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Manifolds of low dimension with trivial canonical

bundle in Grassmannians

Vladimiro Benedetti ∗

September 8, 2016

Abstract

We study fourfolds with trivial canonical bundle which are zero loci of

sections of homogeneous, completely reducible bundles over ordinary and

classical complex Grassmannians. We prove that the only HyperKähler

fourfolds among them are the example of Beauville and Donagi, and the

example of Debarre and Voisin. In doing so, we give a complete classifi-

cation of those varieties. We include also the analogous classification for

surfaces and threefolds.
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1 Introduction

In Complex Geometry there are interesting connections between special varieties
and homogeneous spaces. A striking example that helped pointing out this re-
lation is the work of Mukai about Fano manifolds. Mori and Mukai managed to
classify Fano threefolds (with b2 ≥ 2) by constructing families of varieties which
naturally embed in Grassmannians (for example, see [Mori and Mukai, 1981]).

∗Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille,

France.
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From then, other works have showed the richness of homogeneous spaces in pro-
viding examples of special varieties. For instance, it is generally a difficult prob-
lem to provide explicit families of Hyper-Kähler manifolds, and few are known;
among them, two can be seen as varieties of zeroes of a general global section
of a homogeneous vector bundle over a Grassmannian. Both are fourfolds; the
first one is the example of lines in a cubic fourfold, due to Beauville and Donagi
([Beauville and Donagi, 1985]). The variety of lines in a cubic fourfold is actu-
ally a subvariety of the Grassmannian of (projective) lines on a projective space
of dimension 5 (Gr(2, 6)). With this point of view, the general HyperKähler
fourfold is the zero locus of a section of the third symmetric power of the dual
of the tautological bundle. We denote this family of varieties byX1. The second,
more recent, is due to Debarre and Voisin ([Debarre and Voisin, 2010]). They
take the Grassmannian Gr(6, 10) of 6-dimensional planes in a vector space V
of dimension 10, and consider a general anti-symmetric 3-form over V . The
variety of planes isotropic with respect to this form is the zero locus of a section
(which correspond to the form) of the third anti-symmetric power of the dual
of the tautological bundle. They prove that this is a family, which we denote
by X2, of fourfolds which are HyperKähler.
These two examples motivated the present work. We study fourfolds which
arise as zero loci of general global sections of homogeneous, completely reducible
bundles over ordinary and classical Grassmannians. We will see that the only
HyperKähler varieties of this form are those already mentioned; indeed, the
following theorem holds:

Theorem 1.0.1. Suppose Y is an HyperKähler fourfold with KY = OY which
is the zero locus of a general section of a homogeneous, completely reducible,
globally generated vector bundle F over an ordinary or classical (symplectic or
orthogonal) Grassmannian. Then either Y is of type X1 or of type X2.

This theorem will be a direct consequence of the classification theorems of
the following sections. In ordinary Grassmannians, we followed the analogous
study done in [Küchle, 1995], where the author has classified and then studied
the properties of Fano fourfolds with index 1. Already in that case the two
constraints for the varieties to be 4-dimensional and Fano of index 1 were suffi-
cient to have a classification of the bundles which could give rise to the required
varieties.
We will generalize the result by giving a classification of fourfolds with trivial
canonical bundle, following substantially the same ideas and proofs. With the
help of the MACAULAY2-package SCHUBERT2 ([Grayson and Stillman, ]) we
will determine which varieties are Calabi-Yau (CY) and which are irreducible
holomorphic symplectic (IHS) among the examples we have found.
Then we will extend the classification to subvarieties of dimension 4 of the other
classical Grassmannians. It should be remarked that, even though the symplec-
tic and orthogonal Grassmannians can already be seen as varieties of zeroes of
sections of homogeneous bundles over the ordinary Grassmannian, a new clas-
sification needs to be done. In fact, there are homogeneous bundles over the
classical Grassmannians that do not come from bundles over the ordinary ones.
For example, the orthogonal of the tautological bundle is not irreducible, and
one can quotient it by the tautological bundle. Moreover, the spin bundles in
the orthogonal case do not extend to a bundle on the ordinary Grassmannian.
Finally we will present the corresponding results for dimension 2 and 3. Some
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interesting examples have already been studied in detail. In particular, Mukai
proved the unirationality of some moduli spaces of K3 surfaces with a given
genus by giving an explicit complete family of K3s in a Grassmannian; those
varieties are again zero locus of sections of homogeneous bundles ([Mukai, 1988],
[Mukai, 2006], and [Mukai, 1992]). We give the classification for surfaces and
threefolds and, for the surfaces, we report also the computation of the degree
(which gives the genus of a polarization of the surface) and the Euler charac-
teristic. Surprisingly enough, there are many more cases, and they are worth to
be studied thoroughly.

As we were finishing the writing of this article, an article by D. Inoue, A.
Ito and M. Miura which concerns the same subject has been published on arXiv
([Inoue et al., 2016]). In this work the authors proved that, under the same hy-
pothesis as ours, a finite classification is possible for subvarieties of the ordinary
Grassmannian of any fixed dimension. They also study in more detail the case
of CY threefolds, giving an explicit classification similar to ours for dimension
3 and studying the cases found. On the other hand, they do not deal with the
case of symplectic and orthogonal Grassmannians, which is interesting too (for
example, see Mukai’s articles on K3 surfaces of genus 7 and 18).

2 Preliminaries

In this section we give some facts about homogeneous bundles over homoge-
neous varieties. For a more complete exposition, see [Ottaviani, 1995].
Let G be a reductive complex algebraic group (for example, one of the classi-
cal groups SL(n,C), Sp(2n,C), SO(2n + 1,C) or SO(2n,C)). A variety X is
G-homogeneous if it admits a transitive algebraic (left) action of G. All ho-
mogeneous varieties can be seen as quotients G/P of G by a subgroup P . A
homogeneous variety G/P is projective rational if and only if P contains a Borel
subgroup B (it is the case of the Grassmannians); in this case the subgroup P
is said to be parabolic. Parabolic subgroups can be classified combinatorially.
A homogeneous vector bundle F over a homogeneous variety X is a vector bun-
dle which admits a G-action compatible with that on the variety X = G/P .
This means that, for example, the fiber F[P ] over the point [P ] ∈ X is stabilized
by the subgroup P , i.e. F[P ] is a representation of P . The converse holds as
well; even more is true, as there is an equivalence of categories between homo-
geneous vector bundles over G/P and representations of P . Therefore, in this
context, one can define irreducible and indecomposable homogeneous bundles,
in analogy with the definitions in representation theory.
Note that P , contrary to G, is not reductive in general. Let PU be the unipotent
factor of P and PL a Levi factor. The latter is a reductive group. It turns out
that a representation ρ : P → GL(V ) (where V is a vector space) is completely
reducible if and only if ρ|PU

is trivial. So, completely reducible homogeneous
bundles are identified with representations of PL, and these in turn are identi-
fied with their maximal weights. This provides a combinatorial way to classify
completely reducible homogeneous bundles indicating the maximal weights of
the representation to which they correspond.
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3 Fourfolds in ordinary Grassmannians

Let Gr(k, n) be the Grassmannian of k-planes in a n-dimensional complex vector
space. Let us denote by U the tautological bundle of rank k (and U∗ its dual),
and by Q the tautological quotient bundle of rank n−k; Λi(E) will denote the i-
th exterior power of the bundle E, and Si(E) the i-th symmetric power of E; the
ample generator of the Picard group of the Grassmannian (which corresponds
to det(U∗) = det(Q)) will be denoted by O(1), and O(n) = O(1)⊗n.
Our first main theorem is the following:

Theorem 3.0.1. Let Y be a fourfold with KY = OY which is the variety
of zeroes of a general section of a homogeneous, completely reducible, globally
generated vector bundle F over Gr(k,n). Up to the identification of Gr(k,n) with
Gr(n-k,n), the only possible cases are the following:
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case bundle F Gr(k,n) χ(OY )
(a) complete intersection of hypersurfaces Pn

(b1) O(1)⊕O(4) Gr(2,5) 2
(b2) O(2)⊕O(3) Gr(2,5) 2
(b2.1) U∗(2) Gr(2,5) 2

(b4) S2U∗ ⊕O(3) Gr(2,6) 2
(b5) U∗(1)⊕O(2)⊕O(1) Gr(2,6) 2
(b6) O(1)⊕2 ⊕O(2)⊕2 Gr(2,6) 2
(b6.1) O(1)⊕3 ⊕O(3) Gr(2,6) 2
(b6.2) U∗(1)⊕2 Gr(2,6) 2
(b12) S3U∗ Gr(2,6) 3

(b3) Q(1)⊕O(1) Gr(2,7) 2
(b7) O(1)⊕5 ⊕O(2) Gr(2,7) 2
(b8) S2U∗ ⊕O(1)⊕2 ⊕O(2) Gr(2,7) 2
(b8.1) U∗(1)⊕O(1)⊕4 Gr(2,7) 2
(b9) S2U∗ ⊕ U∗(1)⊕O(1) Gr(2,7) 2
(b10) Λ4Q⊕O(3) Gr(2,7) 2

(b10.1) Λ5Q⊕O(1)⊕O(2) Gr(2,8) 2
(b10.2) Λ5Q⊕ U∗(1) Gr(2,8) 2
(b11) O(1)⊕8 Gr(2,8) 2
(b13) S2(U∗)⊕2 ⊕O(1)⊕2 Gr(2,8) 2
(b14) S2(U∗)⊕O(1)⊕5 Gr(2,8) 2

(b10.3) Λ6Q⊕ S2U∗ Gr(2,9) 2
(b10.4) Λ6Q⊕O(1)⊕3 Gr(2,9) 2
(c1) O(1)⊕4 ⊕O(2) Gr(3,6) 2
(c1.1) Q(1)⊕O(1)⊕2 Gr(3,6) 2
(c2) Λ2Q⊕O(1)⊕O(3) Gr(3,6) 2
(c2.1) Λ2Q⊕O(2)⊕2 Gr(3,6) 2

(c4) S2U∗ ⊕O(1)⊕O(2) Gr(3,7) 2
(c5) Λ3Q⊕O(1)⊕4 Gr(3,7) 2
(c5.1) Λ3Q⊕ Λ2U∗ ⊕O(2) Gr(3,7) 2
(c6) (Λ2U∗)⊕2 ⊕O(1)⊕O(2) Gr(3,7) 2
(c6.1) Λ2U∗ ⊕O(1)⊕5 Gr(3,7) 2

(c7) Λ3Q⊕O(2) Gr(3,8) 2
(c7.1) Λ4Q⊕ S2U∗ Gr(3,8) 2
(c7.2) Λ4Q⊕ (Λ2U∗)⊕2 Gr(3,8) 2
(c7.3) S2U∗ ⊕ Λ2U∗ ⊕O(1)⊕2 Gr(3,8) 2
(c7.4) (Λ2U∗)⊕3 ⊕O(1)⊕2 Gr(3,8) 2
(d6) S2U∗ ⊕O(1)⊕O(2) Gr(4,8) 4
(d9) Λ2(U∗)⊕ Λ3(U∗)⊕O(1)⊕2 Gr(4,8) 2
(d9.1) Λ3Q⊕ Λ2U∗ ⊕O(1)⊕2 Gr(4,8) 2

(d1) Λ3U∗ ⊕ (Λ2U∗)⊕2 Gr(4,9) 2
(d8) Λ2U∗ ⊕ Λ3Q Gr(4,9) 2

(d5) (S2U∗)⊕2 Gr(4,10) 0
(d7) Λ3Q Gr(4,10) 3

(d2) (Λ2U∗)⊕2 ⊕O(2) Gr(5,10) 2
(d2.1) Λ2Q⊕ Λ2U∗ ⊕O(2) Gr(5,10) 2

(d4) Λ2U∗ ⊕ S2U∗ ⊕O(1) Gr(5,11) 2

(d3) (Λ2U∗)⊕2 ⊕O(1)⊕2 Gr(6,12) 2
(d3.1) Λ2Q⊕ Λ2U∗ ⊕O(1)⊕2 Gr(6,12) 25



In the classification we have put also the computation of χ(OY ) as it is the
quantity that permits to distinguish between CY and IHS manifolds, as the
former satisfy χ(OY ) = 2 (H0(Y,Ω2

Y ) = 0), while the latter satisfy χ(OY ) = 3
(H0(Y,Ω2

Y ) = C).

