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Hervé Jégou1

1Inria Rennes, France
2Technicolor, France

1{firstname.lastname}@inria.fr, 2{firstname.lastname}@technicolor.com

Abstract. This paper tackles the task of storing a large collection of
vectors, such as visual descriptors, and of searching in it. To this end, we
propose to approximate database vectors by constrained sparse coding,
where possible atom weights are restricted to belong to a finite sub-
set. This formulation encompasses, as particular cases, previous state-of-
the-art methods such as product or residual quantization. As opposed
to traditional sparse coding methods, quantized sparse coding includes
memory usage as a design constraint, thereby allowing us to index a
large collection such as the BIGANN billion-sized benchmark. Our ex-
periments, carried out on standard benchmarks, show that our formula-
tion leads to competitive solutions when considering different trade-offs
between learning/coding time, index size and search quality.

Keywords: Indexing, approximate nearest neighbor search, vector quan-
tization, sparse coding.

1 Introduction

Retrieving, from a very large database of high-dimensional vectors, the ones
that “resemble” most a query vector is at the heart of most modern information
retrieval systems. Online exploration of very large media repositories, for tasks
ranging from copy detection to example-based search and recognition, routinely
faces this challenging problem. Vectors of interest are abstract representations of
the database documents that permit meaningful comparisons in terms of distance
and similarity. Their dimension typically ranges from a few hundreds to tens of
thousands. In visual search, these vectors are ad-hoc or learned descriptors that
represent image fragments or whole images.

Searching efficiently among millions or billions of such high-dimensional vec-
tors requires specific techniques. The classical approach is to re-encode all vectors
in a way that allows the design of a compact index and the use of this index
to perform fast approximate search for each new query. Among the different
encoding approaches that have been developed for this purpose, state-of-the-
art systems rely on various forms of vector quantization: database vectors are
approximated using compact representations that can be stored and searched
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efficiently, while the query need not be approximated (asymmetric approximate
search). In order to get high quality approximation with practical complexities,
the encoding is structured, typically expressed as a sum of codewords stemming
from suitable codebooks. There are two main classes of such structured quantiza-
tion techniques: those based on vector partitioning and independent quantization
of sub-vectors [1–3]; those based on sequential residual encoding [4–9].

In this work, we show how these approaches can be taken one step fur-
ther by drawing inspiration from the sparse coding interpretation of these tech-
niques [10]. The key idea is to represent input vectors as linear combinations
of atoms, instead of sums of codewords. The introduction of scalar weights al-
lows us to extend both residual-based and partitioned-based quantizations such
that approximation quality is further improved with modest overhead. For this
extension to be compatible with large scale approximate search, the newly in-
troduced scalar weights must be themselves encoded in a compact way. We
propose to do so by quantizing the vector they form. The resulting scheme will
thus trade part of the original encoding budget for encoding coefficients. As
we shall demonstrate on various datasets, the proposed quantized sparse repre-
sentation (i) competes with partitioned quantization for equal memory footprint
and lower learning/coding complexity and (ii) outperforms residual quantization
with equal or smaller memory footprint and learning/coding complexity.

In the next section, we discuss in more details the problem of approxi-
mate vector search with structured quantizers and recall useful concepts from
sparse coding. With these tools in hand, we introduce in Section 3 the pro-
posed structured encoding by quantized sparse representations. The different
bricks –learning, encoding and approximate search– are presented in Sections
4 and 5, both for the most general form of the framework (residual encoding
with non-orthogonal dictionaries) and for its partitioned variant. Experiments
are described and discussed in Section 6.

2 Related work

Approximate vector search is a long-standing research topic across a wide range
of domains, from communication and data mining to computer graphics and sig-
nal processing, analysis and compression. Important tools have been developed
around hashing techniques [11], which turn the original search problem into the
one of comparing compact codes, i.e., binary codes [12], see [13] for a recent
overview on binary hashing techniques. Among other applications, visual search
has been addressed by a number of such binary encoding schemes (e.g., [14–18]).

An important aspect of hashing and related methods is that their efficiency
comes at the price of comparing only codes and not vectors in the original input
space. In the present work we focus on another type of approaches that are cur-
rently state-of-art in large scale visual search. Sometimes referred to as vector
compression techniques, they provide for each database vector x an approxima-
tion Q(x) ≈ x such that (i) the Euclidean distance (or other related similarity
measure such as inner product or cosine) to any query vector y is well estimated
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using Q(x) instead of x and (ii) these approximate (di)similarity measures can
be efficiently computed using the code that defines Q(x).

