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Abstract

A new method for combining several initial estimators of the regression
function is introduced. Instead of building a linear or convex optimized
combination over a collection of basic estimators r1, . . . , rM , we use them
as a collective indicator of the proximity between the training data and a
test observation. This local distance approach is model-free and very fast.
More specifically, the resulting nonparametric/nonlinear combined estima-
tor is shown to perform asymptotically at least as well in the L2 sense as
the best combination of the basic estimators in the collective. A companion
R package called COBRA (standing for COmBined Regression Alternative) is
presented (downloadable on http://cran.r-project.org/web/packages/
COBRA/index.html). Substantial numerical evidence is provided on both
synthetic and real data sets to assess the excellent performance and velocity
of our method in a large variety of prediction problems.

Index terms — Combining estimators, Consistency, Nonlinearity, Nonpara-
metric regression, Prediction.

2010 Mathematics Subject Classification: 62G05, 62G20.

1. Introduction

Recent years have witnessed a growing interest in combined statistical pro-
cedures, supported by a considerable research and extensive empirical evi-
dence. Indeed, the increasing number of available estimation and prediction
methods (hereafter denoted machines) in a wide range of modern statisti-
cal problems naturally suggests using some efficient strategy for combining
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procedures and estimators. Such an approach would be a valuable research
and development tool, for example when dealing with high or infinite dimen-
sional data.

There exists an extensive literature on linear aggregation of estimators, in
a wide range of statistical models: A review of these methods may be found
for example in Giraud (2014). Our contribution relies on a nonparamet-
ric/nonlinear approach based on an original proximity criterion to combine
estimators. In that sense, it is different from existing techniques.

Indeed, the present article investigates a novel point of view, motivated by
the sense that nonlinear, data-dependent techniques are a source of analytic
flexibility. Instead of forming a linear combination of estimators, we propose
an original nonlinear method for combining the outcomes over some list of
candidate procedures. We call this combined scheme a regression collective
over the given basic machines. We consider the problem of building a new
estimator by combining M estimators of the regression function, thereby ex-
ploiting an idea proposed in the context of supervised classification by Mo-
jirsheibani (1999). Given a set of preliminary estimators r1, . . . , rM , the idea
behind this combining method is a “unanimity” concept, which is based on
the values predicted by r1, . . . , rM for the data and for a new observation x.
In a nutshell, a data point is considered to be “close” to x, and consequently,
reliable for contributing to the estimation of this new observation, if all es-
timators predict values which are close to each other for x and this data
item, i.e., not more distant than a prespecified threshold ε. The predicted
value corresponding to this query point x is then set to the average of the
responses of the selected observations. Let us stress here that the average is
over the original outcome values of the selected observations, and not over
the estimates provided by the several machines for these observations.

To make the concept clear, consider the following toy example illustrated
by Figure 1. Assume we are given the observations plotted in circles, and
the values predicted by two known machines r1 and r2 (triangles pointing
up and down, respectively). The goal is to predict the response for the new
point x (along the dotted line). Setting a threshold ε, the black solid circles
are the data points (xi, yi) within the two dotted intervals, i.e., such that
for m = 1,2, |rm(xi)− rm(x)| ≤ ε. Averaging the corresponding yi ’s yields the
prediction for x (diamond).

We stress that the central and original idea behind our approach is that the
resulting regression predictor is a nonlinear, nonparametric, data-dependent
function of the basic predictors r1, . . . , rM , where the predictors are used to
determine a local distance between a new test instance and the original
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Figure 1: A toy example: Combining two primal estimators.

(a) How should we predict the response for
the query point x (dotted line)?
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(b) The two primal estimators r1 and r2.
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(c) The collective operates.
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(d) Predicted value (diamond) for the query
point x.
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training data. To the best of our knowledge there exists no formalized pro-
cedure in the machine learning and aggregation literature that operates as
ours does. In particular, note that the original nonparametric nature of our
combined estimator opens up new perspectives of research.

Indeed, though we have in mind a batch setting where the data collected
consists in an n-sample of i.i.d. replications of some variable (X,Y ), our pro-
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cedure may be linked to other situations. For example, consider the case of
functional data analysis (see Ferraty and Vieu, 2006, and Bongiorno et al.,
2014, for a survey on recent developments). Even though our method is fit-
ted for finite dimensional data, it may be naturally extended to functional
data after a suitable preprocessing of the curves. For example, this can be
achieved using an expansion of the curves on an appropriate functional dic-
tionary, and/or via a variable selection approach, as in Aneiros and Vieu
(2014). Note that in a recent work, Cholaquidis et al. (2015) adapts our
procedure in a classification setting, also in a functional example.

