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HETEROGENEOUS AB-INITIO CASE

Yves Michels, Étienne Baudrier

ICube, University of Strasbourg, CNRS
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ABSTRACT

A cryo Electron Microscopy dataset is composed on tomo-
graphic projections of an object (e.g. a macromolecule). The
projection orientation information is unknown. The scope of
this paper is the projection parameterization in the case of a
deformable object. An overview of the parametrization meth-
ods is presented. Then a new approach based on manifold
learning is detailed. Finally, an evaluation method for each
substep of the parameterization is proposed. The resulting
evaluation of the different methods on a 2D synthetic database
shows the efficiency of our approach.

Index Terms— tomography, cryo EM, heterogeneous set,
parametrization, manifold learning

1. INTRODUCTION

The Cryo-Electron Microscopy (Cryo EM) is one of the main
imaging modalities to study macromolecules. It enables, af-
ter reconstruction, to visualize the 3D volume of large macro-
molecules (1 000-10 000 atoms) with a resolution around the
nanometer. The Cryo EM data consists of a large number
(10 000-1 000 000) of images, each including a tomographic
projection of a single specimen of the same macromolecule.
For each images, the orientation and the state of deformation
are unknown. Therefore, the reconstruction of a 4D object
from the images obtained by cryo-EM is a difficult problem
with important biological issues. If the case of a single object
is well studied [1], the so-called heterogeneous case where
the object has several states or a continuous set of states, is
an active research field. In cryo EM, there are 3 groups of
reconstruction methods: a) an ab initio analysis where the to-
mographic projections are sorted then a reconstruction by sta-
tistical methods [2], b) the tomographic projections are clas-
sified into subsets according to their orientation, then the het-
erogeneity analysis is made within each subset to identify dif-
ferent conformation [3], c) a posteriori analysis: a very large
number of independent 3D maps are reconstructed after ran-
dom selection of a small number of projections. Their com-
parison is used to locate areas of high variance in order to
reclassify the projections according to these areas [4]. The b
and c methods require a prior reconstruction. This prior re-

construction is used to refine projection parameters and then
influences all the reconstructions. The frame of this paper is
the ab-initio heterogeneous case, where all the projection pa-
rameters have to be estimated. In this case, the reconstruction
process is generally composed of two steps: the estimation of
the orientation and deformation parameters, then the object
reconstruction from the projections and the parameter values.
Only the parameter estimation step is studied in this paper.

The organization of the paper is as follows. Hereafter
we describe briefly the state of the art for the parameter es-
timation. In Section 2, the dimension reduction step and the
parameter estimation step of our estimation method are de-
tailed. Then, in Section 3, experiments on both of these steps
are conducted. A test on noise robustness is also made. A
conclusion and perspectives end this paper in Section 4.

State of the art In the heterogeneous case without prior
knowledge, the parameter estimation step relies on optimiza-
tion cost [5], on likelihood optimization [6] or on a reduction
of the dimension from the projection space to the the parame-
ter space [7]. A study on the noise robustness of a dimension
reduction based method is made in the 2D homogeneous case
in [8]. In the case of a continuous deformation, the dimension
reduction is interesting as the set of all the object conforma-
tions is a smooth manifold. Due to the direction parameter,
the parameter space is not linear, which implies to choose a
non-linear dimension reduction method.

Severals non-linear reduction dimension algorithms exist.
This step plays an important role in the estimation accuracy,
thus we pay a particular attention to the choice of the manifold
learning method. Three general methods are adapted to our
problem: i) The Graph Laplacian [9], widely used for mani-
fold denoising [10] and dimension reduction, especially in the
domain of tomography; ii) The methods based on the conser-
vation of the local topology of the manifold. The chosen one
for the comparison is the Hessian Locally Linear Embedding
(H-LLE) [11]; iii) The methods based on the conservation of
the distances in the manifold. The chosen one is Isomap [12].

2. PROPOSED METHOD

Let ρ(p, x, y) be the density function of a planar deformable
object, where (x, y) ∈ R2 are the planar coordinates and p ∈



[0, 1] is a deformation parameter. Note that this model implies
that we restrict ourselves to parameterizable deformation. In
cryo EM, ρ stands for the electron absorption of the object. Its
Radon transformP(θ,p)(t) returns the value of the line integral
of ρ(p) along the parallel line L inclined at the angle θ with
distance t from the origin [13].

P(θ,p)(t) =

∫
l∈L

ρ(p, xL, yL)dl (1)

For a given state of deformation p, tomographic recon-
struction algorithms need the prior knowledge of the orienta-
tion θ for each projection. In this paper we consider n acqui-
sitions (πi)16i6n corresponding to unknown parameter cou-
ples (θi, pi). We suppose here that these parameter couples
are uniformly distributed in [0, 2π[×[0, 1]. Each acquisition
is a vector in a m dimension space πi = (πi,j)16j6m. The
set of projection acquisition is subject to high level of noise,
modeled in our research by additive white Gaussian noise. In
the case where the projections are parametrized with few pa-
rameters, the projections are lying in a low dimensional (LD)
space whose the intrinsic dimensionality, d, is related to the
number of freedom degrees. We call representation, the rep-
resentation of a projection in a LD space.

