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Overlapping clustering is an important issue in clustering which allows an observation to belong to more than one cluster. Several overlapping methods were proposed to solve this issue. Although the effectiveness of these methods to detect non disjoint clusters, they fails when clusters have different densities. In order to detect overlapping clusters with different densities, we propose two clustering methods based on a new distance metric that incorporates the distance variation in a cluster to regularize the distance between a data point and the cluster representative. Experiments performed in artificial data sets show that proposed methods with the new distance metric have better performance when clusters have different densities.

Introduction

clustering aims to group homogeneous observations in the same group while heterogeneous observations must be assigned to different groups. This definition could be a crucial issue in many applications of clustering where data need to be assigned to more than cluster. This kind of problematic is referred as overlapping clustering. This problem occurs in many fields of applications of clustering such as document clustering where each document can discuss different themes, video classification where a film can have different genres [SNO 06] and emotion detection where a piece of music can evoke different emotions [WIE 06].

To solve this issue, many methods were proposed based on hierarchical [DID 84], partitioning [FU 08, BAN 05, HEL 07], correlation [BON 11] and graph based approaches [FEL 09,FEL 11]. Our works concerns with overlapping methods based on partitioning approach. Existing partitioning methods are based on mixture models [FU 08, BAN 05, HEL 07] or based k-means approaches [CLE 08]. The currently existing overlapping methods such as OKM [QIN 04] and Parameterized R-OKM [BEN 13] methods consider only the Euclidean distance between each data point and its representatives. Furthermore, the density of data points in a cluster could be distinctly different from other clusters in the data set. The used Euclidean metric evaluates only the distance between two individual data points. It ignores the global distance variation for all data points in a cluster.

Recently, a new distance metric [TSA 11] that incorporates the distance variation in a cluster to regularize the distance between a data point and the cluster centroid is proposed. We show in this work how can we incorporate this new metric in existing overlapping learning methods to detect overlapping clusters with different densities. This paper is organized as follows : Section 2 recalls the necessary background about existing overlapping methods OKM and Parameterized R-OKM. Then Section 3 presents the issue of identifying clusters with different density. After that, Section 4 describes the proposed methods OKM-σ and Parameterized R-OKM-σ while Section 5 describes experiments performed in artificial data sets. Finally Section 6 presents the conclusion and the future works.

Overlapping clustering

We describe in the following existing overlapping methods based k-means algorithm which are OKM, Parameterized R-OKM. All these methods generalize k-means for overlapping clustering.

Overlapping K-Means

OKM is an extension of K-means to detect optimal non disjoint clusters. This method proposes an extension of the objective function of k-means where overlaps are introduced and optimized iteratively. Given a set of N data points, OKM aims to find the optimal K partitions Π = {π c } K c=1 such that the following objective function is optimized :

J({π} K c=1 ) = N i=1 ||x i -(x i )|| 2 (1)
where x i is the average of representatives (denoted as "image") of clusters to which observation x i belongs to :

x i = k∈Πi c k |Π i | (2) 
where c k is the representative of cluster k and Π i is the set of clusters to which observation x i belongs to

The minimization of the objective function is performed by iterating two independent steps : -computation of cluster representatives (C).

-multi assignment of observations to one or several clusters (Π).

OKM has the issue that obtained overlaps between clusters are large. Known that overlapping clustering reconsiders the "well separated clusters" property, clusters with too large overlaps are not appropriate for most of the target applications. To solve this issue, a recent method, referred as Parameterized R-OKM, proposes a new model which performs non disjoint clusters with control of overlaps.

Parameterized R-OKM

In order to produce clusters with acceptable overlap size, Parameterized R-OKM restrict the assignment of an observation to multiple clusters according to the number of assignment Π i . Parameterized R-OKM is based on the minimization of the following objective criterion :

J({π c } K c=1 ) = N i=1 |Π i | α .||x i -(x i )|| 2 (3)
where α ≥ 0 is a parameter, fixed by the user, to control the size of the overlaps. As well as α becomes large, Parameterized R-OKM builds clusters with more reduced overlaps. When α = 0, Parameterized R-OKM coincides exactly with OKM.

For the minimization of the objective criterion, Parameterized R-OKM uses the same minimization steps used for OKM.

