
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

20 | P a g e

www.ijacsa.thesai.org

WOLF: a Research Platform to Write NFC Secure

Applications on Top of Multiple Secure Elements

(With an Original SQL-Like Interface)
(July 2014, LSIS / MBDS Research Report)

Anne-Marie Lesas, PhD student with Gemalto

and LSIS research lab of Aix-Marseille University,

MBDS innovation lab at the University of Nice – Sophia-

Antipolis, France

Benjamin Renaut,

F1RST Research Engineer & Project manager

MBDS innovation lab

University of Nice – Sophia-Antipolis,

TOKIDEV, Nice, France

Pr. Serge Miranda

Director of MBDS Master degree and innovation lab

(www.mbds-fr.org)

University of Nice Sophia Antipolis, France

Amosse Edouard, PhD student

I3S Research laboratory

University of Nice – Sophia

Antipolis, France

Abstract—This article presents the WOLF (Wallet Open

Library Framework) platform which supports an original

interface for NFC developers called “SE-QL”. SE-QL is a SQL-

like interface which eases and optimizes NFC secure application

development in making the heterogeneity of the Secure Element

(SE) transparent. SE implementation could be “embedded” (eSE)

in the mobile device, or inside the SIM Card (UICC), or “on-

host” software-based, or in the Cloud (e.g. through HCE); every

SE implementation has its own interface(s) making NFC secure-

application development extremely cumbersome and complex.

Proposed SE-QL solves this problem. This article demonstrates

the feasibility and attractiveness of our approach based upon an

original high-level API.

Keywords—Mobiquitous services; Near Field Communication

(NFC); Secure Element (SE); Smart card; Structured (English as

a) Query Language (SQL); Digital Wallet; TSM / OTA; UICC

I. INTRODUCTION: WOLF AND SE-QL

Based upon both our Near Field Communication (NFC)
know-how and our SQL (Structured Query Language for
databases) expertise [1], we propose a generic innovative
Framework called WOLF (Wallet Open Library Framework)
for facilitating Service Providers (SPs) in the process of
development and deployment of new NFC secure applications
on a wide range of smartphones having different SE
implementations.

In this article we give an overview of WOLF platform
developed at MBDS innovation laboratory, which allows NFC
developers to interact easily with an application based on NFC
Card Emulation mode by using SQL-like language, “SE-QL”.
WOLF framework allows SPs to reduce NFC development
costs and the time-to-market, improve and ensure the quality of
products applications for new secure NFC services.

WOLF extends “NFC Container” project [2], [3] previously
developed at MBDS in 2008-2010 for J2ME cell phones. Its

SE-QL interface idea stems from a long-term research
background on SQL and database (DB) systems; SE-QL
simplifies NFC service development by abstracting the core
software complexity associated with the management of
multiple SE environments.

WOLF supports the secure ecosystem of F1RST project in
India with Tata Consulting Services (TCS), Gemalto and the
Indian Institute of Sciences (IISc) of Bangalore under research
contract from IFCEPAR | CEFIPRA (www.cefipra.org).
F1RST encompasses a portfolio of NFC financial and rural
inclusion use cases for unbanked people in India (70% of them
owning a cell phone) managed within a F1RST wallet
developed by TCS on top of WOLF platform. F1RST primary
goals were to demonstrate Financial Inclusion (FI) services for
unbanked people based upon:

 Virtual “mobiquitous money” [4],

 The appeal of NFC standard both to strategic use cases
(Financial Inclusion, Narega, Mobiquitous NFC Public
Distribution System “M-PDS” [5], [6], [7]), and
disruptive ones (e-coins, rural animal bank with
crowdfunding “BARTER2.0” [8]).

WOLF has been successfully tested in the development of
M-PDS use case prototyped at MBDS since 2012 and it is
integrated into F1RST generic platform.

We have been working on the Android SE-QL interface
with the delivery of WOLF API which is compliant with
SIMAlliance Open Mobile API (OMAPI) with Gemalto SE-
UICC, as well as Android Host-based Card Emulation (HCE)
using WOLF generic applet; this work was presented at the
WIMA’s research track conference in Monaco (April, 2014)
[9], at the Indo-French Conference in New Delhi (October,
2013), and at the Indo-French Center for the Promotion of
Advanced Research (IFCPAR | CEFIPRA) meeting in St Malo
(May, 2014).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

21 | P a g e

www.ijacsa.thesai.org

The remaining of this document is organized as follows: in
section II, we do a synthetic state of the art around the NFC
standard and NFC secure application development; we also
discuss the NFC Container project, its context, scopes and
benefits for WOLF contribution. In section III, we study the
proposed SE-QL interface and the WOLF API based upon
related works and existing technologies. WOLF and SE-QL
implementation are also described in this section with some
uses cases concerning the F1RST project. In conclusion, we
summarize the benefits of this research platform and present
some promising extensions

II. NFC ECOSYSTEM AND SECURE NFC APPLICATION

DEVELOPMENT AROUND THE SE

NFC is a very fast establishment and very short-range (for
security purposes) contactless communication technology and
world standard since 2004. NFC uses the inductive coupling
making a source device (acting as initiator) able to provide
energy and exchange data with a target passive device (without
need battery) by backward induction. NFC will be a standard in
next generation smartphones.

Our future will be “mobiquitous” [2], [3], [10] around the
convergence of mobility of cell phones becoming computers
(smartphones) and ubiquity of Internet (becoming social and
broadband)); NFC is an underlying technology and standard
supporting mobiquity. NFC connectivity induces five
additional dimensions to enrich information services (the five
“W”). “Who”: the identity of the end-user (with habits,
preferences and POIs), “Where & When” space and time
(“here and now”, when tapping), “Whereabout” the goal,
expected result (information? transaction?) and the “What”, the
final outcome (information, ticket transaction, appointments,
service, triggering mechanisms, etc.) [2]. Unlike contactless
smart cards services, NFC mobile services benefit from
features of the smartphones: network high connectivity,
embedded sensors, location-based ecosystem, camera, high-
definition and touchscreen user interface bring NFC services at
a higher level of expectation and innovation, extending SP
information system to the end-user allowing screens, real time
interactivity, personalization, traceability and live updates
without storage limitation (and Cloud synchronization).

In terms of tracking the smartphone coupled with NFC at
least enables to get 3-dimensional transaction identification:
space, time and biometrics (as demonstrated in [3]).

