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Data analytic UQ cascade

Bijan MOHAMMADI

Abstract This contribution gathers some of the ingredients presented at Erice during the third workshop
on ’Variational Analysis and Aerospace Engineering’. It is a collection of several previous publications on
how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational com-
plexity for both forward and reverse uncertainty propagation. It uses data analysis ingredients in a context
of existing deterministic simulation platforms. It starts with a complexity-based splitting of the independent
variables and the definition of a parametric optimization problem. Geometric characterization of global
sensitivity spaces through their dimensions and relative positions through principal angles between vector
spaces bring a first set of information on the impact of uncertainties of the functioning parameters on the op-
timal solution. Joining the multi-point descent direction and Probability Density Function (PDF) quantiles
of the optimization parameters permits to define the notion of Directional Extreme Scenarios (DES) without
sampling of large dimension design spaces. One goes beyond DES with Ensemble Kalman Filters (EnKF)
after the multi-point optimization algorithm is cast into an ensemble simulation environment. This formula-
tion accounts for the variability in large dimension. The UQ cascade continues with the joint application of
the EnKF and DES leading to the concept of Ensemble Directional Extreme Scenarios (EDES) which pro-
vides a more exhaustive description of the possible extreme scenarios. The different ingredients developed
for this cascade also permits to quantify the impact of state uncertainties on the design and provide confi-
dence bounds for the optimal solution. This is typical of inverse designs where the target should be assumed
uncertain. Our proposal uses the previous DES strategy applied this time to the target data. We use these
scenarios to define a matrix having the structure of the covariance matrix of the optimization parameters. We
compare this construction to another one using available adjoint-based gradients of the functional. Eventu-
ally, we go beyond inverse design and apply the method to general optimization problems. The ingredients
of the paper have been applied to constrained aerodynamic performance analysis problems.

1 Context

Our domain of interest is aerodynamic shape optimization. The questions of interest are:
- can we propose an aircraft shape designed to have similar performances over a given range of some

functioning parameters (to be formulated through the moments of a functional) ?
- can we do that modifying as less as possible an existing mono-point optimization shape design loop ?
- is it possible for the time-to-solution cost of this parametric shape design to remain comparable to the

mono-point situation ?
We consider a generic situation where the simulation aims at predicting a given quantity of interest

j(x,α) and there are a few functioning or operating parameters α and several design parameters x involved.
The ranges of the functioning parameters define the global operating/functioning conditions of a given
design. This splitting of the independent variables in two sets is important for the sequel.
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We propose a cascade of ingredients to account for uncertainties avoiding any sampling of large di-
mensional spaces. A sampling will be only necessary for the functioning parameters u range leading to a
multi-point optimization problem.

The literature on uncertainty quantification (UQ) is huge. In short, forward propagation aims at defin-
ing a probability density function for j knowing those of x and α [20, 30, 23]. This can be done, for
instance, through Monte Carlo simulations or a separation between deterministic and stochastic features us-
ing Karhunen-Loeve theory (polynomial chaos theory belongs to this class) [16, 21, 59, 17, 57]. Examples
of shape optimization with polynomial chaos and surrogate models during optimization are given in [48, 8].

Backward propagation aims at reducing models bias or calibrating models parameters knowing the prob-
ability density function of j (or other constraints and observations) [54, 28, 6]. This can be seen as a mini-
mization problem and Kalman filters [29] give, for instance, an elegant framework for this inversion assim-
ilating the uncertainties on the observations.

Our aim is to propose a geometric framework to address the curse of dimensionality of existing ap-
proaches related to the explosion of their computational complexity due to the sampling necessary to access
probabilistic information, even if this can be improved with intelligent sampling techniques [52, 5]. The
different ingredients presented here can be applied with either high-fidelity or reduced order models, when
available [50, 47, 49, 56]. Low-order models are often used instead of the full models to overcome the
computational complexity of UQ.

After the splitting of the independent variables mentioned above, we define a multi-point formulation
to account for the variability on α . This is feasible because the size of α is assumed small. We define a
global sensitivity space using the sensitivities of j with respect to x for the multi-point problem. Once this
space built, we analyze its dimension. We previously showed how to perform this task and how to use this
information for adaptive sampling [34, 45].

The next step is to analyze the impact of different modeling or discretizations on the results. Differ-
ent models or solution procedures lead to different sensitivity spaces. Beyond their respective dimensions,
principal angles between the respective sensitivity vector spaces permit to measure the deviation due such
changes. The dimensions of the spaces and the angles are interesting measures for both the epistemic and
aleatory uncertainties. Indeed, suppose that, for a given model the dimensions of the sensitivity spaces re-
main unchanged when enriching the sampling of the functioning parameter range. This stability would be
a first indication of a low level of sensitivity of the simulations with respect to this parameter. Once this is
established, principal angles between subspaces permit to analyze both the impact of a given evolution of
the modeling on the sensitivity spaces or an enrichment of our sampling. Eventually, constant dimension
and low angles will clearly indicate a situation of low uncertainty.

These ingredients can be used in a context of multi-point robust analysis of a system to define worst-case
scenarios for its functioning. To this end we combine a multi-point sensitivity with the probabilistic features
of the control parameters through their quantiles [37, 27] to define the concept of Directional Extreme
Scenarios (DES) without a sampling of large dimension design spaces.

Ensemble Kalman filters (EnKF) [29, 2, 14, 15, 11, 12] permit to go beyond the directional uncertainty
quantification concept when accounting for the uncertainties in large dimension. They also permit backward
uncertainty propagation assimilating the uncertainty on the functional and constraints during the design. We
cast our multi-point optimization problem into the ensemble formulation. Joint application of the EnKF
and DES leads to the concept of Ensemble Directional Extreme Scenarios (EDES) which provides a more
exhaustive description of possible extreme scenarios.

Despite these approaches avoid the sampling of a large dimensional space the computation cost re-
mains high and the procedures difficult to simply explain in engineering environments. We propose a low-
complexity approach for the inversion of uncertain data where the target state u∗ used in an inverse problem
is uncertain. In this situation, we consider functional of the form j(x,α,u∗) = ‖u(x,α)−u∗(α)‖ to reduce
the distance between a model state u(x,α) and observations.

Targeting uncertain data is a realistic situation as the acquired data are usually uncertain. It is there-
fore interesting to be able to quantify the impact of this uncertainty on the inversion results. An important
information will be the sensitivity of the design to a given level of uncertainty on the data at some loca-
tion. Indeed, if this sensitivity is low, this would be an indication that a more accurate acquisition there is
unnecessary.

Considering the target as uncertain is also interesting because we do not always have existence of a
solution for an inversion problem as u∗ is not necessary solution of the state equation making an exact or
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deterministic inversion inversion pointless. Also, the approach permits to go beyond inversions based on
least square minimization involving a mean state target.

Finally, the uncertainty in measurements is also an interesting way to account for the presence of vari-
ability in the state (e.g. due to the presence of turbulence in the flow). More generally, as the model and
numerical procedures are by nature imperfect and partial, we can consider this uncertainty as a representa-
tion or estimation of these imperfections. These imperfections are even more present in inverse problems
where one cannot afford the same level of resolution than for a single simulation. We therefore need to be
able to quantify the impact of these weaknesses on the design. The approach presented here is therefore also
useful to account for epistemic uncertainties related to possible model or solution procedures deficiencies.

