1,n−1
(n ≥ 2). Consider it as a

closed achronal subset of Ẽin
1,n

. Assume that it is not purely lightlike. Then, the

invisible domain E(Λ̃) in Ẽin
1,n

has two connected components: one contained in

ÃdS
1,n

and the other in the second anti-de Sitter component of Ẽin
1,n
\ Ẽin

1,n−1
.

We call Ω(Λ̃) the first component. We can write:

Ω(Λ̃) =: ÃdS
1,n
\
(
J−(Λ̃) ∪ J+(Λ̃)

)
We denote by Ω(Λ) the projection of Ω(Λ̃) in AdS1,n (cf. Lemma 3.1).

The domains Ω(Λ) and Ω(Λ̃) are isometric to each other. They have regular
cosmological time, in particular, they are GH.

Let Γ be a torsionfree discrete subgroup of SO0(2, n) preserving Λ. Then,
the action of Γ on Ω(Λ) is free and properly discontinuous, and preserves the
cosmological time τ . The quotient MΛ(Γ) := Γ\Ω(Λ) is a MGH spacetime locally
modeled on the anti-de Sitter space. We call it a regular MGH anti-de Sitter
spacetime.

Theorem 4.3. Every locally anti-de Sitter MGHC spacetime is isometric to a
regular MGHC AdS spacetime.
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We now give a more detailed presentation of the geometric features of these
spacetimes. In the conformal model, Ω(Λ̃) is the region in Dn × R between the
graphs of two 1-Lipschitz maps f± : Dn → R that are extensions of the map
fΛ : ∂Dn → R whose graph is Λ. The graph of f− (respectively f+) is a closed

achronal subset of ÃdS
1,n

that we call the lifted past (respectively future) horizon

of Ω(Λ̃), and denote by H̃−(Λ) (respectively H̃+(Λ)). The projections in AdS1,n

of H̃±(Λ) are called past and future horizons of Ω(Λ), and denoted by H±(Λ).
Consider now Λ as a closed subset in S(Cn) ⊂ S(R2,n), boundary of the Klein

model ADS1,n: since Λ is achronal, the convex hull Conv(Λ) is contained in the
closure of ADS1,n. Actually, its intersection with S(Cn) is precisely Λ; in parti-
cular, E(Λ) characterizes Λ. It happens ([6]) that E(Λ) is the interior of the dual
Conv(Λ)∗ — in particular, E(Λ) contains the interior of Conv(Λ)∗.

The Fuchsian case. There is a particular case: the case where Λ is the boundary
of a totally geodesic copy of Hn in AdS1,n. THis means that Λ is the graph of
an affine map. Then, Conv(Λ) has empty interior, and the complement of Λ in
Conv(Λ) is the totally geodesic subspace bounded by Λ. The group Λ is then a
discrete subgroup of a conjugate of SO0(1, n) in SO0(2, n). We call this case the
Fuchsian case.

Past tight region. From now on, we assume that Λ is not Fuchsian. Its comple-
ment in the boundary ∂ Conv(Λ) has two connected components. Both are closed
achronal subsets of AdS1,n. More precisely, in the conformal model their lifs to

ÃdS
1,n

are graphs of 1-Lipschitz maps F+, F− from Dn into R such that

f− ≤ F− ≤ F+ ≤ f+. (1)

The graph of F− is the past component S−(Λ) and the graph of F− is the
future component S+(Λ). The region between the past horizon H−(Λ) and the
future component S+(Λ) is the past tight region and it is denoted by E−0 (Λ).

Since E(Λ) and Conv(Λ) are convex and dual to each other, for every element
x in S−(Λ) (respectively S+(Λ)) there is an element p of Λ or H+(Λ) (respectively
H−(Λ)) such that H−(p) (respectively H+(p)) is a support hyperplane for S−(Λ)
(respectively S+(Λ)) at x: these support hyperplanes are either totally geodesic
copies of Hn (if p ∈ AdS1,n) or degenerate (if p ∈ Λ).

Similarly, at every element x of H−(Λ) (respectively H+(Λ)) there is a sup-
port hyperplane H−(p) (respectively H+(p)) where p is an element of S+(Λ) ∪ Λ
(respectively S−(Λ) ∪ Λ). See Figure 2.

Cosmological lines. The past tight region E−0 (Λ) is precisely the region where
the cosmological time τ takes value < π/2:

E−0 (Λ) = {τ < π/2}.

For every x in E−0 (Λ) there is a unique realizing geodesic for x. More precisely,
there is one and only one element r(x) in the past horizon H−(Λ) — called the
cosmological retract of x — such that the segment ]r(x), x] is a timelike geodesic
whose Lorentzian length is precisely the cosmological time τ(x).
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Figure 2: The global situation. The dotted hyperboloid represents the boundary of
an affine domain of AdS1,n containing the invisible domain E(Λ). The limset Λ is
represented by a topological circle turning around the hyperboloid, and Conv(Λ)◦

is a convex subset inside the (dual) convex subset E(Λ). The future-dual plane
H+(p) for p in the past horizon H−(Λ) is a support hyperplane of S+(Λ).

The restriction of τ to E−0 (Λ) is C1,1, i.e. it is differentiable with locally
Lipschitz derivative) (see [79, 19] for the case n = 2, and [17] for the general case).
The realizing geodesics are orthogonal to the level sets of τ . The space of realizing
geodesics is then an n-dimensional closed embedded Lipschitz submanifold. We
denote it by Σ(Λ) and call it the space of cosmological lines.

The initial singularity. For every p in H−(Λ), H+(p) is a support hyperplane
for Conv(Λ), but it could be at a point in Λ. Elements of H−(Λ) that are dual to
support hyperplanes for Conv(Λ) at a point inside AdS1,n, i.e. in S+(Λ), form an
interesting subset of H−(Λ), the initial singularity set (cf. [19]).

Split AdS-spacetimes. Consider the sum R1,k ⊕ R1,` with k + ` = n, equipped
with the quadratic form q1,k + q1,`. It is isometric to (R2,n,q2,n). It provides
an embedding of SO0(1, k) × SO0(1, `) in SO0(2, n). It preserves in ∂AdS1,n an
achronal topological sphere Λk,`, link of two spheres Sk−1 and S`−1, where ev-
ery point in Sk−1 is linked to every point in S`−1 by the unique future oriented
lightlike segment in ∂AdS1,n going from the point in Sk−1 towards the point in
S`−1. The associated domain E(Λk,`) is then globally hyperbolic, and for every
cocompact lattice Γ in SO0(1, k) × SO0(1, `) the quotient Γ\E(Λk,`) is a MGHC
AdS-spacetime, called a split AdS-spacetime. Observe that the achronal sphere
Λk,` is not acausal. A natural conjecture is that any MGHC AdS-spacetimes either
is a split AdS-spacetime, or has an associated achronal subset Λ that is acausal.
For more details, see [48] or [17].