NFC standard can be classified into two categories
regarding NFC applications: (i) those that do not require
security using NFC read / write mode (m-tourism, marketing
2.0… Similar to QR codes) or NFC P2P mode (e.g. initiate
Bluetooth® pairing), and (ii) those that need to store
confidential data and do transactions in the secure environment
provided by the Secure Element (SE) using the NFC card
emulation mode (digital identity, ticketing, couponing,
electronic money / m-payment, access control, transactions
etc.) where the NFC device acts as a smart card.

In our research we focus on the latter case, i.e. on NFC card
emulation mode which requires the NFC service and sensitive
data to be hosted in the SE.

A. NFC standard

The NFC standard is a very revealing technology of the
expected convergence between the worlds of
telecommunications, consumer electronics and computing. It is
one of the numerous RFID standards (known technology since
the 1940s) operating over the unlicensed 13.56 MHz frequency
of up to ten centimeters (one to four in practice). It is a wireless
technology which could be integrated into mobile phones
allowing them to exchange information with other devices
(mobile phone, printers, locks or any NFC card readers) and
NFC tags (ISO / IEC 14443 - NXP MiFare - Type A or Type
B, and Sony-FeliCa).

Since initial standard specification in 2006 by the NFC
Forum (www.nfc-forum.org, funded in 2004 by Nokia, Sony,
and Philips semiconductors, now NXP) of NFC standard, many
specifications have increased the attractiveness of this world
standard especially since it is widely available on Android
devices.

NFC Forum specifications apply to the physical and data
link layers of Open System Interconnection model (OSI)
whereas GlobalPlatform (GP) widely contributes to the
standardization of SE security architecture, internal and
external mechanisms, etc., and Trusted Environment Execution
(TEE). GP is the main reference for SE standardization;
GSMA and ETSI also play an important role, as the SIM-
centric model is the only one to be standardized end-to-end.
Most popular SEs, at the moment, are SIM-based.

The NFC standard (ISO / IEC 14443) has three basic
operating modes:

 Read / Write: The NFC cell phone acts as an active
reader and can read and / or write data to or from a
passive NFC tag.

 NFC Peer-to-Peer (P2P): Allows two NFC devices to
be active and exchange information interactively.

 Card Emulation: The phone behaves as well as a
passive contactless card (EMV, American Express,
access card, Ticketing...) for a NFC reader (POS).

B. NFC card emulation mode with APDU messages

The card emulation mode is the extension of contact-based
smart cards to contactless NFC cards; it inherits the smart card
programing standards, especially the small data packets called
APDUs (Application Protocol Data Unit) used to communicate
with the services hosted and running in the smart card / SE
(also called “applet” or “cardlet”). This requires a high-profile
developer with strong expertise in communication protocols to
handle low-level data structures at the byte level and integrate
strong environmental constraints related to the execution
environment of the SE.

APDU protocol was originally specified in the Java
Specification Request (JSR) 177 (Security and Trust Services
API for J2ME™) taken up by smart cards standard ISO / IEC
7816-4 (Identification Cards - Integrated Circuit Cards with
Contacts: Organization, security and commands for
interchange) now extended to contactless smart cards. In

This work within F1RST project is partly supported by IFCEPAR |

CEFIPRA under grant No.7115 and Gemalto (supporting MBDS apprentices,

and a CIFRE PhD research Scholarship).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

22 | P a g e

www.ijacsa.thesai.org

addition, there are related standards (GP / OMAPI, EMV, EN
726-3 for prepaid memory cards, etc.).

Remark: APDU protocol does not manage the device
connection or the channel opening.

The APDU commands (C-APDU) is the message sent by
the client application (initiator) to the service running in the
SE. The structure is composed of a mandatory header of 4
fields of one byte: (i) {CLA} (class field) defines the command
type (standard, industry, using security or not), (ii) {INS}
defines the command instruction, (iii) {P1} is the first
parameter (0x00 if not defined), (iv) {P2} is the second
parameter (0x00 if not defined), and a conditional body of 3
optional parameters of a variable length: (i) {Lc} is the
conditional data length of 1 or 3 (extended APDU*) bytes if
not empty,(ii) {Data} is the payload data of {Lc} length if not
empty, (iii) {Le} is the expected length of the response data
varying from 1 to 3 (extended APDU*) bytes if not empty.

The APDU response (R-APDU) is made of the optional
response data (that cannot exceed the length defined in {Le}
field provided in the C-APDU), and the 2 bytes response status
words {SW1} and {SW2} giving the status of the C-APDU.
When the command is successful, the service returns the status
words 0x9000.

Fig. 1. APDU messages structure

TABLE I. EXAMPLE OF APDU ERROR STATUS WORDS

SW1, SW2 Meaning

0x6A82 File not found

0x6700 Incorrect data length

0x6981 Incorrect file type

0x6982 Security status not satisfied

0x6984 Invalid data

0x6985 Conditions not satisfied

0x6A86 Incorrect P1 and/or P2 parameter(s)

0x6D00 Unsupported command instruction

TABLE II. EXAMPLE OF CLA CODES

CLA byte Command type

0x00 ISO standard command

0x04 ISO standard command with security

0xB0 to 0xCF ISO standard INS instruction

0x80 GP standard command

0x84 GP standard command with security

0xFF Commands for the reader

TABLE III. EXAMPLE OF INS CODES

INS byte Instruction description

0xA4 ISO / IEC 7816-9 SELECT FILE used to initiate

communication with a service identified by its AID

(provided in the payload data field)

0x05 OMAPI SELECT SECURE STORAGE ENTRY

0xB0 ISO / IEC 7816-4 READ BINARY

0xD0 ISO / IEC 7816-4 WRITE BINARY

0xD6 ISO / IEC 7816-4 UPDATE BINARY

0xE0 ISO / IEC 7816-4 ERASE BINARY

0x82 ISO / IEC 7816-4 MUTUAL AUTHENTICATION

All standards combined, hundreds INS codes can be found
(65536 possible combinations).

Card Query Language (CQL) initially designed by Pierre
Paradinas in the 1990s [11], [12], with GEMPLUS (now
Gemalto), was the first approach of SQL-like APDU
instructions. Smart Card Query Language (SCQL) has been
standardized in 1999 by ISO / IEC 7816-7 “Interindustry
commands for Structured Card Query Language (SCQL)” [13].
But SCQL is limited to specific smart cards with embedded lite
Relational DataBase Management System (RDBMS) whereas
SE-QL is not….