Along with this paper, we release the software COBRA (Guedj, 2013) which
implements the method as an additional package to the statistical software
R (see R Core Team, 2014). COBRA is freely downloadable on the CRAN web-
site1. As detailed in Section 3, we undertook a lengthy series of numerical
experiments, over which COBRA proved extremely successful. These stunning
results lead us to believe that regression collectives can provide valuable in-
sights on a wide range of prediction problems. Further, these same results
demonstrate that COBRA has remarkable speed in terms of CPU timings. In
the context of high-dimensional (such as genomic) data, such velocity is crit-
ical, and in fact COBRA can natively take advantage of multi-core parallel
environments.

The paper is organized as follows. In Section 2, we describe the combined
estimator—the regression collective—and derive a nonasymptotic risk bound.
Next we present the main result, that is, the collective is asymptotically at
least as good as any functional of the basic estimators. We also provide a
rate of convergence for our procedure. Section 3 is devoted to the compan-
ion R package COBRA and presents benchmarks of its excellent performance
on both simulated and real data sets, including high-dimensional models.
We also show that COBRA compares favorably with two competitors, Super
Learner (van der Laan et al., 2007) and the exponentially weighted aggre-
gate (see for example Giraud, 2014), in that it performs similarly in most sit-
uations, much better in some, while it is consistently faster than the Super
Learner in every case. Finally, for ease of exposition, proofs and additional
simulation results (figures and tables with (SM) as suffix) are postponed to
a Supplementary Material.

1http://cran.r-project.org/web/packages/COBRA/index.html
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2. The combined estimator

2.1. Notation
Throughout the article, we assume that we are given a training sample de-
noted by Dn = {(X1,Y1), . . . , (Xn,Yn)}. Dn is composed of i.i.d. random vari-
ables taking their values in Rd×R, and distributed as an independent proto-
type pair (X,Y ) satisfying EY 2 <∞ (with the notation X= (X1, . . . , Xd)). The
space Rd is equipped with the standard Euclidean metric. Our goal is to con-
sistently estimate the regression function r?(x) = E[Y |X = x], x ∈ Rd, using
the data Dn.

To begin with, the original data set Dn is split into two data sequences Dk =
{(X1,Y1), . . . , (Xk,Yk)} and D` = {(Xk+1,Yk+1), . . . , (Xn,Yn)}, with ` = n− k ≥ 1.
For ease of notation, the elements of D` are renamed {(X1,Y1), . . . , (X`,Y`)}.
There is a slight abuse of notation here, as the same letter is used for both
subsets Dk and D`—however, this should not cause any trouble since the
context is clear.

Now, suppose that we are given a collection of M ≥ 1 competing candidates
rk,1, . . . , rk,M to estimate r?. These basic estimators—basic machines—are
assumed to be generated using only the first subsample Dk. These machines
can be any among the researcher’s favorite toolkit, such as linear regres-
sion, kernel smoother, SVM, Lasso, neural networks, naive Bayes, or random
forests. They could equally well be any ad hoc regression rules suggested by
the experimental context. The essential idea is that these basic machines
can be parametric, nonparametric, or semi-parametric, with possible tun-
ing rules. All that is asked for is that each of the rk,m(x), m = 1, . . . , M, is
able to provide an estimation of r?(x) on the basis of Dk alone. Thus, any
collection of model-based or model-free machines are allowed, and our way
of combining such a collection is here called the regression collective. Let
us emphasize that the number of basic machines M is considered as fixed
throughout this paper. Hence, the number of machines is not expected to
grow and is typically of a reasonable size (M is chosen on the order of 10 in
Section 3).

Given the collection of basic machines rk = (rk,1, . . . , rk,M), we define the col-
lective estimator Tn to be

Tn (rk(x))=
∑̀
i=1

Wn,i(x)Yi, x ∈Rd,

where the random weights Wn,i(x) take the form

Wn,i(x)=
1⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}∑`
j=1 1⋂M

m=1{|rk,m(x)−rk,m(X j)|≤ε`}

. (2.1)

5



In this definition, ε` is some positive parameter and, by convention, 0/0= 0.