28 Thierry Barbot

4.4 Invisible domains

Let Λ be a non-purely lightlike closed achronal subset of ∂AdS1,n ≈ Ein1,n−1, but
not necessarily edgeless: Λ is the graph of a 1-Lipschitz map f : Λ0 → R where Λ0

is a closed subset of Sn−1. Assume that it is preserved by a torsionfree discrete
subgroup Γ of SO0(2, n). We consider it as a subset of Ein1,n: let E(Λ) be the
invisible domain in Ein1,n, D(Λ) be the restriction of E(Λ) to Ein1,n−1 and Ω(Λ)
be its restriction to AdS1,n. Then, the quotient M(Λ) := Γ\Ω(Λ) is a strongly
causal spacetime, diffeomorphic to a product S × R, but not globally hyperbolic
if Λ0 6= Sn−1: some causal curves may escape from it by some point in Γ\D(Λ).

Actually, one can consider Γ\D(Λ) as the conformal boundary of M(Λ). The
past of Γ\D(Λ) in M(Λ) is the quotient of J−(D(Λ))∩Ω(Λ) by Γ. Its complement
in M(Λ) is globally hyperbolic: it is the quotient of Ω(Λ+) by Γ, where Λ+ is the
future boundary of D(Λ), i.e. the graph of the maximal 1-Lipschitz extension of
f on Sn−1.

In Section 6.3 we will give a geometrico-relativistic interpretation of this feature
as idealistic models of spacetimes containing black-holes.

5 Discrete groups of isometries

In this section, we explore how the notion of global hyperbolicity may help to
understand actions of groups of isometries on the model spacetimes, in a way
similar to the traditional theory of Kleinian groups. We focus on the notion of
achronal subgroups, and show how they allow to develop a theory similar to the
classical theory of groups of isometries of the hyperbolic space Hn, in particular,
that such a subgroup has always a canonical limit set in the conformal boundary.

We then clarify the relation between achronal subgroups and Anosov represen-
tations in the context of isometry groups of spacetimes of constant curvature.

Definition 5.1. Let Γ be a group of isometries of a spacetime (M, g). An orbit
Γ.p is achronal if for every non-trivial element γ of Γ the iterate γp is not in the
strict future or past I±(p) of p. The group Γ itself is achronal if it admits an
achronal orbit.

In some way, one may extend this notion to any pseudo-Riemannian metric,
and it happens that isometry groups of Riemannian spaces are always achronal
since there is no timelike tangent vectors in this case.

Remark 5.2. We do not assume Γ to be a discrete subgroup, even if it is the
main case we have in mind. Discreteness is not necessary for this basic theory of
limit sets.

5.1 The de Sitter case

In this case Γ is a subgroup of SO0(1, n + 1), hence can be seen as a group of
isometries of Hn+1. The key observation is that, in our framework, Γ is always
achronal.
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Indeed, the boundary of dS1,n in Ẽin
1,n

is the union of two spacelike spheres:
the past and future conformal boundaries ∂± dS1,n which are achronal. Actually,
every component of ∂ dS1,n is conformally equivalent to Sn ≈ ∂Hn+1, and the
classical theory of limit sets for groups of hyperbolic isometries provides a limit
set ΛΓ, usually defined as the set of points in ∂Hn+1 that are accumulation points
of any orbit in Hn+1.

Here, we have two copies of the limit set in ∂ dS1,n: one Λ+
Γ in ∂+ dS1,n, and

the other one Λ−Γ in ∂− dS1,n. Each of them is acausal in Ẽin
1,n

, hence we can
define as before the (non-empty) regions Ω±(ΛΓ), intersections between dS1,n and

the invisible domain E(Λ±Γ ) in Ẽin
1,n

. Observe that Ω±(ΛΓ) is globally hyperbolic,

since dS1,n and E(Λ±Γ ) are GH domains in Ẽin
1,n

. The union Ω(ΛΓ) of Ω+(ΛΓ)
and Ω−(ΛΓ) can be characterized as the interior of the set of points in dS1,n with
achronal Γ-orbit, and ΛΓ = Λ+

Γ ∪ Λ−Γ is the set of non-trivial accumulation points
of achronal orbits Γ.p in dS1,n

ΛΓ := Γ.p \ Γp, for any p with achronal Γ-orbit.

ΛΓ is empty if and only if Γ is relatively compact in SO0(1, n), in which case one
can take Ω(∅) as the entire de Sitter space — actually, in this case Γ is conjugate
to a subgroup of the maximal subgroup SO(n) of SO0(1, n): it preserves a foliation
by umbilical spacelike spheres: every orbit is acausal, and the action on dS1,n is
proper.

When Γ is discrete, Ω(ΛΓ) can be seen as the natural domain of dS1,n on which
Γ acts properly discontinuously.

Remark 5.3. Consider the Klein model in P(R1,n+1): the convex hull Conv(ΛΓ)
is contained in the Klein model P({q1,n+1 < 0}) of the hyperbolic space, and
Ω(ΛΓ) is the intersection between the Klein model P({q1,n+1 > 0}) of the de Sitter
space and the interior of the dual Conv(ΛΓ)∗. Actually, it was already observed
in Thurston’s book on the geometry of topology of three-manifolds ([96]) that the
action of Γ is proper not only on Hn, but also in the bigger region Conv(ΛΓ)∗.

5.2 The flat case

In the flat case, the subgroup Γ is not always achronal — for example, consider
the case of a cocompact lattice in the group of translations of R1,n. Nevertheless,
as in the de Sitter case, one can show that achronal subgroups are subgroups of
Isom(R1,n) that preserve a closed achronal subset ΛΓ in the Penrose conformal
boundary ∂Mink+(x0) = C(x0) of a point x0 in Ein1,n. More precisely, such a
group always preserves the “spatial infinity” i0 = x0, hence we have to be more
precise and distinguish several cases:

– Case (1): Γ is relatively compact: then Γ is achronal and no Γ-orbit accu-
mulates at the conformal boundary; the limit set ΛΓ is then the empty set, and if
Γ is discrete, the action of Γ on R1,n = Ω(∅) is proper.