Concerning the computational cost of these analysis, one can say that, when using the same calculation
ingredients than in a high-fidelity simulation (i.e. without calling for low-order models or cheaper discretiza-
tions), the best calculation complexity one might think of for a simulation under uncertainty is when its cost
is comparable to the deterministic situation. This is clearly unreachable except if all the extra effort can be
achieved in a fully parallel manner and parallel to the initial deterministic calculation in order for the time
to solution to remain unchanged when accounting for the presence of uncertainties. This is the case with
Monte Carlo approaches. But these are quite expensive and do not take advantage of available simulation
environments. In particular, when an adjoint-based optimization environment exists. Our proposal consists
of upgrading existing platforms without abandoning what has been built for the deterministic situations and
with keeping the time to solution unchanged in the presence of uncertainties with two sources of parallelism
coming from the multi-point formulation to account for the uncertainties on the functioning parameters and
from the EnKF formulation for those on the optimization variables and observation data.

2 Parametric optimization

We are interested in a class of optimization problems where the cost function involves a functioning param-
eter α not considered as a design parameter:

min
x∈Oad

j(x,α), α ∈ I⊂ IRn,Oad ⊂ IRN . (1)

where x is the design vector belonging to Oad the optimization admissible domain. Usually, the functioning
parameters (or operating conditions) α are just a few. On the other hand, the size N of x is usually large.
Together, x and α fully describe our system and we have n << N. This splitting between functioning
parameters (or operating conditions) and design variables is central to our discussion.

In [34, 35] we showed how to use multi-point optimization to address such optimization problem. The
aim is to remove, during optimization, the dependency in α . This is done minimizing a functional J(x)
encapsulating this dependency expressed through A = { j(x,αk),αk ∈ IM} over IM a given sampling of I:

J = J(A), such that G(A)≤ 0. (2)

Several choices are possible for J and G to address the issue of robust design. For instance, following
Taguchi’s definition, one can look for minimal-variance design or only a given level for the variance. Indeed,
a classical approach to extend single point design and improve off-design points is to control µ mean
performance and σ variance of the functional [53] as in First-Order Second Moment (FOSM) methods [33].
One can also look for information about the tails of the distributions which can be linked to the variance in
the Gaussian framework and we use this relationship in quantile-based extreme scenarios.

Often it might be interesting to go beyond the first two moments and in particular consider the first
four moments of j during the design. Going beyond the first two moments is important when the PDF
of j deviates from a pure Gaussian distribution. Indeed, even with interval-based (with uniform PDF) or
Gaussian entries there is no reason the PDF of the solution of a simulation to remain uniform or Gaussian.

The third and fourth moments are the skewness γ and the kurtosis κ . One can consider that a robust design
should favor symmetry in the distribution which means lower absolute value of skewness. For instance, in
a Gaussian distribution we have γ = 0. Also, in a normal distribution the mean and median coincide and if
a PDF is not too far from a normal distribution, the median will be near µ− γσ/6. Therefore, if |γ| → 0 the
PDF tends toward a normal distribution. This provides an inequality constraint on |γ| as γ can be positive
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or negative. For an unimodal PDF a reduction of the skewness comes when the mean and the mode of the
distribution converge toward each other at given standard deviation.

Concerning the fourth moment, a robust design should favor higher density near the mean which means
higher kurtosis, but this is more subtle. Indeed, despite higher kurtosis means concentration of the probabil-
ity mass around the mean, it could also imply thicker tails in the PDF. This means that more of the variance
is the result of infrequent extreme deviations. We need therefore to define what we mean by robust design:
acceptance of frequent modest deviations or acceptance of infrequent extreme ones. If operational security
is a major concern the latter should be definitely avoided. Hence, a reasonable requirement would be to have
a design reducing the initial kurtosis value: κ ≤ κ0 together with a constraint on the variance σ .

3 Gradients, sensitivity spaces and admissible search directions

Monte Carlo simulations permit to recover these moments with an error decreasing as σM−1/2 with M the
number of functional evaluations and this rate is independent of n. But, for small n, classical numerical
integration over-performs Monte Carlo simulations in term of complexity based on the number of func-
tional evaluations to recover at a given accuracy these moments. As we are interested by small values of n
(typically n = 2 or 3 in our applications), this latter can therefore be preferred. Anyway, both Monte Carlo
trials and numerical integration lead to the introduction of weighted sums over a M-point sampling IM of I
as estimators of the previous moments.

The linearity in the sums permits to access the gradient of the moments with respect to the control
parameters x from the gradient of the functional at the sampling point αk. These are four vectors in SM =
Span{∇x j(x,αk),αk ∈ IM} ⊂ IRN . In applications of interest N is large. However, we showed that often
dim(SM)<< N [35, 34, 36]. This analysis also permits to a posteriori give confidence bounds on the choice
of the sampling size M which should be clearly larger than dim(SM). Figure 1 shows an example of this
analysis during the optimization of the shape of an aircraft with N = 5000 and M = 100 showing that
dim(SM) always remains below 35 making 100 a safe choice and clearly smaller than the dimension of the
optimization space. This is interesting as indeed, without other information and considering vector spaces
theory, the size of the sampling should be larger than the dimension of the control space (i.e. M = N +1).

 

 

 

  

Always bounded by 35 during optimization for M=100 

100 points sampling of I 

Fig. 1 Histories of Gram-Schmidt orthonormalization of {∇x j(x,αk), αk ∈ I100} during optimization. The dimension of the
global search space SM always remains below 35 which makes safe the choice of M = 100.

Let us denote by Ci=1,..,3 the three constraints on the second, third and fourth moments and let us consider
the subspace sM = Span{∇xCi=1,...,3}⊂ IR3⊂ IRN . Obviously p= dim(sM)≤ 3. Let us denote by {qi=1,...,p}
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an orthonormal basis for sM obtained, for instance, orthonormalizing the three gradient vectors by the Gram-
Schmidt procedure. The gradients G of the constraints can therefore be expressed as linear combination of
qi: G = (∇xCi=1,...,3) = P−1(qi=1,...,p) with P being the matrix expressing the coordinates of q in G.

With equality constraints, a descent direction d can be obtained writing the first order optimality condi-
tion stating that d needs to be orthogonal to sM . Hence, using the local orthonormal basis {qi=1,...,p}, we
consider d given by:

d = ∇xµ−
p

∑
i=1

< ∇xµ,qi > qi. (3)

Denoting by Π the matrix of the projection operator < ∇xµ,q > we have:

d = ∇xµ− (ΠPG)t PG = ∇xµ− (GtPt
ΠP)t G = ∇xµ +Λ

tG,

with Λ t = (λ1,λ2,λ3) ∈ IR3. We have d→ 0 with the optimization iterations converging. Stationarity in d
therefore realizes the first order optimality condition for the Lagrangian L = J+Λ tC.