All the examples found are CY manifolds, with the exception of the cases
(d7), (d5) and (b12), which we examine now. The case (b12) is the IHS four-
fold appearing in [Beauville and Donagi, 1985], while the case (d7) is the one
appearing in [Debarre and Voisin, 2010].
The case (d5) already appears in [Reid, 1972], where the variety of n-planes in
the intersection of two quadrics in a space of dimension 2n+ 2 is proved to be
an abelian variety, the Jacobian variety of an hyperelliptic curve of genus n+1.
So, for (d5), Y is an abelian variety.
On the other hand, the case (d6) has χ(OY ) = 4 because it is not connected. In
fact it has two connected components, as if one considers the variety Y1 of zeroes
of a general section of S2U∗ in Gr(4, 8), it is the set of subspaces isotropic with
respect to a general symmetric 2-form. It is well known that Y1 has two con-
nected components. As a consequence, (d6) represents a CY manifold with two
connected components, which can be seen as complete intersections in the or-
thogonal Grassmannian OGr(4, 8). Note that this variety in turn is isomorphic
to a quadric in P7, via the embedding given by O(12 ).

3.1 Classification

The notations will be similar to those used in [Küchle, 1995]. The Grass-
mannian Gr(k, n) will be thought of as the quotient G/Pk, where Pk is the
maximal parabolic subgroup containing the Borel subgroup of positive (stan-
dard) roots in G = SL(n,C). Every irreducible homogeneous bundle is repre-
sented by its highest weight. A weight is represented by β = (β1, ..., βn) or by
(β1, ..., βk;βk+1, ..., βn), where β = β1λ1 + β2(λ2 − λ1) + ... + βn(λn − λn−1),
and the λi’s are the fundamental weights for G = SL(n,C). All weights can be
renormalized so to have βn = 0. .

REMARK on NOTATION: As we work with globally generated bundles,
from now on the notation will change: to indicate a bundle with highest weight
β as before, we will write (−βk, ...,−β1;βk+1, ..., βn), which is equivalent to
taking the highest weight of the dual representation. In this way, a bundle
α = (α1, ..., αn) (according to the new notation) is globally generated when
α1 ≥ ... ≥ αn ≥ 0. This ”dualization” comes from the fact that in Bott’s
theorem ([Bott, 1957]), the bundle has sections if and only if there exists a rep-
resentation of G for the dual weight.

So, for example, over the Grassmannian Gr(3,7) of 3-dimensional spaces
in a 7-dimensional space, the dual tautological bundle U∗ (of rank 3) will be
denoted by its highest weight (1, 0, 0; 0, 0, 0, 0) = (1, 0, ..., 0), the tautological
quotient bundle Q by (1, 1, 1; 1, 1, 1, 0), O(1) = Λ3U∗ by (1, 1, 1; 0, ..., 0). The
dimension of a bundle can be calculated explicitely:

rank(β1, ..., βn) = dim(β1, ..., βk) ∗ dim(βk+1, ..., βn)
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where

dim(β1, ...βr) =
∏

1≤i<j≤r

j − i+ βi − βj
j − i

is the Weyl character formula (see [Fulton and Harris, 2004]).

The first three results have been proved in [Küchle, 1995].

Lemma 3.1.1. One can assume that the following bundles over Gr(k,n) do not
appear as summands in F = ⊕iEi:
(i) the bundles (1, 0, ..., 0) (respectively (1, ..., 1, 0)) corresponding to U∗ (resp.
Q on Gr(n-k,n) ); (ii) if 2k > n the bundles (1, 1, 0, ..., 0) and (2, 0, ..., 0) (resp.
(1, ..., 1, 0, 0) and (2, ..., 2, 0) for 2k < n).

One defines:

dex(β) = (
|β|1
k
−
|β|2
n− k

)rank(β)

where |β|1 =
∑k

i=1 βi and |β|2 =
∑n

i=k+1 βi.

Lemma 3.1.2. For F = ⊕iEi we have

rank(F) =
∑

i

rank(Ei) = k(n− k)− 4 (1)

and
∑

i

dex(Ei) = n (2)

The first formula of this lemma is the same as in [Küchle, 1995], on the other
hand the second is different as in this case one requires KY = OY .

Corollary 3.1.3. (a) for each Ei = (βi
1, ..., β

i
n) we have βi

1 = ... = βi
k or

|βi|2 = 0;
(b) dim(β1, ...βr) ≥

(

r
i

)

if βi > βi+1.

The strategy of the proof is the same as that of [Küchle, 1995].

Proposition 3.1.4 (Classification for k ≤ 3). If k ≤ 3, one has one of the
cases (a), (b), (c).

Proof. k = 1.
If |β|2 6= 0, rank(β) ≥ n− 1 > n− 1− 4, so the only possible case is (a).
k = 2.
Gr(2, 4) is a Fano variety, so one can think that n ≥ 5. Calculating the rank, one
can see that the only possible bundles are (p, q; 0, ..., 0), (r, r; 1, 0, ..., 0) for r ≥ 1,
(s, s; 1, ..., 1, 0) for s ≥ 2. If (s, s; 1, ...1, 0) is present, the only possibility is (b3)
(if s ≥ 3, then dex(s, s; 1, ...1, 0) ≥ n ). For the same reason, if (r, r; 1, 0, ..., 0) is
present, r = 1 and one has the cases (b10)(.i). Then, one has only the bundles
(p, q; 0, ..., 0), for which dex

rank
≥ 1, which forces n ≤ 8. These are the remaining

(b)-cases.
k = 3.
One has n ≥ 6, and, calculating the rank, for n ≥ 9 the possible bundles
are (p, q, r; 0, ..., 0) for p ≥ q ≥ r, (p, q, r; 0, ..., 0) 6= (1, 0, ..., 0), 6= (0, ..., 0);
(r, r, r; 1, 0, ..., 0) for r ≥ 1; (s, s, s; 1, ..., 1, 0) for s ≥ 2. Supposing there are
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bundles different from those mentioned, verifying the possible ranks, no other
cases arise for n = 6 and n = 7 (here one has to eliminate (1, 1, 1; 1, 1, 0, 0)
for 3.1.1), while for n = 8 one finds (c7) (again eliminating (1, 1, 1; 1, 1, 1, 0, 0)).
Now, if the bundle (s, s, s; 1, ..., 1, 0) is present, one shows that (2) implies s =
2, and that (r, r, r; 1, 0, ..., 0) cannot appear. Moreover, as for (p, q, r; 0, ..., 0),
dex
rank

≥ 2
3 , one can only have (c1.1). If (r, r, r; 1, 0, ..., 0) is present, equation

(2) implies r ≤ 2 and one easily eliminates also r = 2 using equation (1). So
r = 1; another bundle of the same kind would give n ≤ 8 for (2), and n ≥ 7 for
(1). Using the remaining bundles (p, q, r; 0, ..., 0) and the relation they satisfy
( dex
rank

≥ 2
3 ), one finds the cases (c2), (c2.1), (c5), (c5.1), (c7.1), (c7.2). Finally,

if one has only bundles with |β|2 = 0, dex
rank

≥ 2
3 and n ≤ 8. These are the

remaining (c)-cases.

Lemma 3.1.5 (”Reduction of cases”). If

rank(β)(|β|1 − 1) ≤ k2 + 4 (3)

and not considering the cases (d7) and (d8), then the possible bundles β for
k, n− k ≥ 4 are the following:

(A) = (1, ..., 1, 0; 0, ..., 0)

(B) = (1, 1, 0, ..., 0)

(C) = (2, 0, ..., 0)

(Z) = (2, 1, ..., 1; 0, ..., 0)

(D) = (p, ..., p;βk+1, ..., βn)

One remark: the expression k2 + 4 is equal to
∑

i(k(dex(Ei))− rank(Ei)) =
kn − kn + k2 + 4, where F = ⊕iEi. So, if one knows that all the terms in the
sum are positive, one can apply the lemma to each bundle appearing in F . This
is the case, for example, of proposition 3.1.6.

Proof. Let us suppose that the bundle β is not of type (D). If βk ≥ 2, then
rank(β) ≥ k, |β|1 − 1 ≥ 2k, which gives a contradiction with (3). So, sup-
pose βk = 1. If β 6= (Z), it means that rank(β)(|β|1 − 1) > k(k + 1), which
is a contradiction with (3). So one can suppose that βk = 0. If |β| ≥ 5, as

rank(β) ≥ k(k−1)
2 , we have a contradiction with (3). If |β| = 4, (3) implies

k = 4, but by studying the possible cases one sees that none satisfies (3). So
|β| ≤ 3. Apart from (B) and (C), there are cases (3,0,...,0) (not satisfying (3)),
(2,1,0,...,0) (not satisfying (3)), and type (Y), i.e. (1,1,1,0,...,0). This last bundle
satisfies (3) only for k = 4, 5, 6. For k = 4, (Y)=(A). Let us study the possible
appearances of (Y); they will be cases (d7) and (d8).
k = 6.
For n = 10, one has necessarily (d7). Suppose now n ≥ 11 and that, in addition
to (Y), there is a bundle β of type (D). It must satisfy rank(β) ≤ 6n − 60,
dex(β) ≤ n− 10. It cannot be (p, ..., p; 1, ..., 1, 0) or (p, ..., p; 1, 0, ..., 0): as a con-
sequence of (2), among them one is forced to the case (1, ..., 1; 1, ..., 1, 0), which

is not permitted by 3.1.1. Then, rank(β) ≥ (n−6)(n−7)
2 , which contradicts (1).

Therefore |β|2 = 0, and β satisfies the hypothesis of 3.1.5 (see remark after the
lemma). But k2 + 4 − (rank(Y )(|(Y )|1 − 1)) = 0, so there is no room for any
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other summand, and then for any other case.
k = 5.
Suppose that, in addition to (Y), there is a bundle β of type (D). It must
satisfy rank(β) ≤ 5n − 39, dex(β) ≤ n − 6. It cannot be (p, ..., p; 1, ..., 1, 0)
or (p, ..., p; 1, 0, ..., 0) as a consequence of (2) as before. Then, rank(β) ≥
(n−5)(n−6)

2 , which is possible only for n = 9, 10, 11, 12. For n = 9, one obtains
(d8). For n = 10, 11, 12, (2) and (1) show that there are no other solutions.
Finally, if |β|2 = 0, and β satisfies the hypothesis of 3.1.5 (see remark after
the lemma), calculating the quantity dex

rank
for the bundles (A),(B),(C),(Z),(Y)

and the line bundles (D), one sees that it is always ≥ 2
5 , which means that

n−6
5n−39 ≥

2
5 , or n ≤ 9; but for n = 9, one easily sees that no possibility arises if

|β|2 = 0.

