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Abstract

The goal of this article is to provide a description of the reachable set of the one-dimensional heat
equation, set on the spatial domain x ∈ (−L,L) with Dirichlet boundary controls acting at both boundaries.
Namely, in that case, we shall prove that for any L0 > L any function which can be extended analytically
on the square {x + iy, |x| + |y| ≤ L0} belongs to the reachable set. This result is nearly sharp as one
can prove that any function which belongs to the reachable set can be extended analytically on the square
{x + iy, |x| + |y| < L}. Our method is based on a Carleman type estimate and on Cauchy’s formula for
holomorphic functions.

1 Introduction

Setting. The goal of this article is to describe the reachable set for the 1d heat equation. To fix the ideas,
let L, T > 0 and consider the equation

∂tu− ∂xxu = 0 in (0, T )× (−L,L),
u(t,−L) = v−(t) in (0, T ),
u(t, L) = v+(t) in (0, T ),
u(0, x) = 0 in (−L,L).

(1.1)

In (1.1), the state u = u(t, x) satisfies a heat equation controlled from the boundary x ∈ {−L,L} through
the control functions v−(t), v+(t) ∈ L2(0, T ). In this article, the control functions v− and v+ will be complex
valued unless stated otherwise, and following, the solutions of the heat equation will also be complex valued.
Our goal is to describe the reachable set RL(T ) at time T > 0, defined as follows:

RL(T ) = {u(T ) | u solving (1.1) with control functions v−, v+ ∈ L2(0, T )}. (1.2)

Obviously, due to the linearity of the problem, the reachable set RL(T ) is a vector space. Besides, as re-
marked by Seidman in [20], due to the fact that the heat equation is null-controllable in arbitrarily small
time ([5] in dimension one, [9, 6] in higher dimensions), the reachable set R(T ) does not depend on the time
horizon T . Using again the null-controllability of the heat equation in small time, one also easily checks
that the set of states u(T, ·) which can be reached by solutions of (1.1)(1,2,3) starting from an initial datum
u(0, ·) ∈ L2(−L,L) coincides with R. Therefore, we will simply denote the reachable set by R in the fol-
lowing.

Main results. We aim at proving the following result, whose proof is given in Section 4:
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Theorem 1.1. For L0 > 0, let us introduce the (open) square

S(L0) = {x+ iy, |x|+ |y| < L0}, (1.3)

and let us denote by A (L0) the set of functions u ∈ L2(−L,L) which can be extended analytically to the set
S(L0):

A (L0) = {u ∈ L2(−L,L) which can be extended analytically to S(L0)}. (1.4)

Then we have the following:
∪

L0>L
A (L0) ⊂ RL. (1.5)

Theorem 1.1 describes a subset of the reachable set R in terms of analytic extensions of functions. It
turns out that using this description, Theorem 1.1 is sharp as a consequence of the following result, recently
obtained in [16, Theorem 1] that we recall here:

Theorem 1.2. [16, Theorem 1] Let u ∈ RL. Then u can be extended analytically to the set S(L). In other
words,

RL ⊂ A (L). (1.6)

In fact, [16] also describes a subset of R in terms of the analytic extension of the functions, but shows
the following weaker form of (1.5): If u ∈ L2(−L,L) can be extended analytically to the ball B(0, R) for

R > e(2e)
−1

L ( ' 1.2L), then u ∈ RL.
The article [16] is to our knowledge the only one describing the reachable set R without the use of the
eigenfunctions of the Laplace operator. If one uses the basis of eigenfunctions of the Laplace operator,
simply given by (sin(nπx/L))n≥1, the results of [3] (which is a slightly more precise version of [5] in this 1d
case) yield: u(x) =

∑
n≥1

cn sin

(
nπ(x+ L)

2L

)
such that

∑
n

|cn|2nenπ <∞

 ⊂ RL. (1.7)

Note that condition
∑
n |cn|

2nenπ <∞ implies that the function u(x) =
∑
n≥1 cn sin(nπ(x+L)/2L) admits

an analytic extension in the strip {(x + iy) | |y| < L}. Besides, it also implies the boundary conditions
u(−L) = u(L) = 0 and for all n ≥ 1, (∂xx)nu(−L) = (∂xx)nu(L) = 0. As pointed out in [16], this
latter condition is rather conservative and should not be relevant as the control is acting on the boundary
x ∈ {−L,L}.
The proof of Theorem 1.1 will be presented in Section 4, and is inspired by a Carleman type inequality for
the adjoint equation (after the change of variable t→ T − t and having done the formal limit T →∞):

∂tz − ∂xxz = 0 in (0,∞)× (−L,L),
z(t,−L) = z(t, L) = 0 in (0,∞),
z(0, x) = z0(x) in (−L,L).

(1.8)

Namely, let us recall that the work [3] proves the following observability type estimate: There exists C > 0
such that any smooth solution z of (1.8) satisfies:∫ ∞

0

∫ L

−L
|z(t, x)|2 exp

(
−L

2

2t

)
dt dx ≤ C

∫ ∞
0

(
|∂xz(t,−L)|2 + |∂xz(t, L)|2

)
dt. (1.9)

In Section 2, we will prove the following improved version of (1.9):

Theorem 1.3. For all T > 0 satisfying
πT > L2, (1.10)

there exists a constant C > 0 such that for any smooth solution z of (1.8), we have the observability
inequality:∫ L

−L
|z(T, x)|2 exp

(
x2 − L2

2T

)
dx+

∫ ∞
0

∫ L

−L
|z(t, x)|2 exp

(
x2 − L2

2t

)
dt dx

≤ C
∫ T

0

t
(
|∂xz(t,−L)|2 + |∂xz(t, L)|2

)
dt. (1.11)

2



We emphasize that the improvement of (1.11) with respect to (1.9) is due to the presence of the weight
function depending on x in (1.11). Besides, as we will see in Section 2, the proof of Theorem 1.3 is more
direct than the proof of (1.9) in [3] as it is not based on the observability of the corresponding wave operator.
In fact, our proof of (1.11) closely follows the one of the classical Carleman estimates for the heat equation
derived for instance in [6]. In that context, the corresponding weight function exp((x2−L2)/4t) corresponds
to the inverse of the exponential envelop of the kernel

kL(t, x) =
1√
4πt

sin

(
xL

2t

)
exp

(
L2 − x2

4t

)
,

which corresponds to a solution of (1.8)(1) (in fact, it is the usual Gaussian but translated in the complex
plane x 7→ x+ iL) used in the transmutation technique in [3]. Furthermore, this function kL can be used to
check that estimate (1.11) is sharp with respect to the blow up of the weight close to t = 0.
The condition (1.10) appears naturally in our proof of (1.11). One could naturally think that this con-
dition is remanent from some kind of parabolic version of Ingham’s inequality ([7]). But this is not
the case. In fact, condition (1.10) rather comes from the fact that, when applying (1.9) to the solution
exp(−π2t/(4L2)) sin(π(x + L)/2L) of (1.8), the weight function in time appearing is exp(−2π2t/(4L2) −
L2/2t), whose monotony changes precisely at T ∗ = L2/π.