The issue of clusters with non uniform densities

The existing OKM and Parameterized R-OKM methods consider only the Euclidean distance between each data point and every cluster representative. The used Euclidean metric evaluates only the distance between two individual data points and it ignores the global distance variation for all data points in a cluster. Therefore, OKM and Parameterized R-OKM fail to detect clusters with different densities leading to clusters with large overlaps. Figure 1 presents the issue of clusters with uneven densities and shows two clusters with different densities where the red clusters have a low density compared to the blue cluster. Known that in real life applications of overlapping clustering the density of data points in a cluster could be distinctly different from other clusters in the data set, we show in the next section how can we adapt OKM and Parameterized R-OKM to detect these types of clusters.

Figure 1. Two clusters with different densities : The "red" cluster is characterized by low density and the "blue" cluster is characterized by high density

Proposed Methods

In real life applications of overlapping clustering, and in order to fit the data set structure, the learning algorithm should be able to detect overlapping clusters with non uniform density. Therefore, we propose to extend OKM and Parameterized R-OKM to detect these types of clusters by introducing a regularization of clusters' density in the optimized objective function of these methods. The new proposed methods are referred as OKM-σ and Parameterized R-OKM-σ.

Overlapping k-means-σ (OKM-σ)

To take into account that clusters can have non uniform densities, we introduce a regularization factor σ i for each observation x i . Given the set of N observations, OKM-σ minimizes the following objective criterion :

J({π c } K c=1 ) = N i=1 d2 (x i , (x i )) = N i=1 x i -(x i ) 2 σ i , (4) 
where σ i is defined by the average of clusters' density σ k to which observation x i belongs to :

σ i = M in {k∈Πi} (σ k ).
To take into account that an observation could be assigned to more than cluster and to guarantee the decrease of the objective function, we define the cluster density σ k as the average distances between each observation x i and its image x i belonging to cluster k :

σ k =            N i=1 P ik .||x i -(x i )|| 2 N i=1 P ik            1/2 , ( 5 
)
where P i k is a binary variable indicating membership of observation x i to cluster k.

Parametezied ROKM-σ

In the same way that OKM-σ, we introduce the distance based cluster density within the objective function of Parameterized R-OKM-σ. The new objective criterion is defined by :

J({π c } K c=1 ) = N i=1 |Π i | α d2 (x i , (x i )) = N i=1 |Π i | α x i -(x i ) 2 σ i , (6) 
where σ i is the regularization factor local to the observation x i as described in Equation 4.1 for OKM-σ. However, the cluster density σ k is defined for Parameterized R-OKMσ by :

σ k =            N i=1 P ik .|Π i | α .||x i -(x i )|| 2 N i=1 P ik .|Π i | α            1/2 . ( 7 
)

Algorithmic resolution

The minimization of the objective function of each proposed method (OKM-σ and Parameterized R-OKM-σ) is performed by iterating three steps : (1) computation of cluster representatives C, (2) multi assignment (Π) of observations to one or several clusters and (3) computation of weights (σ k ) for each cluster. These three steps are independent and the objective function is reduced on each step. Known that OKM-σ is a specific case of Parameterized R-OKM-σ (when α = 0), we present in Algorithm 1 the generic algorithm of Parameterized R-OKM-σ. This algorithm uses the function ASSIGN -σ that defines the assignment strategy. This strategy consists, for each observation x i , in sorting clusters from closest to farthest with respect to the new distance c then assigning observations in the order defined while assignment improves the local error therefore, reducing the objective function after each assignment step. A pseudo code for the ASSIGN -σ function is described in Algorithm 2.

Experiments

This section evaluates the effectiveness of OKM-σ and Parameterized R-OKM-σ on artificial data sets.

Algorithm 1 Parameterized R-OKM-σ (X, t max , ε, K) → Π Require: X : a data set described over R d .

t max : maximum number of iterations. ε : minimal improvement in the objective function. K : number of clusters. Ensure: Π : assignment of observations over K clusters.

1: Initialize representatives of clusters C 0 randomly over X, initialize weights σ 0 k , initialize clusters memberships Π 0 using ASSIGN -σ and compute the objective function J(Π 0 , C 0 , σ 0 ) at iteration 0. 2: t = t + 1. 3: Update clusters representatives C t . 4: Compute new assignments Π t using ASSIGN -σ(x i , C t , Π t-1 i ) ∀i. 5: Update weights σ t = (using Equation 7). 6: Compute objective function J(Π t , C t , σ t ). 7: if (t < t max and J(Π t-1 , C t-1 , σ t-1 ) -J(Π t , C t , σ t ) > ε) then 8:

Go to step 2. 9: else 10: Return Π t the final cluster memberships matrix.

11: end if Algorithm 2 ASSIGN -σ(x i , {c 1 , ...c K }, Π old i ) → Π i Require: x i : Vector in R d .
{c 1 , ...c K } : K cluster representatives. Π old i : Old assignment for observation x i . Ensure: Π i : New assignment for x i .

