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Theoretical modeling of electron mobility in superfluid 4He

Frédéric Aitken,1 Nelly Bonifaci,1 Klaus von Haeften,2 and Jussi Eloranta3,a)

1G2ELab-GreEn-ER, Equipe MDE, 21 Avenue des Martyrs, CS 90624, 38031 Grenoble Cedex 1, France
2Department of Physics and Astronomy, University of Leicester, University Road,
Leicester LE1 7RH, United Kingdom
3Department of Chemistry and Biochemistry, California State University at Northridge,
18111 Nordhoff St., Northridge, California 91330, USA

The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to 
the viscous response of superfluid 4He present at finite temperatures. The viscous functional is derived 
from the Navier-Stokes equation by using the Madelung transformation and includes the contribution 
of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by 
calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K 
along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. 
The temperature dependence of ion mobility was calculated for several different s olvation cavity 
sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility 
models. Results are compared to the experimentally observed “exotic ion” data, which provides 
estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly 
discussed.

I. INTRODUCTION

An excess electron confined in superfluid 4He is an
excellent prototype system for modeling the general aspects
of nonpolar solvation and the interaction of nanoscale objects
with liquids. For example, the static solvation structure
of electrons in liquid helium has received a considerable
amount of experimental and theoretical attention.1 These
studies established that electrons reside in spherical cavities
(“bubbles”) in the liquid with a barycenter radius of ca.
18.5 Å at saturated vapor pressure as determined by earlier
density functional theory (DFT) calculations.2,3 In contrast,
such bubbles are considerably smaller in polar liquids, such
as water, due to the strong electrostatic interactions.4 Since
the bubble size in superfluid helium is determined by a
delicate balance between the electron zero-point energy and
the liquid surface energy, its radius is strongly dependent
on the external pressure. The quantized energy levels of an
electron trapped in such a spherical well have been studied
experimentally (i.e., optical transitions between 1s–1p and
1s–2p states) as a function of external pressure.5–9 These
observations are in excellent agreement with the earlier DFT
calculations, which employ several different types of electron-
helium pseudopotentials to include the correlation effects into
the model.2,3 Due to the quantum analog of the Bernoulli force,
electron bubbles may also become trapped on quantized vortex
lines and rings present in superfluid helium.1,10,11 In fact, the
first experimental visualization of quantized vortex lines was
based on this principle.12,13

Dynamic phenomena of solvated electrons in superfluid
helium have been mostly studied experimentally where
they were subject to either an external static electric field
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(i.e., electron mobility experiments) or ultrasound excitation to
explode the electron bubbles by negative pressure waves.1,14,15

The latter experiments established that electrons can be
optically detected in the liquid through such expanded
bubbles.16 The electron mobility experiments, on the other
hand, have demonstrated that such measurements can yield
detailed information about the dissipative interaction with
the surrounding superfluid.17–20 In the low velocity regime
(a few m/s), the measurements have shown that the electron
mobility is reduced by collisions with the thermal excitations
present in the liquid, i.e., phonons and rotons. Three different
temperature regimes have been approximately identified at
saturated vapor pressure: (1) phonon limited mobility when
T < 0.6 K, (2) 0.6 K < T < 1.2 K where the dissipation takes
place primarily by discrete roton - electron bubble collisions
and phonons, and (3) 1.2 K < T < 2.17 K where the roton
collision frequency is sufficiently high such that continuum
models become applicable for describing the effective
interaction.1 The transition temperature between cases 2 and 3
will also be discussed further in this paper as it appears slightly
different than given in Ref. 1. At higher drift velocities (some
tens of m/s), a critical threshold value has been observed after
which the electron mobility suddenly begins to decrease.1,21–24

This transition point has been attributed to the creation of
rotons or vortex rings when the electron reaches the Landau
critical velocity corresponding to the temperature, pressure,
and geometry used in the experiment.

Time-of-flight measurements of the solvated electrons
in an external electric field have revealed that, in addition
to the normal electron bubble, a sequence of additional
negative ion signals were also present. Such faster than
electron “exotic ion” signals have been reported over the
years by many groups25–29 and various explanations for their
origin have been proposed in the literature:30,31 (1) fractional

1



electrons where the electron wavefunction is split into
different solvation bubbles, i.e., a superposition state, (2)
electronically excited negatively charged He− and He−2 ,32–37

and (3) solvated impurities (e.g., O−, O−2 H−2). However,
none of the previously given explanations fully account
for the experimental observations and hence the problem
of identifying these exotic ions remains open.