One then needs to interpret Theorem 1.3 in terms of a dual controllability statement. This mainly
consists in the usual duality statement between controllability and observability of the adjoint equation (see
e.g. [2, 10]). To be more precise, we obtain the following result (see Subsection 3.1):

Lemma 1.4. Let g ∈ L2(0,∞;L2(−L,L)) be such that∫ ∞
0

∫ L

−L
|g(t, x)|2 exp

(
L2 − x2

2t

)
dx dt <∞, (1.12)

and T satisfying (1.10). If w denotes the solution of
−∂tw − ∂xxw = g in (0, T )× (−L,L),
w(t,−L) = w(t, L) = 0 in (0, T ),
w(T, x) = wT (x) in (−L,L),

(1.13)

for some wT ∈ L2(−L,L), then w0(x) = w(0, x) belongs to the reachable set RL.

However, it is not completely straightforward to use Lemma 1.4 as the fundamental solution of the
heat equation in a bounded domain involves a discrete summation (namely, the method of images yields a
fundamental solution under the form of a sum of odd and even translations of the usual Gaussian kernel).
Instead, we prefer to rely on the following result, proved in Section 3:

Theorem 1.5. Let L0 > L and α : [−L0, L0] → R be a continuous function on [−L0, L0]. For h ∈
L2(−L0, L0), we define

g(t, x) =
1

t3/2
exp

(
x2 − L0

2

4t
+ i

α(x)

4t

)
h(x), (t, x) ∈ (0,∞)× (−L0, L0). (1.14)

Then the state w0 defined on (−L,L) by

w0(x) =

∫ ∞
0

∫ L0

−L0

1√
4πt

exp

(
− (x− x̃)2

4t

)
g(t, x̃) dtdx̃, x ∈ (−L,L), (1.15)

is well-defined and belongs to the reachable set RL.
Besides, w0 can alternatively be written as

w0(x) =
2√
π

∫ L0

−L0

h(x̃)

(x− x̃)2 + L0
2 − x̃2 + iα(x̃)

dx̃, x ∈ (−L,L). (1.16)
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Under the conditions of Theorem 1.5, explicit computations yield that for any α ∈ C0([−L0, L0];R), the
range of the operator Kα : L2(−L0, L0)→ L2(−L,L) given for h ∈ L2(−L0, L0) by

Kα(h)(x) =
2√
π

∫ L0

−L0

h(x̃)

(x− x̃)2 + L0
2 − x̃2 + iα(x̃)

dx̃, x ∈ (−L,L), (1.17)

is contained in the reachable set RL. Therefore, Theorem 1.5 can be rewritten as

∀α satisfying the assumptions of Theorem 1.5, Range(Kα) ⊂ R. (1.18)

The proof of Theorem 1.1 will thus mainly reduced to choosing carefully the above functions α and h in
Theorem 1.5 so that all function which admits an analytic extension in a set S(L0) for L0 > L can be
decomposed into a finite sum of elements in the images of the above operators Kα. This property will
be achieved by using Cauchy’s formula for holomorphic functions among contours which coincide with the
singularities of the kernel of the above operator Kα. Details of the proof are given in Section 4.
As it turns out, see Section 4, we will require the use of non-trivial functions α in a critical way. This
might be surprising at first as this function introduces strong time oscillations in the source term of the heat
equation in (1.14). In other words, we need these strong oscillations to reach the whole reachable set.

Scientific Context. The characterization of the reachable set of the heat equation is a rather old issue,
whose study probably started with the pioneering work [5] studying this question in dimension one using
harmonic analysis techniques. The result of [5] was then slightly improved into (1.7) in [3] using the so-called
transmutation technique allowing to write solutions of the wave equations in terms of solutions of the heat
equation (1.8).
More recently, P. Martin, L. Rosier and P. Rouchon proposed in the work [16] to characterize the reachable
set of the heat equation in the 1d case by a description on the set on which the reachable states are analytic.
As explained above, this description yields that if a state admits an analytic extension on the ball B(0, R)

for R > e(2e)
−1

L (' 1.2L), then it belongs to the reachable set RL. The approach in [16] relies on the
flatness approach, which has been developed recently by P. Martin, L. Rosier and P. Rouchon, see [14, 15].
Of course, describing the reachable set of the heat equation is also related to the results of controllability
to trajectories for the heat equation, which by linearity are equivalent to the results on null-controllability.
In this context, the breakthrough came from the introduction of Carleman estimates to obtain observability
results for the heat equation in any dimension from basically any non-open subset, see [6, 9]. Nonetheless, in
general, Carleman estimates are not suitable to provide sharp estimates as one has very little control on the
coefficients appearing in them. Theorem 1.3 is a very specific case in which the parameters can be explicitly
computed.
With that in mind, one could also relate the Carleman estimate in Theorem 1.3 with the Hardy Uncertainty
principle obtained in [4]. In some sense, the weight that we are using is a limiting Carleman weight, in the
sense that the conjugated operator appearing in the proof of Theorem 1.3 satisfies a degenerate convexity
condition, see Remark 2.1.
Let us also emphasize that there are several works related to the cost of controllability of the heat equation
in short time. Let us quote in particular the works by [17, 18, 19, 21] studying these questions. It was
thought for a while that the understanding of the blow up of the controllability of the heat equation in short
time would be more or less equivalent to a good characterization of the reachable set, but this was recently
disproved in [13]. We refer the interested reader to this latter work for a more detailed discussion on this
fact.
These issues are also related to the questions raised in [1] concerning the controllability of a viscous transport
equation with vanishing viscosity parameter, see [11, 12]. In that sense, our work suggests that observability
results for the heat equation stated only in terms of their spectral decomposition could possibly be reinforced
by considering space weighted functional settings appropriate to the control problem at hand.

Outline. This article is organized as follows. Section 2 gives the proof of Theorem 1.3. Section 3 establishes
Theorem 1.5. In Section 4, we prove Theorem 1.1. We finally provide the reader with further comments in
Section 5.
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2 Proof of Theorem 1.3

Let z be a smooth solution of (1.8), and introduce the new unknown (the conjugated variable):

z̃(t, x) = z(t, x)t exp

(
x2 − L2

4t

)
, (t, x) ∈ (0,∞)× (−L,L). (2.1)

It satisfies the equations
∂tz̃ +

x

t
∂xz̃ −

1

2t
z̃ − ∂xxz̃ −

L2

4t2
z̃ = 0, (t, x) ∈ (0,∞)× (−L,L),

z̃(t,−L) = z̃(t, L) = 0, t ∈ (0,∞),
z̃(0, x) = 0, x ∈ (−L,L).