TABLE IV. EXAMPLE OF SCQL INS CODES

INS byte SCQL instructions in the payload

0x10 CREATE, DROP, INSERT, DELETE, DECLARE,

FETCH

0x12 CREATE KEY, AUTHENTICATE, CHECK, BEGING

TRANSACTION, COMMIT and ROLLBACK

0x14 CREATE USER, CHANGE PASSWORD, UNLOCK,

DELETE USER, etc.

C. NFC mobile services basics (card emulation mode)

There are two situations involving the communication with
the NFC mobile service: (i) the client is an NFC terminal (e.g.
POS), or an NFC handset (acting as a terminal);
communication is done via NFC when the handset is
approached to the terminal and the terminal has successfully
initiated the communication, (ii) the client is a mobile
application (typically a user interface); communication is done
via a bridge depending on the target SE and platform, through
the Radio Interface Layer (RIL), or sometimes through NFC
Controller using Single Wire Protocol (SWP)…

Fig. 2. NFC mobile application architecture (card emulation mode)

In the architecture shown on Fig. 2, the NFC service
running inside the SE processes the received C-APDU and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

23 | P a g e

www.ijacsa.thesai.org

returns R-APDU. However, mobile handset may also act as a
reader and be client for an external NFC service: in that case,
the mobile application will send C-APDUs to the external NFC
device and will receive the R-APDUs.

Remark: A SE can host multiple services and the mobile
application (user interface) can be client of a portfolio of NFC
services; such an application is called a mobile wallet (m-
wallet). A service hosted in the SE is identified by its AID
(specified by ISO / IEC 7816-5 “Numbering system and
registration procedure for application identifiers”); the AID is
used to route the messages.

D. The Secure Element (SE)

SE is mostly an electronic chip with its own processor
capable of running applications such as JavaCard (applets) and
guaranteeing a certain level of security and functionality.
Hardware-based SEs have the same characteristics as the smart
cards: a minimalist computing environment on a single chip,
complete with CPU, ROM, EEPROM, RAM and I/O ports,
preprogrammed with a multi-execution environment OS and
security domains separated by firewall that guarantees mutual
isolation between running applications. Recent smart cards
include coprocessors implementing cryptographic algorithms
(such as DES, AES and RSA) and conform to TEE
specifications.

SEs for mobile phones have all the capabilities of a smart
card or even higher; they can theoretically be used for all types
of applications using a smart card (prepaid cards, transportation
cards, credit / debit cards, health, loyalty, couponing, storage of
VPN access parameters, etc.).

1) Hardware-based SE: SIM-SE, eSE or Removable SE

a) The SIM-based SE handled by the Mobile Network

Operator (MNO); Gemalto is providing such SE in our F1RST

Consortium. The SIM card with its NFC interface is a

Universal Integrated Circuit Card (UICC).

b) Embedded SE (eSE) outside the SIM into the terminal

and handled by the device retailer (like Google, Nokia,

Samsung).

c) Removable SE in an external SD card or a sticker

under control of a SP (e.g. banks, retail companies) with or

without the NFC chip.

The SE could encompass various applets with their own
business models and access keys controlled by their owners.
Theoretically the 3 hardware-based types of SE could work
together depending on the Host Controller Interface (HCI)
routing capabilities

2) Software-based (card emulation) and SE in the Cloud
The software emulation (of a smart card) is an approach to

card emulation for NFC phones for services that do not need to
be always available (i.e. when the mobile is off). It was
introduced to mobile phones by Research In Motion (RIM) on
the Blackberry platform. In addition to supporting different
types of SE, the Blackberry 7 introduced the card emulation
mode of NFC tags with a software application on the mobile
phone. Host-based Card Emulation (HCE) is the software card
emulation solution available on Android devices since the end
of 2013 with Android KitKat. HCE services run in the host

processor as well as other services making this solution less
secure and most vulnerable to malwares [14].

On the other hand, NFC software-based implementation is
much lighter to develop and truly simplifies the deployment;
SP can deploy its NFC services itself. Furthermore, even if
software card emulation approach cannot be a solution “as is”,
security could be strengthened by encryption mechanisms;
such a “crypted soft-SE” is currently studied by IISc Bangalore
in F1RST Consortium.

Another solution is to relocate the SE in the cloud (Cloud-
SE) [15]. In this case, NFC services running on the mobile
device relay the instructions to the remote Cloud-SE server
(e.g. via Web services) and get back the returned responses.
This approach reduces the complexity of the chain of
deployment of new NFC services. It also has the major
advantage to be hardware-independent and offers better safety
(neither credentials nor sensible data are stored on the
smartphone) and higher (unlimited?) storage capacity than
other SEs, but increases the transactions latency. This approach
which assumes always-on air reachability was discarded from
our F1RST project, but it will also be studied for WOLF API.

Fig. 3. Several SE architectures

E. Trusted service manager (TSM) and OTA interactions

NFC ecosystem incorporates several actors: computer
information systems developers, MNOs, SPs, handsets retailers
and chip cards manufacturers, etc. This implies an
interoperability of the bodies that govern many heterogeneous
domains (telecom, banking, technology, security and
cryptography, rights to privacy, government, and other
consecutive intermediates). This drives SPs outside their
business domain. The TSM standards have emerged as the
“split TSM” (SP TSM and MNO TSM, see Fig. 4) proposed by
GP in 2011 which is basically provided as Web services.

NFC services hosted in the SE can be initially installed and
built-in by MNOs or could dynamically be loaded on demand
(by touching an NFC tag or by scanning a 2D tag or through
Internet, etc.) onto the cell phone. This is done “Over-The-Air”
(OTA), under the responsibility or not of the MNO managing
the SE and the applets. Remote dynamic download and
provisioning of applications, content, services, tickets,
coupons… are then possible in a secure way. Every applet
could be managed remotely by the TSM.

When the SE is in the SIM, MNOs have the responsibility
of creating security domains on the SIM card for the NFC SPs.
TSMs have the responsibility of credentials and encryption
keys management of the SP security domain, application

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

24 | P a g e

www.ijacsa.thesai.org

loading into SP security domain, mobile wallet management,
and service lifecycle management services (activation,
personalization, maintenance, deletion). TSMs implement
OTA communication into the NFC-enabled mobile phone and
into the SE.