With inequality constraints, the solution of our minimization problem needs to verify the first order
KKT conditions [46]. But, the optimality condition for the Lagrangian will involve only positive Lagrange
multipliers: Λ ∈ IR3

+ and ∇xL = ∇xJ +Λ t∇xC = 0 with the complementarity condition Λ tC = 0 meaning
that λi = 0 if Ci ≤ 0 and λi > 0 if Ci = 0 (i.e. Ci is an active constraint). To define d we follow what put in
place for the equality constraints, but only considering active constraints gradients in the definition of sM
which is not anymore a subspace but a convex cone:

sM = {x | x =
3

∑
i=1

βi∇xCi,βi > 0 | Ci = 0} ⊂ IR3 ⊂ IRN (4)

At the solution, ∇xJ is orthogonal to this cone. Before working on the cone, let us start defining a lo-
cal orthonormal basis {q̃i=1,...,p} for s̃M from (4) buth with βi ∈ IR. This is therefore a subspace and
the basis can be defined as previously with p = dim(sM). Now, qi = ±q̃i and the sign chosen such that
< qi=1,...,p,∇xC j >≥ 0, if C j = 0 for j = 1, ...,3 (i.e. pointing inside the cone). Here, {qi=1,...,p} are there-
fore the generators of the cone sM deduced from a basis of s̃M . If the generators cannot be defined, the
problem is found having no solution as at least two of the constraints are incompatible with the gradi-
ents parallel and pointing in opposite directions. These generators permit to define the admissible search
direction d from (3) but taking into account that we only remove the non admissible contribution:

d = ∇xµ−
p

∑
i=1

χi < qi,∇xµ > qi, (5)

with χi = 0 if < qi,∇xµ >≥ 0 and χi = 1 if < qi,∇xµ >< 0.

4 A multi-point descent algorithm

Our aim is to use existing platforms. Hence, to compute the ingredients above we use an available single-
point optimization environment which can be easily modified for parallel multi-point calculations. This
platform involves a direct simulation chain linking the parameters (x,α) to the state u solution of a state
equation F(u(q(x,α)) = 0 and its adjoint v and to a functional j:

• Given x0,0 < ρ,IM, pmax,
• Optimization iterations p = 1, ..., pmax

– 1-M parallel state equation solutions F(u(q(xp),αk)) = 0, αk ∈ IM ,
– 2-M parallel evaluations of j(xp,αk), αk ∈ IM ,
– 3-M parallel solutions of the adjoint state v equation:

vtFu(u(q(xp),αk)) = jtu, αk ∈ IM ,
– 4-M parallel evaluations of ∇x j(xp,αk) = jx +(vtFx)

t , αk ∈ IM ,
– 5-define d the descent direction using (5),
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– 6-minimization using d: (e.g. xp+1 = xp−ρd),
– Stop if a given stopping criteria is achieved.

In multi-criteria problems steps 2, 3 and 4 include the treatment of more than one functional inducing a
different definition of the descent direction d to account for other constraints (mainly physical this time)
than the moment-based ones mentioned above.

Despite the natural presence of parallelism due to the M independent evaluations of the state, functional
and its gradient, computational complexity remains an issue. We have shown previously how to reduce
this effort optimizing the sampling size [34] together with the use of incomplete sensitivity concept in
the evaluation of the gradients which permits to avoid the solution of the M adjoint equations [43]. This
is particularly suitable when using black-box state equation solvers not providing the adjoint of the state
variables.

Such minimization problems have brought new interest to descent methods and this not only because
of their lower computational complexity compared to gradient free methods [1, 24, 46]. Indeed, beyond
minimization, we saw that gradients are useful to see what should actually be the search space in a context of
robust multi-point design [35, 36]. Hence, beyond individual gradient accuracy (i.e. at each of the sampling
point), what is important in multi-point problems is the global search space defined by the ensemble of the
gradient vectors. This means that one might tolerate higher error levels in each of the gradient defined at the
different sampling point than for a single-point optimization situation as what is important is for the global
search space to remain nearly unchanged. An interesting mathematical concept which permits to measure
the deviation between two subspaces is the principal angles between subspaces.

5 Angles between subspaces

We use the mathematical concept of ’principal angles’ between subspaces in the Euclidean spaces (here
IRN) initially introduced by C. Jordan [26]. If the maximum principle angle between the two subspaces
is small, the two are nearly linearly dependent. Geometrically, this is the angle between two hyperplanes
embedded in a higher dimensional space.

Let us briefly recall the concept of principal angles and how to practically compute them [18, 25].
For simplicity, suppose A and B are two subspaces of dimension k of IRN ,N ≥ 2k, although this is not a
prerequisite to define the principal angles. The k principal angles {θi, i = 1, ...,k} are recursively defined as:

cos(θi) =
< ai,bi >

‖ai‖‖bi‖
= max{< a,b >

‖a‖‖b‖
: a⊥ am,b⊥ bm;m = 1, ..., i−1},

where a j ∈ A and b j ∈ B.
The principal angles θi are between 0 and π/2. This is an important point and will be used later to take
advantage of the positivity of the cosine of the angles. The procedure finds unit vectors a1 ∈ A and b1 ∈ B
minimizing the angle θ1 between them. It then takes the orthogonal complement of a1 in A and b1 in B and
iterates. This procedure is not useful in practice as computationally inadequate. We would like to be able
to find the angles θi from the inner products < ai,b j > of the elements of two bases of A and B [51]. This
would be interesting in our multi-point optimization context where we can exhibit an orthonormal basis of
the global search space for the multi-point optimization problem using Gram-Schmidt orthonormalization.
Now, let {ai, i = 1, ...,k} and {bi, i = 1, ...,k} be two arbitrary orthonormal bases for A and B. Orthonormal
bases are easy to obtain through the Gram-Schmidt orthonormalization procedure. Consider M being the
matrix of the projection operator PrA of B onto A defined by:

PrA(bi) =
k

∑
j=1

< bi,a j > a j, M = (< bi,a j >)i, j.

The principal angles can be linked to this operator [51] through:

M = GΣHt ,

where G and H are orthogonal matrices and Σ = diag(cos(θi)).
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As G and H are orthogonal matrices, this is a Singular Vector Decomposition (SVD) of M. G and H are
unknown at this point. But, we will show that we do not need them to get the θi. Otherwise, the approach
will be again computationally useless.

We recall that the columns of G are the left-singular vectors of M and eigenvectors of MMt and the
columns of H are the right-singular vectors of M and eigenvectors of MtM. And most important that cos2(θi)
are the eigenvalues of Prt

A
PrA which writes in matrix form as: MtM = (GΣHt)t(GΣHt) = HΣ 2Ht with

Σ 2 = diag(cos2(θi)).
Therefore, to find the principal angles between subspaces A and B, knowing an orthonormal basis in each

subspace, one should calculate M and find the eigenvalues of MtM and take the square root of them. This
last operation is valid as the angles are between 0 and π/2, and their cosine therefore always positive.
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Fig. 2 Principal angles between the subspaces generated by an exact gradient calculation and the linearization of two reduced
order models. This permits to quantify the pertinence of an approximation from the whole spectrum. Model M1 is found to be
a better approximation even with a first principal angle slightly larger than with M2.

We presented the approach for subspaces of the same dimension k, but it is not necessary for the two
subspaces to be of the same size in order to find the angles between them. We need N ≥ 2k to be able to
exhibit two orthogonal subspaces. If N < 2k, some principal angles necessarily vanish and for N = k they
all vanish. This procedure is still valid if the subspaces have different dimensions. The projection operator
can be defined as well as its transpose and the eigenvalues of MtM are real as this is a symmetric square
matrix.

