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On the reachable set for the one-dimensional heat equation

The goal of this article is to provide a description of the reachable set of the one-dimensional heat equation, set on the spatial domain x ∈ (-L, L) with Dirichlet boundary controls acting at both boundaries. Namely, in that case, we shall prove that for any L0 > L any function which can be extended analytically on the square {x + iy, |x| + |y| ≤ L0} belongs to the reachable set. This result is nearly sharp as one can prove that any function which belongs to the reachable set can be extended analytically on the square {x + iy, |x| + |y| < L}. Our method is based on a Carleman type estimate and on Cauchy's formula for holomorphic functions.

Introduction

Setting. The goal of this article is to describe the reachable set for the 1d heat equation. To fix the ideas, let L, T > 0 and consider the equation

       ∂tu -∂xxu = 0
in (0, T ) × (-L, L), u(t, -L) = v-(t) in (0, T ), u(t, L) = v+(t) in (0, T ), u(0, x) = 0 in (-L, L).

(1.1)

In (1.1), the state u = u(t, x) satisfies a heat equation controlled from the boundary x ∈ {-L, L} through the control functions v-(t), v+(t) ∈ L 2 (0, T ). In this article, the control functions v-and v+ will be complex valued unless stated otherwise, and following, the solutions of the heat equation will also be complex valued.

Our goal is to describe the reachable set RL(T ) at time T > 0, defined as follows:

RL(T ) = {u(T ) | u solving (1.1) with control functions v-, v+ ∈ L 2 (0, T )}.

(1.2)

Obviously, due to the linearity of the problem, the reachable set RL(T ) is a vector space. Besides, as remarked by Seidman in [START_REF] Seidman | Time-invariance of the reachable set for linear control problems[END_REF], due to the fact that the heat equation is null-controllable in arbitrarily small time ( [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] in dimension one, [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Fursikov | Controllability of evolution equations[END_REF] in higher dimensions), the reachable set R(T ) does not depend on the time horizon T . Using again the null-controllability of the heat equation in small time, one also easily checks that the set of states u(T, •) which can be reached by solutions of (1.1) [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF][START_REF] Dolecki | A general theory of observation and control[END_REF][START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF] starting from an initial datum u(0, •) ∈ L 2 (-L, L) coincides with R. Therefore, we will simply denote the reachable set by R in the following.

Main results. We aim at proving the following result, whose proof is given in Section 4: * e-mail: jeremi.darde@math.univ-toulouse.fr. † e-mail: sylvain.ervedoza@math.univ-toulouse.fr. and let us denote by A (L0) the set of functions u ∈ L 2 (-L, L) which can be extended analytically to the set S(L0): A (L0) = {u ∈ L 2 (-L, L) which can be extended analytically to S(L0)}.

(1.4)

Then we have the following:

∪ L 0 >L
A (L0) ⊂ RL.

(1.5) Theorem 1.1 describes a subset of the reachable set R in terms of analytic extensions of functions. It turns out that using this description, Theorem 1.1 is sharp as a consequence of the following result, recently obtained in [16, Theorem 1] that we recall here: Theorem 1.2. [16, Theorem 1] Let u ∈ RL. Then u can be extended analytically to the set S(L). In other words, RL ⊂ A (L).

(1.6)

In fact, [START_REF] Martin | On the reachable sets for the boundary control of the heat equation[END_REF] also describes a subset of R in terms of the analytic extension of the functions, but shows the following weaker form of (1.5): If u ∈ L 2 (-L, L) can be extended analytically to the ball B(0, R) for R > e (2e) -1 L ( 1.2L), then u ∈ RL. The article [START_REF] Martin | On the reachable sets for the boundary control of the heat equation[END_REF] is to our knowledge the only one describing the reachable set R without the use of the eigenfunctions of the Laplace operator. If one uses the basis of eigenfunctions of the Laplace operator, simply given by (sin(nπx/L)) n≥1 , the results of [START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF] (which is a slightly more precise version of [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] in this 1d case) yield:

   u(x) = n≥1 cn sin nπ(x + L) 2L such that n |cn| 2 ne nπ < ∞    ⊂ RL. (1.7) 
Note that condition n |cn| 2 ne nπ < ∞ implies that the function u(x) = n≥1 cn sin(nπ(x + L)/2L) admits an analytic extension in the strip {(x + iy) | |y| < L}. Besides, it also implies the boundary conditions u(-L) = u(L) = 0 and for all n ≥ 1, (∂xx) n u(-L) = (∂xx) n u(L) = 0. As pointed out in [START_REF] Martin | On the reachable sets for the boundary control of the heat equation[END_REF], this latter condition is rather conservative and should not be relevant as the control is acting on the boundary x ∈ {-L, L}.

The proof of Theorem 1.1 will be presented in Section 4, and is inspired by a Carleman type inequality for the adjoint equation (after the change of variable t → T -t and having done the formal limit T → ∞):

   ∂tz -∂xxz = 0 in (0, ∞) × (-L, L), z(t, -L) = z(t, L) = 0 in (0, ∞), z(0, x) = z0(x)
in (-L, L).

(1.8)

Namely, let us recall that the work [START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF] proves the following observability type estimate: There exists C > 0 such that any smooth solution z of (1.8) satisfies:

∞ 0 L -L |z(t, x)| 2 exp - L 2 2t dt dx ≤ C ∞ 0 |∂xz(t, -L)| 2 + |∂xz(t, L)| 2 dt. (1.9)
In Section 2, we will prove the following improved version of (1.9):

Theorem 1.3. For all T > 0 satisfying πT > L 2 , (1.10)
there exists a constant C > 0 such that for any smooth solution z of (1.8), we have the observability inequality:

L -L |z(T, x)| 2 exp x 2 -L 2 2T dx + ∞ 0 L -L |z(t, x)| 2 exp x 2 -L 2 2t dt dx ≤ C T 0 t |∂xz(t, -L)| 2 + |∂xz(t, L)| 2 dt. (1.11)
We emphasize that the improvement of (1.11) with respect to (1.9) is due to the presence of the weight function depending on x in (1.11). Besides, as we will see in Section 2, the proof of Theorem 1.3 is more direct than the proof of (1.9) in [START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF] as it is not based on the observability of the corresponding wave operator. In fact, our proof of (1.11) closely follows the one of the classical Carleman estimates for the heat equation derived for instance in [START_REF] Fursikov | Controllability of evolution equations[END_REF]. In that context, the corresponding weight function exp((x 2 -L 2 )/4t) corresponds to the inverse of the exponential envelop of the kernel

kL(t, x) = 1 √ 4πt sin xL 2t exp L 2 -x 2 4t ,
which corresponds to a solution of (1.8) (1) (in fact, it is the usual Gaussian but translated in the complex plane x → x + iL) used in the transmutation technique in [START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF]. Furthermore, this function kL can be used to check that estimate (1.11) is sharp with respect to the blow up of the weight close to t = 0. The condition (1.10) appears naturally in our proof of (1.11). One could naturally think that this condition is remanent from some kind of parabolic version of Ingham's inequality ( [START_REF] Ingham | Some trigonometrical inequalities with applications to the theory of series[END_REF]). But this is not the case. In fact, condition (1.10) rather comes from the fact that, when applying (1.9) to the solution exp(-π 2 t/(4L 2 )) sin(π(x + L)/2L) of (1.8), the weight function in time appearing is exp(-2π 2 t/(4L 2 ) -L 2 /2t), whose monotony changes precisely at T * = L 2 /π.

One then needs to interpret Theorem 1.3 in terms of a dual controllability statement. This mainly consists in the usual duality statement between controllability and observability of the adjoint equation (see e.g. [START_REF] Dolecki | A general theory of observation and control[END_REF][START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF]). To be more precise, we obtain the following result (see Subsection 3.1):

Lemma 1.4. Let g ∈ L 2 (0, ∞; L 2 (-L, L)) be such that ∞ 0 L -L |g(t, x)| 2 exp L 2 -x 2 2t dx dt < ∞, (1.12) 
and T satisfying (1.10). If w denotes the solution of

   -∂tw -∂xxw = g in (0, T ) × (-L, L), w(t, -L) = w(t, L) = 0 in (0, T ), w(T, x) = wT (x) in (-L, L), (1.13) 
for some wT ∈ L 2 (-L, L), then w0(x) = w(0, x) belongs to the reachable set RL.

However, it is not completely straightforward to use Lemma 1.4 as the fundamental solution of the heat equation in a bounded domain involves a discrete summation (namely, the method of images yields a fundamental solution under the form of a sum of odd and even translations of the usual Gaussian kernel). Instead, we prefer to rely on the following result, proved in Section 3:

Theorem 1.5. Let L0 > L and α : [-L0, L0] → R be a continuous function on [-L0, L0]. For h ∈ L 2 (-L0, L0), we define g(t, x) = 1 t 3/2 exp x 2 -L0 2 4t + i α(x) 4t h(x), (t, x) ∈ (0, ∞) × (-L0, L0). (1.14)
Then the state w0 defined on (-L, L) by

w0(x) = ∞ 0 L 0 -L 0 1 √ 4πt exp - (x -x) 2 4t g(t, x) dtdx, x ∈ (-L, L), (1.15) 
is well-defined and belongs to the reachable set RL.

Besides, w0 can alternatively be written as

w0(x) = 2 √ π L 0 -L 0 h(x) (x -x) 2 + L0 2 -x2 + iα(x) dx, x ∈ (-L, L). (1.16)
Under the conditions of Theorem 1.5, explicit computations yield that for any α ∈ C 0 ([-L0, L0]; R), the range of the operator Kα : L 2 (-L0, L0) → L 2 (-L, L) given for h ∈ L 2 (-L0, L0) by

Kα(h)(x) = 2 √ π L 0 -L 0 h(x) (x -x) 2 + L0 2 -x2 + iα(x) dx, x ∈ (-L, L), (1.17) 
is contained in the reachable set RL. Therefore, Theorem 1.5 can be rewritten as ∀α satisfying the assumptions of Theorem 1.5, Range(Kα) ⊂ R.

(1.18)

The proof of Theorem 1.1 will thus mainly reduced to choosing carefully the above functions α and h in Theorem 1.5 so that all function which admits an analytic extension in a set S(L0) for L0 > L can be decomposed into a finite sum of elements in the images of the above operators Kα. This property will be achieved by using Cauchy's formula for holomorphic functions among contours which coincide with the singularities of the kernel of the above operator Kα. Details of the proof are given in Section 4.

As it turns out, see Section 4, we will require the use of non-trivial functions α in a critical way. This might be surprising at first as this function introduces strong time oscillations in the source term of the heat equation in (1.14). In other words, we need these strong oscillations to reach the whole reachable set.

Scientific Context. The characterization of the reachable set of the heat equation is a rather old issue, whose study probably started with the pioneering work [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] studying this question in dimension one using harmonic analysis techniques. The result of [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] was then slightly improved into (1.7) in [START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF] using the so-called transmutation technique allowing to write solutions of the wave equations in terms of solutions of the heat equation (1.8).

More recently, P. Martin, L. Rosier and P. Rouchon proposed in the work [START_REF] Martin | On the reachable sets for the boundary control of the heat equation[END_REF] to characterize the reachable set of the heat equation in the 1d case by a description on the set on which the reachable states are analytic.

As explained above, this description yields that if a state admits an analytic extension on the ball B(0, R) for R > e (2e) -1 L ( 1.2L), then it belongs to the reachable set RL. The approach in [START_REF] Martin | On the reachable sets for the boundary control of the heat equation[END_REF] relies on the flatness approach, which has been developed recently by P. Martin, L. Rosier and P. Rouchon, see [START_REF] Martin | Null controllability of the heat equation using flatness[END_REF][START_REF] Martin | Null controllability of one-dimensional parabolic equations by the flatness approach[END_REF]. Of course, describing the reachable set of the heat equation is also related to the results of controllability to trajectories for the heat equation, which by linearity are equivalent to the results on null-controllability. In this context, the breakthrough came from the introduction of Carleman estimates to obtain observability results for the heat equation in any dimension from basically any non-open subset, see [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. Nonetheless, in general, Carleman estimates are not suitable to provide sharp estimates as one has very little control on the coefficients appearing in them. Theorem 1.3 is a very specific case in which the parameters can be explicitly computed. With that in mind, one could also relate the Carleman estimate in Theorem 1.3 with the Hardy Uncertainty principle obtained in [START_REF] Escauriaza | Hardy uncertainty principle, convexity and parabolic evolutions[END_REF]. In some sense, the weight that we are using is a limiting Carleman weight, in the sense that the conjugated operator appearing in the proof of Theorem 1.3 satisfies a degenerate convexity condition, see Remark 2.1. Let us also emphasize that there are several works related to the cost of controllability of the heat equation in short time. Let us quote in particular the works by [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF][START_REF] Miller | The control transmutation method and the cost of fast controls[END_REF][START_REF] Miller | On exponential observability estimates for the heat semigroup with explicit rates[END_REF][START_REF] Tenenbaum | New blow-up rates for fast controls of Schrödinger and heat equations[END_REF] studying these questions. It was thought for a while that the understanding of the blow up of the controllability of the heat equation in short time would be more or less equivalent to a good characterization of the reachable set, but this was recently disproved in [START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport diffusion equation[END_REF]. We refer the interested reader to this latter work for a more detailed discussion on this fact. These issues are also related to the questions raised in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF] concerning the controllability of a viscous transport equation with vanishing viscosity parameter, see [START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF][START_REF] Lissy | An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit[END_REF]. In that sense, our work suggests that observability results for the heat equation stated only in terms of their spectral decomposition could possibly be reinforced by considering space weighted functional settings appropriate to the control problem at hand.