Fig. 4. NFC: a complex ecosystem [1]

F. NFC mobile payment and mobiquitous money

The payment industry seems to be naturally part of the
NFC ecosystem by dematerializing payment cards in the SE to
allow the phone to be used as a mean of payment.

The payment operators add contactless payment
capabilities to their payment card (e.g. American Express
ExpressPay, MasterCard PayPass, and Visa PayWave), to
create an open loop approach to virtual local emerging money.
These services enable end-users to tap and pay their purchase
approaching their contactless card or NFC phone to an NFC
payment terminal (POS).

In emerging countries, mobiquitous money could replace
the cash playing a double attractive role for unbanked people:
NO CASH OUT solutions (by accessing a digital wallet) and
targeted help / donation through tagged products delivered to
the beneficiary and biometric identification like in the
prototype of M-PDS use case of F1RST project [5], [6], [7],
[8], [9].

G. Related work: “NFC Container” project at MBDS with

Gemalto

The project inherits of the know-how of MBDS innovation
lab at University of Nice - Sophia Antipolis: in 2011, the
university deployed an innovative project based on “NFC
container” architecture called “Nice Future Campus” where the
student’s phone plays the role of a virtual card with a portfolio
of services running in the SIM-SE provided by Orange (m-
payment for the university cafeteria, access to geotagged
campus information, consulting jobs and internships for
students, access to the library, etc.).

NFC container is a SE content management API proposed
by MBDS in 2008 as a result of a research contract with the
French DGE (“Direction Générale des Entreprises”) of the
Ministry of Industry. This project has been driven in order to

reduce the development time and the “time-to-market” of new
NFC services. It is partly described in [2], and [3].

This project aimed to provide a set of tools in order to:

 Develop secure applications using NFC c.

 Deploy these applications to a large panel of NFC
enabled mobile phone customers.

 Interact with those applications within the SE.

NFC Container project led to a high level API for SPs in
order to manage their NFC services more easily.

The proposed API was a generic JavaCard application that
allows a dynamic content management onto the SE. The
implementation was compliant with NFC Forum standard
specifications and runnable on every GP compliant SE.

The project was based on a generic applet that can be
preloaded into the SE or loaded “on demand” by the end-user
(through TSM / OTA).

Fig. 5. NFC container instance [2]

The main idea was to access the “SE as a DB” where any
privacy data from a client application can be managed. Each
user (e.g. SP developer) is identified by a security key on the
applet. NFC Container API provides developers some ways to
implement additional layers for more complex data
management. In that case, the SP develops its own application
using the generic API which provides a set of functions (SQL-
like) for data management on the card.

We illustrate the added value in terms of code
simplification by the following Java coding example retrieved
from [2]:

Source code 1. Example of NFC Container code simplification

//---//

// Example of Java coding without using //

// NFC Container //

//---//

short index = GetIdxToDO(tag);

if (index == (short) DO_NOT_FOUND) {

 //DO not found-> create a new one//

 short index2free = GetIdxToFreeSpace();

 short freesize= (short) (SIZE_MEMORY –

 index2free);

 //calculate size of free space//

 short DOsize = (short) (lc+LEN_TAG+LEN_LEN);

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

25 | P a g e

www.ijacsa.thesai.org

 //calculate size of the new DO//

 if (DOsize <= freesize) {

 //it is enough space for a new DO//

 memory[index2free] = (byte) tag;

 //set DO tag//

 memory[(short) (index2free + LEN_TAG)] =

 (byte) lc;

 //set DO length//

 //copy the DO atomic into the memory//

 Util.arrayCopy(cmd_apdu,

 (short)((ISO7816.OFFSET_CDATA) & 0x00FF),

 memory, (short) (index2free + LEN_TAG +

 LEN_LEN), lc);

//---//

// Versus coding with NFC Container //

//---//

void

insertRecord(byte[]record,

 shortrecordOffset,

 shortrecordLength)

NFC Container advantages:

Since access to the hardware-based SE is supervised by the
NFC ecosystem owners, the deployment of new NFC services
is necessarily related to them. To be able to test a new service
to be installed in the SE, the developer has firstly to get the
keys of the security domain. He has to deal with (physical) SE
providers (MNOs, Gemalto, Oberthur…) and get some SIM
cards. This is not simple as those access keys must remain
secret in order to keep SE’s security level.

Through the NFC Container, the developer has access to
the generic pre-installed and fully customizable applet on the
SE. Thus, the API allows developing new NFC applications
without necessarily needing any high level security access and
requires a smaller level of knowledge for NFC developers and
services providers, allowing them to focus on their client
application not in the applet management.

WOLF API is an extension of NFC Container project to the
smartphone ecosystem with the formalization of SE-QL.

III. SE-QL AND WOLF API: A GENERIC SQL-LIKE

INTERFACE TO COMMUNICATE WITH THE SE

The primary SE function is to store (sensitive and
confidential) data: the majority of the (contact or contactless)
card applications consist in storing and retrieving data (with or
without pre-processing, with or without security mechanisms).
The second fact is the building APDUs remains a cumbersome
task for the developers: manipulating hexadecimal codes is not
simple to human understanding; it is time consuming to be
implemented and it is difficult to maintain.

In this section we illustrate the SE-QL foundation based on
DataBase Management System (DBMS) concepts. We present
our contribution to the project with the WOLF API at the
development current stage, and we describe the
implementation within use cases prototypes of the F1RST
project.

A. Relational databases and SQL background

A database is a set of structured data associated with a
schema derived from real world by applying a data model
(relational, object). DBMS allow databases management
through a standardized interface called SQL [1], [16], [17].

They provide TIPS (Transaction, Integrity, Persistence and
Structuration / schema) services for development of
information systems development [2].

A DBMS integrates 3 levels:

 Data Description Language (DDL): Defines a language
allowing description of objects (tables, domains,
databases, views, procedures…).

 Data Manipulation Language (DML): Defines a
standard data manipulation language allowing
interrogating and updating a DB without specifying any
access algorithm (SQL3 being the current standard [1]
for relational databases).