A simple way to do that is to rely on vector quantization [19], which maps
x to the closest vector in a codebook learned through k-means clustering. In
high dimensions though, the complexity of this approach grows to maintain fine
grain quantization. A simple and powerful way to circumvent this problem is
to partition vectors into smaller dimensional sub-vectors that are then vector
quantized. At the heart of product quantization (PQ) [2], this idea has proved
very effective for approximate search within large collections of visual descrip-
tors. Different extensions, such as “optimized product quantization” (OPQ) [1]
and “Cartesian k-means” (CKM) [3] optimize the chosen partition, possibly af-
ter rotation, such that the distortion ‖x−Q(x)‖ is further reduced on average.
Additionally, part of the encoding budget can be used to encode this distortion
and improve the search among product-quantized vectors [20].

It turns out that this type of partitioned quantization is a special case of
structured or layered quantization:

Q(x) =

M∑
m=1

Qm(x), (1)

where each quantizer Qm uses a specific codebook. In PQ and its variants, these
codebooks are orthogonal, making learning, encoding and search efficient. Sacri-
ficing part of this efficiency by relaxing the orthogonality constraint can nonethe-
less provide better approximations. A number of recent works explore this path.

“Additive quantization” (AQ) [21] is probably the most general of those,
hence the most complex to learn and use. It indeed addresses the combinatorial
problem of jointly finding the best set of M codewords in (1). While excellent
search performance is obtained, its high computational cost makes it less scalable
[22]. In particular, it is not adapted to the very large scale experiments we report
in present work. In “composite quantization” (CQ) [8], the overhead caused
at search time by the non-orthogonality of codebooks is alleviated by learning
codebooks that ensure ‖Q(x)‖ = cst. This approach can be sped up by enforcing
in addition the sparsity of codewords [9]. As AQ –though to a lesser extent– CQ
and its sparse variant have high learning and encoding complexities.

A less complex way to handle sums of codewords from non-orthogonal code-
books is offered by the greedy approach of “residual vector quantization” (RVQ)
[23, 24]. The encoding proceeds sequentially such that the m-th quantizer en-

codes the residual x −
∑m−1

n=1 Qn(x). Accordingly, codebooks are also learned
sequentially, each one based on the previous layer’s residuals from the training
set. This classic vector quantization approach was recently used for approximate
search [4, 5, 7]. “Enhanced residual vector quantization” (ERVQ) [4] improves
the performance by jointly refining the codebooks in a final training step, while
keeping purely sequential the encoding process.

Important to the present work, sparse coding is another powerful way to
approximate and compress vectors [25]. In this framework, a vector is also ap-
proximated as in (1), but with each Qm(x) being of the form αmckm

, where
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αm is a scalar weight and ckm
is a unit norm atom from a learned dictionary.

The number of selected atoms can be pre-defined or not, and these atoms can
stem from one or multiple dictionaries. A wealth of techniques exist to learn
dictionaries and encode vectors [25–27], including ones that use the Cartesian
product of sub-vector dictionaries [28] similarly to PQ or residual encodings [29,
30] similarly to RQ to reduce encoding complexity. Sparse coding thus offers rep-
resentations that are related to structured quantization, and somewhat richer.
Note however that these representations are not discrete in general, which makes
them a priori ill-suited to indexing very large vector collections. Scalar quanti-
zation of the weights has nonetheless been proposed in the context of audio and
image compression [29, 31, 32].

Our proposal is to import some of the ideas of sparse coding into the realm
of approximate search. In particular, we propose to use sparse representations
over possibly non-orthogonal dictionaries and with vector-quantized coefficients,
which offer interesting extensions of both partitioned and residual quantizations.

3 Quantized sparse representations

A sparse coding view of structured quantization Given M codebooks,
structured quantization represents each database vector x as a sum (1) of M
codewords, one from each codebook. Using this decomposition, search can be
expedited by working at the atom level (see Section 5). Taking a sparse coding
viewpoint, we propose a more general approach whereby M dictionaries1, Cm =
[cm1 · · · cmK ]D×K , m = 1 · · ·M , each with K normalized atoms, are learned and a
database vector x ∈ RD is represented as a linear combination:

Q(x) =

M∑
m=1

αm(x)cmkm(x), (2)

where αm(x) ∈ R and km(x) ∈ J1,KK. Next, we shall drop the explicit depen-
dence in x for notational convenience. As we shall see in Section 6 (Fig. 1), the
additional degrees of freedom provided by the weights in (2) allow more accurate
vector approximation. However, with no constraints on the weights, this repre-
sentation is not discrete, spanning a union of M -dimensional sub-spaces in RD.
To produce compact codes, it must be restricted. Before addressing this point,
we show first how it is obtained and how it relates to existing coding schemes.