Outline. This article is organized as follows. Section 2 gives the proof of Theorem 1.3. Section 3 establishes Theorem 1.5. In Section 4, we prove Theorem 1.1. We finally provide the reader with further comments in Section 5.

Acknowledgements. The authors deeply thank Michel Duprez and Pierre Lissy for several useful comments related to this work.

Proof of Theorem 1.3

Let z be a smooth solution of (1.8), and introduce the new unknown (the conjugated variable):

z(t, x) = z(t, x)t exp x 2 -L 2 4t , (t, x) ∈ (0, ∞) × (-L, L). (2.1)
It satisfies the equations

       ∂t z + x t ∂x z - 1 2t z -∂xx z - L 2 4t 2 z = 0, (t, x) ∈ (0, ∞) × (-L, L), z(t, -L) = z(t, L) = 0, t ∈ (0, ∞), z(0, x) = 0, x ∈ (-L, L).
(2.2)

We then introduce the energy E(t) and the dissipation D(t) defined for t > 0 by

E(t) = L -L |z(t, x)| 2 dx, (2.3) 
D(t) = L -L |∂x z(t, x)| 2 dx - L 2 4t 2 L -L |z(t, x)| 2 dx. (2.4)
Easy computations show that they satisfy the following ODEs: for all t > 0,

dE dt (t) - 2 t E(t) + 2D(t) = 0, (2.5) 
dD dt (t) + 2 L -L -∂xx z(t, x) - L 2 4t 2 z(t, x) 2 dx = L t |∂x z(t, -L)| 2 + |∂x z(t, L)| 2 . (2.6)
But, by Poincaré's inequality, D(t) is non-negative for t ≥ L 2 /π. Let then T > L 2 /π as in (1.10). Integrating (2.6) between 0 and T and using the fact that D(0) = 0 due to vanishing behavior of the weight function close to t = 0, we get

T 0 L -L -∂xx z(t, x) - L 2 4t 2 z(t, x) 2 dtdx ≤ T 0 L 2t |∂x z(t, -L)| 2 + |∂x z(t, L)| 2 dt. (2.7)
But z satisfies the boundary conditions z(t, -L) = z(t, L) = 0 for all t > 0. Therefore, multiplying -∂xx z -

L 2
4t 2 z by 2x∂x z, for all t > 0 we obtain

L -L |∂x z(t, x)| 2 dx + L 2 4t 2 L -L |z(t, x)| 2 dx = 2 L -L -∂xx z(t, x) - L 2 4t 2 z(t, x) x∂x z dx + L |∂x z(t, -L)| 2 + |∂x z(t, L)| 2 ≤ L 2 L -L -∂xx z(t, x) - L 2 4t 2 z(t, x) 2 dx + L -L |∂x z(t, x)| 2 dx + L |∂x z(t, -L)| 2 + |∂x z(t, L)| 2 ,
so that for all t > 0,

L 2 4t 2 L -L |z(t, x)| 2 dx ≤ L 2 L -L -∂xx z(t, x) - L 2 4t 2 z(t, x) 2 dx + L |∂x z(t, -L)| 2 + |∂x z(t, L)| 2 .
Using this last estimate in (2.7), we derive

T 0 L -L 1 t 2 |z(t, x)| 2 dtdx ≤ C T 0 1 t |∂x z(t, -L)| 2 + |∂x z(t, L)| 2 dt, (2.8) 
Besides, from (2.5), again using Poincaré estimate, for all t ≥ T > L 2 /π,

d dt E(t) t 2 + L 2 T 2 π 2 T 2 L 4 -1 E(t) t 2 ≤ 0, (2.9) 
while t → E(t)/t 2 is decreasing on (L 2 /π, T ) from (2.5):

E(T ) T 2 ≤ 1 T -L 2 /π T L 2 /π E(t) t 2 dt ≤ 1 T -L 2 /π T 0 L -L 1 t 2 |z(t, x)| 2 dtdx.
(2.10) Therefore, combining (2.8)-(2.9)-(2.10), we easily derive 

E(T ) T 2 + ∞ 0 L -L 1 t 2 |z(t, x)| 2 dtdx ≤ C T 0 1 t |∂x z(t, -L)| 2 + |∂x z(t, L)| 2 dt
is ∂t + x t ∂x - 1 2t -∂xx - L 2 4t 2 , which can be written as A + B + R with A = ∂t + x t ∂x + 1 2t , B = -∂xx - L 2 4t 2 , and R = - 1 t ,
and which satisfies

A * = -A, B * = B, [A, B] = - 2 t B,
while the operator R is of lower order. In particular, if the symbol of the operator A and of the operator B cancels, the symbol of the commutator [A, B] vanishes as well. The convexity condition needed to get Carleman estimates is therefore degenerate with our choice of weights. Such degenerate weights have appeared in the literature lately in the context of the Calderón problem, see in particular the works on the limiting Carleman weights, see [START_REF] Kenig | The Calderón problem with partial data[END_REF] and subsequent works.

3 Duality results

Proof of Lemma 1.4

Let w denote the solution of (1.13) with source term g satisfying (1.12) and initial datum wT ∈ L 2 (-L, L).