Proposition 3.1.6 (Classification for k ≥ 4, |βi|2 = 0). Suppose k, n− k ≥ 4.
If the bundles appearing as summands in F = ⊕iEi all satisfy |βi|2 = 0, then
the only possible cases are (d1),(d2),(d3),(d4),(d6).

Proof. The hypothesis permits to apply 3.1.5 (see remark after the lemma).
Then the only possible bundles are those mentioned: (A), (B), (C), (Z), (D).

Let us define, for a bundle β, ξ = ξ(β) = rank(β)(k( dex(β)
rank(β) )− 1).

If (Z) is a summand. Then k2+4− ξ(Z) = 4, and among the other bundles the
only which has ξ ≤ 4 is (D) for k = 5, p = 1. But then n = dex(Z) + dex(D) =
k + 2, and this case is in 4.1.1.
If (A) is a summand. We have k2+4−ξ(A) = 4+2k. Then another (A) cannot
be added, otherwise, by computing ξ, k = 4, n = 7, and this case is in 4.1.1.
Similarly by adding (C). With (B), it is possible to have just k = 5, n = 9,
which is prohibited by 3.1.1, or k = 4 (cases (d1) and (d9)). Then, if there are
just line bundles (D) in addition to (A), p ≤ 2 by studying ξ, and one can see
that all the cases arising have already been studied.

If (B) is a summand. Then k2 + 4− ξ(B) = 4 + k2−k
2 . Suppose also that there

is another (B) (k2 + 4 − 2 ∗ ξ(B) = 4); then one can have only a bundle of
type (D) with p = 2 (case (d2)) or two bundles of type (D) with p = 1 (case
(d3)). If instead one supposes that there is a bundle of type (C), one finds
the only possibility to be (d4). Finally, by supposing to add just line bundles,
then their number must be k(n − k) − 4 − rank(B), and the sum of their dex
n− dex(B) = n− k+1. By imposing dex

rank
≥ 1 (which is true for line bundles),

and knowing that n ≥ 2k by 3.1.1, one finds for k the equation k2− k− 10 ≤ 0,
which has no solution for k ≥ 4.
If (C) is a summand. Then again k2 +4− ξ(C) = 4+ k2−k

2 ; by adding another
(C), one gets only the case (d5): (2, 0, ..., 0)⊕2 in Gr(4,10). Therefore, let us
suppose the other bundles are only line bundles. One must have 0 ≤ rank(F)−
rank(C) ≤ n − (dex(C)) (for line bundles dex

rank
≥ 1). Moreover, by 3.1.1, one

can suppose n ≥ 2. Putting all together, one finds that the only possible case
is (d6).
If there are only bundles of type (D). As n

k(n−k)−4 = dex
rank

≥ 1, and as k, n−k ≥

4, no other case arises.

Proof of the classification. As a consequence of 4.1.1, suppose k, n − k ≥ 4.
Using the isomorphism of Gr(k, n) with Gr(n − k, n), suppose also 2k ≥ n.
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When 2k = n, ξ = rank(β)(k(dex(β)) − 1) = rank(β)((n − k)(dex(β)) − 1),
and this symmetry says that all the bundles satisfy 3.1.5. Then, dropping the
hypothesis |β|2 = 0, one only has to ”symmetrize” the results found in 3.1.6;
this means that the cases (d2.1), (d3.1) and (d9.1) are to be added.
So, from now on, 2k > n. As the expressions of the form (a, ..., a; a, ..., a) are

not considered, and βi ≥ βi+1, either
|β|1−1

k
≥ |β|2

n−k
or |β|1

k
≥ |β|2+1

n−k
, and in

both cases 2k > n implies that all the terms of the sum on the right side of
k2 + 4 =

∑

i ξ(E
i) are positive. Then 3.1.5 can be applied. As we have 3.1.6,

and using Gr(k, n) ←→ Gr(n − k, n), one can suppose that there exists i0 for
which |βi0 |2 = 0 (and it is not a line bundle), but this doesn’t hold for every i.
By 3.1.1, this bundle must be either (A) or (Z). As k ≥ 5, by computing ξ, one
cannot have: (A) ⊕ (Z), (Z) ⊕ (Z), (A) ⊕ (A). For the bundles of type (D), let
us change notation:

(p, ..., p;βk+1, ..., βn) −→ (0, ..., 0;−δ1, ...,−δn−k)←→ (δn−k, ..., δ1; 0, ..., 0)

where ←→ stands for Gr(k, n) ←→ Gr(n − k, n). Then, if βi0 = (Z), k2 +
4 − ξ(Z) = 4; but the presence of a bundle δ which is of rank 6= 1 leads to
a contradiction (rank(δ)( k

n−k
|δ| − 1) > (n − k)(|δ| − 1) ≥ 4(|δ| − 1), where

|δi| =
∑

j δ
i
j).

As a result, the bundles present as summands of F are: one of type (A) and
the others of type (D), with at least one which is not a line bundle. One has
k2 + 4 − ξ(A) = 4 + 2k. Then the condition

∑

i6=i0
(ξ(βi)) + ξ(A) = k2 + 4

becomes
∑

i6=i0
( k
n−k
|δi| − 1)rank(δi) = 4 + 2k. If for such a bundle which is

not a line bundle δ1 ≥ 1, then rank(δ)( k
n−k
|δ| − 1) > k(n− k) ≥ 4k, which is a

contradiction.
Therefore δ1 = 0. Define ψ(δ) = rank(δ)( k

n−k
|δ| − 1). If |δ| ≥ 4, ψ(δ) ≥ 3k+ 1.

So, one is lead to consider |δ| = 2, 3. Among these bundles, with a similar
estimate, one can eliminate δ = (2, 1, 0, ..., 0) and (3, 0, ..., 0); (1, 1, 1, 0, ..., 0) is
possible just for n− k = 4. But then n− dex(A) − dex(δ) = 2, k(n− k)− 4 −
rank(A) − rank(δ) = 3k − 8, and one easily verifies that neither line bundles
nor the bundles β = (1, ..., 1, 0, 0), (2, ..., 2, 0) can be added to give new cases.
Therefore δ = 2 and coming back to the notation with β, the last cases to study
are those with (A) ⊕(1, ..., 1, 0, 0) or (A) ⊕(2, ..., 2, 0).
F = (A) ⊕(2, ..., 2, 0)⊕ ... In this case n− dex(A)− dex(2, ..., 2, 0) = 0, so there
cannot be other bundles. Then equation (1) gives

0 = 4kn−n2−3k2−n−k−8 = −(n−2k)2+k2−n−k−8 = k2−a2+a−8−3k

where a = 2k− n. Integer solutions for k are given only if 4a2− 4a+41 = b2 =
c2 + 40, where c = 2a− 1, and b is an integer. By writing down all the integer
solutions for (b+ c)(b − c) = 40, none gives new cases.
F = (A) ⊕(1, ..., 1, 0, 0)⊕ ... In this case n− dex(A) − dex(1, ..., 1, 0, 0) = 2, so
there cannot be summands other than (A), (1, ..., 1, 0, 0) and line bundles. Then
k(n− k)− 4− rank(A)− rank(1, ..., 1, 0, 0) can be only 2 or 1, and equation (1)
gives

0 = 4kn−n2−3k2+n−3k−c = −(n−2k)2+k2+n−3k−c = k2−a2−a−c−k

where a = 2k − n, and c can be 10 or 12. Integer solutions for k are given only
if 4a2 + 4a+ 4c+ 1 = b2 = d2 + 4c, where d = 2a+ 1, and b is an integer. By
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writing down all the integer solutions for (b+d)(b−d) = 4c, for c = 10, 12, none
gives new cases.

3.2 CY vs IHS

Now, we would like to be able to distinguish which of the varieties that we have
found are CY and which are IHS. The following theorem holds ([Bogomolov, 1974])

Theorem 3.2.1 (Decomposition theorem). Let X be a compact Kähler simply
connected manifold with KX = OX . Then

X =
∏

i

Yi ×
∏

j

Zj

where
– Yi is simply connected, projective, of dimension at least 3 Calabi-Yau manifold

(H0(Yi,Ω
0
Yi
) = H0(Yi,Ω

dim(Yi)
Yi

) = C and the others H0(Yi,Ω
k
Yi
) are null);

– Zj is simply connected and irreducible holomorphic symplectic (H0(Zj ,Ω
k
Zj
) =

C[σ], where σ ∈ H0(Zj ,Ω
2
Zj
) is everywhere non-degenerate).

Therefore, for a simply connected fourfold Y , the type of the manifold is
determined by χ(OY ), as the following cases are possible:
– Y is CY, i.e. χ(OY ) = 2;
– Y is IHS, i.e. χ(OY ) = 3;
– Y is product of two K3 surfaces, i.e. χ(OY ) = 4.

It should be remarked that in the case the variety Y has χ(OY ) = 2, 3, it is
automatically simply connected. Indeed, suppose there is an étale finite cover
f : Y ′ → Y of degree d. Then, a well-known formula says:

χ(Y ′,OY ′) = d ∗ χ(Y,OY )

Therefore, as a Beauville-Bogomolov decomposition for compact Kähler varieties
X with c1(X) = 0 always exist, we obtain that Y is a product of compact
complex tori, CY varieties and IHS varieties. Then, the hypothesis on χ(OY )
implies that Y is either CY or IHS, and therefore simply connected.

For the actual computation of χ(OY ) it is possible to use the Hirzebruch-
Riemann-Roch theorem, which gives:

χ(OY ) =

∫

Y

td(Y )

where td(Y ) = todd(TY ) is the todd class of the tangent bundle. SCHUBERT2
allows to compute easily these quantities for subvarieties of Grassmannians.

Example 1. Here we report an example of computation of χ(OY ) for the case
(c6):

G = flagBundle(3, 4)

listtautologicalbundle= bundles G

11



Tstar = dual(listtautologicalbundle#0)

O(1) = det Q

F = exteriorPower(2, T star)+exteriorPower(2, T star)+O(1)+O(1)∗O(1)

Y = sectionZeroLocus F

Tan = tangentBundle Y

td = todd Tan

chi = integral td

Another aspect of these varieties that can be studied is their Hodge numbers.
A tool which is useful in this sense is the Koszul complex for a variety Y which
is the zero variety of a section of a vector bundle F over another variety G. If
the bundle has rank = r, and codimG(Y ) = r, then one has the exact sequence:

0→ ΛrF∗ → Λr−1F∗ → ...→ Λ2F∗ → F∗ → OG → OY → 0

Through this complex, tensoring it by any other bundle, it is possible to find
the cohomology groups of the restriction of the bundle to Y. Moreover, one can
use the short exact sequence

0→ F∗|Y → Ω1
G|Y → Ω1

Y → 0

to study the cohomology groups of the cotangent bundle of Y. This is not enough
in general; one needs to know the cohomology groups on the variety G. But for
this it is possible, as G=Gr(k,n) and F is homogeneous, to use Bott’s theorem
([Bott, 1957], [Küchle, 1995] for the version that is needed here).

Example 2. It is a (lengthy) exercice to compute the Hodge Diamond of case
(c6); the cohomology numbers are the following: h0,0 = h0,4 = h1,1 = 1,
h2,2 = 628, h1,4 = 145, and the others are zero.

