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Abstract—In the context of brain–computer interfacing based
on motor imagery, we propose a method allowing a human
expert to supervise the selection of user-specific time-frequency
features computed from EEG signals. Indeed, in the current
state of BCI research, there is always at least one expert in-
volved in the first stages of any experimentation. On one hand,
such experts really appreciate keeping a certain level of control
on the tuning of user-specific parameters. On the other hand,
we will show that their knowledge is extremely valuable for
selecting a sparse set of significant time-frequency features. The
expert selects these features through a visual analysis of curves
highlighting differences between electroencephalographic ac-
tivities recorded during the execution of various motor imagery
tasks. We compare our method to the basic common spatial
patterns approach and to two fully-automatic feature extrac-
tion methods, using dataset 2A of BCI competition IV. Our
method (mean accuracy m = 83.71 ± 14.6 std) outperforms
the best competing method (m = 79.48 ± 12.41 std) for 6 of
the 9 subjects.

Index Terms—brain–computer interface, EEG signal process-
ing, sparse feature set, feature selection, human expertise.

I. INTRODUCTION

Brain-computer interfaces (BCI) are devices that enable
users to control effectors using only their cerebral activity.
For now, non-invasive BCI have mainly been used to restore
a communication channel between a severely disabled user
and a computer, letting him/her recover a partial autonomy.
In the so-called active BCI paradigms, users consciously
control their mental activity at their own pace and inde-
pendently from external events [1]. Motor imagery (MI),
i.e. imagination of a specific motor action, is the most
commonly used mental task in active BCIs. In this context, it
is crucial to define appropriate features, computed from EEG
signals, allowing the BCI to distinguish between different
MI tasks performed by the user.

During MI, very specific neurophysiological patterns are
elicited in electroencephalographic (EEG) signals, such as
event-related desynchronisations (ERD) and event-related
synchronisations (ERS). ERD and ERS are characterized
respectively by a decrease of EEG power during MI and an
increase of EEG power at the end of MI [2]. ERD and ERS

are known to appear mainly in EEG signals recorded over
the motor cortex with a spatial distribution that depends on
the MI task, following the cortical motor homunculus [3].
EEG frequency bands in which ERD and ERS can be
detected during MI correspond to µ (7 − 13 Hz) and β
(13 − 25 Hz) rhythms. Nevertheless, it is well known that
the most relevant frequency bands and spatial locations are
variable over subjects and MI tasks [4].

In order to facilitate the discrimination of MI tasks, the
EEG signal processing pipeline typically includes a spatial
filtering stage. CSP (Common Spatial Patterns) is the most
widely used linear spatial filtering approach involving user-
specific parameters [5]. A user-tuned CSP filter increases
the variance of filtered EEG signals for one specific MI
task while minimising their variance for other MI tasks or
for non MI-related mental states. The actual discriminative
performance of CSP filters depends on the frequency bands
in which the signals are processed and on the time interval
during which signal power is determined. For instance, CSP
spatial filters computed on raw EEG signals or on EEG
signals filtered in inappropriate frequency bands yield poor
classification performance.

To solve this problem, several approaches have been
described in the literature. Some researchers have proposed
to keep a wide frequency range, i.e. encompassing µ and β
rhythms and therefore valid for any user, and to improve the
spatial filtering stage. For example [6] has compared several
techniques for determining regularized versions of CSP,
showing that spatial filtering can be significantly improved
compared to basic CSP. Other researchers have proposed
to select user-specific frequency bands in which ERD/ERS
detection is more effective. For example, [4] implements
multiple band-pass frequency filters and computes a specific
CSP for each frequency band. Then, a feature selection
algorithm keeps the most relevant frequency/CSP features
for a given user.