– Case (2): Γ is not relatively compact, but its linear part is relatively compact
in SO0(1, n): then, Γ preserves a flat euclidian metric in R1,n; hence a foliation by
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parallel spacelike hyperplanes. Every Γ-orbit is achronal, and accumulates at the
spatial infinity i0, that we define to be the limit set. If Γ is discrete, the action
on the entire Minkowski space, which is the invisible domain for x0, is proper.
Observe that according to the Bieberbach Theorem, if Γ is discrete, then, up to
finite index, Γ is a group of spacelike translations.

– Case (3): the linear part of Γ is not relatively compact in SO0(1, n) and
admits a limit set Λ0

Γ in Sn−1. Then, Γ is achronal if and only if it preserves an
achronal set in I+. The set of accumulation points in I± ≈ Sn−1 × R is a limit
set Λ±Γ , which is the graph of a map f : Λ0

Γ → R (not necessarily Lipschitz). The
interior of the set of achronal Γ-orbits in the set Ω(ΛΓ), which is the union of the
two globally hyperbolic domains Ω(Λ±Γ ), on which, if it is discrete, Γ acts properly.

5.3 The anti-de Sitter case

In the anti-de Sitter case, we still have the situation that subgroups of SO0(2, n)
may fail to be achronal. The criterion is simpler than in the flat case: Γ is achronal
if and only if it preserves a closed achronal subset in ∂AdS1,n. Then, one can
define a limit set ΛΓ as the set of accumulation points of achronal orbits. This is
a closed achronal subset, contained in any Γ-invariant closed achronal subset of
∂AdS1,n. The interior of the set of achronal Γ-orbits in AdS1,n is the invisible
domain Ω(Λ) = E(Λ) ∩ AdS1,n, on which Γ acts properly, even if the quotient
is not always globally hyperbolic (it is globally hyperbolic if and only if ΛΓ is
edgeless, i.e. is the graph of a 1-Lipschitz map defined on the entire sphere Sn−1).

There is a very interesting criterion for achronality, involving a particular ele-
ment of the bounded cohomology of SO0(2, n). Recall the exact sequence:

0→ Z→ S̃O0(2, n)→ SO0(2, n)→ 0

where the Z is the cyclic group generated by the Galois automorphism δ. Then,
there is a canonical non-algebraic section s : SO0(2, n) → S̃O0(2, n): loosely
speaking, s(g) is the only lift of g ∈ SO0(2, n) such that for every affine do-

main U in ÃdS
1,n

, the intersection U ∩ s(g)U is never empty. Then, for every
g1, g2 in SO0(2, n), let c(g1, g2) be the integer in {−1, 0,+1} characterized by
s(g1g2) = δc(g1,g2)s(g1)s(g2). Then, c is a cocycle, representing an bounded coho-
mology class in H2

b (SO0(2, n),Z), called the bounded Euler class. Then, for every
subgroup Γ of SO0(2, n) the restriction of c to Γ is an element of H2

b (Γ,Z), called
the bounded Euler class of Γ and denoted by eub(Γ).

Theorem 5.4 ([17]). A subgroup Γ of SO0(2, n) preserves a closed achronal subset
of ∂AdS1,n if and only if eub(Γ) = 0.

5.4 Anosov representations

Recall that for any Lie group G, we denote by Rep(Γ, G) the modular space of
representations of Γ in G up to conjugacy in the target G.

Rep(Γ, G) := Hom(Γ, G)/G.
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In this section, we restrict to the case where Γ is a Gromov hyperbolic group. We
denote by ∂Γ the Gromov boundary of Γ, and by (ŨΓ,φ̃t) the geodesic flow of Γ

(see [33, 81]): there is a proper cocompact action of Γ on ŨΓ commuting with φ̃t

such that the induced flow φt on the quotient space UΓ := Γ\ŨΓ has a hyperbolic

behavior. In particular, there are two Γ-equivariant maps ξ± : ŨΓ → ∂Γ which
are constant along the orbits of φ̃t; more precisely, one can see ξ+(p) (respectively
ξ−(p)) as the limit of φ̃t(p) for t → +∞ (respectively for t → −∞). There is

also a map ν+ defined on ŨΓ that associates with every p a metric ν+(p) in
a neighborhood of ξ+(p), such that for every γ in Γ, the action of γ on ∂Γ is
an isometry between the metric ν+(p) near ξ+(γ) and the metric ν+(γ.p) near
ξ+(γ.p). Moreover, ν+(φ̃t(p)) increases exponentially with t.

Let X be a manifold on which G acts analytically, typically, a homogeneous
manifold G/H. A representation ρ : Γ→ G is (G,X)-Anosov if the properties of
the geodesic flow still hold when we replace ∂Γ by X. More precisely:

– there is a continuous equivariant map f : ∂Γ→ X, where ∂Γ is the Gromov
boundary of Γ,

– there is a continuous Γ-equivariant family of metrics ν+
ρ (p) parameterized by

ŨΓ, so that ν+
ρ (p) is a metric on X near f(ξ+(p)) that increases exponentially

along the orbits of φ̃t.

For more details or other presentations of the notion of Anosov representations,
see [65, 66, 61] or the section 2.1 of [26] or also the article [30].

The notion of Anosov representations was introduced by Labourie ([75]). It
has several interesting features:

– Anosov representations form an open domain Repan(Γ, G) of Rep(Γ, G),

– Anosov representations are always faithful with discrete image.

Labourie proved in particular that for any n ≥ 2, and in the case where Γ is
the fundamental group of a closed surface, one connected component (the so-called
Hitchin component) of Rep(Γ,PSL(n,R)) is made of (PSL(n,R),Fn)-Anosov rep-
resentations, where Fn is the variety of complete flags in Rn.

The de Sitter case. Once more, de Sitter space is the dual of hyperbolic space
Hn+1. It is well-known (see [65, 30]) that for any subgroup Γ of SO0(1, n+ 1), the
inclusion Γ ⊂ SO0(1, n+ 1) is (SO0(1, n+ 1),Sn)-Anosov if and only if it is convex
cocompact.

A particular interesting family of convex cocompact subgroups are the quasi-
Fuchsian subgroups, i.e. discrete subgroups isomorphic to a cocompact lattice of
SO0(1, n + 1) such that the limit set ΛΓ is a topologically embedded sphere in
∂Hn+1.

We point out here an interesting characterization of convex cocompact sub-
groups appearing in our framework: a non-elementary discrete subgroup Γ of
SO0(1, n + 1) is convex cocompact if and only the locally de Sitter globally hy-
perbolic domain Γ\Ω±(ΛΓ) is spatially compact.

In other words, one can characterize (SO0(1, n+1),Sn)-Anosov representations
as the holonomy representations of MGHC de Sitter spacetimes that are quotients
of hyperbolic domains of dS1,n (observe that this last condition is restrictive: there
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are closed Möbius manifolds whose developing map is not injective; therefore their
associated MGHC de Sitter spacetimes have also a non-injective developing map).

