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DYNAMICS OF POST-CRITICALLY FINITE MAPS IN HIGHER

DIMENSION

MATTHIEU ASTORG

Abstract. We study the dynamics of post-critically finite endomorphisms of Pk(C).
We prove that post-critically finite endomorphisms are always post-critically finite all
the way down under a mild regularity condition on the post-critical set. We study the
eigenvalues of periodic points of post-critically finite endomorphisms. Then, under a
weak transversality condition and assuming Kobayashi hyperbolicity of the complement
of the post-critical set, we prove that the only possible Fatou components are super-
attracting basins, thus partially extending to any dimension a result of Fornaess-Sibony
and Rong holding in the case k = 2.

1. Introduction

This paper deals with the dynamics of some endomorphisms of the complex projective
space P

k, called post-critically finite (PCF). An endomorphism f ∶ Pk → P
k is post-

critically finite if

P(f,Pk) ∶= ⋃
n≥1

fn(C(f))
is algebraic, where C(f,Pk) ∶= {z ∈ Pk,Df(z) is not invertible}. The set C(f,Pk) is
called the critical set of f , and the set P(f,Pk) is called the post-critical set of f . We
will often consider restrictions of f to an invariant subvariety L ⊂ P

k: in this case,C(f,L) and P(f,L) will refer to the critical and post-critical sets of the restriction map
f ∶ L→ L. When there is no ambiguity, we will just denote those sets by P(f) and C(f).

In the case where k = 1, this class of endomorphism has been particularly studied,
mainly because of an important classification theorem due to Thurston ([Thu85]). The
dynamics of those maps is also well understood.

Thurston’s theorem does not hold in higher dimension (k > 1), but post-critically finite
maps still are of interest, for example because of a construction due to Koch ([Koc13]).
The dynamics of PCF maps has been investigated by several authors. In [FS92], Fornaess
and Sibony studied the dynamics of two specific examples of PCF endomorphisms of P2.
In [FS94], the same authors considered more generally PCF endomorphisms of Pk and
studied the case k = 2. They notably proved that if P2/P(f) is Kobayashi hyperbolic,
where f is a PCF endomorphism of P2, then the only Fatou components of f are basins
of superattracting cycles. As Jonsson notes in [Jon98], the case of dimension 2 is still
special, as in this case the post-critical set has dimension 1, and it can be proved that
the normalization of post-critical components must be either tori or projective lines. In
still higher dimension (k ≥ 3), no such classification is readily available.

In [Ued98], Ueda defined the notion of an endomorphism f ∶ Pk → P
k that is PCF

of order m: informally, a PCF endomorphism is PCF of order 1. Then every critical
1
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component is eventually mapped to a periodic post-critical component, and one can
consider the first return maps induced by restriction of iterates of f to those periodic
components. If all of them are themselves post-critically finite, then f is post-critically
finite of order 2. One can then define inductively what it means to be post-critically finite
of order m, with m ≤ k (see Definition 4 for a precise definition). Post-critically finite
endomorphisms of Pk of order k are somewhat colloquially referred to as post-critically
finite all the way down (the authors of [GHK16] use the term strongly post-critically
finite).

Those notions lead to defining post-critical finiteness for self-branched covers f ∶ X →
X, where X is a regular subvariety of Pk, or more generally a complex manifold. Such
maps may have empty post-critical set (if they are unbranched self-covers); in this case,
most authors do not consider them to be post-critically finite. We shall call them weakly
post-critically finite, and we say that f is weakly post-critically finite all the way down
if every first return map on periodic post-critical components is weakly post-critically
finite. Again, see Definition 4 for full details.

In [Jon98], Jonsson remarks that PCF endomorphisms of P2 are always post-critically
finite all the way down. In [GHK16], the authors prove that the same is true for a
very specific subclass of PCF endomorphisms of Pk, and ask if the same holds for any
PCF endomorphism of Pk. They also give examples of rational maps f ∶ Pk ⇢ P

k that
are PCF but not PCF all the way down. A key point is that those examples are not
endomorphisms of P

k as they have non-empty indeterminacy set. We give a partial
answer to this question, using a purely complex-analytical approach:

Theorem A. Let X be a complex manifold and let f ∶ X → X be a PCF branched
covering. Let (Li)i∈I be the periodic irreducible components of P(f,X) and assume that
for any J ⊂ I, ⋂j∈J Lj is smooth. Then f is weakly PCF all the way down.

In fact, we prove a slightly more precise statement, see Theorem 1.

An important topic in dynamical systems is the study of local dynamics near periodic
points. In holomorphic dynamics, the local dynamics of a periodic point p of period
m is governed by the eigenvalues of Dfm(p); abusing terminology, we call them the
eigenvalues of p. If λ ∈ C is such an eigenvalue, we say that λ is:

(1) attracting if ∣λ∣ < 1
(2) repelling if ∣λ∣ > 1
(3) super-attracting if λ = 0
(4) neutral if ∣λ∣ = 1: more precisely, λ is

a. parabolic if λ is a root of unity
b. irrationally neutral otherwise.

If p is a periodic point such that all of its eigenvalues are attracting (respectively
repelling), we say that p itself is attracting (respectively repelling).

In [Jon98], Jonsson studied PCF endomorphisms of P2 such that every critical compo-
nent is strictly preperiodic, and such that the first return maps of the periodic components
of P(f) also have only strictly preperiodic critical points: such PCF endomorphisms are
called 2-critically finite. He proved that for such maps, every periodic point is repelling,
and that repelling periodic points are dense in P

2. This result, together with the classical
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fact that PCF maps on P
1 can only have repelling or super-attracting periodic points,

raises the question of knowing which eigenvalues a periodic point of a PCF endomorphism
on P

k may have. We prove the following:

Theorem B. Let f ∶ Pk → P
k be a PCF endomorphism such that the periodic irreducible

components of P(f,Pk) are weakly transverse (see definition 1). Let p be a periodic point
of period l for f . Then

(1) p does not have any parabolic or non-zero attracting eigenvalue
(2) either p has at least one repelling eigenvalue, or else all eigenvalues are super-

attracting (ie Df l(p) is nilpotent)
(3) if p doesn’t have any super-attracting eigenvalue, then p is Lyapunov unstable and

at least one of its eigenvalues is repelling.

See Definition 6 for a definition of the notion of Lyapunov unstability. We could not
exclude the possibility of a periodic point having some irrationnally neutral eigenvalues.
To the best of our knowledge, no example of PCF endomorphism of Pk with a periodic
point having such an eigenvalue is known (it is known that it cannot occur in dimension
1). It would be interesting to know whether such examples exist or not.

Lastly, we study the Fatou dynamics of PCF endomorphisms of P
k. For an endo-

morphism f ∶ Pk → P
k, the Fatou set is the largest open subset of P

k on which the
iterates {fn, n ∈ N} form a normal family. We denote it by F(f). Its complement is
the Julia set J (f) = J1(f). Alternatively, one can construct a naturel (1,1) positive
closed current Tf called the Green current of f , whose support is exactly J (f), and
define a stratification of Julia sets Jm(f) (with 1 ≤ m ≤ k) as the support of ⋀m

i=1 Tf .
As m increases, Jm(f) decreases and the dynamics on Jm(f) become more chaotic in
some sense. In [DT05], de Thélin analysed the structure of Tf on J1(f)/J2(f) for PCF
endomorphisms of P2: he proved that in that case Tf is laminar, something that is not

true for general endomorphisms of P2. Our next result is focuses on the dynamics in the
Fatou set, outside of J1(f).