In our optimization applications we always proceed first with a reduction in size of the search space
using a sampling reduction size algorithm [34]. This makes the calculation of the whole set of eigenvalues
feasible in terms of calculation complexity. However, if this is out of reach, one can evaluate the bounds
on the angles to see the global pertinence of our reduced order models and gradient approximations. This
can be done without an exact calculation of the all eigenvalues. It is sufficient to use the Gershgorin circle
theorem to find these bounds as every eigenvalue of MtM lies within at least one of the Gershgorin discs
D((MtM)ii,Ri) centred on (MtM)ii and with radius Ri = ∑ j 6=i |(MtM)i j|. And because MtM is symmetric,
the eigenvalues being real, we only consider the intersection of the discs with the x-axis. Alternatively, the
largest and smallest principal angles can be found using iterative power and inverse power methods applied
to MtM.
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One should however be aware that these bounds might not be sufficiently sharp to discriminate between
two reduced order models and decide, for instance, which one is more adequate for sensitivity analysis.
Figure 2 shows a typical sketch. It represents principal angles calculated between a first subspace generated
by the exact gradients of a transport model for a 10 points sampling of one of the functioning parameters of
the model and two subspaces generated by the sensitivities derived from two approximations of this model
for the same sampling. Details of the models can be found in [38]. But the modeling problem is not of a
main concern here. What is important is that if one only considers the first and last principal angles, model
M2 is found being a better approximation to be used in a linearization procedure. However, with the whole
spectrum in hand the picture is quite different and M1 appears be more suitable if one intends to use this
reduced order model for sensitivity analysis.

Principal angles between multi-point search spaces are interesting to measure the pertinence of sensitivity
definitions based on different models or numerics. Indeed, the design will be unaffected by a reduction in
the model’s complexity if the search subspaces, generated by the gradients at the sampling points of the
functioning parameter interval and their approximations, remain the same. This is therefore an original
quantification tool for epistemic uncertainties.

6 Inversion for incertain data

Let us expand the class of problem introduced in section 2 to the following situation:

min
x∈Oad

j(x,α,u∗), u∗ ∈ IRp,α ∈ I⊂ IRn,Oad ⊂ IRN . (6)

u∗ represents either measurements or state estimations. It is a vector of random variables. We are interested
in functionals j of the form:

j(x,α,u∗) = j̃(x,α)+
1
2
‖Πu(x,α)−u∗(α)‖2. (7)

The first term is what has been discussed up to now. Operator Π : IRN → Rp (typically a linear interpola-
tion operator) makes the state available at data locations. Inverse problems are in this class [22, 54]. This
formulation also permits to see the state as uncertain as a whole with Π the identity operator. One can
also introduce zoning techniques (as shown in figure 6) to discriminate through the level of confidence one
might have on the state evaluation following the variability one observes in practice (experimental or in
flight). It is indeed well known that the flow distribution is quite stable in the cockpit and over the first and
business class siting area where the flow is nearly potential. On the other hand, flow variability increases
spanwise (easy to see from wings tips motions) and also toward the tail of the aircraft (flying coach once
makes this easy to understand). These are due, among others, to separated turbulent flows instabilities and
fluid-structure interactions which are more difficult to predict and the state is therefore more ’uncertain’
there.

To summarize, we assume the components of u∗ independent, uncertain and given by their Gaussian
PDF, for instance, N (µi,σ

2
i ), i = 1, ..., p with mean µi and variance of σ2

i . Covu∗ is therefore a diagonal
matrix.

The simplest way to measure the effect of these uncertainties on the inversion result is again to proceed
with Monte Carlo simulations. This implies a sampling of the variation domain of the data consistent with
their PDF. This means we proceed with M independent inversions for M data sets defined by independent
choices compatible with the PDF of u∗ given by:

N (µi,σ
2
i )→ (u∗i)

m, i = 1, ..., p, m = 1, ...,M.

These independent inversions will produce M optimal control parameters xm
opt , m = 1, ...,M from which

statistical moments can be defined (typically the mean and variance) with again a rate of convergence in
M−1/2 independent of p. Such generation of scenarios is already very demanding when involving only a
direct simulation chain. In our problem, each of the scenarios involves an inversion, each requiring several



Data analytic UQ cascade 9

solutions of the direct and adjoint problems. This complexity makes that this approach is clearly out of the
table even if the calculations are independent and can be carried out in parallel.

6.1 Low-complexity uncertainty evaluation

In the sequel, we discuss two low-complexity constructions of Covx the covariance matrix of the control
parameters from Covu∗ the covariance matrix of the data. We want these constructions to have a cost com-
parable to a deterministic inversion and, again, we want to avoid any sampling of a large dimension space.

7 a-Quantile

Consider a random variable v with its PDF known (either analytic or tabulated). The tail of the PDF can be
characterized defining for a given probability level (0 < a < 1) the following threshold value:

VaRa = inf{l ∈ IR : P(v > l)≤ 1−a}.

Different a-quantile are available. One very well known is the Value at Risk (VaR) which has been widely
used in financial engineering as a measure of risk of loss on a given asset [27]. We do not need the time
dependency issue here but it is interesting as it permits to account for possible improvement of measurement
accuracy as discussed in [37].

7.1 Bounding the uncertainty domain

We would like to use the concept of a-quantile (we call in the sequel VaR) to define a closed domain
of variation for the uncertain data [37]. Given a threshold 0 ≤ a < 1, a data u∗i, i = 1, ..., p belongs to
the interval [µi +VaR−a ,µi +VaR+

a ] with VaR−a ≤ 0 ≤ VaR+
a with probability a. As we consider Gaussian

probability density functions we have VaR−a =−VaR+
a and the values at risk are explicitly known:

VaR0.99(N(0,1)) = 2.33, and VaR0.95(N(0,1)) = 1.65,

and VaRa(N(0,σ2)) = σ2VaRa(N(0,1)). We have therefore, with probability a, an uncertainty domain for
the data given by:

Ba(µ) = Π
p
i=1[µi−1.65σ

2
i ,µi +1.65σ

2
i ]⊂ IRp

This is a large domain and we do not want to proceed with any sampling.

7.2 Directional Extreme Scenarios (DES)

However, using the sensitivity of the functional with respect to the data we can identify two directional
extreme sets of data corresponding to the intersection of Ba(µ) and d = µ + t ∂ j/∂u∗, t ∈ IR. Let us call
these two data sets (u∗)± defined by:

(u∗)± = µ±1.65 σ
2
i

(
∂ j/∂u∗

‖∂ j/∂u∗‖

)
i
. (8)

To measure of the impact of this variability on the result of the inversion, we proceed with two mini-
mizations with the target data given by (u∗)± starting from x∗ = xopt(u∗ = µ). Let us call (x∗)± the results
of these inversions.

We assume monotonic behavior of the outcome of the inversion with respect to the data:
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‖x∗(µ)−x∗(ν)‖↗ if ‖µ−ν‖↗ . (9)

This assumption is reasonable and means that larger deviations in data sets bring larger variations in the
outcome of the optimization. This also suggests that the maximum deviation for the results of the inversion
due to the uncertainty on the data can be estimated through: X± = (x∗)+− (x∗)−. Hence, we introduce a
first approximation to the covariance matrix Covx± [58] for x:

Covx± = IE((X±)(X±)t)− IE(X±)IE(X±)t ∼ (X±)(X±)t − (X±)(X±)t , (10)

with X± = ((x∗)++(x∗)−−2x∗)/2.
The monotonicity hypothesis can be a posteriori checked, at least partially, measuring the distance be-

tween (x∗)± and x∗± ρ∇x j(x∗,u∗),ρ > 0. This expression permits to identify two bounds ρ± and two
intervals [0,ρ±] on which the monotonicity is verified. Larger values of parameters ρ± a posteriori enforce
the hypothesis.