Remark 5.5. Unlike the other cases (see below), Repan(Γ,SO0(1, n+ 1)) is not
a closed subset of Rep(Γ,SO0(1, n + 1)). Indeed, quasi-Fuchsian subgroups can
be continuously deformed to the trivial subgroup. It follows that the holonomy
representation of a MGHC de Sitter spacetime, even if it is Gromov hyperbolic, is
not necessarily (SO0(1, n+ 1),Sn)-Anosov.

The anti-de Sitter case. The de Sitter case has been fully treated in [15]:

Theorem 5.6 (Theorem 1.2 in [15]). Let Γ be the fundamental group of a closed
manifold of dimension n. Assume that Γ is Gromov hyperbolic. Then, a represen-
tation ρ : Γ→ SO0(2, n) is (SO0(2, n),Ein1,n−1)-Anosov if and only if it preserves
a closed edgeless acausal subset Λ of Ein1,n−1.

Remark 5.7. If Γ is a discrete subgroup acting on AdS1,n and preserving a
closed edgeless acausal subset Λ of Ein1,n−1 such that the quotient Γ\Ω(Λ) is
spatially compact, then it is Gromov hyperbolic (see Section 8.3.2 in [15]). There-
fore, (SO0(2, n),Ein1,n−1)-Anosov representations are precisely holonomy repre-
sentations of MGHC AdS-spacetimes whose limit set is acausal, and not simply
achronal.

Remark 5.8. Split AdS-spacetimes have a fundamental group isomorphic to a
lattice of SO0(1, k) × SO0(1, `), hence are not Gromov hyperbolic. We already
mentioned that they may be exactly the MGHC AdS-spacetimes with non-acausal
limit set.

Finally, we have the following:

Theorem 5.9 ([17]). Let Γ be a Gromov hyperbolic group, isomorphic to the
fundamental group of a closed n-dimensional manifold. Then, if not empty, the
space Repan(Γ,SO0(2, n)) of Anosov representations is open and closed in the space
Rep(Γ,SO0(2, n)). In particular, it is a union of components of Rep(Γ,SO0(2, n)).

One of the main intermediate steps in the proof of this theorem is the following
result: if Γ ⊂ SO0(2, n) is a Gromov hyperbolic group and the holonomy group of a
MGHC AdS1,n-spacetime, then any achronal Γ-invariant closed edgeless achronal
subset of ∂AdS1,n is automatically acausal.

The flat case. This is the only case that has not been yet completely studied.
The only published result is the work of S. Ghosh ([52]): let Γ be a discrete
subgroup of Isom(R1,2), acting properly discontinuously on R1,2, and admitting
as linear part a convex cocompact subgroup of SO0(1, 2). Then, the inclusion Γ ⊂
Isom(R1,2) is (Isom(R1,2), I+)-Anosov. This result is the starting point for the
construction of a certain metric on the space of such representations, involving the
thermodynamical formalism, the pressure metric.

We propose here the following conjecture: let Γ be a Gromov hyperbolic group.
Then a representation ρ : Γ→ Isom(R1,n) is (Isom(R1,n), I+)-Anosov if and only
if it is achronal and the associated globally hyperbolic domain Ω(Λ) is proper.3

3Recall that Ω(Λ) is proper if its closure contains no affine line.
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These representations should also be characterized by the following property:
their linear part Lρ : Γ→ SO0(1, n) is faithful and convex cocompact.

6 The three-dimensional case: links with Teich-
müller space

In this section, we describe the several connections between the Teichmüller space
and MGHC AdS1,2-spacetimes revealed in Mess’s work ([79, 5]) and followers.
There are also similar links with MGHC spacetimes of constant curvature 0 or +1,
but we have decided to focus on the AdS case. For more information on this topic,
see [31, 19, 90].

6.1 Anti-de Sitter space as a space of matrices

An alternative description of AdS1,2. Consider the linear space Mat(2,R) of
two-by-two matrices with real coefficients, equipped with the quadratic form −det.
This space is isometric to (R2,2, q2,2), hence AdS1,2 is naturally identified with the
space of matrices of determinant 1, i.e. SL(2,R).

We have also the formula −det(A)Id = AÂ = ÂA where Id is the identity

matrix and Â the transpose of the matrix of cofactors. Therefore the bilinear form
associated with −det is:

〈X | Y 〉 = Tr(X̂Y )/2 = Tr(XŶ )/2

where Tr denotes the trace.

The isometry group. The actions of SL(2,R) on itself by left and right trans-
lations are isometric, and they provide a natural identification between SO0(2, 2)
and the quotient of SL(2,R)× SL(2,R) by the group of order two generated by
(−Id,−Id). Therefore, a representation ρ : Γ → SO0(2, 2) splits in two represen-
tations ρL, ρR from Γ into PSL(2,R).

The Minkowski space and the hyperbolic plane. LetM be the 3-dimensional
linear subspace of Mat(2,R) consisting of matrices with null trace. This is the
tangent space of SL(2,R) at the identity map. The restriction of −det to M has
index (1, 2), hence (M,− det) is a model for R1,2. Observe also that for X in
M , −det(X) coincides with Tr(X2)/2 in M . In particular, the hyperbolic plane
H2 is naturally identified with the space of matrices of determinant 1 and trace
0, therefore, with the space of complex structures J on R2 (since J2 + Id = 0).
In this model, the isometric action of an element A of SL(2,R) is the action by
conjugacy J 7→ AJA−1.

The Einstein spacetime Ein1,1. The Klein model of the boundary of AdS1,2

is the projectivization of the −det null cone in Mat(2,R), i.e. of non zero non-
invertible matrices. Such a matrix determines two lines in R2: its image and
its kernel; moreover the left action PSL(2,R) preserves the kernel and the right
action PSL(2,R) preserves the image. Therefore, there is a canonical identification
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of Ein
1,1

with RP1 × RP1, where the left factor of PSL(2,R)× PSL(2,R) acts
trivially on the left factor RP1, and the right factor acts trivially on the right

factor RP1. The lightlike geodesics of Ein
1,2

are the factors {∗} × RP1 and the
factors RP1 × {∗}. The image of the isotropic cone P(C2)) in P(R2,2) is also ruled
by two families of lines: they are these two families of lightlike geodesics.

This description of Ein
1,1

as a product of two circles is different from the
analogous decomposition for its double cover Ein1,1, which was defined as the
product S1 × S1 equipped with the metric ḡ1 − ḡ1. The factors {∗} × RP1 and
RP1 × {∗} can be seen, locally, as the diagonal and anti-diagonal in S1 × S1.