The weighting scheme used in our regression collective is distinctive but not
obvious. Starting from Devroye et al. (1996) and Györfi et al. (2002), we see
that Tn is a local averaging estimator in the following sense: The predicted
value for r?(x), that is, the estimated outcome at the query point x, is the
unweighted average over those Yi ’s such that Xi is “close” to the query point.
More precisely, for each Xi in the sample D`, “close” means that the output at
the query point, generated from each basic machine, is within an ε`-distance
of the output generated by the same basic machine at Xi. If a basic machine
evaluated at Xi is close to the basic machine evaluated at the query point
x, then the corresponding outcome Yi is included in the average, and not
otherwise. Also, as a further note of clarification: “Closeness” of the Xi ’s is
not here to be understood in the Euclidean sense. It refers to closeness of
the primal estimators outputs at the query point as compared to the outputs
over all points in the training data. Training points Xi that are close, in this
sense, to the corresponding outputs at the query point contribute to the indi-
cator function for the corresponding outcome Yi. This alternative approach
is motivated by the fact that a major issue in learning problems consists
of devising a metric that is suited to the data (see, e.g., the monograph by
Pekalska and Duin, 2005).

In this context, ε` plays the role of a smoothing parameter: Put differently,
in order to retain Yi, all basic estimators rk,1, . . . , rk,M have to deliver predic-
tions for the query point x which are in a ε`-neighborhood of the predictions
rk,1(Xi), . . . , rk,M(Xi). Note that the greater ε`, the more tolerant the process.
It turns out that the practical performance of Tn strongly relies on an appro-
priate choice of ε`. This important question will be discussed in Section 3,
where we devise an automatic (i.e., data-dependent) selection strategy of ε`.

Next, we note that the subscript n in Tn may be a little confusing, since Tn is
a weighted average of the Yi ’s in D` only. However, Tn depends on the entire
data set Dn, as the rest of the data is used to set up the original machines
rk,1, . . . , rk,M . Most importantly, it should be noticed that the combined esti-
mator Tn is nonlinear with respect to the basic estimators rk,m. As such, it is
inspired by the preliminary work of Mojirsheibani (1999) in the supervised
classification context.

In addition, let us mention that, in the definition of the weights (2.1), all
original estimators are invited to have the same, equally valued opinion on
the importance of the observation Xi (within the range of ε`) for the corre-
sponding Yi to be integrated in the combination Tn. However, this unanim-
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ity constraint may be relaxed by imposing, for example, that a fixed fraction
α ∈ {1/M,2/M, . . . ,1} of the machines agrees on the importance of Xi. In that
case, the weights take the more sophisticated form

Wn,i(x)=
1{

∑M
m=1 1{|rk,m(x)−rk,m(Xi )|≤ε`}≥Mα}∑`

j=1 1{
∑M

m=1 1{|rk,m(x)−rk,m(X j )|≤ε`}≥Mα}

.

It turns out that adding the parameter α does not change the asymptotic
properties of Tn, provided α→ 1. Thus, to keep a sufficient degree of clarity
in the mathematical statements and subsequent proofs, we have decided to
consider only the case α = 1 (i.e., unanimity). Extension of the results to
more general values of α is left for future work. On the other hand, as high-
ligthed by Section 3, α has a nonnegligible impact on the performance of the
combined estimator. Accordingly, we will discuss in Section 3 an automatic
procedure to select this extra parameter.

2.2. Theoretical performance
This section is devoted to the study of some asymptotic and nonasymptotic
properties of the combined estimator Tn, whose quality will be assessed by
the quadratic risk

E
∣∣Tn (rk(X))− r?(X)

∣∣2 .

Here and later, E denotes the expectation with respect to both X and the
sample Dn. Everywhere in the document, it is assumed that E|rk,m(X)|2 <∞
for all m = 1, . . . , M.

For any m = 1, . . . , M, let r−1
k,m denote the inverse image of machine rk,m.

Assume that for any m = 1, . . . , M,

r−1
k,m((t,+∞)) ↘

t↑+∞
; and r−1

k,m((−∞, t)) ↘
t↓−∞

;. (2.2)

It is stressed that this is a mild assumption which is met, for example, when-
ever the machines are bounded. Throughout, we let

T (rk(X))= E [Y |rk(X)]

and note that, by the very definition of the L2 conditional expectation,

E |T(rk(X))−Y |2 ≤ inf
f
E | f (rk(X))−Y |2 , (2.3)

where the infimum is taken over all square integrable functions of rk(X).