 Data Control Language (DCL): Defines some integrity
and confidentiality constraints in order to manage user’s
rights and authorizations on objects.

The DBMS ensures consistency of data in databases and
defines some mechanisms such as sharing, security, physical
and logical independence of data, access performances in share
or exclusive mode.

DBMS can handle several standard request mechanisms
allowing manipulating data (read, write, delete, update, sort,
etc.). The SQL language, created in 1974 and first normalized
in 1986 is used to perform operations on relational databases. It
allows developers to interact with a RDBMS without showing
physical aspect of data and is compatible with DDL, DML and
DCL. SQL’s instructions syntax is pretty close to the human
language in order to make it easier to learn and to read by a
human user.

B. From SQL DBMS to SE’s Applet

GP compliant SE is divided in a set of Security Domains
(SDs) separated by firewalls allowing several services to be
safely executed on the same card.

Each SD is dedicated to a type of business model. On
Fig. 6, the first SD is reserved for the card issuer (MNO,
manufacturer...); it contains maintenance and additional
customer’s (SP) services. Others are dedicated to the SPs
services (transportation, payment card, loyalty card, coupons,
etc.).

A DBMS manages a set of databases contains tables
consisted of rows and columns / fields. On the other hand, the
SE is composed of SDs hosting running applets managing their
own data / fields (see Fig. 7).

Fig. 6. Security Domains inside the SE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

26 | P a g e

www.ijacsa.thesai.org

Fig. 7. Similarities between a SE and a DBMS

We can infer the following conclusions:

 The execution environment provided by the SE could
be seen as equivalent to a DBMS: the OS manages the
SDs and the DBMS manages databases;

 An NFC service hosted in the SE (applet) could be seen
as a table of the DB;

 The data fields of an applet could be seen as the
columns of the table.

C. DDL, DML, and DCL applied to the SE-QL

Note: at this stage, the instructions are not yet all been
implemented in SE-QL.

1) Data Description Language (DDL)
These instructions are intended for the SE management

with special maintenance privileges:

 CREATE – to create new services (applets) in the SE

 ALTER – to modify the structure of the SE data storage

 DROP – delete objects from the SE

2) Data Manipulation Language (DML)
These instructions are intended for the NFC service

management with the SP privileges:

 SELECT – read data from the applets of the SE

 INSERT – write data fields into an applet of the SE

 UPDATE – update existing data fields within an applet
of the SE

 DELETE – deletes the records from an applet of the SE

3) Data Control Language (DCL)

 GRANT – provide access privileges

 REVOKE – remove access privileges

D. Principle of SE-QL

First objective is to hide this low-level implementation of
byte arrays by providing the same generic and developer-
friendly interface regardless of the platform (initially
developed on Java and Android devices, later on Windows
Phone and other platforms like HTML5).

1) SE-QL algorithm
A SQL query is composed of two parts: a mandatory part

containing the statement and the object affected by the

command, and an optional part using algebraic operators for
projection, selection, junction and division.

For a given applet uniquely identified by its alias (matching
its AID), SE-QL model makes a correspondence between an
SQL-like instruction (CREATE, INSERT, SELECT,
UPDATE, DELETE, etc.) and the assigned APDU instruction,
whereas the data model gives the records SE-QL alias, their
corresponding hexadecimal identification (ID) in the APDU
instruction parameter, and the maximum length expected by
the applet.

For example, we can illustrate a simplified use case in
which the developer would check and update the balance
stored by a portfolio applet. This is done in two steps: (i) read
“balance” record from “portfolio” applet, (ii) update “balance”
record from “portfolio” applet. This will be translated as
following in SE-QL language: (1) “SELECT balance FROM
portfolio”, (2) “UPDATE portfolio SET balance = {value}”.
To be done, the metadata must provide portfolio applet AID,
SELECT and UPDATE translation into APDU protocol, and
the “balance” record byte identifier:

TABLE V. EXAMPLE OF SE-QL INSTRUCTIONS

Description SE-QL meaning/ alias APDU transcription

Applet /

relation {used

for the

communication

initialization}

portfolio AID: F0000000001

Class standard & Security

compliance

CLA: B0 {ISO / IEC 7816-

4}

Instruction

SELECT
INS: B2 {READ

RECORD}

UPDATE
INS: DC {UPDATE

RECORD}

Record

projection

Balance P1: 50

Record value expected

length
Le: 0E {14}

TABLE VI. EXAMPLE OF SE-QL TO APDU COMMAND

SE-QL command APDU command Return

SELECT balance FROM

portfolio

B0B250000E
Fields

values

UPDATE portfolio SET

balance = 2000

{payload data is given

according the field length

0x0E defined by the

metadata}

B0DC50000E00000000002000

Number

of rows

updates

In more complex use cases, several APDU commands may
be handled within a single SE-QL instruction, for example, a
statement regarding multiple fields. The activity diagram
shown on Fig. 8 illustrates the processing of several fields
algorithm, where APDU command sending corresponds to the
greyed task.

These examples illustrate the similarity between an APDU
command and a SQL query; the rationale of our approach is to
identify mechanisms between these two worlds. Moreover
applets are not intended to manage large amounts of data like
tables in relational databases; usually there are small pieces of
data corresponding to tuples of information in a table in a
DBMS. In addition, SE-QL language will be limited by the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

27 | P a g e

www.ijacsa.thesai.org

already defined standards; SE-QL goal is only to ease NFC
secure application development.

Fig. 8. SE-QL SELECT instruction algorithm

SE-QL is delivered as a Java package integrated in WOLF
libraries that manages SE / reader connection and applet
communication initialization. This is managed from SE-QL
controller that is the entry point for the client applications of
the SE. SE-QL controller is in charge to redirect instructions to
the appropriate SE-QL interface according targeted platform,
implementing the method “execute” that accepts the SE-QL
instruction and the command ID. The result for a given
command (identified by an ID) is forwarded through an event
of the SE-QL callback currently in the form of a HashMap of
returned data, concerned field name being the key.

2) Metadata
Metadata is actually provided as a XML (eXtensible

Markup Language) file (which could be acquired on the fly
during the installation of the application, for example from a
web server); it contains one (or more) applet(s) configuration
defining two models: the former describes the correspondence
APDU / SE-QL commands, while the second describes the
pattern of the data managed by the applet. The metadata are
used by SE-QL parser on the side of the client application at
the APDU commands building, as well as the generic applet
for its data storage initialization (could also be provided as a
script).

