Dimitrios S Anagnostou 
email: dimitrios.anagnostou@ensam.eu
  
Georges Chatzigeorgiou 
email: georges.chatzigeorgiou@ensam.eu
  
Jean-Luc L Bouvard 
email: jean-luc.bouvard@mines-paristech.fr
  
Yves Chemisky 
email: yves.chemisky@ensam.eu
  
Fodil Meraghni 
email: fodil.meraghni@ensam.eu
  
Noëlle Billon 
email: noelle.billon@mines-paristech.fr
  
Linearization and implementation of venu model in

Keywords: Constitutive behavior, Visco-hyperelastic model, Polymeric material, Return-mapping algorithm

come    

Introduction

New economic data, such as the reduction of world oil reserves, force transport fields to find quick solutions in order to reduce the fuel consumption and CO 2 emissions from future vehicles. This makes necessary the use of new materials combining lightness and strength. To this end, amorphous and semicrystalline polymers are widely used in vehicle industry due to their physical, optical (light transparency), and mechanical properties (toughness). In addition, research in automative industry aims at reducing the need of expensive mechanical tests. Thus the increasing interest for accurate and reliable theoretical models that adequately predict the material behavior and dependence upon time, temperature and loading. In particular, semi-crystalline polymers, such as polyamide 6.6, are well known to exhibit a rate and temperature dependent behavior. With the increase interest for this kind of materials in the automotive industry, a large number of material models were developed in the literature to predict their material response (e.g., [START_REF] Dusunceli | Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers[END_REF][START_REF] Regrain | Multi-mechanism models for semi-crystalline polymer: Constitutive relations and finite element implementation[END_REF][START_REF] Ayoub | Modelling large deformation behaviour under loading-unloading of semicrystalline polymers: application to a high density polyethylene[END_REF][START_REF] Pouriayevali | A constitutive description of the ratesensitive response of semi-crystalline polymers[END_REF][START_REF] Benaarbia | Influence of relative humidity and loading frequency on the pa6. 6 cyclic thermomechanical behavior: Part i. mechanical and thermal aspects[END_REF][START_REF] Achour | Implicit implementation and consistent tangent modulus of a viscoplastic model for polymers[END_REF][START_REF] Maurel-Pantel | A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66[END_REF] and references cited therein).

Here, attention is focused to one particular theoretical model that captures the thermo-mechanical behavior of semi-crystalline polymers; namely the VENU model. The initials stand for visco-hyperastic network unit and as the very name implies, the model is based on the material network desription. VENU model is a visco-hyperelastic constitutive model, based on an an original approach by Billon, [START_REF] Billon | New constitutive modeling for time-dependent mechanical behavior of polymers close to glass transition: Fundamentals and experimental validation[END_REF], initially developed as one-dimensional formulalism and further extended by Maurel-Pantel et al., [START_REF] Maurel-Pantel | A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66[END_REF], to threedimensional thermomechanical framework. It should be noted that very few studies have focused on the full thermomechanical (i.e., non-isothermal) modeling of semi-crystalline polymers. The model accounts for chains network reorganization under external loading through the introduction of an evolution equation for the internal state variable, representing the degree of mobility of the entanglement points. The model captures the visco-elastic behavior of the material, the different stress states (tension and shear), the thermomechanical coupling observed under large deformation, and the material self-heating under large deformation. The thermomechanical model agrees well with the experimental mechanical and temperature measurements under tension and shear conditions. The developed approach may thus open a different way to model the polymer behavior.

