
HAL Id: hal-01361859
https://hal.science/hal-01361859

Submitted on 7 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical study of the vibrations of an elastic container
filled with an inviscid fluid

Nicolas Hermant, Franz Chouly, Fabrice Silva, Paul Luizard

To cite this version:
Nicolas Hermant, Franz Chouly, Fabrice Silva, Paul Luizard. Numerical study of the vibra-
tions of an elastic container filled with an inviscid fluid. Journal of Applied Mathematics
and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2017, 98, pp.602-621.
�10.1002/zamm.201600208�. �hal-01361859�

https://hal.science/hal-01361859
https://hal.archives-ouvertes.fr


Numerical study of the vibrations of an elastic container filled with an inviscid
fluid

Nicolas Hermanta, Franz Choulyb,∗, Fabrice Silvac,a, Paul Luizarda

aGrenoble Image Parole Signal et Automatique UMR CNRS 5216, 11 rue des Mathématiques, BP 46, 38402 Saint-Martin-d’Hères, France.
bLaboratoire de Mathématiques de Besançon, UMR CNRS 6623, 16 Route de Gray, 25030 Besançon cedex, France.

cAix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France.

Abstract

We investigate numerically the vibrational behavior of a simple finite element model that stands for an elastic
container filled with an inviscid fluid. The underlying mathematical model is detailed and its spectra is characterized.
The finite element method relies upon the added-mass formulation of Morand and Ohayon. A parametric study allows
to characterize the system’s response to dimensionless parameters in terms of eigenfrequencies. Then an insight into
the mode shapes is provided, with a discussion on the presence and the behavior of singular modes caused by specific
boundary conditions in the fluid.

Keywords: vibrations, fluid-structure interaction, finite element method, added-mass formulation, vocal folds replica

1. Introduction

We consider the small vibrations of an elastic container filled with a liquid such as water. This situation appears
frequently in engineering. It can be modelled conveniently in terms of fluid displacement and with a linearized Euler
equation in the fluid, that avoids solving Navier-Stokes equations in a moving domain. Since the first pioneering
works (see, e.g., [32, 39] and references therein) to derive models that correspond to such a situation, many numerical
methods based on finite element discretization have been designed and analyzed.

First Kiefling & Feng [29] exhibited numerical instabilities, i.e., spurious modes occurring with almost zero eigen-
frequency and showing circulation patterns of the fluid with no motion of the container. This has been confirmed by
Hamdi et al. [24]: they observe that the spurious modes can also appear away from zero, making it difficult to dis-
criminate real modes from spurious ones. Bermúdez et al. [7] provides a clear picture of the phenomenon, illustrating
that the null eigenspace (with infinite dimension) contains exclusively pure rotational fluid motions. This justifies the
variant with a penalty for the irrotationality of the fluid motion (see, e.g., [24, 34]), introducing the fluid vorticity as
an additional variable. This method has two drawbacks: it increases the computational cost and spurious modes are
not eliminated but pushed to higher frequencies. This could be overcome by an appropriate choice of the discretiza-
tion as, e.g., the one suggested in Bermúdez & Rodriguez [8] where the fluid dispaclement variable is approximated
with Raviart-Thomas finite element. This requires special consideration for coupling with the solid. For an elasto-
acoustic problem, Wang & Bathe [40] consider that the spurious modes can only be eliminated properly by means of
a mixed displacement/pressure/vorticity formulation for the fluid. In Bermúdez et al. [9], and following Morand &
Ohayon [32], an added-mass formulation is described and analyzed, as a simple way to get rid of the spurious modes.
Extension to a fluid-solid problem involving a plate is proposed in [10]. Barrientos et al. [5] start from the same
added-mass formulation, but discretize the fluid with boundary elements, an efficient technique that avoids to mesh
the fluid domain.
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In this paper we focus on a fluid model with a specificity: the liquid fills the container through a small hole in the
boundary, that allows for pressure alimentation. This point is motivated by the physical study of an in-vitro vocal fold
replica that is described in Sec. 6 as an example. Conversely, most of the previous works investigate either the problem
of a fluid that fills completely a closed container [24] or the problem of partial filling with a free surface where gravity
waves and sloshing could damage the structure [6, 32]. In the first case, the whole fluid boundary is the interface with
the elastic solid. The second case is usually modelled with an equation relating the pressure on the free surface to
its vertical displacement (see, e.g., Boujot [11]). This case usually focuses on incompressible fluids, which induce a
constraint accounting for the fluid volume conservation: the motion of the free surface has to compensate the normal
displacement of the fluid-solid interface. At the opposite, in our work, we consider the case of a prescribed pressure
on the «free» surface. This would relate to the usual free surface condition setting the gravity constant g to zero, but
this has several important consequences. First there is now a Dirichlet condition on the portion of the fluid boundary
that corresponds to the hole. This removes the need for the vertical displacement variable. Secondly, it releases
the volume conservation constraint that is usually handled through a Lagrange multiplier [9]. Finally, the Dirichet
condition serves to provide a reference value for the fluid potential, that would otherwise require the introduction of a
single static pressure value per fluid domain [33].

Among the great amount of possibilities for the finite element discretization of such a problem, we selected the
added-mass formulation introduced by Morand & Ohayon [32] (see also, e.g., [19, 39]) and analyzed in Bermúdez et
al. [9] for a system with a free surface. This approach relies on the Helmholtz decomposition: the rotational motion
being ignored, the fluid flow is potential, and the problem can be stated in terms of the solid displacement and the fluid
potential. This has the advantage to replace the vectorial displacement variable by a scalar one and can not generate
pure rotational flows. This may lead to non-symmetric mass and stiffness matrices for the solid displacement and
fluid potential variables. This is circumvented by eliminating the fluid variable using an added-mass operator at the
continuous level: the formulation then takes into account the fluid loading on the structure by means of a Neumann-
to-Dirichlet operator. At the algebraic level this means that we recover a generalized eigenvalue problem similar to
what is obtained for a pure elastic problem: the contribution of the fluid is taken into account through an added-mass
matrix that perturbs the solid mass matrix. The choice of the added-mass method is motivated by the following:

• It has a low computational cost, because the fluid variable is a scalar one, and the final eigenvalue problem to
solve only involves the degrees of freedom associated to the solid displacement.

• It is simple to implement in a standard finite element library such as FreeFem++: it only makes use of Lagrange
finite elements (for instance) and involves simple algebraic manipulations. No care has to be taken for the dis-
cretization of the fluid-solid interface (non-conforming discretizations are allowed). The symmetric eigenvalue
problem that results can be solved with any standard algorithm.

• It has a firm mathematical background: the analysis detailed in [9] ensures that no spurious modes can be
computed, and optimal convergence to the exact eigenfrequencies and eigenmodes occurs when the size of
finite elements gets smaller.

