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The aim of the paper is to introduce and validate a Monte-Carlo algorithm for the prediction of an ensem-
ble of colliding solid particles, or coalescing liquid droplets, suspended in a turbulent gas flow predicted
by Reynolds Averaged Navier Stokes approach (RANS). The new algorithm is based on the direct dis-
cretization of the collision/coalescence kernel derived in the framework of a joint fluid–particle pdf
approach proposed by Simonin et al. (2002). This approach allows to take into account correlations
between colliding inertial particle velocities induced by their interaction with the fluid turbulence.
Validation is performed by comparing the Monte-Carlo predictions with deterministic simulations of dis-
crete solid particles coupled with Direct Numerical Simulation (DPS/DNS), or Large Eddy Simulation
(DPS/LES), where the collision/coalescence effects are treated in a deterministic way. Five cases are inves-
tigated: elastic monodisperse particles, non-elastic monodisperse particles, binary mixture of elastic par-
ticles and binary mixture of elastic settling particles in turbulent flow and finally coalescing droplets. The
predictions using the new Monte-Carlo algorithm are in much better agreement with DPS/DNS results
than the ones using the standard algorithm.
Introduction Discrete Particle Simulation (DPS) can be either coupled with
Turbulent gas flows carrying dispersed solid or liquid phases are
extensively found in industrial and environmental processes. Some
typical examples are fuel spray injection in combustion chamber,
solid rocket boosters with alumina droplets, pulverized coal com-
bustion chamber, sediments transport, or rain droplet growth. In
such particle- or droplet-laden flows many complex physical phe-
nomena take place such as turbulent dispersion, particle–particle
collisions, particle–wall rebounds/impingement, or turbulence
modulation by the particles. For example, in a combustion cham-
ber the droplet and gas phase mixing governs the quality and effi-
ciency of the combustion and, consequently, the pollutant
emissions. In the near liquid injection zone, droplet coalescence
may influence the droplet size distribution and must be accounted
for in mathematical models and numerical simulation tools.

The Lagrangian tracking of particles, or droplets, is widely used
for the numerical simulation of particle-laden turbulent flows.
Direct Numerical Simulation (DPS/DNS), Large Eddy Simulation
(DPS/LES) or Reynolds Averaged Navier–Stokes approach
(DPS/RANS) (see for example Balachandar and Eaton (2010),
Riber et al. (2009), Fox (2012), and Sommerfeld (2001)). When
the collisions are handled by a deterministic algorithm (Discrete
Element Method) the DPS/DNS can be considered as a determinis-
tic simulation because no stochastic model for both particle turbu-
lent dispersion and particle collision are needed. For the DPS/LES, a
dispersion model to reconstruct the subgrid fluid fluctuating veloc-
ity along the particle trajectory can be necessary if the particle
relaxation time is of the same order, or smaller than, the character-
istic time of the subgrid fluid turbulence (Fede and Simonin, 2006).
The DPS/RANS can be stated has stochastic because even if the col-
lisions are not taken into account a stochastic model has to be used
for the turbulence induced particle dispersion. In practical applica-
tions, due to the huge number of real particles involved, the simul-
taneous computation of all individual particle trajectories is
generally not yet possible. To overcome this difficulty, in the
framework of a statistical approach, only a restricted number of
numerical particles (also called parcels) may be tracked, each
parcel representing a given number of real particles. To account
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for the collisions, stochastic algorithms are then used instead of
deterministic ones.

Stochastic algorithms were first derived for the collision of
molecules in rarefied gases (Bird, 1969). A few decades ago, in
the framework of DPS/RANS approach these algorithms were
directly used for taking into account the particle–particle collisions
in gas–solid turbulent flow (O’Rourke, 1981; Tanaka and Tsuji,
1991). However, Berlemont et al. (1995) proved that when applied
to turbulent two-phase flow the standard stochastic collision algo-
rithms lead to a decrease in particle kinetic energy although the
particle collisions are elastics. They identified that this spurious
phenomenon is induced by the so-called ‘‘molecular chaos’’
assumption that destroys the fluid–particle covariance and there-
fore decreases the production of particle fluctuating kinetic energy
due to the interaction with fluid turbulence. Sommerfeld (2001)
and Berlemont et al. (2001) proposed stochastic approaches where
one single particle is tracked and successive random processes are
applied to generate fictitious partners of collision accounting for
the particle–particle velocity correlations induced by their interac-
tion with fluid turbulence. Their two algorithms differ in the way
used for the sampling of the fictitious colliding partner velocity.
In order to validate both approaches, simulations have been carried
out for homogeneous isotropic flow and they have been compared
with DPS/LES from Laviéville et al. (1995) and Gourdel et al. (1998).
Even if these single-particle algorithms have been successfully
used to simulate two-phase flows, they have several limitations.
First, both approaches need an a priori model to sample the ficti-
tious partner velocity, given the velocity of the tracked particle.
Second, in contrast with theory and DPS/DNS results, these algo-
rithms do not preserve fluid–particle velocity covariance. To over-
come this issue Berlemont et al. (2001) proposed a multiple
particle collision algorithm based on the simultaneous tracking of
several particles combined with an approximate method to enforce
the fluid–particle velocity covariance conservation. This ad-hoc
method consists in changing the seen fluid velocity of each collid-
ing particle after a collision in order to ensure that the fluid–parti-
cle velocity covariance is conserved. But, as pointed out by
Berlemont et al. (2001), this method is not satisfactory because
the distribution of collision angles remains the same whatever
the particle inertia since no specific correlation is accounting for
before the collision. Finally for single-particle methods the conser-
vation of momentum and of the particle kinetic energy (for elastic
collision) cannot be exactly ensured because the collision partner
is fictitious. In fact, such algorithms are statistically conservative
only if the number of parcels is very large.

In the present paper, we propose a rigorous approach to derive a
Monte-Carlo algorithm which allows to overcome all the previ-
ously mentioned limitations in the framework of DPS/RANS
approach. This algorithm can be interpreted as a direct discretiza-
tion of the collision kernel introduced in Laviéville et al. (1995,
1997) and Simonin et al. (2002) for taking into account the velocity
correlations induced by the interactions of particles with turbu-
lence. For the sake of completeness the paper first introduces the
full derivation of the joint fluid–particle Number Density
Function (NDF) kinetic equation. The case of solid particles, and liq-
uid droplets, are both addressed. The standard and the new
Monte-Carlo algorithms for solving the kinetic equation are
described in the third section. In this section an analysis of the
effect of the numerical parameters introduced by the novel
Monte-Carlo algorithm is performed. Section ‘Monodisperse solid
particles’ shows the results obtained by considering a monodis-
perse elastic, and non-elastic, particles suspended in homogeneous
isotropic turbulent flow. Section ‘Binary mixture of colliding parti-
cles’ is dedicated to binary mixture of particles suspended, and set-
tling, in homogeneous isotropic turbulence and Section Coalescing
droplets shows the application of the modified Monte-Carlo algo-
rithm for coalescing liquid droplets transported in a homogeneous
isotropic turbulent flow.

Statistical description of binary collision between particles
transported by a turbulent flows

Statistical description

The statistical description of a dispersed phase, composed of
solid particles or droplets, transported by a turbulent fluid flow
relies on the analogy with the thermal motion of molecules as
described by the kinetic theory of rarefied gases (Chapman and
Cowling, 1970). In this framework, the dispersed phase statistical
properties are described by the particle number density function
f pðcp;lp; x; tÞ defined such that f pðcp;lp; x; tÞdcpdlpdx is the mean
probable number of particles at time t with a centre of mass
located in the volume ½x;xþ dx�, having a mass mp in
½lp;lp þ dlp� and a translation velocity up in ½cp; cp þ dcp�. By anal-
ogy with statistical approaches for single-phase turbulent flows,
the statistical average associated to the definition of f p may be
defined as an ensemble average on an infinite number of realiza-
tions of a given gas–particle flow (Buyevich, 1971, 1972). The
Number Density Function (NDF), also called in the literature the
probability density function (PDF), obeys to a Boltzmann-like
kinetic equation. However, in contrast to the thermal motion of
molecules or to dry granular flows, the particle, or droplet, motion
is driven by the fluid turbulence, and the influence of the fluid tur-
bulent flow on the particle dynamics must be taken into account.
The closure of the term representing the forces acting on the par-
ticles is the topic of many studies for taking into account the tur-
bulent dispersion by the fluid turbulence (Derevich and Zaichik,
1988; Reeks, 1992, 1993). Simonin (1996) proposed an original sta-
tistical description taking into account the instantaneous fluid
velocity seen by the particles. A joint fluid–particle distribution
f fpðcp; cf ;lp; x; tÞ is then introduced, which is defined such that
f fpðcp; cf ;lp; x; tÞdcpdcf dlpdx is the mean probable number of par-
ticles at time t with a centre of mass located in the volume
½x;xþ dx�, and having a mass mp in ½lp;lp þ dlp�, a translation
velocity up in ½cp; cp þ dcp� and ‘‘seeing’’ a fluid velocity uf @p in
½cf ; cf þ dcf �. In the framework of Gatignol (1983) or Maxey and
Riley (1983) approach the fluid velocity uf @p represents the local
undisturbed fluid velocity at the particle position introduced to
model the fluid–particle momentum transfer.