For the proof below and in order to simplify the notations, we further assume that g and wT are realvalued. This can be done without loss of generality by applying the result to the real part of (g, wT ) and the imaginary part of (g, wT ) in case (g, wT ) are complex-valued. Let us then define the functional J as follows: for z0 ∈ L 2 (-L, L; R),

J(z0) := 1 2 T 0 |∂xz(t, -L)| 2 + |∂xz(t, L)| 2 dt - +∞ 0 L -L g z dt dx - L -L z(T, x)wT (x) dx, (3.1) 
where z denotes the solution of (1.8) with initial datum z0.

From the Carleman estimate in Theorem 1.3 and assumption (1.12), the functional J can be extended by continuity on the space

X = {z0 ∈ L 2 (-L, L; R)} • obs , with z0 2 obs = T 0 |∂xz(t, -L)| 2 + |∂xz(t, L)| 2 dt, (3.2) 
where z denotes the corresponding solution of (1.1) with initial datum z0. Note that using (1.11), one can associate to z0 ∈ X a solution z of (1.8) (1,2) and normal traces ∂xz(t, ±L) with z exp((

x 2 -L 2 )/4t) ∈ L 2 (0, ∞; L 2 (-L, L)) and ∂xz(t, ±L) ∈ L 2 (0, T ).
Besides, the functional J is strictly convex and coercive on X from (1.11). Therefore, it admits a unique minimizer Z0 in X. Let us denote by ∂xZ(t, -L), ∂xZ(t, L) the corresponding normal traces, and set

v-(t) = ∂xZ(t, -L), v+(t) = -∂xZ(t, L), in (0, T ). ( 3.3) 
Using then that J(Z0) ≤ J(0) and the Carleman estimate (1.11), one easily checks that

v-(t) 2 L 2 (0,T ) + v+(t) 2 L 2 (0,T ) ≤ C ∞ 0 L -L |g(t, x)| 2 exp L 2 -x 2 2t dx dt + C L -L |wT (x)| 2 exp L 2 -x 2 2T dx. (3.4)
Furthermore, the Euler-Lagrange equation of J at Z0 in the direction z0 ∈ L 2 (-L, L; R) yields:

0 = T 0 (v-(t)∂xz(t, -L) -v+(t)∂xz(t, L)) dt - +∞ 0 L -L g z dt dx - L -L z(T, x)wT (x) dx. (3.5)
But, multiplying the equation (1.13) satisfied by w by z solution of (1.8), we get the identity:

+∞ 0 L -L g z dt dx + L -L z(T, x)wT (x) dx = L -L z0(x)w(0, x) dx. (3.6) 
Therefore identity (3.5) can be rewritten as follows: for all z0 ∈ L 2 (-L, L; R), denoting by z the solution of (1.8), one has

L -L z0(x)w(0, x) dx = T 0 (v-(t)∂xz(t, -L) -v+(t)∂xz(t, L)) dt. (3.7) 
Recall then that v-, v+ belong to L 2 (0, T ) according to (3.4), and let us then define u the solution of

       ∂tu + ∂xxu = 0 in (0, T ) × (-L, L), u(t, -L) = v-(t) in (0, T ), u(t, -L) = v+(t) in (0, T ), u(T, x) = 0 in (-L, L). (3.8) 
We claim that u(0, •) = w(0, •). Indeed, for z0 ∈ L 2 (-L, L; R), if we multiply the equation of u in (3.8) by the solution z of (1.8), we get

L -L u(0, x)z0(x) dx = - T 0 v+(t)∂xz(t, L) dt + T 0 v-(t)∂xz(t, -L) dt. (3.9) 
Therefore, comparing (3.7) with (3.9), we get that

∀z0 ∈ L 2 (-L, L; R), L -L (u(0, x) -w(0, x))z0(x) dx = 0, that is u(0, •) = w(0, •).
We then simply remark that doing the change of unknowns ũ(t,

•) = u(T -t, •), ṽ±(t) = v±(T -t), u(0, •) = ũ(T,
•) is a reachable state for (1.1) with controls ṽ±, i.e. u(0, •) ∈ RL. As u(0, •) = w(0, •), we have thus obtained that w(0, •) ∈ RL.

Proof of Theorem 1.5

Set g as in (1.14) and define, for (t, x) ∈ (0, T ] × (-L0, L0), the function w(t, x) as follows

w(t, x) = ∞ t L 0 -L 0 1 4π( t -t) exp - (x -x) 2 4( t -t) g( t, x) d tdx (3.10) = ∞ 0 L 0 -L 0 1 √ 4πs exp - (x -x) 2 4s g(s + t, x) dsdx. (3.11)
Our goal is to check that w solves

       -∂tw -∂xxw = g in (0, T ) × (-L, L), w(t, -L) = v-(t) in (0, T ), w(t, L) = v+(t) in (0, T ), w(T, x) = wT (x) in (-L, L), (3.12) 
with appropriate choice of functions wT ∈ L 2 (-L, L), v-∈ L 2 (0, T ) and v+ ∈ L 2 (0, T ) and that w0 defined in (1.15) simply is the trace of w at time t = 0. Indeed, if (3.12) holds, we can decompose w as w = w + ŵ, with w satisfying (1.13) with source term g and with initial condition w(T ) = wT and ŵ satisfying the equation

       -∂t ŵ -∂xx ŵ = 0 in (0, T ) × (-L, L), ŵ(t, -L) = v-(t) in (0, T ), ŵ(t, L) = v+(t) in (0, T ), ŵ(T, x) = 0 in (-L, L), (3.13) 
for which one immediately has (by the change of variables t → T -t) that ŵ(0, •) ∈ RL. The state w(0, •) belongs to RL since g defined in (1.14) satisfies (1.12) due to the condition L0 > L and so Lemma 1.4 applies. This eventually implies that w(0, •) belongs to RL as ŵ(0, •) and w(0, •) belong to RL.

We therefore first focus on the proof of the fact that w in (3.10) satisfies (3.12) with wT ∈ L 2 (-L, L), v-∈ L 2 (0, T ) and v+ ∈ L 2 (0, T ) and that w0 defined in (1.15) simply is the trace of w at time t = 0.