If dictionaries are given, trying to compute Q(x) as the best `2-norm approxi-
mation of x is a special case of sparse coding, with the constraint of using exactly
one atom from each dictionary. Unless dictionaries are mutually orthogonal, it
is a combinatorial problem that can only be solved approximately. Greedy tech-
niques such as projection pursuit [33] and matching pursuit [34] provide partic-
ularly simple ways to compute sparse representations. We propose the following

1 Throughout we use the terminology codebook for a collection of vectors, the code-
words, that can be added, and dictionary for a collection of normalized vectors, the
atoms, which can be linearly combined.
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pursuit for our problem: for m = 1 · · ·M ,

km = arg max
k∈J1,KK

r>mcmk , αm = r>mcmkm
, (3)

with r1 = x and rm+1 = rm−αmcmkm
. Encoding proceeds recursively, selecting in

the current dictionary the atom with maximum inner-product with the current
residual.2 Once atoms have all been sequentially selected, i.e., the support of
the M -sparse representation is fixed, the approximation (2) is refined by jointly
recomputing the weights as

α̂ = arg min
α∈RM

‖x− C(k)α‖22 = C(k)†x, (4)

with k = [km]Mm=1 ∈ J1,KKM the vector formed by the selected atom indices,
C(k) = [c1k1

· · · cMkM
]D×M the corresponding atom matrix and (·)† the Moore-

Penrose pseudo-inverse. Vector α̂ contains the M weights, out of KM , associ-
ated to the selected support. Note that the proposed method is related to [29, 30].

Learning dictionaries In structured vector quantization, the M codebooks
are learned on a limited training set, usually through k-means. In a similar
fashion, k-SVD on a training set of vectors is a classic way to learn dictionaries
for sparse coding [25]. In both cases, encoding of training vectors and optimal
update of atoms/codewords alternate until a criterion is met, starting from a
sensible initialization (e.g., based on a random selection of training vectors).
Staying closer to the spirit of vector quantization, we also rely on k-means in its
spherical variant which fits well our needs: spherical k-means iteratively clusters
vector directions, thus delivering meaningful unit atoms.

Given a set Z = {z1 · · · zR} of R training vectors, the learning of one dictio-
nary of K atoms proceeds iteratively according to:

Assignment : kr = arg max
k∈J1,KK

z>r ck, ∀r ∈ J1, RK, (5)

Update : ck ∝
∑

r:kr=k

zr, ‖ck‖ = 1, ∀k ∈ J1,KK. (6)

This procedure is used to learn the M dictionaries. The first dictionary is learned
on the training vector themselves, the following ones on corresponding residual
vectors. However, in the particular case where dictionaries are chosen within
prescribed mutually orthogonal sub-spaces, they can be learned independently
after projection in each-subspace, as discussed in Section 4.

Quantizing coefficients To use the proposed representation for large-scale
search, we need to limit the possible values of coefficients while maintaining
good approximation quality. Sparse representations with discrete weights have

2 Not maximum absolute inner-product as in matching pursuit. This permits to get a
tighter distribution of weights, which will make easier their subsequent quantization.
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been proposed in image and audio compression [31, 32], however with scalar coef-
ficients that are quantized independently and not in the prospect of approximate
search. We propose a novel approach that serves our aim better, namely employ-
ing vector quantization of coefficient vectors α̂. These vectors are of modest size,
i.e., M is between 4 and 16 in our experiments. Classical k-means clustering is
thus well adapted to produce a codebook A = [a1 · · ·aP ]M×P for their quanti-
zation. This is done after the main dictionaries have been learned.3

Denoting p(α) = argminp∈J1,P K ‖α−ap‖ the index of the vector-quantization
of α with this codebook, the final approximation of vector x reads:

Q(x) = C(k)ap(α̂), (7)

with k function of x (Eq. 3) and α̂ = C(k)†x (Eq. 4) function of k and x.