In [START_REF] Maurel-Pantel | A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66[END_REF] the constitutive equations and thermodynamical framework are presented within large deformation theory. However, in fatigue tests of polymeric composites significant temperature gradients are noticed despite the fact that the measured strains are within the small strain theory. In addition a linearized version of the model permits the application of well established techniques and tools of micromechanics (see, among others, [START_REF] Jaw Van Van Dommelen | Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers[END_REF][START_REF] Bédoui | Micromechanical modeling of isotropic elastic behavior of semicrystalline polymers[END_REF][START_REF] Sedighiamiri | Micromechanical modeling of the elastic properties of semicrystalline polymers: A three-phase approach[END_REF][START_REF] Dvorak | Micromechanis of Composite Materials[END_REF][START_REF] Despringre | Interface damage and load transfer modeling in short fiber reinforced composites[END_REF]). These observations render important the reduction of the VENU model in the case of linear strains. In this note, a method is proposed for the reduction of the VENU model to small strain theory. The method is based on rewriting the Cauchy stress tensor of the original model, in terms of the infinitesimal elastic strain tensor through appropriate series expansions and discarding terms other than the linear ones. Further, the governing equations of the model are reduced in their small-strain counterparts. Three main kinematic assumptions are made regarding the VENU model: (i) the material is incompressible; (ii) the flow is incompressible and (iii) the flow is irrotational. These assumptions still hold in the linearized version of the model. After deriving the small strain theory version of VENU model we provide a numerical scheme for the proper implementation of it. This scheme is based on the so-called return-mapping algorithm [START_REF] Simo | Computational Inelasticity[END_REF]. This is a robust algorithm which was used for a multitude of applications (see, e.g., [START_REF] Achour | Implicit implementation and consistent tangent modulus of a viscoplastic model for polymers[END_REF][START_REF] Agelet De Saracibar | On the formulation of coupled thermoplastic problems with phase-change[END_REF][START_REF] Bilel Miled | Coupled viscoelastic-viscoplastic modeling of homogeneous and isotropic polymers: Numerical algorithm and analytical solutions[END_REF][START_REF] Peng | An efficient return mapping algorithm for general isotropic elastoplasticity in principal space[END_REF][START_REF] Lagoudas | Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys[END_REF]). Finally, some results from the application of the numerical scheme are compared with the respective experimental results for the infinitesimal regime, available in [START_REF] Maurel-Pantel | A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66[END_REF].

Formulation

According to Billon [START_REF] Billon | New constitutive modeling for time-dependent mechanical behavior of polymers close to glass transition: Fundamentals and experimental validation[END_REF] the Edward-Vilgis free energy of the polymer can be decomposed into two components: (i) the energy due to the polymer network deformation constrained by permanent nodes (crosslinks) and (ii) the energy due to the polymer network deformation constrained by slip links such as entanglement points. In particular, the Edward-Vilgis free energy used in the VENU model reads 

with T being the absolute temperature and η denoting the scalar internal state variable (ISV) representing the degree of mobility of the entanglement points. In addition, N * c is related to the density per unit volume of crosslinking, N * s is related to the density per unit volume of entanglement points; in general these parameters are temperature dependent. Moreover, (2) In the above expressions α is the limit of chain extensibility. Also, {I e 1 , I e 2 , I e 3 } is the standard set of three independent invariants of the elastic Right and Left Cauchy-Green deformation tensors, [START_REF] Chaves | Notes on Continuum Mechanics: Fundamental Concepts and Constitutive Equations[END_REF].

                   w s I e 1 , I e 2 , I e 3 , η = (1 + η) 1 -α 2 1 -α 2 I e 1 I e 1 + 2ηI e 2 + 3η 2 I e
Using standard arguments from the seminal work [START_REF] Bernard | Thermodynamics with internal state variables[END_REF], Cauchy stress tensor is written as 

σ = 2 J e -
where C e is the elastic Left Cauchy-Green deformation tensor. Further, for infinitesimal displacement gradients, taking into account that B e 1 + 2ε e , with ε e being the elastic part of the infinitesimal strain tensor2 , (Eq. 3) can be seen to reduce to

σ = 2(J e ) -1 ∂w ∂I e 1 + 2 1 + tr(ε e ) ∂w ∂I e 2 + 1 + 2tr(ε e ) ∂w ∂I e 3 I +2 ∂w ∂I e 1 + ∂w ∂I e 2 ε e . (4) 
Next, we express the derivatives of the potential as a function of invariants in a linear form. For this, we first take a Taylor series expansion around the null deformation, i.e. around the values of invariants I e 1 = 3, I e 2 = 3, I e 3 = 1 and then replace the invariants by their expressions in the first order. The various involved derivatives were evaluated using the computer algebra system Mathematica ® .

Finally, the Cauchy stress tensor of the reduced model for an incompressible isotropic viscoelastic material in the case of infinitesimal displacement gradients (i.e. J e = 1 ) is written in the following form

σ = -pI + 2 N * c w c 1 + N * s w s 1 + w s 2 ε e , ( 5 
)
where p is a pressure term that must be determined from the equilibrium equations and the boundary conditions of the problem. Note that, as p is undetermined from any constitutive equation the terms multiplying I may be absorbed into p , and this was done implicitly in writing Eq. ( 5). This is a common practice in incompressible continuum theories, see [START_REF] Chaves | Notes on Continuum Mechanics: Fundamental Concepts and Constitutive Equations[END_REF]. Eq. ( 5) is similar in form with its large deformation theory counterpart (cf. Eq. ( 29) of [START_REF] Maurel-Pantel | A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66[END_REF]).