Let us now prove that w in (3.10) satisfies (3.12). We first remark that g in (1.14) satisfies, f orall(t, x) ∈ (0, ∞) × (-L, L)

|g( t, x)| ≤ 1 t3/2 exp x2 -L0 2 4 t |h(x)| ≤ 1 t3/2 |h(x)|, (3.14) 
with h ∈ L 2 (-L0, L0). The continuity of w in (3.11) is therefore easy to prove on all sets of the form (t, x) ∈ (ε, ∞) × (-L0, L0) with ε > 0, as the decay in t in (3.14) makes the integral convergent for s = t -t close to infinity while the integrability for s close to 0 simply comes from the integrability of s → s -1/2 close to 0. But the continuity close to t = 0 is more delicate to obtain. We will simply show that w in (3.11) is continuous on (t, x) ∈ (0, ∞) × (-L2, L2) for L2 ∈ (L, L0). Indeed, let us set L2 ∈ (L, L0), and let us rewrite w in (3.11) as:

w(t, x) = ∞ 0 L 0 -L 0 1 √ 4πs 1 (t + s) 3/2 exp - (x -x) 2 4s + x2 -L0 2 4(t + s) + i α(x) 4(t + s) h(x) dsdx. (3.15) 
Under this form, it is clear that what matters it the sign of

P (t, s, x, x) = - (x -x) 2 4s + x2 -L0 2 4(t + s) . But for t ≥ 0, s ∈ (0, ∞), x ∈ [-L2, L2] and x ∈ [-L0, L0],
we have

P (t, s, x, x) = 1 4s(t + s) -(x -x) 2 t + s(-(x -x) 2 + x2 -L0 2 ) ≤ 1 4(t + s) (-x 2 + 2xx -L0 2 ) ≤ 1 4(t + s) (-x 2 + 2|x|L0 -L0 2 ) ≤ - 1 4(t + s) (L2 -L0) 2 .
One then easily deduces that w in (3.15) is continuous on [0, ∞) × (-L2, L2) and that its value at t = 0 coincides with the formula (1.15). We can then set

v-(t) = w(t, -L) in (0, T ), v+(t) = w(t, L) in (0, T ), wT (x) = w(T, x) in (-L, L),
for which the previous analysis implies v-∈ L 2 (0, T ), v+ ∈ L 2 (0, T ) and wT ∈ L 2 (-L, L).

Finally, the fact that w solves the first equation in (3.12) obviously comes from the fact that the kernel appearing in (3.10) is the heat kernel.

In order to prove formula (1.16), we simply use Fubini's theorem:

w0(x) = ∞ 0 L 0 -L 0 1 √ 4πt 2 exp - (x -x) 2 4t + x2 -L0 2 4t + i α(x) 4t h(x) dtdx = 1 √ 4π L 0 -L 0 ∞ 0 1 t 2 exp - (x -x) 2 4t + x2 -L0 2 4t + i α(x) 4t dt h(x)dx. = 2 √ π L 0 -L 0 h(x) (x -x) 2 + L0 2 -x2 + iα(x) dx.
This concludes the proof of Theorem 1.5.

4 Proof of Theorem 1.1

Strategy

As explained in the introduction, our main objective is to study the range of the operators Kα introduced in (1.17) for good choices of functions α.

To start with, we will focus on the case α = 0, and in Section 4.2 we will prove the following:

Proposition 4.1. Let L > 0 and L0 > L, and define the operator K0,L 0 :

L 2 (-L0, L0) → L 2 (-L, L) by K0,L 0 (h)(x) = 2 √ π L 0 -L 0 h(x) (x -x) 2 + L0 2 -x2 dx, x ∈ (-L, L). (4.1)
Then any function k defined on (-L, L) which can be extended analytically on the closure of the ball of size L0 belongs to the range of the operator K0,L 0 .

Proposition 4.1 is proved using the Chebyshev polynomials (Un) n∈N of the second kind, that is the sequence of polynomials such that for all n ∈ N:

Un(cos θ) = sin((n + 1)θ) sin(θ) , θ ∈ (-π, π). (4.2)
Indeed, they appear naturally as the generating function for the polynomials Un is given as follows:

n≥0 x n Un(x) = 1 1 -2xx + x 2 = 1 (x -x) 2 + 1 -x2 , x, x ∈ (-1, 1). (4.3)
Let us also point out that for h ∈ L 2 (-L0, L0), we automatically have that K0,L 0 (h) admits an analytic extension on the ball of radius L0 by the obvious formula:

K0,L 0 (h)(z) = 2 √ π L 0 -L 0 h(x) (z -x) 2 + L0 2 -x2 dx, z ∈ B(0, L0). (4.4)
In other words, Proposition 4.1 proves that the range of the operator K0,L 0 is very close of being exactly the functions which can be extended analytically to the ball of radius L0. This is in fact rather expected due to the similarity of formula (4.4) with the Poisson kernel appearing when solving the Laplace equation in the ball. Note that Proposition 4.1 already improves the result of [START_REF] Martin | On the reachable sets for the boundary control of the heat equation[END_REF], which proved that functions which can be extended analytically to balls of radius e 1/(2e) L 1.2L belong to the reachable set R.

The next step then consists in showing that choosing the function α carefully, we can reach any function which can be extended analytically in the neighborhood of the square S(L). The basic idea in order to choose the function α appropriately is to remark that the operator Kα in (1.17) has a kernel given for (x, x) ∈ (-L, L) × (L0, L0) by

1 (x -x) 2 + L 2 0 -x2 + iα(x) = 1 Xα,+(x) -Xα,-(x) 1 x -Xα,+(x) - 1 x -Xα,-(x) with      Xα,+(x) = x + i L 2 0 -x2 + iα(x), Xα,-(x) = x -i L 2 0 -x2 + iα(x), (4.5) 
where we used the complex square-root function cut on the axis R-. We claim that it is possible to choose α as follows:

Lemma 4.2. Let L0 > 0 and ε > 0. Then there exists a continuous function α : (-L0, L0) → R such that:

(i) α is piecewise C 1 (-L0, L0
) and α can be extended as a C 1 function on the interval [-L0, 0] and [0, L0].

(ii) For all x ∈ [-L0, L0], Xα,+(-x) = -Xα,- (x). 
(iii) The set {Xα,-(x), x ∈ [0, L0]} describes a path included in the set {x + iy, x ≥ 0, y ≤ 0} \ B(0, L0).