Our first contribution is to present a mathematical analysis of the added-mass formulation for the hydro-elastic
spectral problem with prescribed pressure on part of the fluid boundary, that does not exist to the best of our knowl-
edge. Then we present a detailed numerical parametric study, based on a dimensional analysis, that allows to under-
stand the influence of each main physical parameter, on a configuration inspired from a real one: an in-vitro vocal
fold replica. Finally we focus on eigenmodes and investigate the correlation between pure elastic and hydro-elastic
modes, as well as the occurence of singular modes due to the specific boundary conditions in the fluid, associated to
the pressure vent.

The paper is organized as follows: in Sec. 2 the mathematical model is presented as well as the underlying physical
assumptions. Then, the added-mass formulation and the finite element discretization are detailed in Sec. 3. Sec. 4
is focused on the mathematical study of the yielding spectral problem. A parametric analysis, that allows to identify
dimensionless parameters, follows in Sec. 5. The numerical results are described in Sec. 6, for an idealized vocal fold
replica. Some conclusive remarks are stated in Sec. 7.
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2. Problem statement

We consider a fluid enclosed in a deformable container (for an example made of latex, see Sec. 6). Notations are
provided in Fig. 1. In what follows n denotes the unit normal to the interface Σ, outward to the solid domain Ωs.
Modelling of each part as well as boundary and interface conditions are described below. While 3D brings no further
problems (d = 3), a plane strain is assumed here for the sake of simplicity (d = 2). Within the vibrational analysis,
small amplitude displacements in the vicinity of an equilibrium state are investigated.

Fluid Ω f

Solid Ωs

Σ

Γext

Γl ΓmΓm

Figure 1: Geometry of the coupled domains (with notations)

2.1. Solid domain: the elastic problem
The solid is assumed to be a linear elastic material with density ρs. It is submitted to the fluid pressure fluctuation

p on the interface Σ, and clamped on Γs = ∂Ωs ∩ Γm. All other volume forces or traction forces on Γext are set to zero,
and harmonic solutions are sought (with convention e jωt). This leads the following problem: find a pulsation ω ≥ 0
and a displacement us : Ωs → Rd such that

ρsω
2us + divσ(us) = 0 on Ωs, (1a)

us = 0 on Γs, (1b)
σ(us)n = 0 on Γext, (1c)
σ(us)n = p n on Σ. (1d)

Denoting σ(us) the Cauchy stress tensor, related to the small strain tensor ε(us) through a constitutive law σ(us) =

C : ε(us). The elasticity tensor C is assumed to have usual ellipticity and uniform boundedness properties. In
numerical experiments hereafter the Hooke law will be considered.

2.2. Coupling to the fluid domain: the hydro-elastic problem
The fluid is supposed to be irrotational, inviscid, homogeneous and incompressible, with density ρ f . We note u f

the fluid displacement and p the pressure fluctuation around the rest state. Small harmonic solutions with angular
frequency ω are introduced into the Euler equation. Following Morand and Ohayon [32] a linearization procedure
yields

−ρ fω
2u f + ∇p = 0 on ΩF ,

div u f = 0 on ΩF .
(2)

The fluid motion being irrotational, there exists a fluid displacement potential ϕ such that u f = ∇ϕ and, according
to Eq. (2), it is connected to the pressure through p = ρ fω

2ϕ. The mass conservation then implies that the potential
obeys to the Laplace’s equation within the fluid domain

− ∆ϕ = 0 on ΩF . (3)

The fluid domain is bounded by the inflation inlet Γl, where the pressure fluctuation is supposed to be zero, by the
rigid support Γm and by the interface Σ with the elastic solid. This implies for the fluid potential ϕ a Dirichlet condition
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on Γl, a Neumann condition on Γm, that accounts for sliding, and the transmission of the normal displacements and
efforts on the interface Σ with the deformable container. The boundary condition on Γl determines the reference value
for the potential that would otherwise be defined up to an additive constant. As a result, the hydro-elastic vibrations
problem can be formulated as: find ω ≥ 0, us : Ωs → Rd and ϕ : Ω f → R such that

ρsω
2us + divσ(us) = 0 on Ωs, (4a)

us = 0 on Γs, (4b)
σ(us)n = 0 on Γext, (4c)

σ(us)n = ρFω
2ϕn on Σ. (4d)

−∆ϕ = 0 on Ω f , (4e)
ϕ = 0 on Γl, (4f)

∇ϕ ·n = 0 on Γm, (4g)

∇ϕ ·n = us ·n on Σ. (4h)

3. Weak formulation and finite element method

In this section, following, e.g. [9, 32], we introduce a weak formulation of the hydro-elastic problem described in
Sec. 2 as well as a finite element discretization. Both are based on continuous and discrete added-mass operators that
allow reduction to a simpler problem in which the only unknown is the solid displacement.

The set of infinitely derivable functions with compact support in a domain D is denoted C∞c (D). The Lebesgue
space of square integrable functions on a domain D is denoted L2(D). Moreover we use the standard notation for
Sobolev spaces (Hs(D))d, s ∈ R, d = 1, 2, 3, in one, two or three dimensions (see, e.g., [1]). The Sobolev norm is
denoted ‖ · ‖s,D (dual norm if s < 0) and we keep the same notation whatever is the value of d.

3.1. Weak formulation of the hydro-elastic problem
We introduce firstVs andV f , that are the spaces of kinematically admissible fields for the solid displacement and

the fluid potential, respectively:

Vs =
{
v ∈ (H1(Ωs))d : v = 0 on Γs

}
,

V f =
{
ψ ∈ H1(Ω f ) : ψ = 0 on Γl

}
.

Then Eq. (4a)–(4h) yield

Find ω ≥ 0, us ∈ Vs and ϕ ∈ V f such thatKs(us, v) − ω2Ms(us, v) = ω2 C f s(ϕ, v) ∀v ∈ Vs,

M f (ϕ, ψ) = C f s(ψ,us) ∀ψ ∈ V f ,

(5)

with the solid stiffness and mass bilinear forms Ks andMs defined, respectively, as

Ks(us, v) =

∫
Ωs

σ(us) : ε(v) dΩs and Ms(us, v) =

∫
Ωs

ρsus · v dΩs. (6)

The fluid mass and the coupling bilinear formsM f and C f s are defined, respectively, as

M f (ϕ, ψ) =

∫
Ω f

ρ f ∇ϕ · ∇ψ dΩ f and C f s(ψ, v) =

∫
Σ

ρ fψ(v ·n) dΣ. (7)

At this stage, we introduce the Neumann-to-Dirichlet operator for the Laplace equation on the fluid domain. For
this purpose we define the trace space on the interface Σ, of functions inV f :

W f = {ψ|Σ : ψ ∈ V f }.