However, all these techniques include a fully automatic
feature selection stage, which implies defining empirically
several meta-parameters, such as the number of features.
But they do not specify the sparsity of the feature space
by taking into account some a priori neurophysiological
knowledge during this feature selection stage. Studies have
shown that sparsity of the feature space allows for good
classification performance because the BCI is less sensi-



tive to covariate shifts in EEG signals. For instance, Raza
et al. have proposed to increase the sparsity using either
forward-addition or backward-elimination of features in the
space [7]. However, no detailed neurophysiological-based
analysis of the ERD/ERS patterns is performed in order
to select the most appropriate frequency intervals, spatial
locations and time intervals in which the EEG signals should
be analysed.

In this paper, we describe a technique in which a human
expert selects a small number of time-frequency features
during a first stage. Obviously, the expert does not exam-
ine the raw EEG signals to make his/her decision, which
would require a very high level of expertise, but a set of
curves plotted using samples of time-frequency processed
EEG signals. Then, in a second stage, a CSP filter is
determined for each retained time-frequency feature. This
approach yields a sparse feature space, whose sparsity is
controlled by a human expert and not by blindly setting the
values of a few meta-parameters. We will also see that this
approach enables us to gather detailed informations about
the neurophysiological patterns of a given user during MI,
and therefore better understand his/her performance.

II. METHOD

Since our method is supervised, the signal processing
pipelines are slightly different for the training and the online
processing modes. In the training mode, which aims at
selecting features and adapting parameters, a set of labelled
EEG trials is analysed. The BCI paradigm used for building
this training set must be cue-based in the sense that the
user is told when to start and when to stop imagining two
or more different motions. In the online processing mode,
the paradigm is not necessarily cue-based and the user can
freely perform any of these MI tasks when he/she wants to.

Figure 1 illustrates the processing pipeline for the train-
ing mode. It is composed of four successive stages: spatial
filtering, band-pass frequency filtering, power estimation,

and aggregation over trials. In the training mode, we wanted
to use the same processing techniques and parameters for
all the users. Thus, the surface Laplacian was selected for
spatially filtering EEG signals since it allows spatial noise
removal and source identification without requiring user-
tuning [8]. Then, for highlighting user specificities in the
frequency domain, like other authors we use a bank of band-
pass filters encompassing the frequency bands of µ and β
rhythms [7], [4]. For highlighting ERD/ERS in the signals,
we compute their log-variance — equivalent to their power
— in a sliding window of fixed duration. Finally, for getting
a data representation easily understandable by the human
expert, we compute the average and standard deviation, over
all trials of each MI task, of signal power at every instant.
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Figure 1: Processing pipeline for the training mode.

Indeed, the aim of the proposed method is to help the
human expert to analyse neurophysiological time-frequency
patterns related to MI tasks. For each MI task, he/she is
asked to review a set of curves, one for each frequency
band, showing the time-course of a specific signal known
to be correlated to this MI. In order to clearly exhibit
differences between the analysed MI task and other MI
tasks, an additional baseline curve is shown to the expert
for each frequency band. This baseline curve is computed
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(a) 4− 8 Hz
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(b) 8− 12 Hz
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(c) 12− 16 Hz
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(d) 16− 20 Hz
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(e) 20− 24 Hz
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(f) 24− 28 Hz

Figure 2: Set of curves for expert review of left hand motor imagery, electrode C4



by averaging values of the signal under consideration for all
the trials corresponding to other MI tasks, i.e. following a
one-versus-rest strategy.

For example, figure 2 shows the first set of six curves,
one for each frequency band, displayed for review by the
expert in order to tune a BCI based on left hand vs. right
hand MI. The EEG signal recorded at location C4 over the
right sensorimotor cortex is known to exhibit clear ERD
when the user performs MI of the left hand. For this MI
task, the curve of interest in each frequency band (solid red
lines in figure 2) is the time-course of average power of
this signal over all corresponding trials, after spatial noise
removal by a Laplacian filter, in a time window starting one
second before MI onset and ending one second and half
after MI offset. Baseline curve in each frequency band (blue
dotted lines in figure 2) is the average power of the same
signal computed over all trials that do not correspond to the
MI task under review. To display the statistical significance
of signal variations, two additional curves are plotted around
each curve at plus and minus half standard deviation.