To date, theoretical modeling of the time-dependent liquid
helium response in the presence of an excess electron has
received relative little attention in the literature.1 For example,
the early work of Rosenblit and Jortner used a hydrodynamic
model to estimate the free electron localization time in
liquid helium.38 In the superfluid phase, time-dependent
DFT calculations have been used to predict the variation
of the energy level separations between 1s, 2s, 1p, and
2p states following an optical excitation.3 This calculation
demonstrated the feasibility of performing picosecond-times
cale optical pump-probe experiments on electron bubbles to
monitor their evolution. Recently, a similar DFT model has
been applied to evaluate the hydrodynamic added mass of
negative and positive charge carriers in superfluid helium.39

As the current DFT models do not include the thermal
excitations that are responsible for viscous dissipation, Aitken
et al. have developed a phenomenological model where
the hydrodynamic radius is related to the free volume and
thermodynamic state equations that describe its variation with
phase, pressure, and temperature.40,41 The state equations are
calibrated to the known experimental data for the particular
ion and medium under consideration. This model has been
successful in describing electron mobility in supercritical and
liquid helium,40 helium gas at low temperature,41 and positive
ion mobility in liquid helium42 and supercritical helium.43

Although the model itself is less computationally demanding
than DFT and not limited to a specific system, it obscures
many of the microscopic details of ion solvation and the role
of dissipative processes.

In this work, we extend the time-dependent Orsay-Trento
DFT (OT-DFT) model to include the viscous response of
superfluid helium present at finite temperatures. This is
accomplished by transforming the classical viscous response
terms from the Navier-Stokes equation to DFT by using the
Madelung transformation. The overall viscous response in
this model is not only determined by the bulk liquid shear
viscosity but also by the variation of viscous response at the
inhomogeneous bubble interface. The latter contribution is
obtained by calibrating the model against the experimentally
known electron mobilities in superfluid helium along the
saturated vapor pressure line. Finally, mobilities for several
different bubble sizes in the bulk liquid are predicted as a
function of temperature, which can be applied, for example, to
identify unknown ionic species based on their experimentally
observed mobility.

II. THEORY

A. Density functional theory model

Previously, time-independent OT-DFT has been success-
fully applied to model electron bubbles in superfluid helium

as a function of both pressure and temperature.2,3,44–46 In
this model, the coupled non-linear Schrödinger equations
corresponding to superfluid helium OT-DFT and the solvated
electron are expressed as:2,3,46



i~
∂ψ

∂t
= −

~
2
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∆ψ + VOT [ρ]ψ + Vext [ρe]ψ

i~
∂ψe

∂t
= −

~
2

2me

∆ψe + Vext [ρ]ψe,

(1)

where mHe is the helium atom mass, me is the electron
mass, ψ is the liquid order parameter with the corresponding
one-particle density given as ρ = |ψ |2, ψe is the electron
wavefunction with ρe = |ψe|

2, VOT is the non-linear OT-DFT
potential (excluding the kinetic correlation and backflow
terms),46 and the external potential functional is defined as:

Vext [ρ] =


ρ(r ′)Vps (|r − r ′|) d3r ′ (2)

where Vps represents the electron-helium pseudopotential47

and the argument ρ corresponds to either liquid helium or
electron density. The previously developed finite-temperature
OT-DFT includes only the static contributions of the liquid
thermal response whereas the dynamic dissipative processes
(e.g., viscosity) are neglected.45 To include the dissipation
due to viscous liquid into Eq. (1), the connection between the
OT-DFT equation (first line of Eq. (1)) and the hydrodynamic
Euler equation must first be briefly considered. By using the
Madelung transformation (i.e., ψ =

√
ρ exp (iS/~)),48 the OT-

DFT equation can be written as (the corresponding continuity
equation not shown),

ρm

(

∂v⃗

∂t
+

(

v⃗ · ∇⃗
)

v⃗

)

= −ρ∇⃗ξ (3)

where the helium mass density is defined as ρm = mHeρ, the
liquid velocity field v⃗ = ∇⃗S/mHe, and the effective pressure is
given by:

ξ = VOT + Vext −
∆
√
ρ

2mHe
√
ρ
. (4)