Achronal subsets of Ein1,1. Every closed acausal subset of Ein
1,1

intersects
every circle RP1 × {∗} and {∗} × RP1 in at most one point. Therefore, these sets
are graphs of increasing maps from RP1 into RP1. In particular, closed edgeless
acausal subsets are precisely the graphs of the homeomorphisms of RP1.

At the limit, every achronal subset Λ is a generalized graph of a semi-conjugacy.
By this we mean that Λ is the union of the graph of a non-decreasing map f : Λ0 →
RP1 (Λ0 is a closed subset of RP1) and some vertical segments {∗} × I where I is
a closed segment in RP1 (there is also the limiting case of purely lightlike subsets,
where Λ0 = ∅ and where Λ is one factor {∗} × RP1).

We hope that the reader will easily agree with the idea that the less awkward
definition of “generalized graph of generalized maps from RP1 onto RP1” is the

first definition given here, as closed achronal subsets of Ein
1,1

.

Timelike geodesics. We invite the reader to keep in mind the content of
the end of Section 3.4. See also the reference [12, Section 7.3]. In this low
dimension, the space of timelike geodesics T4 := SO0(2, 2)/(SO(2) × SO(2)) ≈
(PSL(2,R) × PSL(2,R))/(SO(2) × SO(2)) is isometric (up to a constant factor)
to H2 × H2 equipped with the product metric. This correspondence is expressed
in the following way: the timelike geodesic corresponding to an element (x, y) of
H2 ×H2 is the unique timelike geodesic preserved by the subgroup of PSL(2,R)×
PSL(2,R) fixing (x, y), namely made of pairs (g, h) where g is a rotation at x and
h a rotation at y. In particular, for every g in PSL(2,R) ≈ AdS1,2, the set of
timelike geodesics containing g is the graph of g in H2 ×H2.

The symplectic form ω is ω0 − ω0 where ω0 is the volume form on H2.
The following observation will be useful later: Let (x1, y1) and (x2, y2) be two

elements of H2 × H2. Then, the associated timelike geodesics of AdS1,2 have a
common point if and only if the hyperbolic distance between x1 and x2 is equal
to the distance between y1 and y2 — common points are then the elements of
PSL(2,R) mapping x1 to y1 and x2 to y2.

Timelike geodesics 2: more explicit computations. Recall that U1,2 is the
space of future oriented timelike vectors of AdS1,2. In our matrix model, U1,2 is
the space of pairs of matrices (A,C) satisfying:

– det(A) = det(C) = 1,
– A and C are orthogonal for −det.
The last condition is equivalent to Tr(AC−1) = 0. But recall that the space of

matrices of trace zero and determinant 1 is a model for H2. Therefore, (A,C) 7→
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(JL, JR), where JL := AC−1 and JR := C−1A, defines a map between U1,2 and
H2 × H2. This map is constant along the geodesic flow, and induces (up to a
scalar constant) the SO0(2, 2)-equivariant isometry between T4 and H2×H2 - it is
clear that JL (respectively JR) is invariant by right translations (respectively left
translations).

6.2 AdS1,2 globally hyperbolic spacetimes

References adapted to the content of this section are [19] and more recently [90].

Mess’s parametrization by Teich(Σ)×Teich(Σ). Let MΛ(Γ) = Γ\Ω(Λ) be a
MGHC spacetime locally modeled on AdS1,2. Then Λ is the generalized graph of a
semi-conjugacy between the projection ΓL of Γ in the left factor PSL(2,R) and the
projection ΓR of the projection in the right factor. It follows that these projections
are injective and that ΓL and ΓR are both discrete subgroups of PSL(2,R). More-
over, these groups are isomorphic to the fundamental group of Cauchy surfaces
of MΛ(Γ), hence of a closed surface. It follows that ΓL and ΓR are cocompact
lattices, and that Λ is the graph of the unique homeomorphism conjugating ΓL
and ΓR — in particular, it is acausal.

Conversely, given any pair ρL, ρR of faithful and discrete representations into
PSL(2,R) of the fundamental group Γ of a closed surface, the quotient of Ω(Λ)
(where Λ is the graph of the unique conjugacy between ρL and ρR) by the image
of the representation (ρL, ρR) from Γ into (PSL(2,R) × PSL(2,R))/(−Id,−Id) ≈
SO0(2, 2) is MGHC.

Therefore, for every closed surface Σ, there is a canonical one-to-one corre-
spondence between the space of AdS MGHC spacetimes diffeomorphic to Σ × R
up to isometry, and the product Teich(Σ)× Teich(Σ).

Diallo’s parametrization by Teich(Σ)×Teich(Σ). The boundary of the con-
vex hull Conv(Λ) in AdS1,2 is the union of two spacelike surfaces S±(Λ) (its past
and future components). Even if they are not smooth, the metric induced on each
of them is isometric to H2, therefore the quotient surfaces Γ\S±(Λ) represents two
hyperbolic closed surfaces, i.e. a point in Teich(Σ)×Teich(Σ) (not to be confused
with the Mess parameters). In his Ph D. thesis ([40]) B. Diallo proved that any
element of Teich(Σ)×Teich(Σ) can be obtained in this way, but the uniqueness of
the AdS1,2 spacetime realizing this pair of metrics is still an open question. This
result is the Lorentzian analogue of Epstein-Marden’s Theorem establishing the
realization of any element of Teich(Σ) × Teich(Σ) as the metric induced on the
boundary of the convex core of quasi-Fuchsian hyperbolic 3-manifolds ([43]).

Mess parametrization by measured geodesic laminations. As in the clas-
sical situation of quasi-Fuchsian hyperbolic manifolds, the future and past com-
ponents S±(Λ) are pleated surfaces , embedded isometric copies of H2 bended in
AdS1,2 along some measured geodesic lamination λ±. The pair of laminations
(λ+, λ−) is filling i.e. any closed curve c in S which is not homotopically trivial
has non-zero intersection with either λ+ or λ−. Mess proved that the map as-
sociating with every AdS1,2 MGHC spacetime the measured geodesic lamination
(Γ\S+(Λ), λ+) (or (Γ\S−(Λ), λ−)) realizes a one-to-one correspondence.
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One can also forget the hyperbolic metric on Γ\S±(Λ). In [25] Bonsante and
Schlenker proved that any filling pair of measured laminations (λ+, λ−) (but for-
getting the hyperbolic metrics) is realized as a pair of pleated laminations on the
convex core of a MGHC AdS-spacetime.