If one looks at optimization from the view point of controllability for dynamical systems [3, 43], quantiles
can be introduced in optimization algorithms [37]. The notion of over-solving appears then naturally where
it becomes useless to solve accurately near an optimum when the variations in control parameters between
two iterations of the optimizer fall below the uncertainties defined through a local uncertainty ball: all the
points inside this ball being indeed equivalent in term of the confidence one can have on their performance.

We have presented the concept of Directional Extreme Scenarios in [35, 36] with applications to robust
shape optimization in aeronautics, atmospheric dispersion and also to quantify the sensitivity of littoral
erosion to uncertainties in bottom sand characteristics [42]. Directional Extreme Scenarios can be defined
for x as well, considering the components of the design vector as random variables. It is indeed interest-
ing to account for uncertainties in large dimensional spaces. We have also extended the DES considering
ensemble-based simulations after casting the multi-point optimization algorithm into the Ensemble Kalman
Filters (EnKF) formalism (see [39] for the details). The joint application of the EnKF and DES leads to
the concept of Ensemble Directional Extreme Scenarios (EDES) which provides more exhaustive possible
extreme scenarios knowing the Probability Density Function of our optimization parameters. A sketch of
these constructions is shown in figure 3.
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+/- along d 

Ba(x) 

Dq=span{dl
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 )(VaR  -/ xDq
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Fig. 3 Sketch of Directional Extreme Scenarios (DES) given by x± = d∩∂Ba(x) and Ensemble Directional Extreme Scenarios
(EDES) Dq∩∂Ba(x) for an ensemble of size q (x being the ensemble mean) The grey zone is not necessary connected.
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8 From the adjoint to the covariance matrix of the optimization parameters

Another construction of Covx takes advantage of our adjoint calculation leading to ∇x j the gradient of the
functional with respect to the optimization parameters [41].

Let us recall the adjoint formulation for a generic state equation F(u(x,α)) = 0. The gradient of j with
respect to x writes:

∇x j =
∂ j
∂x

+

(
(

∂ j
∂u

)t ∂u
∂x

)t

=
∂ j
∂x

+

(
(

∂ j
∂u

)t (
∂F
∂u

)−1 ∂F
∂x

)t

=
∂ j
∂x

+

(
vt ∂F

∂x

)t

,

where we have introduced the adjoint variable v solution of:

vt ∂F
∂u

= (
∂ j
∂u

)t , (11)

and used in algorithm of section 4. In cases the governing equations are self adjoint (i.e. ∂F
∂u = ( ∂F

∂u )
t ), one

can use the corresponding solver with ∂ j
∂u as the right-hand side and simply solve:

∂F
∂u

v =
∂ j
∂u

.

Also, if F is linear, ∂F
∂u is a constant operator independent of u. The interest of the adjoint formulation is that

the cost of getting ∇x j becomes independent of the size of x. But, the problem with the adjoint approach
is that, except for the two situations we mentioned (linear or self adjoint state equations), it needs the
development (and maintenance) of a new code. This is why we use automatic differentiation when possible.

In multi-criteria problems like the one shown in section 9, where the functional j is minimized under
equality or inequality constraints ci=1,...,q, we need to solve an adjoint problem for the functional and each
of the active constraints (needed to express the first order KKT conditions). This can be seen as a block
diagonal matrix inversion with all blocks similar and the right-hand side given by (∂u j,∂uc1, ...,∂ucq)

t if we
have q active constraints. Automatic differentiation in reverse mode with multiple right-hand side capacity
can be used to address this problem. Otherwise, deflation techniques for linear systems with multiple right-
hand sides can be applied [55, 31] taking advantage of the fact that the blocks being the same the Krylov
decomposition needs to be conducted only once.

j involves the least square deviation at data location between model and data. ∂u j in the right-hand side
of (11) can be obtained writing:

j(x,u∗) = j̃+
1
2
‖Πu−u∗‖2 = j̃+

1
2
< Πu−u∗,Πu−u∗ >

= j̃+
1
2
< Π

t
Πu,u >−< Π

tu∗,u >+
1
2
< u∗,u∗ >,

and we have ∂u j = ∂u j̃+Π tΠu−Π tu∗. On the other hand, the sensitivity of j with respect to the data ∂u∗ j
needed in (8) is given by ∂ j/∂u∗ =−(Πu−u∗).

With ∇x j in hand, let us establish another expression for the covariance matrix of x considered as a
vector of zero-mean random variables. Denote, for simplicity, by u the model solution (zero-mean valued:
u← u−µ) at data location and suppose it is linked to the parameters through a linear model: u = Lx. The
covariance matrix for u is therefore:

Covu = IE(uut) = IE(L xxt Lt) = L IE(xxt) Lt = L Covx Lt .

If the dependency of u with respect to the parameter x is nonlinear the analysis holds for the linearized
model. Introducing J = ∂u/∂x we have:

Covu = J Covx J t .

To get Covx we need therefore to invert this expression and because the amount of data can be large and
probably impossible to exactly fit, we proceed with a least-square formulation looking for Covx minimizing:
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1
2
< J Covx J t ,J Covx J t >−<Covu,J Covx J t > .

First order optimality condition with respect to Covx gives:

J tJ Covx J tJ −J t Covu J = 0,

which leads to
Covx = (J tJ )−1 J t Covu J (J tJ )−1,

and eventually, to
Covx = J −1 Covu J −t =

(
J t Cov−1

u J
)−1

. (12)

To get Covx and knowing Covu, it is therefore sufficient to evaluate J = ∂u/∂x. The second expression
in (12) is interesting as it involves the inversion of a square matrix and gives a least square sense to the
inversion of rectangular matrices. Also, if the optimization is successful and model u and data u∗ close, we
can use the fact that data are usually independent and use the covariance matrix of the observation instead
of Covu:

Covu ∼Covu∗ ,

which is then diagonal and its inversion straightforward.
The question is, therefore, how to efficiently evaluate J = ∂u/∂x. The model at data locations Πu

is obtained applying, for instance, a linear interpolation operator Π to the model solution u on the mesh.
Therefore, we have:

J = Π
∂u
∂x

.

Now recall that ∇x j is available and has been computed with an adjoint approach. We now use it to access
∂u/∂x without extra calculation:

∇x j =
∂ j
∂x

+

(
(

∂ j
∂u

)t ∂u
∂x

)t

=
∂ j
∂x

+

(
(

∂ j
∂u

)t
Π
−1J

)t

,

The first terms in the right-hand side is zero if there is no direct dependency on x in j. It is non-zero, for
instance, if a Tykhonov regularization term is introduced in the functional [54]. This leads to:

(
∂ j
∂u

)t
Π
−1J = (∇x j− ∂ j

∂x
)t ,

and eventually to,

J = Π (
∂ j
∂u

)−t (∇x j− ∂ j
∂x

)t . (13)

the components of (∂ j/∂u)−t which is a line vector are given by the inverse of those of (∂ j/∂u) and
scaled by the inverse of its size in order to have (∂ j/∂u)−t .(∂ j/∂u) = 1. Alternatively, to avoid numerical
difficulties with small components of (∂ j/∂u), (13) can again be seen in a least square sense with the
inverse of a normal matrix involved:

J = Π

(
(

∂ j
∂u

)(
∂ j
∂u

)t
)−1

∂ j
∂u

(∇x j− ∂ j
∂x

)t . (14)

This expression involves the inverse of the information matrix ((∂ j/∂u)(∂ j/∂u)t ). One should be aware
that the numerical condition of this matrix can be very poor. We do not discuss this issue here but typically
the Bunch and Kaufman [4] algorithm should be used in order to account for this possible deficiency. In
particular, if rank deficiency is detected the Moore-Penrose inverse should be used based on the eigenvalue
decomposition of the information matrix [9].