We call Fatou component a connected component of the Fatou set. For more back-
ground on Fatou-Julia theory, see for example [DS10].

In [FS94], Fornaess and Sibony proved that if f ∶ P2 → P
2 is PCF and P

2/P(f) is
Kobayashi hyperbolic, then the only Fatou components of f are basins of super-attracting
cycles. Using methods from [Ued98], Rong was able in [Ron08] to remove the assumption
of Kobayashi hyperbolicity, still in the case of dimension 2.

We give another partial generalization of this result, that is available in any dimen-
sion but requires Kobayashi hyperbolicity and a mild transversality condition on the
irreducible components of the post-critical set:

Theorem C. Let f ∶ Pk → P
k be a PCF endomorphism, and let Li, i ∈ I be the irreducible

components of its post-critical set P(f,Pk). Assume that

(1) (Li)i∈I is weakly transverse
(2) P

k/P(f,Pk) is Kobayashi hyperbolic.

Then the Fatou set of f is either empty or a finite union of basins of super-attracting
cycles, whose points are zero-dimensional intersections of components Li.
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Note that this in particular implies that there are only finitely many periodic Fatou
components, something that it always true for endomorphisms of P1 but not necessarily
so for endomorphisms of Pk with k ≥ 2, and that every Fatou component is preperiodic
(the first examples of endomorphisms of Pk having a non-preperiodic Fatou component
have been constructed in [ABD+ar]).

Finally, Koch has given in [Koc13] a systematic method for constructing examples of
PCF endomorphisms of Pk. This is interesting, as constructing non-trivial PCF endo-
morphisms is not easy. Indeed, most examples in the literature can be recovered from
this construction. The construction starts with a purely topological object called a topo-
logical polynomial, and gives a holomorphic PCF endomorphism of Pk whose dynamics is
related to the action of that topological polynomial on a Teichmüller space. In Section 7,
we recall Koch’s results and we show that Theorems A, B and C apply to her examples.

Acknowledgements. I would like to thank Sarah Koch for introducing me to these
questions, and for many helpful discussions. I also thank Xavier Buff for inviting me to
the University of Toulouse and for helpful discussions. This article was written almost
entirely while at the University of Michigan.

Outline. In Section 2, we introduce a weak notion of transversality and we prove some
lemmas that will be later required. In Section 3, we define properly the notions of weakly
PCF, PCF all the way down and weakly PCF all the way down, and we prove Theorem A.
In Section 4, we prove a slightly generalized version of a theorem of Ueda on the absence
of rotation domains for PCF maps, that will be required for the proof of Theorems B and
C. In Section 5, we prove Theorem B, and in Section 6, we prove Theorem C. Finally, in
Section 7, we discuss how our results apply to the examples from [Koc13].

Notations. In the rest of the article, if L is an analytic subset of a complex manifold
X, we will denote the singular part of L by Sing(L) and its regular part by Reg(L).

2. Weak transversality and Kobayashi metric

Definition 1. Let X be a complex manifold, and let Li, i ∈ I be a finite set of irreducible
hypersurfaces of X. We say that the (Li)i∈I are weakly transverse if the following holds:
for any x0 ∈ ⋃i∈I Li, if J = {i ∈ I, x0 ∈ Li} and if locally near x0 the sets Li can be
written Li = {Pi = 0} (where the Pi are holomorphic functions defined locally near x0),
then x ↦ (Pj(x))j∈J has constant rank near x0.

Note that in the particular case where x↦ (Pj(x))j∈J is surjective, the Implicit Func-
tion Theorem implies that ⋃i∈I Li has simple normal crossings. This is a weaker require-
ment: for example any finite collection of hyperplanes in a projective space will be weakly
transverse in the sense of the above definition.

A straightforward consequence of the Constant Rank Theorem is that if (Li)i∈I are
weakly transverse, then for any J ⊂ I, ⋂j∈J Lj is a smooth submanifold (though not
necessarily of codimension cardJ), of tangent space at x0 given by ⋂j∈J Tx0

Lj.
Let us begin by proving two lemmas that will be used in later sections.
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Lemma 1. Let X be a complex manifold, and let (Li)i∈I be weakly transverse. Let
x0 ∈ ⋃i∈I Li and J = {i ∈ I, x0 ∈ Li}. Let v ∈ ⋂j∈J Tx0

Lj . There exists a holomorphic
vector field ξ defined in a neighborhood U of x0, with ξ(x0) = v, and such that ξ is
uniformly bounded in the Kobayashi pseudometric of X/⋃i∈I Li on U/⋃i∈I Li.

Proof. For j ∈ J , let Pj be a holomorphic function defined in the neighborhood of
x0 such that locally near x0, Lj = {Pj = 0}. Let Φ ∶ x ↦ (Pj(x))j∈J . Then by
weak transversality, Φ has constant rank, so in local coordinates it may be written
Φ(z1, . . . , zk) = (z1, . . . , zm,0, . . . ,0) (here k = dimX and m = codim ⋂j∈J Lj so k < m).

Since v ∈ kerDΦ(x0), v is of the form v = ∑cardJ
j=m+1 λi

∂
∂zi

, for some λi ∈ C. Now define

ξ ∶= ∑cardJ
j=m+1 λi

∂
∂zi

. Clearly, ξ is a germ of holomorphic vector field at x0, and more-

over ξ(x0) = v. Now let us prove that it is locally uniformly bounded in the Kobayashi
pseudo-metric of X −⋃j∈J Lj.

Let V be a small neighborhood of x0 in which ξ is well-defined. Let U be a relatively
compact open subset of V . There exists r > 0 such that the complex flow (φt)t of ξ is
well-defined for initial conditions x ∈ U for times ∣t∣ < r. It follows from the construction
of ξ that for all x ∈ V , DΦ(ξ) = 0. Therefore, if x ∈ U − ⋃i∈I Li, then for all ∣t∣ < r,
φ(t, x) ∉ ⋃i∈I Li. Moreover, from the fact that d

dt ∣t=0
φ(t, x) = ξ(x) and that t↦ φ(t, x) is

holomorphic and defined on the disk of radius r, the definition of the Kobayashi pseudo-
metric implies that

ρK(x; ξ(x)) ≤ 1

r
.

�

Lemma 2. Let X be a complex manifold, and (Li)i∈I be a family of weakly hypersurfaces.
Let J ⊂ I, and i1, i2 ∈ I/J with i1 ≠ i2. Let

L ∶= ⋂j∈J Lj , M1 ∶= ⋂j∈J∪{i1}Lj, M2 ∶= ⋂j∈J∪{i2}Lj.

Then if M1 ≠M2 and p ∈M1 ∩M2, we have TpL ⊂ TpM1 + TpM2.