A visual analysis of these curves enables the expert to
select several time-frequency intervals that best discriminate
this particular MI task from others. The expert pays atten-
tion to band-passed signals that highlight neurophysiological
patterns related to a MI task, such as ERD or ERS patterns.
Neurophysiological knowledge of a human expert is useful
to visually identify such patterns, which have different fre-
quency and temporal distribution over subjects. For example,
two time-frequency intervals [0 − 2.5 s, 8 − 12 Hz] and
[0−2.5 s, 20−24 Hz] can be selected as the best candidates
to discriminate the two MI. After this, CSP filters are
computed using epochs of all EEG signals in each of these
time-frequency intervals, in order to optimise spatial filtering
for this user compared to the non-adaptive Laplacian. Three
pairs of CSP filters are kept for each time-frequency interval.

For the online mode, the processing pipeline includes
four successive stages, as illustrated in figure 3. EEG sig-
nals are filtered in the spatial and frequency domains by
CSP/band-pass pairs determined during the training mode.
Then, the log-variances of filtered signals are computed over
time intervals that were considered as most discriminant for
each frequency by the expert, yielding a small number of
features. Finally, the signal epoch is analysed by a LDA
(Linear Discriminant Analysis) classifier. This processing
pipeline can be performed over sliding overlapped time
windows when the paradigm is not cue-based.
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Figure 3: Processing pipeline for the online mode.

When the BCI paradigm involves more than two MI
tasks, we implement a processing pipeline for each one.

Since the features are determined considering a one-versus-
rest strategy, we follow the same approach for classifying
signal epochs. Each LDA classifier outputs both a class and
a confidence score, for instance the distance between the
feature vector and the separating hyperplane. A standard
voting procedure is used to determine the most appropriate
class according to all outputs.

We also allow the expert to compare different sets of
features, by excluding time-frequency intervals that were
initially selected or including other intervals. To compare
the efficiency of these various sets, the system evaluates
the correct classification rate that each of them yields when
applied on the training set of EEG signals. However, the
expert can decide to keep a smaller set of features even
with a slightly lower classification rate, if he/she considers
that it is probably more robust to deal with covariate shifts
in signals.

III. RESULTS AND COMPARISON

In this paper, our method is evaluated on EEG signals
freely available in data set 2A of BCI competition IV, which
has been widely used for comparison purposes [9]. This data
set comprises raw EEG data recorded by 22 electrodes from
9 subjects. Subjects were asked to perform left hand, right
hand, feet, and tongue MI. All MI tasks were performed
during four seconds just after presentation of a cue. Each
user performed two sessions on different days in order to
obtain a training data set and an evaluation data set.

Only data recorded during left hand and right hand MI
were used in the evaluation, in order to compare our method
with those described in [6] and [7]. EEG signals recorded at
locations C3 and C4 were spatially filtered by a Laplacian,
yielding two signals of interest for further processing, one
for each MI: the signal derived from spatial filtering of C3
(resp. C4) is known to exhibit ERD when the user performs
right (resp. left) hand motor imagery. These signals were
filtered by two banks of six band-pass frequency filters (5th
order Butterworth), yielding twelve signals of interest. Fi-
nally, their log-variance was computed, time-averaged over
a sliding window, and aggregated to determine time-courses
of averages and standard deviations over trials. A sliding
window of one second length allows to keep a good temporal
resolution and to highlight ERD/ERS patterns by smoothing
the signal power.

Then, the expert reviewed the curves plotted for each MI
and each frequency band in order to retain time-frequency
intervals that he considered as the most discriminant be-
tween left and right hand MI. For instance, curves displayed
in figure 2 correspond to the signals of the training set
for subject 9, that were reviewed by the expert. CSP fil-
ters were then determined for each time-frequency interval,
LDA classifiers trained, and correct classifications scores
computed for data of the training set. These scores, although
obtained on the training data, could be used by the expert to
add/remove time-frequency intervals by considering a trade-
off between performance and sparsity.
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(a) S1 - C3 - [12− 16 Hz]
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(b) S2 - C4 - [16− 20 Hz]
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(c) S3 - C3 - [8− 12 Hz]