(2.2)

We then introduce the energy E(t) and the dissipation D(t) defined for t > 0 by

E(t) =

∫ L

−L
|z̃(t, x)|2 dx, (2.3)

D(t) =

∫ L

−L
|∂xz̃(t, x)|2 dx− L2

4t2

∫ L

−L
|z̃(t, x)|2 dx. (2.4)

Easy computations show that they satisfy the following ODEs: for all t > 0,

dE

dt
(t)− 2

t
E(t) + 2D(t) = 0, (2.5)

dD

dt
(t) + 2

∫ L

−L

∣∣∣∣−∂xxz̃(t, x)− L2

4t2
z̃(t, x)

∣∣∣∣2 dx =
L

t

(
|∂xz̃(t,−L)|2 + |∂xz̃(t, L)|2

)
. (2.6)

But, by Poincaré’s inequality, D(t) is non-negative for t ≥ L2/π. Let then T > L2/π as in (1.10). Integrating
(2.6) between 0 and T and using the fact that D(0) = 0 due to vanishing behavior of the weight function
close to t = 0, we get∫ T

0

∫ L

−L

∣∣∣∣−∂xxz̃(t, x)− L2

4t2
z̃(t, x)

∣∣∣∣2 dtdx ≤ ∫ T

0

L

2t

(
|∂xz̃(t,−L)|2 + |∂xz̃(t, L)|2

)
dt. (2.7)

But z̃ satisfies the boundary conditions z̃(t,−L) = z̃(t, L) = 0 for all t > 0. Therefore, multiplying −∂xxz̃−
L2

4t2
z̃ by 2x∂xz̃, for all t > 0 we obtain∫ L

−L
|∂xz̃(t, x)|2 dx+

L2

4t2

∫ L

−L
|z̃(t, x)|2 dx

= 2<
(∫ L

−L

(
−∂xxz̃(t, x)− L2

4t2
z̃(t, x)

)
x∂xz̃ dx

)
+ L

(
|∂xz̃(t,−L)|2 + |∂xz̃(t, L)|2

)
≤ L2

∫ L

−L

∣∣∣∣−∂xxz̃(t, x)− L2

4t2
z̃(t, x)

∣∣∣∣2 dx+

∫ L

−L
|∂xz̃(t, x)|2 dx+ L

(
|∂xz̃(t,−L)|2 + |∂xz̃(t, L)|2

)
,

so that for all t > 0,

L2

4t2

∫ L

−L
|z̃(t, x)|2 dx ≤ L2

∫ L

−L

∣∣∣∣−∂xxz̃(t, x)− L2

4t2
z̃(t, x)

∣∣∣∣2 dx+ L
(
|∂xz̃(t,−L)|2 + |∂xz̃(t, L)|2

)
.

Using this last estimate in (2.7), we derive∫ T

0

∫ L

−L

1

t2
|z̃(t, x)|2 dtdx ≤ C

∫ T

0

1

t

(
|∂xz̃(t,−L)|2 + |∂xz̃(t, L)|2

)
dt, (2.8)
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Besides, from (2.5), again using Poincaré estimate, for all t ≥ T > L2/π,

d

dt

(
E(t)

t2

)
+
L2

T 2

(
π2T 2

L4
− 1

)
E(t)

t2
≤ 0, (2.9)

while t 7→ E(t)/t2 is decreasing on (L2/π, T ) from (2.5):

E(T )

T 2
≤ 1

T − L2/π

∫ T

L2/π

E(t)

t2
dt ≤ 1

T − L2/π

∫ T

0

∫ L

−L

1

t2
|z̃(t, x)|2 dtdx. (2.10)

Therefore, combining (2.8)–(2.9)-(2.10), we easily derive

E(T )

T 2
+

∫ ∞
0

∫ L

−L

1

t2
|z̃(t, x)|2 dtdx ≤ C

∫ T

0

1

t

(
|∂xz̃(t,−L)|2 + |∂xz̃(t, L)|2

)
dt,

Using (2.1), we immediately obtain (1.11).

Remark 2.1. Note that the conjugated operator in (2.2) is in some sense degenerate. Indeed, the conjugated
operator in (2.2) is

∂t +
x

t
∂x −

1

2t
− ∂xx −

L2

4t2
,

which can be written as A+B +R with

A = ∂t +
x

t
∂x +

1

2t
, B = −∂xx −

L2

4t2
, and R = −1

t
,

and which satisfies

A∗ = −A, B∗ = B, [A,B] = −2

t
B,

while the operator R is of lower order.
In particular, if the symbol of the operator A and of the operator B cancels, the symbol of the commutator
[A,B] vanishes as well. The convexity condition needed to get Carleman estimates is therefore degenerate
with our choice of weights. Such degenerate weights have appeared in the literature lately in the context of
the Calderón problem, see in particular the works on the limiting Carleman weights, see [8] and subsequent
works.

3 Duality results

3.1 Proof of Lemma 1.4

Let w denote the solution of (1.13) with source term g satisfying (1.12) and initial datum wT ∈ L2(−L,L).
For the proof below and in order to simplify the notations, we further assume that g and wT are real-
valued. This can be done without loss of generality by applying the result to the real part of (g, wT ) and
the imaginary part of (g, wT ) in case (g, wT ) are complex-valued.
Let us then define the functional J as follows: for z0 ∈ L2(−L,L;R),

J(z0) :=
1

2

∫ T

0

(
|∂xz(t,−L)|2 + |∂xz(t, L)|2

)
dt−

∫ +∞

0

∫ L

−L
g z dt dx−

∫ L

−L
z(T, x)wT (x) dx, (3.1)

where z denotes the solution of (1.8) with initial datum z0.
From the Carleman estimate in Theorem 1.3 and assumption (1.12), the functional J can be extended by
continuity on the space

X = {z0 ∈ L2(−L,L;R)}
‖·‖obs , with ‖z0‖2obs =

∫ T

0

(
|∂xz(t,−L)|2 + |∂xz(t, L)|2

)
dt, (3.2)

where z denotes the corresponding solution of (1.1) with initial datum z0. Note that using (1.11), one
can associate to z0 ∈ X a solution z of (1.8)(1,2) and normal traces ∂xz(t,±L) with z exp((x2 − L2)/4t) ∈
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L2(0,∞;L2(−L,L)) and ∂xz(t,±L) ∈ L2(0, T ).
Besides, the functional J is strictly convex and coercive on X from (1.11). Therefore, it admits a unique
minimizer Z0 in X. Let us denote by ∂xZ(t,−L), ∂xZ(t, L) the corresponding normal traces, and set

v−(t) = ∂xZ(t,−L), v+(t) = −∂xZ(t, L), in (0, T ). (3.3)

Using then that J(Z0) ≤ J(0) and the Carleman estimate (1.11), one easily checks that