Source code 2. Example of XML metadata file
<seqlmetadata>

 <applets>

 <appletModel alias="pds_applet" AID="F0014144500002">

 <instructions>

 <seqlModel>

 <ins>SELECT</ins>

 <cla>80</cla>

 <value>B2</value>

 </seqlModel>

 <seqlModel>

 <ins>INSERT</ins>

 <cla>80</cla>

 <value>D2</value>

 </seqlModel>

 </instructions>

 <tables>

 <tableModel>

 <name>username</name>

 <value>30</value>

 <length>9</length>

 </tableModel>

 <tableModel>

 <name>password</name>

 <value>40</value>

 <length>9</length>

 </tableModel>

 <tableModel>

 <name>key</name>

 <value>31</value>

 <length>255</length>

 </tableModel>

 <tableModel>

 <name>pin</name>

 <value>50</value>

 <length>4</length>

 </tableModel>

 </tables>

 </appletModel>

 <appletModel alias="wolf_hce" AID="F0014144500001">

 <instructions>

 ...

E. WOLF API

As mentioned, WOLF aims to be an ontology-driven
Framework based on self-descriptive metadata (being currently
XML format). This is our prerequisite to ensure maintainability
and portability of the components. The architecture of WOLF
is drawn around the central concept of SE-QL being the
interface for a simplified and optimized handling of the data
that is the same regardless of the mobile and whatever SE type
and whatever covered platform. This interface allows
developers to define their own configuration in the metadata
file (mapping the APDU instructions, description and alias of
the data, etc.), making the interface compliant with already
existing (contact or contactless) smart card standards or
proprietary instructions.

WOLF API encompasses a generic applet and a generic
wallet each based on its own metadata that can be easily
personalized for a rapid implementation (see Fig. 9).

1) WOLF current progress
Current API provides:

 SE-QL package which is common for all Java-based
platforms contains the SE-QL generic interface, APDUs
handling classes, SE-QL callback interface, SE-QL
parser, and metadata objects.

 Android packages contains: (i) OMAPI SE-QL
controller to access the SE with OMAPI API on
Android SDK17 platform, (ii) HCE controller for
Android SDK19 platform SE-QL, and (iii) the generic
WOLF HCE service (that emulates the SE) able to
communicate with (iv) WOLF generic applets. Android
package will also contain the off-host APDU service**
(to communicate with the SIM-SE), the generic Wallet
UI, and Android reader for external devices (work in
progress).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

28 | P a g e

www.ijacsa.thesai.org

Fig. 9. WOLF architecture overview

 Smart card reader package provides the SE-QL
controller for Java™ Smart Card I/O API compliant
with PC / SC (NFC) readers.

 (4) HTTP package contains the HTTP requests helper
for the sending of GET, POST, PUT, and DELETE
requests (e.g. to access RESTful Web services), and the
SOAP Web services helper.

 Cryptography helper (encode / decode, generate hash
key) is provided in the tools package.

 TSM package contains tools dedicated to TSM (work in
progress).

WOLF for Android and SE-QL have been tested for three
use cases so far : (i) SIM-based NFC service on Android
device compiled with SDK17 (Android Jelly Bean, build 4.2.2
or earlier on nonstandard build of CyanogenMod) using
OMAPI, (ii) Android HCE generic service compiled with
SDK19 (Android KitKat, build 4.4.2), and (iii) a Java
application to test the communication between a USB NFC
reader plugged to the PC (using standard PC / SC driver, see
www.pcscworkgroup.com/) and an NFC device.

The beta version of WOLF plugin for Android was
implemented last year for CyanogenMod with seek-for-
Android [47] implementation of OMAPI (need the device
bootloader to be unlocked and CyanogenMod build to be
installed in replacement of standard OS on the phone).
Afterward, OMAPI was formally integrated as an external API
for Android standard build 4.2.2. But since Android KitKat,
OMAPI is no more supported by the official Android build; it
has been replaced by Android HCE, the software based card
emulation mode. **On Android KitKat, SIM-SE access must be
routed by Android off-host APDU service…

Fig. 10. Major WOLF current components

2) WOLF experimentation within F1RST project
The F1RST wallet for Financial Inclusion (FI) uses SE-QL

commands and WOLF platform in the end-to-end supply chain
NFC services for the secure traceability of aids delivery.
WOLF was successfully tested in the development of two use
cases prototyped at MBDS in 2012-2014 within F1RST
project; M-PDS (Mobiquitous NFC Public Distribution
System) [8] and BARTER 2.0 (Bank of Animal in Rural
TERritories 2.0 / Social Network of Donators) [8]: WOLF API
and SE-QL are the kernel of mobile NFC services modules
within use cases prototypes of F1RST wallet as shown in Fig.
11.

Fig. 11. Architecture of F1RST ecosystem [8]

3) WOLF / SE-QL implementation
On Android platform, WOLF library has to be referenced

in the project properties. Once it is done, SE-QL controller
class can be instantiated once with appropriate parameters
(targeted platform, application context if Android, metadata
file). Then, you can get the controller and use SE-QL to
communicate with the SE, and receive events with the returned
responses from the applet as shown in source code 3:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

29 | P a g e

www.ijacsa.thesai.org

Source code 3. Android implementation of WOLF: SE-QL controller

instantiation
1. import org.mbds.wolf.seql.ISeqlCallBack;

2. import org.mbds.wolf.seql.SeqlController;

3. import org.mbds.wolf.seql.exceptions.ApduError;

4.

5. public class MyApplication extends Application

6. implements ISeqlCallBack {

7. SeqlController ctrl = null;

8. //........