Code size A key feature of structured quantization is that it provides the
approximation accuracy of extremely large codebooks while limiting learning,
coding and search complexities: The M codebooks of size K are as expensive
to learn and use as a single codebook of size MK but give effectively access to
KM codewords. In the typical setting where M = 8 and K = 256, the effective
number of possible encodings is 264, that is more than 1019. This 64-bit encoding
capability is obtained by learning and using only 8-bit quantizers. Similarly,
quantized sparse coding offers up to KM × P encoding vectors, which amounts
to M log2K + log2 P bits. Structured quantization with M + 1 codebooks, all
of size K except one of size P has the same code-size, but leads to a different
discretization of the ambient vector space RD. The aim of the experiments will
be to understand how trading part of the vector encoding budget for encoding
jointly the scalar weights can benefit approximate search.

4 Sparse coding extension of PQ and RVQ

In the absence of specific constraints on the M dictionaries, the proposed quan-
tized sparse coding can be seen as a generalization of residual vector quantization
(RVQ), with linear combinations rather than only sums of centroids. Hierarchical
code structure and search methods (see Section 5 below) are analog. To highlight
this relationship, we will denote “Qα-RVQ” the proposed encoder.

In case dictionaries are constrained to stem from predefined orthogonal sub-
spaces Vms such that RD =

⊕M
m=1 Vm, the proposed approach simplifies no-

tably. Encoding vectors and learning dictionaries can be done independently
in each subspace, instead of in sequence. In particular, when each subspace is
spanned by D/M (assuming M divides D) successive canonical vectors, e.g.,
V1 = span(e1 · · · eD/M ), our proposed approach is similar to product quantiza-
tion (PQ), which it extends through the use of quantized coefficients. We will

3 Alternate refinement of the vector dictionaries Cms and of the coefficient codebook
A led to no improvement. A possible reason is that dictionaries update does not
take into account that the coefficients are vector quantized, and we do not see a
principled way to do so.
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denote “Qα-PQ” our approach in this specific set-up: all vectors are partitioned
into M sub-vectors of dimension D/M and each sub-vector is approximated in-
dependently, with one codeword in PQ, with the multiple of one atom in Qα-PQ.

Alg.1: Learning Qα-RVQ Alg.2: Coding with Qα-RVQ

1: Input: z1:R
2: Ouput: C1:M , A
3: r1:R ← z1:R
4: for m = 1 · · ·M do
5: Cm ← Spher k-Means(r1:R)
6: for r = 1 · · ·R do
7: km,r ← argmaxk∈J1,KK r>r cmk
8: rr ← rr − (r>r cmkm,r

)cmkm,r

9: for r = 1 · · ·R do
10: αr ← [c1k1,r

· · · cMkM,r
]†zr

11: A← k-Means(α1:R)

1: Input: x, [c1:M1:K ], [a1:P ]
2: Output: k = [k1:M ], p
3: r← x
4: for m = 1 · · ·M do
5: km ← argmaxk∈J1,KK r>cmk
6: r← r− (r>cmkm

)cmkm

7: α← [c1k1
· · · cMkM

]†x
8: p← argminp∈J1,P K ‖α− ap‖

Alg.3: Learning Qα-PQ Alg.4: Coding with Qα-PQ

1: Input: z1:R
2: Output: C̃1:M , A
3: for r = 1 · · ·R do
4: [z̃>1,r · · · z̃>M,r]← z>r

5: for m = 1 · · ·M do
6: C̃m ← Spher k-Means(z̃m,1:R)
7: for r = 1 · · ·R do
8: k ← argmaxk∈J1,KK z̃>m,rc̃

m
k

9: αm,r ← z̃>m,rc̃
m
k

10: A← k-Means(α1:R)

1: Input: x, [c̃1:M1:K ], [a1:P ]
2: Output: k = [k1:M ], p
3: [x̃>1 · · · x̃>M ]← x>

4: for m = 1 · · ·M do
5: km ← argmaxk∈J1,KK x̃>mc̃mk
6: αm ← x̃>mc̃mkm

7: p← argminp∈J1,P K ‖α− ap‖

Learning the dictionaries Cms and the codebook A for Qα-RVQ is summa-
rized in Alg. 1, and the encoding of a vector with them is in Alg. 2. Learning
and encoding in the product case (Qα-PQ) are respectively summarized in Algs.
3 and 4, where all training and test vectors are partitioned in M sub-vectors of
dimension D/M , denoted with tilde.