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.5

0

0.5

1

seconds

lo
g

1
0

(v
a

r)

 

 

(d) S4 - C4 - [16− 20 Hz]
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(e) S5 - C3 - [24− 28 Hz]
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(f) S6 - C4 - [12− 16 Hz]
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(g) S7 - C4 - [16− 20 Hz]
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(h) S8 - C4 - [8− 12 Hz]
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(i) S9 - C4 - [8− 12 Hz]

Figure 4: First time-frequency feature for each subject, the vertical black dashed lines indicate the time interval

For each subject, figure 4 shows the first time-frequency
interval that our expert considered as the most discriminant
between left (red solid lines) and right (blue dashed lines)
hand MI. The vertical black dashed lines indicate boundaries
of the selected time interval in each frequency band. One
can observe that differences between the two MI tasks are
more visible in the processed EEG for subjects 1, 3, 7, 8,
and 9 than for other subjects. Table 1 indicates the sets of
time-frequency intervals that were finally retained by our
expert.

Subject Time-frequency intervals [t1 − t2 (s); f1 − f2 (Hz)]
1 [0.5−3.5; 8−12], [0.5−4; 12−16], [0.5−1.5; 20−24],

[0.5− 2.5; 24− 28]
2 [0.5− 1.5; 12− 16], [0.5− 1.5; 16− 20]
3 [0.5− 4; 8− 12]
4 [0− 1; 8− 12], [1− 2.5; 16− 20], [0.5− 2; 24− 28]
5 [0− 3; 4− 8], [0− 1.7; 20− 24], [0− 3; 24− 28]
6 [0− 1.5; 8− 12], [0− 2; 12− 16], [0.5− 2; 24− 28]
7 [0− 4; 4− 8], [0.5− 4; 8− 12], [0.5− 3.5; 16− 20]
8 [0− 1.5; 8− 12], [1− 3; 12− 16], [0.5− 3; 16− 20],

[0.5− 2.5; 20− 24]
9 [0.5− 2.5; 8− 12]

TABLE 1: Time-frequency features for each subject

Using this set of time-frequency features, and the online
processing pipeline of figure 3, our method was compared
to: 1) a standard CSP; 2) the weighted Tikhonov regular-
ized CSP (WTRCSP) presented in [6]; 3) the backward-
elimination (BE) method described in [7]. The basic CSP
and the WTRCSP, which is the best regularized CSP algo-

rithm according to [6], are computed on a wide frequency
range from 8 to 30 Hz and a time interval between 0.5 and
2.5 s after the cue. However the BE method computes CSP
filters on user-specific frequency bands and a time interval
between 0 and 3 s after the cue.

Table 2 shows the classification accuracies (in %) for
each subject and each processing method. Methods are
assessed on the evaluation data set, only mean and standard
deviation are used for quantified and detailed analysis of
results. The highest classification score for each subject
is indicated in bold font. Our method (mean accuracy
m = 83.71±14.6 std) outperforms the other methods for 5
of the 9 subjects. The performance of our method is worse
for subjects 2, 5, and 9 but equal for subject 3. Our method
is mainly profitable for subjects 4 and 7 for whom the
accuracy is increased respectively by 9 and 15 percentage
points compared to the best competing method. One can
verify that methods which select user-specific frequency
intervals, such as our method (mean m = 83.71) and the
BE (m = 79.43) method, obtained better results than a
basic CSP (m = 78.01) and a WTRCSP (m = 78.47) both
computed on a wide frequency range.

IV. DISCUSSION

In Figure 4, according to the spatial location and the MI
under review, we can observe for all subjects a decrease,
even weak, of the EEG power recorded over the contra-
lateral motor cortex. ERD patterns are present at location C4



Subject basic CSP WTRCSP BE Our method
1 88.89 88.89 90.28 92.36
2 51.39 54.86 63.19 61.11
3 96.53 96.53 93.75 96.53
4 70.14 70.14 70.14 79.17
5 54.86 65.97 72.92 62.5
6 71.53 61.81 65.97 75.69
7 81.25 81.25 75 96.53
8 93.75 95.83 91.67 97.22
9 93.75 90.97 92.36 92.36

Mean 78.01 78.47 79.48 83.71
Std 14.6 15.65 12.41 17.01

TABLE 2: Classification scores for each subject.