‖v−(t)‖2L2(0,T ) + ‖v+(t)‖2L2(0,T )

≤ C
∫ ∞
0

∫ L

−L
|g(t, x)|2 exp

(
L2 − x2

2t

)
dx dt+ C

∫ L

−L
|wT (x)|2 exp

(
L2 − x2

2T

)
dx. (3.4)

Furthermore, the Euler-Lagrange equation of J at Z0 in the direction z0 ∈ L2(−L,L;R) yields:

0 =

∫ T

0

(v−(t)∂xz(t,−L)− v+(t)∂xz(t, L)) dt−
∫ +∞

0

∫ L

−L
g z dt dx−

∫ L

−L
z(T, x)wT (x) dx. (3.5)

But, multiplying the equation (1.13) satisfied by w by z solution of (1.8), we get the identity:∫ +∞

0

∫ L

−L
g z dt dx+

∫ L

−L
z(T, x)wT (x) dx =

∫ L

−L
z0(x)w(0, x) dx. (3.6)

Therefore identity (3.5) can be rewritten as follows: for all z0 ∈ L2(−L,L;R), denoting by z the solution of
(1.8), one has ∫ L

−L
z0(x)w(0, x) dx =

∫ T

0

(v−(t)∂xz(t,−L)− v+(t)∂xz(t, L)) dt. (3.7)

Recall then that v−, v+ belong to L2(0, T ) according to (3.4), and let us then define u the solution of
∂tu+ ∂xxu = 0 in (0, T )× (−L,L),
u(t,−L) = v−(t) in (0, T ),
u(t,−L) = v+(t) in (0, T ),
u(T, x) = 0 in (−L,L).

(3.8)

We claim that u(0, ·) = w(0, ·). Indeed, for z0 ∈ L2(−L,L;R), if we multiply the equation of u in (3.8) by
the solution z of (1.8), we get∫ L

−L
u(0, x)z0(x) dx = −

∫ T

0

v+(t)∂xz(t, L) dt+

∫ T

0

v−(t)∂xz(t,−L) dt. (3.9)

Therefore, comparing (3.7) with (3.9), we get that

∀z0 ∈ L2(−L,L;R),

∫ L

−L
(u(0, x)− w(0, x))z0(x) dx = 0,

that is u(0, ·) = w(0, ·).
We then simply remark that doing the change of unknowns ũ(t, ·) = u(T − t, ·), ṽ±(t) = v±(T − t), u(0, ·) =
ũ(T, ·) is a reachable state for (1.1) with controls ṽ±, i.e. u(0, ·) ∈ RL. As u(0, ·) = w(0, ·), we have thus
obtained that w(0, ·) ∈ RL.

3.2 Proof of Theorem 1.5

Set g as in (1.14) and define, for (t, x) ∈ (0, T ]× (−L0, L0), the function w(t, x) as follows

w(t, x) =

∫ ∞
t

∫ L0

−L0

1√
4π(t̃− t)

exp

(
− (x− x̃)2

4(t̃− t)

)
g(t̃, x̃) dt̃dx̃ (3.10)

=

∫ ∞
0

∫ L0

−L0

1√
4πs

exp

(
− (x− x̃)2

4s

)
g(s+ t, x̃) dsdx̃. (3.11)
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Our goal is to check that w solves
−∂tw − ∂xxw = g in (0, T )× (−L,L),
w(t,−L) = v−(t) in (0, T ),
w(t, L) = v+(t) in (0, T ),
w(T, x) = wT (x) in (−L,L),

(3.12)

with appropriate choice of functions wT ∈ L2(−L,L), v− ∈ L2(0, T ) and v+ ∈ L2(0, T ) and that w0 defined
in (1.15) simply is the trace of w at time t = 0.
Indeed, if (3.12) holds, we can decompose w as w = w̃+ ŵ, with w̃ satisfying (1.13) with source term g and
with initial condition w̃(T ) = wT and ŵ satisfying the equation

−∂tŵ − ∂xxŵ = 0 in (0, T )× (−L,L),
ŵ(t,−L) = v−(t) in (0, T ),
ŵ(t, L) = v+(t) in (0, T ),
ŵ(T, x) = 0 in (−L,L),

(3.13)

for which one immediately has (by the change of variables t → T − t) that ŵ(0, ·) ∈ RL. The state w̃(0, ·)
belongs to RL since g defined in (1.14) satisfies (1.12) due to the condition L0 > L and so Lemma 1.4
applies. This eventually implies that w(0, ·) belongs to RL as ŵ(0, ·) and w̃(0, ·) belong to RL.
We therefore first focus on the proof of the fact that w in (3.10) satisfies (3.12) with wT ∈ L2(−L,L),
v− ∈ L2(0, T ) and v+ ∈ L2(0, T ) and that w0 defined in (1.15) simply is the trace of w at time t = 0.

Let us now prove that w in (3.10) satisfies (3.12).
We first remark that g in (1.14) satisfies, forall(t, x) ∈ (0,∞)× (−L,L)

|g(t̃, x̃)| ≤ 1

t̃3/2
exp

(
x̃2 − L0

2

4t̃

)
|h(x̃)| ≤ 1

t̃3/2
|h(x̃)|, (3.14)

with h ∈ L2(−L0, L0). The continuity of w in (3.11) is therefore easy to prove on all sets of the form
(t, x) ∈ (ε,∞)× (−L0, L0) with ε > 0, as the decay in t̃ in (3.14) makes the integral convergent for s = t̃− t
close to infinity while the integrability for s close to 0 simply comes from the integrability of s 7→ s−1/2 close
to 0. But the continuity close to t = 0 is more delicate to obtain. We will simply show that w in (3.11) is
continuous on (t, x) ∈ (0,∞)× (−L2, L2) for L2 ∈ (L,L0). Indeed, let us set L2 ∈ (L,L0), and let us rewrite
w in (3.11) as:

w(t, x) =

∫ ∞
0

∫ L0

−L0

1√
4πs

1

(t+ s)3/2
exp

(
− (x− x̃)2

4s
+
x̃2 − L0

2

4(t+ s)
+ i

α(x̃)

4(t+ s)

)
h(x̃) dsdx̃. (3.15)

Under this form, it is clear that what matters it the sign of

P (t, s, x, x̃) = − (x− x̃)2

4s
+
x̃2 − L0

2

4(t+ s)
.

But for t ≥ 0, s ∈ (0,∞), x ∈ [−L2, L2] and x̃ ∈ [−L0, L0], we have

P (t, s, x, x̃) =
1

4s(t+ s)

(
−(x− x̃)2t+ s(−(x− x̃)2 + x̃2 − L0

2)
)

≤ 1

4(t+ s)
(−x2 + 2xx̃− L0

2)

≤ 1

4(t+ s)
(−x2 + 2|x|L0 − L0

2)

≤ − 1

4(t+ s)
(L2 − L0)2.