5 Approximate search

Three related types of nearest neighbor (NN) search are used in practice, de-
pending on how the (dis)similarity between vectors is measured in RD: minimum
Euclidean distance, maximum cosine-similarity or maximum inner-product. The
three are equivalent when all vectors are `2-normalized. In visual search, classical
descriptors (either at local level or image level) can be normalized in a variety
of ways, e.g., `2, `1 or blockwise `2, exactly or approximately.
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With cosine-similarity (CS) for instance, the vector closest the query y in the

database X is arg maxx∈X
y>x
‖x‖ , where the norm of the query is ignored for it has

no influence on the answer. Considering approximations of database vectors with
existing or proposed methods, approximate NN (aNN) search can be conducted
without approximating the query (asymmetric aNN [2]):

CS− aNN : arg max
x∈X

y>Q(x)

‖Q(x)‖
. (8)

As with structured encoding schemes, the form of the approximation in (7)
permits to expedite the search. Indeed, for x encoded by (k, p) ∈ J1,KKM ×
J1, P K, the approximate cosine-similarity reads

y>C(k)ap

‖C(k)ap‖
, (9)

where the M inner products in y>C(k) are among the MK ones in y>C, which
can be computed once and stored for a given query. For each database vector
x, computing the numerator then requires M look-ups, M multiplications and
M − 1 sums. We discuss the denominator below.

In the Qα-PQ setup, as the M unit atoms involved in C(k) are mutually
orthogonal, the denominator is equal to ‖ap‖, that is one among P values that
are independent of the queries and simply pre-computed once for all. In Qα-RVQ
however, as in other quantizers with non-orthogonal codebooks, the computation
of

‖C(k)ap‖ =
( M∑

m,n=1

ampanpc
m>
km

cnkn

)1/2
(10)

constitutes an overhead. Two methods are suggested in [21] to handle this prob-
lem. The first one consists in precomputing and storing for look-up all inter-
dictionary inner products of atoms, i.e. C>C. For a given query, the denomi-
nator can then be computed with O(M2) operations. The second method is to
compute the norms for all approximated database vectors and to encode them
with a non-uniform scalar quantizer (typically with 256 values) learned on the
training set. This adds an extra byte to the database vector encoding but avoids
the search time overhead incurred by the first method. This computational sav-
ing is worth the memory expense for very large scale systems (See experiments
on 1 billion vectors in the next section).

Using the Euclidean distance instead of the cosine similarity, i.e., solving
arg minx∈X

{
‖Q(x)‖2 − 2 y>Q(x)

}
leads to very similar derivations. The per-

formance of the proposed framework is equivalent for these two popular metrics.

6 Experiments

We compare on various datasets the proposed methods, Qα-RVQ and Qα-PQ, to
the structured quantization techniques they extend, RVQ and PQ respectively.
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We use three main datasets: SIFT1M [35], GIST1M [2] and VLAD500K [36].4

For PQ and Qα-PQ on GIST and VLAD vectors, PCA rotation and random
coordinate permutation are applied, as they have been shown to improve perfor-
mance in previous works. Each dataset includes a main set to be searched (X of
size N), a training set (Z of size R) and S query vectors. These sizes and input
dimension D are as follows:

dataset D R N S

SIFT1M 128 100K 1M 10K
GIST1M 960 500K 1M 1K
VLAD500K 128 400K 0.5M 1K

As classically done, we report performance in terms of recall@R, i.e., the
proportion of query vectors for which the true nearest neighbor is present among
the R nearest neighbors returned by the approximate search.

Introducing coefficients Before moving to the main experiments, we first
investigate how the key idea of including scalar coefficients into structured quan-
tization allows more accurate vector encoding. To this end, we compare average
reconstruction errors, 1

N

∑
x∈X ‖x − Q(x)‖22, obtained on the different datasets

by RVQ (resp. PQ) and the proposed approach before vector quantization of
coefficient vector, which we denote α-RVQ (resp. α-PQ), see Fig. 1. Three struc-
ture granularities are considered, M = 4, 8 and 16. Note that in RVQ and
α-RVQ, increasing the number of layers from M to M ′ > M simply amounts to
resuming recursive encoding of residuals. For PQ and α-PQ however, it means
considering two different partitions of the input vectors: the underlying code-
books/dictionaries and the resulting encodings have nothing in common.