Under the hypothesis of the validity of the physical model, this analysis gives indications on the level
of backward sensitivity of the optimization parameters with respect to the model solution at data locations
which is also the sensitivity with respect of the deviation between the model and data at the data locations
(as the data are independent of the optimization parameters):
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∂u
∂x

=
∂ (u−u∗)

∂x
.

9 Applications to robust aircraft shape design

These ingredients have been applied to several aircraft shape designs in cruise conditions [34, 36, 35, 41].
Many sources of variability exist in these problems, for instance, due to a change in the weight of the aircraft
during the flight because of fuel consumption or due to variability in the flight conditions. Two parameters
should be particularly given consideration as our α: the Mach number and the sideslip incidence angle.
The sideslip angle is important to account for situations where the aircraft cruises against transverse winds
which are very common. A non zero sideslip angle induces fully 3D effects on the flow around the plane
making necessary the consideration of a full aircraft during the design. Usually aircraft are designed for a
range of angle of incidence. But, these designs are usually realized with the sideslip angle set to zero. It is
therefore necessary to reduce the sensitivity of the design with respect to this parameter. However, because
the airplane geometry is symmetric spanwise, it is not necessary to consider a symmetric range for the
transverse wind but we need to consider the whole aircraft as there is no spanwise symmetry in the flow for
non zero sideslip angles.

9.1 Single-point shape optimization platform

We work in the framework of an existing shape optimization platform. We use, in particular, several of its
simulation codes for the shape parameterization and deformation, for the mesh deformation, for the flow
calculations around the aircraft and for the shape adjoint sensitivity analysis of aerodynamic coefficients.
This is a very standard and generic situation and one shall consider these as black-boxes.

Let us briefly recall our direct dependency chain linking independent variables (α,x) to the dependent
variables (q(x),U(α,x)) describing geometrical entities and state variables and to the cost function (here
the drag coefficient Cd) and to the constraints ci=1,...,4:

(α,x)→ (q(x),U(α,q(x)))→ (Cd ,ci=1,...,4)(α,x,q(x),U(α,q(x))). (15)

It is important to identify all dependencies in order for the sensitivity analysis to be complete, especially
when the operating conditions are not anymore single valued. The functional and constraints will be de-
scribed in section 9.1.3.

9.1.1 Shape parameterization and geometrical entities

In (15) x denotes a CAD-free parameterization [43, 44] which does not require a priori local regularity
assumptions on the shape as it is implicitly the case in Computer Aided Design (CAD) based shape defini-
tions. More precisely, x represents shape deformations along the normal to the triangular faces of the surface
mesh as shown in figure 4. For the problem discussed here this search space has a dimension N of several
thousands. This parameterization receives different denominations and belongs to the same class as node-
based or free-form shape definitions. In all these approaches the regularity of the deformation needs to be
monitored [32, 43]. This parameterization is intermediate in term of generality between CAD definitions of
shapes and fully free topological optimization choices where both the regularity and topology of the shape
are free. Examples of shape deformation produced by our optimization procedure for different regularity
requirements are shown in figure 5. Need for regularity control comes from the fact that, unlike with a CAD
definition, the shape ∂Ω of an object Ω and a gradient-based deformation of ∂Ω do not belong to the same
function space in terms of regularity and, actually, the second is always less regular [41, 43, 44].

This can be illustrated on a simple example with J(x) = ‖Ax− b‖2 taking x ∈ H1(∂Ω), Ax and b in
L2(∂Ω). The gradient J′x = 2AT (Ax−b) belongs to H−1(∂Ω). Therefore, any variation along J′x will have
less regularity than x: δx =−ρJ′x =−ρ(2(Ax−b)A) ∈H−1(∂Ω). We therefore need to project (or filter or
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smooth) into H1(∂Ω). Now, suppose the shape is described in a finite dimensional parameter space, as for
instance with a polynomial definition of a surface (this is like a CAD parameterization). When we consider
as control parameters the coefficients of the polynomial, changes in those do not change the regularity as
the new shape will always belong to the same polynomial space. Sobolev inclusions give the key for the
choice of the regularity operator with the CAD-free parameterization [43]. In our case, because we are
using a piecewise linear discretization, a second-order elliptic system with a local definition of the viscosity
is sufficient.

This capacity to monitor the regularity of the shape is also interesting as often the optimal solution is not
reachable by the current CAD parameterization of the shape. Hence, after an optimization with the CAD-
free parameterization and using different level admissible regularity for the shape, one can decide which
realization is more suitable and also whether it is interesting or not to enrich the current CAD definition of
the shape.

Fig. 4 CAD-free shape parameterization (lower-left) and by-section definitions (upper) of the shape for geometric constraints
enforcement. Lower-right is one single ∇xCd−< ∇xCd ,π > π described in section 9.1.3 for this CAD-free parameterization.

q(x) denotes the auxiliary unstructured mesh related geometrical quantities (surfaces, volumes, normals,
etc). When the shape is modified, this change must be propagated through the mesh keeping it admissible
and we need to recalculate all related geometrical quantities. Admissible and positive mesh deformation is
achieved by a 3D torsional spring analogy method [13].

9.1.2 Flow solver

In (15) U(α,q(x)) = (ρ,ρu,ρE)t denotes the flow variables in conservation form solution of the Euler
equations where, T being the temperature, the total energy is given by E =CvT +‖u‖2/2 and the pressure
by the state law p = ρRT with R the perfect gas constant.

The details of the implementation of the flow solver are available in [43]. It is based on a finite volume
Galerkin method on unstructured tetrahedral meshes [10]. Of course, other choices are possible for the flow
solver and the literature on numerical methods for compressible flows is huge. This is not central to our
discussion. We target steady solutions and use time marching with local time steps to reach these. The time
integration procedure is explicit and is based on a low-storage Runge-Kutta scheme. To improve computa-
tional efficiency we only use partial convergence for the state equations. In particular, the sufficient level
of convergence retained is when the flow solver iterations only modify the third digits in the aerodynamic
coefficients. This is achieved with about 100 RK iterations for this inviscid configurations starting from a
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Fig. 5 Regularity control in CAD-free shape parameterization: examples of shape deformation produced by our optimization
procedure for different regularity requirements.

uniform solution distribution. During optimization a new calculation for a new shape is always started from
the previously available solution making us to proceed with typically only 20 RK new iterations [35, 36, 41].

Often in practice the mesh used for such optimization problems is insufficiently fine. It is however im-
portant that the approach uses the ingredients of a generic high fidelity platform and does not remove or
simplify any of its ingredients as often it is the case in uncertainty quantification procedures using reduced
order models. We should rather consider that in practice our modeling capability and our computational
resources will always be limited. The backward uncertainty propagation procedures presented in section 6
permits to quantify the impact of this lack of resolution on the design as shown in figure 6.

9.1.3 Optimization problem

We consider a classical aerodynamic problem where two main quantities of interest are the drag Cd and lift
Cl coefficients:

Cd(x) =
1

2ρ∞‖u∞‖2

∫
shape(x)

p(q(x))(u∞.n(q(x))dγ, (16)

where superscript ∞ indicates inflow conditions. The lift coefficient is evaluated with formula (16) where
u∞ is replaced by u⊥∞ in the boundary integral. Aircraft performance analysis concerns its payload and
range. These are directly linked to the aerodynamic coefficients of the aircraft called the lift (conditioning
the payload) and drag (conditioning the fuel consumption) coefficients. The lift coefficient often appears
through an inequality Cl−Ctarget

l ≥ 0 or equality constraint c1 = |Ctarget
l −Cl(p(q(x))| with Ctarget

l a target
performance.