Proof. Suppose p ∈ M1 ∩M2 and we do not have TpL ⊂ TpM1 + TpM2. We can assume
that both of the Mi have codimension 1 in L, for otherwise one of them must be equal to
L and we are done. This means that TpM1 = TpM2. Let U be a small neighborhood of p,
and for any i ∈ I, let Pi ∶ U → C be a holomorphic function such that Li ∩U = {Pi = 0}.
Let

φ ∶U → C
J∪{i1,i2}

x ↦ (Pj(x))j∈J∪{i1,i2}
Let m be the codimension of L in P

k. Since TpM1 = TpM2, the rank of Dφ(p) is m+1.
By definition of weak transversality, up to reducing U , the rank of Dφ is m + 1 on U .
But this implies that codimM1 ∩M2 =m+ 1, which is impossible since M1 and M2 both
have (pure) codimension m + 1 and M1 ≠M2. �

3. Post-critical finiteness all the way down

Recall the notion of (analytic) branched cover:

Definition 2. Let X,Y be analytic sets, and f ∶X → Y an analytic map. We say that f
is a branched cover if f is open, surjective and proper.
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It is then known that there is a unique closed minimal hypersurface D in Y (possibly
empty) such that f ∶ X −f−1(D) → Y −D is a covering map. We call D the critical value
set, denoted by CV(f). If D is empty, then we say that f is unbranched.

If X and Y are smooth complex manifolds, the set

C(f) ∶= {x ∈ X,Df(x) is not invertible}
is either empty or a closed analytic hypersurface of X. We call it the critical set of f ,
and its image is exactly the critical value set of f .

Definition 3. Let X be an analytic set, and let f ∶ X → X be a branched cover. LetP(f,X) denote ⋃n≥0 f
n(CV(f)): P(f) is called the post-critical set of f . We say that

f is post-critically finite (PCF) if P(f,X) is non-empty and analytic with only finitely
many irreducible components.

If f is unbranched, then P(f,X) = ∅. When there is no ambiguity, we will just writeP(f).
Note that any endomorphism of Pk is a branched cover, see [Ued98]. Let us now define

the notions of post-critical finiteness all the way down:

Definition 4. Let X be an irreducible analytic set, and f ∶ X → X be a post-critically
finite endomorphism. Let f0 ∶= f , Ω0 = X, and denote by P0 the post-critical set of f .
Let us make the following definition inductively on m: if the restriction of fm to each
irreducible component of Ωm is either unbranched or PCF, then

● Ωm+1 is the union of the fm-periodic irreducible components of Pm, and km is the
least common multiple of the periods● fm+1 is the restriction of fkm

m to Ωm+1● Pm+1 is the union of the post-critical sets of fm+1 restricted to each irreducible
component of Ωm+1

Note that if the restriction of fm to each irreducible component of Ωm is PCF or
unbranched, then Ωm+1 is either empty or an analytic set of pure codimension dimΩm−1.
Definition 5. Using the same notations as the definition above:

● If for some k ∈ N the restriction of fm to each irreducible component of Ωm is
PCF for every m ≤ k , then we say that f is PCF of order k + 1.● If f is PCF of order dimX, we say that f is PCF all the way down.● If for all k ≤ dimX − 1 the restriction of fm to each irreducible component of
Ωm is either unbranched or PCF, then we say that f is weakly PCF all the way
down.

Note that if f is PCF all the way down then it is weakly PCF all the way down, and
that if f is weakly PCF all the way down then for all m ≤ dimX, Ωm is either empty or
an analytic subset of X of pure codimension m.

Theorem 1. Let X be a complex manifold and let f ∶ X → X be a PCF branched
covering. Let (Li)i∈I be the periodic irreducible components of P(f,X) and assume that
for any J ⊂ I, ⋂j∈J Lj is smooth. Then:

(1) f is weakly PCF all the way down and the irreducible components of Ωm are of
the form Li1 ∩ . . . ∩Lim for some (i1, . . . , im) ∈ Im.
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(2) In fact, for any (i1, . . . , im) ∈ Im, if we set L ∶= Li1 ∩ . . . ∩ Lim , then fm ∶ L → L

is either unbranched or PCF.

Before we prove Theorem 1, we will need the following lemma:

Lemma 3. Let X be a complex manifold, and let f ∶ X →X be a branched cover. Let C
be a smooth irreducible hypersurface of X, and assume that f(C) = C. Then the critical
set of the restriction map f∣C ∶ C → C is included in ⋃iC ∩ Ci, where the Ci are the
irreducible components of the critical set of f other than C.

Proof. This is clear if C is not a component of the critical set of f , since any critical
point for the restriction of f to C is also a critical point for the ambient map f ∶X →X.
Therefore, let us assume that C ⊂ C(f). Let x be a critical point of the restriction of f
to C.

All our arguments in this lemma are local. Therefore if dimX = k, we may assume
without loss of generality that C is locally written {zk = 0} in local holomorphic coordi-
nates z = (z1, . . . , zk) near x and f(x), and that x = (0, . . . ,0) ∈ Ck. In those coordinates,
we may write f(z1, . . . , zk) = (f1(z), . . . , fk(z)): then fk(z1, . . . , zk−1,0) = 0 for every(z1, . . . , zk−1) ∈ ∆k. Therefore, for every i ≤ k − 1, ∂ifk = 0 on C. So locally near x, for
every z ∈ C, Df(z) can be represented by the matrix:

Df(z) = ( Ak ∗
0 ∂kfk

)
and Ak is Df∣C(z). Moreover, since C is in the critical set of f , we have

Jacf = detAk × ∂kfk = 0
on C. Also, detAk cannot vanish identically on C because f∣C ∶ C → C is finite to one
(since the ambient map f ∶ X → X a branched cover). So ∂kfk vanishes identically on
C. Therefore, there is some maximal m ∈ N∗ and some germ of holomorphic function g

such that fk(z1, . . . , zk) = zmk g(z1, . . . , zk), and zk does not divide g. Then note that zmk
divides ∂ifk for all i < k, but does not divide ∂kfk, while zm−1k does divide ∂kfk (indeed,

for all i < k, ∂ifk = zmk ∂ig and ∂kfk =mzm−1k g + zmk ∂kg).
For every i ≤ k, let Ai be the minor of size k − 1 corresponding to the (k, i) entry of

the matrix representation of Df in the local coordinates (z1, . . . , zk). Then we have, by
expanding the last row:

Jacf = ∑
i≤k

∂ifk detAi.

Now if we let
r =mg detAk + zk∑

i≤k

∂ig detAi,

notice that Jacf(z) = zm−1k r(z). Moreover, since detAk is not identically zero on C

and neither is g, the function r is not identically zero on C. Now remember that by
assumption, x = 0 is in the critical locus of f∣C : therefore detAk(0, . . . ,0) = 0. This

means that r(0, . . . ,0) = 0, that is to say, x belong to the analytic set r−1(0). Since r

is not identically zero on C, this means that x belong to some irreducible component of
the zero locus of Jacf that is not C, which is the desired result. �

We will also need the following lemma due to Ueda:
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Lemma 4. ([Ued98], Lemma 3.5) Let X,Y be complex manifolds, and f ∶ X → Y

a holomorphic branched cover with branch locus D ⊂ Y . If x ∈ Sing(f−1(D)), then
f(x) ∈ Sing(D).

Now we can prove Theorem 1:

Proof of Theorem 1. Let us prove by induction on 0 ≤ m ≤ dimX − 1 that for any(i1, . . . , im) ∈ Im, the restriction of fm to L ∶= Li1 ∩ . . . ∩ Lim (with the convention
that L = X if m = 0) is either unbranched or PCF and that the irreducible components
of P(fm,L) are of the form Li1 ∩ . . . ∩Lim ∩Lim+1 .