The spaceW f is endowed with the norm

‖ξ‖W f = inf
ψ∈V f ,ψ|Σ=ξ

‖ψ‖1,Ω f ,
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for ξ ∈ W f . The topological dual of W f will be noted W′
f (L2(Σ) being the pivot space), and the duality product

betweenW′
f andW f will be noted 〈 · , · 〉. The Neumann-to-Dirichlet operator is then defined as follows:

M : W′
f → W f

η 7→ ϕη|Σ,

where ϕη ∈ V f is the unique potential field solution to∫
Ω f

ρ f ∇ϕ
η · ∇ψ dΩ f = ρ f 〈η, ψ|Σ〉 ∀ψ ∈ V f . (8)

It maps the prescribed Neumann condition η on Σ to the trace of the resulting potential ϕη on this same interface.
Note that it is sometimes referred to the Poincaré–Steklov operator [28, 30] and is similar to the input impedance for
unidimensionnal acoustic waveguides. Remark that us ·n ∈ L2(Σ) ⊂ W′

f , so from Eq. (5) and (8) there holds:

ϕ|Σ =M(us ·n),

for ϕ solution to Eq. (5). Therefore, for any v ∈ Vs there holds:

C f s(ϕ, v) =

∫
Σ

ρ fϕ|Σ(v ·n) dΣ =

∫
Σ

ρ fM(us ·n)(v ·n) dΣ.

This motivates the introduction of the added-mass bilinear form:

Ma : Vs ×Vs → R
(us, v) 7→

∫
Σ
ρ fM(us ·n)(v ·n) dΣ.

It describes how the fluid waves resulting from the interface motion influence back the vibration of the structure, The
added-mass formulation of the spectral hydro-elastic problem now writes:

Find ω ≥ 0 and us ∈ Vs such that Ks(us, v) = ω2 (Ms(us, v) +Ma(us, v)) ∀v ∈ Vs. (9)

Note that at the continuous level formulations (5) and (9) are equivalent.

3.2. Finite element discretization
We discretize Problem (5) following the approach detailed in [9, 32]. For this purpose, let Vh

s ⊂ Vs (resp.
Vh

f ⊂ V f ) be a conformal finite element discretization for the solid displacement us (resp. for the fluid potential ϕ).
In practice we choose Lagrange finite elements, that are continuous piecewise polynomials of degree k = 1, 2 forVh

s
and of degree 1 for Vh

f , built upon triangulations of each domain (h denotes the mesh size, see, e.g., [13, 18]). We
denote by Us the column vector that contains all the degrees of freedom (hereafter abbreviated in dofs) associated to
a discrete solid displacement uh

s ∈ V
h
s , and similarly Φ the column vector that contains all dofs from a discrete fluid

potential ϕh ∈ Vh
f . We note respectively Ks, Ms, M f and C f s the matrices obtained from the bilinear forms Ks,Ms,

M f and C f s after the standard finite element assembly procedure (see, e.g., [18]). The resulting discrete problem
associated to Problem (5) then reads, in matricial form: KsUs = ω2

(
MsUs + C f sΦ

)
,

M fΦ = CT
f sUs.

(10)

As noted in, e.g. [32], the positive measure of Γl implies that the fluid mass matrix M f is invertible. This allows
to eliminate Φ in the first equation of Eq. (10) with help of the second equation, and we get:

KsUs = ω2 (Ms + Ma) Us with Ma = C f sM−1
f CT

f s. (11)

The added-mass matrix Ma is a discrete counterpart of the added-mass operator Ma. Note that no geometric con-
formity of the element nodes or edges at the fluid/solid interface Σ is required by this formulation, which simplifies
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slightly the meshing process. We recover a purely elastic problem from Eq. (11) if we simply omit the added-mass
matrix (this corresponds to the case ρ f = 0 at the continuous level).

The numerical results are obtained with FreeFem++ finite element library [25, 26] that provides a convenient
open source environment for the specification of the weak formulation, its transformation into the discrete added-
mass problem and numerical solving. Problem (11) is solved in FreeFem++ through an Implicit Restarted Lanczos
Method implemented in the package ARPACK1. Tolerance for this iterative method has been fixed to 10−10. The
functional interface of ARPACK is used: Ks and (Ms + Ma) are implemented as linear operators that apply to a vector
(see [26, Section 9.4]). This avoids the explicit computation of M−1

f to assemble the added-mass matrix Ma. This is
cheaper in terms of computational cost (memory and time), especially in that case where the inversion of the matrix
M f implies the loss of sparsity of the added-mass matrix Ma. However, as the coupling matrix C f s only involves dofs
of Us that are located on the interface Σ, this density only corresponds to a reduced subset of dofs.

Regarding Dirichlet boundary conditions associated to the elastic solid, these are imposed on the stiffness matrix
Ks, but not on the mass matrix (Ms + Ma). This enables to push to the highest frequencies the spurious modes arising
from the treatment of Dirichlet boundary conditions with exact penalty (see [26, Note 9.1]).

4. Characterization of the spectrum

The aim of this section is to characterize the spectrum of the hydro-elastic problem (5), and to show it has a
structure very similar to a pure elastic problem (i.e., uncoupled with a fluid): a countable increasing sequence of
real positive eigenvalues of finite multiplicity. This is due to the simple model chosen to describe the fluid, that acts
only as an added-mass. Note that for different fluid-solid coupled problems, with more general fluid models, such
as incompressible Navier-Stokes, this characteristic may not be preserved anylonger (see, e.g., [20]). Mathematical
characterization of the spectrum has already been carried out for very similar hydro-elastic problems, in, e.g., [5, 9,
11, 38]. In the aforementioned works, the main difference in their model comes from the boundary condition on
Γl. In [9, 11] a free surface condition is chosen, whereas in [5, 38] a completely enclosed fluid cavity is considered
(Γl = Γm = ∅). As a result, we adapt the framework of Boujot [11] for the spectral characterization of our specific
model. Before addressing the hydro-elastic problem, we recall the main result for the pure elastic problem.

4.1. Elastic problem

For the purely elastic problem the result below is well-known and can be found in, e.g., [3].

Theorem 1. Let us consider the elastic problem derived from Eq. (5) by setting ρ f = 0. This spectral problem has a
countable infinite sequence of real eigenvalues of finite multiplicity

0 < λE
1 ≤ λ

E
2 ≤ . . .→ ∞,

with the relationship ωE
n =

√
λE

n , n ≥ 1. Furthermore the corresponding eigenfunctions (uE
n )n≥1 satisfy the orthogo-

nality properties
Ks(uE

n ,u
E
m) = (ωE

n )2Ms(uE
n ,u

E
m) = (ωE

n )2δnm, (12)

where δnm denotes the Kronecker symbol.

Note that 0 is discarded as an eigenvalue because of the Dirichlet boundary condition (1b) that prevents rigid body
motions.