Our first result is a nonasymptotic inequality, which states that the com-
bined estimator behaves as well as the best one in the original list, within a
term measuring how far Tn is from T.
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Proposition 2.1. Let rk = (rk,1, . . . , rk,M) be the collection of basic estimators,
and let Tn(rk(x)) be the combined estimator. Then, for all distributions of
(X,Y ) with EY 2 <∞,

E|Tn(rk(X))− r?(X)|2
≤ E|Tn(rk(X))−T(rk(X))|2 + inf

f
E| f (rk(X))− r?(X)|2,

where the infimum is taken over all square integrable functions of rk(X). In
particular,

E|Tn(rk(X))− r?(X)|2
≤ min

m=1,...,M
E|rk,m(X)− r?(X)|2 +E|Tn(rk(X))−T(rk(X))|2.

Proposition 2.1 guarantees the performance of Tn with respect to the basic
machines, whatever the distribution of (X,Y ) is and regardless of which ini-
tial estimator is actually the best. The term minm=1,...,M E|rk,m(X)− r?(X)|2
may be regarded as a bias term, whereas the term E|Tn(rk(X))−T(rk(X))|2
is a variance-type term, which can be asymptotically neglected, as shown by
the following result.

Proposition 2.2. Assume that ε`→ 0 and `εM
`

→∞ as `→∞. Then

E |Tn (rk(X))−T (rk(X))|2 → 0 as `→∞,

for all distributions of (X,Y ) with EY 2 <∞. Thus,

limsup
`→∞

E
∣∣Tn (rk(X))− r?(X)

∣∣2 ≤ inf
f
E
∣∣ f (rk,m(X))− r?(X)

∣∣2 .

In particular,

limsup
`→∞

E
∣∣Tn (rk(X))− r?(X)

∣∣2 ≤ min
m=1,...,M

E
∣∣rk,m(X)− r?(X)

∣∣2 .

This result is remarkable, for two reasons. Firstly, it shows that, in terms
of predictive quadratic risk, the combined estimator does asymptotically at
least as well as the best primitive machine. Secondly, the result is nearly
universal, in the sense that it is true for all distributions of (X,Y ) such that
EY 2 <∞.

This is especially interesting because the performance of any estimation pro-
cedure eventually depends upon some model and smoothness assumptions
on the observations. For example, a linear regression fit performs well if the
distribution is truly linear, but may behave poorly otherwise. Similarly, the
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Lasso procedure is known to do a good job for non-correlated designs, with no
clear guarantee however in adversarial situations. Likewise, performance
of nonparametric procedures such as the k-nearest neighbor method, kernel
estimators and random forests dramatically deteriorate as the ambient di-
mension increases, but may be significantly improved if the true underlying
dimension is reasonable. Note that this phenomenon is thoroughly analyzed
for the random forests algorithm in Biau (2012).

The result exhibited in Proposition 2.2 holds under a minimal regularity
assumption on the basic machines. However, this universality comes at a
price since we have no guarantee on the rate of convergence of the variance
term. Nevertheless, assuming some light additional smoothness conditions,
one has the following result, which is the central statement of the paper.

Theorem 2.1. Assume that Y and the basic machines rk are bounded by
some constant R. Assume moreover that there exists a constant L ≥ 0 such
that, for every k ≥ 1,

|T(rk(x))−T(rk(y))| ≤ L|rk(x)−rk(y)|, x,y ∈Rd.

Then, with the choice ε`∝ `−
1

M+2 , one has

E
∣∣Tn (rk(X))− r?(X)

∣∣2 ≤ min
m=1,...,M

E
∣∣rk,m(X)− r?(X)

∣∣2 +C`−
2

M+2 ,

for some positive constant C = C(R,L), independent of k.

Theorem 2.1 offers an oracle-type inequality with leading constant 1 (i.e.,
sharp oracle inequality), stating that the risk of the regression collective is
bounded by the lowest risk among those of the basic machines, i.e., our pro-
cedure mimics the performance of the oracle over the set {rk,m : m = 1, . . . , M},
plus a remainder term of the order of `−2/(M+2) which is the price to pay for
combining M estimators. In our setting, it is important to observe that this
term has a limited impact. As a matter of fact, since the number of basic
machines M is assumed to be fixed and not too large (the implementation
presented in Section 3 considers M at most 6), the remainder term is neg-
ligible compared to the standard nonparametric rate `−2/(d+2) in dimension
d. While the rate `−2/(d+2) is affected by the curse of dimensionality when
d is large, this is not the case for the term `−2/(M+2). That way, our proce-
dure appears well armed to face high dimensional problems. When d À n,
many methods deteriorate and suffer from the curse of dimensionality. How-
ever, it is important to note here that even if some of the basic machines
rk,1, . . . , rk,M might be less performant in that context, this does not affect
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in any way our combining procedure. Indeed, forming the regression collec-
tive Tn does not require any additional effort if d grows. Obviously, when
d is large, the best choice would be to include as basic machines methods
and models which are adapted to the high dimensional setting. This is an
interesting track for future research, which is connected to functional data
analysis and dimension-reduction models (see Goia and Vieu, 2014).