The last term on the right hand side of Eq. (4) is termed
quantum pressure. In the Navier-Stokes equation, additional
terms are included on the right hand side of Eq. (3) to
account for viscous response. Following the Stokes hypothesis
(i.e., monoatomic gas), we set the bulk viscosity to zero and
write the Navier-Stokes equation as (corresponding continuity
equation not shown),

ρm

(
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∂t
+
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v⃗ · ∇⃗
)

v⃗

)

= −ρ∇⃗ξ + ∇⃗ ·

η

(

∇⃗v⃗ +
(

∇⃗v⃗
)T
−

2
3

(

∇⃗ · v⃗
)

1⃗

)
, (5)

where η = η(r) represents the shear viscosity and 1⃗ is the unit
tensor. The term contained between the brackets corresponds
to the symmetrized linear stress tensor. Note that this equation
is valid in the presence of both liquid compression (∇⃗ · v⃗ , 0)
and rotational flow (∇⃗ × v⃗ , 0). To recast the viscous terms
of Eq. (5) into the appropriate form for OT-DFT, the viscous
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response functional, ξNS, must be solved from
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This is equivalent to the following Poisson equation for ξNS:
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. (7)

We assume that both ρ and v⃗ vary slowly around the electron
bubble such that the viscosity becomes a functional of
density only. An often employed form for this functional
dependence at a given temperature is η [ρ] ∝ ρα where
α is a constant defining the variation of viscosity across
the interface (“interfacial viscosity coefficient”). While no
rigorous justification for employing this form for liquids
exists, it may be considered to bear similarities with the
polynomial-type expansions used for expressing viscosity
of gases in terms of density.49,50 The following ansatz is
employed to represent the interfacial viscosity:

ηT [ρ,T] =

(

ρ

ρ0(T)

)α(T )

η0(T), (8)

where η0 is the shear viscosity of the bulk liquid, which is
determined by the product of the normal fluid viscosity and
the normal fluid fraction (i.e., η0 = (ρn/ρ0) ηn). Note that
this power form can also approximately describe the density
dependence of viscosity for classical liquids.51,52

Since there is no known analytic form for function α(T),
it must be obtained by calibration against the experimentally
available electron mobility data.14 The following empirical
form was used to approximate the temperature dependence:

α(T) = a0 + a1 exp (a2T) , (9)

where the empirical constants a0, a1, and a2 were found to be
1.73, 2.32 × 10−10, and 11.15 K−1, respectively, by minimizing
the difference between the viscous OT-DFT calculations and
experimental mobility data.14

To model a moving electron in superfluid helium, the first
equation in Eq. (1) is solved in the coordinate frame moving
with the electron by introducing the following kinetic energy
constraint operator, T̂c, to the Hamiltonian:53

T̂cψ = −v⃗0 · p⃗ψ, (10)

where v⃗0 is the velocity vector corresponding to the electron
movement (liquid flowing in opposite direction) and p⃗ is
the momentum vector operator for the liquid. For simplicity,
the electron motion is restricted along the x-axis and hence
v⃗0 = (v0,0,0). Note that when periodic boundary condition is
imposed on the simulation box, v0 must be an integer multiple
of 2π

Nx∆x
, where Nx is the number of discretization points along

the x-axis and ∆x is the spatial step length. Therefore, the
lowest applicable constrained velocity is dictated by the spatial
extent of the grid. For the present calculations, v0 = 2.3 m/s,
which is well within the experimentally observed linear
mobility regime and especially much lower than the Landau
critical velocity for roton/vortex creation.1

The steady-state flow solution to Eq. (1) can be conve-
niently achieved by using the imaginary time method.46,54

Since the calculation is carried out in the moving electron

frame of reference, it converges to the steady-flow solution
around the electron with no net acceleration. Thus the viscous
drag force and the force due to the external electric field must
be equal in strength but in opposite directions, F⃗drag = −F⃗field.
The drag force can be evaluated from the steady-state solution
of Eq. (1) by

F⃗drag = −
 

∇⃗r
�
ρe(r)Vps (|r − r ′|)

�
ρ(r ′)d3r ′d3r. (11)

Since the viscous response term in Eq. (7) introduces
dissipation near the gas-liquid interface, asymmetric variations
in both the liquid velocity and density appear between the
front and the back of the bubble relative to the incident flow.
According to Eq. (11), such an asymmetric density profile is
responsible for producing the drag force. The incident field
strength at the electron, V , is directly proportional to the
external force, F⃗field, acting on it: V =