In the case without mass transfer meaning that the change of
any particle mass is only due to collision, Simonin (1996) proposed
the following Boltzmann-like transport equation for the joint
fluid–particle distribution
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where h�jcp; cf i is the ensemble average conditioned by the particle
and fluid velocity seen by any particle with a centre of mass at
position xp ¼ x : up ¼ cp and uf @p ¼ cf (with up and uf @p being the
particle and the fluid velocity seen by the particle in physical
space). The term on the right-hand side of Eq. (1) represents the
change of f fp due to collision, coalescence or break-up. The third
term on the left-hand side of Eq. (1) accounts for the effects of
the particle acceleration on the NDF. Considering that the forces
acting on the particles are only the gravity and the drag force,
the particle acceleration writes



dup
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¼ Fp

mp
¼ �up � uf @p
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þ g ð2Þ

where uf @p is the locally undisturbed fluid velocity at the particle
position, or the so-called fluid velocity ‘‘seen’’ by the particle, g
the gravity and sp the local instantaneous particle response time.
Compared to the standard approach based on f pðcp; x; tÞ, the particle
acceleration term (the third term of Eq. (1)) is directly closed
because the instantaneous fluid velocity is known through the joint
fluid–particle NDF. However, the price-to-pay is the presence of the
fourth term representing the acceleration of the fluid velocity along
the solid particle trajectory. Several models can be found in the lit-
erature dedicated to the Lagrangian modelling of the fluid turbu-
lence along fluid elements (Haworth and Pope, 1986; Pope, 1994,
2002) or along inertial particle trajectories (Simonin et al., 1993;
Pascal and Oesterlé, 2000; Minier and Peirano, 2001; Minier et al.,
2004; Pialat et al., 2007; Tanière et al., 2010). As the purpose of
the present paper is the numerical treatment of collision, the
Lagrangian prediction of the fluid velocity along a particle trajectory
will not be longer detailed. In the present paper, the fluid flow, for
stochastic simulations, is predicted by a Langevin equation pro-
posed by Simonin et al. (1993) that is an extension of the model
proposed by Pope (1994) (see Appendix B).

Collision/coalescence kernel

The collision/coalescence operator may be split in two
contributions

@f fp

@t

	 

coll
¼ Kþðcp; cf @p;lp; x; tÞ � K�ðcp; cf @p;lp; x; tÞ ð3Þ

where Kþðcp; cf @p;lp; x; tÞ represents the apparition rate and
K�ðcp; cf @p;lp; x; tÞ the vanishing rate. Both terms require the
knowledge of the velocity and mass for the two colliding particles.

These information are given by the pair NDF f ð2Þfp defined such that

f ð2Þfp ðcp; cf @p;lp; cq; cf @q;lq; xp;xq; tÞdxpdxqdcpdcqdcf @pdcf @qdlpdlq

is the mean probable number of particle pairs with centres of mass
located in the volume ½xp;xp þ dxp� and ½xq;xq þ dxq� and having
masses mp in ½lp;lp þ dlp� and mq in ½lq;lq þ dlq�, and translation
velocities up in ½cp; cp þ dcp� and uq in ½cq; cq þ dcq�, and viewing fluid
velocities uf @p in ½cf @p; cf @p þ dcf @p� and uf @q in ½cf @q; cf @q þ dcf @q�,
respectively. From this definition the vanishing rate of droplets
writes

K�ðcp;cf @p;lp;x;tÞ¼
Z

wpq :kpq<0
f ð2Þfp ðcp;cf @p;lp;cq;cf @q;lq;x;xþdpqkpq;tÞ

�jwpq:kpqjd2
pqdcqdcf @qdlqdkpq ð4Þ

where the particle–particle relative velocity is defined as
wpq ¼ cq � cp. The impact vector is defined by the particle position
kpq ¼ ðxq � xpÞ=dpq and the collision diameter dpq ¼ ðdp þ dqÞ=2.
The rate of particle apparition is then given by

Kþðcp;cf @p;lp;x;tÞ¼
Z

wpq :kpq<0
Rðcm;cf @m;lm;cn;cf @n;ln;kmn! cp;cf @p;lp;x;tÞ
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where the transition probability by particle–particle collision
Rðcm; cf @m; lm; cn; cf @n; ln; kmn ! cp; cf @p; lp; x; tÞ ¼ Pðcp; cf @p; lpjcm;

cf @m;lm; cn; cf @n;ln;kmn; x; tÞ is introduced. This function is the
probability density of having one particle located at x with a veloc-
ity cp and mass lp resulting from the collision of a particle m located
in xm ¼ x with a velocity cm, and a mass lm, with a particle n located
in xn ¼ xþ dmnkmn with a velocity cn and a mass ln. Considering the
hard-sphere collision model, the transition probability density
reads:

Pðcp; cf @p;lpjcm; cf @m;lm; cn; cf @n;ln;kmn; x; tÞ

¼ d lp � lm

h i
� d cp � cþm
� �

� Pðcf @pjcf @m; cf @nÞ ð6Þ

where cþm is the m-particle velocity after an inelastic collision with
any n-particle. Assuming, frictionless hard-sphere collision, these
velocities are given by:

cþm ¼ cm þ
mn

mm þmn
ð1þ ecÞðwmn:kmnÞkmn; ð7Þ

cþn ¼ cn �
mm

mm þmn
ð1þ ecÞðwmn:kmnÞkmn ð8Þ

where ec is the particle–particle restitution coefficient (Walton,
1993).

When considering the collision of two droplets several phenom-
ena may occur as pure coalescence, elastic bouncing, or production
of satellite droplets (Ashgriz and Poo, 1990; Crowe et al., 1998). In
the present study, only the permanent coalescence regime where a
droplet–droplet collision leads to a new droplet is considered
(Villedieu and Simonin, 2004). The mass and momentum conserva-
tion leads to the two following relations

lp ¼ lm þ ln; ð9Þ
lpcp ¼ lmcm þ lncn: ð10Þ

Then the transition probability density can be written as
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2
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the coefficient 1/2 is chosen to represent that the resulting droplet
is either located in x or xþ dmnkmn with the same probability den-
sity. In Eq. (11), Pðcf @pjcf @m; cf @nÞ is the probability that the fluid
velocity seen by the children droplet is cf @p knowing that the two
fluid velocities seen by the coalescing droplets are cf @m and cf @n.
Assuming that the two colliding droplets have a diameter smaller
than the integral length scale of the turbulence (dp � Lf ) then the
coalescing droplets should ‘‘see’’ nearly the same fluid velocity
and consequently

Pðcf @pjcf @m; cf @nÞ ¼ d cf @p � cf @m

� �
¼ d cf @p � cf @n

� �
: ð12Þ

In case of solid particles, by definition the fluid velocity seen by the
particles is unchanged by the collision, consequently cf @m ¼ cf @p

(Laviéville et al., 1997; Singh et al., 2004).

Pair number distribution function closure

In the framework of the standard kinetic theory of dense gases
(Chapman and Cowling, 1970), the pair NDF is written as the pro-
duct of single NDF,

f ð2Þp ðcp; cq; x;xþ dpqkpq; tÞ ¼ g0f pðcp; x; tÞf pðcq; xþ dpqkpq; tÞ ð13Þ

The radial distribution function, g0, takes into account the particle
spatial correlation effects. In the framework of the kinetic theory
of granular media, g0, has been introduced to take into account
the increase of the collision frequency when the solid volume frac-
tion is approaching the maximum packing (Jenkins and Richman,
1985; Lun and Savage, 1986). At the opposite, for dilute flows, as
in the present paper, this effect is negligible and the radial distribu-
tion function should be approximated by 1. However, in turbulent



two-phase flows, the interaction of inertial particles with turbu-
lence may induce accumulation of particles in low-vorticity regions.
This phenomenon, called preferential concentration, leads to values
of g0 larger than unity (Sundaram and Collins, 1997; Shaw et al.,
1998; Reade and Collins, 2000; Salazar et al., 2008). Due to the com-
plexity of the physical mechanisms taking place in preferential con-
centration, the modelling of the radial distribution function with
respect to the particle inertia is still an open issue. Restricting our
attention to inertial particles with relaxation time larger than the
Kolmogorov time scale the radial distribution function is approxi-
mated by 1 leading to an underestimation of the collision fre-
quency. In addition, in dilute flow the spatial variations of the
NDF are assumed to be negligible on a length scale of the order of
the particle diameter. Therefore the position of the particles in
right-hand side of Eq. (13) can be assumed identical. In the frame
of the above assumptions for dilute flows the pair NDF may be writ-
ten as

f ð2Þp ðcp; cq; x;xþ dpqkpq; tÞ ¼ f pðcp; x; tÞf pðcq; x; tÞ ð14Þ

Eq. (14), often called molecular chaos assumption, means that the
colliding particles have independent velocities. Indeed, even for
separation smaller than the Kolmogorov length scale, particle iner-
tia should maintain the influence of the interactions with fluid ele-
ments at larger separation which are only partially correlated.
According to Abrahamson (1975), when the particle relaxation time
is much larger than the turbulent characteristic macro time scale,
the velocities of colliding particles should be almost uncorrelated
and the molecular assumption is truly relevant. In contrast, when
the particle response time is of the same order, or smaller, than
the turbulent characteristic macro time scale of the turbulence
(such as the Eulerian or Lagrangian integral time scales), the
approaching particle velocities are influenced by the same local
gas turbulent flow. Hence colliding particle velocities are correlated,
via the gas–particle interaction, and particle–particle relative veloc-
ity decreases (Williams and Crane, 1983; Kruis and Kuster, 1997).
This effect has been already scrutinized by DPS/DNS and DPS/LES
in case homogeneous isotropic turbulent flow carrying a monodis-
perse (Laviéville et al., 1995) and a binary mixture Fede and
Simonin, 2003 of inertial particles; but also in case of simple shear
flow (Laviéville et al., 1997). To overcome this limitation, Laviéville
et al. (1995) proposed an original decomposition of the pair NDF.
Hereafter, for the sake of simplicity, time and position variables
are both skipped. Using conditional expectation, the authors

decomposed the pair joint NDF as f ð2Þfp ðcp; cf @p; cq; cf @qÞ ¼
Pð2Þf ðcf @p; cf @qÞf ð2Þp ðcp; cqjcf @p; cf @qÞ and they obtained

f ð2Þfp ðcp;cf @p;cq;cf @qÞ¼ Pð2Þf ðcf @p;cf @qÞ� f pðcqjcf @p;cf @qÞf pðcpjcq;cf @p;cf @qÞ ð15Þ