Obviously, under the assumption that the distribution of (X,Y ) might be de-
scribed parametrically and that one of the initial estimators is adapted to
this distribution, faster rates of the order of 1/` could emerge in the bias
term. Nonetheless, the regression collective is designed for much more ad-
versarial regression problems, hence the rate exhibited in Theorem 2.1 ap-
pears satisfactory. We stress that our approach carries no assumption on
the random design and mild ones over the primal estimators, in line with
our attempt to design a procedure which is as model-free as possible.

The central motivation for our method is that model and smoothness as-
sumptions are usually unverifiable, especially in modern high-dimensional
and large scale data sets. To circumvent this difficulty, researchers often
try many different methods and retain the one exhibiting the best empirical
(e.g., cross-validated) results. Our combining strategy offers a nice alterna-
tive, in the sense that if one of the initial estimators is consistent for a given
class M of distributions, then, under light smoothness assumptions, Tn in-
herits the same property. To be more precise, assume that the initial pool
of estimators includes a consistent estimator, i.e., that one of the original
estimators, say rk,m0 , satisfies

E
∣∣rk,m0(X)− r?(X)

∣∣2 → 0 as k →∞,

for all distributions of (X,Y ) in some class M . Then, under the assumptions
of Theorem 2.1, with the choice ε`∝ `−

1
M+2 , one has

lim
k,`→∞

E
∣∣Tn (rk(X))− r?(X)

∣∣2 = 0.

3. Implementation and numerical studies

This section is devoted to the implementation of the described method. Its
excellent performance is then assessed in a series of experiments. The com-
panion R package COBRA (standing for COmBined Regression Alternative)
is available on the CRAN website2, for Linux, Mac and Windows platforms

2http://cran.r-project.org/web/packages/COBRA/index.html
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(see Guedj, 2013). Note that in a will to favor its execution speed, COBRA in-
cludes a parallel option, allowing for improved performance on multi-core
computers (from Knaus, 2010).

As raised in the previous section, a precise calibration of the smoothing pa-
rameter ε` is crucial. Clearly, a value that is too small will discard many
machines and most weights will be zero. Conversely, a large value sets all
weights to 1/Σ with

Σ= ∑̀
j=1

1⋂M
m=1{|rk,m(x)−rk,m(X j)|≤ε`},

giving the naive predictor that does not account for any new data point and
predicts the mean over the sample D`. We also consider a relaxed version
of the unanimity constraint: Instead of requiring global agreement over the
implemented machines, consider some α ∈ (0,1] and keep observation Yi in
the construction of Tn if and only if at least a proportion α of the machines
agrees on the importance of Xi. This parameter requires some calibration.
To understand this better, consider the following toy example: On some data
set, assume most machines but one have nice predictive performance. For
any new data point, requiring global agreement will fail since the pool of
machines is heterogeneous. In this regard, α should be seen as a measure of
homogeneity: If a small value is selected, it may be an indicator that some
machines perform (possibly much) better than some others. Conversely, a
large value indicates that the predictive abilities of the machines are close.

A natural measure of the risk in the prediction context is the empirical
quadratic loss, namely

R̂(Ŷ)= 1
p

p∑
j=1

(Ŷ j −Y j)2,

where Ŷ = (Ŷ1, . . . , Ŷp) is the vector of predicted values for the responses
Y1, . . . ,Yp and {(X j,Y j)}

p
j=1 is a testing sample. We adopted the following pro-

tocol: Using a simple data-splitting device, ε` and α are chosen by minimiz-
ing the empirical risk R̂ over the set {ε`,min, . . . ,ε`,max}× {1/M, . . . ,1}, where
ε`,min = 10−300 and ε`,max is proportional to the largest absolute difference
between two predictions of the pool of machines.

In the package, the number #{ε`,min, . . . ,ε`,max} of evaluated values may be
modified by the user, otherwise the default value 200 is chosen. It is also
possible to choose either a linear or a logistic scale. Figure 2 (SM) illustrates
the discussion about the choice of ε` and α.
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By default, COBRA includes the following classical packages dealing with re-
gression estimation and prediction. However, note that the user has the
choice to modify this list to her/his own convenience:

• Lasso (R package lars, see Hastie and Efron, 2012).