In order to facilitate the subsequent numerical analysis and the application of the return mapping algorithm we rewrite Cauchy stress tensor, as follows

σ = K - 2G 3 trε e I + 2G ε e , (6) with 
           G ≡ N * c w c 1 + N * s w s 1 + w s 2 w s 1 = 2α 2 (1-3α 2 ) 2 + 1-η-α 2 (1+η) (1-3α 2 )(1+η) 3 , w s 2 = 2η(α 2 (η+1)-1) (3α 2 -1)(η+1) 3 , w c 1 = w s 1 η=0 . ( 7 
)
where we took into account that for an incompressible linear elastic material holds {I e 1 = 3 , I e 2 = 3 , I e 3 = 1}. Once evaluating the "shear-like modulus" G the analysis proceed with adopting a very high value for the "bulk-like modulus" K. In particular, for the results of Section 4, we use a value of Poisson's ratio ν = 0.49 and the value of K is provided by the usual relation K

= (2G(1 + ν))/(3(1 -2ν)).
The evolution equation for the viscoelastic part of the strain tensor after the reduction of the non-linear counterpart reads

εv = 3 2 1 (1 -β) 1 σ D ∂w ∂η η        σ D σ D        . ( 8 
)
where β is the so-called Taylor-Quinney coefficient accounting for the assumption that a part of the inelastic energy is stored in the chain network and contributes to the internal energy of the system. The norm • is defined as

• = √ (3/2) • :
• and σ D is the deviatoric part of the Cauchy stress tensor given by

σ D = σ -(1/3) tr (σ) I . ( 9 
)
The evolution equation for the internal state variable η is related to the rate of polymer chains network reorganization when submitted to external loading. More specifically, η accounts for the disentanglement of the polymer chains. Adopting the evolution equation of [START_REF] Billon | New constitutive modeling for time-dependent mechanical behavior of polymers close to glass transition: Fundamentals and experimental validation[END_REF] and properly modified in the case of smallstrain theory we arrive at

Φ = Ω -η, Ω := Ω(I e 1 , I e 2 , I e 3 , T, η) = z * 0p exp z p1 [ψ s -w s ] -1 , (10) 
with z * 0p , z p1 being material parameters which are given in [START_REF] Maurel-Pantel | A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66[END_REF]. The functions inside the exponential are defined by

w s = 1 + 2 1 -3α 2 + ln [1 -3α 2 ][1 + η] 3 , ψ s = K a K b + ln K b , (11) 
with

K a = [1 -α 2 ][1 + η][I e 1 + 2ηI e 2 + 3η 2 I e 3 ] , K b = [1 -α 2 I e 1 ][1 + ηI e 1 + η 2 I e 2 + η 3 I e 3 ], (12) 
We have to point out that w s represents the energy of the incompressible material due to slip links in small deformation formalism, while ψ s represents the same energy in large deformation formalism. In other words, a slightly perturbed version of Ω is adopted in which the argument of the exponential is the difference of ψ s minus w s . This expression was assumed in order to avoid the vanishing of Ω within small strain theory and in the case of an incompressible material. The perturbed version permits the proper evaluation of the derivatives of Ω.

The "linearized" version of the heat equation is derived from the respective non-linear one [START_REF] Maurel-Pantel | A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66[END_REF]. In particular,

C V Ṫ = β + (1 -β) w * c + w * s σ : εv + 1 2 w * c + w * s σ : εe + k∆T , (13) 
where the evolution of ε v is provided by Eq. ( 8). Moreover, C V = ρ 0 C Th with ρ 0 denoting the density of the material and C Th its thermal capacity. Also, k is the thermal conductivity. The terms w * c and w * s are temperature dependent and they are going to be identified below through the strain rate equivalence technique. Some of the variables were assumed to be dependent on time t and temperature T by the use of an equivalent strain rate a T εeq , defined at the reference temperature T ref . This equivalent stain rate follows classical time-temperature equivalence principle. The notion of equivalent strain-rate is capable of building master curves and therefore decreases the number of testing needed to built a material database. Details are provided in [START_REF] Maurel-Pantel | A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66[END_REF]. The main results are summarized below