1http://www.caam.rice.edu/software/ARPACK/
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4.2. Hydro-elastic problem

To characterize the spectrum of Problem (5), we need first a regularity assumption. Indeed to apply a compacity
argument in the proof of Theorem 2, we need some extra regularity associated to Problem (8). Since in our situation,
the Laplace equation is associated to mixed Dirichlet/Neumann boundary conditions, standard regularity results can
not apply and the solution φη is not expected to belong to H2(Ω f ) (see, e.g., [23] and [18, Theorem 3.10, Remark
3.11]). Nevertheless we can make a weaker regularity assumption as follows:

Assumption 1. Let us suppose that there exists δ > 0 such that, given η ∈ L2(Σ), the solution φη to Problem (8)
belongs to H1+δ(Ω f ), with the regularity estimate

‖φη‖1+δ,Ω f ≤ C‖η‖0,Σ,

where C > 0.

Assumption1 is valid for instance if Ω f is a simply connected domain in R2 with polygonal boundary and interior
angles less than 2π (no crack), and in that situation δ > 1

4 (see, e.g., [2, 22, 23]). Moreover this is true for a flat
boundary (ω = π), as in Fig. 1, and in this case δ = 1

2 (see, e.g., [23]).
Moreover we need a compactness theorem in fractional-order Sobolev spaces, that is direct application of, e.g.,

[35, Lemma 10] (see also [15, Theorem 7.1] for a more general result):

Lemma 1. Let Ω ⊂ Rd, d ≥ 1, be a Lipschitz bounded open set, then, for every δ ∈ (0, 1), the injection of H1+δ(Ω)
into H1(Ω) is compact.

Proof: Let us pick a bounded sequence (vn) in H1+δ(Ω). It means that (vn) is bounded in Hδ(Ω) and (∂xi vn) is bounded
as well in Hδ(Ω), where ∂xi vn denotes the weak partial derivative of vn, respectively to direction xi, i = 1, . . . , d. We
apply two times the Lemma 10 of [35] (compactness of the injection Hδ(Ω) ⊂ L2(Ω)) and we get a subsequence, still
denoted (vn) such that

vn → v in L2(Ω), ∂xi vn → wi in L2(Ω), i = 1, . . . , d.

Furthermore, for any φ ∈ C∞c (Ω) there holds∫
Ω

wiφ dΩ = −

∫
Ω

v ∂xiφ dΩ,

(this is obtained for instance using the writing wi − ∂xi vn + ∂xi vn in the left hand side, and passing to the limit when
n→ +∞). Whence we obtain that v ∈ H1(Ω) and wi = ∂xi v. It results that vn converges to v in H1(Ω). �

Then we state our main result:

Theorem 2. Let us consider that Assumption 1 is valid. Then Problem (5) has a countable infinite sequence of real
eigenvalues of finite multiplicity

0 < λH
1 ≤ λ

H
2 ≤ . . .→ ∞,

with the relationship ωH
n =

√
λH

n , n ≥ 1. Moreover the corresponding eigenfunctions (uH
n )n≥1 satisfy the orthogonality

properties
Ks(uH

n ,u
H
m) = (ωH

n )2(Ms(uH
n ,u

H
m) +Ma(uH

n ,u
H
m)) = (ωH

n )2δnm, (13)

where δnm denotes the Kronecker symbol.

Remark 1. We differentiate the eigenfunctions for the hydro-elastic problem using the notation (uH
n )n≥1, whereas

(uE
n )n≥1 corresponds to the eigenfunctions of the pure elastic problem. The relationship and correlation between these

two families of eigenfunctions is investigated numerically in Sec. 6.3.

Proof: The proof is carried out in two steps: 1) first, we reformulate Problem (5) into an equivalent problem,
2) then we check that the framework provided in [11, Sections 1.1–1.2] can be applied (we use slightly different
notations).
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1) We introduce the spaces

V = (H1(Ωs))d × H1(Ω f ), H = (L2(Ωs))d × H1(Ω f ),

endowed with the product norm as well as

Vs f =

{
y = (v, ϕv) ∈ Vs ×V f : M f (ϕv, ψ) = C f s(ψ, v) ∀ψ ∈ V f

}
⊂ V. (14)

Note that V ⊂ H with continuous injection. We introduce as well the bilinear form, for x = (u, ϕ) ∈ V and
y = (v, ψ) ∈ V:

a(x, y) = Ks(u, v).

Similarly we define, for x = (u, ϕ) ∈ H and y = (v, ψ) ∈ H :

b(x, y) =Ms(u, v) +M f (ϕ, ψ).

Problem (5) can be recasted as:

Find ω ≥ 0 and x = (us, ϕ
us ) ∈ Vs f such that a(x, y) = ω2b(x, y) ∀y = (v, ψ) ∈ Vs f . (15)

Note that (5) and (15) are equivalent (see [11, Section 2.2] for more details in the context of a similar problem).
2) Now let us remark that Vs f is closed in V and we introduce Hs f that is the closure of Vs f in H for the norm

of H . Note as well that a( · , · ) is a bilinear symmetric continuous form on Vs f and b( · , · ) is a bilinear symmetric
continuous form onHs f . For y = (v, ψ) ∈ Hs f , there holds:

b(y, y) = ρs‖v‖20,Ωs
+ ρ f ‖∇ψ‖

2
0,Ω f
≥ ρs‖v‖20,Ωs

+ c ρ f ‖ψ‖
2
1,Ω f

, (16)

with c > 0. Here we applied the Poincaré-Friedrichs inequality (see, e.g., [18, Lemma B.66]) since any function ψ in
V f satisfies a homogeneous Dirichlet boundary condition ψ = 0 on Γl. It results that b( · , · ) is coercive onHs f . From
Korn’s inequality (see, e.g., [17]) and the above property (16), there holds, for every λ > 0, and for y = (v, ψ) ∈ Vs f :

(a + λb)(y, y) ≥ c(‖v‖21,Ωs
+ ‖ψ‖21,Ω f

),

where c > 0 is a constant that depends on λ, ρS , ρF , on the ellipticity constant of the elasticity tensor C and on the
Korn’s and Poincaré-Friedrichs’ constants. Thus (a + λb)( · , · ) is coercive onVs f for every λ > 0.