For closing this relationship, according to the discussion above on the
physical mechanism controlling the correlation effect between
neighbouring particles, Laviéville et al. (1995) assume that the
dependency of a particle velocity cp probability on the q-particle
and gas velocity realizations is mainly accounted for via the
conditioning by the fluid velocities ‘‘seen’’, leading to
f pðcpjcq; cf @p; cf @qÞ � f pðcpjcf @p; cf @qÞ. Finally, if the particle diameter
is much smaller than the turbulent integral correlation length scale,
the two particles nearly ‘‘see’’ the same fluid velocity. Then Laviéville
et al. (1995) write the pair NDF as

f ð2Þfp ðcp; cf @p; cq; cf @qÞ �
d cf @p � cf @q

� �
Pf ðcf @pÞ

f fpðcp; cf @pÞf fpðcq; cf @qÞ ð16Þ

This equation is obtained by using f fpðcp; cf @pÞ ¼ f pðcpjcf @pÞPf ðcf @pÞ.
In case of homogeneous isotropic turbulent flows the fluid

velocity distribution function, Pf ðcf @pÞ, can be approximated by a
Gaussian distribution
Pf ðcf @pÞ ¼
1

4=3pq2
f @p
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where q2
f @p is the fluid turbulent kinetic energy ‘‘seen’’ by the p-par-

ticles which is assumed to be equal to the ‘‘true’’ fluid turbulent
kinetic energy q2

f . It can be noticed that the closure represented
by Eq. (16) has been employed to represent the collision effect in
Eulerian particle moment equations derived in the framework of
the joint-fluid particle NDF approach (Laviéville et al., 1997;
Simonin et al., 2002; Fede and Simonin, 2003; Zaichik et al., 2003,
2006).

The assumptions made to get Eq. (16) could lead to an underes-
timation of the correlation between the two colliding particle
velocities. Then the particle–particle relative velocity could be
overestimated and consequently the collision frequency is
expected to be overestimated Simonin et al. (2002). However,
two opposite effects are taking place which influence the model
prediction accuracy. On the one hand, the collision frequency is
underestimated because the spatial distribution effect is underes-
timated by taking the radial distribution function, g0, equal to 1.
On the another hand, the collision frequency is overestimated
because the velocity correlation effect induced by the interaction
with the turbulent flow is underestimated. This balancing effect
has been pointed out by Zaichik et al. (2003, 2006) showing that
the model underestimation of the particle collision frequency
may be important at small particle inertia, for particle relaxation
time of the order of the Kolmogorov time scale, when the segrega-
tion mechanism is maximum. In contrast, the model overestima-
tion becomes effective when the particle relaxation time is
comparable with the gas turbulent integral time scale.

With Eq. (16) the Boltzmann-like transport equation is closed
because the collision kernel writes

K�ðcp;cf @p;lp;x; tÞ¼
Z
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d cf @p�cf @q
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f fpðcp;cf @pÞf fpðcq;cf @qÞ ð18Þ
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where R � Rðcm; cf @m;lm; cn; cf @n;ln;kmn ! cp; cf @p;lp; x; tÞ is the
probability of transition written without the variables for the sake
of simplicity. The following section is dedicated to Monte-Carlo
algorithms for solving the kinetic equation. The following section
is dedicated to Monte-Carlo algorithms for solving the kinetic equa-
tion with the molecular chaos assumption (13) or with the corre-
lated colliding velocity closure (16).

Monte-Carlo algorithm for solving the joint fluid–particle
kinetic equation

Principle of standard Monte-Carlo algorithm

Stochastic particle methods, also called Monte-Carlo methods,
were initially developed for solving the Boltzmann equation for
rarefied gas dynamics (Bird, 1969; Nanbu, 1983; Babovsky, 1986;
Ivanov and Rogasinsky, 1988). The basic principle of such methods
is to approximate the NDF by a linear combination of Dirac masses:

f pðcp; x; tÞ ¼
XNpar ðtÞ

i¼1

wi
pd x� xi

p

h i
� d cp � ui

p

h i
ð19Þ

In this sum, each term is generally called ‘‘numerical particle’’ or
‘‘parcel’’ and is interpreted as representing a group of wi

p real



particles located around the same space position, and having the
same velocity. The second key feature of stochastic particle meth-
ods is the use of a fractional time step algorithm, which consists
in splitting each time step in the two following substeps:

	 a transport substep which corresponds to the discretization of
the non-collisional kinetic equation. During this substep the
position, velocity of each numerical particle are updated by
solving the particle motion equations.
	 a collision substep which corresponds to the discretization of the

collision term. Since the calculation of collision probabilities
involves the mean number of particle pairs located in an
infinitesimal volume centred around any given point, the
approximation of the NDF given by Eq. (19) is not compatible
with the closure model Eq. (14) for the pair NDF. Indeed, accord-
ing to Eq. (19) two given particles are either located at the same
point with the same velocity (when they belong to the same par-
cel) or are located at two separated points (when they belong to
two different parcels). To overcome this issue, it is assumed that
mesh cells are small enough for the exact NDF to be almost uni-
form over them so that Eq. (19) could be replaced by:
f pðcp; x; tÞ ¼
X

Ci

X
k2IndðCiÞ

wk
p

1Ci
ðxÞ

volðCiÞ
d cp � uk

p

h i
ð20Þ

where Ci denotes a given cell of the meshMx;1Ci
is the indicator

function of Ci (top-hat distribution function), IndðCiÞ is the list of
parcels located in cell Ci at the end of the transport step and
volðCiÞ is the volume of Ci. From a physical point of view, this
new approximation of the NDF means that during the collision
substep, all real particles represented by a given parcel are sup-
posed to be randomly distributed in the cell containing the parcel
instead of being all located at the same point as during the trans-
port step. Of course, this is not mandatory and an independent
(moving) mesh could be used as well for the regularization of
the NDF. But, what is important actually is that the mesh being
fine enough for the real NDF to be approximately uniform over
each cell and coarse enough for having enough parcels in each
cell. The collision substep then consists in applying a
Monte-Carlo algorithm for computing in each cell an approxi-
mate solution of the spatially homogeneous Boltzmann equation:

@f p

@t
ðcp; x; tÞ ¼ Q collff pgðcp; x; tÞ ð21Þ

assuming that the initial NDF can be approximated by (20). It is
worth noticing that the expression of Qcoll in Eq. (21) relies on a
closure assumption for the pair NDF which is usually based on
the molecular chaos assumption.

Extension to turbulent particle-laden flows

In turbulent particle-laden flows, the fluid turbulent velocity is
a new variable which has to be taken into account. In the frame-
work of Monte-Carlo algorithms the approximation of the joint
fluid–particle NDF by a linear combination of Dirac masses reads

f fpðcp; cf ; x; tÞ ¼
XNpar ðtÞ

i¼1

wi
pd x� xi

p

h i
� d cp � ui

p

h i
� d cf � ui

f @p

h i
ð22Þ

It can be noticed that in the literature this approximation is gener-
ally not explicitly written. The transport substep of the Monte-Carlo
algorithm is supplemented by the prediction of the fluid velocity
seen by the parcel (see Appendix B). In the collision substep the
joint fluid–particle NDF, Eq. (22), is replaced by

f fpðcp;cf ;x;tÞ¼
X

Ci

X
k2IndðCiÞ

wk
p

1Ci
ðxÞ

volðCiÞ
d cp�uk

p

h i
�d cf �uk

f @p

h i
ð23Þ
Then the collision substep reduces to solve:

@f fp

@t
ðcp; cf ; x; tÞ ¼ Q collff fpgðcp; cf ; x; tÞ; ð24Þ

assuming that the initial joint fluid–particle NDF can be approxi-
mated by Eq. (23). Initially, people implicitly used the classical
molecular chaos assumption to close the collision kernel
(O’Rourke, 1981; Villedieu and Hylkema, 1997):

f ð2Þfp ðcp; cf @p; cq; cf @qÞ ¼ f fpðcp; cf @pÞf fpðcq; cf @qÞ ð25Þ

and simply applied the standard Monte-Carlo algorithms formerly
developed for the rarefied gas Boltzmann equation. As pointed out
in the introduction, and highlighted in the following of the paper,
this assumption leads to spurious effects due to the correlation
between colliding particle velocities. To try to overcome this issue
several attempts can be found in the literature (Sommerfeld,
1999; Berlemont et al., 2001) but are not fully satisfactory as
explained in the introduction.