• Ridge regression (R package ridge, see Cule, 2012).

• k-nearest neighbors (R package FNN, see Li, 2013).

• CART algorithm (R package tree, see Ripley, 2012).

• Random Forests algorithm (R package randomForest, see Liaw and
Wiener, 2002).

First, COBRA is benchmarked on synthetic data. For each of the following
eight models, two designs are considered: Uniform over (−1,1)d (referred to
as “Uncorrelated” in Table 1, Table 2 and Table 3), and Gaussian with mean
0 and covariance matrix Σ with Σi j = 2−|i− j| (“Correlated”). Models consid-
ered cover a wide spectrum of contemporary regression problems. Indeed,
Model 1 is a toy example, Model 2 comes from van der Laan et al. (2007),
Model 3 and Model 4 appear in Meier et al. (2009). Model 5 is somewhat
a classic setting. Model 6 is about predicting labels, Model 7 is inspired by
high-dimensional sparse regression problems. Finally, Model 8 deals with
probability estimation, forming a link with nonparametric model-free ap-
proaches such as in Malley et al. (2012). In the sequel, we let N (µ,σ2)
denote a Gaussian random variable with mean µ and variance σ2. In the
simulations, the training data set was usually set to 80% of the whole sam-
ple, then split into two equal parts corresponding to Dk and D`.

Model 1. n = 800, d = 50, Y = X2
1 +exp(−X2

2).

Model 2. n = 600, d = 100, Y = X1X2 + X2
3 − X4X7 + X8X10 − X2

6 +N (0,0.5).

Model 3. n = 600, d = 100, Y =−sin(2X1)+ X2
2 + X3 −exp(−X4)+N (0,0.5).

Model 4. n = 600, d = 100, Y = X1 + (2X2 −1)2 +sin(2πX3)/(2−sin(2πX3))+
sin(2πX4)+2cos(2πX4)+3sin2(2πX4)+4cos2(2πX4)+N (0,0.5).

Model 5. n = 700, d = 20, Y = 1{X1>0}+X3
2+1{X4+X6−X8−X9>1+X14}+exp(−X2

2)+
N (0,0.5).

Model 6. n = 500, d = 30, Y =∑10
k=1 1{X3

k<0} −1{N (0,1)>1.25}.

Model 7. n = 600, d = 300, Y = X2
1 + X2

2 X3 exp(−|X4|)+ X6 − X8 +N (0,0.5).
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Model 8. n = 600, d = 50, Y = 1{X1+X3
4+X9+sin(X12 X18)+N (0,0.1)>0.38}.

Table 1 presents the empirical mean quadratic error and standard deviation
over 100 independent replications, for each model and design. Bold num-
bers identify the lowest error, i.e., the apparent best competitor. Boxplots of
errors are presented in Figure 3 (SM) and Figure 4 (SM). Further, Figure 5
(SM) and Figure 6 (SM) show the predictive capacities of COBRA, and Fig-
ure 7 (SM) depicts its ability to reconstruct the functional dependence over
the covariates in the context of additive regression, assessing the striking
performance of our approach in a wide spectrum of statistical settings. A
persistent and notable fact is that COBRA performs at least as well as the
best machine, especially so in Model 3, Model 5 and Model 6.

Next, since more and more problems in contemporary statistics involve high-
dimensional data, we have tested the abilities of COBRA in that context. As
highlighted by Table 4 (SM) and Figure 8 (SM), the main message is that
COBRA is perfectly able to deal with high-dimensional data, provided that it is
generated over machines, at least some of which are known to perform well
in such situations (possibly at the price of a sparsity assumption). In that
context, we conducted 200 independent replications for the three following
models:

Model 9. n = 500, d = 1000, Y = X1 +3X2
3 −2exp(−X5)+ X6. Uncorrelated

design.

Model 10. n = 500, d = 1000, Y = X1 +3X2
3 −2exp(−X5)+ X6. Correlated

design.

Model 11. n = 500, d = 1500, Y = exp(−X1)+exp(X1)+∑d
j=2 X j/100

j . Uncor-
related design.