If m = 0, then by definition the irreducible components of Ω1 are some of the Li, and
by assumption f ∶ X →X is PCF, so there is nothing to prove.

Now let 0 ≤m ≤ dimX − 1 be such that for any (i1, . . . , im) ∈ Im, the restriction of fm
to L ∶= Li1 ∩ . . . ∩Lim (with the convention that L =X if m = 0) is either unbranched or
PCF and that the irreducible components of Ωm+1 are of the form Li1 ∩ . . . ∩Lim+1 .

Let N ∶= Li1 ∩ . . .∩Lim of codimension m (if it has a codimension n <m, then it can be
written as Lj1 ∩ . . . Ljn and the desired properties follow from the induction hypothesis).

By definition of fm+1 = f ○km+1m , the map fm+1 fixes all of its post-critical components, so
that P(fm+1,N) = CV(fm+1,N) and fm+1 restricts to an endomorphism of any periodic
component of P(fm,N). Let L = Li1 ∩ . . . Lim+1 be a periodic component of P(fm,N),
and let C be an irreducible component of C(fm+1,L) (if C(fm+1,L) = ∅, then fm+1 ∶ L→ L

is unbranched and there is nothing to prove).
By Lemma 3, there is a component C ′ of C(fm+1,N) with C ′ ≠ L such that C ⊂

C ′ ∩ L. Therefore, C ⊂ Sing(f−1m+1(CV(fm+1,N))). In fact, for any n ∈ N, C ⊂
Sing(f−nm+1(CV(fm+1,N))) . By Lemma 4 applied to fn

m+1 for any arbitrary n ∈ N,
we have

fn
m+1(C) ⊂ Sing(CV(fn

m+1,N)) ⊂ Sing(P(fm,N)).
Hence the increasing sequence of analytic sets of pure codimension m + 2 given by

CN ∶= ⋃
n≤N

fn
1 (C)

is contained in the analytic set of pure codimension m + 2 given by Sing(P(fm,N)).
Moreover, by assumption, each intersection of components of P(f,X) is smooth so the
induction hypothesis implies that the singular part of P(fm,N) consists in points be-
longing to at least two different irreducible components of P(fm,N). Those are of the
form Li1 ∩ Lim+2 , (i1, im+2) ∈ I. In particular, Sing(P(fm,N)) has only finitely many
irreducible components, so the sequence CN is eventually stationnary. Since this holds
for any irreducible component C of C(fm+1,L), we have proved that fm+1 ∶ L→ L is PCF
and that the irreducible components of P(fm+1,L) are of the form Li1 ∩ Lim+2 . This
finishes the proof.

�

An endomorphism f ∶ Pk → P
k may be represented in homogeneous coordinates by

k + 1 homogeneous polynomials of a same degree d ≥ 1. The integer d is called the
algebraic degree of f (not to be confused with the topological degree, which is dk). The
following classical lemma is due to Dinh and Sibony:
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Lemma 5 ([DS10], Lemma 1.48). Let f ∶ Pk → P
k be an endomorphism of algebraic

degree d, and let L ⊂ Pk be an algebraic set of pure dimension m, such that L = f(L).
Then for n large enough, fn fixes all irreducible components of L, and the restriction of
fn to L has topological degree dnm.

Corollary 1. Let f ∶ Pk → P
k be a PCF endomorphism such that P(f,Pk) is a union

of hyperplanes. Then f is PCF all the way down.

Proof. In this case we do not need to use Lemma 5. Any intersection of hyperplanes is
a projective subspace, hence smooth. In view of Theorem 1, it is enough to prove that
if L ⊂ Pk is a projective subspace with fp(L) = L for some p ∈ N∗, then the restriction
map fp ∶ L → L cannot be unbranched. Let d be the algebraic degree of f on P

k: d ≥ 2
since f is PCF and therefore has non-empty critical set. After a change of coordinates,
we may assume that L can be written as {zk = . . . = zm = 0} in homogeneous coordinates.
In those homogeneous coordinates, f is of the form

(z0 ∶ . . . ∶ zk) ↦ (P0(z0, . . . , zk), . . . , Pk(z0, . . . , zk)
where the Pi are homogeneous polynomials of degree dp. The restriction of fp to L is
then of the form

(z0 ∶ . . . ∶ zm−1) ↦ (P0(z0, . . . , zm1
,0, . . . ,0), . . . , Pm−1(z0, . . . , zm−1,0, . . . ,0))

and since fp has no indeterminacy points, fp ∶ L → L has algebraic degree dp so its
Jacobian (in homogeneous coordinates) is a non-constant polynomial, so the critical
locus of fp ∶ L→ L is not empty. �

4. Absence of rotation domains

Let Z be an analytic set, and f ∶ Pk → P
k be a holomorphic endomorphism. Let

h ∶ Z → P
k be an analytic map. Following Ueda ([Ued98]), we say that a family of maps

gn ∶ Z → P
k is a family of lifts of h by iterates of f if for all n ∈ N, there is mn ∈ N such

that fmn ○ gn = h.
We will rely quite heavily on the following useful theorem, due to Ueda ([Ued98], Th.

2.1):

Theorem 2. Let Z be an analytic set, and f ∶ Pk → P
k be a holomorphic endomorphism.

Let h ∶ Z → P
k be an analytic map. Let (gn)n∈N be a family of lifts of h by iterates of f .

Then (gn)n∈N is a normal family.

The following result is a straightforward adaptation of Theorem 4.15 of [Ued98]. We
include a proof for the convenience of the reader.

Theorem 3. Let f ∶ Pk → P
k be an endomorphism of algebraic degree d ≥ 2. Let L be a

closed regular subvariety of Pk with L = f(L), and assume that the restriction f ∶ L → L

has a rotation domain V . Then ∂V (the boundary of V in L) is included in the post-
critical set of the restriction map f ∶ L→ L.

Remark 1. The assumption that f ∶ L → L extends to an endomorphism of P
k is

necessary: indeed, there are automorphisms of projective varieties (which therefore have
empty post-critical set) with rotation domains that are not all of L. The crucial point
here is the normality of the inverse branches afforded by Theorem 2.
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Proof of Theorem 3. Let x ∈ ∂V . Assume that x does not belong to the post-critical
set P(f,L) of f ∶ L → L. Let D be a simply connected neighborhood of x in L that
does not meet the post-critical set of f ∶ L → L. Let (nj)j∈N be a subsequence such
that fnj converges locally uniformly to the identity on S. For all j ∈ N, fnj ∶ V → V

is an automorphism of S, so we can consider hj ∶= (fnj)−1 ∶ V → V . Moreover, since
D is simply connected and disjoint from the post-critical set of f ∶ L → L, for all j ∈ N
branches of f−nj are well-defined, so we can extend hj to D.