New collision algorithm in the framework of the joint fluid–particle
NDF approach

The new proposed Monte-Carlo algorithm is based on the dis-
cretization of the collision kernel given by Eq. (16). In this expres-
sion, from a mathematical point of view, the cf variable plays a
similar role as the space variable since, according to Eq. (16), colli-
sion may only occur between two particles which are located at
the same location in the cf -space. Consequently, the approximation
given by Eq. (23) is not suited for computing collision probabilities
and must be replaced by another expression involving a continuous
dependency with respect to the variable cf . Indeed, formally accord-
ing to Eq. (23) two given particles either see the same fluid velocity
and have the same velocity (when they belong to the same parcel) or
see two different fluid velocities (when they belong to two different
parcels). For this reason, Eq. (23) is clearly not compatible with the
closure model (16) for the joint fluid–particle pair NDF. Whatever
the stochastic algorithm used for simulating collisions, a cf -space
regularization of Eq. (23) is needed in order to be able to compute
pair collision probabilities at any given location in cf -space.

A natural solution consists in introducing a mesh Mcf
of the

cf -space and to replace Eq. (23) by the following expression:

f fpðcp;cf ;x;tÞ¼
X

Ci2Mx

X
Qj2Mcf

X
k2IndðCi ;QjÞ

wk
p

1Qj
ðcf Þ1Ci

ðxÞ
volðCiÞvolðQ jÞ

d cp�uk
p

h i
ð26Þ

where Qj denotes a given cell of the meshMcf
; IndðCi;QjÞ is the list

of parcels located in Ci \ Qj at the end of the transport step and
volðQjÞ is the volume of Qj in the cf -space. The corresponding
Monte-Carlo collision algorithm then consists in the following
steps:

(i) At the end of the transport step, for each cell Ci 2 Mx and
each cell Qj 2 Mcf

, create the list IndðCi;QjÞ of the parcels
located in both Ci and Q j.

(ii) Let Nij be the number of parcels in IndðCi;QjÞ. Choose ran-
domly Nij=2 pairs of potential collision partners or
ðNij � 1Þ=2 if Nij is odd and is larger than 2.

(iii) For each pair, compute the collision probability:
P21
coll ¼ wp1

ðNij � 1Þ
volðCiÞ

pðdp1 þ dp2Þ2

4Pfj
jcp2 � cp1jDt ð27Þ

P12
coll ¼ wp2

ðNij � 1Þ
volðCiÞ

pðdp1 þ dp2Þ2

4Pfj
jcp2 � cp1jDt ð28Þ



where p1 and p2 denote the corresponding parcels of the
selected pair, Dt is the time step. P21

coll denotes the probability
for a given particle of parcel p2 to collide with any particle of
parcel p1 during the current time step. In a similar manner
P12

coll denotes the probability for a given particle of parcel p1
to collide with any particle of parcel p2. Pfj represents the
probability for the fluid velocity to belong to Qj:

Pfj ¼
Z

Qj

Pf ðcf Þdcf ’ volðQ jÞPf ðcf j
Þ ð29Þ

where cf j
is the centre of Qj.
Table 1
Gas and particle material properties for DNS of colliding particles.

Fluid properties
Reynolds number, Re 104
Reynolds number, Rek 50.3
Viscosity, lf ðkg=m=sÞ 1:72� 10�5

Density, qf ðkg=m3Þ 1.17

Turbulence kinetic agitation, q2
f ðm2=s2Þ 30:1� 10�3

Turbulent time scale, st
f ðsÞ 61:2� 10�3

Symbols h 4 O . / �

Particle properties
Diameter, dp ðlmÞ 600

Density, qp ðkg=m3Þ 18.75 37.50 75.00 150.0 300.0 450.0

Stokes number, sF
fp=s

t
f @p

0.22 0.43 0.85 1.70 3.22 4.58

Lagrangian time scale,
st

f @p=s
t
f

1.23 1.20 1.11 1.06 1.09 1.13

Fluid turbulent kinetic
energy, q2

f @p=q2
f

0.96 0.94 0.96 0.97 0.99 1.00

Restitution coefficient, ec 1.0
(iv) Choose a random number a between 0 and 1. If a 6 P21
coll,

then all the particles of parcel p2 are supposed to have actu-
ally collided with a particle of parcel p1 during the time step.
Then parcel p2 new velocity is updated according to Eq. (8).
If a 6 P12

coll, then all the particles of parcel p1 are supposed to
have actually collided with a particle of parcel p2 during the
time step. Then parcel p1 new velocity is updated according
to Eq. (7). In both cases the fluid velocities are left
unchanged.
In case of coalescence, the algorithm is slightly modified as

follows. Let Pmax
coll ¼ max P12

coll; P
21
coll


 �
then if a 6 Pmax

coll , then

the collision between p1 and p2 is supposed to be effective.
Assuming that wp2 > wp1 the new parcel characteristics are
then defined as: w
p2 ¼ wp2 �wp1 with a mass and velocity
given by and Eqs. (9) and (10) and the parcel p1 is
unchanged w
p1 ¼ wp1.

It is worth noticing that, by construction, the above
Monte-Carlo algorithm is a generalization of chaos assumption
based algorithms used by O’Rourke (1981) and Villedieu and
Hylkema (1997). Indeed if the meshMcf

only contains one cell cor-
responding to the whole velocity space, one has: Pfj ¼ 1 and one
recovers the usual expression for the collision probability. To
account for the correlations induced by the fluid velocity, it is nec-
essary to use a mesh of the ‘‘cf -space’’ which is fine enough. This
question will be quantified in the next section.

It is also worth pointing out that for the above algorithm to be
consistent with the kinetic equation, it is mandatory that, what-
ever the particle pairing, the condition PcollDt 6 1 be satisfied.
This yields a restrictive condition on the time step, which reads:

Dt 6 Min
i;j

Pfj

ðNij � 1Þ
volðCiÞ

wmaxd2
maxcmax

ð30Þ

where cmax denotes the maximal relative velocity between two par-
cels located in the same control volume Ci \ Qj;wmax the maximum
weight of the parcels and dmax denotes the largest particle diameter.
Since the fluid velocity density function Pf is not explicitly known in
practice, Pfj may be approximated by:

Pfj ¼
Nij

Ni
ð31Þ

with Ni ¼
P

jNij. Inserting Eq. (31) in Eq. (30) finally yields the fol-
lowing constraint on the time step:

Dt 6 Min
i;j

Nij

ðNij � 1Þ
volðCiÞ

wmaxNid
2
maxcmax

ð32Þ

which physically means that the time step must be lower than the
characteristic collision time scale.

Actually, the constraint on the time step does not prevent to use
a large number of parcels in a cell. This is due to the fact that, for a
given fixed number of real particles in the computational domain,
if one lets the number of parcels per cell Ni going to infinity, then
the corresponding numerical weight of each parcel wp will tend to
0 while Ni �wp will remain constant. If, for the sake of simplicity,
one assumes that all parcels have the same weight w and that all
particles have the same diameter d, the constraint (32) can be sim-
plified and replaced by the sufficient condition:

Dt 6
volðCiÞ

Niwd2cmax

ð33Þ

It is worth noticing that Ni w=volðCiÞ actually represents the real
particle density in cell Ci. Hence, the right-hand side of Eq. (33)
actually corresponds to the shortest collision time between two real
particles located in cell Ci. The constraint given by Eq. (32) has thus
a clear physical meaning and just expresses that the time step must
not be larger than the real collision time scale.

If all parcels have the same weight, it is worth noticing that,
according step (iv) of the collision algorithm, parcel p1 and parcel
p2 always collide simultaneously. Consequently momentum and
particle kinetic energy (in case of elastic collisions) are exactly con-
served during the collision step. If the weights are not the same,
conservation is not ensured exactly but is only satisfied in a statis-
tical sense.

The presence of the term ðNij � 1Þ in the expression of the colli-
sion probability can be easily explained. Indeed, the total number
of pairs that could be formed with Nij parcels is equal to
ðNij � 1ÞNij=2. Given that, according to the collision algorithm, only
Nij=2 pairs are considered at each time step meaning that the prob-
ability of finding a given pair is underestimated by a factor of
ðNij � 1Þ which has thus to be taken into account to get the correct
value of the collision probability.

In the following sections our new proposed algorithm is called
shortly ‘‘CCV Monte-Carlo algorithm’’ for Correlated Colliding
Velocity Monte-Carlo algorithm.

Effect of the Monte-Carlo algorithm’s parameters

As described in the previous section, the proposed Monte-Carlo
algorithm introduces several additional parameters than a stan-
dard Monte-Carlo algorithm. For quantifying the sensitivity of
the Monte-Carlo algorithm to these parameters many numerical
tests have been conducted. In this section all numerical simula-
tions have been performed with the parameters of the turbulence
given in Table 1. The particles are spherical, monodisperse and
elastic (ec ¼ 1) and their material properties have been chosen
for having an important effect of the turbulence on the collision.



So the particles are the ones of Table 1 with qp ¼ 75 kg=m3. Each
numerical simulation has been performed as follows. First a transi-
tory phase is performed of approximately 50st

f allowing the fluid
and particles velocities to reach a statistically steady state (initial
fluid and particle velocities being zero). Then statistics are
computed also during 50st

f . The numerical tests have shown that
the relevant parameters of the CCV Monte-Carlo algorithm
are (i) the number of particles in each section of discretization of
cf , (ii) the range of the fluid realization considered for the dis-
cretization, and (iii) the size of the section (namely Dcf ).

