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Abstract
                 

Brain-computer interfaces (BCI) based on steady-state visual evoked potentials (SSVEP)
enable a user to control an application by focusing his/her attention on visual stimuli blinking at
specific frequencies. This technique of interaction can enable people suffering from severe motor
disabilities  to  improve their  quality of  life  through regaining a  partial  autonomy.  According to
literature,  each  usage  session  of  a  SSVEP-based  BCI  integrates  a  calibration  phase  aimed  in
particular at computing classifier’s parameters. Our objective is to evaluate if the same parameters
could be used during several sessions, in order to avoid performing systematically a calibration
phase, which is very restrictive for the user. To do so, we analyze stability of classification results
over time. On the other hand, the data acquired during our experiments were used to study the
possible effects of human learning on interface performance and to confirm or not the state of the
art knowledge on this subject. According to literature, SSVEP-based BCIs work well from the first
use and their performances do not improve with subject’s experience.
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1. Introduction

A BCI is a system that establishes a direct communication link between a device (robotic
arm,  wheelchair)  or  a  computer  and  the  user’s  brain,  without  involving  nerves  and  peripheral
muscles. This kind of interface could be useful for patients suffering from a degenerative disease
(DMD,  Duchenne  Muscular  Dystrophy  or  amyotrophic  lateral  sclerosis)  or  from  spinal  cord
injuries, allowing them to recover a partial autonomy and to improve their quality of life.

Other proven technologies have preceded BCI in this field: eye-tracking [1], head-tracking
[2], interfaces based on electromyography [3] or electro-oculography [4], trackball [5], joystick,
contactors, voice recognition systems [6]. Related work described in literature seem to indicate that
these techniques enable, for now, a more reliable and faster control compared to BCI approaches
[7], [8].

It  is  therefore  legitimate  to  give  priority  to  these  techniques,  in  the  field  of  handicap
palliation, instead to BCI. Nevertheless, for severely disabled patients, the previously mentioned
techniques suffer from some limitations that BCI does not have. The main one is the necessity to
keep a residual muscular activity, even minimal. Some people suffering from a locked-in-syndrome
are unable to interact with a computer or a machine through these standard interfaces. Moreover,
even for some people able to use common assistive devices,  BCI could be beneficial for some
applications. For instance, wheelchair steering is more intuitive and better adapted with a movement
imagination based BCI [9] than with a eye-tracking system.
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For people who are  completely paralyzed,  but  with  intact  cognitive  capabilities,  BCI is
nowadays considered as the only technique that can restore an effective communication link with
the environment. That is why BCI can play a significant role in the field of severe motor handicap
assistance  and  should  be  not  neglected  for  the  support  of  highly  handicap  patients.  A brain-
computer interface relies on six functional stages (see figure 1):

1) cerebral activity monitoring. More or less invasive acquisition systems are available to
perform this task: electroencephalography (EEG), electrocorticography [10], direct neural interface
[11], magneto-encephalography. For our study, we have used EEG. Electrical brain activity was
recorded thanks to electrodes connected to the scalp.

2) signal processing. This step aims at removing noise from signals. Noise can come from
several sources: radiation from electrical power network (50 or 60 Hz), muscular or ocular activity,
background cerebral activity (α rhythm), etc.  In the case of SSVEP, some frequencies of the  α
rhythm can match those of the visual stimulation patterns. The noise removal step is essential in
order to be able, in a following stage, to highlight the relations between the electro-physiological
patterns and a specific brain response.

3) features extraction, which consists in transforming filtered signals into feature vectors.
Feature vectors  aggregate relevant values that  are later used for mental  state  classification.  For
instance, we can define the signal power in a particular frequency band as a feature value.

4) classification, which determines the class to which the measured mental state belongs,
according to the values of associated feature vectors.  Classification can be performed online to
control the application, but also offline to assess classifier performance.

5)  computer  control,  which  is  performed  when  system  has  identified,  thanks  to  the
classification step,  the mental task realized by the subject.  To each mental state is associated a
different command, either in a fixed manner, or in relation to the current context.

6) feedback, which enables the user to know how the system has interpreted his mental state.

Figure 1: Six steps involved in BCI performing (source [12]).