By Theorem 2, the family (hj)j∈N is normal on D, and from the fact that V is a
rotation domain, it is easy to see that (hj)j∈N converges to the identity on V , and
therefore also on D by the identity principle. Let W be a connected, relatively compact
open subset of D containing x such that for all j ∈ N large enough, W ⊂ hj(D). Then

f
nj

∣W
converges to Id∣W , hence W is included in the rotation domain V . This contradicts

the fact that x ∈ ∂V .
�

Corollary 2. Assume that f ∶ Pk → P
k is PCF, and call Li, i ∈ I the irreducible compo-

nents of Ω1. Let J ⊂ I, L ∶= ⋂j∈J Lj and m the least common multiple of the periods of
the Lj, j ∈ J . Then fm ∶ L→ L has no rotation domain.

Proof. Assume that f ∶ L → L does have a rotation domain V . By Theorem 3, the
boundary ∂V is contained in the post-critical set of f ∶ L→ L. By Theorem 1, f ∶ L→ L

is either unbranched or PCF.
Let us first assume that f ∶ L→ L is unbranched: then ∂V = ∅, so L = V . In particular,

f ∶ L → L is an automorphism of L, which contradicts Lemma 5 (indeed, f must have
algebraic degree at least 2 since it is PCF).

Let us now assume that f ∶ L → L is PCF instead of unbranched. Then ∂V is
contained in an algebraic hypersurface of L. Since hypersurfaces of L do not disconnect
L, L/∂V is connected, so V = L/∂V and V contains the complement of the post-critical
set of f ∶ L → L. By Lemma 4.13 of [Ued98], this means that f ∶ L → L is in fact an
automorphism of L and that V = L. Again, this contradicts Lemma 5. �

5. Eigenvalues of periodic points of PCF endomorphisms

Recall the following definition from topological dynamics:

Definition 6. Let X be a Hausdorff topological space, f ∶ X → X a continuous map,
and p ∈ X a fixed point. The fixed point p is said to be Lyapunov stable if for every
neighborhood V of p, there exists an open set U containing p such that for all n ∈ N,
fn(U) ⊂ V . We will also say that p is Lyapunov unstable if f has a local inverse g fixing
p such that p is Lyapunov stable for g.

Remark 2. In the case where X is a complex manifold and f is holomorphic, a necessary
(but not sufficient) condition for Lyapunov stability is for the eigenvalues of Df(p) to
have modulus smaller or equal to one. A sufficient (but not necessary) condition is that
every eigenvalue of Df(p) has modulus strictly smaller than one.

Lemma 6. Let L be a complex manifold, and f ∶ L → L a PCF ramified cover. Let
p ∈ Reg(P(f,L))/C(f,L) be a Lyapunov unstable fixed point for f ∶ P(f,L) → P(f,L).
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Then there is a simply connected open subset U ⊂ L containing p such that for all n ∈N,
there is a well-defined holomorphic lift gn ∶ U → L of fn fixing p.

Proof. Let us begin with the case n = 1. Let V be a small enough neighborhood of p in L

that f admits a unique local inverse g1 defined on V , with g1(p) = p. Let U be an open
subset given by the Lyapunov stability of p as a fixed point of g1. Up to restricting U ,
we can take U to be simply connected.

We will prove the following statement by induction: for all n ∈ N∗, there is a well-
defined holomorphic lift gn ∶ U → L of fn fixing p, such that

gn(U) ∩ P(f,L) ⊂ gn1 (U) ∩ P(f,L).
Now assume that gn is constructed, and let us set Vn ∶= gn(U). Let us prove that g1

admits analytic continuations along any path in Vn starting at p. Let γ ∶ [0,1] → Vn be
a path with γ(0) = p. By the induction hypothesis and the fact that p is a Lyapunov
unstable point,

Vn ∩P(f,L) ⊂ gn1 (U) ∩ P(f,L) ⊂ V ∩ P(f,L).
Using the compacity of γ([0,1]), we may find a finite subcover of γ([0,1]) by small
balls (Ui)i≤m such that either Ui ⊂ V or Ui ∩ P(f,L) = ∅, and then define an analytic
continuation of g1 along γ in the usual way, using compatible local inverses on each Ui.
Since U is simply connected and gn is univalent, Vn is also simply connected, so by the
Monodromy Theorem g1 extends to a single-valued map g1,n defined on Vn

1. We then
set:

gn+1 ∶= g1,n ○ gn on U.

Clearly this defines a lift of fn fixing p.
Now set Vn+1 ∶= gn+1(U). To finish the proof by induction, we need to prove that

Vn+1 ∩ P(f,L) ⊂ gn+1
1
(U) ∩ P(f,L). Let x ∈ Vn+1 ∩ P(f,L), and let y be the unique

element of Vn such that x = g1,n(y). Then f(x) = y ∈ P(f,L) by forward invariance ofP(f,L), so by the induction hypothesis, y ∈ gn
1
(U) ∩ P(f,L). So finally x = g1,n(y) =

g1(y) ∈ gn+11
(U)∩P(f,L) (the second equality comes from the fact that g1,n = g1 on V ),

and the proof is finished. �

Lemma 7. Let f ∶ Pk → P
k be an endomorphism, and assume that L is a subvariety such

that L = f(L) and f ∶ L→ L is PCF. Assume that p = f(p) ∈ Reg(P(f,L))∩C(f,L). Up
to replacing f by an iterate, there is a fixed component Pi of P(f,L) such that the image
of Df(p)∣TpL is included in TpPi.

Proof. Up to replacing f by an iterate, we may assume that all irreducible components
of C(f,L) are mapped by f to fixed post-critical components. According to [GR58], Satz
10, we can find local coordinates (different in domain and range) in which f ∶ L → L

takes locally near p (in L) the form (z1, z2, . . .) ↦ (zm1 , z2, . . .). In particular, p belongs
to the regular part of C(f,L), and Df(p) maps TpC(f,L) injectively into TpP(f,L).
Since Df(p) has rank at most dimL − 1 at p, the image of Df(p) must be exactly
TpP(f,L). �

The following lemma builds on ideas from [FS94]:

1We use the notation g1,n to emphasize the fact that the values of this extension depend a priori on
n on Vn/V .
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Lemma 8. Let f ∶ Pk → P
k be an endomorphism, and assume that L is a subvariety

such that L = f(L) and f ∶ L→ L is weakly PCF. Let p = f(p) ∉ C(f,L), and assume that
there is an open neighborhood U of p in L such that for all n ∈N there is a holomorphic
lift gn ∶ U → L of fn with gn(p) = p. Then p is Lyapunov unstable, and at least one of
its eigenvalues is repelling. Moreover, p is linearizable through an analytic submanifold
tangent to the subspace associated to neutral eigenvalues.

Proof. By Theorem 2, the family {gn, n ∈ N} is normal. Moreover, Dgn(p) = Df(p)−n,
so Df(p) cannot have any attracting eigenvalue, for otherwise Dgn(p) would blow up,
contradicting the normality of the gn, n ∈N.

Therefore all eigenvalues must be either neutral or repelling; assume for a contradiction
that none of them are repelling. Then every eigenvalue of Df(p), hence of Dg1(p), have
modulus one. Moreover, the sequence Dgn(p) = Dgn

1
(p) is bounded; by considering

a Jordan decomposition, one easily sees that this implies that Dg1(p) is unitary. By
Lemma 6.8 of [FS94], g1 and therefore f are linearizable in an open neighborhood of p
in L. This implies that p belongs to a rotation domain of f ∶ L → L, which contradicts
Corollary 2.