(iv) The set {Xα,+(x), x ∈ [0, L0]} describes a path included in the set S(L0(1

+ ε)) \ S(L0) ∩ {x + iy, x ≥ 0, y ≥ 0}.
The proof of Lemma 4.2 is given in Section 4.3. Let us now fix ε > 0 and take α as in Lemma 4.2. We then define the following oriented paths:

       C1 = {Xα,+(x), x from L0 to 0}, C2 = {Xα,-(x), x from 0 to -L0}, C3 = {Xα,-(x), x from -L0 to 0}, C4 = {Xα,+(x), x from 0 to L0}, C = C1 ∪ C2 ∪ C3 ∪ C4. (4.6) 
The contour C is a closed path contained in S(L0(1 + ε)) \ S(L0), see Figure 1. Besides, it is easy to check Proposition 4.3. Let L > 0, L0 > L, ε > 0, and α as in Lemma 4.2. Then, for any function k defined on (-L, L) which can be extended analytically on S(L0(1 + ε)), one can find two functions h+ ∈ L 2 (-L0, L0) and h-∈ L 2 (-L0, L0) such that the function k -Kα(h+) -K-α(h-) can be extended analytically on the ball of radius L0.

Combining this result with Proposition 4.1, we get the following immediate corollary: Corollary 4.4. Let L > 0. For any L0 > L and ε > 0, there exists a continuous function α : (-L0, L0) → R such that any function k defined on (-L, L) which can be extended analytically on S(L0(1 + ε)) can be decomposed as

k(x) = Kα(h+)(x) + K-α(h-) + K0,L 1 (h0) for x ∈ (-L, L), (4.7 
) with L1 = (L + L0)/2, for some h+ ∈ L 2 (-L0, L0), h-∈ L 2 (-L0, L0), and h0 ∈ L 2 (-L1, L1).

Theorem 1.1 is then an immediate consequence of Corollary 4.4 and Theorem 1.5.

Proof of Proposition 4.1

Proof. We start by writing the operator K0,L 0 in (4.1) slightly differently:

K0,L 0 (h)(x) = 2 L 2 0 √ π L 0 -L 0 h(x) x 2 /L 2 0 -2xx/L 2 0 + 1 dx. (4.8) 
Therefore, using (4.3), we get

K0,L 0 (h)(x) = 2 L 2 0 √ π n≥0 x L0 n L 0 -L 0 Un x L0 h(x)dx. (4.9) 
We then recall that the Chebychev polynomials are orthogonal for the scalar product L 2 ( √ 1 -x 2 dx), i.e. for all m and n in N,

1 -1 Un(x)Um(x) 1 -x2 dx = π 2 δn,m, (4.10) 
where δn,m is the Kronecker symbol, so that we have in particular

L 0 -L 0 Un x L0 Um x L0 1 - x2 L 2 0 dx = πL0 2 δn,m. (4.11) 
Let us now consider a function k which can be extended analytically on the closure of the ball of radius L0.

Then k is characterized by its power series expansion:

k(z) = n≥0 knz n , z ∈ B(0, L0),
and the coefficients kn satisfy

n≥0 |kn|L n 0 < ∞, (4.12) 
Therefore, using (4.9) and (4.11), one easily checks that a good candidate h for solving K0,L 0 (h) = k is given by

h(x) = L0 √ π m≥0 L m 0 kmUm x L0 1 - x2 L 2 0 , x ∈ (-L0, L0). (4.13) 
We then check that h indeed belongs to L 2 (-L0, L0). This follows from the following computations, based on (4.11):

L 0 -L 0 |h(x)| 2 dx ≤ L 0 -L 0 |h(x)| 2 1 1 -x2 /L 2 0 dx = L 2 0 π L 0 -L 0 m,n≥0 L m+n 0 kmknUm x L0 Un x L0 1 -x2 /L 2 0 dx = L0 2 m≥0 L 2m 0 |km| 2 ,
the last inequality being obviously true for any τ ∈ (0, 1), recall the definition of αp in (4.14). This implies that |Xα p ,+(τ )| < 1 for all τ ∈ (0, 1). We can then remark that

(Xα p ,+(τ )) = τ -γ(τ ) sin θ(τ ) 2 = τ - 1 √ 2 γ(τ ) -(1 -τ 2 ),
so that similarly as above, (Xα p ,+(τ )) > 0 for τ ∈ (0, 1) and (Xα p ,+(τ )) < 0 for τ ∈ (-1, 0). We have thus proved that {Xα p ,+(τ ), τ ∈ (-1, 0)} is contained in {x + iy, x ≤ 0, y ≥ 0} \ B(0, 1). Using item (ii) of Lemma 4.2, one easily checks that the set {Xα,-(τ ), τ ∈ [0, 1]} is included in the set {x + iy, x ≥ 0, y ≤ 0} \ B(0, 1). Therefore, to finish the proof of item (iii) of Lemma 4.2, we only need to prove that {Xα p ,+(τ ), τ ∈ (-1, 0)} describes a rectifiable curve. This can be done easily by a tedious computation after having noticed that

Xα p ,+(τ ) = τ - 1 √ 2 γ(τ ) -(1 -τ 2 ) + i 1 √ 2 γ(τ ) + (1 -τ 2 ).
The details of the computations are left to the readers.

We shall now focus on the proof of item (iv) of Lemma 4.2. As (Xα p ,+(τ )) ≥ 0 for τ ∈ [0, 1], we have, for all τ ∈ [0, 1],

| (Xα p ,+(τ ))| + | (Xα p ,+(τ ))| = τ + γ(τ ) cos θ(τ ) 2 -sin θ(τ ) 2 = 1 + (τ -1) + 1 √ 2 γ(τ ) + (1 -τ 2 ) -γ(τ ) -(1 -τ 2 ) .
For τ ∈ (0, 1), we hence have

| (Xα p ,+(τ ))| + | (Xα p ,+(τ ))| ≥ 1 ⇔ γ(τ ) + (1 -τ 2 ) -γ(τ ) -(1 -τ 2 ) ≥ √ 2(1 -τ ) ⇔ 2γ(τ ) -2 γ(τ ) 2 -(1 -τ 2 ) 2 ≥ 2(1 -τ ) 2 ⇔ γ(τ ) -αp(τ ) ≥ (1 -τ ) 2 ⇔ γ(τ ) 2 ≥ (1 -τ ) 2 + αp(τ ) 2 ⇔ (1 -τ 2 ) 2 ≥ (1 -τ ) 4 + 2 τ (1 -τ 2 p )(1 -τ ) 2 ⇔ 2 (τ -1) 2 τ τ 2 p + 1 ≥ 0.
This last inequality obviously holds true, so we have