Figs. 1 and 2 show the particle kinetic energy and the collision
time scale with respect to Npar=N3

sec which is the number of parcel
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Fig. 2. Dependence of the CCV Monte-Carlo algorithm predictions of the inter-
particle collision time scale of particles suspended in homogeneous isotropic gas
turbulence on the number of parcels per section Npar=N3

sec . The computations were
performed with several number of uniform sections for discretizing the gas velocity
space (cf -space) in a region defined from �maxðjcf jÞ to þmaxðjcf jÞ with
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Fig. 1. Dependence of the CCV Monte-Carlo algorithm predictions of the kinetic
energy of particles suspended in homogeneous isotropic gas turbulence on the
number of parcels per section Npar=N3

sec . The computations were performed with
several number of uniform sections for discretizing the gas velocity space (cf -space)
in a region defined from �maxðjcf jÞ to þmaxðjcf jÞ with maxðjcf jÞ ¼ 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3q2

f

q
.

per section for a uniform distribution of cf . Obviously, due to the

Gaussian distribution of fluid velocity realization, Npar=N3
sec is not

strictly the number of particles per section. However, it is an inde-
pendent parameter characterizing the stochastic collision algo-
rithm. Fig. 1 shows that the particle kinetic energy converges
very quickly to a value independent of Npar=N3

sec . The discrepancies
observed for Nsec ¼ 4 and Nsec ¼ 6 come from the fact that such
number of section lead to a small number of particles. An averaging
over a period longer than 50st

f should remove the discrepancies.
The collision time scale, shown by Fig. 4, is more influenced by
the number of particle per section. The convergence is obtained
for approximately Npar=N3

sec ¼ 12.
The effect of the range of the fluid velocity realization space is

shown by Figs. 3 and 4. In these numerical simulations the number
of sections is kept constant (Nsec ¼ 10) leading to non-constant Dcf

from one value of maxðjcf jÞ to another one. Fig. 3 shows that the
particle kinetic energy is nearly constant for small values of

maxðjcf jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3q2

f

q
. This trend was expected because in such a case,

the number of parcels allowed to collide is reduced and conse-
quently the destruction of particle kinetic energy by collision is
reduced. An interesting point is for increasing the fluid velocity
realization space the particle kinetic energy is found decreasing.
As more detailed hereafter, it comes from the fact that for increas-
ing Dcf the span of the fluid velocities in a section is increasing
respectively leading to an increase of the particle kinetic energy
destruction. As expected, for a small range of fluid velocity realiza-

tion maxðjcf jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3q2

f

q
the collision time scale is overestimated

always because the number of parcels having a fluid velocity

between �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3q2

f

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3q2

f

q
is too small. Fig. 4 shows that for

maxðjcf jÞP 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3q2

f

q
the inter-particle collision time scale con-

verged as soon as the number of parcel per section is Npar=N3
sec > 5.

The effect of the mesh size of the fluid velocity realization is
shown by Figs. 5 and 6. As already emphasized a large size of fluid
velocity section means that the particles sorted inside are viewing
a large distribution of fluid velocity. Consequently the destruction
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Fig. 3. Dependence of the CCV Monte-Carlo algorithm predictions of particles
suspended in homogeneous isotropic gas turbulence on the size of the discretized
region in the gas velocity space (cf -space). The computations were performed with
10 equal sections for discretizing the gas velocity space (cf -space) from �maxðjcf jÞ
to þmaxðjcf jÞ.
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Fig. 5. Dependence of the CCV Monte-Carlo algorithm predictions of the kinetic
energy of particles suspended in homogeneous isotropic gas turbulence on the size
of the mesh used to discretize the gas velocity space (cf -space). The computations
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Fig. 4. Dependence of the CCV Monte-Carlo algorithm predictions of the inter-
particle collision time scale of particles suspended in homogeneous isotropic gas
turbulence on the size of the discretized region in the gas velocity space (cf -space).
The computations were performed with 10 equal sections for discretizing the gas
velocity space (cf -space) from �maxðjcf jÞ to þmaxðjcf jÞ.
of the particle kinetic energy is enhanced. Indeed, Fig. 5 shows that

for Dcf ¼ 1:5�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3q2

f

q
the particle kinetic energy decreases even

for a large number of parcel per section. In contrast, for very small
mesh size the particle kinetic energy is conserved by the CCV algo-
rithm. However, the reader must be aware that for very small Dcf

and for a small number of parcel the number of parcel per section
becomes too small for predicting the true collision frequency. Fig. 6
clearly shows this trend because for Npar=N3

sec ¼ 1 the inter-particle
collision time scale is overestimated meaning that just a few num-
ber of collisions are predicted by the Monte-Carlo algorithm.
To summarize, the important parameters of the CCV
Monte-Carlo algorithm are: the number of parcel in a section
Npar=N3

sec , the maximum of the range of the meshed fluid velocity
space realizations maxðjcf jÞ and finally the size of the mesh Dcf .
Even if it could be surprising the number of section is a conse-
quence of these three parameters. Typically, the numerical param-

eters can be chosen as maxðjcf jÞ ¼ 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3q2

f

q
and Dcf ¼ 0:5�ffiffiffiffiffiffiffiffiffiffiffiffiffi

2=3q2
f

q
. The number of sections is Nsec ¼ 2�maxðjcf jÞ=Dcf ¼

2� 3=0:5 ¼ 12 that leads to 123 cf -space cells. For Npar=N3
sec ¼ 10,

the number of parcels becomes Npar = 17,280.
In the following sections the predictions of the CCV

Monte-Carlo algorithm is compared with deterministic simulation
results (DPS/DNS or DPS/LES), and with analytical results from
moment approach. To emphasize the benefit of the CCV
Monte-Carlo algorithm the prediction of the standard
Monte-Carlo algorithm, namely based on the molecular chaos
assumption, are also shown.
Monodisperse solid particles

Description of the numerical simulations

In this section the Monte-Carlo algorithm is applied to the
numerical simulation of solid colliding particles suspended in sta-
tistically steady homogeneous isotropic turbulent flow. The com-
putational domain is a cubic box of length Lb ¼ 0:128 m with full
periodic boundary conditions. All relevant physical properties are
gathered in Table 1.

This configuration of an homogeneous isotropic flow with col-
liding particles has been extensively investigated by DPS/DNS or
DPS/LES (Deutsch and Simonin, 1991; Laviéville et al., 1997;
Février et al., 2005; Fede and Simonin, 2006; Wunsch et al.,
2008; Fede and Simonin, 2010). The methods and the equations
solved are briefly given in Appendix A. Fig. 7 shows the particle
kinetic energy, normalized by the fluid turbulent kinetic energy,
with respect to the inverse of the Stokes number. As expected,
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moment method given by Eq. (38).
the figure shows that the particle kinetic energy is conserved for all
considered solid volume fractions because the collisions are elastic
(ec ¼ 1). Moreover, the particle kinetic energy is the same than in
the case without collisions (the black-filled symbols).

Monodisperse elastic solid particles

The dispersed phase is composed of Np identical solid spheres.
The particle velocities after a collision are computed with Eqs. (7)
and (8) corresponding to a pure sliding collision. It is important
to notice that the numerical simulations were carried out for elas-
tic particles therefore the particle restitution coefficient, ec , is equal
to 1. The consequence is that the collisions conserve the particle
kinetic energy.

The solid lines shown by Fig. 7 are the predictions of the
moment method (Simonin, 1996). From the Boltzmann-like equa-
tion (1) it is possible to derive the transport equation of any
moment of the joint fluid–particle NDF especially for the particle
kinetic energy q2

p ¼ 1=2hu0p;iu0p;ii, and the fluid–particle velocity
covariance qfp ¼ hu0f @p;iu0p;ii. In homogeneous particle-laden turbu-
lent flows, these transport equations write,

dq2
p

dt
¼ �

2q2
p � qfp

sF
fp

þ Cðq2
pÞ ð34Þ

dqfp

dt
¼ �

qfp � 2q2
f @p

sF
fp

�
qfp

st
f @p

þ CðqfpÞ ð35Þ

where the two last terms on the right-hand side represent the
effects of the collisions. The modification of fluid–particle velocity
covariance by a collision can be determined from Eqs. (7) and (8)
using D½qfp� ¼ �1=2 uf @q � uf @p

� �
�wpq. This expression, obviously

shows that if the fluid velocity seen by colliding particles is same
then uf @q ¼ uf @p, the modification of the fluid–particle velocity
covariance by a collision vanishes, and then CðqfpÞ ¼ 0. Assuming
a Maxwellian distribution function f p and molecular chaos the col-
lision term writes

Cðq2
pÞ ¼ �

1� e2
c

3spp
k

2
3

q2
p ð36Þ
where spp
k is the particle–particle collision time scale derived in the

framework of the kinetic theory of dilute gases of rigid elastic
spheres (Chapman and Cowling, 1970),

1
spp

k

¼ 4pnp d2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3p
q2

p

r
: ð37Þ

In the case of very dilute flow where the collisions can be
neglected, or for elastic particles ec ¼ 1, the modification of particle
kinetic energy by particle–particle interaction becomes Cðq2

pÞ ¼ 0
and assuming a steady flow, Eqs. (34) and (35) become

2q2
p ¼ qfp ¼ 2q2

f @p
gr

1þ gr
ð38Þ

where gr ¼ st
f @p=sF

fp. Fig. 7 shows that, independently of the solid
volume fraction, the results from DPS/DNS are in accordance with
the predictions of Eq. (38). In contrast, Fig. 8 exhibits that when
the collision frequency is increasing, the particle kinetic energy is
decreasing whereas the particles are elastic (ec ¼ 1). Laviéville
et al. (1995, 1997) attribute such a pathological behaviour to decor-
relation effect between the particle and the fluid turbulence due to
the molecular chaos assumption used to compute the collision
probability. Indeed, using the molecular chaos assumption for the
pair joint fluid–particle NDF leads to Eq. (25). One can notice that
such an approximation is worse than assuming molecular chaos

only for the pair particle velocity f ð2Þp distribution function (Eq.
(14)). Indeed, in Eq. (25) it is assumed both that (i) the colliding par-
ticle velocities are uncorrelated and (ii) that the fluid velocity seen
by the colliding particles are also uncorrelated. Point (i) can be legit-
imate in case of heavy particles, but (ii) can be true only for two par-
ticles having a distance larger than the turbulent length
macro-scale. However Eq. (25) is used for colliding particles so that
the inter-particle distance is equal to the particle diameter. Using
the molecular chaos assumption for computing CðqfpÞ leads to