Let us prove that p is Lyapunov unstable: let V be an open neighborhood of p. Up
to reducing V , we may assume that each gn coïncide with gn

1
on V . Since {gn

1
, n ∈N} is

normal on V , there is a neighborhood U ⊂ V such that for all n ∈N, gn
1
(U) ⊂ V . Thus p

is Lyapunov unstable.
Finally, let us prove the linearizing statement. Let

TpL = E
c ⊕Eu

be the decomposition of TpL into invariant subspaces associated to neutral and repelling
eigenvalues respectively. We will prove that there is a germ of invariant analytic sub-
manifold W c

loc
(p) tangent to Ec on which f is linearizable. Let h = limj→∞ gnj

be a limit
function. Up to extracting a further subsequence, we may assume that nj+1 − nj → ∞,
and that gnj+1−nj

converges to some other limit function k ∶ U → L. Observe that we
have

k ○ h = h.
Let S ∶= {z ∈ U, k(z) = z}. This is an analytic subset of U , and since Dk(p) is the
projection on Ec with kernel Eu, we have dimS ≤ dimEc. Moreover, the rank of Dh(p)
is equal to dimEc, and h(U) ⊂ S, so in fact the local dimension of S at p is exactly
dimEc and h(U) = S locally near p. It is easy to check that S is invariant under g1.
Again, using the fact that the iterates of Dg1(p) are bounded and looking at its Jordan
decomposition, we can see that all the Jordan blocks associated to neutral eigenvalues
must have size at most 1, and so Dg1(p) restricted to TpS is unitary. Again, by Lemma
6.8 of [FS94], this implies that g1 is linearizable on W c

loc
(p) ∶= S, and therefore the same

holds for f . �

Let us now prove Theorem B on the eigenvalues of cycles of PCF endomorphisms of
P

k:

Theorem B. Let f ∶ Pk → P
k be a PCF endomorphism such that the irreducible com-

ponents of P(f,Pk) are weakly transverse. Let p be a periodic point of period l for f .
Then
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(1) p has no parabolic or non-zero attracting eigenvalue
(2) either p has at least one repelling eigenvalue, or else all eigenvalues are zero (ie

Df l(p) is nilpotent)
(3) if p doesn’t have zero as an eigenvalue, then p is Lyapunov unstable and at least

one of its eigenvalues is repelling.

Proof. Up to replacing f by an iterate, we lose no generality in considering only fixed
points and in assuming that all irreducible components of the Ωm, 0 ≤ m ≤ k, are fixed.
Let p = f(p) be a fixed point of f .

If p ∉ P(f,Pk), we can choose a simply connected neighborhood U of p in L, and for
all n ∈ N we have a well-defined inverse branch gn ∶ L → L fixing p. Then by Lemma 8,
we are done. Therefore we will now assume that p ∈ P(f,Pk).

Let m0 be the greatest m ≤ k − 1 such that p ∈ Ωm. We shall prove the following by
descending induction on the codimension m, for 0 ≤m ≤m0:

For any irreducible component L of Ωm containing p:

(1) the non-zero eigenvalues of p associated to vectors tangent to L are not attracting
or parabolic

(2) if none of those eigenvalues are repelling, then they are all 0
(3) if p ∉ C(f,L), then p is a Lyapunov unstable fixed point of f in L.

If m0 = k − 1 and L is an irreducible component of Ωk−1 containing p, then f ∶ L → L

is weakly PCF according to Theorem 1, and L is a compact Riemann surface. Therefore
L must be either a torus or a projective line (indeed, in all other cases, f would have to
restrict to a degree one self-map of L, contradicting Lemma 5). If L is a torus, then all
cycles are repelling, and if L is a projective line, it is classical that f ∶ L → L may only
have super-attracting or repelling cycles.

If m0 < k−1 and L is an irreducible component of Ωm0
containing p, then by Theorem

1, f ∶ L → L is an unbranched cover, and P(f,L) = ∅. In particular, for any simply
connected neighborhood U of p we can take inverse branches gn of fn fixing p. Then,by
Lemma 8 p is Lyapunov unstable, has at least one repelling eigenvalue and no attracting
or parabolic eigenvalue. Thus the statement is proved for m =m0.

Now let m ≥ 1 and assume that p ∈ Ωm and that the induction hypothesis is satisfied for
m. Let L be an irreducible component of Ωm−1 containing p. Note that by assumption,
p ∈ P(f,L) since p ∈ Ωm. We will distinguish 3 mutually exclusive cases:

(1) p ∈ Reg(P(f,L)) ∩ C(f,L)
(2) p ∈ Reg(P(f,L))/C(f,L)
(3) p ∈ Sing(P(f,L))

Case (1) follows from Lemma 7 and the induction hypothesis.
Assume we are in case (2). Let P be the irreducible post-critical component of P(f,L)

containing p. By item (3) of the induction hypothesis, p is a Lyapunov unstable fixed
point of the restriction f ∶ P → P . By Lemma 6 and Lemma 8, p is also a Lyapunov
unstable fixed point for f ∶ L → L, and it has at least one repelling eigenvalue, so the
three items of the induction are proved.
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Finally, let us assume that we are in case (3). Since we assumed that any intersection
of components of Ω1 is smooth, Theorem 1 implies that p belongs to at least two differ-
ent components P1 and P2 of Ωm. Since the irreducible components of Ω1 are weakly
transverse, Lemma 2 implies that TpL ⊂ TpP1+TpP2. Also note that each of the TpPi are
invariant under Df(p). Therefore any eigenvalue of Df(p) on TpL must be an eigenvalue
on either TpP1 or TpP2. This together with the induction hypothesis imply that all three
desired items of the induction are true.

Thus the induction is finished and the Theorem is proved, since it corresponds to the
case m = 0. �

6. Super-attracting basins are the only Fatou components

We are now able to prove Theorem C:

Theorem C. Let f ∶ Pk → P
k be a PCF endomorphism, and let Li, i ∈ I be the irreducible

components of its post-critical set P(f). Assume that

(1) (Li)i∈I is weakly transverse
(2) P

k/P(f) is Kobayashi hyperbolic.

Then the Fatou set of f is empty or a finite union of basins of super-attracting cycles,
whose points are zero-dimensional intersections of components Li.

Proof of Theorem C. Let us start by introducing some notations. Denote by (Li)i∈I the
family of the irreducible components of P(f).

For every y ∈ P(f), denote by My the intersection of all irreducible components ofP(f) containing y:

My = ⋂
i∈Iy

Li

where Iy is the set of i ∈ I such that y ∈ Li.

For any i ∈ Iy, there exists (ki,mi) ∈ N ×N∗ such that fmi+ki(Li) = fmi(Li). Let
my ∶= lcm(mi, i ∈ Iy) and

Ny ∶= ⋂
i∈Iy

fki(Li).

Then we have fmy(Ny) ⊂ Ny.
For any closed hypersurface V , denote by ∥ ⋅ ∥Pk−V the Kobayashi pseudo-metric of

P
k
− V .

Step 1. Let x ∈ Pk
− f−1(P(f)). Then for every v ∈ TxP

k, we have

∥Df(x) ⋅ v∥Pk−P(f) ≥ ∥v∥Pk−P(f).

Proof. Since the restriction f ∶ Pk
− f−1(P(f)) → P

k
−P(f) is a covering map, we have

∥Df(x) ⋅ v∥Pk−P(f) = ∥v∥Pk−f−1(P(f)).