2.1. Parameters estimation

In the 2D heterogeneous case, there are two unknown param-
eters with one in a modular space: θ ∈ R

2πZ . As the estimation
is done in the LD space, the ideal dimension reduction has to
map the reduced projections on a cylinder. As there is a high
noise level on real data, the represented manifold can have
uncontrollable behavior and may not map on an easily pa-
rameterizable manifold. An illustration of this case is shown
in Fig.1.

Fig. 1: Representation of 3200 noisily projections with
SNR=10dB after a dimension reduction process.

To avoid this problem, we propose to parametrize the pro-
jection set in two steps. The first step parametrizes the angle
and the next steps parametrize the deformation:

i) The angles are estimated with the same method as in [9],
[14]. The orientations are estimated by ordering the represen-
tations in the first two dimensions where the representations
are lying on a circle. We can define for each point an angle φl
which respects:

Xl + iYl = r(l)eiφl (2)

where Xl and Yl are the first two coordinates of the represen-
tation of the projection l. Within a constant, the order of the
orientations θl is the same as the order of the angles φl.

ii) Once the orientations estimated, the set of projections
is separated in several subsets corresponding to a segment of
orientations θ̂ ∈ [θmin, θmax[. A dimension reduction algo-
rithm is then applied on each subset in order to obtain a 2-
dimension representation of the projections where the defor-
mation is easily estimable, Fig. 2.

iii) The representations are rotated in order to align the
axes of equivalent angles along the first dimension as shown
in Fig. 2. Then the slight remaining curvature is corrected
by aligning the hulls along the second dimension. The hulls
are modeled by a second order polynomial function. An il-
lustration is given by the cross in magenta in Fig.2 Empirical
experiences showed that our correction is not appropriate for
subsets containing more than n/6 projections because of the
complexity of the geometry of the manifold. However, the
variance of the estimation is proportional of the inverse of the
subset size. A reasonable trade off is to divide the dataset in
8 subsets of projections.

Fig. 2: (Left) Representation of a subset of 400 projections
extracted from 3200 projections of our object with orientation
and state of deformation uniformly distributed in [0, 2π) ×
[0, 1]. (Right) The same representation aligned by axes of
equivalent angles. The two estimated hulls are represented
with magenta crosses.

iv) The deformation parameters are estimated by ranking
the representations along the first dimension for each subset.
To use an unique definition of the deformation, the deforma-
tion estimations are aligned with the neighbored subsets. The
alignment is illustrated in Fig.3



Fig. 3: Concatenation of 8 corrected representations of the
projection subsets on the right and estimation of (θ, p) by
ranking and registering the subsets. The color corresponds
to the state of deformation.

2.2. Non-linear dimension reduction

The comparison of the manifold learning methods, presented
in Section 3 gives Isomap as the best dimension reduction
method to parametrize the projection set among the tested
method. Then, in this section, our method is detailed using
the Isomap method.

The use of a priori knowledge allows us to adapt the non-
linear dimension reduction. In tomography, two projections
with opposite orientations are symmetric:

P(θ+π,p)(t) = P(θ,p)(−t) (3)

where t = 0 corresponds to the center of rotation of the ob-
ject.

With a symmetrized Euclidean distance between the pro-
jections, it is possible to restrict the orientation parameter θ
in [0, π). The use of this distance decreases by 2 the standard
deviation of the estimation[9].

The dimension reduction relies on the conservation of
the distances between the projections in the high dimensional
space and the distances between the representations in the LD
space. Nevertheless the distance used in the LD space is the
Euclidean distance while the reference one is the geodesic
distance. In general cases, the distance due to the deforma-
tion is smaller than the distance due to the orientation. As this
property is conserved by the dimension reduction, the man-
ifold of the whole dataset in the LD space is a thin cylinder.
To improve the orientation estimation, the Euclidean distance
can be estimated in the LD space with the formula:

DEl,h
=

√
2− 2cos(Gl,h), (4)

with (l, h) ∈ {1, ..., n}2 and where DE is the estimated
Euclidean distance in the LD space and G is the normal-
ized geodesic distance estimated in the projections space,
max(G) = π. The adaptations are summarized in Fig.4.

2.3. Noise robustness

In Cryo-EM, the dataset is subject to a high level of noise
that is modeled by a white Gaussian noise with low Signal to
Noise Ratio (SNR).

(a) Geodesic distance
(b) Estimated Euclidean dis-
tance

Fig. 4: Representations of 3200 projections issues from our
object with orientation and state of deformation uniformly
distributed in [0, 2π) × [0, 1]. The color corresponds to the
state of deformation.

The noise propagates to the distance graph where it may
induce shortcuts that compromise the dimension-reduction
process. The denoising occurs in 2 steps:

i) A denoising algorithm is used before our dimension re-
duction step. Because of the large number of projections, n,
we choose a graph based denoising algorithm [10] which effi-
ciently recovers the topology of the manifold and the respec-
tive position of each projections. Nevertheless, as this denois-
ing method smooths the projections, the denoised projections
are only used for the parameter estimation. The used denois-
ing method depends on 2 parameters that are determined ex-
perimentally: the number of neighbors k = 25 used to com-
pute the graph sets and a step to compute the Euler’s scheme
fixed to δ = 0.1.

ii) All the neighbor which are not mutual are suppressed
from the neighbor graph.