Reconstruction errors (distortions) are also reported for K = 28 and 212

respectively. For a given method, reconstruction error decreases when M or K
increases. Also, as expected, α-RVQ (resp. α-PQ) is more accurate than RVQ
(resp. PQ) for the same (M,K). As we shall see next, most of this accuracy gain
is retained after quantizing, even quite coarsely, the coefficient vectors.

Quantizing coefficients Figure 2 shows the effect of this quantization on the
performance, in comparison to no quantization (sparse encoding) and to classic
structured quantization without coefficients. For these plots, we have used one
byte encoding for α, i.e., P = 256, along with M ∈ {4, 8, 16} and K = 256.
With this setting, Qα-RVQ (resp. Qα-PQ) is compared to both α-RVQ and
RVQ (resp. α-PQ and PQ) with the same values of M and K. This means in
particular that Qα-RVQ (resp. Qα-PQ) benefits from one extra byte compared
to RVQ (resp. PQ). More thorough comparisons with equal encoding sizes will be
the focus of the next experiments. Adding one more byte for RVQ/PQ encoding
would significantly increase its learning, encoding and search complexities.

4 VLAD vectors, as kindly provided by Relja Arandjelović, are PCA-compressed to
128 dimensions and unit `2-normalized; SIFT vectors are 128-dimensional and have
almost constant `2-norm of 512, yielding almost identical nearest-neighbors for cosine
similarity and `2 distance.
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Fig. 1: Accuracy of structured encoding, with and without coefficients.
Squared reconstruction errors produced by structured encoding (PQ and RVQ)
and proposed sparse encoding extensions (α-PQ and α-RVQ). For each method,
M = 4, 8, 16 and log2K = 8, 12 are reported. In absence of coefficient quantiza-
tion here, each code has M log2K bits, i.e. 64 bits for (M,K) = (8, 256).

Since α has M dimensions, its quantization with a single byte gets cruder
as M increases, leading to a larger relative loss of performance as compared to
no quantization. For M = 4, one byte quantization suffices in both structures to
almost match the good performance of unquantized sparse representation. For
M = 16, the increased degradation remains small within Qα-RVQ. However it is
important with Qα-PQ: for a small budget allocated to the quantization of α, it
is even outperformed by the PQ baseline. This observation is counter-intuitive
(with additional information, there is a loss). The reason is that the assignment
is greedy: while the weights are better approximated w.r.t. a square loss, the
vector reconstruction is inferior with Eqn 2. A non-greedy exploration strategy
as in AQ would address this problem but would also dramatically increase the
assignment cost. This suggests that the size P of the codebook associated with
α should be adapted to the number M of layers.

Comparing at fixed code size For large scale search, considering (almost)
equal encoding sizes is a good footing for comparisons. This can be achieved in
different ways. In the case of RVQ and Qα-RVQ, the recursive nature of encod-
ing provides a natural way to allocate the same encoding budget for the two
approaches: we compare Qα-RVQ with (M,K,P ) to RVQ with M codebooks
of size K and a last one of size P . For PQ and Qα-PQ, things are less sim-
ple: adding one codebook to PQ to match the code size of Qα-PQ leads to a
completely different partition of vectors, creating new possible sources of behav-
ior discrepancies between the two compared methods. Instead, we compare PQ
with M codebooks of size K to Qα-PQ with M dictionaries of size K/2 and
P = 2M codewords for coefficient vectors. This way, vector partitions are the
same for both, as well as the corresponding code sizes (M log2K bits for PQ
and M log2

K
2 + log2 2M = M log2K bits for Qα-PQ).

Sticking to these rules, we shall compare next structured quantization and
quantized sparse representation for equal encoding sizes.

CS-aNN Fig. 3 compares RVQ to Qα-RVQ and PQ to Qα-PQ for differ-
ent code sizes, from 8 to 24 bytes per vector, on the task of maximum co-
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Fig. 2: Impact of 1-byte α quantization on performance. Recall@R curves
for Qα-RVQ, α-RVQ and RVQ (resp. Qα-PQ, α-PQ and PQ) on the three
datasets, with M ∈ {4, 8, 16}, K = 256 and P = 256.
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Fig. 3: Comparative CS-aNN performance for different encoding sizes.
Recall@1 on the three datasets for increasing number of encoding bits, comparing
PQ and RVQ with Qα-PQ and Qα-RVQ respectively.