CðqfpÞ ¼ �
1þ ec

3spp
k

qfp ð39Þ

with spp
k given by Eq. (37). Such a term is a destruction of the fluid–

particle velocity covariance by collision. Fig. 9 shows the fluid–
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Fig. 9. Fluid–particle velocity covariance normalized by the value in case without
collisions with respect to the collision frequency. The grey-filled symbols corre-
spond to the results from the standard Monte-Carlo algorithm and black-filled
symbols from the CCV Monte-Carlo algorithm. The dashed lines are the prediction
of Eq. (40) for fluid–particle velocity covariance.
particle velocity covariance, normalized by the fluid–particle veloc-
ity covariance without collisions, with respect to the collision fre-
quency. It is observed that for all considered Stokes numbers the
fluid–particle velocity covariance is destroyed when the collision
frequency is increasing. The fictitious destruction of the fluid–
particle velocity covariance can be reproduced by the moment
method (the solid lines) when the spurious destruction effect, given
by Eq. (39), is taken into account:

qfp

qfpðf c ¼ 0Þ ¼ 1þ gr

1þ gr

2
3
gc

� ��1

ð40Þ

where gc ¼ sF
fp=s

pp
c . Fig. 9 shows also the fluid–particle velocity

covariance from the numerical simulation performed with the
CCV Monte-Carlo algorithm (the black-filled symbols). With CCV
Monte-Carlo algorithm the fluid–particle velocity covariance is con-
served because the equality CðqfpÞ ¼ 0 is accurately satisfied. For the
largest values of the collision frequency a small destruction of the
fluid–particle velocity covariance can be noticed. Fig. 10 shows that
the CCV Monte-Carlo algorithm conserves the particle kinetic
energy. Figs. 11 and 12 show the particle–particle collision time
scale measured in the numerical simulation with respect to the
Stokes number and the particle-particle mean relative velocity
respectively. As expected the collision time scale predicted by the
standard Monte-Carlo algorithm is in accordance with the predic-
tion based on molecular chaos assumption Eq. (37). Laviéville
et al. (1995) used the correlated colliding velocity closure for the
pair joint fluid–particle NDF given by (16) and assumed a
Maxwellian distribution of the joint fluid–particle distribution func-
tion to compute the following expression for the inter-particle col-
lision time scale spp

c :

spp
c ¼

spp
kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
fp

q ð41Þ

where nfp ¼ qfp=2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

f @p q2
p

q
is the fluid–particle velocity correlation

coefficient nfp 2 ½0;1�. Fig. 11 shows that the collision time scale
measured in CCV algorithm is in accordance with Eq. (41). This
trend was expected because the CCV algorithm and Eq. (41) are
both based on the same model of the pair joint fluid–particle
NDF. The differences between DPS/DNS and DPS/RANS, shown by
Fig. 11, come mainly from the fact that the preferential concentra-
tion effects are neglected in the closure of the joint fluid–particle
NDF kinetic equation (given in Section ‘Statistical description of bin-
ary collision between particles transported by a turbulent flows’).
Indeed it has been shown that for solid particles having a response
time of the order of the large turbulent scales, the particles may
concentrate in low-vorticity regions of the turbulence (see Fig. 13)
(Squires and Eaton, 1991; Fessler et al., 1994; Reade and Collins,
2000). On the one hand, as explained in Section ‘Pair number distri-
bution function closure’, the closure of the pair NDF is done by
assuming that the radial distribution function is equal to 1
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(particles are uniformly randomly distributed). On the other hand,
the fluid turbulent time scale and kinetic energy used in the
Lagrangian stochastic process (B.1) are assumed to be independent
of the Stokes number value (st

f @p ¼ st
f and q2

f @p ¼ q2
f ). So it is
τF
fp τ t

f@p = 0.22

τF
fp τ t
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Fig. 13. Particle distrib
important to notice that this is not an inherent limitation of the pro-
posed Monte-Carlo algorithm and that the preferential concentra-
tion effects could be introduced though the modelling of the
radial function g0 and of the fluid turbulent time scale st

f @p by using,
for example, a given function of the Stokes number or measured
values from the corresponding DPS/DNS results.
Monodisperse inelastic solid particles

The present section scrutinizes the efficiency of the CCV
Monte-Carlo algorithm for predicting the dynamical behaviour of
non-elastic solid particles suspended in homogeneous isotropic tur-
bulent flows. The properties of the turbulence are given by Table 1.
Only two kinds of particles are considered differing by their densi-
ties: qp ¼ 75 kg=m3 (O) and qp ¼ 300 kg=m3 (/) and for each density

two solid volume fraction have been considered ap ¼ 13:48� 10�3

and ap ¼ 53:93� 10�3. The normal restitution coefficient has been
taken such as ec = 1.0, 0.9, 0.8, 0.7, 0.6, and 0.5. The stochastic sim-
ulations have been performed with Npar = 20,000 parcels and the
number of sections for discretizing the fluid velocity space is
Nsec ¼ 10.

Fig. 14 shows the particle kinetic energy and the fluid–particle
covariance with respect to the inverse of the Stokes number. As
expected the standard Monte-Carlo algorithm predicts particle
kinetic energy and fluid–particle covariance smaller than the
DPS/DNS and the moment method. In contrast the CCV algorithm
gives predictions in accordance with the DPS/DNS and with the
moment method.
τF
fp τ t

f@p = 0.43

τF
fp τ t

f@p = 1.70

ution in DPS/DNS.
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collision frequency. Open symbols are the DPS/DNS, black-filled symbols the CCV
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solid lines are the moment method predictions.
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are the DPS/DNS, black-filled symbols the CCV Monte-Carlo, and grey-filled symbols
the standard Monte-Carlo algorithm. The solid lines are the moment method
predictions Eq. (42).
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Fig. 14. Dependence of the kinetic energy and fluid–particle velocity covariance of non-elastic particles normalized by the fluid kinetic energy seen by the particles to the
collision frequency. Open symbols are the DPS/DNS, black-filled symbols the CCV Monte-Carlo, and grey-filled symbols the standard Monte-Carlo algorithm. The solid line is
the prediction given by Eq. (38).
Fig. 15 shows the dependence of the fluid–particle velocity
covariance to the collision frequency. As expected the fluid–parti-
cle covariance is conserved in DPS/DNS and in stochastic
Monte-Carlo simulation using CCV. In contrast, the standard
Monte-Carlo algorithm exhibits a destruction of qfp. In the frame-
work of the moment method, using correlated colliding velocity
closure (16), for steady flow the particle kinetic energy is given by:
q2
p ¼ q2

f @p
gr

1þ gr
1þ gr

1þ gr

x
6

� �
� 1þ x

6

h i�1
ð42Þ
where x ¼ ð1� e2
c Þgc is a collision frequency. Fig. 16 shows that the

particle kinetic energy predicted by the CCV Monte-Carlo
simulations are in accordance with the moment method. A good
agreement is also found with DPS/DNS.
Binary mixture of colliding particles

Binary mixture of solid particles suspended in turbulent flows
involves complex physical phenomena. Indeed, as in the monodis-
perse case, the interaction of solid particles with turbulent flow
leads to transfers of kinetic energy from the gas towards the parti-
cles, but in a binary mixture the inter-particle collision between
different species leads also to kinetic energy transfers between
the solid phases (Pigeonneau, 1998; Fede and Simonin, 2003).
Obviously the last transfers are controlled by the collision
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Fig. 18. Dependence of the mean collision time scale of a q-particle with all
q-particles, sqq

c , (diamonds) and with any p-particles, spq
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in binary mixture of particles suspended in homogeneous isotropic turbulence.
Open symbols are the DPS/LES performed by Fede and Simonin (2003), the grey-
filled symbols the standard Monte-Carlo algorithm and the black-filled symbols
the CCV Monte-Carlo algorithm. The dashed lines are the moment method based on
frequency between particle species and the Monte-Carlo algorithm
has to reproduce this phenomenon. More, in the case of settling
particles, the fluid–particle interactions lead to a mean particle–
particle slip velocity between the solid species and then to the pro-
duction of particle kinetic energy (Gourdel et al., 1998; Zaichik
et al., 2009).

Binary mixture of elastic particles suspended in an homogeneous
isotropic turbulent flows

Binary mixture of particles suspended in homogeneous isotropic
turbulent flow has been numerically investigated by Fede and
Simonin (2003) with DPS/LES simulations. Material properties and
statistics of both the gas (air with a density qf = 1.17 kg/m3 and
lf = 1.72 � 10�5 kg/m/s) and the particles are gathered in Table 2.

The Monte-Carlo simulations have been carried out with 20,000
parcels split in two groups of 10,000 parcels. Then the two solid
species have the same number of parcels but different numerical
weights. The fluid velocity space is discretized in 10 sections for
the CCV Monte-Carlo algorithm.