One then easily deduces that w in (3.15) is continuous on [0,∞) × (−L2, L2) and that its value at t = 0
coincides with the formula (1.15).
We can then set

v−(t) = w(t,−L) in (0, T ), v+(t) = w(t, L) in (0, T ), wT (x) = w(T, x) in (−L,L),
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for which the previous analysis implies v− ∈ L2(0, T ), v+ ∈ L2(0, T ) and wT ∈ L2(−L,L).
Finally, the fact that w solves the first equation in (3.12) obviously comes from the fact that the kernel
appearing in (3.10) is the heat kernel.

In order to prove formula (1.16), we simply use Fubini’s theorem:

w0(x) =

∫ ∞
0

∫ L0

−L0

1√
4πt2

exp

(
− (x− x̃)2

4t
+
x̃2 − L0

2

4t
+ i

α(x̃)

4t

)
h(x̃) dtdx̃

=
1√
4π

∫ L0

−L0

(∫ ∞
0

1

t2
exp

(
− (x− x̃)2

4t
+
x̃2 − L0

2

4t
+ i

α(x̃)

4t

)
dt

)
h(x̃)dx̃.

=
2√
π

∫ L0

−L0

h(x̃)

(x− x̃)2 + L0
2 − x̃2 + iα(x̃)

dx̃.

This concludes the proof of Theorem 1.5.

4 Proof of Theorem 1.1

4.1 Strategy

As explained in the introduction, our main objective is to study the range of the operators Kα introduced
in (1.17) for good choices of functions α.

To start with, we will focus on the case α = 0, and in Section 4.2 we will prove the following:

Proposition 4.1. Let L > 0 and L0 > L, and define the operator K0,L0 : L2(−L0, L0)→ L2(−L,L) by

K0,L0(h)(x) =
2√
π

∫ L0

−L0

h(x̃)

(x− x̃)2 + L0
2 − x̃2

dx̃, x ∈ (−L,L). (4.1)

Then any function k defined on (−L,L) which can be extended analytically on the closure of the ball of size
L0 belongs to the range of the operator K0,L0 .

Proposition 4.1 is proved using the Chebyshev polynomials (Un)n∈N of the second kind, that is the
sequence of polynomials such that for all n ∈ N:

Un(cos θ) =
sin((n+ 1)θ)

sin(θ)
, θ ∈ (−π, π). (4.2)

Indeed, they appear naturally as the generating function for the polynomials Un is given as follows:∑
n≥0

xnUn(x̃) =
1

1− 2xx̃+ x2
=

1

(x− x̃)2 + 1− x̃2 , x, x̃ ∈ (−1, 1). (4.3)

Let us also point out that for h ∈ L2(−L0, L0), we automatically have that K0,L0(h) admits an analytic
extension on the ball of radius L0 by the obvious formula:

K0,L0(h)(z) =
2√
π

∫ L0

−L0

h(x̃)

(z − x̃)2 + L0
2 − x̃2

dx̃, z ∈ B(0, L0). (4.4)

In other words, Proposition 4.1 proves that the range of the operator K0,L0 is very close of being exactly the
functions which can be extended analytically to the ball of radius L0. This is in fact rather expected due to
the similarity of formula (4.4) with the Poisson kernel appearing when solving the Laplace equation in the
ball. Note that Proposition 4.1 already improves the result of [16], which proved that functions which can
be extended analytically to balls of radius e1/(2e)L ' 1.2L belong to the reachable set R.

The next step then consists in showing that choosing the function α carefully, we can reach any function
which can be extended analytically in the neighborhood of the square S(L). The basic idea in order to
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choose the function α appropriately is to remark that the operator Kα in (1.17) has a kernel given for
(x, x̃) ∈ (−L,L)× (L0, L0) by

1

(x− x̃)2 + L2
0 − x̃2 + iα(x̃)

=
1

Xα,+(x̃)−Xα,−(x̃)

(
1

x−Xα,+(x̃)
− 1

x−Xα,−(x̃)

)

with


Xα,+(x̃) = x̃+ i

√
L2

0 − x̃2 + iα(x̃),

Xα,−(x̃) = x̃− i
√
L2

0 − x̃2 + iα(x̃),
(4.5)

where we used the complex square-root function cut on the axis R−.
We claim that it is possible to choose α as follows:

Lemma 4.2. Let L0 > 0 and ε > 0. Then there exists a continuous function α : (−L0, L0)→ R such that:

(i) α is piecewise C1(−L0, L0) and α can be extended as a C1 function on the interval [−L0, 0] and [0, L0].

(ii) For all x̃ ∈ [−L0, L0], Xα,+(−x̃) = −Xα,−(x̃).

(iii) The set {Xα,−(x̃), x̃ ∈ [0, L0]} describes a path included in the set {x+ iy, x ≥ 0, y ≤ 0} \B(0, L0).

(iv) The set {Xα,+(x̃), x̃ ∈ [0, L0]} describes a path included in the set S(L0(1 + ε)) \ S(L0) ∩ {x+ iy, x ≥
0, y ≥ 0}.

The proof of Lemma 4.2 is given in Section 4.3.
Let us now fix ε > 0 and take α as in Lemma 4.2. We then define the following oriented paths:

C1 = {Xα,+(x̃), x̃ from L0 to 0},
C2 = {Xα,−(x̃), x̃ from 0 to − L0},
C3 = {Xα,−(x̃), x̃ from − L0 to 0},
C4 = {Xα,+(x̃), x̃ from 0 to L0},

C = C1 ∪ C2 ∪ C3 ∪ C4. (4.6)

The contour C is a closed path contained in S(L0(1 + ε)) \ S(L0), see Figure 1. Besides, it is easy to check

Figure 1: In black, −− the square S(L0) with L0 = 1; in red, .− the square S(L0(1+ ε)) with L0 = 1, ε = 0.15;
in blue, a corresponding contour C given by Lemma 4.2.

that Xα,±(x̃) = X−α,∓(x̃) for all x̃ ∈ [−L0, L0]. This suggests that, to reach functions which are analytic
in S(L0(1 + ε)), one should use the operators Kα and K−α. Indeed, using both these operators, we get the
following result, proved in Section 4.4:
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Proposition 4.3. Let L > 0, L0 > L, ε > 0, and α as in Lemma 4.2.
Then, for any function k defined on (−L,L) which can be extended analytically on S(L0(1 + ε)), one can
find two functions h+ ∈ L2(−L0, L0) and h− ∈ L2(−L0, L0) such that the function k −Kα(h+)−K−α(h−)
can be extended analytically on the ball of radius L0.