���F⃗field
��� /e, where e is the

elementary charge. In the linear regime, the electron mobility,
µ, can now be calculated from (in units of m2 V−1 s−1),

µ ≡
v0

V
=

ev0
���F⃗field

���
=

ev0
���F⃗drag

���
. (12)

Furthermore, the following derived quantities are useful for
analyzing the results:39,55

madd =


ρ(r)vx(r)d

3r/v0, (13)

R =
e

4πµη
, (14)

where madd is the hydrodynamic added mass of the electron
bubble and R is the Stokes radius of the bubble based on the
Stokes law. Note that the viscosity used above corresponds
to the viscosity of the whole fluid, which is determined by
the product of the normal fluid fraction and the normal fluid
viscosity.

To predict the dependence of mobility on the bubble
radius, the following artificial external potential, Ve, was
employed:

Ve(r) = c0 exp (−c1(r − c2)) , (15)

where constants c0 and c1 where fixed to 3.8003 × 105 K and
1.6245 Å−1, respectively. The bubble radius corresponding
to this exponentially repulsive potential can be varied by
changing the value of c2. For example, choosing c2 = 10.1 Å,
results in a density profile that resembles the electron bubble
structure very closely. In such calculations, only the liquid
portion of Eq. (1) was considered with Vext given by Eq. (15)
and integration over the (non-existent) electronic degrees of
freedom was omitted in Eq. (11).

The model defined by Eq. (1) consists of two coupled
non-linear Schrödinger equations (i.e., superfluid helium and
electron), which were solved numerically in imaginary time
as described previously.2,3,46,54,56 The applied imaginary time
step for the liquid degrees of freedom was 100 fs whereas
a 0.1 fs time step was used for the electron due to its
lower mass. The spatial grid applied in the calculations
consisted of 1024 × 512 × 512 grid points with a step size
of 0.8 bohr. Since the interaction between the electron and
the liquid involves exchange of long wavelength phonons,
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the simulation box must be sufficiently large to accommodate
such excitations. Note that the energy of these phonons is
very low and therefore the mobility converges rather slowly
in imaginary time, particularly near 2.1 K. The convergence
criterion in the present calculations was based on the observed
difference between the consequent mobilities calculated at
every 500 imaginary time iterations. When this difference fell
below 0.1% of the mobility, the calculation was considered
to be converged. Typically 104 imaginary iterations were
required to reach this threshold. However, by using a solution
obtained previously at a nearby temperature or bubble size, the
convergence time could be reduced significantly. Furthermore,
the applied predictor-corrector scheme used for solving Eq. (1)
allowed the imaginary time step length to be increased up
to 100 fs without introducing any time step bias from the
applied operator splitting scheme into the solution.46 The
bulk liquid density was maintained during the imaginary time
iterations by introducing a constant chemical potential to
Eq. (1), which corresponds to the applied OT-DFT functional.
Because the calculations were carried out in imaginary time, it
was possible to employ regular periodic boundary conditions
in the simulation box. On the contrary, real time calculations
would require the use of absorbing boundaries to eliminate
back reflections of waves that originate from the accelerating
object. To compute the liquid viscous response functional, the
Poisson equation given by Eq. (7) was solved numerically
in the Fourier space by using the centered finite difference
formula57 where a constant of 10−9 a.u. was added to ρ to
avoid numerical instabilities arising from the division by ρ.
Superfluid helium shear viscosity values at the considered
temperatures along the saturated vapor pressure curve were
taken from the literature.14

Finally, we note that the OT-DFT part of Eq. (1) could
also be written separately for the superfluid and normal
fluid order parameters (“two-fluid DFT”). In this case the
OT-DFT potential should be evaluated by using the total
liquid density, which is the sum of the normal and super
fractions, ρ = ρs + ρn. Only the normal fluid equation should
include the viscous response determined by ηn. However, this
model allows unrestricted spatial separation of the normal
and superfluid components, which is not compatible with the
original thermal OT-DFT functional. For the solvated electron
considered in this work, both Eq. (1) and this two-fluid OT-
DFT model produced very similar results for the calculated
electron mobilities where in the latter case only a small spatial
separation between the two liquid fractions was observed
(<2% of bulk density). Within this model, the normal fluid
accumulates in the front of the electron bubble whereas the
superfluid tends to fill the void behind the bubble.