However, this method takes some time to be employed, though it is not
complicated using the Littlewood-Richardson rule.

4 Fourfolds in classical Grassmannians

Let IGr(k, 2n) (OGr(k,m), m = 2n, 2n + 1) be the symplectic (orthogonal)
Grassmannian of isotropic - with respect to an anti-symmetric (symmetric) non-
degenerate form - k-planes in a 2n-dimensional (2n, 2n+1 - dimensional) com-
plex vector space. Let us denote U the tautological bundle of rank k (and U∗ its
dual), and Q the tautological quotient bundle of rank 2n− k; Λi(E) will denote
the i-th exterior power of the bundle E, and Si(E) the i-th symmetric power of
E; the ample generator of the Picard group of the Grassmannian (which corre-
sponds to det(U∗) = det(Q)) will be denoted O(1), and O(n) = O(1)⊗n.
Moreover, over IGr(k, 2n), U⊥ will denote the orthogonal of the tautological
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bundle (of rank 2n − k), which is indecomposable but not irreducible: in fact,
there is an injective homomorphism U → U⊥, whose quotient (U⊥/U) is again
irreducible of rank 2n− 2k.
Over OGr(k, 2n + 1), T+ 1

2
will denote the spin bundle of rank 2n−k, and over

OGr(k, 2n), T+ 1
2
and T− 1

2
will denote the two spin bundles of same rank 2n−k−1.

Finally, over OGr(n, 2n), the square root of the line bundle O(1) will be denoted
O(12 ) (note that over OGr(n, 2n + 1), T+ 1

2
is again a square root of O(1)).

The main theorems are the following.

Theorem 4.0.1. Let Y be a fourfold with KY = OY which is the variety of
zeroes of a general section of a homogeneous, completely reducible, globally gen-
erated vector bundle F over the symplectic Grassmannian IGr(k, 2n) (and which
does not appear in the analogous classification for the classical Grassmannian).
Up to identifications, the only possible cases are the following:
case bundle F IGr(k,2n) χ(OY )

(sb0) (U⊥/U)(1)⊕O(3) IGr(2,6) 2
(sb0.1) (U⊥/U)(2)⊕O(1) IGr(2,6) 2

(sb1) Λ2(U⊥/U)(1)⊕O(1)⊕2 IGr(2,8) 2
(sb2) (U⊥/U)(1)⊕O(1)⊕3 IGr(2,8) 2
(sb2.1) (U⊥/U)(1)⊕ U∗ ⊕O(2) IGr(2,8) 2
(sb3) (U⊥/U)(1)⊕ S2U∗ IGr(2,8) 2

(sc0.1) (U⊥/U)(1)⊕ (Λ2U∗)⊕2 IGr(3,8) 2
(sc0.2) (U⊥/U)(1)⊕ S2U∗ IGr(3,8) 2
(sc0.3) (U⊥/U)(1)⊕ U∗ ⊕O(1)⊕3 IGr(3,8) 2
(sc0.4) (U⊥/U)(1)⊕2 ⊕ U∗ ⊕O(1) IGr(3,8) 2

Theorem 4.0.2. Let Y be a fourfold with KY = OY which is the variety of
zeroes of a general section of a homogeneous, completely reducible, globally gen-
erated vector bundle F over the odd orthogonal Grassmannian OGr(k, 2n+1)
(and which does not appear in the analogous classification for the classical Grass-
mannian). Up to identifications, the only possible cases are the following:
case bundle F OGr(k,n) χ(OY )
(ob0) T+ 1

2
(1)⊕O(1)⊕2 ⊕O(2) OGr(2,9) 2

(ob0.1) T+ 1
2
(1)⊕ U∗(1)⊕O(1) OGr(2,9) 2

(ox1) T+ 1
2
(1)⊕O(3) OGr(2,7) 2

(ox2) T+ 1
2
(2)⊕O(1) OGr(2,7) 2

(ox3) T+ 1
2
(1)⊕3 ⊕O(1)⊕2 OGr(3,9) 2

(ox4) T+ 1
2
(1)⊕2 ⊕ Λ2U∗ ⊕O(1) OGr(3,9) 2

(ox5) T+ 1
2
(1)⊕ (Λ2U∗)⊕2 OGr(3,9) 2

(ox6) T+ 1
2
(1)⊕ S2U∗ OGr(3,9) 2

(oy1) T+ 1
2
(1)⊕ T+ 1

2
(3) OGr(3,7) 2

(oy1.1) T+ 1
2
(2)⊕2 OGr(3,7) 2

(oy2) T+ 1
2
(1)⊕2 ⊕ Λ3U∗ OGr(4,9) 2

(oy3) T+ 1
2
(1)⊕2 ⊕ (T+ 1

2
(1)⊗ U∗) OGr(4,9) 2

(oy4) T+ 1
2
(1)⊕5 ⊕ T+ 1

2
(2) OGr(4,9) 2

(oy5) T+ 1
2
(1)⊕4 ⊕O(1)⊕2 OGr(4,9) 2

(oy6) T+ 1
2
(1)⊕2 ⊕ Λ2(U∗) OGr(6,13) 2
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Theorem 4.0.3. Let Y be a fourfold with KY = OY which is the variety
of zeroes of a general section of a homogeneous, completely reducible, globally
generated vector bundle F over the even orthogonal Grassmannian OGr(k, 2n)
(and which does not appear in the analogous classification for the classical and
the odd orthogonal Grassmannian). Up to identifications, the only possible cases
are the following:
case bundle F OGr(k,n) χ(OY )
(ob1) T+ 1

2
(1)⊕2 ⊕O(3) OGr(2,10) 2

(ob1.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(3) OGr(2,10) 2

(ob2) T+ 1
2
(1)⊕O(1)⊕5 OGr(2,10) 2

(ob3) T+ 1
2
(1)⊕ S2(U∗)⊕O(1)⊕2 OGr(2,10) 2

(ob4) T+ 1
2
(1)⊕O(1)⊕5 OGr(2,12) 2

(ob4.1) T+ 1
2
(1)⊕ S2(U∗)⊕O(1)⊕2 OGr(2,12) 2

(ob5) T+ 1
2
(1)⊕O(3) OGr(2,14) 4

(ow1) T+ 1
2
(1)⊕2 ⊕O(3) OGr(2,8) 2

(ow1.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(3) OGr(2,8) 2

(ow2) (U⊥/U)(1)⊕O(1) OGr(2,8) 2
(ow3) (T+ 1

2
(1)⊗ U∗)⊕O(1) OGr(2,8) 2

(ow4) (1, 1; 1; 1)⊕O(1)⊕2 OGr(2,8) 2
(ow5) T+ 1

2
(1)⊕O(1)⊕2 ⊕O(2) OGr(2,8) 2

(ow9) T+ 1
2
(2)⊕ T+ 1

2
(1)⊕O(1) OGr(2,8) 2

(ow10) T− 1
2
(2)⊕ T+ 1

2
(1)⊕O(1) OGr(2,8) 2

(ow11) U∗(1)⊕ T+ 1
2
(1)⊕O(1) OGr(2,8) 2

(ow6) T+ 1
2
(1)⊕4 ⊕ Λ2(U∗) OGr(3,10) 2

(ow7) T+ 1
2
(1)⊕2 ⊕ T− 1

2
(1)⊕2 ⊕ Λ2(U∗) OGr(3,10) 2

(ow8) T+ 1
2
(1)⊕3 ⊕ T− 1

2
(1)⊕ Λ2(U∗) OGr(3,10) 2

(oz3) O(12 )⊕O(
5
2 ) OGr(4,8) 2

(oz7) O(32 )⊕O(
3
2 ) OGr(4,8) 2

(oz1) U∗(− 1
2 )⊕O(

5
2 ) OGr(5,10) 2

(oz4) O(12 )
⊕4 ⊕O(1)⊕2 OGr(5,10) 2

(oz5) O(12 )
⊕5 ⊕O(32 ) OGr(5,10) 2

(oz6) O(12 )⊕ U
∗(12 ) OGr(5,10) 2

(oz2) U∗(− 1
2 )⊕O(

1
2 )

⊕4 ⊕O(1) OGr(6,12) 2

It is worth noting that we have skipped the classification of subvarieties of
OGr(n−1, 2n), because there is a natural isomorphism between OGr(n−1, 2n)
and OGr(n, 2n) which comes from the symmetry of the Dynkin diagram which
exchanges the last two simple roots of Dn.

4.1 Symplectic Grassmannians

Setting The symplectic Grassmannian IGr(k, 2n) will be thought of as the
quotient G/Pk, where Pk is the maximal parabolic subgroup containing the
standard Borel subgroup of positive roots in G = Sp(2n,C). Every irreducible
homogeneous bundle is represented by its highest weight. A weight is repre-
sented by β = (β1, ..., βn) or by (β1, ..., βk;βk+1, ..., βn) when this notation is
needed, where β = (β1−β2)λ1+λ2(β2−β3)+...+λn−1(βn−1−βn)+λnβn, and the
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λi’s are the fundamental weights for G = Sp(2n,C). Notice that the parabolic
algebra Lie(Pk) has Levi factor sl(k)× sp(2(n−k)) in general (k 6= 1, n), which
is straightforward by looking at the Dynkin diagram.

REMARK on NOTATION: As we work with globally generated bundles,
from now on the notation will change: to indicate a bundle with highest weight
β as before, we will write (−βk, ...,−β1;βk+1, ..., βn), which is equivalent to
taking the highest weight of the dual representation. In this way, a bundle
α = (α1, ..., αn) (according to the new notation) is globally generated when
α1 ≥ ... ≥ αn ≥ 0. This ”dualization” comes from the fact that in Bott’s
theorem ([Bott, 1957]), the bundle has sections if and only if there exists a rep-
resentation on G for the dual weight.

So, for example, over the symplectic Grassmannian IGr(3,14), the dual tau-
tological bundle U∗ (of rank 3) will be denoted by (1, 0, 0; 0, 0, 0, 0) = (1, 0, ..., 0),
and the tautological ”orthogonal” bundle U⊥/U (of rank 8) by (0, 0, 0; 1, 0, 0, 0).
The dimension of a bundle can be calculated explicitely; for example, suppose
k 6= 1, n;

rank(β1, ..., βn) = dimsl(k)(β1, ..., βk) ∗ dimsp(2(n−k))(βk+1, ..., βn)

where

dimsl(r)(β1, ...βr) =
∏

1≤i<j≤r

j − i+ βi − βj
j − i

,

and

dimsp(2r)(β1, ...βr) =
∏

1≤i<j≤r

j − i+ βi − βj
j − i

∏

1≤i≤j≤r

2r + 2− j − i + βi + βj
2r + 2− j − i

are the Weyl character formula relative to the corresponding Lie algebras (see
[Fulton and Harris, 2004]).
One defines:

dex(β) = (
|β|1
k

)rank(β)

where |β|1 =
∑k

i=1 βi. Then, similarly to the case for the ordinary Grassman-
nian,

det(β) = O(dex(β))

Therefore, fourfolds with trivial canonical bundle correspond to homogeneous
vector bundles F =

∑

i Ei, with

∑

i

rank(Ei) = k(2n− k)−
k(k − 1)

2
− 4 (4)

∑

i

dex(Ei) = 2n− k + 1 (5)

Analysis The first thing to remark is that, having the embedding of IGr(k, 2n)
in Gr(k, 2n), in order to find new varieties with respect to the case of the
ordinary Grassmannian, it is necessary that for at least one bundle Ei = β,
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|β|2 6= 0. So, for example, one has to suppose that k 6= n. Moreover, if k = 1,
IGr(1, 2n) = Gr(1, 2n), so one can also suppose k 6= 1.