Combining this result with Proposition 4.1, we get the following immediate corollary:

Corollary 4.4. Let L > 0. For any L0 > L and ε > 0, there exists a continuous function α : (−L0, L0)→ R
such that any function k defined on (−L,L) which can be extended analytically on S(L0(1 + ε)) can be
decomposed as

k(x) = Kα(h+)(x) +K−α(h−) +K0,L1(h0) for x ∈ (−L,L), (4.7)

with L1 = (L+ L0)/2, for some h+ ∈ L2(−L0, L0), h− ∈ L2(−L0, L0), and h0 ∈ L2(−L1, L1).

Theorem 1.1 is then an immediate consequence of Corollary 4.4 and Theorem 1.5.

4.2 Proof of Proposition 4.1

Proof. We start by writing the operator K0,L0 in (4.1) slightly differently:

K0,L0(h)(x) =
2

L2
0

√
π

∫ L0

−L0

h(x̃)

x2/L2
0 − 2xx̃/L2

0 + 1
dx̃. (4.8)

Therefore, using (4.3), we get

K0,L0(h)(x) =
2

L2
0

√
π

∑
n≥0

(
x

L0

)n ∫ L0

−L0

Un

(
x̃

L0

)
h(x̃)dx̃. (4.9)

We then recall that the Chebychev polynomials are orthogonal for the scalar product L2(
√

1− x2 dx), i.e.
for all m and n in N, ∫ 1

−1

Un(x̃)Um(x̃)
√

1− x̃2 dx̃ =
π

2
δn,m, (4.10)

where δn,m is the Kronecker symbol, so that we have in particular∫ L0

−L0

Un

(
x̃

L0

)
Um

(
x̃

L0

)√
1− x̃2

L2
0

dx̃ =
πL0

2
δn,m. (4.11)

Let us now consider a function k which can be extended analytically on the closure of the ball of radius L0.
Then k is characterized by its power series expansion:

k(z) =
∑
n≥0

knz
n, z ∈ B(0, L0),

and the coefficients kn satisfy ∑
n≥0

|kn|Ln0 <∞, (4.12)

Therefore, using (4.9) and (4.11), one easily checks that a good candidate h for solving K0,L0(h) = k is given
by

h(x̃) =
L0√
π

∑
m≥0

Lm0 kmUm

(
x̃

L0

)√
1− x̃2

L2
0

, x̃ ∈ (−L0, L0). (4.13)

We then check that h indeed belongs to L2(−L0, L0). This follows from the following computations, based
on (4.11): ∫ L0

−L0

|h(x̃)|2 dx̃ ≤
∫ L0

−L0

|h(x̃)|2 1√
1− x̃2/L2

0

dx̃

=
L2

0

π

∫ L0

−L0

∑
m,n≥0

Lm+n
0 kmknUm

(
x̃

L0

)
Un

(
x̃

L0

)√
1− x̃2/L2

0 dx̃

=
L0

2

∑
m≥0

L2m
0 |km|2,
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which is finite due to (4.12). This concludes the proof of Proposition 4.1.

Remark 4.5. Note that the quantity ∑
m≥0

L2m
0 |km|2

appearing in the proof is related to the norm of the function k in the Hardy space H2 on the ball of radius
L0.

4.3 Proof of Lemma 4.2

Proof. Let us first remark that rescaling if needed as follows

α(x̃)←→ L2
0α̃ (τ) , with τ =

x̃

L0
,

we can focus on the case L0 = 1 without loss of generality. Indeed, in that case,

X̃α̃,+(τ) = τ + i
√

1− τ2 + iα̃ (τ) = L2
0Xα,+(x̃), with x̃ = L0τ.

In the following, we call τ the rescaled variable and we simply denote the rescaled functions α̃, X̃α̃,+ by
α,Xα,+ to simplify notations.
For p ∈ N \ {0}, we set

αp := τ ∈ (−1, 1) 7→ 2 |τ |
(
1− τ2p

)
. (4.14)

Note that with this choice, item (i) of Lemma 4.2 is obvious.
With this choice, we also immediately get that

Xαp,−(τ) = −Xαp,+(−τ), τ ∈ [−1, 1],

i.e. item (ii) of Lemma 4.2.
In order to study the map Xαp,+ on [−1, 1], it is therefore sufficient to characterize the sets of {Xαp,+(τ), τ ∈
[0, 1]} and {Xαp,−(τ), τ ∈ [0, 1]} = −{Xαp,−(τ), τ ∈ [−1, 0]}.
If we define, for τ ∈ (−1, 1),

γ(τ) =
√

(1− τ2)2 + αp(τ)2 and θ(τ) ∈
[
0,
π

2

]
s.t. cos(θ(τ)) =

1− τ2

γ(τ)
, sin(θ(τ)) =

αp(τ)

γ(τ)
,

which can be extended continuously for τ = ±1, we obtain

Xαp,+(τ) = τ −
√
γ(τ) sin

(
θ(τ)

2

)
+ i
√
γ(τ) cos

(
θ(τ)

2

)
implying in particular that =(Xαp,+(τ)) ≥ 0 for all τ ∈ (−1, 1).
Furthermore, using that

sin

(
θ(τ)

2

)
=

√
1

2
(1− cos(θ(τ)) =

1√
2γ(τ)

√
γ(τ)− (1− τ2)),

we get

|Xαp,+(τ)|2 = τ2 − 2 τ
√
γ(τ) sin

(
θ(τ)

2

)
+ γ(τ)

= τ2 + γ(τ)−
√

2τ
√
γ(τ)− (1− τ2)

= 1 +
√
γ(τ)− (1− τ2)

(√
γ(τ)− (1− τ2)−

√
2τ
)
.

Under this form, we clearly have that for τ ∈ (−1, 0), |Xαp,+(τ)| > 1. Besides, for τ ∈ (0, 1), we have√
γ(τ)− (1− τ2) <

√
2τ ⇔ γ(τ) < 1 + τ2 ⇔ γ(τ)2 < (1 + τ2)2 ⇔ αp(τ)2 < 4 τ2,
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the last inequality being obviously true for any τ ∈ (0, 1), recall the definition of αp in (4.14). This implies
that |Xαp,+(τ)| < 1 for all τ ∈ (0, 1).
We can then remark that

<(Xαp,+(τ)) = τ −
√
γ(τ) sin

(
θ(τ)

2

)
= τ − 1√

2

√
γ(τ)− (1− τ2),

so that similarly as above, <(Xαp,+(τ)) > 0 for τ ∈ (0, 1) and <(Xαp,+(τ)) < 0 for τ ∈ (−1, 0).
We have thus proved that {Xαp,+(τ), τ ∈ (−1, 0)} is contained in {x + iy, x ≤ 0, y ≥ 0} \ B(0, 1). Using
item (ii) of Lemma 4.2, one easily checks that the set {Xα,−(τ), τ ∈ [0, 1]} is included in the set {x+ iy, x ≥
0, y ≤ 0} \B(0, 1).
Therefore, to finish the proof of item (iii) of Lemma 4.2, we only need to prove that {Xαp,+(τ), τ ∈ (−1, 0)}
describes a rectifiable curve. This can be done easily by a tedious computation after having noticed that

Xαp,+(τ) = τ − 1√
2

√
γ(τ)− (1− τ2) + i

1√
2

√
γ(τ) + (1− τ2).