The last point to satisfy is the compact injection ofVs f intoHs f . For this purpose let us pick a bounded sequence
(yn) = (vn, ϕ

v
n) in Vs f , n ≥ 1. This implies that the sequence (vn) is bounded in (H1(Ωs))d: we can apply Rellich-

Kondrachov Theorem (see, e.g., [12, Theorem 9.16]) and extract a subsequence, still denoted (vn), that converges in
(L2(Ωs))d, with an associated subsequence inV f , still denoted (ϕv

n). The elements ϕv
n ∈ V f are solution to:∫

Ω f

ρ f ∇ϕ
v
n · ∇ψ dΩ f = ρ f 〈v ·n, ψ|Σ〉 ∀ψ ∈ V f ,

that is Problem (8) with boundary data η = v ·n ∈ L2(Σ). We apply the Assumption 1 so that, for a given δ > 0, each
ϕv

n is regular enough to belong to H1+δ(Ω f ). In addition the regularity estimate combined to a trace inequality yields

‖ϕv
n‖1+δ,Ω f ≤ C‖vn ·n‖0,Σ ≤ C‖vn‖1,Ωs ,

which means that the sequence (ϕv
n) is bounded in H1+δ(Ω). Whence, applying Lemma 1 there is a subsequence, still

noted (ϕv
n) that converges into H1(Ω f ). To summarize we proved that there exists a subsequence (yn) = (vn, ϕ

v
n) that

converges inHs f .
We are ready now to apply the results of Ref. [11, Section 1.2]: there exists a sequence of numbers λH

m ≥ 0 growing
to infinity as m → ∞, and a family of elements xm = (um, ϕm) that are orthogonal inVs f for a( · , · ) and that form an
orthonormal basis ofHs f for b( · , · ). These are such that:

a(xm, y) = λH
mb(xm, y), ∀y ∈ Vs f .

Note that in fact λH
1 > 0 due to the Dirichlet boundary condition (1b) that prevents rigid body motions. The pulsations

ωH
m are retrieved from the eigenvalues λH

m as ωH
m =

√
λH

m . �
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5. Parametric analysis

We aim at identifying the dimensionless parameters associated to Problem (5). Among other purposes, this anal-
ysis is achieved to highlight the size proportion effects due to the small thickness of the elastic solid in contrast with
the fluid that occupies a larger domain. Such an analysis might help in the future to choose or design an appropriate
reduced order structural model such as a plate or a shell.

As illustrated in Fig. 2, the first step consists in considering a solid membrane - of thickness e - interfaced with
a squared-shape fluid domain - of size R × R (in 2D). At the bottom of the fluid domain there is a vent/opening - of
width l - where pressure is imposed. Then, the following transformations are considered:

• in the solid domain: the reduced spatial coordinates x′ = x/R and y′ = y/e are introduced, mapping Ωs =

[0,R] × [0, e] to Ω′s = [0, 1] × [0, 1]. Moreover adimensional displacement fields u′ and v′ link to u and v via
the scaling parameterU: u = Uu′ and v = Uv′. Cartesian coordinates of u′ (resp. v′) are denoted by (u′x′ , u

′
y′ )

(resp. (v′x′ , v
′
y′ )).

• in the fluid domain: Ω f = [0,R] × [−R, 0] maps to Ω′f = [0, 1] × [−1, 0] with x′ = x/R and y′ = y/R. The
parameter Φ, homogeneous to a displacement potential, defines the adimensional fluid potential ϕ′ = ϕ/Φ and
ψ′ = ψ/Φ.

x

y
Γext

Σ

e

−R

R

Ω f

Ωs

Γl

Γm

x′

y′
Γ′ext

Σ′

1

−1

1

Ω′s

Ω′f

Γ′l

Γ′m

Figure 2: Adimensionalization of Problem (5).

The bilinear operators defined in Sect. 3.2 can be reformulated within the new domains:

• the solid stiffness operator Ks =
∫

Ωs
λ tr ε(u) tr ε(v) + 2µε(u) : ε(v) (with λ, µ the Lamé coefficients of the

Hooke law) splits into three dimensionless operators:

Ks(u, v) = U2 ER
e

(
K ′ee +

e
R
K ′eR +

e2

R2K
′

RR

)
with

K ′ee(u, v) =

∫
Ω′s

(
1 − ν

(1 + ν)(1 − 2ν)
∂y′u′y′∂y′v′y′ +

1
2(1 + ν)

∂y′u′x′∂y′v′x′
)

dΩ′s,

K ′eR(u, v) =

∫
Ω′s

(
ν

(1 + ν)(1 − 2ν)

(
∂x′u′x′∂y′v′y′ + ∂y′u′y′∂x′v′x′

)
+

1
2(1 + ν)

(
∂y′u′x′∂y′v′x′ + ∂x′u′y′∂x′v′y′

))
dΩ′s,

K ′RR(u, v) =

∫
Ω′s

(
1 − ν

(1 + ν)(1 − 2ν)
∂x′u′x′∂x′v′x′ +

1
2(1 + ν)

∂x′u′y′∂x′v′y′
)

dΩ′s.

with E the Young’s modulus and ν the Poisson’s ratio. The first term relates to the flexural deformation, the
second to shear, and the third one to inplane membrane strain.
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• the solid mass operator:

Ms(u, v) =

∫
Ωs

ρsu · v dΩs = ρseRU2M′s(u
′, v′) with M′s(u

′, v′) =

∫
Ω′s

u′ · v′dΩ′s.

• the fluid mass operator:

M f (ϕ, ψ) =

∫
Ω f

ρ f ∇ϕ · ∇ψ dΩ f = ρ f Φ
2M′f (ϕ

′, ψ′) with M′f (ϕ
′, ψ′) =

∫
Ω′f

∇
′ϕ′ · ∇

′ψ′dΩ′f .

• the coupling operator:

C f s(u, ψ) =

∫
Σ

ρ fψ(u ·n) dΣ = ρ f RUΦC′f s(ψ
′,u′) with C′f s(ψ

′,u′) =

∫
Σ′
ψ′(u′ ·n)dΣ′.

Gathering all these expressions, Problem (5) can be recasted as:

E
ρS e2

(
K ′ee +

e
R
K ′eR +

e2

R2K
′

RR

)
(u′, v′) = ω2

(
M′s(u

′, v′) +
ρ f

ρs

Φ

eU
C′f s(ϕ

′, v′)
)
,

ΦM′f (ϕ
′, ψ′) = URC′f s(u

′, ψ′),

or, equivalently, using the added-mass operatorM′a built from C′f s and M′f , that is the dimensionless counterpart of
Ma:

E
ρS e2

(
K ′ee +

e
R
K ′eR +

e2

R2K
′

RR

)
(u′, v′) = ω2

(
M′s +

ρ f

ρs

R
e
M′a

)
(u′, v′). (17)

In Eq. (17) four characteristic parameters can be identified:

1. the membrane aspect ratio ζ = R/e,
2. the ratio of fluid to solid densities η = ρ f /ρs,
3. the Poisson’s ratio ν that appears in the stiffness integrals K ′ee, K ′eR and K ′RR,
4. a scaling frequency Ω =

√
E/(ρse2), showing some similarity with the classic eigenfrequency

√
K/M of a

single d.o.f. mass-spring system (considering K = E/eS and M = ρseS for some surface area S of a membrane
with thickness e).