9. protected void init() {

10. boolean ok = false;

11. try {

12. SeqlController.OS os =

13. SeqlController.OS.ANDROID_HCE;

14. if (android.os.Build.VERSION.SDK_INT<=19)

15. os = SeqlController.OS.ANDROID_OMAPI;

16. ctrl = new SeqlController(

17. getApplicationContext(), os,

18. File metadata, this);

19. ok = true;

20. } catch (ClassNotFoundException e) {

21. e.printStackTrace();

22. } catch (NoSuchMethodException e) {

23. e.printStackTrace();

24. } catch (InstantiationException e) {

25. e.printStackTrace();

26. } catch (IllegalAccessException e) {

27. e.printStackTrace();

28. } catch (InvocationTargetException e) {

29. e.printStackTrace();

30. }

31. if (!ok) {

32. Toast.makeText(this, "SE-QL controller

33. could not be instantiated,

34; application will finish!",

35. Toast.LENGTH_LONG).show();

36. quitApp();

37. }

38. }

39. }

Source code 4. Android implementation of WOLF: executing SE-QL

instruction

1. public class MyActivity extends Activity

2. implements ISeqlCallBack {

3. private SeqlController ctrl;

4. //…

5. @Override

6. protected void onCreate(Bundle

7. savedInstanceState) {

8. super.onCreate(savedInstanceState);

9. MyApplication act =

10. (MyApplication)getApplication();
11. ctrl = act.getController();

12. }

13. @Override

14. protected void onResume() {

15. super.onResume();

16. ctrl.setCallback(this);

17. if(!ctrl.isServiceConnected()) {

18. ctrl.initService();

19. }

20. }

21. private boolean executeSeqlCommand(String

22. statement, int commandId) {

23. return ctrl.execute(statement,

commandId);

24. }

25. @Override

26. public void onPINRequired() {

27. startActivityForResult(new

Intent(this,

28. PinEntryView.class),
29. Constant.PIN_REQUEST);

30. }

31. @Override

32. public void onResponse(Map<String, Object>

33. results, int commandId) {
34. //Process results

35. }

36. //...

37. }

Fig. 12 gives an overview of components interaction
showing how the client module (service UI) requires the name
and the password of the handset end-user, stored by the applet
using SE-QL; then, WOLF plugin initiates the connection and
the applet requests the user PIN entry. When user PIN entry
has been successfully transmitted, the previous SE-QL
instruction can be processed. This sequence derived from
F1RST use cases prototyped at MBDS was a first proof-of-
concept; the client module has been tested with the applet
embedded in the SIM and the generic HCE applet of WOLF
without requiring any code changes except for the manifest
(and the Android host-apdu-service XML metadata), since
HCE services must be declared in the client application.

Fig. 12. Sequence diagram example using WOLF API

The WOLF SE-QL reader Java tester is intended to test the
communication with the applet hosted into the SE of the
mobile phone: the tester frame is shown in Fig. 13: user grabs
the SE-QL instruction in the input text area and clicks on the
“Execute” button. Then, he is asked to place the device on the
reader and the SE-QL instruction is parsed into APDU(s)
command(s); the result is shown in the log trace view.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

30 | P a g e

www.ijacsa.thesai.org

Fig. 13. SEQL tester for PC / SC Reader

IV. CONCLUSION AND FUTURE WORKS

In this report, we demonstrated SE-QL high added value
making easy and fast the development of secure NFC mobile
services using card emulation mode. The great advantage of
SE-QL is that it is compatible with most APDU standards and
can be used for already existing applets. SE-QL is a very good
solution for applications that do not need complex transactions.

Withal, it does not already fully meet ACID (Atomicity,
Consistency, Isolation, and Durability) properties that
guarantee the transactions are processed reliably; in the next
release, we are focusing on the transactions integrity by
implementing the mechanisms for the handling of a set of
transactions that need to be completely executed in order to
maintain system consistency. This will be done using the
“BEGIN transaction”, “COMMIT”, and “ROLLBACK”
instructions (taking care of the limitation of RAM will require
a temporary serialization before complete execution) and the
management of a time-out. But, as we talk about contactless
communication, we may face untimely interruptions
transactions when the devices are removed prematurely.

Several researches have been done on database
implementation in smart cards (that can apply to the SE) [11],
[12], [13], [18]; this highlights the need for embedded DB
system. Nowadays, lite databases have been adopted for low
capacity systems like SQLite (www.sqlite.org) which is
multiplatform compliant and it is provided as part of Android
OS. This is why we will also explore other areas of
investigation around embedded DB, and also other object-
oriented structures in the payload such as RESTful
(Representational Sate Transfert) services, and the ability to
provide XML, JSON (JavaScript Object Notation), etc.

Another current important stuff is to manage security
according standards specification. This will be done combining
IISc Bangalore research on the crypted SE to ours, e.g. using
cryptographic APIs (e.g. Cipher) and studying existing
protocols, or by proposing new ones and Cloud-based solutions
(studied at LSIS lab of Aix-Marseille University [11]).

ACKNOWLEDGMENT

Special Thanks to Gemalto (supporting MBDS apprentices
and a CIFRE research Scholarship) and IFCEPAR | CEFIPRA

organization supporting F1RST (Financial Inclusion based
upon Rural mobiquitous Services Technological platform)
project (2012-2015) and more personally to Mr. Ilan Mahalal,
Program Manager at Gemalto, Mr. Debi Pati, CEO lead at
TATA CS, and Nicolas Pastorelly, Olfa Arfani, Mohamed
Sidime, Guillaume Larroque, Pierrick Morizot from University
of Nice Sophia Antipolis and MBDS for their technical
contributions to NFC Container, WOLF platform and F1RST
project.

REFERENCES

[1] S. Miranda, “Relational Objects Databases (Bases de données objets
relationnelles (SQL3 et ODMG)),” Dunod, 2004.

[2] S. Miranda et al., “Mobiquitous Information Systems (Systèmes
d’Information mobiquitaires),” in Ingénierie des systèmes d’information,
RTSI Série ISI, Vol. 16 no 4, Hermes Lavoisier, France, 2011.

[3] S. Miranda, N. Pastorelly, V. Ishkina, D. Torre, V. Chaix, “Lessons
inferred from NFC mobiquitous innovative information service
protyping at UNS”, in [1], 2011, pp. 15-47.

[4] M. Della Peruta, A. Atour, “Business models for mobiquitous (social)
money: Application to M-PDS program in India” research report, to be
published in International Journal of Complementary Currency Systems
(IJCCS), 2014.

[5] D. Pati, S. Miranda, confidential document, “FIRST Project:
Collaboration Agreement,” Feb, 2012.

[6] D. Pati, “Architecture of F1RST system,” IFCEPAR | CEFIPRA Report,
Nov., 2013

[7] O. Arfani, M. Sidime “M-PDS (mobiquitous Public Distribution system)
USE CASE for F1RST project,” M.S. thesis, MBDS CS department,
University of Nice – Sophia-Antipolis, France, Oct., 2013.