In the framework of the kinetic theory of granular media,
the mean collision time scales of a p-particle with any q-particle,
spq

k , can be derived. Introducing the collision diameter, dpq ¼
ðdp þ dqÞ=2 this collision time scale writes
Table 2
Gas and particle material properties for mixtures of binary particles suspended in
homogeneous isotropic turbulent flow.

p-particles q-particles

Particle properties
Diameter, dp ðlmÞ 500 500

Density, qp ðkg=m3Þ 75.0 300.0

Particle restitution coefficient, ec 1.0 1.0
Volume fraction, ap (–) 1:56� 10�3 Variable

Fluid turbulence seen, q2
f @p ðm2=s2Þ 85:4� 10�3

Fluid integral time scale seen, st
f @p ðsÞ 39:4� 10�3
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Fig. 17. Dependence of the mean collision time scale of a p-particle with all p-
particles, spp

c , (squares) and with any q-particles, spq
c , (triangles up) measured in

binary mixture of particles suspended in homogeneous isotropic turbulence. Open
symbols are the DPS/LES performed by Fede and Simonin (2003), the grey-filled
symbols the standard Monte-Carlo algorithm and the black-filled symbols the CCV
Monte-Carlo algorithm. The dashed lines are the moment method based on the
molecular chaos assumption Eq. (43) and the solid lines based on the CCV closure
Eq. (44).

the molecular chaos assumption Eq. (43) and the solid lines based on the CCV
closure Eq. (44).
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lence. Open symbols are the DPS/LES performed by Fede and Simonin (2003), the
grey-filled symbols the standard Monte-Carlo algorithm and the black-filled
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1
spq

k

¼ pd2
pqnq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16
p

1
3

q2
p þ q2

q


 �r
: ð43Þ

Pigeonneau (1998) derived an expression taking into account
the correlations induced by the particle-turbulence interactions:

1
spq

c
¼ pd2

pqnq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16
p

1
3

q2
p þ q2

q � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

fpn
2
fqq2

pq2
q

q	 �s
ð44Þ

where n2
fp, respectively n2

fq, is the correlation coefficient of the p-par-
ticle, respectively the q-particles. Figs. 17 and 18 show
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inter-particle collision time scales with respect to the solid volume
fraction of q-particles. As expected, on one hand, for increasing aq

the collision time scale spq
c is decreasing because of increasing the

collision frequency. On another hand, the collision time scale spp
c

is nearly constant. Figs. 17 and 18 show that the standard
Monte-Carlo algorithm overestimates the collision frequency and
consequently underestimates the collision time scale. In contrast
the predictions of CCV Monte-Carlo algorithm are in accordance
with the DPS/LES results. Also Figs. 17 and 18 depict that the predic-
tions of the moment method are improved with CCV closure).

Fig. 19 shows the fluid–particle velocity covariance for the two
solid species with respect to the solid volume fraction of the q-par-
ticles. The fluid–particle covariance of p-particles is found decreas-
ing for increasing the collision frequency. For the standard
Monte-Carlo algorithm this trend was expected because of the
covariance destruction induced by the molecular chaos assump-
tion. However, a small decrease of qfp is also observed in DPS/LES
results and for the predictions using CCV Monte-Carlo algorithm.
The reason of the modification of the fluid–particle covariance is
a physical phenomenon that is a transfer of covariance by collision
taking place only in binary mixture of particles.

Fig. 20 shows the particle kinetic energy of the two solid phases
with respect to the solid volume fraction of q-particles. The
DPS/LES results exhibit a small decrease of p-particle kinetic
energy due to the observed decrease of the fluid–particle velocity
10-4 10-3 10-2
0

0.2

0.4

0.6

0.8

αq

q2 p
q2 f

,q
2 q

q2 f

Fig. 20. Dependence of the kinetic energy of p-particles (squares) and q-particles
(triangles) suspended in homogeneous isotropic turbulence. Open symbols are the
DPS/LES performed by Fede and Simonin (2003), the grey-filled symbols the
standard Monte-Carlo algorithm and the black-filled symbols the CCV Monte-Carlo
algorithm. The dashed lines are the moment method based on the molecular chaos
assumption and the solid lines based on the CCV closure.

Table 3
Gas and particle material properties for mixtures of binary particles falling in
homogeneous isotropic turbulent flow (as in DPS/LES the gravity is set to �49.05 m/s2).

p-particles q-particles

Particle properties
Diameter, dp ðlmÞ 650 650

Density, qp ðkg=m3Þ 117.5 235.0

Particle restitution coefficient, ec 1.0 1.0
Volume fraction, ap (–) 13:1� 10�3 Variable

Fluid turbulence seen, q2
f @p ðm2=s2Þ 0.131 0.131

Fluid integral time scale seen, st
f @p ðsÞ 23:0� 10�3 23:0� 10�3
covariance shown by Fig. 19. As expected, Fig. 20 shows that the
standard Monte-Carlo algorithm leads to a strong underestimation
of the particle kinetic energy. In the binary mixture, the molecular
chaos assumption has several consequences. The molecular chaos
assumption overestimates the collision frequency, see Fig. 17,
and also the transfer rate of particle kinetic energy from one parti-
cle specie to the other one.

Binary mixture of elastic particles falling in homogeneous isotropic
turbulent flows

The settling of a binary mixture of particles in homogeneous
isotropic turbulence has been investigated by Gourdel et al.
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Fig. 22. Dependence of the mean particle kinetic energy of particle of a binary
mixture of particles settling in homogeneous isotropic turbulence. The open
symbols are the DPS/LES performed by Gourdel et al. (1998), the grey-filled symbols
the standard Monte-Carlo algorithm and the black-filled symbols the CCV Monte-
Carlo algorithm. The solid lines are the predictions of the moment method with the
molecular chaos assumption.
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Table 4
Gas and droplet material properties for numerical simulations of coalescing droplets.

Fluid properties
Reynolds number, Re 61.2
Reynolds number, Rek 32.9
Turbulence agitation, q2

f ðm2=s2Þ 67� 10�3

Turbulent time scale, st
f ðsÞ 14:3� 10�3

Symbols h 4 �

Droplet properties at t = 0
Diameter, dp ðlmÞ 150
Volume fraction, ap (–) 8:3� 10�5

Stokes number, sp=st
f 0.11 1.01 3.00
(1998) by performing DPS/LES. In such case, the turbulence is sta-
tistically steady by using a forcing. Material properties and statis-
tics of both the gas (air with a density qf = 1.17 kg/m3 and
lf = 1.72 � 10�5 kg/m/s) and the particles are gathered in Table 3.

When particles are falling through a turbulent the fluid integral
time scale seen by the particles is modified by the mean fluid–par-
ticle relative velocity (Yudine, 1959). Csanady (1963) proposed the
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Fig. 23. Time-evolution of the normalized number of droplets suspended in THI. The sym
algorithm (solid lines: CCV algorithm and dashed lines: standard algorithm).
following model for the integral time scale of the turbulence seen
by falling particles:

st
f @p;k ¼

st
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Lf Vr

st
f

	 
2
s and st

f @p;? ¼
st

fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 Lf Vr

st
f

	 
2
s ð45Þ

where Lf is the longitudinal integral length scale of the turbulence,
Vr is the mean gas–particle relative velocity. The time scale st

f @p;k,

respectively st
f @p;?, is the Lagrangian integral time scale of the fluid

velocity seen by the particles in parallel, resp. perpendicular, direc-
tion of the mean gas–particle relative velocity. Following Simonin
et al. (1993) in stochastic simulations the Langevin equation (B.1)
is modified accordingly to (45). As previously, the Monte-Carlo sim-
ulations have been performed with 20,000 parcels split in two equal
groups of 10,000 parcels and the fluid velocity space is discretized
in 10 sections for the CCV Monte-Carlo algorithm.

The mean vertical particle velocities are shown by Fig. 21. As
expected the q-particles, namely the heaviest, are settling with a
larger velocity than the p-particles. In a binary mixture, the
inter-specie collisions lead to momentum transfers between solid
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Fig. 24. Time-evolution of the Sauter diameter d32 ¼ hd3
pi=hd

2
pi of droplets suspended in THI. The symbols are the DPS/DNS, and lines are the stochastic simulations using

Monte-Carlo algorithm (solid lines: CCV algorithm and dashed lines: standard algorithm).
phases and increasing the solid volume fraction of q-particle leads
to increase the momentum transfer. As a consequence for large
value of aq the mean particle velocities are closer and closer.
Fig. 21 shows that the Monte-Carlo simulations are both, using
the standard algorithm or the CCV algorithm, in accordance with
the moment approach (Gourdel et al., 1998; Zaichik et al., 2009)
based on molecular chaos assumption meaning that in such a case
the correlations induced by the turbulence are not important.

The particle kinetic energies with respect to the solid volume
fraction of q-particles are shown by Fig. 22. It can be noticed that
the stochastic simulations agree very well with the DPS/LES mean-
ing that the production of kinetic energy by the mean particle–par-
ticle relative velocity is well taken into account in stochastic
simulations. The small differences with the moment method pre-
diction are probably due to the anisotropy of the fluctuating
motion of the particle velocity. Indeed, the moment method used
for Figs. 21 and 22 is based on a q2

p � qfp model meaning that, for
each solid phase, only one equation for the particle kinetic energy
and one equation for the fluid–particle covariance are solved. In
the present case, the anisotropy of the particle velocity may
require a second order moment approach solving the equations
of the particle kinetic stress tensor.
Coalescing droplets

In this section we use the CCV Monte-Carlo algorithm for the
prediction of the coalescence of droplets transported by a
homogeneous isotropic turbulent flow. As for the collision of solid
particle, the numerical results from Monte-Carlo simulations are
compared with results obtained by DPS/DNS for coalescing droplets
(Wunsch et al., 2010b,a). As previously explained, in the present
study we consider only the permanent coalescence regime. Then
mass of the new droplet and its momentum are given by Eq. (9)
and (10).