III. RESULTS AND DISCUSSION

Plotting the inverse of bulk liquid shear viscosity against
the experimentally observed mobility indicates nearly linear
behavior down to ca. 1.2 K as demonstrated in Fig. 1. Such
behavior is predicted by the Stokes law, Eq. (14), assuming
that the bubble radius is independent of temperature. However,
careful examination shows that this result holds only very
approximately and, thus, for the Stokes law to hold exactly,

FIG. 1. Experimental electron mobility (µ) is plotted vs. the inverse bulk
shear viscosity (η−1

0 ) as black circles.14 The blue continuous line demon-
strates the near linear relationship above 1.2 K and the red dashed line is
provided as a guide to the eye to highlight the non-linear behavior below
1.2 K. A red dotted vertical line marks the approximate transition point, which
separates the hydrodynamic continuum and discrete roton collision regimes
(see text for discussion).

R must be temperature dependent, R = R(T). Below 1.2 K
temperature the behavior becomes notably non-linear (cf.
“transition point” indicated in Fig. 1), which can be interpreted
as the point where the hydrodynamic continuum model breaks
down and discrete roton scattering events at the electron bubble
dominate the dissipative response (“roton gas”).

An example of the superfluid helium density and the
velocity field obtained from the imaginary time solution of
Eq. (1) is shown in Fig. 2. Since the electron drift velocity
is low (≈2 m/s), the velocity field appears nearly symmetric
between the front and the back of the bubble. The presence of
the viscous term given by Eq. (7) is responsible for producing
the liquid flow pattern that moves around the bubble. Note
that the behavior of the hydrodynamic variables ρ and v⃗

may become problematic at the bubble interface and inside

FIG. 2. Liquid density contours (ρ) and the associated velocity field (v) for
an electron moving in superfluid helium at 2.1 K obtained by viscous OT-DFT
model. The velocity field shown corresponds to (vx− v0, vy, vz) where the
liquid background moves at 2.3 m/s.
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TABLE I. Viscous OT-DFT optimized values for the exponent α(T ) in Eq. (8), the resulting electron mobility
µDFT from Eq. (12), the experimental electron mobility µexp,14 the calculated hydrodynamic added mass madd

from Eq. (13) in units of mHe, the Stokes radius RStokes based on µDFT (Eq. (14)), and the bubble radius at half
bulk density value Rρ0/2.

T (K) α µDFT (cm2 V−1 s−1) µexp (cm2 V−1 s−1) madd RStokes (Å) Rρ0/2 (Å)

1.2 2.00 0.984 0.988 273 27.9 18.2
1.4 1.58 0.363 0.364 256 33.7 18.4
1.6 1.62 0.176 0.177 279 34.3 18.5
1.8 1.95 0.108 0.109 281 29.4 18.6
2.0 2.80 0.0655 0.0686 286 23.9 18.7
2.1 5.20 0.0503 0.0505 304 19.0 18.8

the bubble itself where ρ ≈ 0 but v⃗ , 0. On the other hand,
the order parameter representation handles such situations
naturally because both its real and imaginary parts approach
zero when ρ→ 0 and the velocity does not need to be
considered. This may be important in situations where high
liquid velocities are present in low-density liquid regions
(e.g., rapid bubble expansion dynamics). Ideally, for this
reason, functionals that do not depend on liquid velocity or
involve division by liquid density should be employed.

Results from the viscous OT-DFT model calibration
calculations are shown in Table I. At each temperature
listed, minimization of the difference between the calculated
(Eq. (12)) and the experimental mobilities with respect to
parameter α(T) was carried out. The optimized values of α
are plotted in Fig. 3 as a function of temperature. It can be
seen that α varies smoothly from 5.20 at 2.1 K down to 1.58
at 1.4 K but begins to increase rapidly below 1.2 K. Note that
this takes place near the same temperature where the mean
free path of rotons becomes larger than the size of the electron
bubble and, consequently, the Knudsen number (Kn) exceeds
1 (i.e., gaseous in terms of roton density).1 For parameter α this
effect is very pronounced as its value essentially approaches

FIG. 3. The exponent α, which defines the dependence of viscosity on liquid
density, is plotted as a function of temperature. An exponential fit (see Eq. (9))
is shown for comparison by a red line. Note that the continuum approximation
begins to break down below 1.2 K where the normal fluid Knudsen number
(Kn) for rotons becomes greater than one (dotted black line). The dashed
black line highlights the rapid increase below 1.2 K.