A legitimate question that arises is where one should cut the initial sample
Dn? In other words, for a given data set of size n, what is the optimal value
for k? A naive approach is to cut the initial sample in two halfs (i.e., k = n/2):
This appears to be satisfactory provided that n is large enough, which may
be too much of an unrealistic assumption in numerous experimental set-
tings. A more involved choice is to adopt a random cut scheme, where k is
chosen uniformly in {1, . . . ,n}. Figure 9 (SM) presents the boxplots of errors
of the five default machines and COBRA with that random cutting strategy,
and also shows the risk of COBRA with respect to k. To illustrate this phe-
nomenon, we tested a thousand random cuts on the following Model 12. As
showed in Figure 9 (SM), for that particular model, the best value seems to
be near 3n/4.
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Model 12. n = 1200, d = 10, Y = X1 +3X2
3 −2exp(−X5)+ X6. Uncorrelated

design.

The average risk of COBRA on a thousand replications of Model 12 is 0.3124.
Since this delivered a thousand prediction vectors, a natural idea is to take
their mean or median. The risk of the mean is 0.2306, and the median has
an even better risk (0.2184). Since a random cut scheme may generate some
unstability, we advise practitioners to compute a few COBRA estimators, then
compute the mean or median vector of their predictions.

Next, we compare COBRA to the Super Learner algorithm (Polley and van der
Laan, 2012). This widely used algorithm was first described in van der Laan
et al. (2007) and extended in Polley and van der Laan (2010). Super Learner
is used in this section as the key competitor to our method. In a nutshell,
the Super Learner trains basic machines r1, . . . , rM on the whole sample Dn.
Then, following a V -fold cross-validation procedure, Super Learner adopts a
V -blocks partition of the set {1, . . . ,n} and computes the matrix

H = (Hi j)
1≤ j≤M
1≤i≤n ,

where Hi j is the prediction for the query point Xi made by machine j trained
on all remaining V −1 blocks, i.e., excluding the block containing Xi. The
Super Learner estimator is then

SL =
M∑
j=1

α̂ jr j,

where

α̂ ∈ arginf
α∈ΛM

n∑
i=1

|Yi − (Hα)i|2,

with ΛM denoting the simplex

ΛM =
{
α ∈RM :

M∑
j=1

α j = 1, α j ≥ 0 for any j = 1, . . . , M

}
.

This convex aggregation scheme is significantly different from our collective
approach. Yet, we feel close to the philosophy carried by the SuperLearner
package, in that both methods allow the user to aggregate as many machines
as desired, then combining them to deliver predictive outcomes. For that
reason, it is reasonable to deploy Super Learner as a benchmark in our study
of our collective approach.
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Table 2 summarizes the performance of COBRA and SuperLearner (used with
SL.randomForest, SL.ridge and SL.glmnet, for the fairness of the compari-
son) through the described protocol. Both methods compete on similar terms
in most models, although COBRA proves much more efficient on correlated de-
sign in Model 2 and Model 4. This already remarkable result is to be stressed
by the flexibility and velocity showed by COBRA. Indeed, as emphasized in
Table 3 , without even using the parallel option, COBRA obtains similar or
better results than SuperLearner roughly five times faster. Note also that
COBRA suffers from a disadvantage: SuperLearner is built on the whole sam-
ple Dn whereas COBRA only uses `< n data points. Finally, observe that the
algorithmic cost of computing the random weights on ntest query points is
`×M×ntest operations. In the package, those calculations are handled in C
language for optimal speed performance.

Super Learner is a natural competitor on the implementation side. However,
on the theoretical side, we do not assume that it should be the only bench-
mark. Thus, we compared COBRA to the popular exponentially weighted ag-
gregate estimator (EWA, see Giraud, 2014). We implemented the following
version of the EWA: For all preliminary estimators rk,1, . . . , rk,M , their em-
pirical risks R̂1, . . . , R̂M are computed on a subsample of D` and the EWA
is

EWAβ : x 7→
M∑
j=1

ŵ jrk, j(x), x ∈Rd,

where

ŵ j =
exp(−βR̂ j)∑M

i=1 exp(−βR̂i)
, j = 1, . . . , M.

The temperature parameter β > 0 is selected by minimizing the empirical
risk of EWAβ over a data-based grid, in the same spirit as the selection of ε`
and α. We conducted 200 independent replications, on Models 9 to 12. The
conclusion is that COBRA outperforms the EWA estimator in some models,
and delivers similar performance in others, as shown in Figure 10 (SM) and
Table 5 (SM).

Finally, COBRA is used to process the following real-life data sets:

• Concrete Slump Test3 (see Yeh, 2007).

• Concrete Compressive Strength4 (see Yeh, 1998).

3http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test.
4http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength.
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• Wine Quality5 (see Cortez et al., 2009). We point out that the Wine
Quality data set involves supervised classification and leads naturally
to a line of future research using COBRA over probability machines (see
Malley et al., 2012).