As for the solid colliding particles, the computational domain is
a cubic box of length Lb ¼ 0:128 m with full periodic boundary
conditions. The fluid is air with kinematic viscosity mf ¼ 1:47�
10�5 m2 s�1 and density qf ¼ 1:17 kg m�3. All relevant physical
properties before starting the coalescence are gathered in Table 4.



The numerical simulations are performed as following. First we
perform a simulation without the coalescence. During this phase
the interaction of the droplets with the turbulence leads the dro-
plet to be agitated respecting to the local equilibrium (Tchen–
Hinze theory). Then the coalescence is activated. The statistics
before the coalescence are gathered in Table 4.

As expected and shown by Figs. 23 and 24 the coalescence leads
to the decrease of the number of droplets and increase the droplet
diameter. Fig. 23 shows the time-evolution of the droplet number
for three Stokes numbers. For the largest Stokes number
(St ¼ 3:00) the molecular chaos assumption and the CCV
Monte-Carlo algorithm predict nearly the same behaviour. In such
a case, the correlations induced by the turbulence on the two
neighbouring particles are not important. In contrast, for small val-
ues of St the molecular chaos (dashed line) overestimates the rate
of vanishing droplets by the overestimation of the collision fre-
quency. For St ¼ 1:01 the predictions given by the CCV algorithm
are in good accordance with the results by a deterministic
approach. For small Stokes number St ¼ 0:11, compare to the
molecular chaos assumption the CCV algorithm strongly improves
the results. However the coalescence rate is a little bit larger than
the one measured in DNS. This difference may be explained from
the high level of preferential concentration that occurs for such a
Stokes number (Shaw et al., 1998).
Conclusions

A new Monte-Carlo algorithm has been proposed for the predic-
tion of particle- or droplet-laden turbulent flows in framework of
the RANS approach. The algorithm allows to solve rigorously the
kinetic equation from a joint fluid–particle pdf approach. In com-
parison with other algorithms found in the literature the new
approach allows a strict conservation of the fluid–particle covari-
ance without any assumption. The new algorithm has been
assessed on several configurations: elastic monodisperse particles,
non-elastic monodisperse particles, binary mixture of elastic parti-
cles and binary mixture of elastic settling particles in turbulent
flow and finally coalescing droplets. The predictions given by the
Monte-Carlo algorithm are in very good accordance with deter-
ministic results from DPS/DNS or DPS/LES and predictions with
moment method. However, it is known that the theoretical closure
proposed by Laviéville et al. (1995) leads to an underestimation of
the correlation induced by the interaction of particles with the tur-
bulence. This effect is partially compensated because the effect of
spatial concentration is not taken into account as usual in all
Monte-Carlo algorithms.

For practical application the computational cost is essentially
the discretization of the fluid velocity realization space that
requires a large number of parcels compared to the standard algo-
rithms. However, the main goal of the paper is to demonstrate the
feasibility of the method and its assessment by comparison with
academic cases from literature. The choice of a uniform mesh for
the discretization of the fluid velocity space can be optimized in
order to reduced the computational cost.

Even if the validations have been all performed for particles sus-
pended in homogeneous isotropic turbulent flow the method
developed in the paper is not limited by that. Indeed, the nature
of the flow carrying the particles or the droplets is not a parameter
of the algorithm and the particle fluctuating motion is not sup-
posed to be in local equilibrium with the fluid turbulence.
Extension to more complex turbulent fluid flow may be directly
carried out by changing the stochastic model representing the fluid
turbulence along the particle paths such as the ones proposed by
Sawford (1991) or Pope (2002) for low Reynolds number flows or
homogeneous shear flows, respectively.
The Monte-Carlo algorithm described in the paper is developed
in the framework of the coupling between fluid RANS turbulence
and particle stochastic Lagrangian modelling approaches to
account for the particle velocity correlation induced by the interac-
tion with the whole turbulence energy spectrum. Nevertheless, as
pointed by Fede and Simonin (2006), in the DPS/LES prediction, the
unresolved fluid turbulence may induce a correlation between
velocities of colliding particles with relaxation time equal to or
smaller than the subgrid turbulent time scale. Therefore, the pro-
posed Monte-Carlo algorithm should be extended to such
DPS/LES approach by using a Lagrangian stochastic process to rep-
resent the subgrid fluid turbulence along the particle paths (Fede
et al., 2006).

Appendx A. Deterministic particle Lagrangian simulation
coupled with Direct Numerical Simulation of the gas turbulence

The fluid flow is governed by incompressible Navier–Stokes
equations discretized using a finite-volume method on staggered
mesh with a second-order centred scheme (Magnaudet et al.,
1995). The time-integration is performed with a second order
Runge & Kutta scheme. Turbulent statistically steady flow is
obtained with a stochastic spectral forcing proposed by Eswaran
and Pope (1988). The dispersed phase is composed of Np solid,
spherical, identical particles or droplets. As already explained the
forces acting on the particles are reduced to only the drag force.
Then the single particle motion governing equation writes

dxp

dt
¼ up ðA:1Þ

dup

dt
¼ �up � uf @p

sp
þ g ðA:2Þ

where xp and up are the particle position and velocity and g the
gravity that could be neglected in some cases. The particle response
time, sp, is defined as

sp ¼
qp

qf

4
3

dp

Cd

1
jup � uf @pj

: ðA:3Þ

As the two-way coupling is not considered, the undisturbed
fluid velocity uf @pðtÞ ¼ uf ðxpðtÞ; tÞ is given directly by the DNS
and evaluated at the particle position by a cubic spline interpola-
tion scheme. The drag coefficient, Cd, is given by Schiller and

Nauman (1935), Cd ¼ 24=Rep 1þ 0:15Re0:687
p

h i
with the particle

Reynolds number given by, Rep ¼ dpjup � uf @pj=mf . For the analysis,
the mean particle response time sF

fp is introduced. It is defined as

1=sF
fp ¼ 1=sp

� �
p with the particle average operator h�ip. The numer-

ical method used for the calculation of particle positions Eq. (A.1)
and velocities Eq. (A.2) is a second-order Runge & Kutta scheme
with the same time step than the DNS.

For the study on monodisperse particles and for the
droplet-laden flows the fluid flow was predicted by DNS. For the
case of the binary mixture of particles, the fluid flow was predicted
by using LES where the subgrid viscosity was modelled with the
dynamic mixed model proposed by Germano et al. (1991). In case
of DPS/LES no effect of the subgrid velocity is accounted for in the
particle trajectory equation according to Fede and Simonin (2006)
where it is shown that for particles having a sufficient inertia this
effect is negligible.

Several algorithms for the treatment of the collisions in dis-
persed phase are found in literature (Hopkins and Louge, 1991;
Sundaram and Collins, 1997; Sakiz and Simonin, 1998;
Sigurgeirsson et al., 2001). The simplest, but also an extremely
inefficient way to detect all neighbouring particles is to compute
all inter-particle distances. With such a method the numerical cost



of checking for collision of the order of OðN2
pÞ. The computation

cost can be reduced by using a detection grid (Hopkins and
Louge, 1991). Such an algorithm may reduce the computation cost
to Oð124NpÞ. For polydisperse particle mixtures and coalescence of
droplets Wunsch et al. (2008) proposed and implemented a colli-
sion detection algorithm which was used in this work. More details
can be found in Wunsch et al. (2010a). When colliding particles are
detected, the post-collisional velocities are computed in the frame
of the hard sphere collision model following Eqs. (7) and (8). For
coalescing droplets, the mass and velocity of the resulting droplet
are computed according to Eqs. (9) and (10) (corresponding to
mass and momentum conservation).
Appendix B. Stochastic particle and gas turbulence Lagrangian
simulation

The parcels are time-advanced by solving the same set of Eqs.
(A.1) and (A.2) than in DPS/DNS. As previously mentioned the pre-
diction of the fluid turbulent velocity along the trajectory of iner-
tial particle is a complex challenge (Pialat et al., 2007). In case a
homogeneous isotropic turbulent flows the Langevin equation pro-
posed by Pope (1994) is efficient. Simonin et al. (1993) proposed
the following extension for the fluid velocity seen by inertial
particles:

duf @p;i

dt
¼ �uf @p;i

st
f @p

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3

q2
f @p

st
f @p

vuut dWi ðB:1Þ

where st
f @p is the turbulent Lagrangian integral time scale seen by

the particles and dWi a Wiener process.
High-order time integration of stochastic equation is quite com-

plex (Minier and Peirano, 2001) but seems to be unnecessary in
simple flows, such as homogeneous isotropic turbulence, if the
computational time step is small enough with respect to the turbu-
lent Lagrangian integral time scale (in all stochastic simulations
the time step is such as Dt=st

f @p < 100). Then a first order Euler
scheme is used for the time integration. It leads to the following
numerical scheme for predicting the fluid velocity of each parcel

unþ1
f @;i ¼ un

f @;i 1� Dt
st

f @p

" #
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3

q2
f @p

st
f @p

Dt

vuut f ðB:2Þ

where f is a random variable following a normalized Gaussian dis-
tribution. As Eq. (B.1) is a Stochastic Differential Equation the inte-
gration scheme is a Euler–Maruyama scheme consistent with an Ito
integration (Kloeden and Platen, 1992).

In the DPS/RANS numerical simulations, the fluid turbulent
time scale and kinetic energy used in the Lagrangian stochastic
process (B.2) are assumed to be independent of the Stokes number
value (st

f @p ¼ st
f and q2

f @p ¼ q2
f ).
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