One can assume that (U∗)⊕2 over IGr(k,2n) do not appear as summand in
F = ⊕iEi; in fact, taking a zero section locus of this bundle in IGr(k, 2n) is
equivalent to restricting to the space IGr(k, 2(n− 1)).

Finally, remark that for any bundle E globally generated summand of F
(even for the odd and even orthogonal Grassmannians),

dex(E)

rank(E)
=
|β|1
k
≥

1

k
(6)

The proof now consists in studying cases with low k, and then eliminating
any other possibility.

Proposition 4.1.1 (Classification for k ≤ 3). If k ≤ 3, one has all the cases
appearing in theorem 4.0.1.

Proof. k = 2
In this case rank(F) = 4n − 9, and dex(F) = 2n − 1. If one has the bun-
dle λ, with λ1 6= λ2 and |λ|2 6= 0, then rank(λ) ≥ 2(2(n − 2)) = 4n − 8,
which is impossible; so, by checking the dimensions of the corresponding mod-
ules (and comparing with equations (4) and (5)), one remains with the bundles
(p, q; 0, ..., 0) for (p ≥ q), (p, p; 1, 0, ..., 0) for n ≥ 3, and for n = 4 with those
mentioned and with (p, p; 1, 1). Then one checks that this gives the bundles
(sb) for n = 3, 4. For n > 4, one knows that there must be one summand of
the form (p, p; 1, 0, ..., 0), and one sees that eq. (5) implies p = 1. But then
dex(F)−dex((1,1;1,0,...,0))

rank(F)−rank((1,1;1,0,...,0)) =
3

2n−5 ≥
1
2 by (6), which means n = 5, for which one

can check there is no other possibility.
k = 3
In this case rank(F) = 6n − 16, and dex(F) = 2n − 2. Doing the compu-
tation by hand, for n = 4 one finds all the cases (sc). For a bundle β such
that there exists 1 ≤ i ≤ k − 1 such that βi < βi+1, and |β|2 6= 0, the min-
imal value of dex correspond to the bundle (2, 1, 1; 1, 0, ..., 0). Eq. (5) then
says that it cannot appear for n ≥ 5. Then one only has (p, q, r; 0, ..., 0) or
(p, p, p;βk+1, ..., βn), and βk+1 6= 0. As a consequence of eq. (6), there is at least
once the bundle (1, 0, ..., 0), therefore rank(F) − rank((1, 0, ..., 0)) = 6n − 19,
dex(F)−dex((1, 0, ..., 0)) = 2n−3. This last equation gives as the only possibil-
ity for the second type bundles that p = 1, and (for n ≥ 6) |β|2 = 1. Studying
separately n = 5 and n ≥ 6 one checks that there are no other cases.

Proof of the classification. As a consequence of the previous proposition, it is
sufficient to show that for k ≥ 4, there is no bundle F with the good properties.
As one knows rank(F) and dex(F), one finds that, except for the case k =

4, n = 5, one of the summands must be (1, 0, .., 0) (otherwise dex(F)
rank(F) ≥

2
k
). As

there cannot be two such bundles, one can write dex(F)−dex((1,0,...,0))
rank(F)−rank((1,0,...,0)) ≥

2
k
,

which gives n ≤ k + 1
2 + 4

k
. This implies that the only cases that have to be

studied are: (k, n) = (4, 5), (5, 6), (6, 7), (7, 8), (8, 9). If (k, n) = (4, 5), as for at
least one bundle β5 6= 0, a similar reasoning on rank

dex
tells us that there must be
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one bundle (1, 0, ..., 0). Then, simple combinatorics prevent any bundle to have
the good properties. The remaining cases can be inspected explicitely.

4.2 Odd Orthogonal Grassmannians

Setting The odd orthogonal Grassmannian OGr(k, 2n+1) will be thought of
as the quotient G/Pk, where Pk is the maximal parabolic subgroup containing
the standard Borel subgroup of positive roots in G = SO(2n+ 1,C). Every ir-
reducible homogeneous bundle is represented by its highest weight. A weight is
represented by β = (β1, ..., βn) or by (β1, ..., βk;βk+1, ..., βn) when this notation
is needed, where β = (β1−β2)λ1+λ2(β2−β3)+ ...+λn−1(βn−1−βn)+2λnβn,
the λi’s are the fundamental weights for SO(2n + 1,C), and the βi’s are all
integers or all half integers. Notice that the parabolic algebra Lie(Pk) has Levi
factor sl(k)× so(2(n− k)+ 1) in general (k 6= 1, n), which is straightforward by
looking at the Dynkin diagram.

REMARK on NOTATION: As we work with globally generated bundles,
from now on the notation will change: to indicate a bundle with highest weight
β as before, we will write (−βk, ...,−β1;βk+1, ..., βn), which is equivalent to
taking the highest weight of the dual representation. In this way, a bundle
α = (α1, ..., αn) (according to the new notation) is globally generated when
α1 ≥ ... ≥ αn ≥ 0.

So, for example, over the orthogonal GrassmannianOGr(3,15), the dual tau-
tological bundle U∗ (of rank 3) will be denoted again by (1, 0, 0; 0, 0, 0, 0), the
tautological ”orthogonal” bundle U⊥/U (of rank 9) by (0, 0, 0; 1, 0, 0, 0). With
T+ 1

2
we will denote the bundle coming from the representation (− 1

2 , ...,−
1
2 ;

1
2 , ...,

1
2 ).

The dimension of a bundle can be calculated explicitely; for example, suppose
k 6= 1, n;

rank(β1, ..., βn) = dimsl(k)(β1, ..., βk) ∗ dimso(2(n−k)+1)(βk+1, ..., βn)

where

dimso(2r+1)(β1, ...βr) =
∏

1≤i<j≤r

j − i+ βi − βj
j − i

∏

1≤i≤j≤r

2r + 1− j − i+ βi + βj
2r + 1− j − i

is the Weyl character formula (see [Fulton and Harris, 2004]).
The definition of the function dex is the same as before. Therefore, fourfolds
with trivial canonical bundle correspond to homogeneous vector bundles F =
∑

i Ei, with
∑

i

rank(Ei) = k(2n+ 1− k)−
k(k + 1)

2
− 4 (7)

∑

i

dex(Ei) = 2n− k (8)

Analysis In order to find new varieties with respect to the case of the ordinary
Grassmannian, it is necessary that for at least one bundle Ei = β, |β|2 6= 0 or
the βi’s are not integers (they can be half integers).
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One can assume that (U∗) over OGr(k,2n+1) do not appear as summand in
F = ⊕iEi; in fact, taking a zero section locus of this bundle in OGr(k, 2n + 1)
is equivalent to restricting to the space OGr(k, 2n).

The classification will be made in three steps: one has to distinguish the
three particular cases: k = n, k = n− 1, k ≤ n− 2. This is a consequence of the
difference in these cases of the Dynkin diagram ofBn with the k-th root removed.
The theorem 4.0.2 is a direct consequence of the following propositions.

Proposition 4.2.1 (Classification for k = n). If k = n, one has all the cases
(oy) appearing in theorem 4.0.2.

Proof. In this case, (12 , ...,
1
2 ) is a line bundle, ”squared root” of O(1). Moreover,

one has rank(F) = n(n+1)
2 − 4, dex(F) = n. One can study the rate dex

rank
and

obtain constraints. For example, dex(2, 0, ..., 0) = n+ 1, so this bundle cannot
appear. On the other hand dex(1, 1, 0, ..., 0) = n − 1 = dex(1, ..., 1, 0), and
for all the other bundles which are not line bundles, dex is greater than n. If
(1, 1, 0, ..., 0) appears, rank(F) − rank(1, 1, 0, ..., 0) = n − 4. As there must be
also at least one bundle with half integers, the only possibility is n = 6, i.e.
(oy6). Therefore, except for this case, one checks that for all the other possible
bundles, and therefore for F , dex

rank
≥ 1

2 , which implies n ≤ 4. This gives the
other cases (oy).

Proposition 4.2.2 (Classification for k = n− 1). If k = n− 1, one has all the
cases (ox) appearing in theorem 4.0.2.

Proof. In this case, for example, (0, ..., 0;β) is of rank 2β + 1. If n 6= 3, 4, the
minimal ratio dex

rank
is 2

n−1 given by (1, 1, 0, ..., 0). But this implies n ≤ 3. So
the only cases to study are n = 3, n = 4, and this gives the cases (ox).

Proposition 4.2.3 (Classification for k ≤ n − 2). If k ≤ n − 2, one has only
the cases (ob0), (ob0.1) appearing in theorem 4.0.2.

Proof. Also in this case, except for k ≤ 3, dex(F)
rank(F) ≥

2
k
, which implies k ≤ 1.

So three cases can be considered.
If k = 1, one easily sees that no possibility matches the requirements.

If k = 2, rank(F) = 4n− 9, dex(F) = 2n− 2, and if n ≥ 4 then dex(F)
rank(F) < 1,

therefore there must be at least one bundle (12 , ...,
1
2 ), whose rank is 2n−2. This

means that 2n−2 ≤ 4n− 9, so 3 ≤ n ≤ 5. For n = 4, one gets the cases (ob0),
(ob0.1), and no case for n = 5.
If k = 3, the same argument as before gives 5 ≤ n ≤ 8, and inspecting case by
case one finds that no other variety arises.

4.3 Even Orthogonal Grassmannians

Setting The even orthogonal Grassmannian OGr(k, 2n) will be thought of as
the quotient G/Pk, where Pk is the maximal parabolic subgroup containing the
standard Borel subgroup of positive roots in G = SO(2n,C). Every irreducible
homogeneous bundle is represented by its highest weight. A weight is repre-
sented by β = (β1, ..., βn) or by (β1, ..., βk;βk+1, ..., βn) when this notation is
needed, where β = (β1−β2)λ1+λ2(β2−β3)+ ...+λn−1(βn−1−βn)+λn(βn−1+
βn), the λi’s are the fundamental weights for SO(2n,C), and the βi’s are all
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integers or all half integers. Notice that the parabolic algebra Lie(Pk) has Levi
factor sl(k)× so(2(n− k)) in general (k 6= 1, n, n− 1), which is straightforward
by looking at the Dynkin diagram.

REMARK on NOTATION: As we work with globally generated bundles,
from now on the notation will change: to indicate a bundle with highest weight
β as before, we will write (−βk, ...,−β1;βk+1, ..., βn), which is equivalent to
taking the highest weight of the dual representation. In this way, a bundle
α = (α1, ..., αn) (according to the new notation) is globally generated when
α1 ≥ ... ≥ αn−1 ≥ |αn|.

So, for example, over the orthogonal Grassmannian OGr(3,14), with T± 1
2
we

will denote the bundle coming from the Spin representations (− 1
2 , ...,−

1
2 ;

1
2 , ...,

1
2 ,±

1
2 ).