Moreover, since there is an inclusion i ∶ Pk
− f−1(P(f)) → P

k
−P(f), we have

∥v∥Pk−f−1(P(f)) ≥ ∥v∥Pk−P(f).

�
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Step 2. Let z ∈ F(f) be a point whose orbit never lands in P(f), and let fnj be a
subsequence converging to some map h on a neighborhood of z. Let y ∶= h(z). Then
y ∈ P(f), and Dh(z) ∶ TzP

k → TyMy is surjective.

Proof. The fact that y must be in P(f) is well-known; we refer the reader to [Ron08] for
instance. Let (Pi)i∈Iy denote a collection of irreducible polynomials whose zero loci corre-
spond to the irreducible components Li of P(f) containing y, and let v ∈ ⋂i∈Iy kerDPi(y).
Let us prove that there exists w ∈ TzP

k such that Dh(z) ⋅w = v. Let ξ be a holomorphic
vector field defined on a neighborhood U of y, such that ξ(y) = v given by Lemma 1. For
any j ∈N large enough to ensure that fnj(z) ∈ U , let wj = (Dfnj)−1(fnj(z)) ⋅ ξ(fnj (z)).
Since f expands the Kobayashi metric of Pk

−P(f) (Step 1), we have:

∥wj∥Pk−P(f) ≤ ∥ξ(f
nj(z))∥Pk−P(f)

Moreover, by Lemma 1, there exists a constant C > 0 independant from j such that:

∥ξ(fnj(z))∥Pk−P(f) ≤ C.

Therefore up to extracting one more time, the sequence wj converges to some w ∈ TzP
k.

By continuity of ξ, we have that Dh(z) ⋅w = v. �

Step 3. Let h be a Fatou limit function, z ∈ F(f) and let y ∶= h(z). Assume that
Dh(z) ∶ TzP

k → TyMy is surjective. Then we have that the sequence (Dfk(y)∣TyMy
)k∈N

is uniformly bounded (in the Fubini-Study metric of Pk).

Proof of Step 3. Let v ∈ TyL: we shall prove that the sequence Dfk(y) ⋅ v is bounded.

According to Step 1, there is w ∈ TzP
k such that Dh(z) ⋅w = v. Let j, k ∈N∗. We have:

Dfnj+k(z) ⋅w =Dfk(fnj(z)) ○Dfnj(z) ⋅w

Since Dfnj(z) converges to Dh(z), for all k ∈ N∗ there exists j0 ∈ N such that for all
j ≥ j0,

∣∥Dfnj+k(z) ⋅w∥ − ∥Dfk(y) ⋅ v∥∣ ≤
1

k
.

Finally, since z belongs to the Fatou set of f , the sequence ∥Dfn(z) ⋅ w∥ is bounded,
therefore so is the sequence ∥Dfk(y) ⋅ v∥.

�

Step 4. Let U be a Fatou component of f , and let h ∶ U → P
k be a Fatou limit function.

There is a unique maximal Jh ⊂ I such that h(U) ⊂ ⋂j∈Jh Lj ∶= Mh. Moreover, the set
V of those z ∈ U such that Lh(z) = Mh is open and dense in U , and h ∶ U → Mh is a
submersion.

Proof. For every component Li of P(f), let Pi denote an irreducible homogenous poly-
nomial on C

k+1 such that Mi = {Pi = 0} in homogenous coordinates. Since h(U) ⊂ P(f),
we have:

∏
i∈I

Pi ○ h = 0.

Let φi = Pi ○ h, and let J = {i ∈ I,φi does not vanish identically on U}.
Then ⋃i∈J φ

−1(0) is a proper analytic subset of U (possibly empty), so V ∶= U −

⋃i∈J φ
−1(0) is open and dense in U .
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Let z ∈ V and y ∶= h(z). By definition of V , if y belongs to some component L ofP(f), then h(U) ⊂ L; therefore h(U) ⊂My. Since this is true for any z ∈ V , we have that
for every z, z′ ∈ V , Mh(z) = Mh(z′ . We can therefore set Mh = Mh(z) for any arbitrary

z ∈ V . Moreover, by Step 1, Dh(z) ∶ TzP
k → TyMy is surjective if the orbit of z does not

meet P(f), or in other words, if z ∈ V −⋃n≥0 f
−n(P(f)). But for all n ∈ N, f−n(P(f))

is a proper closed algebraic hypersurface, so by Baire category V − ⋃n≥0 f
−n(P(f)) is

dense in V . This implies that for all z ∈ V , Dh(z) ∶ TzP
k → TyMy is surjective; and since

V is dense in U , we have that Dh(z) ∶ TzP
k → TyMh is surjective for all z ∈ U . �

Step 5. With the same notations as the previous step: there exists (k,m) ∈N×N∗ such
that fm+k(Mh) = fk(Mh), and fk

○ h(U) is in the Fatou set of the restriction of fm to
Nh ∶= fk(Mh).

Proof. According to Step 4, for any Fatou limit function h, the map h ∶ U → Mh is a
submersion, hence open. For all n ∈ N, fn

○ h is also a Fatou limit function, so let us
denote by Mn the variety Mfn○h. Then for all n ∈ N, fn

○ h ∶ U → Mn is open, which

implies that all Mn have the same dimension, as the ambient map f ∶ Pk → P
k maps

analytic subsets to analytic subsets of same dimension. Since there are only finitely many
different varieties of the form ⋂j∈J Lj (Lj being the irreducible components of P(f)),
there are only finitely many Mk. Thus there is (k,m) ∈N ×N∗ such that Mk+m =Mk.

Now from the fact that fm maps an open subset of Mk (namely fk
○h(U)) to another

open subset of Mk (namely fm+k
○ h(U)), it is easy to see that fm(Mk) ⊂ Mk.Since

Mk is a closed irreducible variety, we have in fact fm(Mk) = Mk. Finally, note that
Mk = fk(Mh), again because fk maps the open subset h(U) ⊂ Mh to the open subset
fk
○ h(U) ⊂Mk.
Applying Step 2 to every z ∈ U , we have that for every y ∈ h(U), the derivatives

Dfn
∣TyMh

, n ∈ N, are uniformly bounded. Moreover, h(U) is open by Step 4 and the

submersion lemma. Therefore, the family of maps {fn
∣h(U) ∶ h(U) → P

k, n ∈N} is normal.

This implies that the family {f ○mn
∣fk○h(U)

∶ fk
○ h(U) → Nh, n ∈ N} is normal, which is

exactly saying that fk
○h(U) ⊂ Nh is in the Fatou set of the restriction of fm to Nh. �

Step 6. Let U be a Fatou component of f . There exists a subsequence (mj)j∈N such that
fmj converges on U to a cycle for f .

Proof . We will prove that there is a constant Fatou limit function on U . To do this, we
will prove that for every Fatou limit function h on U such that the Mh given by Step 4
has dimension δ ≥ 1, there is a Fatou limit function h̃ on U such that dimM

h̃
≤ δ − 1.