      
λ = a T εeq = a T dε eq dt = dε eq (dt/a T ) = dε eq dt eq dt eq = dt/a T , t eq = t 0 dt/a T (t)

, ( 14 
)
where t eq is the equivalent time at reference temperature T ref ; ε is the experimental applied uniaxial strain; εeq = √ (2/3) ε : ε is the equivalent strain rate; a T is the shift factor from the Williams-Landel-Ferry equation

λ = a T εeq = 10 - C 1 (T -T ref ) C 2 +(T -T ref ) ε . ( 15 
)
With the help of the strain rate equivalence variable λ one can identify the parameters N * c and N * s as

N * c = N * c0 + N * c1 2 1 + [τλ] -2m , N * s = N * s0 + N * s1 2 1 + [τλ] -2m , (16) 
where {N * c0 , N * c1 , N * s0 , N * s1 , m, τ} are material constants. Moreover

w * c = T N * c ∂a T ∂T εeq ∂N * c ∂λ , w * s = T N * s ∂a T ∂T εeq ∂N * s ∂λ . ( 17 
)

Return Mapping Algorithm

The Return mapping algorithm is probably the most popular mean of numerically solving conventional plasticity equations. It is discussed in full detail in [START_REF] Simo | Computational Inelasticity[END_REF]. The main point of the algorithm is as follows:

At each quadrature point, given the stress and the internal variables of the previous steps, as well as a specified strain and temperature increment, determine the values of the stress and the internal variables of the current time increment.The return mapping algorithm used for the numerical implementation of the VENU model consists of three main steps: i. In the first step, the internal variables ζ := {ε v , η} of the material do not evolve and only generation of thermoelastic strains are considered (known as thermoelastic prediction step). Thus, during this step ζ is kept fixed, while ε and T evolve. This part is taken care of by a global solver (for instance a FE software). ii. In the second step, the error in the stress is corrected by identifying the actual change in the internal variables (known as inelastic correction step). Thus, during this step ε and T are fixed, while ζ evolves. iii. In order to check the validity of the correction, appropriate tangent moduli are required. These are computed by applying small, arbitrary perturbations in ε and T , using the instantaneous response obtained from the second step. Regarding the basic assumptions of the discretization with respect to the time and per iteration, the reader is referred to [START_REF] Chatzigeorgiou | Periodic homogenization for fully coupled thermomechanical modeling of dissipative generalized standard materials[END_REF] and the book of Simo and Hughes [START_REF] Simo | Computational Inelasticity[END_REF].

Results and Discussion

The model and material parameters {N * c0 , N * s0 , N * c1 , N * s1 , α, z p0 , z p1 , β, m, τ, χ, C 1 , C 2 , T ref , η P0 , k,ρ 0 , C th , h} are summarized in (Table 1). These parameters have been obtained by appropriate parameter identification method, using available experimental data. Figures 1 and2 illustrate the comparison between experimental and numerical results for three different strain rates and almost constant temperature 21.6°C. The result shows a very good fitting between the model and the experimental curves. 

3 1 + ηI e 1 + η 2 I e 2 + η 3 I e 3 + 1 ( 1 -α 2 I e 1 )
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Figure 1 .

 1 Figure1. Experimental results and model simulation for polyamide 6.6 at strain rate 1 ×10 -3 1/s.

Figure 2 .

 2 Figure 2. Experimental results and model simulation for polyamide 6.6 at strain rate 1 ×10 -2 1/s.

Table 1 .

 1 Material and model parameters

	Parameters	Used values	Units
	N * c0 N * c1 N * s1 N * s2 β	48.6936 572.788 16.1014 18.1213 0.9490	MPa MPa MPa MPa -
	m; τ	3.63 × 10 -2 ; 0.7067	-; s
	ζ p0	5.4599	-
	ζ p1	1.0	-
	α; χ	8.698 × 10 -2 ; 7.522 × 10 -1	-
	C 1	45.685	-
	C 2	245.06	°C
	T ref	25	°C
	η 0	0.2343	-

VENU stands for Visco-hyper Elastic Network Unit.

We assume, as is the standard pracice, that the total strain can be decomposed into two parts, an inelastic part ε v and an elastic one ε e .
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