∀τ ∈ [0, 1], | (Xα p ,+(τ ))| + | (Xα p ,+(τ ))| ≥ 1. (4.15) 
Let us then define

gp := τ ∈ (0, 1) → | (Xα p ,+(τ ))|+| (Xα p ,+(τ ))|-1 = (τ -1)+ 1 √ 2 γ(τ ) + (1 -τ 2 ) -γ(τ ) -(1 -τ 2 ) .
We already know that for all τ ∈ [0, 1], gp(τ ) ≥ 0. Our next goal is to show that in fact, gp is bounded on [0, 1] by some bounds going to 0 as p → ∞. In order to do that, we will decompose the interval [0, 1] in two intervals [0, τp] and [τp, 1] for some parameters τp ∈ [0, 1] going to 1 as p → ∞, and we will establish bounds going to 0 as p → ∞ on each of these intervals. Let us start by the following remark: for τp > 1/ √ 2, for all τ ∈ [τp, 1),

gp(τ ) = (τ -1) + 1 √ 2 γ(τ ) + (1 -τ 2 ) -γ(τ ) -(1 -τ 2 ) ≤ (τ -1) + 1 -τ 2 ≤ τp -1 + 1 -τ 2 p .
Therefore, if lim

p→∞ τp = 1, (4.16) 
we get limp→∞ gp L ∞ (τp,1) = 0. Secondly, for any τ ∈ (0, τp), we observe that γ(τ

) 2 = (1 + τ 2 ) 2 + r(τ ) with r(τ ) = -8 τ 2p+2 1 -1 2 τ 2p ) which implies in particular that sup τ ∈[0,τp] r(τ ) τ 2 ≤ 8τ 2p p .
Therefore, if we choose τp such that lim p→∞ τ 2p p = 0, (4.17)

we have, for all τ ∈ [0, τp]

γ(τ ) -(1 + τ 2 ) + r(τ ) 2(1 + τ 2 ) ≤ Cr(τ ),
for some C independent of p. This leads, still under condition (4.17) that for τ ∈ [0, τp],

1 √ 2 γ(τ ) + (1 -τ 2 ) -γ(τ ) -(1 -τ 2 ) -1 -τ + 1 8 (1 + τ 2 ) r(τ ) -2 r(τ ) τ 2 ≤ C r(τ ) τ 2 ,
for some C independent of p. Therefore, under condition (4.17), we have

sup τ ∈[0,τp] gp(τ ) ≤ C sup τ ∈[0,τp] r(τ ) τ 2 → p→∞ 0,
We thus choose τp = 1 -1/ √ p, so that conditions (4.16) and (4.17 

Proof of Proposition 4.3

Let L > 0, L0 > L, ε > 0, and α as in Lemma 4.2.

Let us then consider a function k which can be extended analytically on S(L0(1 + ε)). We still denote by k its analytic expansion. We note that the oriented path C in (4.6) is included in S(L0(1 + ε)). We can therefore use Cauchy's integral formula:

∀x ∈ [-L, L], k(x) = 1 2 iπ C k(z) z -x dz, (4.18) 
which in our context yields:

k(x) = 1 2 iπ - L 0 0 k(Xα,+(x)) Xα,+(x) -x X α,+ (x) dx + 0 -L 0 k(Xα-(x)) Xα,-(x) -x X α,-(x) dx (4.19) + L 0 0 k Xα,+(x) Xα,+(x) -x X α,+ (x)d x - 0 -L 0 k Xα,-(x) Xα,-(x) -x X α,-(x)d x  .
Let us then recall that for h+ ∈ L 2 (-L0, L0) and h-∈ L 2 (-L0, L0), we have

Kα(h+)(x) = 2 √ π L 0 -L 0 h+(x) Xα,+(x) -Xα,-(x) 1 x -Xα,+(x) - 1 x -Xα,-(x) dx (4.20) K-α(h-)(x) = 2 √ π L 0 -L 0 h-(x) X-α,+(x) -X-α,-(x) 1 x -X-α,+(x) - 1 x -X-α,-(x) dx = 2 √ π L 0 -L 0 h-(x) Xα,-(x) -Xα,+(x) 1 x -Xα,-(x) - 1 x -Xα,+(x) dx. (4.21) 
In view of (4.19), it is therefore natural to choose h+ such that

2 √ π h+(x) Xα,+(x) -Xα,-(x) =      1 2iπ k(Xα,+(x))X α,+ (x) for x > 0, - 1 2iπ k(Xα,-(x))X α,-(x) for x ≤ 0, (4.22) and h-such that 2 √ π h-(x) Xα,-(x) -Xα,+(x) =      - 1 2iπ k Xα,+(x) X α,+ (x) for x > 0, 1 2iπ k Xα,-(x) X α,-(x) for x ≤ 0. (4.23)
Let us then check that the two above definitions (4.22)-(4.23) give functions h+, h-in L 2 (-L0, L0). We explain in details how to show that h+ ∈ L 2 (0, L0). On (0, L0), we have

h+(x) = 1 4i √ π (Xα,+(x) -Xα,-(x)) k(Xα,+(x))X α,+ (x).
But for all x ∈ (0, L0), Xα,+(x) ∈ S(0, L0(1+ε)) on which k is bounded (since it is analytic on S(L0(1 + ε))).

Therefore, we only have to check that

(Xα,+(x) -Xα,-(x))X α,+ (x) 
belongs to L 2 (0, L0). Explicit computations yield that

X α,+ (x) = 1 + i 2 L 2 -x2 + iα(x) -2x + α (x) , Xα,+(x) -Xα,-(x) = 2i L 2 -x2 + iα(x),
so that for all x ∈ (0, L0),

(Xα,+(x) -Xα,-(x))X α,+ (x) = 2i L 2 -x2 + iα(x) --2x + α (x) ,
which is obviously bounded in view of item (i) of Lemma 4.2. Therefore, h+ given by (4.22) belongs to L 2 (0, L0).

Of course, similar computations can be done to show that h+ ∈ L 2 (-L0, 0) and h-∈ L 2 (-L0, L0). The details of these proofs are left to the reader.