sine similarity over `2-normalized vectors. Qα-RVQ clearly outperforms RVQ
on all datasets, even with a substantial margin on GIST1M and VLAD500K,
i.e., around 30% relative gain at 24 bytes. The comparison between PQ and
Qα-PQ leads to mixed conclusions: while Qα-PQ is below PQ on SIFT1M, it
is slightly above for GIST1M and almost similar for VLAD500K. Note however
that, for the same number M log2K of encoding bits, Qα-PQ uses M K

2 + 2M

centroids, which is nearly half the number MK of centroids used by PQ in low
M regimes (e.g., when K = 256, 528 vs. 1024 centroids for M = 4 and 1280 vs.
2048 centroids for M = 8). Much fewer centroids for equal code size and similar
performance yield computational savings in learning and encoding phases.

Euclidean aNN In order to conduct comparison with other state-of-art meth-
ods such as extensions of PQ and of RVQ, we also considered the Euclidean
aNN search problem, with no prior normalization of vectors. For this prob-
lem, the proposed approach applies similarly since the minimization problem
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Fig. 4: Performance comparison for Euclidean-aNN. Recall@R curves on
SIFT1M and GIST1M, comparing proposed methods to PQ, RVQ and to some
of their extensions, CKM [3], ERVQ [4], AQ [21] and CQ [8].

argminx∈X ‖y−Q(x)‖2 = argmaxx∈X y>Q(x)− ‖Q(x)‖2
2 involves the same quan-

tities as the one in (8).

Recall@R curves are provided in Fig. 4 on two of the three datasets, relying
on results reported in [3] for CKM, RVQ and ERVQ, and [21], [8] for AQ and
CQ respectively. We observe again that Qα-PQ is below PQ on SIFT but on
par with it on GIST. On SIFT, Qα-RVQ, ERVQ and CQ perform similarly,
while on GIST Qα-RVQ outperforms all, including CQ and ERVQ. As discussed
in Section 2, AQ is the most accurate but has very high encoding complexity.
CQ also has higher encoding complexity compared to our simple and greedy
approach. For clarity of the figures we have not shown comparison with OPQ
[1] which is very close to CKM and performs similarly.5

Very large scale experiments on BIGANN We finally conduct very large
scale experiments on the BIGANN dataset [6] that contains 1 billion SIFT vec-
tors (N = 1B, R = 1M out of the original 100M training set and S = 10K
queries). At that scale, an inverted file (IVF) system based on a preliminary
coarse quantization of vectors is required. In our experiments, each vector is
quantized over Kc = 8192 centroids, and it is its residual relative to assigned
centroid that is fed to the chosen encoder. At search time, the query is multiply
assigned to its Wc = 64 closest centroids and Wc searches are conducted over the
corresponding vector lists (each of average size N/Kc). Performance is reported
in Fig. 5 for PQ, RVQ and their proposed extensions. For all of them the setting
is M = 8 and K = 256, except for PQ-72 bits (K = 512). All of them use the
exact same IVF structure, which occupies approximately 4GB in memory (4B
per vector). For RVQ and Qα-RVQ, norms of approximated database vectors
are quantized over 256 scalar values.

The best performance is obtained with the proposed Qα-RVQ approach,
which requires 10 bytes per vector, thus a total of 14GB for the whole index.
The second best aNN search method is PQ-72 bits, which requires 9 bytes per
vector, hence 13GB of index. While both indexes have similar sizes and fit easily

5 Note also that CKM/OPQ improve on PQ in a way that is complimentary to Qα-PQ.
In experiments not reported here, we observed that using OPQ instead of PQ within
Qα-PQ gives similar gains as OPQ gives over PQ.
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Fig. 5: Large scale performance with IVF. Recall@R on the BIGANN 1B-
SIFT dataset and 10K queries. For all methods, M = 8 and K = 256, except for
“PQ-72” (K = 512). For quantized sparse coding methods, P = 256 and norms
in residual variant are quantized over 256 scalar values, resulting encoding sizes
(b) being given in bytes per vector. All methods share the same IVF index with
Kc = 213 and Wc = 64. Subscripted Qα-RVQ denotes variants with additional
pruning (W ′c = 128 and 8 resp.). Search timings are expressed relative to PQ-64.

in main memory, PQ-72 relies on twice as many vector centroids which makes
learning and encoding more expensive.