infinity below 1.0 K. To extend the present model to this
temperature regime, a Cunningham-Millikan-type correction
factor should be included to provide an effective value for
viscosity.58 An approximate value for α(T) between 1.4–2.1 K
can be obtained from Eq. (9), but for accurate calculations, the
exact values provided in Table I should be employed instead.
The viscosity values predicted by Eq. (8) are plotted in Fig. 4
as a function of the liquid density. At 1.4 K, the limited cold
helium gas viscosity data59 appears comparable to the values
obtained from the viscous OT-DFT optimization calculations.
However, the gas phase values should be somewhat lower
because the cold gas can only carry thermal phonons and,
at this temperature, thermal rotons also contribute to liquid
viscosity. Unfortunately, such data is not available at other
temperatures to allow for more exact comparison. For the
electron bubble, such spatial density variations occur at the
gas-liquid interface, which, in turn, contribute to the interfacial
viscous drag through Eq. (7). Finally, a comparison between
the experimental electron mobility data obtained along the
saturated vapor pressure line and the results from the viscous
OT-DFT model employing Eq. (8) is shown in Fig. 5. Note
that this agreement would naturally be exact if the optimized

FIG. 4. Dependence of liquid helium viscosity (η) on density (ρ) at selected
temperatures as predicted by Eq. (8) with the values of α(T ) specified in
Table I. The gas phase data were taken from Ref. 59 with the experimental
viscosity values scaled by the normal fluid fraction to account for the two-
fluid nature of superfluid helium. Note the logarithmic scale for η.
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FIG. 5. Comparison between the experimental and viscous OT-DFT electron
mobilities (µ) as a function of temperature (T ) along the saturated vapor
pressure line.14,60 The interfacial viscosity coefficient α(T ) was taken from
Eq. (8). Note the logarithmic scale for mobility.

values given in Table I were used. Despite the approximate
form used for expressing α(T) with Eq. (8), the model still
reproduces the experimental electron mobility values with a
good accuracy.

The small deviations of the experimental data from the
Stokes law in the linear regime (see Fig. 1) imply that
the Stokes radius must include some additional temperature
dependent contribution. This is demonstrated in Fig. 6 where
the calculated Stokes radius reaches a maximum value of
ca. 35 Å between 1.4 and 1.6 K. In general, below 2.1 K,
the Stokes radius appears much larger than the ρ0/2 radius
(≈18.5 Å) obtained from the OT-DFT density profiles. This
means that the Stokes radius should be interpreted as an
effective radius that incorporates additional factors such as
temperature dependent changes in the interfacial viscosity.
Coincidentally, when the normal liquid fraction approaches
one (T ≈ 2.1 K), the Stokes and ρ0/2 radii become equal.

FIG. 6. Temperature dependence of electron bubble Stokes radius and radius
defined by ρ0/2 density obtained from OT-DFT calculations. The lines con-
necting the discrete points are drawn as guides to the eye.

Ion mobilities predicted by the developed viscous OT-
DFT model for selected bubble sizes at specified temperatures
are shown in Fig. 7. The calculated values are observed to
follow the general power-law:

µ(R) = µe

(

Re

R

)γ

, (16)

where µe is the electron mobility at the given temperature
with bubble radius Re (reference system) and µ and R

are the corresponding quantities for the (unknown) species.
The exponent γ = 2 when the mobility is limited by roton
scattering (see, for example, Refs. 31 and 61) and γ = 1 for
the continuum Stokes limit. Least squares fits of Eq. (16) to
the calculated OT-DFT mobilities with respect to the exponent
γ are indicated as continuous lines in Fig. 7. In general, the
obtained exponent values vary between the two limits but
appear closer to the Stokes limit within the temperature range
considered. While the temperature variation of γ appears
systematic, it is not clear what microscopic phenomenon is
responsible for this behavior. Nevertheless, the form given
by Eq. (16) can be used to estimate ion bubble ρ0/2 radii
(as opposed to an effective hydrodynamic radius) based on
their experimentally observed mobilities. Note, however, that
such an estimate assumes that (1) ion is solvated in a bubble
rather than in a snowball,62 (2) the interfacial viscosity (see
Eq. (8)) is independent of the bubble radius, and (3) the
bubble radius is large enough that the continuum model is
applicable. To avoid complications from the last assumption,
experiments measuring ion mobilities in superfluid helium
should be carried out close to the lambda temperature. On
the contrary, however, ion mobilities can be related to the