AdS1,2-spacetimes and earthquakes. In [79] Mess pointed out a connection
between AdS spacetimes and the notion of earthquake introduced by Thurston (see
[70]). Let λ be a measured geodesic lamination on H2. A convenient way to see
λ is to see it as a stratification of H2, with one-dimensional strata (the geodesics
in λ) and 2-dimensional strata (the closure of the components of H2 \ Supp(λ),
where Supp(λ) is the support of λ). The (left) earthquake defined by λ is a
non-continuous map Eλ : H2 → H2 that is an isometry on each 2-dimensional
stratum, but for which each 1-dimensional stratum is a rift on which Eλ may be
non continuous. When λ is a rational lamination, i.e. a locally finite collection
of weighted geodesic, we can give a more precise definition: if C1 and C2 are
two 2-dimensional strata bounding the same leaf ` of λ, and if g1 and g2 are the
isometries of H2 coinciding with Eλ on C1 and C2, respectively, then g2 = ha ◦ g1

where ha is the element of PSL(2,R) defined as follows:
– orient the geodesic ` so that C1 is on the left of `, and C2 on the right of `,
– let a be the weight of ` for λ,
then ha is the unique hyperbolic element preserving ` so that for every x in `

the image ha(x) is the unique element of ` in the direction of the orientation of `
and at distance a. The right earthquake is obtained with the other orientation of
`.

Earthquakes for general measured laminations are then defined by a limiting
process, at least in the case of measured geodesic laminations invariant by a co-
compact lattice of PSL(2,R), involving the density of rational laminations.

Earthquakes have then a natural extension to the boundary ∂H2. When λ is
preserved by a cocompact lattice, this extension is a homeomorphism, but if not,
this extension in general is merely a “generalized semi-conjugacy”, i.e. in the point
of view adopted in this survey, a closed edgeless achronal subset of ∂H2 × ∂H2.
A celebrated theorem by Thurston is that any homeomorphism of the circle is
realized by a left earthquake, and our purpose here is to point out that this theo-
rem is well explained in our AdS-background. Moreover, our presentation has the
advantage of providing a simpler and more direct definition of earthquakes avoid-
ing the technical difficulties associated with the step between rational measured
laminations and general ones.

Indeed, let Λ be a closed achronal edgeless subset of Ein1,1 (for example, the
graph of a homeomorphism). Consider the globally hyperbolic domain E(Λ).
Then, the space Σ(Λ) of cosmological lines is a closed embedded locally Lipschitz
disk in T4 ≈ H2×H2. This is not the graph of a map from H2 into H2 but almost:
this is directly the left earthquake. Indeed, this is the set of timelike geodesics
orthogonal to support hyperplanes of the future component S+(Λ) of the convex
hull of Λ, i.e. the level set {τ = π/2} of the cosmological time. The geodesics
orthogonal to a totally geodesic face of the pleated surface S+(Λ) form a region of
Σ(Λ) which is the graph of the restriction of an element of PSL(2,R) to a region
of H2 bounded by geodesics of H2, whereas the timelike geodesics orthogonal to
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S+(Λ) at the bending locus λ+ form some “vertical bands” made of points (x, y)
where x describes a geodesic `1 of H2 and y some segment I in a geodesic `2 of
H2. The hyperbolic length of I is the measure of the associated leaf of λ+.

In summary, in this vision, a left earthquake is the set of timelike geodesics
orthogonal to a pleated surface, and the main idea of Thurston’s Earthquake
Theorem reduces to the fact that the boundary of the convex hull of a closed
edgeless achronal subset is a pleated surface.

Cauchy surfaces and volume preserving maps. Anti-de Sitter geometry
also proposes a new vision on area preserving maps between hyperbolic surfaces.
Indeed, let MΛ(Γ) be a MGHC AdS1,2 spacetime, defined by two Fuchsian rep-
resentations ρL, ρR : Γ → PSL(2,R). For every Cauchy surface S of MΛ(Γ), the
Gauss map of S provides a Γ-equivariant map ν : S̃ → H2 × H2 whose image is
ω-Lagrangian. Since ω = ω0 −ω0, in the region where ν(S̃) is locally the graph of
a map f from H2 into H2, f is a volume preserving map.

We can be actually more precise: recall that the map U1,2 → H2×H2 is given,
in term of two-by-two matrices, by (A,C) 7→ (JL = AC−1, JR = C−1A). The
derivative of this map at a point (A,C) is given by:

J̇L = ȦC−1 −AC−1ĊC−1 = [Ȧ− JLĊ]C−1

J̇R = C−1[Ȧ− ĊJR].

Hence the hyperbolic norm −det(J̇L) is −det(Ȧ−JLĊ) and the norm of −det(J̇L)
is −det(Ȧ− ĊJR).

Now let p 7→ (A(p), C(p)) be the spacelike immersion induced by a smooth
spacelike immersion from a surface S̃ into AdS1,2: A(p)⊥ ∩ C(p)⊥ is the plane
tangent to A(S) at A(p). Then:

– The map X 7→ JLX preserves A(p)⊥ ∩ C(p)⊥: for X ∈ A(p)⊥ ∩ C(p)⊥, we
have:

Tr(ÂJLX) = Tr(A−1AC−1X) = Tr(C−1X) = 0,

and, since J2
L = −I2:

Tr(ĈJLX) = Tr(C−1AC−1X) = Tr(A−1AC−1AC−1X = Tr(A−1X) = 0.

– For X ∈ A(p)⊥ ∩ C(p)⊥ we have:

〈JLX | X〉 = Tr(JLXX̂) = det(X) Tr(JL) = 0.

It follows that JL is the complex structure on the tangent space associated with
the metric I on S̃ induced by the AdS-metric.

– Similar computations show that X 7→ −XJR is also this complex structure,
therefore:

∀X ∈ A(p)⊥ ∩ C(p)⊥ XJR = −JLX.

Therefore:

J̇L = [Ȧ− JLĊ]C−1

J̇R = C−1[Ȧ+ JLĊ].
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We deduce the formula relating the metric I, the associated complex structure
JL, the shape operator B and the left or right hyperbolic metrics gL, gR induced
by the composition of the Gauss map with the projection T4 ≈ H2 × H2 on the
left factor (compare with [90, Lemma 2.9]):

gL(v) = I(v − JLB(v))

gR(v) = I(v + JLB(v)).

In particular, ν(S̃) fails to be transverse to the fiber of the left or right factor
if and only if there is a non zero tangent vector v at p satisfying B(v) = ±JL(v).
If this happens, then, since B is self-adjoint and this basis is orthogonal, the
symmetric matrix expressing B in the basis (v, JL(v)) is:

±
(

0 1
1 0

)
.