[8] G. Larroque, P. Morizot, B. Renaut, S. Miranda: “Proposal of a
disruptive Use Case for F1RST : Mobiquitous Bank of Animals –
BARTER 2.0 project”, draft Nov. 2013.

[9] A.-M. Lesas, “F1RST Research project Mobiquitous NFC Financial
services for unbanked people”, presentation at WIMA Conf. in Monaco,
NFC Research Track, April 22, 2014.

[10] C. Papetti, K. Sok, S. Miranda, “Mobiquitous NFC Tourism (Une
plateforme de gestion de Tags pour le tourisme mobiquitaire du Futur),”
Monde du Tourisme, to be published, 2014.

[11] P. Paradinas, J.-J. Vandewalle, “A personal and portable database
server: the CQL card,” 1994, available:
http://cedric.cnam.fr/~paradinas/presentation/CQL.pdf

[12] P. Paradinas, J.-J. Vandewalle, “How to integrate Smart Cards in
Standard Software without writing specific code?,” 1994, available:
http://cedric.cnam.fr/~paradinas/presentation/CTST.pdf

[13] 3GPP TSG-T3, “Phone book management with ISO 7816 part 7
(SCQL),” Document T3-99167, Source: Gemplus, Miami, June, 14-
16th, 1999.

[14] M. Roland, “Software Card Emulation in NFC-enabled Mobile Phones:
Great Advantage or Security Nightmare?,” NFC Research Lab
Hagenberg, Univ. of Applied Sciences, Austria, IWSSI / SPMU, June,
2012, available: http://www.medien.ifi.lmu.de/iwssi2012/papers/iwssi-
spmu2012-roland.pdf

[15] L. Pesonen, “TSM Point of View and Issues Faced,” EC/ETSI
Workshop on Collaborative Ecosystem for M-Payment, Sophia
Antipolis, France, Jully, 1, 2014, available:
http://docbox.etsi.org/Workshop/2014/201407_MPAYMENTWORKSH
OP/S02_ECOSYSTEM_and_ISSUES/S02_Pesonen_GD.pdf

[16] C.-J. Date, “Introduction to data base systems,” Addison-Wesley
Educational Publishers Inc., U.S, 1975.

[17] E.-F. Codd, “A Relational Model of Data for Large Shared Data Banks,”
IBM Researrch Report, San Jose, Aug. 19, 1968.

[18] N. Anciaux, L. Bouganim, P. Pucheral, “Embbeded RDBMS within a
smart card feedback (SGBD embarqué dans une puce : retour
d’expérience),” Techniques et Sciences Informatiques, vol. 27, no 1-2,
Sept., 2008, pp. 141-180.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

31 | P a g e

www.ijacsa.thesai.org

[19] S. Miranda, A.-M. Lesas, “ VAMP project: Mobiquitous NFC car
(Architecture logicielle du projet Vamp. Plateforme mobiquitaire
embarquée à bord de véhicules mobiles),” Revue du Génie Logiciel,
No103, Dec., 2012, pp. 38- 48.

[20] Li, Y., Boucelma, O., Provenance Monitoring in the Cloud, IEEE 6th
International Conf. on Cloud Computing, June 27-July 2, 2013, Santa
Clara, USA.

[21] V.Coskun, K. Ok, B. Ozdenizci, “NFC application development for
Androïd,” Wrox Ed, John Wiley&Sons, UK, 2013.

[22] E. Coleen Coolifge, P.Hourani, “Securing cloud and mobility,” CRC
Press, Auebach Publication, USA, 2013.

[23] L. Francis, G.-P. Hancke, K.-E. Mayes, K. Markantonakis, “Practical
Relay Attack on Contactless Transactions by Using NFC Mobile
Phones,” Cryptology ePrint Archive, Report 2011/618, 2011, available:
http://eprint.iacr.org/2011/618.

[24] V. Alimi, “An Ontology-based Framework to Model a GlobalPlatform
Secure Element,” presentation at WIMA Conf. in Monaco, NFC
Research Track, April 11, 2012.

[25] M. Roland, “Secure Element APIs and Practical Attacks on Secure
Element-enabled Mobile Devices,” presentation at WIMA Conf. in
Monaco, NFC Research Track, April 11, 2012.

[26] L. Francis, G.-P. Hancke, K.-E. Mayes, K. Markantonakis, “Practical
NFC Peer-to-Peer Relay Attack Using Mobile Phones,” RFID Security
and Privacy Issues, LNCS vol. 6370/2010, Heidelberg, 2010, pp. 35-49.

[27] G.-P. Hancke, K.-E. Mayes, K. Markantonakis, “Confidence in smart
token proximity: Relay attacks revisited,” Computers & Security,
Elsevier Ltd., Springer Berlin, 2009, pp. 615-627.

[28] H. Ailisto, T. Matinmikko, J. Häikiö, A. Ylisaukko-oja, E. Strömmer,
M. Hillukkala, A. Wallin, E. Siira, A. Pöyry, V. Törmänen, T. Huomo,
T. Tuikka, S. Leskinen, J. Salonen, “Physical browsing with NFC
technology,” VTT Research Notes 2400, 2007.

[29] T. Tuikka, M. Isomursu, “Touch the Future with a Smart Touch,” VTT
Research Notes 2492, 2009.

[30] V. Coskun, K. Ok, B. Ozdenizci, “Professional NFC Application
Development for Android™,” Wrox, John Wiley & Sons, Ltd., 2013.

[31] D. Schall, “Service-Oriented Crowdsourcing: Architecture, Protocols
and Algorithms,” SpringerBriefs in Computer Science, 2012.

[32] K. Finkenzeller, “RFID handbook,” third edition, John Wiley & Sons,
Ltd., 2010.

[33] T. Igoe, D. Coleman, B. Jepson, “Beginning NFC,” O’Reilly Media,
Jan., 2014.

[34] Urien, P., Piramuthu, S., “Towards a secure Cloud of Secure Elements
concepts and experiments with NFC mobiles,” IEEE International Conf.,
CTS, May 20-24, 2013, San Diego, USA.

[35] P. Pourghomi, G. Ghinea, “Managing NFC payment applications
through cloud computing,” IEEE, ICITST, Dec. 10-12, 2012, London,
UK.