The dimension of a bundle can be calculated explicitely; for example, suppose
k 6= 1, n, n− 1;

rank(β1, ..., βn) = dimsl(k)(β1, ..., βk) ∗ dimso(2(n−k))(βk+1, ..., βn)

where

dimso(2r)(β1, ...βr) =
∏

1≤i<j≤r

j − i+ βi − βj
j − i

∏

1≤i<j≤r

2r − j − i+ βi + βj
2r − j − i

is the Weyl character formula (see [Fulton and Harris, 2004]).
The definition of the function dex is the same as before. Therefore, fourfolds
with trivial canonical bundle correspond to homogeneous vector bundles F =
∑

i Ei, with
∑

i

rank(Ei) = k(2n− k)−
k(k + 1)

2
− 4 (9)

∑

i

dex(Ei) = 2n− k − 1 (10)

Analysis In order to find new varieties with respect to the case of the ordinary
Grassmannian, it is necessary that for at least one bundle Ei = β, |β|2 6= 0 or
the βi’s are not integers (they can be half integers).

One can assume that (U∗) over OGr(k,2n) do not appear as summand in
F = ⊕iEi; in fact, taking a zero section locus of this bundle in OGr(k, 2n) is
equivalent to restricting to the space OGr(k, 2n− 1).

The classification will be made in three steps: one has to distinguish the
three particular cases: k = n and k = n − 1, k = n − 2, k ≤ n − 3. This is
due to the difference in these cases of the Dynkin diagram of Dn with the k-th
root removed. Remark that the cases are three because studying k = n is the
same as studying k = n− 1, as a consequence of the symmetries of the Dynkin
diagram of Dn. The same symmetry exchanges (12 , ...,

1
2 ) with (12 , ...,

1
2 ,−

1
2 ).

The theorem 4.0.3 is a direct consequence of the following propositions.

Proposition 4.3.1 (Classification for k = n (and k = n − 1)). If k = n, one
has all the cases (oz) appearing in theorem 4.0.3.
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Proof. The only bundles that do not appear in the classical Grassmannian are
those with half integer coefficients. One checks that equations (9) and (10) make
it impossible to have twice the bundle (12 , ...,

1
2 ,−

1
2 ). If it appears even once, eq.

(10) implies that no bundle with integer coefficients which is not a line bundle

can appear, therefore dex(F)
rank(F) ≥

1
2 , which gives n = 5, 6. One obtains therefore

(oz1) and (oz2). If the bundle (12 , ...,
1
2 ,−

1
2 ) is not present, the same argument

as before gives that dex(F)
rank(F) ≥

1
2 , which gives the remaining cases (oz).

Proposition 4.3.2 (Classification for k = n− 2). If k = n− 2, one has all the
cases (ow) appearing in theorem 4.0.3.

Proof. In this case the Dynkin diagram withouth the (n-2)-th root represents
sl(n− 2)× sl(2)× sl(2), and one has to reason consequently for the rank of the
various bundles; for example, rank((0, ..., 0; 1; 0)) = 2 ∗ 2 = 4. If n 6= 3, 4, 5, the
minimal ratio dex

rank
is 2

n−2 given by (1, 1, 0, ..., 0). But this implies n ≤ 4. So
the only cases to study are n = 3, n = 4 and n = 5, and this gives the cases
(ow).

Proposition 4.3.3 (Classification for k ≤ n− 3). If k ≤ n− 3, one has all the
cases (ob) appearing in theorem 4.0.3.

Proof. Also in this case, except for k ≤ 3, dex(F)
rank(F) ≥

2
k
, which implies k ≤ 1.

So three cases can be considered.
If k = 1, one easily sees that no possibility matches the requirements.
If k = 2, as in the analogous proposition for the odd orthogonal Grassmannian,
there must be at least one bundle (12 , ...,±

1
2 ), whose rank is 2n−3. As rank(F) =

4n− 11, this gives 5 ≤ n ≤ 7. Therefore, studying case by case, one recovers all
the cases (ob).
If k = 3, The same reason as before gives 6 ≤ n ≤ 9. But in all these cases,
dex(F)
rank(F) is less than 1

2 , therefore no other case arises.

One remark. It is well known that the Grassmannians OGr(n − 1, 2n− 1)
and OGr(n, 2n) are isomorphic. But the bundles which are homogeneous in
one case may not be homogeneous in the other. For example, consider Λ2(U∗)
in OGr(n, 2n), which is the tangent bundle. Pulling back this bundle via the
isomorphism gives the tangent bundle T on OGr(n − 1, 2n− 1), which is not a
priori the second exterior power of a vector bundle homogeneous with respect
to so(2n − 1), and is not irreducible. On the contrary, for example, O(1) on
OGr(n, 2n) pulls back to the corresponding O(1) on OGr(n − 1, 2n − 1), and
the same for O(12 ). So, one can easily identify cases (oz3) and (oy1), (oz4) and
(oy5), (oz5) and (oy4), (oz7) and (oy1.1).

4.4 Euler characteristic

The computation of the Euler characteristic of the trivial bundle OY can be
done in two different ways. The first one is applicable in general only for the
symplectic and odd orthogonal Grassmannians, while the second one can be
applied to all the Grassmannians (and actually is lighter in terms of computa-
tional time).
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For symplectic and odd orthogonal Grassmannians one knows that one can
choose multiplicative generators of the cohomology to be the Chern classes of
the quotient bundle Q. This is the tautological quotient bundle of the classi-
cal Grassmannian in which the symplectic and odd orthogonal Grassmannians
embed naturally (as a reference, one can see [Tamvakis, 2005]). For example,
IGr(k, 2n) embeds in Gr(k, 2n) as the zero locus of a section of Λ2U∗. Then,
suppose to be able to express the Chern classes of the bundle F which defines
Y in IGr(k, 2n) in terms of the Chern classes of Q, which live in the cohomol-
ogy of Gr(k, 2n). Then, the computation can be made in this last space. In
fact, [Y ] = ctop(F) in the cohomology ring of IGr, [IGr] = ctop(Λ

2U∗) in the
cohomology ring of Gr, and

∫

Y
(·) =

∫

IGr
(·)[Y ] =

∫

Gr
(·)[Y ][IGr]. Therefore,

one has:

χ(OY ) =

∫

Y

todd(TY ) =

∫

IGr

todd(TIGr)

todd(F)
ctop(F) =

=

∫

Gr

todd(TGr)

todd(F)

ctop(Λ
2(U∗))

todd(Λ2(U∗))
ctop(F).

In the second equality we have used the fact that the Todd class is multiplicative
with respect to short exact sequences, and we have applied this to the normal
sequence for Y :

0→ TY → TIGr|Y → F|Y → 0

Then, as in the case of the classification of fourfolds in the classical Grassman-
nian, one can use the MACAULAY2 package SCHUBERT2 to do the computa-
tion. In the symplectic Grassmannian concretely there is essentially one bundle
for which one needs to find the relation with the Chern classes of Q, namely
(U⊥/U)(1). This is given by the exact sequence:

0→ U⊥/U(1)→ Q(1)→ U∗(1)→ 0

For the orthogonal Grassmannian one has to consider also the bundles which
correspond to half integer sequences, and in particular the spin bundles. By
relating the exterior and symmetric powers of this bundle with the ”classical”
bundles in the different cases, we can do the computation. For example, for
OGr(n, 2n + 1), this (line) bundle is just the ”square root” of O(1), so its first
Chern class is half the one of the ample line bundle O(1).

This method cannot be used in general for the even orthogonal Grassman-
nian, because its cohomology is a little bit more complicated. In this case in
fact, the Chern classes of the tautological quotient bundle Q do not generate
multiplicatively the cohomology ring. One way to proceed is to use a ”good”
presentation of the cohomology, for which it is relatively easy to understand
what the Chern classes of the homogeneous bundles are, and so to compute the
integral in the equation mentioned above. The picture we are going to present
applies actually, with appropriate modifications, to the other cases too.

This time the integral will be computed in the cohomology of the even or-
thogonal Grassmannian. One considers the projection map π : SO(2n)/B →
SO(2n)/Pk = OGr(k, 2n), where B is a Borel subgroup contained in Pk. The
pull-back morphism π∗ is an injection, as π is a fibration. Therefore, after
pulling back, one can work in the cohomology of the flag variety G/B, where
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G = SO(2n). What one gains is the fact that this cohomology is well known
and every homogeneous vector bundle can be split as the sum of line bundles.
More precisely, let us denote by X(T ) the characters of the maximal torus T in
B. Then one has a morphism:

c : SQ[X(T )]→ H∗
Q(G/B)

from the symmetric algebra on the characters with rational coefficients to the
rational cohomology of G/B. This morphism is surjective, and so identifies a
quotient SQ[X(T )]/I with H∗

Q(G/B). The ideal I can be computed explicitly as
the ideal generated by invariant polynomials (without constant terms) under the
(natural) action of the Weyl group W of G on SQ[X(G)], but it is not essential
for our purpose. On the other hand, we will need to be able to write explicitly
the morphism c. One has:

c(f) =
∑

w∈W |l(w)=deg(f)

∆w(f)X
w

for f homogeneous in SQ[X(G)], where Xw is the Schubert cohomology class
corresponding to the Weyl element w. Moreover, given a reduced decomposition
of w = si1 · ... · sil(w)

in terms of simple reflections, ∆w = ∆si1
◦ ... ◦ ∆sil(w)

,

where

∆si(f) =
f − si(f)

αi

αi being the i-th simple root. The value of ∆w(f) doesn’t depend on the chosen
reduced decomposition (as a reference on this presentation of the cohomology,
see [Demazure, 1973]).

Now, having this in mind, the last step to do the computation is to ex-
press the Chern classes of a homogeneous vector bundle on G/Pk in H∗(G/B).
As already pointed out, a homogeneous completely reducible bundle splits in
H∗(G/B) as the sum of line bundles. These line bundles correspond to represen-
tations ofB, i.e. to elements ofX(T ). Fix F on G/Pk coming from a representa-
tion V of Pk. Then one has the weight space decomposition V = ⊕µ∈X(T )V

mµ
µ .

As a consequence,
π∗(F) ∼ ⊕µ∈X(T )L

mµ
µ

where Lµ is the line bundle corresponding to µ ∈ X(T ). Here, the symbol ∼
stands for ”are the same as T -homogeneous bundles”, which implies that they
have the same Chern classes. Knowing that, we can compute the Chern class of
the bundle, products, integrations, etc. For example, the integration on G/Pk

of a class f of the right degree is given by computing ∆w0(f), where w0 is the
longest element in W/W (Pk).