In other words, ν(S̃) is not locally the graph of a map from H2 into H2 near
p ∈ S̃ if and only its mean curvature at p vanishes and its scalar curvature is −1.
This condition can also be formulated in another way: it means that S̃ is tangent
at order two to the space of timelike geodesics orthogonal to a given spacelike
geodesic (compare with the previous study of Gauss maps of pleated surfaces).

In particular, if the shape operator B satisfies I(B(v)) < I(v) everywhere, i.e.
if the absolute values of the principal curvatures of S̃ are all < 1, then ν(S̃) is the
graph of a volume preserving function f : H2 → H2.

Conversely, let f : ρL(Γ)\H2 → ρR(Γ)\H2 be any volume preserving smooth
map, lifting to a conjugacy f̃ : H2 → H2 between ρL and ρR. The graph of f̃
is a Γ-invariant embedded Lagrangian submanifold. At the end of Section 3 we
have seen that f̃ provides a map ϕ : H2 → U1,2, where U1,2 is the space of future
oriented timelike vectors of AdS1,2. We claim that furthermore, this map is Γ-
equivariant. This is not completely obvious since what is immediate is that for
every γ in Γ, we have ϕ ◦ γ = Φt(γ) ◦ ϕ for some real number t(γ) which a priori
might be non-trivial. But t : Γ → R is then a homomorphism, and if it is not
trivial, then it would have arbitrary big values, and this would contradict the fact

that Γ preserves a closed edgeless achronal subset of ÃdS
1,n

.
Therefore, the composition of ϕ with the bundle map U1,2 → AdS1,2 is a Γ-

equivariant map from H2 into AdS1,2, which is “almost spacelike” as explained at
the end of Section 3.

For a more complete treatment (but with a different presentation) of the link
between Cauchy surfaces in MGHC AdS1,2-spacetimes and volume preserving
maps between hyperbolic surfaces, with a list of special types of spacelike surfaces
with remarkable associated volume preserving maps between hyperbolic surfaces,
see [24, 90] and also [45] to appear in this Handbook of Group actions.

6.3 BTZ-multi black holes

In this section, we summarize the content of [12, 13], to which we refer for further
details (see also [1, 2, 3, 7, 8, 27, 28] in the physics literature). Consider the case
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of domains Ω(Λ) of AdS1,2 associated with closed achronal subsets Λ of Ein1,1,
but not necessarily edgeless. Then, the invisible domain E0(Λ) in Ein1,1 can be
interpreted as the conformal boundary of Ω(Λ). When Λ is preserved by a discrete
subgroup Γ of SO0(2, 2), the quotient of E0(Λ) by Γ is a conformal boundary for
MΛ(Γ).

In this case, Γ is the image of a representation (ρL, ρR) : Γ → PSL(2,R) ×
PSL(2,R) ≈ SO0(2, 2), and Λ is the (generalized) graph of a (semi-)conjugacy
between ρL and ρR.

Let Λ+, Λ− be the future (respectively past) boundary of E0(Λ). Then, Ω(Λ+)
and Ω(Λ−) are globally hyperbolic domains in Ω(Λ) that can be respectively inter-
preted as (multi)black holes and (multi)white holes. Indeed, Ω(Λ+) is the region
in Ω(Λ) which is invisible from the conformal boundary where the observer is
assumed to be located.

Despite the fact that it has not been done anywhere in the literature (as far
as we know), this vision can be extended in higher dimensions, where an n + 1-
dimensional AdS multi black hole could be defined as a locally AdS1,n-spacetime
admitting a compact convex core, and as conformal boundary a finite union of
MGHC conformally flat spacetimes. Presumably, this theory coincides with the
theory of convex cocompact subgroups of SO0(2, n). Such a theory would be a
natural analogue of the theory of Schottky groups, where convex cocompact means
(SO0(2, n),Ein1,n−1)-Anosov.

7 Proper actions

In this last section, we review what is known about discrete isometry groups
acting properly on the entire model spacetime. We will briefly mention results
in this direction, once more focusing on the connection with the space of timelike
geodesics.

7.1 Cocompact actions

This section is essentially a concise extract from a previous survey [9]. One of the
most important results is the completeness of Lorentzian manifolds of constant
curvature. The following result is much more difficult to prove than in the well-
known Riemannian case:

Theorem 7.1 ([32, 71]). Every closed Lorentzian manifold of constant curvature
is geodesically complete.

This theorem implies that closed Lorentzian manifolds are quotients by discrete
groups of isometries of the simply connected model spacetimes R1,n, dS1,n or

ÃdS
1,n

.

The classification of closed Lorentzian manifolds of constant curvature therefore
reduces to the classification of groups acting properly and cocompactly. It is
essentially solved, except in the AdS case.



40 Thierry Barbot

The de Sitter case. The de Sitter case is essentially trivial, due to the Calabi-
Markus phenomenom: a group acting properly discontinuously on dS1,n is nec-
essarily finite. Indeed, let S be the umbilical sphere, that is the intersection
between dS1,n ⊂ R1,n+1 and a spacelike hyperplane H of R1,n. Then for any g in
SO0(1, n+ 1), the iterate gH is a hyperplane, hence it intersects non-trivially H,
and H ∩ gH ∩ dS1,n is non-empty.

Therefore, since a finite group cannot act cocompactly on dS1,n, there is no
closed Lorentzian manifold of positive constant curvature.

The flat case.

Theorem 7.2 ([49, 55, 58]). Let M = Γ\R1,n be a closed Lorentzian flat manifold.
Then, up to finite covers, Γ is a lattice in a solvable subgroup G of Isom(R1,n)
acting simply transitively on R1,n.

There are many possibilities for the solvable Lie group G, see [43] for concrete
constructions in the case of the 3-dimensional Heisenberg and SOL groups, and
[58, 60] for a general study.

The anti-de Sitter case AdS1,n for n ≥ 3. According to the Chern-Gauss-
Bonnet formula ([34]), for even-dimensional anti de Sitter manifolds, the Euler
number equals the volume, up to a non-trivial multiplicative constant. But any
compact Lorentz manifold has a vanishing Euler number, since it possesses a di-
rection field. Therefore, AdS1,n may admit a compact quotient only when n is
even.