The  BCI  is  called  asynchronous  (or  self-paced)  when  electrophysiological  patterns  are
triggered by the user himself/herself and synchronous when patterns are triggered by an external
stimulation. The most studied asynchronous BCI rely on the execution by the user of mental tasks
such as movement imagination (MI) or continuous control of slow cortical potentials. Synchronous
BCI mainly use two categories  of  stimuli  induced cerebral  patterns:  steady-state  visual  evoked
potentials (SSVEP) and transient evoked potentials (P300). [13] presents a detailed description of
BCI systems and of the various usage paradigms. In this  paper we will  focus our attention on
SSVEP-based BCIs.

SSVEP is a type of evoked potential which appears over the occipital lobe in response to a
repetitive visual  stimulation.  Occipital  lobe is  the integration center  of visual information.  This
evoked potential signal oscillates at the same frequency as the stimuli. Therefore, to detect this very
specific ”mental state” in the signals, one only needs to filter them using pass-band filters. Thanks



to its frequency, the stimulus observed by the user is determined, and the interface can trigger the
associated command on the computer.

The use of a SSVEP-based BCI needs a first calibration stage in order to adjust the classifier
to user’s specificities. Calibration stage requires a high concentration level from the user in order to
obtain a robust classifier and to maximize system performances. Usually, the calibration stage is
performed at the beginning of every session, resulting in additional fatigue, boredom and waste of
time for the user. To our knowledge no study seems to have addressed this redundancy issue of the
calibration phase. That is why we decided to study classifier stability over time: if the calibration
performed  during  one  session  remains  valid  for  the  next  session,  one  can  decide  to  skip  the
calibration stage.

So, the aim of the first part of the work presented in this article is to assess if classifier’s
coefficients, specifically computed for a user, can be reused by the same person several days after
their  computation,  in  order  to  reduce  the  number  of  calibration  stages  and so  limit  drawbacks
related to this step.

According to literature, SSVEP-based BCI perform correctly at the first use [14], [15]. No
performance improvement seems to be observed with the increase of user experience, unlike with
other  paradigms  such  as  movement  imagination  [16]  or  continuous  control  of  slow  cortical
potentials [17] for which several weeks or months are required to control reliably an application.
Therefore, benefiting from recorded data used to answer to the first problematic, we study human
learning  effects  on  SSVEP-based  BCIs’ performances  in  order  to  confirm  or  not  the  results
described in the literature.

In the last part of the related work, we assess, based on data recorded on healthy people, if
SSVEP-based BCIs can be pertinent for disability compensation. The objective is to test if SSVEP
can challenge other paradigms, knowing that usefulness of MI as well as P300 has been already
shown in [18] and [19] in the field of assistance to disable people.

2. Data acquisition and experimental protocol

The experiment was realized by 16 healthy subjects (12 men and 4 women) aged between
20 and 52 years  old.  Subjects’ approval  was verbally  required  and they were  informed of  the
experiment content and the possibility to stop it at any time. Two of them (subjects 9 and 12) had
previously  used  a  SSVEP-based  BCI.  All  subjects  had  normal  or  corrected  to  normal  vision.
Participants were asked to seat comfortably in an armchair in order to have them relaxed and to
limit muscular artifacts. They were also asked to avoid blinking their eyes during the experiment in
order  to  prevent  recording of ocular  artifacts.  Subjects were facing the computer  monitor,  at  a
distance of 70 cm from their eyes, and room lighting was decreased to improve the quality of the
SSVEP  signal.  Indeed,  our  first  attempts  in  broad  daylight  rapidly  showed  that  the  SSVEP
amplitude was not large enough to allow a correct discrimination of the frequencies in the signals,
resulting in an inaccurate control of the system.

Subjects  were  wearing  an  electrode  cap  (GAMMAcap,  g.tec),  with  Ag/AgCl  electrodes
located according to the international 10/20 system [20]. Four mono-polar channels were recorded
from the occipital lobe: Oz, O1, O2 and POz with an electrode clipped on the right ear as a reference
and another one on the forehead as mass. A gel was applied between skin and electrodes to increase
conduction of electrical signal. Signals were amplified, band-pass filtered between 0.1 and 100 Hz
(50 Hz was eliminated to remove artifacts caused by the power electrical network) then sampled at
the frequency Fe = 512 Hz.

The recording system was composed of a physiological signals amplifier with 16 channels
(g.USBamp,  g.tec)  and  a  DELL  laptop  using  windows  XP  operating  system.  An  additional
computer screen was used to display stimuli. All the displays and processing presented in the article
were performed by the OpenViBE (openvibe.inria.fr) software, which allows one to control online
signal acquisition, signal processing and orders sending for application control. 