Example 3. Here we report the code to use in order to compute the Euler
characteristic for the case (ow6), as an example:

—Definition of SQ[X(T )]

S = QQ[a, b, c, d, e];
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—Chern class of the tangent bundle and todd class (first terms)

ctan = (1 + a + b + d) ∗ (1 + a + b + e) ∗ (1 + a + b − d) ∗ (1 + a + b − e) ∗
(1 + a+ c+ d) ∗ (1 + a+ c+ e) ∗ (1 + a+ c− d) ∗ (1 + a+ c− e) ∗ (1 + c+ b+
d)∗(1+c+b+e)∗(1+c+b−d)∗(1+c+b−e)∗(1+a+b)∗(1+a+c)∗(1+b+c);

ctan1 = part(1, ctan);

ctan2 = part(2, ctan);

ctan3 = part(3, ctan);

ctan4 = part(4, ctan);

tdtan1 = ctan1//2;

tdtan2 = (ctan1 ∗ ctan1 + ctan2)//12;

tdtan3 = (ctan1 ∗ ctan2)//24;

tdtan4 = (−ctan1 ∗ ctan1 ∗ ctan1 ∗ ctan1 + 4 ∗ ctan1 ∗ ctan1 ∗ ctan2 + 3 ∗
ctan2 ∗ ctan2 + ctan1 ∗ ctan3− ctan4)//720;

—Chern class of the vector bundle F and todd class (first terms)

cF = (1+ ((a+ b+ c+ d+ e)//2)) ∗ (1+ ((a+ b+ c− d− e)//2)) ∗ (1+ ((a+
b+ c+ d+ e)//2)) ∗ (1+ ((a+ b+ c− d− e)//2)) ∗ (1+ ((a+ b+ c+ d+ e)//2)) ∗
(1 + ((a+ b+ c− d− e)//2)) ∗ (1 + ((a+ b+ c+ d+ e)//2)) ∗ (1 + ((a+ b+ c−
d− e)//2)) ∗ (1 + a+ b) ∗ (1 + b+ c) ∗ (1 + a+ c);

cF1 = part(1, cF );

cF2 = part(2, cF );

cF3 = part(3, cF );

cF4 = part(4, cF );

cF11 = part(11, cF );

tdF1 = cF1//2;

tdF2 = (cF1 ∗ cF1 + cF2)//12;

tdF3 = (cF1 ∗ cF2)//24;

tdF4 = (−cF1 ∗ cF1 ∗ cF1 ∗ cF1 + 4 ∗ cF1 ∗ cF1 ∗ cF2 + 3 ∗ cF2 ∗ cF2 +
cF1 ∗ cF3− cF4)//720;
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—Definition of (the first terms of) cr = todd(TOG)
todd(F)

cr1 = tdtan1− tdF1;

cr2 = tdtan2− tdF2− tdF1 ∗ cr1;

cr3 = tdtan3− tdF3− tdF1 ∗ cr2 − tdF2 ∗ cr1;

cr4 = tdtan4− tdF4− tdF1 ∗ cr3 − tdF2 ∗ cr2 − tdF3 ∗ cr1;

—Definition of the class int to be integrated

int = cr4 ∗ cF11;

— Computation of ∆w0(int)

intfifteen = (int− sub(int, d => c, c => d))//(c− d);

intfourteen = (intfifteen− sub(intfifteen, c => b, b => c))//(b− c);

intthirteen = (intfourteen− sub(intfourteen, e => d, d => e))//(d− e);

inttwelve = (intthirteen− sub(intthirteen, b => c, c => b))//(b− c);

inteleven = (inttwelve− sub(inttwelve, d => −e, e => −d))//(d+ e);

intten = (inteleven− sub(inteleven, d => c, c => d))//(c− d);

intnine = (intten− sub(intten, d => e, e => d))//(d− e);

inteight = (intnine− sub(intnine, b => c, c => b))//(b− c);

intseven = (inteight− sub(inteight, d => c, c => d))//(c− d);

intsix = (intseven− sub(intseven, a => b, b => a))//(a− b);

intfive = (intsix− sub(intsix, c => b, b => c))//(b− c);

intfour = (intfive− sub(intfive, c => d, d => c))//(c− d);

intthree = (intfour − sub(intfour, e => d, d => e))//(d− e);

inttwo = (intthree− sub(intthree, e => −d, d => −e))//(d+ e);

intone = (inttwo− sub(inttwo, c => d, d => c))//(c− d)

A remark on the case (ob5). It is the only case in which the Euler character-
istic is not equal to 2, but to 4. In order to understand better why this happens,
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we studied in more detail the cohomology of OY by using the Koszul complex
associated to the bundle F . The method is standard, the only difficulty in this
case is to express the bundle ΛkF∗ as a sum of irreducible homogeneous bundles,
but this can be done using the program LiE ([von Leeuwen et al., ]). What one
finds is that the variety (ob5) is not connected, and actually it consists of two
connected components, which are (therefore) Calabi-Yau varieties. A question
which can be asked is whether these two components are isomorphic, and if
there is a more geometric explanation for the existence of these two components
(as is the case for the variety of zeroes of S2Q in Gr(m, 2m))

5 The cases of dimensions 2 and 3

In this final section, we will give the analogous results of the previous classifi-
cations of varieties with trivial canonical bundle in dimensions 2 and 3. The
proofs don’t present anything new from the previous ones, they follow the exact
same strategy, so we omit them. It is perhaps worth remarking that the first
problem is to prove the finiteness of the number of such varieties in Grassman-
nians (for the ordinary Grassmannian, see [Inoue et al., 2016]). The notations
are the same used in the previous classifications.

We will begin with the classification in dimension 3.

Theorem 5.0.1. Let Y be a 3-fold with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated
vector bundle F over Gr(k, n). Up to the identification of Gr(k,n) with Gr(n-
k,n), the only possible cases are the following:
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case bundle F Gr(k,n)
(a) complete intersection of hypersurfaces Pn

(b1) O(4) Gr(2,4)

(b2) O(1)⊕2 ⊕O(3) Gr(2,5)
(b3) O(2)⊕2 ⊕O(1) Gr(2,5)
(b4) Λ2Q(1) Gr(2,5)
(b5) U∗(1)⊕O(2) Gr(2,5)

(b6) Q(1)⊕O(1) Gr(2,6)
(b9) Λ3Q⊕O(3) Gr(2,6)
(b12) S2U∗ ⊕O(1)⊕O(2) Gr(2,6)
(b13) O(1)⊕4 ⊕O(2) Gr(2,6)
(b14) S2U∗ ⊕ U∗(1) Gr(2,6)
(b15) U∗(1)⊕O(1)⊕3 Gr(2,6)

(b8) Λ4Q⊕ U∗(1) Gr(2,7)
(b10) Λ4Q⊕O(2)⊕O(1) Gr(2,7)
(b16) (S2U∗)⊕2 ⊕O(1) Gr(2,7)
(b17) S2U∗ ⊕O(1)⊕4 Gr(2,7)
(b18) O(1)⊕7 Gr(2,7)

(b7) Λ5Q⊕ S2U∗ Gr(2,8)
(b11) Λ5Q⊕O(1)⊕3 Gr(2,8)
(c2) Q(1)⊕ Λ2Q Gr(3,6)
(c3) Q(1)⊕ Λ2U∗ Gr(3,6)
(c4) Λ2Q⊕O(1)⊕2 ⊕O(2) Gr(3,6)
(c8) O(1)⊕6 Gr(3,6)

(c6) Λ3Q⊕2 ⊕O(1) Gr(3,7)
(c7) Λ3Q⊕ Λ2U∗ ⊕O(1)⊕2 Gr(3,7)
(c9) O(1)⊕3 ⊕ S2U∗ Gr(3,7)
(c10) Λ2U∗ ⊕O(1)⊕3 Gr(3,7)

(c1) Λ3Q⊕O(1)⊕2 Gr(3,8)
(c11) (S2U∗)⊕2 Gr(3,8)
(c12) S2U∗ ⊕ (Λ2U∗)⊕2 Gr(3,8)
(c13) (Λ2U∗)⊕4 Gr(3,8)
(d3) (Λ2U∗)⊕2 ⊕O(2) Gr(4,8)
(d3.1) Λ2U∗ ⊕ Λ2(Q)⊕O(2) Gr(4,8)
(d4) S2U∗ ⊕O(1)⊕3 Gr(4,8)

(d1) Λ2U∗ ⊕ S2U∗ ⊕O(1) Gr(4,9)

(d2) (Λ2U∗)⊕2 ⊕O(1)⊕2 Gr(5,10)
(d2.1) Λ2U∗ ⊕ Λ2Q⊕O(1)⊕2 Gr(5,10)

This classification, as already mentioned in the introduction, appears also in
[Inoue et al., 2016]. However, we point out the fact that in [Inoue et al., 2016],
the cases (c3), (d3.1) and (d2.1) do not appear. The bundles which define them
are analogous to the one appearing respectively in the cases (c2), (d3) and (d2),
and in fact there are isomorphisms (c3) ∼= (c2), (d3.1) ∼= (d3) and (d2.1) ∼= (d2).
These isomorphisms come from the fact that all these cases live in the symplectic
Grassmannian IGr(n, 2n), on which there is a canonical isomorphism of bundles
U∗ ∼= Q.

Theorem 5.0.2. Let Y be a 3-fold with KY = OY which is the variety of zeroes
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of a general section of a homogeneous, completely reducible, globally generated
vector bundle F over the symplectic Grassmannian IGr(k, 2n) (and which does
not appear in the analogous classification for the classical Grassmannian). Up
to identifications, the only possible cases are the following:
case bundle F IGr(k,2n)

(sb1) (U⊥/U)(2)⊕ U∗ IGr(2,6)
(sb2) (U⊥/U)(1)⊕O(1)⊕O(2) IGr(2,6)
(sb3) (U⊥/U)(1)⊕ U∗(1) IGr(2,6)

(sb4) Λ2(U⊥/U)(1)⊕O(1)⊕ U∗ IGr(2,8)
(sb5) (U⊥/U)(1)⊕ U∗ ⊕O(1)⊕2 IGr(2,8)
(sc1) (U⊥/U)(1)⊕ Λ2U∗ ⊕ U∗ ⊕O(1) IGr(3,8)

Theorem 5.0.3. Let Y be a 3-fold with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated
vector bundle F over the odd orthogonal Grassmannian OGr(k, 2n+1) (and
which does not appear in the analogous classification for the classical Grass-
mannian). Up to identifications, the only possible cases are the following:
case bundle F OGr(k,n)
(ob1) T+ 1

2
(1)⊕ S2U∗ ⊕O(1) OGr(2,9)

(ob2) T+ 1
2
(1)⊕O(1)⊕4 OGr(2,9)

(ob3) T+ 1
2
(1)⊕ S2U∗ ⊕O(1) OGr(2,11)

(ob4) T+ 1
2
(1)⊕O(1)⊕4 OGr(2,11)

(ox1) T+ 1
2
(1)⊕ T+ 1

2
(2) OGr(2,7)

(ox2) T+ 1
2
(1)⊗ U∗ OGr(2,7)

(ox3) T+ 1
2
(1)⊕O(1)⊕O(2) OGr(2,7)

(ox4) T+ 1
2
(1)⊕ U∗(1) OGr(2,7)

(ox5) S2T+ 1
2
(1)⊕O(1) OGr(2,7)

(ox6) T+ 1
2
(1)⊕4 ⊕O(1) OGr(3,9)

(ox7) T+ 1
2
(1)⊕3 ⊕ Λ2U∗ OGr(3,9)

(oy2) O(12 )⊕O(
3
2 )⊕O(1) OGr(3,7)

(oy3) O(12 )
⊕6 ⊕O(1) OGr(4,9)

(oy1) O(12 )⊕ Λ2U∗ OGr(5,11)

Theorem 5.0.4. Let Y be a 3-fold with KY = OY which is the variety of zeroes
of a general section of a homogeneous, completely reducible, globally generated
vector bundle F over the even orthogonal Grassmannian OGr(k, 2n) (and which
does not appear in the analogous classification for the classical and the odd
orthogonal Grassmannian). Up to identifications, the only possible cases are the
following:

27



case bundle F OGr(k,n)
(ob5) T+ 1

2
(1)⊕2 ⊕O(2)⊕O(1) OGr(2,10)

(ob6) T+ 1
2
(1)⊕2 ⊕ U∗(1) OGr(2,10)

(ob7) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(2)⊕O(1) OGr(2,10)

(ob8) T+ 1
2
(1)⊕ T− 1

2
(1)⊕ U∗(1) OGr(2,10)