The superior performance of Qα-RVQ increases the search time by 70%
compared to PQ. This can nonetheless be completely compensated for since the
hierarchical structure of Qα-RVQ lends itself to additional pruning after the
one with IVF. The W ′c atoms most correlated with the query residual in C1 are
determined, and dataset vectors whose first layer encoding uses none of them
are ignored. For W ′c = 128, the search time is reduced substantially, making
Qα-RVQ 10% faster than PQ, with no performance loss (hence superior to PQ-
72). A more drastic pruning (W ′c = 8) reduces the performance below that of
PQ-72, leaving it on par with PQ-64 while being almost 6 times faster.

A variant of IVF, called “inverted multi-index” (IMI) [37] is reported to
outperform IVF in speed and accuracy, by using two-fold product quantization
instead of vector quantization to produce the first coarse encoding. Using two
codebooks of size Kc, one for each half of the vectors, IMI produces K2

c inverted
lists. We have run experiments with this alternative inverted file system, using
Kc = 214 and scanning a list of T = 100K, 30K or 10K vectors, as proposed in
[37]. The comparisons with PQ-64 based on the same IMI are summarized in Tab.
1 in terms of recall rates and timings. For all values of T , the proposed Qα-RVQ
and Qα-PQ perform the best and with similar search time as RVQ and PQ.
Also, Qα-RVQ with T = 30K has the same recall@100 as PQ with T = 100K
while being twice as fast (14ms vs. 29ms per query). For a fixed T , PQ and
Qα-PQ (resp. RVQ and Qα-RVQ) have the same search speed, as the overhead
of finding the T candidates and computing look-up tables dominates for such
relatively short lists. The T candidates for distance computation are very finely
and scarcely chosen. Therefore, increasing the size K of dictionaries/codebooks
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Table 1: Performance and timings with IMI on 1B SIFTs. Recalls are
reported along with search time in milliseconds per query as a function of the
length T of candidate list to be exhaustively scanned. For each method, the
encoding size (b) is given in bytes per vector.

T =100K T =30K T =10K
Method (b) R@1 R@10 R@100 time R@1 R@10 R@100 time R@1 R@10 R@100 time

PQ-64(8) 0.170 0.535 0.869 29 0.170 0.526 0.823 11 0.166 0.495 0.725 5
RVQ(9) 0.181 0.553 0.877 37 0.180 0.542 0.831 14 0.174 0.506 0.729 8
Qα-PQ(9) 0.200 0.587 0.898 30 0.198 0.572 0.848 11 0.193 0.533 0.740 5
Qα-RVQ(10) 0.227 0.630 0.920 37 0.225 0.613 0.862 14 0.217 0.566 0.747 8

in the encoding method directly affects search time. This advocates for our meth-
ods, as for equal (M,K) and an extra byte for encoding coefficients, Qα-RVQ
and Qα-PQ always give a better performance.

7 Discussion and conclusion

In this work we present a novel quantized sparse representation that is specially
designed for large scale approximate NN search. The residual form, Qα-RVQ,
clearly outperforms RVQ in all datasets and settings, for equal code size. Within
the recursive structure of residual quantization, the introduction of additional co-
efficients in the representation thus offers accuracy improvements that translate
into aNN performance gains, even after drastic vector quantization of these co-
efficients. Interestingly, the gain is much larger for image level descriptors (GIST
and VLAD) which are key to very large visual search. One possible reason for
the proposed approach to be especially successful in its residual form lies in
the rapid decay of the coefficients that the hierarchical structure induces. In its
partitioned variant, this property is not true anymore, and the other proposed
approach, Qα-PQ, brings less gain. It does however improve over PQ for image-
level descriptors, especially in small M regimes, while using fewer centroids.

As demonstrated on the billion-size BIGANN dataset, the proposed frame-
work can be combined with existing inverted file systems like IVF or IMI to
provide highly competitive performance on large scale search problems. In this
context, we show in particular that both Qα-PQ and Qα-RVQ offer higher levels
of search quality compared to PQ and RVQ for similar speed and that they allow
faster search with similar quality. Regarding Qα-RVQ, it is also worth noting
that its hierarchical structure allows one to prune out most distant vectors based
only on truncated descriptors, as demonstrated on BIGANN within IVF system.
Conversely, this nested structure permits to refine encoding if desired, with no
need to retrain and recompute the encoding up to the current layer.

On a different note, the successful deployment of the proposed quantized
sparse encoding over million to billion-sized vector collections suggests it could
help scaling up sparse coding massively in other applications.
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