Figure 2: BCI experimental setup.
Figure 2 shows our experiment room and devices used for these BCI experiments. Each

subject was asked to perform three sessions during a period of ten days.  The second and third
sessions occurred respectively two and ten days after the first one, as shown in table I. The first
session was composed of a calibration phase followed by an online phase, during which the subject
was controlling a simple shooting game. Sessions 2 and 3 were composed of 3 phases: a first online
phase using the classifier trained during the first session, then a calibration phase followed by a
second online phase using a newly trained classifier. Each session lasted from 30 to 45 minutes
according to the time needed by the user to finish the game.

Session 1 (Day 0) Session 2 (Day 2) Session 3 (Day 10)

C1   A1 A1
'   

 C2    A2 A1
''   

 C3     A3

Table I: Contents of each session. Letters C and A mean respectively calibration and application. A1
'
 

andA1
'' correspond to the application performed online during sessions 2 and 3, using classifier 

trained during the first session.

The calibration phase enables one to compute classifier’s coefficients used for online 
interaction with the application (online phase). Data recorded during this phase are also used to 
assess offline the performance of classifiers. In this paper, we use the adjective ”offline” only when 
the classifier is assessed on pre-recorded data and not on data acquired during the same session. For 
the calibration phase, four targets were displayed on a screen. Three of them blink at a constant 
frequency, whereas the last one remains fixed, as shown in figure 3. The stimulation frequencies of 
the targets were 6, 10 and 15 Hz, which had been selected since they are submultiples of 60 Hz, 
which corresponds to the screen refresh rate. Targets were chosen white on a black background in 
order to increase the contrast. This enables to further stimulate the user’s retina and so to increase 
SSVEP amplitude. Subjects were asked to focus their visual attention on specific target indicated by
a yellow arrow. Each trial lasts for 7 seconds followed by a rest time of 4 seconds. A total of 32 
trials (8 by target) is realized by each subject.



Figure 3: Calibration phase. Figure 4: Online phase: shooting game.

During the online phase the user plays to a simple game, already included in the OpenViBE
software suite. The goal is to make a ”spaceship” shoot on targets. Targets are represented by full
circles, whereas the ”spaceship” is sketched by an empty circle on which are disposed equidistantly
3 stimuli, 2 squares and a triangle as shown by figure 4. By focusing his/her gaze on the left or right
square, the user controls the rotation of the ”spaceship” respectively in the clockwise or counter-
clockwise directions. By focusing his/her gaze on the triangle, the user can shoot in order to reach a
target which disappears and reappears at a random position on the screen. The game ends when 8
targets have been shot.

 3. Signal processing and classification                                                                

This part covers all signal processing and classification techniques. Signal processing allows
us to remove as many artifacts as possible from the signals in order to keep only the task related
information. Classification step uses this information to identify the cerebral patterns specific to the
SSVEP control mode and to send orders to an online application,  such as the shooting game.  

Literature has shown the efficiency of spatial processing with CSP filters [21] and LDA
classifiers [14] for a binary classification issue in the field of SSVEP. That is why we decided to use
these techniques in our study. Their calibration is specific to each user and therefore requires at
some point a set of calibration data. The first processing step consists in filtering raw signals around
each stimulation frequency (6, 10 and 15 Hz) with a 4 th-order Butterworth band-pass filter. The
actual band-pass around each frequency is set to δ = 0.25 Hz. The filtered signals are then used to
optimize CSP (Common Spatial Pattern) filters. A window of interest of 7 seconds is extracted in
the signals, beginning 1 second after the start of each trial. Therefore, we record 8 learning windows
(or data packets) for each stimulation frequency, including the null frequency (corresponding to the
absence  of  stimulation).  For  training  a  processing  chain  (CSP and  LDA classifier)  for  each
frequency, the data of the learning set are then separated into two classes. One class corresponds to
the frequency of interest (for instance 10 Hz) and the other one to all other frequencies. First, a
spatial filter is specifically calibrated for each stimulation frequency.                                         