The details of the computations are left to the readers.

We shall now focus on the proof of item (iv) of Lemma 4.2.
As <(Xαp,+(τ)) ≥ 0 for τ ∈ [0, 1], we have, for all τ ∈ [0, 1],

|<(Xαp,+(τ))|+ |=(Xαp,+(τ))| = τ +
√
γ(τ)

(
cos

(
θ(τ)

2

)
− sin

(
θ(τ)

2

))
= 1 + (τ − 1) +

1√
2

[√
γ(τ) + (1− τ2)−

√
γ(τ)− (1− τ2)

]
.

For τ ∈ (0, 1), we hence have

|<(Xαp,+(τ))|+ |=(Xαp,+(τ))| ≥ 1⇔
√
γ(τ) + (1− τ2)−

√
γ(τ)− (1− τ2) ≥

√
2(1− τ)

⇔ 2γ(τ)− 2
√
γ(τ)2 − (1− τ2)2 ≥ 2(1− τ)2

⇔ γ(τ)− αp(τ) ≥ (1− τ)2

⇔ γ(τ)2 ≥
[
(1− τ)2 + αp(τ)

]2
⇔ (1− τ2)2 ≥ (1− τ)4 + 2 τ (1− τ2 p)(1− τ)2

⇔ 2 (τ − 1)2 τ
(
τ2 p + 1

)
≥ 0.

This last inequality obviously holds true, so we have

∀τ ∈ [0, 1], |<(Xαp,+(τ))|+ |=(Xαp,+(τ))| ≥ 1. (4.15)

Let us then define

gp := τ ∈ (0, 1) 7→ |<(Xαp,+(τ))|+|=(Xαp,+(τ))|−1 = (τ−1)+
1√
2

[√
γ(τ) + (1− τ2)−

√
γ(τ)− (1− τ2)

]
.

We already know that for all τ ∈ [0, 1], gp(τ) ≥ 0. Our next goal is to show that in fact, gp is bounded on
[0, 1] by some bounds going to 0 as p→∞. In order to do that, we will decompose the interval [0, 1] in two
intervals [0, τp] and [τp, 1] for some parameters τp ∈ [0, 1] going to 1 as p→∞, and we will establish bounds
going to 0 as p→∞ on each of these intervals.
Let us start by the following remark: for τp > 1/

√
2, for all τ ∈ [τp, 1),

gp(τ) = (τ − 1) +
1√
2

[√
γ(τ) + (1− τ2)−

√
γ(τ)− (1− τ2)

]
≤ (τ − 1) +

√
1− τ2 ≤ τp − 1 +

√
1− τ2p .

Therefore, if
lim
p→∞

τp = 1, (4.16)
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we get limp→∞ ‖gp‖L∞(τp,1) = 0.

Secondly, for any τ ∈ (0, τp), we observe that γ(τ)2 = (1 + τ2)2 + r(τ) with r(τ) = −8 τ2p+2
(
1− 1

2
τ2p)

)
which implies in particular that

sup
τ∈[0,τp]

∣∣∣∣r(τ)

τ2

∣∣∣∣ ≤ 8τ2pp .

Therefore, if we choose τp such that
lim
p→∞

τ2pp = 0, (4.17)

we have, for all τ ∈ [0, τp] ∣∣∣∣γ(τ)−
(

(1 + τ2) +
r(τ)

2(1 + τ2)

)∣∣∣∣ ≤ Cr(τ),

for some C independent of p.
This leads, still under condition (4.17) that for τ ∈ [0, τp],∣∣∣∣ 1√

2

[√
γ(τ) + (1− τ2)−

√
γ(τ)− (1− τ2)

]
−
(

1− τ +
1

8 (1 + τ2)

[
r(τ)− 2

r(τ)

τ2

])∣∣∣∣ ≤ C r(τ)

τ2
,

for some C independent of p.
Therefore, under condition (4.17), we have

sup
τ∈[0,τp]

gp(τ) ≤ C sup
τ∈[0,τp]

∣∣∣∣r(τ)

τ2

∣∣∣∣ →p→∞ 0,

We thus choose τp = 1− 1/
√
p, so that conditions (4.16) and (4.17) are satisfied, and we obtain that

lim
p→∞

‖gp‖L∞(0,1) = 0.

Therefore, for all ε > 0, we can choose p ∈ N such that ‖gp‖L∞(0,1) ≤ ε. This means geometrically that the
set {Xα,+(τ), τ ∈ [0, 1]} is included in S(1 + ε) \ S(1).
Finally, the fact that {Xα,+(τ), τ ∈ [0, 1]} is a rectifiable curve can be done as in the proof of item (iii) of
Lemma 4.2 by explicit computations. This finishes the proof of item (iv) of Lemma 4.2.
The proof of Lemma 4.2 is now completed. We finish it with Figures 2–3 illustrating Lemma 4.2.

Figure 2: In red, .− the Euclidean sphere; in black, −− the boundary of the `1(R2) ball; in blue, the curve
Xα2,+ for τ ∈ [−1, 1].
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Figure 3: Xαp,+ for τ ∈ (0, 1), and p = 1, 2 and 5.

4.4 Proof of Proposition 4.3

Let L > 0, L0 > L, ε > 0, and α as in Lemma 4.2.
Let us then consider a function k which can be extended analytically on S(L0(1 + ε)). We still denote by k
its analytic expansion.
We note that the oriented path C in (4.6) is included in S(L0(1 + ε)). We can therefore use Cauchy’s integral
formula:

∀x ∈ [−L,L], k(x) =
1

2 iπ

∫
C

k(z)

z − x dz, (4.18)

which in our context yields:

k(x) =
1

2 iπ

[
−
∫ L0

0

k(Xα,+(x̃))

Xα,+(x̃)− xX
′
α,+(x̃) dx̃+

∫ 0

−L0

k(Xα−(x̃))

Xα,−(x̃)− xX
′
α,−(x̃) dx̃ (4.19)

+

∫ L0

0

k
(
Xα,+(x̃)

)
Xα,+(x̃)− x

X ′α,+(x̃)d x̃−
∫ 0

−L0

k
(
Xα,−(x̃)

)
Xα,−(x̃)− x

X ′α,−(x̃)d x̃

 .
Let us then recall that for h+ ∈ L2(−L0, L0) and h− ∈ L2(−L0, L0), we have

Kα(h+)(x) =
2√
π

∫ L0

−L0

h+(x̃)

Xα,+(x̃)−Xα,−(x̃)

(
1

x−Xα,+(x̃)
− 1

x−Xα,−(x̃)

)
dx̃ (4.20)