1: Initialize Π i = {c } the nearest cluster where c = arg min c k x i -c k 2 .

2: Looking for the next nearest cluster c which is not included in Π i . 3: Compute (x i ) and σ i with assignments

Π i = Π i ∪ {c }. 4: if |Π i | α . xi-xi 2 σ i ≤ |Πi| α . xi-xi 2 σi then 5:
Π i ← Π i and go to step 2.

6:

if σ i . x i -x i 2 ≤ σ old i . x i -x i 2 then 7: Return Π i . 8: else 9:
Return Π old i .

10:

end if 11: end if

Data sets and evaluation measures

We evaluate proposed methods on two artificial data sets. The first data set, "Artificial data set 1", contains two classes where each class contain 500 observations defined in two dimensional space. These two classes have different densities : the "blue" class have high density than the "red" class. For the second data set, "Artificial data set 2", we modified the radius of the "red" cluster which becomes more large.

We evaluate quality of obtained non disjoint groups by visualizing produced patterns. Then we compare the partitioning using external validation measures (Precision, Recall and F-measure). These validation measures attempt to estimate whether the prediction of categories is correct with respect to the underlying true categories in the data.

Empirical results

Table 1. Comparison between OKM-σ and OKM in artificial data sets OKM OKM-σ Data set Precision Recall F-measure Precision Recall F-measure Artificial data set 1 0, 810 ± 0, 00 1, 00 ± 0, 00 0, 895 ± 0, 00 0, 886 ± 0, 04 1, 00 ± 0, 00 0, 939 ± 0, 02 Artificial data set 2 0, 702 ± 0, 08 0, 998 ± 0, 00 0, 817 ± 0, 06 0, 854 ± 0, 01 1, 00 ± 0, 00 0, 921 ± 0, 01 Data set Precision Recall F-measure Precision Recall F-measure Artificial data set 1 0, 896 ± 0, 01 0, 998 ± 0, 00 0, 944 ± 0, 01 0, 935 ± 0, 01 1, 00 ± 0, 00 0, 966 ± 0, 01 Artificial data set 2 0, 874 ± 0, 01 0, 995 ± 0, 00 0, 930 ± 0, 01 0, 926 ± 0, 01 1, 00 ± 0, 00 0, 962 ± 0, 01 Table 3. Comparison between Parameterized R-OKM-σ and Parameterized R-OKM with α = 2 in artificial data sets

Parameterized R-OKM (α = 2) Parameterized R-OKM-σ (α = 2)
Data set Precision Recall F-measure Precision Recall F-measure Artificial data set 1 0, 947 ± 0, 00 0, 995 ± 0, 01 0, 970 ± 0, 02 0, 960 ± 0, 05 0, 999 ± 0, 05 0, 979 ± 0, 01 Artificial data set 2 0, 937 ± 0, 00 0, 994 ± 0, 00 0, 965 ± 0, 01 0, 954 ± 0, 05 0, 998 ± 0, 01 0, 975 ± 0, 01

Figure 2 shows the patterns produced by OKM-σ and Parameterized R-OKM-σ versus patterns produced by the original methods. At first, we notice that all methods are able to produce non disjoint clusters. Then, for OKM we notice the large overlapping boundaries built by this method ("green" patterns). This method fails to find the true label. This problem is partially solved using OKM-σ where overlaps between the two clusters are reduced. For parameterized R-OKM, we notice that overlaps can be reduced as the value of the parameter α increases.

Table 1, Table 2 and Table 3 report the average values, on ten runs, of Precision, Recall and F-measure obtained with OKM-σ, Parameterized R-OKM-σ, OKM and Parameterized R-OKM in artificial data sets. These results show that proposed methods outperform the original ones comparing to the overall F-measure. For example, using OKM-σ in artificial data set 2, the obtained F-measure increases from 0.817 to 0.921 compared to OKM. The improvement of F-measure in all data set is induced by the improvement of Precision. This result is explained by the fact that original methods build large overlaps as the density between the the two classes becomes different. However, using proposed methods this problem is solved.

Conclusion

We proposed in this paper two new methods able to produce non disjoint clusters when clusters have different densities. These new methods introduced a new distance metric which regularizes the variation in densities between the obtained clusters. Experiments performed in artificial data sets show the effectiveness of proposed methods compared to the original ones to build more relevant clusters.

The evaluation of proposed methods are performed in artificial data sets. As a future works, we plan to confirm these results over real overlapping data sets. 
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