Once the spatial filters have been adjusted, they are used to compute feature vectors that
feed  the  LDA  (Linear  Discriminant  Analysis)  classifiers.  Thus,  a  LDA  classifier  is  trained
specifically for each stimulation frequency. At the output of the CSP filters, the data forms a matrix
of 2 column and N lines, with N the number of samples included in the 7 seconds time window, i.e.
N = 7Fe . Data are then split again into two classes according to the frequency class they belong
to and used to train the classifier. For instance, if we train the classifier used to detect a stimulation
at  6 Hz, data  packets  recorded during the 6 Hz stimulation belong to the first  class and those
recorded during the other stimulation periods belong to the second class. Then, for each packet of
each class, we extract overlapping windows with half-second duration every one tenth of a second.
We get 66 learning windows for each packet, rather than 70, since the last windows do not fit
entirely in the time interval. A learning window is therefore a matrix of 2 columns (signals filtered
by the CSP filters) and l lines, with l =  0.5Fe  the number of samples recorded during half a
second. Values included in each window are squared then averaged on each column, such as each



packet P ( P∈ℝ 66x6) is composed of 66 pairs of feature values (X, Y ). Finally, the values X and Y
are log transformed into log(X + 1) and log(Y + 1) before feeding the classifier.

OpenViBE software uses a 10-fold cross-validation method to train the classifiers. Feature
values are split into 10 groups regardless of their class. The classifier parameters are adjusted with
the data of 9 groups, and then assessed on the data of the last one. This is repeated 10 times in order
to assess the classifier on each group. The classifier with the highest performance is kept for the
online phase. During the online phase, CSP filters and LDA classifiers analyze continuously the
signals recorded during the last second, with a shift of 0.1 second. Classifier’s output is an index
computed from the distance between the  feature  vector  and the  point,  straight  line,  plane  or  a
hyperplane considered as separating the two classes. We get an index value for each classifier, i.e.
for each stimulation frequency. Online decision is made by an automatic vote selecting the classifier
with the maximum output. 

To calibrate the classifier offline, we use a slightly different approach. For each frequency,
we remove the most outlying packets, i.e. packets with an average center point located on the wrong
side of classifier’s decision frontier. Thus, coefficients are computed from the 31 remaining packets,
7 belonging to the class of frequency for which we compute the classifier and 24 belonging to other
classes. In order to evaluate intra-session performance, we split the data used for classifier training
again into 2 groups. One group is used to adjust the classifier parameters and the other one to assess
its performances. To assess inter-session performances, we apply directly the main classifier to all
data of other sessions.

4. Results
This part presents online and offline average performances obtained from all participants

during three sessions. Time (seconds) and area under the curve (AUC) correspond respectively to
online and offline performance indices. Offline performance index is defined by υ value, with 0 ≤υ
≤1, such as classifier performance is proportional to  υ value. A classifier with a value  υ = 1 is
perfectly accurate, and with a value of υ = 0.5 it gives random results. Thus, υ allows us to compare
performances obtained under different conditions and to answer the question related to classifier
stability. Given that sample size is lower than 30, performances are compared from a Wilcoxon non-
parametric test, with a risk set to 5%.

4.1. Offline classification performances                                                            
Figure  5a  compares  offline  performances  of  classifier  1  (classifier  computed  with  data

recorded at the first session) on data of session 1 (C1) with its performances on data of session 2
(C1

') and 3 (C1
'').

Figure 5b compares offline performances of classifier 1 on data of session 2 (C1
') and 3 (C1

'')
with respectively performances of classifier 2 and 3 (classifier  computed respectively with data
recorded at session 2 and 3) on data of session 2 (C2) and 3 (C3).

Figure  5c compares  offline  performances  of  classifier  1  on  data  of  session 1 (C1)  with
respectively performances of classifier 2 and 3 on data of session 2 (C2) and 3 (C3).  All presented
performances correspond to average performances of all subjects. 

To study classifier  stability over  time we perform two statistical  tests.  The first  one,  as
shown in figure 5a, compares performances between sessions 1 and 2 then between sessions 1 and
3.  This  comparison takes into account  performances  of one classifier  (classifier  1) assessed on
calibration  data  recorded  at  intervals  of  several  days.  Thus,  we  assess  classifier  reliability  at
different times and under different experimental conditions. In fact, different parameters vary from
one session to another: electrodes positions, user motivation and fatigue, etc.



Figure 5: Histograms for comparison of offline performances 
of different classifiers on various datasets.

A Wilcoxon test indicates significant difference between classifier performances on data of
sessions 1 and 2 (p-value = 3.051.10-5). A significant difference is also observed between classifier
performances on data of sessions 1 and 3 (p-value = 9,15.10 -5). This result is supported by a second
statistical test, see figure 5b, which compares performances of classifier 1 with those respectively of
classifier 2 and 3 on data of sessions 2 and 3. The idea is to compare performances of a former
classifier with those of a newly computed classifier. In this case classifiers are compared on the
same calibration data and so under the same experimental conditions. A Wilcoxon test indicates a
significant difference between performances of classifiers 1 and 2 on data of session 2 (p-value =
3.051.10-5)  and  between  performances  of  classifiers  1  and  3  on  data  of  session  3  (p-value  =
3.051.10-5).