3. EXPERIMENTATION

This section proposes a comparison of the dimension reduc-
tion and an evaluation of our method. The dataset is com-
posed of projections from ten 2-dimensional objects made us-
ing the MolMov databank [15, 16, 17, 18] where the defor-
mation is controlled by a parameter p ∈ [0, 1] presented in
Fig.5. To fit to the reality, the projections are taken at random
orientations and deformations (θi, pi)i∈[1,n].

Fig. 5: One 2D object in 5 conformations corresponding to
p = {0, 0.25, 0.5, 0.75, 1}.

Comparison of the dimension-reduction methods The
comparison is done on the ability to make, locally, the orienta-



Isomap H-LLE Laplacian Graph
Ep 6.68 8.12 6.05
Eθ 13.04 3.39 3.10
C 0.217 0.198 0.480
ε 0.0446 0.0559 0.1580
ω 16.05 9.48 6.59

Table 1: Result of the evaluation of the dimension-reduction
methods

tion and deformation parameter separable and estimable. Let
θ0 and p0 be a given orientation and deformation state. Let
define Sp = {R(θ,p) , p ∈ [0, 1], θ ∈ [θ0 − dθ, θ0 + dθ]} and
Sθ = {R(θ,p0) , θ ∈ [θ0−α, θ0+α], p ∈ [p0−dp, p0+dp]},
where R is the LD representation of P(θ,p), dθ > 0 and
dp > 0. We can define a distribution ellipse for Sp and Sθ.
Lets aθ and bθ (respectively ap and bp) the first two principles
axis of the distribution ellipse of Sθ (respectively Sp). The
elongation of the point cloud is quantified by Eθ = |aθ|/|bθ|,
respectively Ep = |ap|/|bp|. The collinearity between the
two points clouds is quantified by C = | < ap, aθ > | where
< ., . > is the scalar product. The ability of the dimension-
reduction method to make the parameters estimable is evalu-
ated by the error of the deformation parameter estimation, ε,
made by ranking the representation of Sp along ap. An illus-
tration is given in Fig.6. the aim of the dimension-reduction
step is to obtain high elongations Eθ and Ep, a low corre-
lation C and a low error ε. Then we propose the following
indicator ω to evaluate the dimension-reduction success.

ω =
(1− C)

√
EθEp

0.5− ε

(a) Isomap, w =
14.8

(b) H-LLE, w = 5.7 (c) Laplacian graph,
w = 2.7

Fig. 6: Representation of the same subset of 380 projections
by Isomap, H-LLE and Laplacian Graph methods. The points
in Sp are marked by red crosses and the points in Sθ are
marked by magenta circles.

The evaluation is done on 150 subsets of 380 projections
from a dataset of 3000 projections. For each subset, a reduc-
tion dimension is applied and the features are calculated for
p0 = 0.5 and θ0 which is the median of the projection orien-
tations in the subset.

Noise robustness We apply the above algorithm to the esti-
mation of the parameters (θi, pi)i∈[1,n] from the dataset. The
evaluation of our method is done on the accuracy of the es-
timation measured by the mean of the absolute error of the
estimation. Two factors can impact the quality of the es-
timation: the number of projections and the level of noise.
Fig.7 represents the error made on a set of 4096 projections
with different noise levels. For a given SNR, the noise is a
Gaussian with zero mean and a variance, σ2, that satisfies
SNR[dB] = 10 log(varsignal/σ

2), where varsignal is the
variance of the signal without the edges P(θi,pi)(tj) = 0.

Fig. 7: Mean absolute error of the estimations in function of
the SNR, with the denoising step, in red, without the denois-
ing step, in blue. The curve is an average on 10 experiments,
each corresponding to one 2D object, done on a set of 4096
projections P(θ,p) ∈ R217 taken at random (θi, pi).

When the number of projections is too low, the estima-
tion method suffers from artifacts on the estimation of p be-
cause of the size of the subsamples. For reasonable number
of projections, n > 2500, the standard deviation of the er-
ror is around 2 degrees and 0.05 unity of deformation for a
SNR higher than 7dB. For SNR lower than 4dB the estimation
is highly impacted by the presence of non-detected shortcuts
which requires to be processed.

4. CONCLUSION

This paper introduces a new method based on manifold learn-
ing to estimate the orientation and deformation states from a
set of tomographic projections of a deformable object. The
projection set is embedded in a low dimensional space where
the projection orientation is estimated by first, then the de-
formation parameter is estimated on subsets of the projection
set in the low dimensional space. An indicator is proposed to
evaluate the ability of the method to separate the deformation
from the orientation in the LD space. Our method is com-
pared with state-of-the-art dimension-reduction methods on a
2-dimensional deformable object and the test shows that our
method gives the best separation ability and accurate estima-
tion even at high level of noise.

In future works, shortcut detection algorithms will be de-
veloped and the method will be extended to the 3D case and
tested on real data.
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