Let us then show that the function kr defined for x ∈ (-L, L) by x -Xα,-(x) -1x<0

x -Xα,+(x) dx.

But according to Lemma 4.2, for x < 0, Xα,+(x) / ∈ B(0, L0), and for x > 0, Xα,-(x) / ∈ B(0, L0). Therefore, the singularities in each kernel lie outside B(0, L0). Therefore, kr can be extended analytically in B(0, L0) with the following formula, valid for any z ∈ B(0, L0), This completes the proof of Proposition 4.3.

5 Further comments 5.1 The reachable set when the control acts from one side

One may ask if it is possible to characterize the reachable set of the one-dimensional heat equation controlled from one side only.

To fix the ideas, let L, T > 0 and consider the equation

      
∂tu -∂xxu = 0 in (0, T ) × (0, L), u(t, 0) = 0 in (0, T ), u(t, L) = v(t) in (0, T ), u(0, x) = 0 in (0, L).

(5.1)

In this context, we define the reachable set R L,u(t,0)=0 (T ) at time T > 0 as follows: Again, this set is a vector space independent of the time T > 0 and we therefore simply write R L,u(t,0)=0 instead of R L,u(t,0)=0 (T ). As a corollary of Theorem 1.1, one can prove the following result:

Theorem 5.1. Any function u ∈ L 2 (0, L) whose odd extension to (-L, L) can be extended analytically to S(L) belongs to R L,u(t,0)=0 .

Theorem 5.1 is in fact an immediate consequence of Theorem 1.1. Indeed, if u1 ∈ L 2 (0, L) has an odd extension ũ1 to (-L, L) which can be extended analytically to S(L), then ũ1 ∈ R(L) from Theorem 1.1. If we denote by ũ a corresponding trajectory of (1.1) starting from ũ(0, •) = 0 in (-L, L), taking value ũ1 at time T in (-L, L) and having control functions v-, v+ ∈ L 2 (0, T ), one can check that for (t, x) ∈ (0, T ) × (0, L), u(t, x) = (ũ(t, x) -ũ(t, -x))/2 solves (5.1) with control function v(t) = (v+(t) -v-(t))/2 and its value at time T is u1 in (0, L), i.e. u1 ∈ R L,u(t,0)=0 . Also note that Theorem 5.1 is mainly sharp as [START_REF] Martin | On the reachable sets for the boundary control of the heat equation[END_REF]Theorem 1] states that any state in R L,u(t,0)=0 should have an odd extension which can be extended analytically to the set S(L).

The multi-dimensional case

The Carleman estimate stated in Theorem 1.3 can be easily generalized to heat equations in spatial domains Ω which are multi-dimensional Euclidean balls, and with observation on the whole sphere. However, it is not clear how to use it in a clever way to get a sharp description of the reachable set. This issue will be studied in a forthcoming work, as well as simple geometries like strips.
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 111 For L0 > 0, let us introduce the (open) square S(L0) = {x + iy, |x| + |y| < L0}, (1.3)
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 1 Figure 1: In black, --the square S(L 0 ) with L 0 = 1; in red, .-the square S(L 0 (1 + ε)) with L 0 = 1, ε = 0.15; in blue, a corresponding contour C given by Lemma 4.2.

  ) are satisfied, and we obtain that lim p→∞ gp L ∞ (0,1) = 0.Therefore, for all ε > 0, we can choose p ∈ N such that gp L ∞ (0,1) ≤ ε. This means geometrically that the set {Xα,+(τ ), τ ∈ [0, 1]} is included in S(1 + ε) \ S(1). Finally, the fact that {Xα,+(τ ), τ ∈ [0, 1]} is a rectifiable curve can be done as in the proof of item (iii) of Lemma 4.2 by explicit computations. This finishes the proof of item (iv) of Lemma 4.2. The proof of Lemma 4.2 is now completed. We finish it with Figures 2-3 illustrating Lemma 4.2.

Figure 2 :

 2 Figure 2: In red, .-the Euclidean sphere; in black, --the boundary of the 1 (R 2 ) ball; in blue, the curve X α2,+ for τ ∈ [-1, 1].

Figure 3 :

 3 Figure 3: X αp,+ for τ ∈ (0, 1), and p = 1, 2 and 5.

  kr(x) = k(x) -Kα(h+)(x) -Kα(h-)(x) (4.24) can be extended analytically on the ball of size L0. Indeed, from formulae (4.19)-(4.20)-(4.21)-(4.22)-(4.22), we have for all x ∈ (-L, L), kr(x) = -Xα,+(x) -Xα,-(x) 1x<0 x -Xα,+(x) -1x>0 x -Xα,-(x) dx -

R

  L,u(t,0)=0 (T ) = {u(T ) | u solving (5.1) with control functions v ∈ L 2 (0, T )}.(5.2) 

,

  Using (2.1), we immediately obtain(1.11). Note that the conjugated operator in (2.2) is in some sense degenerate. Indeed, the conjugated operator in (2.2)

	Remark 2.1.

that Xα,±(x) = X-α,∓(x) for all x ∈ [-L0, L0]. This suggests that, to reach functions which are analytic in S(L0(1 + ε)), one should use the operators Kα and K-α. Indeed, using both these operators, we get the following result, proved in Section 4.4:

which is finite due to (4.12). This concludes the proof of Proposition 4.1.

Remark 4.5. Note that the quantity m≥0 L 2m 0 |km| 2 appearing in the proof is related to the norm of the function k in the Hardy space H 2 on the ball of radius L0.

Proof of Lemma 4.2

Proof. Let us first remark that rescaling if needed as follows

we can focus on the case L0 = 1 without loss of generality. Indeed, in that case,

In the following, we call τ the rescaled variable and we simply denote the rescaled functions α, Xα,+ by α, Xα,+ to simplify notations. For p ∈ N \ {0}, we set

Note that with this choice, item (i) of Lemma 4.2 is obvious.

With this choice, we also immediately get that

i.e. item (ii) of Lemma 4. 

which can be extended continuously for τ = ±1, we obtain

implying in particular that (Xα p ,+(τ )) ≥ 0 for all τ ∈ (-1, 1). Furthermore, using that sin θ(τ

we get

Under this form, we clearly have that for τ ∈ (-1, 0), |Xα p ,+(τ )| > 1. Besides, for τ ∈ (0, 1), we have