Finally, to study human learning effects on BCI performances, we compare performances
between session 1 and session 2, then between session 1 and session 3 (see figure 5c). These are
performances of different classifiers assessed on different calibration data. Performing a Wilcoxon
test,  we  do  not  observe  a  significant  difference  between  performances  of  classifier  1  and  2
respectively on data of sessions 1 and 2 (p-value = 0,175), then between performances of classifiers
1 and 3 respectively on data of sessions 1 and 3 (p-value = 0,632).

4.2. Online classification performances

Figure  6a  compares  online  performances  of  classifier  1  during  session  1  (A1)  with  its
performances during session 2 (A1

') and 3 (A1
'').

Figure 6b compares online performances of classifier 1 during session 2 (A1
') and 3 (A1

'')
with respectively those of classifiers 2 and 3 during session 2 (A2) and 3 (A3).

Figure  6c  compares  online  performances  of  classifier  1  during  session  1  (A1)  with
respectively performances of classifiers 2 (A2) and 3 (A3) during sessions 2 and 3.  

All presented performances correspond to averaged performances of all subjects. 
Results presented in figure 6 do not consider subjects who could not control the application.

In fact, two subjects (subjects 3 and 5) were not able to control the application whatever classifiers
and sessions. Two other subjects (subjects 12 and 13) had no control on the application during
sessions  2  and 3,  using  classifier  1.  Finally,  a  last  subject  (subject  14)  had no control  on  the
application during session 3, using classifier 1.



Figure 6: Histograms for comparison of online performances 
of several classifiers for different sessions.

To study classifier stability over time we performed the same statistical tests as in section
4.1. In a first step, we compare performances between sessions 1 and 2 then between sessions 1 and
3 (see figure 6a). We assess classifier (classifier 1) reliability at different times and under different
experimental  conditions.  A Wilcoxon  test  does  not  indicate  a  significant  difference  between
performances obtained during session 1 and during session 2 (p-value = 0.339). Nevertheless we
observe a significant difference between performances obtained during session 1 and during session
3 (p-value = 0.0136). This result is confirmed by a second statistical test which compares results
observed during the two online phases of sessions 2 and 3 (see figure 6b). Thus, we compare online
performances of the first classifier with those of newly computed classifiers. In this case classifiers
are assessed under the same experimental conditions. A Wilcoxon test does not indicate a significant
difference  between  performances  of  classifiers  1  and  2  during  session  2  (p-value  =  0.51)  and
between performances of classifiers 1 and 3 during session 3 (p-value = 0.365).   

Finally,  to  study  the  effect  of  human  learning  on  BCI  performance,  we  compare
performances between sessions 1 and 2, then between sessions 1 and 3 (see figure 6c). These are
performances of different classifiers assessed in different experimental conditions. The Wilcoxon
test  shows  that  there  is  no  significant  difference  between  performances  of  classifier  1  and  2
respectively during sessions 1 and 2 (p-value = 0.104), nor between performances of classifiers 1
and 3 respectively during sessions 1 and 3 (p-value = 1).

5. Discussion
First  of  all,  we  focus  our  attention  on  the  possible  effect  of  human  learning  on  BCI

performances.  Statistical  tests do not show significant differences between offline performances
obtained with different classifiers computed at different sessions (see figure 5c). We note similar
results concerning online performances (see figure 6c). This suggests that human learning has no
effect  on  classifier  performances.  In  fact,  results  obtained  offline  or  online  do  not  improve
significantly from one session to another, whereas subjects acquire more and more experience with
time. Moreover, we do not notice an improvement of online or offline results obtained by subjects
who already had an  experience  with SSVEP-based BCI  (subject  9  and 12)  compared to  other
subjects’ results.                                                                         

We notice that  all  subjects,  except  subjects  3 and 5,  were able  to finish the game in a
satisfying time interval (≈13 minutes) when they used a newly computed classifier. This tends to
prove that SSVEP-based BCI is efficient at first use. Nevertheless, as for other paradigms (MI,
SCP), there are users for which the interface does not work even after several sessions, such as for



subjects  3  and  5.  We  frequently  find  in  literature  the  word  “illiteracy”  to  characterize  this
phenomenon [22]. Nevertheless, a subject identified as “illiterate” for a paradigm is not necessary
illiterate for another. That is why it is interesting to propose to participants a “hybrid interface”,
which associates several types of BCI [23] or a BCI with another control channel [24].