FIG. 7. Predicted ion mobilities (µ) for spherical bubbles as a function of
ρ0/2 radius (Rρ0/2) at temperatures indicated in the legend. The bubbles were
defined by the repulsive potential of Eq. (15) where c2 (a.u.) was set to 6.0,
10.0, 12.0, 16.0, or 19.0 to yield bubbles with the corresponding R values of
11.1 Å, 13.4 Å, 14.6 Å, 16.9 Å, and 18.6 Å at 2.1 K. The continuous lines and
exponents γ shown in the legend correspond to Eq. (16) with the applied (µe,
Rρ0/2,e) values of (0.051, 18.6), (0.066, 18.6), (0.109, 18.5), (0.187, 18.4),
(0.379, 18.4), and (0.970, 18.4) in cm2 V−1 s−1 and Å units at temperatures
2.1, 2.0, 1.8, 1.6, 1.4, and 1.2 K, respectively.
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bubble radii more accurately at low temperatures (cf. Fig. 7)
where the variation of mobility vs. bubble radius is more
pronounced.

An example application of the data given in Fig. 7 is to
estimate the bubble radii for unknown ions, such as the exotic
ions, in superfluid helium. The ion mobilities of exotic ions
extrapolated to 1.2 K vary between 1.4 cm2 V−1 s−1 (Ion #8)
and 3.5 cm2 V−1 s−1 (Ion #1).63 Furthermore, the observed
“Fast Ion” species has a very high mobility, 6.0 cm2 V−1 s−1.
Assuming a spherical geometry for the corresponding bubble,
the data shown in Fig. 7 predicts that the radius for Ion #8 is
ca. 13.6 Å. Although the present calculations do not extend
to radii below 11 Å, Eq. (16) can be used to extrapolate
the OT-DFT results such that Ion #4 radius is estimated to
be around 10 Å. The negative helium ions, such as He∗−

and He∗−2 , are expected to have solvation cavities in this
size regime but their limited observed lifetime in the gas
phase as well as the existence of only two such ionic species
are solid arguments against assigning them to these exotic
ion signals (see discussion, for example, in Ref. 31; see also
Ref. 32). However, they could contribute to the experimentally
observed continuous background due to ionization during their
flight through the cell.63 Our preliminary ab initio electronic
structure calculations at the coupled clusters level of theory
(CCSD(T))64 with the basis set specified in Ref. 65 indicate
that He∗−3 species is also stable in the symmetric linear
geometry (bond lengths 1.22 Å). However, at present, it
is not clear if this type of negative ion series, He∗−n , extends
any further than n = 3. Note that typical impurities in the
ion mobility experiments include oxygen from air, nitrogen
from air, water, and possible residues of hydrocarbons used
for pumping the sample cell. The high energy process used to
produce the electrons (e.g., discharge) can also dissociate and
ionize these species, producing many fragments with various
electron affinities. Examples of possible ions that can form
include O−, O−2 , OH−, C−, C−2 , H−, H−2 , and possibly even
N− and N−2 . The neutral parents of the latter two species
have, however, very low electron affinities. If the previously
mentioned extrapolation procedure is applied to fast ion,63

a radius of 4 Å is obtained. Such a small bubble could be
formed by a high electron affinity atom or diatomic molecule
(e.g., O− or O−2).

Finally, we note that the present viscous OT-DFT method
is not just limited to describing electron mobility in superfluid
helium, but it can also model ions with a complex solvation
structure. Our preliminary calculations show that, for example,
the predicted ion mobilities for Ca+ and Sr+ at 1.2 K
are 1.06 cm2 V−1 s−1 and 0.97 cm2 V−1 s−1, respectively,
which can be compared with the corresponding experimental
values of 1.1 cm2 V−1 s−1 and 1.2 cm2 V−1 s−1.66 Both
ions have a partial snowball solvation structure (i.e., hollow
core with a radius of approximately 4 Å)67 where the first
rigidly bound solvation layer follows the ion. This, in turn,
reduces the ion mobility and increases its apparent size in
the liquid. Note that, based on the calculated hollow core
sizes and the position of the first solvation shell,67 Ca+

should have a slightly higher mobility than Sr+, which is
opposite to the experimental findings.66 The only input to these
calculations is the ion–helium pair potential that was obtained

from earlier electronic structure calculations.67 Application
of the developed method to describe mobilities of positive
ion snowballs and the behavior of the model outside the
saturated vapor pressure line will be considered in a future
publication.
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