The elastodynamics problem is recovered as the limit case ρ f → 0, i.e. η → 0. A last parameter can not be ignored:
the measure ` of the surface Γl is implicit in the definition of the kinematically admissible fluid fields, and can be
quantized by the dimensionless vent width `′ = `/R. It is essential in the sense that it describes the relative measures
of the fluid boundaries where Neumann and Dirichlet conditions apply, respectively. Besides, it plays a role similar
to the measure of the free surface area for sloshing problems. In Sec. 6.2 we will present numerical results of the
parametric study for a model of vocal fold replica, using these five characteristic parameters.

6. Example: a vocal fold replica

Experimental vocal fold replicas are currently used in speech production studies [14, 21, 36, 37]. A typical design
of these replica, as shown in Fig. 3, is made of a container - 0.2 − 0.5 mm thick latex - filled with a fluid - usually
water. The residual stress is minimized through avoiding the stretching and the twisting of the latex membrane when
it is mounted on its metallic support The mechanical frequency responses of the structure can be adjusted varying the
internal pressure of the water filling the half-cylinder volume. The water volume inside the replica is connected to a
wide-open water tank so that pressure fluctuations within the replica might not affect the elevation of the free surface
in the tank. Pressure within the replica is determined thanks to the water height in the tank. This pressure control is
not under the scope of the current paper, but explains the difference with other hydro-elastic formulations accounting
for a free surface variable. Furthermore, the interaction between the replica and the glottal air flow is not investigated
here.
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On one hand, in-situ mechanical characterization of these replica and their comparison with numerical simulations
are critical in order to validate and improve the physical and mathematical models. On the other hand, numerical
simulations may reveal complex vibrational behaviours that are challenging to detect experimentally. The default
configuration correspond to a 2D approximation of the vocal fold replica depicted in Fig. 3 and considers the numerical
parameters values listed in Tab. 1.

latexmetal

Figure 3: Design of the vocal folds replica used at GIPSA-lab [37]. Left: metal support with water supply hole covered with the latex cylindric
membrane. Right: sketch of the final assembly and of the water pressure control by the height of the free surface in the tank.

Geometric parameters
Radius R = 10 mm
Latex thickness e = 0.25 mm
Vent width ` = 2 mm

Mechanical parameters

Young modulus E = 1.8 MPa
Poisson’s ratio ν = 0.49
Solid density ρs = 956 kg/m3

Fluid density ρ f = 1000 kg/m3

Dimensionless parameters

Membrane aspect ratio ζ = R/e = 40
Ratio of fluid to solid densities η = ρ f /ρs = 1.046
Poisson’s ratio ν = 0.49
Scaling frequency Ω = 1.7 × 105 rad/s
Dimensionless vent width `′ = 0.2

Table 1: Geometric and mechanical parameters used for the reference configuration

6.1. Convergence study
We first investigate the convergence of the eigenfrequencies of the elastic problem when the mesh size is reduced.

An example of the structured mesh used for the solid domain is shown in Fig. 4. The number N of layers accross
the thickness of the membrane and the number of subdivisions of the boundaries Σ and Γext are varied accordingly to
preserve an aspect ratio of the triangles close to 1.

Table 2 shows the first lowest frequencies fn for different successively refined meshes for the reference configura-
tion, corresponding to parameters provided in Table 1. It is noticeable that a mesh with N = 2 layers accounting for
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−R− e −R −`/2 `/2 R R + e
x

0

R

R + e
y

Σ
Γext

ΓmΓm Γ`

Figure 4: Example of the structured mesh of the solid domain and of the unstructured mesh of the fluid domain. At the interface Σ, the fluid mesh
is two times coarser than the solid mesh.

piecewise quadratic functions (P2 elements, 5050 dofs) leads to errors on eigenfrequencies comparable to the ones
obtained with a mesh of N = 32 layers for the piecewise linear finite element P1 space (265518 dofs). For a given
precision, choosing the P2 finite element space thus reduces the memory requirement and the CPU time in the eigen-
problem solving step. It is also known that P1 elements suffer from Poisson locking near the incompressible limit, see
e.g. Ref. [4]. We do know that plate or shell elements can overcome the increase of the number of solid dofs, but the
current work is intended to be used as a reference for model reduction. Moreover, those models too are prone to shear
and/or membrane locking that may overestimate the eigenfrequencies.

No exact solution being known, the values are fitted on a power-law function to obtain an approximated solution
and the order of convergence. We observe an almost second-order convergence when discretizing the displacement
field using piecewise quadratic functions.

In the case of the hydro-elastic problem, the triangulations in the fluid and solid domains can be nonmatching
accross the interface Σ. Within the convergence study, we chose a coarser mesh of Ω f with the size of the elements
still varying with N. Table 3 illustrates the lowest hydroelastic eigenfrequencies using P2 elements for the solid
displacement u and P1 elements for the fluid potential ϕ. The added-mass effect is evident, the fluid loading strongly
lowers the eigenfrequencies. The same procedure is applied on the results to estimate the orders of convergence. The
latter appears to be smaller than in the elastic problem and matches with the results reported by Bermudez et al. [9].

6.2. Parametric study

The parametric study of the model is performed using the results of the analysis presented in Sec. 5. Fig. 5 shows
the evolution of the first ten eigenfrequencies when independently varying the first four characteristic parameters
previously identified in Sec. 5 (the influence of the width of the pressure inlet is object of a separate section, see
Sec. 6.4).

Figs. 5(a-b) illustrates the influence of the solid stiffness on the eigenfrequencies for the elastic and the hydro-
elastic problems. As expected from Eq. (17), there is a linear dependency on the scaling frequency Ω and then a
(1/2) power relation with the Young modulus E: ω ∝

√
E. Changing the container material while maintaining its

density and its Poisson ratio would trivially scale its modal characteristics: systems with a stiffer material have higher
natural frequencies, as one would intuitively expect. The fluid mass merely contributes with a uniform decrease of the
frequencies, independently from the Young modulus.

On Figs. 5(c-d) are shown the evolutions of the eigenfrequencies with the ratio of fluid to solid densities η = ρ f /ρs.
Obviously, the elastic problem does not consider the fluid so there is no variation and we recover the asymptotic
behavior for very light fluids (η < 0.01). This is consistent with the theoretical formulation written in Sec. 5, where
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Piecewise linear continuous elements
Mode N=1 N=2 N=4 N=8 N=16 N=32 Extrapolation Order

f0 41.1935 28.9448 24.7715 23.6513 23.3520 23.2773 23.2448 1.80
f1 90.1667 63.5041 54.4198 51.9694 51.3171 51.1541 51.0834 1.79
f2 167.1588 117.7744 100.9551 96.4122 95.2037 94.9017 94.7708 1.80
f3 254.6211 180.1323 154.5739 147.6491 145.8076 145.3474 145.1467 1.79
f4 367.9924 260.2499 223.3127 213.3009 210.6385 209.9731 209.6829 1.79

# solid dofs 508 1518 5040 18126 68408 265518

Piecewise quadratic continuous elements
Mode N=1 N=2 N=4 N=8 N=16 N=32 Extrapolation Order

f0 23.3749 23.2810 23.2591 23.2542 23.2513 23.2507 23.2509 1.91
f1 51.3463 51.1570 51.1129 51.1033 51.0976 51.0964 51.0968 1.92
f2 95.2662 94.9062 94.8247 94.8074 94.7971 94.7950 94.7945 1.91
f3 145.9201 145.3539 145.2289 145.2033 145.1881 145.1849 145.1815 1.96
f4 210.8696 209.9882 209.8018 209.7647 209.7427 209.7382 209.7391 2.03

# solid dofs 1518 5050 18126 68442 265518 1045850

Table 2: Computed eigenfrequencies (in Hz) of the first modes for the elastic problem, when the number N of element layers accross the thickness
of the membrane is varied.