(ob9) T+ 1
2
(1)⊕O(2)⊕O(1) OGr(2,14)

(ob10) T+ 1
2
(1)⊕ U∗(1) OGr(2,14)

(ow1) T+ 1
2
(2)⊕ T+ 1

2
(1)⊕2 OGr(2,8)

(ow2) T+ 1
2
(2)⊕ T− 1

2
(1)⊕2 OGr(2,8)

(ow3) T+ 1
2
(2)⊕ T+ 1

2
(1)⊕ T− 1

2
(1) OGr(2,8)

(ow4) (T+ 1
2
(1)⊗ U∗)⊕ T+ 1

2
(1) OGr(2,8)

(ow5) (T+ 1
2
(1)⊗ U∗)⊕ T− 1

2
(1) OGr(2,8)

(ow6) T+ 1
2
(1)⊕2 ⊕O(1)⊕O(2) OGr(2,8)

(ow7) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(1)⊕O(2) OGr(2,8)

(ow8) T+ 1
2
(1)⊕2 ⊕ U∗(1) OGr(2,8)

(ow9) T+ 1
2
(1)⊕ T− 1

2
(1)⊕ U∗(1) OGr(2,8)

(ow10) T+ 1
2
(1)⊕ S2U∗ ⊕O(1) OGr(2,8)

(ow11) T+ 1
2
(1)⊕ (1, 1; 1; 1)⊕O(1) OGr(2,8)

(ow12) T+ 1
2
(1)⊕ (1, 1; 1;−1)⊕O(1) OGr(2,8)

(ow13) T+ 1
2
(1)⊕ (U⊥/U)(1) OGr(2,8)

(ow14) T+ 1
2
(1)⊕O(1)⊕4 OGr(2,8)

(ow15) T+ 1
2
(1)⊕6 OGr(3,10)

(ow16) T+ 1
2
(1)⊕5 ⊕ T− 1

2
(1) OGr(3,10)

(ow17) T+ 1
2
(1)⊕4 ⊕ T− 1

2
(1)⊕2 OGr(3,10)

(ow18) T+ 1
2
(1)⊕3 ⊕ T− 1

2
(1)⊕3 OGr(3,10)

(oz1) O(12 )
⊕2 ⊕O(2) OGr(4,8)

(oz2) O(12 )⊕O(2)⊕ Λ4U∗(− 1
2 ) OGr(5,10)

(oz3) O(32 )⊕O(1)⊕ Λ4U∗(− 1
2 ) OGr(5,10)

(oz4) O(12 )
⊕6 ⊕O(1) OGr(5,10)

(oz5) O(12 )
⊕6 ⊕ Λ5U∗(− 1

2 ) OGr(6,12)

Now, the classification for dimension 2 (K3 surfaces). In this case we re-
ported the degree of the surface with respect to the bundle O(12 ) for the varieties
in OGr(n, 2n+1) and OGr(n, 2n), and with respect to the bundle O(1) in the
other cases. In this way, one also gets the genus of the K3 (by the well known
formula degree = 2 ∗ genus− 2).

Theorem 5.0.5. Let Y be a surface with KY = OY which is the variety of
zeroes of a general section of a homogeneous, completely reducible, globally gen-
erated vector bundle F over Gr(k, n). Up to the identification of Gr(k,n) with
Gr(n-k,n), the only possible cases are the following:
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case bundle F Gr(k,n) χ(OY ) degree
(a) complete intersection of hypersurfaces Pn

(b7) O(1)⊕O(3) Gr(2,4) 2 6
(b8) O(2)⊕2 Gr(2,4) 2 8

(b1) Q(1)⊕O(1) Gr(2,5) 2 14
(b2) Λ2Q⊕O(3) Gr(2,5) 2 6
(b9) S2U∗ ⊕O(2) Gr(2,5) 2 16
M.(b10) O(1)⊕3 ⊕O(2) Gr(2,5) 2 10

(b3) Λ3Q⊕O(2)⊕O(1) Gr(2,6) 2 12
(b4) Λ3Q⊕ U∗(1) Gr(2,6) 2 14
(b12) S2U∗ ⊕O(1)⊕3 Gr(2,6) 2 20
M.(b13) O(1)⊕6 Gr(2,6) 2 14
(b11) (S2U∗)⊕2 Gr(2,6) 0 32

(b5) S2U∗ ⊕ Λ4Q Gr(2,7) 2 24
(b6) O(1)⊕3 ⊕ Λ4Q Gr(2,7) 2 18
(c2) Λ2U∗ ⊕ Λ2Q⊕O(2) Gr(3,6) 2 12
(c4) S2U∗ ⊕O(2) Gr(3,6) 4 32
(c5) (Λ2U∗)⊕2 ⊕O(2) Gr(3,6) 2 12
M.(c6) Λ2U∗ ⊕O(1)⊕4 Gr(3,6) 2 16

(c3) S2U∗ ⊕ Λ3Q Gr(3,7) 2 48
M.(c9) Λ3Q⊕ (Λ2U∗)⊕2 Gr(3,7) 2 24
(c7) S2U∗ ⊕ Λ2U∗ ⊕O(1) Gr(3,7) 2 48
(c8) (Λ2U∗)⊕3 ⊕O(1) Gr(3,7) 2 22

(c1) Λ3Q⊕ Λ2U∗ Gr(3,8) 2 36
(d1) S2U∗ ⊕ Λ3U∗ Gr(4,8) 4 96
(d1.1) S2U∗ ⊕ Λ3Q Gr(4,8) 4 96
(d2) (Λ2U∗)⊕2 ⊕O(1)⊕2 Gr(4,8) 2 24
(d2.1) Λ2U∗ ⊕ Λ2Q⊕O(1)⊕2 Gr(4,8) 2 24

M.(d3) (Λ2U∗)⊕3 Gr(4,9) 2 38

Theorem 5.0.6. Let Y be a surface with KY = OY which is the variety of
zeroes of a general section of a homogeneous, completely reducible, globally gen-
erated vector bundle F over the symplectic Grassmannian IGr(k, 2n) (and which
does not appear in the analogous classification for the classical Grassmannian).
Up to identifications, the only possible cases are the following:
case bundle F IGr(k,2n) χ(OY ) degree

(sb1) (U⊥/U)(1)⊕ U∗ ⊕O(2) IGr(2,6) 2 12
(sb2) (U⊥/U)(1)⊕ S2U∗ IGr(2,6) 2 24
(sb3) (U⊥/U)(1)⊕2 ⊕O(1) IGr(2,6) 2 24
(sb4) (U⊥/U)(1)⊕O(1)⊕3 IGr(2,6) 2 18

Theorem 5.0.7. Let Y be a surface with KY = OY which is the variety of
zeroes of a general section of a homogeneous, completely reducible, globally gen-
erated vector bundle F over the odd orthogonal Grassmannian OGr(k, 2n+1)
(and which does not appear in the analogous classification for the classical Grass-
mannian). Up to identifications, the only possible cases are the following:
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case bundle F OGr(k,n) χ(OY ) degree
(ob1) T+ 1

2
(1)⊕2 ⊕O(2) OGr(2,9) 2 12

(ob2) T+ 1
2
(1)⊕O(2) OGr(2,13) 4 24

(ox1) T+ 1
2
(1)⊕2 ⊕O(2) OGr(2,7) 2 12

(ox2) T+ 1
2
(1)⊕ S2U∗ OGr(2,7) 2 24

(ox3) T+ 1
2
(1)⊕ S2T+ 1

2
(1) OGr(2,7) 2 24

(ox4) T+ 1
2
(1)⊕O(1)⊕3 OGr(2,7) 2 18

M.(ox5) T+ 1
2
(1)⊕5 OGr(3,9) 2 34

(oy2) O(32 )⊕O(
1
2 )

⊕3 OGr(3,7) 2 6
(oy3) U∗(12 )⊕O(

1
2 ) OGr(3,7) 2 12

(oy4) O(12 )
⊕2 ⊕O(1)⊕2 OGr(3,7) 2 8

(oy1) O(12 )
⊕2 ⊕ Λ2U∗ OGr(4,9) 2 24

M.(oy5) O(12 )
⊕8 OGr(4,9) 2 12

Theorem 5.0.8. Let Y be a surface with KY = OY which is the variety of
zeroes of a general section of a homogeneous, completely reducible, globally gen-
erated vector bundle F over the even orthogonal Grassmannian OGr(k, 2n) (and
which does not appear in the analogous classification for the classical and the
odd orthogonal Grassmannian). Up to identifications, the only possible cases
are the following:
case bundle F OGr(k,n) χ(OY ) degree
(ob3) T+ 1

2
(2) Quadric in P7 2 12

(ob4) T+ 1
2
(1)⊕2 ⊕O(1)⊕3 OGr(2,10) 2 18

(ob4.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(1)⊕3 OGr(2,10) 2 20

(ob5) T+ 1
2
(1)⊕2 ⊕ S2U∗ OGr(2,10) 2 24

(ob5.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕ S2U∗ OGr(2,10) 2 24

(ob6) T+ 1
2
(1)⊕O(1)⊕3 OGr(2,14) 4 36

(ob7) T+ 1
2
(1)⊕ S2U∗ OGr(2,14) 4 48

(ow1) T+ 1
2
(1)⊕2 ⊕O(1)⊕3 OGr(2,8) 2 20

(ow2) T+ 1
2
(1)⊕2 ⊕ (1, 1; 1; 1) OGr(2,8) 0 32

(ow3) T+ 1
2
(1)⊕2 ⊕ S2U∗ OGr(2,8) 2 24

(ow4) (T+ 1
2
(1)⊕3 ⊕O(2) OGr(2,8) 2 16

(ow1.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕O(1)⊕3 OGr(2,8) 2 20

(ow2.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕ (1, 1; 1; 1) OGr(2,8) 2 24

(ow2.3) T− 1
2
(1)⊕2 ⊕ (1, 1; 1; 1) OGr(2,8) 2 24

(ow3.2) T+ 1
2
(1)⊕ T− 1

2
(1)⊕ S2U∗ OGr(2,8) 2 24

(ow4.2) T+ 1
2
(1)⊕2 ⊕ T− 1

2
(1)⊕O(2) OGr(2,8) 2 12

(oz3) U∗(12 ) OGr(4,8) 2 12

(oz4) O(12 )
⊕2 ⊕O(32 )⊕ Λ4U∗(− 1

2 ) OGr(5,10) 2 6
(oz5) O(1)⊕2 ⊕O(12 )⊕ Λ4U∗(− 1

2 ) OGr(5,10) 2 8

(oz7) O(1)⊕ Λ5U∗(− 1
2 )

⊕2 OGr(6,12) 2 12
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In the classifications concerning K3 surfaces, we have marked the examples
which have already been studied by Mukai with M. In particular:
cases M.(b10), M.(oy5), M.(b13), M.(c6) are in [Mukai, 1988];
case M.(c9) is in [Mukai, 2006];
cases M.(ox5), M.(d3) are in [Mukai, 1992].
There are many other cases which have not been examined yet, and they are
worth being considered in more detail, as we intend to do in the next future.

As a final remark, let us note that the classifications given in this paper give
for free the analogous classifications for Fano threefolds, fourfolds and fivefolds.
It suffices to individuate the varieties for which the bundle F contains a line
bundle; this means that the variety with trivial canonical bundle lives in a Fano
manifold of dimension greater by one as a hyperplane section of a certain very
ample line bundle. What the previous classifications do not give automatically
in general is the index of those Fano manifolds.
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