According to the previous step, U ′ ∶= fk
○ h(U) is an open subset of the Fatou set of

g ∶= fm
∣Nh
∶ Nh → Nh. Let (nj)j∈N be a subsequence such that gnj converges to a Fatou

limit function h2 (for g) on U ′. Up to extracting further, we may assume that nj+1 − nj

tends to infinity. We are going to prove that for any z ∈ U ′, the rank of Dh2(z) must be
less than or equal to δ−1 = dimNh−1. Suppose for a contradiction that it is not the case:
then by the local inversion theorem, we may find an open set W ⊂ U ′ with W ⊂ h2(U ′).
Up to extracting further, we may assume without loss of generality that nj+1 − nj tends
to infinity. From the equality gnj+1−nj ○ gnj = gnj+1 , we deduce that gnj+1−nj converges to
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IdW on W ; therefore, W is included in a rotation domain for g. But this is impossible
by Corollary 2.

Therefore, there exists a Fatou limit function h2 for g = fm
∣Nh

defined on U ′ = fk
○h(U),

such that the rank of Dh2 is strictly less than δ − 1 everywhere on U ′.
Moreover, h̃ ∶= h2○h is a Fatou limit function of f (on U), as can be seen by considering

iterates of the form fk+mnj+pi with i ∈ N large and then suitable j ∈ N, where (pi)i∈N
is a subsequence such that fpi tends to h. Moreover, the differential of h̃ has a rank at
most δ − 1 everywhere on U .

Therefore, by descending induction on δ, we can find a Fatou limit function on U with
rank 0, or in other words, a constant Fatou limit function h = y, with y ∈ P(f). By
Step 4, we have My =Mh = {y}, so {y} is a zero-dimensional intersection of hyperplanes
in P(f), and therefore y has a finite orbit. So up to replacing h by fp

○ h for some
appropriate value of p ∈N (we may do so since fp

○ h is also a Fatou limit function), we
may assume that y is periodic.

�

Step 7. For every z in the Fatou set of f , we have limn→∞Dfn(z) = 0.

Proof. Let U be a Fatou component of f . By the previous step, there is a subsequence fnj

such that fnj converges on U to a finite set; therefore Dfnj converges locally uniformly
to zero on U .

Now observe that for any n ∈N,

∥Dfn∥ ≤ ∥Dfnj∥∥Dfn−nj∥

where j =max{i, ni ≤ n}, and that ∥Dfn−nj∥ is uniformly bounded on every compact of
Ω (by normality). Here we used the Fubini-Study metric on P

k (or any other continuous
Hermitian metric on P

k). �

Step 8. For every Fatou component U of f , there is a periodic point y such that fn

converges to that cycle, locally uniformly on U .

Proof. Applying Step 2 and the previous step, we obtain that for every z ∈ U and every
Fatou limit function h, My has dimension zero, with y ∶= h(z). Thus by Step 4, for
every Fatou limit function h, there is a z ∈ U such that if y ∶= h(z), we have that
h(U) =My = {y}, and y is a periodic point for f in view of Step 6. Since My = {y}, y can
be written as the intersection of at least k hyperplanes that are irreducible components
of P(f). There are only finitely many such points, and they are all fixed by f . Denote
by F the set of those points. Let K ⊂ U be a compact with non-empty interior, and let
ǫ > 0. There exists n0 ∈ N such that for all z ∈ K, for all n ≥ n0, f

n(z) ∈ ⋃p∈F D(p, ǫ).
If ǫ is small enough, the disks D(p, ǫ), p ∈ F , are pairwise disjoint and for all p ≠ q,
f(D(p, ǫ)) ∩D(q, ǫ) = ∅ (because all the p ∈ F are fixed points). Therefore, if ǫ is small
enough, and n ≥ n0, there is a unique p ∈ F such that fn(K) ⊂ D(p, ǫ), and moreover
for all q ≠ p, we have fn+1(K) ∩ D(q, ǫ) = 0. Therefore, by induction, we must have
fn(K) ⊂ D(p, ǫ) for all n ≥ n0. This proves that the sequence of iterates fn

∣K restricted

to K converge to p. �

Step 9. The periodic cycles from the previous step must be superattracting.
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Proof. Let p ∈ Pk be such a periodic point. Replacing f by one of its iterates if necessary,
we assume that p is a fixed point. Since there is an open set U ⊂ Pk of points converging
locally uniformly to p under iteration, Df(fn(z)) converges locally uniformly to Df(p),
and Dfn(z) converges to 0. Therefore p cannot have any repelling eigenvalue. By
Theorem B, this means that Df(p) is nilpotent, hence that p is superattracting. �

To sum things up, we have proved that for every Fatou component U , the iterates
fn converge locally uniformly on U to some super-attracting periodic point y, that is a
maximal codimension intersection of irreducible components of P(f,Pk). This proves
Theorem C. �

7. The case of moduli space maps

In this final section, we recall Koch’s results from [Koc13] and explain why Theorems
A, B and C apply to her construction. It starts with a topological object on the 2-sphere
S2:

Definition 7. A topological polynomial is an orientation-preserving branched cover of
the 2-sphere h ∶ S2 → S2, such that there exists p ∈ S2 with h−1(p) = {p}, and such that
the post-critical set Ph is finite.

Post-critically finite polynomials are topological polynomials in the sense of the pre-
vious definition, by identifying the Riemann sphere with S2 and taking p =∞.

Given a topological polynomial h and a complex structure s on (S2, Ph), one call pull
back the complex structure by h to obtain a (possibly different) complex structure h∗s.
This descends to a holomorphic map σh ∶ Teich(S2, Ph)→ Teich(S2, Ph) (see [Koc13] for
more details). This map is of particular interest as it will have have a fixed point in
Teich(S2, Ph) if and only if h is equivalent in some sense to an "usual" polynomial on
the Riemann sphere, by a celebrated theorem of Thurston.

The moduli space MPh
is the set of all injections Ph ↪ P

1 modulo composition by
Möbius transformation. If N = cardPh, it is easy to see that it identifies to an open
subset of CN−3 if N > 3, and a single point otherwise. In the following, we will always
assume that N > 3, and let k ∶= N − 3. The Teichmüller space Teich(S2, Ph) is the
universal cover of the moduli space: there is a natural holomorphic universal covering
π ∶ Teich(S2, Ph)→MPh

.
There are several interesting compactifications of the moduli space; in the case of a

topological polynomial, there is a distinguished hypersurface corresponding to the "infin-
ity" point p. Therefore it is natural to consider the compactification MPh

↪ P
k, where

the distinguished hypersurface would be in the hyperplane at infinity.
In [Koc13], Koch studies the existence of a holomorphic endomorphism f ∶ Pk → P

k

making the following diagram commute:

Teich(S2, Ph)
σh //

π
��

Teich(S2, Ph)

π
��

P
k

P
k

f
oo
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When it exists, such an endomorphism is called a moduli space map. It is always post-
critically finite, and its post-critical set consists in a union of hyperplanes. Moreover,
P

k/P(f) ≃ MPh
is Kobayashi hyperbolic (Corollary 6.3). Koch proved that if h is a

topological polynomial that is either is unicritical or has a periodic critical point, then
there exists a corresponding moduli space map (Theorem 5.17 and Theorem 5.18).

Since any intersection of projective hyperplanes is a projective space, such intersections
are always smooth. Moreover, they intersect each other weakly transversally in the sense
of definition 1.

Therefore, Theorems A, B and C apply to moduli space maps.
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