Structural efficiency and necessity of useful free volume also implies the consideration of geometric
criteria such as a constraint on the volume V of the aircraft or its by-section definition. As for the lift
coefficient, this gives a constraint of the form c2 = |V target −V (q(x))|. The volume of an object Ω (here
the aircraft) is expressed through the boundary integral formula: V =

∫
Ω

1 =
∫

Ω
1
3 ∇.(X) =

∫
∂Ω

X.n, where
X = (x1,x2,x3)

t is the local coordinate over the shape.
The last geometric constraint concerns the local wing by-section thickness which is prescribed. We define

by-section definitions of the shape where the number of sections ns is free and can be adapted to account for
the complexity of the geometry. Each node in the parameterization is associated to a section Σi, and for each
section, we define the maximum thickness ∆i. This last operation requires the projection of the upper-surface
nodes over the lower surface for each section. This constraint is expressed as: c3 = ∑

ns
i=1 |∆i(q(x))−∆

target
i |.

An alternative solution which is much simpler to implement is to only enforce a local volume con-
straint in each section Σi using the volume formula above: V (Σ) =

∫
Σi

1 =
∫

Ω
1 χ

Σi
=
∫

Ω
1
3 ∇.(X) χ

Σi
=



16 Bijan MOHAMMADI

State variability 
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the optimal shape 
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Fig. 6 Two approaches to build diag(Covx) from diag(Covu∗ ) indicating the variability of u∗ over the shape. The covariance
distribution over the shape of the aircraft shows that for the design to be robust in variable flight conditions the engines pylon,
fairing and air intakes should have different shapes following their position on the wing.

∫
∂Ω

X.n χ
∂Σi

, where χ is an indicator function (χ = 1 if the point is in section Σi and χ = 0 otherwise).
Testing if a point is in Σi is easy and only requires an interval-based coordinate check, spanwise in this
situation.

Finally, a fourth term concerns the data assimilation criteria for the pressure over the shape as introduced
in section 6: c4 =

1
2‖Π p(x)− p∗‖2, p∗ is a vector of random variables for the pressure values on the shape

and can be used to to account for the impact on the design of the uncertainty on the pressure estimation by
the Euler model.

During optimization, the constraints can be accounted for by introducing a penalty term in the cost
function: j =Cd +∑i=1,4 aici, ai ∈ IR+. But this should be avoided when possible. We use it, however, for
the definition of the directional extreme scenarios [41].

One classical technique to recover the lift during optimization is to change the flow incidence taking
advantage of the linear relationship between the incidence and lift away from stall conditions. Suppose,
however, that we do not want to use either penalty or such approximations. An alternative would be to follow
what presented in section 3 and consider a locally admissible gradient orthogonal to S = Span(∇xci, i =
1, ...,4) with dim(S)≤ 4. Let us denote by π an orthonormal basis of this subspace obtained by the Gram-
Schmidt procedure applied to the gradients of the constraints. The admissible gradient is given by:
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δk = δ (x,αk) = ∇xCd−< ∇xCd ,π > π, (17)

where <,> indicates the scalar product over subspace S. This is therefore similar to the construction given
in (3) where π = {qi=1,...,3} and with the constraints Ci replaced by ci. In the presence of inequality con-
straints ci ≤ 0 instead of equality we build the admissible direction based on the KKT optimality conditions
following (5). Once δk obtained, the developments of section 3 are followed with the gradient ∇x j replaced
by the search direction δk.

To complete the picture we need to provide ∇xCd , ∇xCl , ∇x‖Π p(x)− p∗‖2, ∇xV and ∇x∆i. The three
former require the adjoint of the state equation and we take advantage of the capability for multi-right-
hand-side adjoint calculation of tapenade in reverse mode to access these gradients without the solution
of three separate adjoint problems. Our direct Euler code uses time marching to the steady solution with
local time steps. An optimization of the reverse mode of AD comes from the fact that, our situations of
interest being stationary in time, there is no interest in storing the forward states for backward integration
[7, 40, 43].

10 CONCLUDING REMARKS

In order to be easily integrated in engineering environments to quantify our confidence on optimal solutions
without intensive sampling of large dimensional parameter spaces a cascade of geometric uncertainty quan-
tification concepts has been presented. The cascade is based on the application of data analysis concepts
together with existing deterministic simulation platforms.

The analysis starts with the geometric characterization of global sensitivity spaces through their dimen-
sions and relative positions by the principal angles between global search subspaces. Then, joining a multi-
point descent direction and extreme values information from the probability density functions of design
variables the concept of Directional Extreme Scenarios (DES) has been introduced.

The construction goes beyond DES with Ensemble Kalman Filters (EnKF) after the multi-point optimiza-
tion algorithm is cast into an ensemble simulation environment. This permits to account for the variability on
the functioning parameters through the multi-point formulation and for the variability on the optimization
parameters and observation data through the ensemble Kalman filter formulation.

The joint application of the EnKF and DES leads to the concept of Ensemble Directional Extreme Sce-
narios (EDES) which provides exhaustive possible extreme scenarios knowing the PDF of the optimization
parameters and this without a sampling of the admissible space.

The UQ cascade ends with low-complexity solutions for reverse propagation of aleatory uncertain target
data in inverse design with two approximations of the covariance matrix of the optimization parameters.
These provide uncertainty quantification analysis for the inversion solution with confidence margins on
the design parameters in very large design spaces. The constructions also permit to account for epistemic
uncertainties considering a model or solution procedure as always imperfect. Hence, seeing the associated
error as uncertainty these reverse propagation constructions provide a quantification of the impact of these
weaknesses on the design.

Acknowledgements The author would like to thank M. Meaux and F. Gallard from Airbus, M. Montagnac from CERFACS
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definition of descent directions in multi-point and constrained optimization problems have been obtained using Tapenade
AD tool developed at INRIA-Sophia Antipolis by L. Hascoet and his team [19].

References

1. K. Scheinberg A. Conn and L. Vicente. Introduction to Derivative-Free Optimization. SIAM, NY, 2002.
2. B. Anderson and J. Moore. Optimal Filtering. Prentice-Hall, NY, 1979.
3. P. Redont B. Mohammadi. Improving the identification of general pareto fronts by global optimization. C. R. Acad. Sci.

Paris, 347:327:331, 2009.
4. J. R. Bunch and L. Kaufman. Some stable methods for calculating inertia and solving symmetric linear systems. Mathe-

matics of Computation, 31(137):163–179, 1997.



18 Bijan MOHAMMADI

5. H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.
6. G. Casella and R. Berger. Statistical Inference, 2nd Ed. Duxbury Press, London, 2001.
7. B. Christianson. Reverse accumulation and implicit functions. Optimization Methods and Software, 9/4:307–322, 1998.
8. P. Cinnella and S. J. Hercus. Robust optimization of dense gas flows under uncertain operating conditions. Computers &

Fluids, 39:1893–1908, 2010.
9. P. Courrieu. Fast computation of moore-penrose inverse matrices. CoRR, abs/0804.4809, 2008.