Mode N=1 N=2 N=4 N=8 Extrapolation Order
f0 5.4110 5.3636 5.3490 5.3446 5.3427 1.70
f1 13.3922 13.2739 13.2378 13.2276 13.2231 1.75
f2 27.9541 27.5721 27.4531 27.4184 27.4026 1.71
f3 47.4582 46.4800 46.1869 46.1051 46.0699 1.77
f4 68.3029 66.8751 66.4353 66.2422 66.1170 1.36

# solid dofs 1518 5050 18126 68442
# fluid dofs 266 1099 4161 16651

Table 3: Computed eigenfrequencies (in Hz) of the first modes for the hydroelastic problem, when the number N of element layers accross the
thickness of the membrane is varied. Piecewise quadratic continuous elements for u and piecewise linear continuous elements for ϕ.

the added-mass term becomes negligible if the fluid density is much weaker than the solid one. However, there
is a heavy fluid regime (η > 1) where the eigenfrequencies decrease towards zero with (−1/2) power law relation
with respect to η. In that case, the added-mass term becomes predominant in comparison to the solid mass term in
Eq. (17) and ω is almost inversely proportional with

√
η or, more precisely, with √ρ f solely. Notice that the reference

configuration lies in the heavy fluid domain, where one could almost neglect the solid mass term. Finally, in this
figure, a curve does not conform to the common pattern and shows a heavy-fluid behavior even for smaller values of
η. We will discuss this curve below, in Section 6.4.

The effect of the aspect ratio ζ = R/e of the latex membrane is depicted in Figs. 5(e-f). It is possible to distinguish
two regimes here too: first, for a thin membrane (ζ > 10), the eigenfrequencies are decreasing functions of the aspect
ratio, with almost (−1) and (−3/2) power dependence for most of the solutions of the elastic and the hydro-elastic
problems, respectively. This is not explicit from Eq. (17), but is consistent with the results obtained with the Reissner-
Mindlin plate model (see, e.g., Ref. [16]) where the frequencies of the bending modes of a thin plate (without fluid
loading) scale with e. The (−3/2) dependency then comes from the heavy-fluid case, where the added-mass term
dominates the solid mass term and has an extra e/R coefficient. It means that the eigenfrequencies have a higher
sensitivity to the thickness in the presence of fluid than without it. On the contrary, for a thick membrane (ζ < 10) or
even a "capillary" fluid vessel with thick wall (ζ < 1, not shown on the figures), the frequencies show an asymptotic
independence with respect to the latex thickness. The reference configuration of the vocal fold replica lies in the thin
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Figure 5: Influence of the four characteristic quantities on the first ten eigenfrequencies ( f0 to f9) for the elastic (left column) and the hydro-elastic
(right column) problems. The reference configuration is denoted by the vertical dotted lines.

membrane case.
As in Fig. 5(f), this family of branches crosses with some others branches that exhibit different sensitivities with

respect to the aspect ratio ζ. In the hydro-elastic case, the first of them has for example an almost (−1/2) power
dependence, but does not appear in the elastic case, and may so be fluid-specific. On the contrary higher frequency
solutions appear in both the elastic and the hydro-elastic problems. They may even be increasing functions of the
aspect ratio.

Finally, Figs. 5(g-h) illustrate the evolution of the eigenfrequencies (normalized to the reference configuration)
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along with the Poisson’s ratio. It evidences that almost all the solutions scale in a common function of this coefficient,
even if the resemblance is greater in the elastic case than in the hydro-elastic one. In the latter, there is at least one
frequency ( f4) with a variation that differs from the others.

6.3. Discussion on the modes shapes

Particular solutions branches were evidenced in the previous Figs. 5(d,f,h). It is important to investigate the asso-
ciated mode shapes to understand their nature and to explain their different dependencies on the various dimensionless
coefficients.

We first focus on the reference configuration, and compare the dofs vector sets (UE
n )n≥1 and (UH

m)m≥1 obtained
in the elastic and the hydro-elastic problems, respectively. Table 4 provides values of the eigenfrequencies and the
corresponding kinetic energies for the first hydro-elastic modes: the solid kinetic energyMs(v j, v j), the fluid kinetic
energyMa(v j, v j) and the ratio of fluid to solid kinetic energiesMa(v j, v j)/Ms(v j, v j).

(HE0) (HE1) (HE2) (HE3) (HE4) (HE5) (HE6) (HE7) (HE8) (HE9)
Frequency (Hz) 5.7 14.1 29.2 49.2 70.0 77.5 112.4 155.1 205.9 265.6
Solid kinetic en-
ergyMs(v j, v j)

0.053 0.067 0.086 0.103 0.012 0.124 0.143 0.163 0.183 0.203

Fluid kinetic en-
ergyMa(v j, v j)

0.947 0.933 0.914 0.897 0.988 0.876 0.857 0.837 0.817 0.797

Ratio of fluid to
solid kinetic ener-
gies

17.9 13.9 10.7 8.7 82.8 7.1 6.0 5.1 4.5 3.9

Table 4: Frequency and energy indicators for the hydro-elastic solutions of the reference configuration.

A classic correlation descriptor used in the experimental modal analysis is the Modal Assurance Criterion (MAC)
(see, e.g., Ref. [31]) that consists in a matrix defined as:

MACn,m =

(
UE

n ·UH
m

)2

‖UE
n ‖

2 ‖UH
m‖

2 (18)

and that is robust to the convention of normalization used for the eigenvectors. Values close to 1 indicate that the
dofs vectors UE

n and UH
m are almost colinear. On the contrary, values close to 0 implies that the vectors are not

correlated. However, this criterion is not an orthogonality check in the sense of the displacement fields. This property
is more conveniently obtained in the frame of the current numerical study, through the use of the solid mass bilinear
operator or, equivalently, of the solid mass matrix (see, e.g., Ref. [31]). This is usually known as the normalized cross
orthogonality (NCO):

NCOn,m =
Ms(uE

n ,uH
m)

Ms(uE
n ,uE

n )Ms(uH
m ,uH

m)
=
Ms(uE

n ,uH
m)

Ms(uH
m ,uH

m)
=

(UE
n )TMsUH

m

(UH
m)TMsUH

m
(19)

as the elastic modes are normalized with respect to the solid mass matrix Ms.
Fig. 6 compares the first ten dofs vector sets of the elastic (E) and hydro-elastic (HE) models. at first glance, there

is an almost one-to-one correspondence of the solid modal displacements, at the exception of the hydro-elastic mode
4 (HE4) that will be discussed hereafter. The correspondence is not perfect: due to the fluid loading, the (HE) modes,
namely mode (HE2) and higher, even if mainly correlated with one elastic mode, show as well small contributions
of lower elastic modes. For instance mode (HE5) has strong correlation with mode (E4) and some small but not
negligible similarity with modes (E0) and (E2). Symmetry considerations lead to the chess-like pattern visible in the
lower part of the NCO matrix. The fluid loading thus couples the mode shapes that are orthogonal in the elastic case.