We  can  also  focus  our  attention  on  the  analysis  of  classifier  stability.  Statistical  tests
performed with offline results (see section 4.1) suggest a stability of the classifier over time. Indeed,
we note a significant decrease of performance from the same classifier assessed on data of different
sessions  (see  figure  5a).  This  finding  is  similar  when  we  compare  performances  of  a  former
classifier  with  those  of  a  new  one  assessed  on  data  of  the  same  session  (see  figure  5b).
Nevertheless, those results are not confirmed by online results  (see figures 6a and 6b). In fact,
statistical  tests  do  not  seem  to  show  significant  differences  between  these  configurations.  An
improvement of results is even observed (see figure 6a). Online performances of classifier 1 seem to
have improved from session 1 to session 3. Online and offline results are contradictory. Offline
results  seem  to  decline  when  classifier  is  reused  on  other  calibration  data.  However,  this
degradation of offline results does not seem to affect online results because they remain constant
and even improve in one case. This can be explained by the fact that online performances do not
depend only on classifier reliability but also mainly on the playing strategy adopted by user. Indeed,
we can notice an inertia phenomenon during the game: the “spaceship” continues its rotation for a
while after the end of the visual stimulation. This can be explained by the fact that neurons of the
occipital lobe remain activated for a while after the end of stimulation. This inertia phenomenon
prevents the user from correctly controlling the application. Online performances depend mainly on
his/her capacity to anticipate this phenomenon.

All these results suggest that a classifier can be re-used several days after its calibration
phase despite a slight decrease of its offline performances. Nevertheless, it is important to mention
that two subjects (subjects 12 and 13) did not succeed to re-use online the classifier and a last one
(subject 14) did not succeed to re-use it during the last session. Moreover the experiment has been
performed over ten days, so we can not conclude on classifier reliability beyond this period. Finally,
our study does not consider men/women potential disparities.

6. Conclusion  

SSVEP-based BCI have the advantage to perform well from the first use [14], [15]. No long
and  tedious  learning stages  from user  is  necessary contrary to  slow cortical  potentials  [17]  or
movement imagination [16]. Indeed these two types of BCI need an strong cognitive process to
learn controlling the cerebral patterns specific to each mode, whereas SSVEP mode involves only a
perceptual process. The subject only needs to focus his/her visual attention on a particular stimulus
which excites his/her retina and induces a SSVEP over the occipital lobe. So we understand by the
nature of its mechanism that SSVEP paradigm works well without human learning. However, one
can wonder  if,  with the  training at  performing constantly the same experiment,  a  user  reaches
consciously or not to further focus on stimuli and so to get better results. Data we have collected
and processed do not seem to indicate a significant improvement of performances with increase of
subject’s experience. These results tend to confirm those of the literature.

The high visual and cognitive concentration required from the user in the SSVEP paradigm,
in particular during the calibration stage in order to maximize classifier performances, induces a
early fatigue and may cause some weariness. That is why our study addresses classifier stability
over time, to check if it is possible to avoid introducing a calibration stage at the beginning of each
session. Our results tend to indicate a decrease of offline performances for the same classifier from
one session to  another.  However,  it  does  not  affect  online performances  as soon as  the offline
performance decrease does not exceed a threshold (about 80%), which allows the user to keep a
proper  control  on  the  application.  This  tends  to  show that  a  classifier  can  be  re-used  without
performing a new calibration phase.

Finally, our results tend to show that the SSVEP paradigm enables to get, for some subjects,



a quick and satisfying control of the interface for novice users. Nevertheless, even if constraints can
be  decreased  by avoiding extra  calibration  stages,  this  paradigm remains  in  the  long run  very
stressing for the user. Indeed, we noticed for some people a phenomenon of eye blinking and eye
tingling caused by stimuli. If this paradigm is binding for healthy people after few minutes (≈ 30
min) of use, we can deduce that it is not suitable to a context of an extended use as will required for
disabled people. SSVEP mode can be an interesting strategy, in a first time, to allow patients to gain
quickly autonomy. But in a second time, a gradual shift to another paradigm, such as MI, will be
more  judicious.  SSVEP mode  can  be  used  in  a  hybrid  BCI  wherein  it  do  not  represent  main
component of the interface. This will limit SSVEP constraints while keeping its advantages.  
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