(resp. C3) during left (resp. right) hand MI. Simultaneously,
the EEG signal power from the other MI recorded on the
ipsi-lateral side remains stable, except for subject 7. Indeed
for this subject ERD patterns are present for both MI over
the motor cortex of the same hemisphere (see Figure 4g).
However, ERD recorded at location C4 is more pronounced
for the left hand (contra-lateral hemisphere) than for the
right hand (ipsi-lateral hemisphere) MI. This difference of
spatial distribution between ERD patterns of each MI is
essential to allow the BCI to distinguish MI tasks.

According to Figure 4, the spectral and temporal distri-
bution of ERD patterns are variable over subjects, supporting
the fact that time-frequency features must be tuned for
each user. Actually, ERD of subjects 3, 8, and 9 are more
localised on the α rhythm while ERD of subjects 1, 2, 4, 5,
6, and 7 are more pronounced on the β rhythm. Concerning
the temporal distribution, the time-course (onset/offset) of
ERD show different aspects for each subject.

Table 2 shows strong classification accuracies (> 90%),
with our method, for subjects 1, 3, 7, 8, and 9. These
performances can be partly explained by analysing their
neurophysiological patterns elicited during MI, as shown in
Figure 4. The curves show a substantial difference between
EEG power of both MI compared to those plotted for the
other subjects. Therefore we expect that better is the differ-
ence between EEG power of various MI, better the BCI will
be able to distinguish the different mental tasks performed
by the user. Results of our method, in Table 2, are promising
for subjects 4 and 7. For subject 4 the classification accuracy
changes from 70.14% to 79.17%. According to [10] 70% is
the threshold to control correctly a BCI. By outperforming
this threshold, subject 4 will be able to better control a
BCI, improving his motivation. Therefore we expect that
the learning between human and machine will be reinforced.
The result of subject 7 is improved up to 96.53% which is an
almost perfect classification accuracy. In that case we expect
that subject 7 will control the BCI without difficulties.

According to Table 2 the selection of user-specific fre-
quency bands, as in our method and the BE algorithm, yields
to better performance compared to a large frequency range
as used for the basic CSP and the regularized CSP. This
result confirms the literature, assuming that the performance
of CSP filters depends on frequency bands on which the
signals are processed. More over, the use of appropriate time

intervals to compute CSP filters affect their performance,
partly explaining the difference of classification accuracy
between our method and the BE algorithm which uses a
fix time interval. Therefore we expect by selecting time
intervals where ERD occur, as illustrated in Figure 4, to
better discriminate MI tasks.

V. CONCLUSION

We have proposed an easy to implement method in
order to select the time-frequency intervals that best dis-
criminate different classes in the context of MI-based BCI.
The selection of time-frequency intervals is specific to each
subject and is performed offline, using a set of pre-recorded
signals. It is supervised by a human expert who reviews a
set of curves determined for each MI task through a time-
frequency analysis of the recorded EEG signals. The results
of our study confirm the fact that a correct selection of
time-frequency intervals impacts the performance of CSP,
as mentioned in the literature. Moreover our method gathers
detailed informations about the specific neurophysiological
patterns appearing in EEG signals when the users performs
MI. It enables a better understanding of the difference in
classification accuracy between the subjects. We are cur-
rently developing a user-friendly software interface that will
allow an easier selection of time-frequency intervals by the
expert, as well as a visual validation of spatial patterns
determined using the training set.
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[10] A. Kübler, N. Neumann, B. Wilhelm, T. Hinterberger, and N. Bir-
baumer, “Predictability of brain–computer communication,” Journal
of Psychophysiology, vol. 18, no. 2/3, pp. 121–129, 2004.