Conversely, for any even integer n = 2d, we have a natural inclusion of U(1, d) in
SO0(2, 2d), and U(1, d) acts transitively and properly discontinuously on AdS1,2d.
Therefore, for any cocompact lattice Γ of U(1, d), the quotient Γ\AdS1,2d is a
compact Lorentzian manifold of dimension 1 + 2d. In [99] Zeghib conjectured that
any closed Lorentzian manifold of constant negative curvature and of odd dimen-
sion ≥ 5 is of this form (observe that by the inclusion Γ ⊂ U(1, d) ⊂ SO0(2, 2d) is
rigid ([84, 97]), i.e. any deformation of Γ in SO0(2, 2d) is contained in a conjugate
of U(1, d) in SO0(2, 2d)).

The case of AdS1,2. Lattices of U(1, 1) ≈ SO0(2, 2) still provide compact quo-
tients of AdS1,2, but there are other examples. This was first observed by Goldman
([54]). Kulkarni and Raymond proved the following important structure theorem:
let Γ be a subgroup of PSL(2,R)× PSL(2,R) acting properly discontinuously on
PSL(2,R). Then, up to finite coverings, Γ is isomorphic to the fundamental group
Γg of a closed surface, and more precisely, the image of some faithful representa-
tion (ρ, r) : Γg → PSL(2,R)× PSL(2,R), where (up to swapping the factors) ρ is
a Fuchsian representation. In his thesis Salein ([87]) studied these representations
and found some new examples, based on the following criterion: a representation
(ρ, r) : Γg → PSL(2,R)× PSL(2,R) where ρ is Fuchsian acts properly discontinu-
ously on PSL(2,R) if and only if there is a 1-contracting map f : H2 → H2 such
that:

∀γ ∈ Γg f ◦ ρ(γ) = r(γ) ◦ f.
In her thesis ([68, 69]) F. Kassel proved that this criterion is equivalent to the
strict domination of r by ρ, i.e. to the requirement that for every γ in Γg, the



Lorentzian Kleinian Groups 41

translation length of r(g) is strictly dominated by the translation length of ρ(γ)
(with the convention that elliptic and parabolic elements have zero translation
length). Recently, Guéritaud, Kassel and Wolf proved that every connected com-
ponent of Rep(Γg,PSL(2,R)), except the two Teichmüller components, contains
an element r strictly dominated by some Fuchsian representation ρ, providing
many new examples ([62], see also [39, 95]).

Remark 7.3. Salein’s criterion has a very nice interpretation in terms of timelike
geodesics, pointed out in [36], and that we can state in the following way: there is
a Γ-equivariant 1-contracting map f : H2 → H2 if and only there is a Γ-invariant
foliation of AdS1,2 by timelike geodesics. Indeed, the graph of f in H2 ×H2 ≈ T4

is a family of timelike geodesics such that for every (x1, y1), (x2, y2) in this family
we have d(y1, y2) 6= d(x1, x2). We have seen at the end of Section 6.1 that this
means precisely that the corresponding timelike geodesics are pairwise disjoint.

Observe that this criterion is very different from the one concerning Gauss
maps of Cauchy surfaces: a contracting map f cannot preserve the volume, which
was the condition to be the Gauss image of a Cauchy surface.

Remark 7.4. The preceding remark may very well have an extension in the higher
dimensional case. It seems related to Zeghib’s conjecture about compact quotients
of SO0(2, 2d): indeed, U(1, d) can be characterized as the subgroup of SO0(2, 2d)
preserving a foliation of AdS1,2d by special timelike geodesics: the intersections
between AdS1,2d and J-complex lines in R2,2d ≈ C1,d for some complex structure
J calibrated with q2,2d. Hence it sounds reasonable to split Zeghib’s conjectures
in two, let us say, half-conjectures:

– a discrete subgroup Γ of SO0(2, n) acts properly discontinuously and cocom-
pactly on AdS1,2d if and only if it preserves a foliation by timelike geodesics;

– if a discrete subgroup Γ of SO0(2, n) preserves a foliation by timelike geodesics,
then it preserves the foliation by timelike geodesics associated with a complex
structure calibrated with q2,2d.

7.2 Margulis spacetimes

For a very nice recent review of most of this section (in French), see Schlenker’s
text for the Séminaire Bourbaki ([91]).

As mentioned above, compact complete flat manifolds have (virtually) solvable
fundamental groups. In [80] Milnor asked the following question: does the free
group admit a proper action on R1,2? In [76, 77], following a very partial hint in
[80], Margulis gave a positive answer to this question. Since then, quotients of
R1,2 by torsion-free discrete groups of isometries are called Margulis spacetimes.

Afterwards, Drumm introduced the notion of crooked planes, giving a more
intuitive geometric vision on these spacetimes ([41]), and extended considerably
the list of Margulis spacetimes by proving that every discrete free subgroup of
SO0(1, 2) is the linear part of the holonomy of a Margulis spacetime ([42]).

In [57], Goldman, Labourie and Margulis provided a necessary and sufficient
criterion on the so-called Margulis invariant for the action of a discrete subgroup
of Isom(R1,2) to be properly discontinuous.
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In their remarkable recent work [36, 37] Danciger, Guéritaud and Kassel elu-
cidated the most important remaining questions on Margulis spacetimes, at least
in the case where the linear part of the group is convex cocompact (i.e. in the
case where the inclusion Γ ⊂ Isom(R1,2) is Anosov, even if this remark has no
fundamental importance in their work):

– these spacetimes are foliated by timelike geodesics, in particular, they are
diffeomorphic to the interior of a handlebody,

– they all admit a fundamental domain delimited by crooked planes,
– they can be seen as infinitesimal versions of Margulis AdS-spacetimes in a

very precise geometric way.
Concerning the last item, let us note that Margulis AdS-spacetimes are quo-

tients of AdS1,2 by discrete subgroups of PSL(2,R)×PSL(2,R), images of faithful
representations (ρ, r) : F → PSL(2,R) × PSL(2,R), where F is a free group and
ρ : F→ PSL(2,R) a convex cocompact representation — hence, once more, (ρ, r)
is (SO0(2, 2),Ein1,1)-Anosov. Let us mention the last paper ([38]) where the au-
thors prove that, unlike flat Margulis spacetimes, Margulis AdS spacetimes do not
necessarily admit “crooked fundamental domains”.

Finally, for extensions of these results to proper affine actions on flat affine
spaces in higher dimensions (but then escaping from the Lorentzian framework),
see [92, 93, 94].
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Math. Ann. 306 (1996), 353-370.

[72] R. Kulkarni, Proper actions and pseudo-Riemannian space forms, Adv. Math.
40 (1981), 10-51.

[73] R. S. Kulkarni, F. Raymond, 3-dimensional Lorentz space-forms and Seifert
fiber spaces, J. Differential Geom. 21 (1985), 231-268.

[74] R.S. Kulkarni and U. Pinkall, A canonical metric for Möbius structures and
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