10. A. Dervieux. Steady euler simulations using unstructured meshes. VKI Lecture series, Revised version published in Partial
Differential Equations of hyperbolique type and Applications, World Scientic, 1985/04:23–64, 1985.

11. G. Evensen. Advanced data assimilation for strongly nonlinear dynamics. Monthly Weather Review, 125:1342–1354,
1997.

12. G. Evensen. Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter In Ocean Forecasting:
Conceptual basis and applications. Springer-Verlag, Heidelberg, 2002.

13. C. Farhat and C. Degand. A three-dimensional torsional spring analogy method for unstructured dynamic meshes. Com-
puters & Structures, 80/3:305–316, 2002.

14. A. Gelb. Stochastic Processes and Filtering Theory. Academic Press, NY, 1970.
15. A. Gelb. Applied Optimal Estimation. M.I.T Press, Boston, 1974.
16. R. Ghanem and A. Doostan. On the construction and analysis of stochastic models: characterization and propagation of

the errors associated with limited data,. J. of Comput. Phys., 217:63–81, 2006.
17. R. Ghanem and P. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer Verlag, New York, 1991.
18. F. Warner H. Gluck. Great circle fibrations of the three-sphere. Duke Math. J., 50:107:132, 1983.
19. L. Hascoet and V. Pascual. Tapenade user’s guide. In INRIA Technical report, pages 1–31. INRIA, 2004.
20. P.G. Hoel. Introduction to Mathematical Statistics. John Wiley, London, 1971.
21. G. Iaccarino. Quantification of Uncertainty in Flow Simulations Using Probabilistic Methods. VKI, 2008.
22. M. Peyret J. Chery, B. Mohammadi and C. Joulain. Plate rigidity inversion in southern california using interseismic gps

velocity field. Geophys. J. Int., 187/2:783–796, 2011.
23. R. O. Onez J. T. Spooner, M. Maggiore and K.M. Passino. Stable Adaptive Control and Estimation for Nonlinear Systems:

Neural and Fuzzy Approximator Techniques. John Wiley, New York, 2002.
24. J. Jahn. Vector Optimization: Theory, Applications and Extensions. Springer, Berlin, 2004.
25. S. Jiang. Angles between euclidean subspaces. Geometricae Dedicata, 36(2):113:121, 1996.
26. C. Jordan. Essay on geometry in n dimensions. Bull. Soc. Math. France, 3:103:174, 1875.
27. Ph. Jorion. Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill, New York, 2006.
28. M. Ghil K. Ide, P. Courtier and A. Lorenc. Unified notation for data assimilation: operational, sequential and variational.

Journal of the Meteorological Society of Japan, 75/1B:181–189, 1997.
29. R.E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME - Journal of Basic

Engineering, 82:35–45, 160.
30. H.R. Lindman. Analysis of Variance in Complex Experimental Designs. Freeman, New York, 1974.
31. A. Dywayne A. Nicely M. Abdou, R.B. Morgan and W. Wilcox. Deflated and restarted symmetric lanczos methods for

eigenvalues and linear equations with multiple right-hand sides. SIAM Journal on Scientific Computing, 32/1:129–149,
2010.

32. R. Wuchner M. Firl and K. Bletzinger. Regularization of shape optimization problems using fe-based parametrization.
Structural and Multidisciplinary Optimization, 47/4:507–521, 2013.

33. R. E. Melchers. Structural Reliability Analysis and Prediction. John Wiley and Sons, Chichester, 1999.
34. B. Mohammadi. Reduced sampling and incomplete sensitivity for low-complexity robust parametric optimization. Int. J.

Num. Meth. Fluids, 73/4:307–323, 2013.
35. B. Mohammadi. Principal angles between subspaces and reduced order modeling accuracy in optimization. Structural

and Multidisciplinary Optimization, 50/2:237–252, 2014.
36. B. Mohammadi. Uncertainty quantification by geometric characterization of sensitivity spaces. Compt. Meth. Appl. Mech.

Eng., 280:197–221, 2014.
37. B. Mohammadi. Value at risk for confidence level quantifications in robust engineering optimization. Optimal Control:

Applications and Methods, 35/2:179–190, 2014.
38. B. Mohammadi. Value at risk for confidence level quantifications in robust engineering optimization. optimal Control:

Applications and Methods, 35/2:179–190, 2014.
39. B. Mohammadi. Ensemble kalman filters (enkf) and geometric characterization of sensitivity spaces for uncertainty

quantification in optimization. Computer Methods in Applied Mech. & Eng., 290:228–249, 2015.
40. B. Mohammadi. Parallel reverse time integration and reduced order models. J. of Computational Mathematics, 2:17–33,

2015.
41. B. Mohammadi. Backward uncertainty propagation in shape optimization. Int. J. for Numerical Methods in Fluids,

103(4)-DOI: 10.1002/fld.4077:307–323, 2016.
42. B. Mohammadi and F. Bouchette. Extreme scenarios for the evolution of a soft bed interacting with a fluid using the value

at risk of the bed characteristics. Computers & Fluids., 89:22–46, 2014.
43. B. Mohammadi and O.Pironneau. Applied Shape Optimization for Fluids (2nd Edition). Oxford Univ. Press, Oxford,

2009.
44. B. Mohammadi and O. Pironneau. Shape optimization in fluid mechanics. Annual Revue of Fluid Mechanics, 36/1:255–

279, 2004.
45. F. Gallard B. Mohammadi M. Montagnac and M. Meaux. An adaptive multipoint formulation for robust parametric

optimization. J. Opt. Theory & Appl., 165(1):DOI 10.1007/s10957–014–0595–6, 2014.
46. J. Nocedal and S. Wright. Numerical Optimization. Springer, NY, 2006.



Data analytic UQ cascade 19

47. G. Obinata and B. Anderson. Model reduction for control system design. Springer, Berlin, 2000.
48. C. Correa P.M. Congedoa and J.-M. Martinez. Shape optimization of an airfoil in a bzt flow with multiple-source uncer-

tainties. CMAME, 200:16–32, 2011.
49. Z. Qu. Model Order Reduction Techniques with Applications in Finite Element Analysis. Springer, Berlin, 2004.
50. W. Schilders, H. Van der Vorst, and J. Rommes. Model order reduction: Theory, research aspects and applications. 13.

Springer Math in Industry series, Berlin, 2008.
51. C. Shonkwiler. Poincare duality angles for Riemannian manifolds with boundary. PhD thesis, Univ. Pennsylvania, 2009.
52. SA. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk

SSSR 148: 1042-1043. Russian, Engl. Transl.: Soviet Math. Dokl., 4:240–243, 1963.
53. Z. Tang and J. Periaux. Uncertainty based robust optimization method for drag minimization problems in aerodynamics.

CMAME, 12(24):217–220, 2012.
54. A. Tarantola. Inverse problem theory and methods for model parameter estimation. SIAM, N.Y., 1987.
55. A. Curioni V. Kalantzis, C. Bekas and E. Gallopoulos. Accelerating data uncertainty quantification by solving linear

systems with multiple right-hand sides. Numerical Algorithms, 62/2:637–653, 2014.
56. K. Veroy and A. Patera. Certified real-time solution of the parametrized steady incompressible navier-stokes equations:

Rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Meth. Fluids, 47(8):773–788, 2005.
57. X. Wan and G.E. Karniadakis. Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J.

Sci. Comput., 28/3:901–928, 2006.
58. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. ISBN 0-387-40272-1. Springer, 2004.
59. D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, 2010.