Fig. 7 explicits the singularity of the mode (HE4). While the other hydro-elastic modes consider the vibrations of
the fluid-loaded membrane, the mode (HE4) has kinetic energy that is essentially localized at the pressure inlet Γd,
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Figure 6: Representation of the NCO matrix for the first ten modes of the elastic and the hydro-elastic problems.

i.e. with little participation of the membrane. The vibration of the membrane appears to be, in this mode, a mere
side-effect of the main fluid motion: the ratio of the maximal fluid to solid displacements is about 15, while it is about
1 for the other modes, hereafter denoted as coupled modes. The ratio of fluid to solid kinetic energies is relevant too
as it is bounded to 18 for all hydro-elastic modes but the mode (HE4) that exhibits a four times higher value (almost
83). The mode (HE4) thus ressembles the sloshing modes that appear in free surface problems accounting to pressure
fluctuations related to the elevation of the surface (see, e.g., Refs. [32, 39]).

Another point of interest of Fig. 7 lies in the proportion of the fluid region involved in the vibration. While almost
all the full fluid moves in the modes (HE0) to (HE2), the participation then seems to decrease for higher modes to a
thin layer in the vicinity of the interface. This is also visible in Table 4. As the hydro-elastic solutions are normalized
with respect to the total mass operatorMs +Ma (see Eq. (13)), there holds, for the denominator in Eq. (19):

Ms(uH
m ,u

H
m) = 1 −Ma(uH

m ,u
H
m) ≤ 1. (20)

For higher hydro-elastic modes, the fluid kinetic energy decreases towards zero due to the reduced dimension of the
fluid vibration region. This increases the denominator in Eq.(19), i.e. the solid kinetic energy, and thus lowers the
values of the NCO coefficients as also visible in Fig. 6.

Finally, another discrimination criterion is the order of convergence of the estimation of the singular mode eigen-
frequency. As visible in Table 3, the mode (HE4) has a lower order than the modes (HE0) to (HE3). When considering
gravity waves on the free surface, Ref. [9] evidences as well different behaviors for the singular modes and the coupled
modes (called sloshing and hydroelastic modes, respectively).

6.4. Influence of the width of the pressure inlet

As exposed at the end of Sec. 5, the definition of the kinematically admissible fluid fields relies on a last parameter:
the width of the pressure inlet that does not explicitly appear in the dimensionless problem. In order to emphasize
its influence, the evolution of the first eigenmodes is computed for values of this parameter ranging from 0.1 mm to
8 mm.

From Fig. 8(a), the width ` seems to noticeably affect only the singular mode (black dotted curve). In fact, the
representation of the modal shape ensures that the modes labelled (HE4) and (HE5) swap for `/R ∼ 0.3 without any
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(a) Mode (HE0) (b) Mode (HE1) (c) Mode (HE2)

(d) Mode (HE3) (e) Mode (HE4) (f) Mode (HE5)

(g) Mode (HE6) (h) Mode (HE7) (i) Mode (HE8)

Figure 7: First nine hydro-elastic modes in the reference configuration: solid and fluid displacements vector fields are represented with the same
scale. Kinetic energy localization is also displayed (increasing values from yellow to red).

kind of coupling. The frequency of the singular mode increases along with the width of the inlet. This is consistent
with the increase of the eigenfrequencies with the size of the free surface in sloshing problems [32].

The singular mode can be discriminated from the first hydro-elastic eigenmodes by computing the ratio of the fluid
and solid kinetic energies that takes higher values for the former than for the latter (see Fig. 8(b)). This ratio decreases
for higher hydro-elastic coupled modes as the fluid domain involved in the vibration concentrates in the vicinity of
the membrane for high-frequency vibrations. Another criterion for the discrimination bases on the kinetic energy flux
at the pressure inlet defined as

Φ
(
v j, v j

)
=

∫
Γl

ρ f
(
∇ϕv j ·n ·n

)2 . (21)

This compares with the potential energy of the free surface in sloshing problems. The energy flux is several order of
magnitude higher for the singular mode than for the coupled modes, as visible in Fig. 8(c).
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Figure 8: Top: (a) evolution of the first eigenfrequencies for a varying width of the pressure vent and corresponding (b) ratios of fluid to solid
kinetic energies and (c) energy flux at the pressure inlet. Bottom: Modes (HE4) and (HE5).

7. Conclusion

In this paper, a mathematical analysis of the added-mass formulation is proposed for the hydro-elastic vibration
problem with prescribed pressure on a part of the fluid boundary. In addition a parametric analysis and a numerical
study enhance the different possible configurations depending on the importance of the fluid loading on the membrane
container. Furthermore the focus has been put on the distinction between coupled modes and a singular mode that has
its kinetic energy localized in the vicinity of the fluid boundary where the Dirichlet condition applies.

This work is a first step in the study of the behavior of a vocal-fold replica as described at the beginning of
Sec. 6. A first limitation concerns the 2D simulations, and future work will consist in the design and study of a
3D finite element model. In fact, the 2D case relies on the hypothesis of a plane strain, and could then realistically
model the physical situation where the membrane is free at the extremities of the hemi-cylindrical structure. The 2D
modal results correspond only to the first family of modes. In the 3D case, the latex should be constrained on these
extremities with homogeneous Dirichlet boundary conditions to conform to the experimental situation. This should
lead to a stiffer situation for the first modes, and the 3D eigenfrequencies should be then higher than the 2D ones.

Furthermore the current formulation is not able to explain the dependance of the eigenfrequencies on the static
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pressure prescribed at the inlet which is the primary experimental control of the replica. Thus the next steps concern
the inflation of the solid container due to the finite static pressure and the vibration problem to be formulated on the
inflated membrane, i.e. on a prestressed configuration. Preliminary results are given in Ref. [27] and the present
study still shows some relevance when considering a simple hyperelastic constitutive law such as the Saint–Venant–
Kirchhoff law and assuming that the fluid is at rest in the inflated configuration.
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