K−α(h−)(x) =
2√
π

∫ L0

−L0

h−(x̃)

X−α,+(x̃)−X−α,−(x̃)

(
1

x−X−α,+(x̃)
− 1

x−X−α,−(x̃)

)
dx̃

=
2√
π

∫ L0

−L0

h−(x̃)

Xα,−(x̃)−Xα,+(x̃)

(
1

x−Xα,−(x̃)
− 1

x−Xα,+(x̃)

)
dx̃. (4.21)

In view of (4.19), it is therefore natural to choose h+ such that

2√
π

h+(x̃)

Xα,+(x̃)−Xα,−(x̃)
=


1

2iπ
k(Xα,+(x̃))X ′α,+(x̃) for x̃ > 0,

− 1

2iπ
k(Xα,−(x̃))X ′α,−(x̃) for x̃ ≤ 0,

(4.22)
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and h− such that

2√
π

h−(x̃)

Xα,−(x̃)−Xα,+(x̃)
=


− 1

2iπ
k
(
Xα,+(x̃)

)
X ′α,+(x̃) for x̃ > 0,

1

2iπ
k
(
Xα,−(x̃)

)
X ′α,−(x̃) for x̃ ≤ 0.

(4.23)

Let us then check that the two above definitions (4.22)–(4.23) give functions h+, h− in L2(−L0, L0). We
explain in details how to show that h+ ∈ L2(0, L0).
On (0, L0), we have

h+(x̃) =
1

4i
√
π

(Xα,+(x̃)−Xα,−(x̃)) k(Xα,+(x̃))X ′α,+(x̃).

But for all x̃ ∈ (0, L0), Xα,+(x̃) ∈ S(0, L0(1+ε)) on which k is bounded (since it is analytic on S(L0(1 + ε))).
Therefore, we only have to check that

(Xα,+(x̃)−Xα,−(x̃))X ′α,+(x̃)

belongs to L2(0, L0). Explicit computations yield that

X ′α,+(x̃) = 1 +
i

2
√
L2 − x̃2 + iα(x̃)

(
−2x̃+ α′(x̃)

)
,

Xα,+(x̃)−Xα,−(x̃) = 2i
√
L2 − x̃2 + iα(x̃),

so that for all x̃ ∈ (0, L0),

(Xα,+(x̃)−Xα,−(x̃))X ′α,+(x̃) = 2i
√
L2 − x̃2 + iα(x̃)−

(
−2x̃+ α′(x̃)

)
,

which is obviously bounded in view of item (i) of Lemma 4.2. Therefore, h+ given by (4.22) belongs to
L2(0, L0).
Of course, similar computations can be done to show that h+ ∈ L2(−L0, 0) and h− ∈ L2(−L0, L0). The
details of these proofs are left to the reader.

Let us then show that the function kr defined for x ∈ (−L,L) by

kr(x) = k(x)−Kα(h+)(x)−Kα(h−)(x) (4.24)

can be extended analytically on the ball of size L0. Indeed, from formulae (4.19)–(4.20)–(4.21)–(4.22)–(4.22),
we have for all x ∈ (−L,L),

kr(x) =− 2√
π

∫ L0

−L0

h+(x̃)

Xα,+(x̃)−Xα,−(x̃)

(
1x̃<0

x−Xα,+(x̃)
− 1x̃>0

x−Xα,−(x̃)

)
dx̃

− 2√
π

∫ L0

−L0

h−(x̃)

Xα,−(x̃)−Xα,+(x̃)

(
1x̃>0

x−Xα,−(x̃)
− 1x̃<0

x−Xα,+(x̃)

)
dx̃.

But according to Lemma 4.2, for x̃ < 0, Xα,+(x̃) /∈ B(0, L0), and for x̃ > 0, Xα,−(x̃) /∈ B(0, L0). Therefore,
the singularities in each kernel lie outside B(0, L0). Therefore, kr can be extended analytically in B(0, L0)
with the following formula, valid for any z ∈ B(0, L0),

kr(z) =− 2√
π

∫ L0

−L0

h+(x̃)

Xα,+(x̃)−Xα,−(x̃)

(
1x̃<0

z −Xα,+(x̃)
− 1x̃>0

z −Xα,−(x̃)

)
dx̃

− 2√
π

∫ L0

−L0

h−(x̃)

Xα,−(x̃)−Xα,+(x̃)

(
1x̃>0

z −Xα,−(x̃)
− 1x̃<0

z −Xα,+(x̃)

)
dx̃.

This completes the proof of Proposition 4.3.
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5 Further comments

5.1 The reachable set when the control acts from one side

One may ask if it is possible to characterize the reachable set of the one-dimensional heat equation controlled
from one side only.
To fix the ideas, let L, T > 0 and consider the equation

∂tu− ∂xxu = 0 in (0, T )× (0, L),
u(t, 0) = 0 in (0, T ),
u(t, L) = v(t) in (0, T ),
u(0, x) = 0 in (0, L).

(5.1)

In this context, we define the reachable set RL,u(t,0)=0(T ) at time T > 0 as follows:

RL,u(t,0)=0(T ) = {u(T ) | u solving (5.1) with control functions v ∈ L2(0, T )}. (5.2)

Again, this set is a vector space independent of the time T > 0 and we therefore simply write RL,u(t,0)=0

instead of RL,u(t,0)=0(T ).
As a corollary of Theorem 1.1, one can prove the following result:

Theorem 5.1. Any function u ∈ L2(0, L) whose odd extension to (−L,L) can be extended analytically to
S(L) belongs to RL,u(t,0)=0.

Theorem 5.1 is in fact an immediate consequence of Theorem 1.1. Indeed, if u1 ∈ L2(0, L) has an odd
extension ũ1 to (−L,L) which can be extended analytically to S(L), then ũ1 ∈ R(L) from Theorem 1.1. If we
denote by ũ a corresponding trajectory of (1.1) starting from ũ(0, ·) = 0 in (−L,L), taking value ũ1 at time
T in (−L,L) and having control functions v−, v+ ∈ L2(0, T ), one can check that for (t, x) ∈ (0, T )× (0, L),
u(t, x) = (ũ(t, x) − ũ(t,−x))/2 solves (5.1) with control function v(t) = (v+(t) − v−(t))/2 and its value at
time T is u1 in (0, L), i.e. u1 ∈ RL,u(t,0)=0.
Also note that Theorem 5.1 is mainly sharp as [16, Theorem 1] states that any state in RL,u(t,0)=0 should
have an odd extension which can be extended analytically to the set S(L).

5.2 The multi-dimensional case

The Carleman estimate stated in Theorem 1.3 can be easily generalized to heat equations in spatial domains
Ω which are multi-dimensional Euclidean balls, and with observation on the whole sphere. However, it is
not clear how to use it in a clever way to get a sharp description of the reachable set. This issue will be
studied in a forthcoming work, as well as simple geometries like strips.
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