The good predictive performance of COBRA is summarized in Figure 11 (SM)
and errors are presented in Figure 12 (SM). For every data set, the sample
is divided into a training set (90%) and a testing set (10%) on which the
predictive performance is evaluated. Boxplots are obtained by randomly
shuffling the data points a hundred times.

As a conclusion to this thorough experimental protocol, it is our belief that
COBRA sets a new high standard of reference, a benchmark procedure, both
in terms of performance and velocity, for prediction-oriented problems in the
context of regression, including high-dimensional problems.
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Table 1: Quadratic errors of the implemented machines and COBRA. Means and standard
deviations over 100 independent replications.

Uncorr. lars ridge fnn tree rf COBRA

Model 1
m. 0.1561 0.1324 0.1585 0.0281 0.0330 0.0259
sd. 0.0123 0.0094 0.0123 0.0043 0.0033 0.0036

Model 2
m. 0.4880 0.2462 0.3070 0.1746 0.1366 0.1645
sd. 0.0676 0.0233 0.0303 0.0270 0.0161 0.0207

Model 3
m. 0.2536 0.5347 1.1603 0.4954 0.4027 0.2332
sd. 0.0271 0.4469 0.1227 0.0772 0.0558 0.0272

Model 4
m. 7.6056 6.3271 10.5890 3.7358 3.5262 3.3640
sd. 0.9419 1.0800 0.9404 0.8067 0.3223 0.5178

Model 5
m. 0.2943 0.3311 0.5169 0.2918 0.2234 0.2060
sd. 0.0214 0.1012 0.0439 0.0279 0.0216 0.0210

Model 6
m. 0.8438 1.0303 2.0702 2.3476 1.3354 0.8345
sd. 0.0916 0.4840 0.2240 0.2814 0.1590 0.1004

Model 7
m. 1.0920 0.5452 0.9459 0.3638 0.3110 0.3052
sd. 0.2265 0.0920 0.0833 0.0456 0.0325 0.0298

Model 8
m. 0.1308 0.1279 0.2243 0.1715 0.1236 0.1021
sd. 0.0120 0.0161 0.0189 0.0270 0.0100 0.0155

Corr. lars ridge fnn tree rf COBRA

Model 1
m. 2.3736 1.9785 2.0958 0.3312 0.5766 0.3301
sd. 0.4108 0.3538 0.3414 0.1285 0.1914 0.1239

Model 2
m. 8.1710 4.0071 4.3892 1.3609 1.4768 1.3612
sd. 1.5532 0.6840 0.7190 0.4647 0.4415 0.4654

Model 3
m. 6.1448 6.0185 8.2154 4.3175 4.0177 3.7917
sd. 11.9450 12.0861 13.3121 11.7386 12.4160 11.1806

Model 4
m. 60.5795 42.2117 51.7293 9.6810 14.7731 9.6906
sd. 11.1303 9.8207 10.9351 3.9807 5.9508 3.9872

Model 5
m. 6.2325 7.1762 10.1254 3.1525 4.2289 2.1743
sd. 2.4320 3.5448 3.1190 2.1468 2.4826 1.6640

Model 6
m. 1.2765 1.5307 2.5230 2.6185 1.2027 0.9925
sd. 0.1381 0.9593 0.2762 0.3445 0.1600 0.1210

Model 7
m. 20.8575 4.4367 5.8893 3.6865 2.7318 2.9127
sd. 7.1821 1.0770 1.2226 1.0139 0.8945 0.9072

Model 8
m. 0.1366 0.1308 0.2267 0.1701 0.1226 0.0984
sd. 0.0127 0.0143 0.0179 0.0302 0.0102 0.0144
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Table 2: Quadratic errors of
SuperLearner and COBRA. Means
and standard deviations over 100
independent replications.

Uncorr. SL COBRA

Model 1
m. 0.0541 0.0320
sd. 0.0053 0.0104

Model 2
m. 0.1765 0.3569
sd. 0.0167 0.8797

Model 3
m. 0.2081 0.2573
sd. 0.0282 0.0699

Model 4
m. 4.3114 3.7464
sd. 0.4138 0.8746

Model 5
m. 0.2119 0.2187
sd. 0.0317 0.0427

Model 6
m. 0.7627 1.0220
sd. 0.1023 0.3347

Model 7
m. 0.1705 0.3103
sd. 0.0260 0.0490

Model 8
m. 0.1081 0.1075
sd. 0.0121 0.0235

Corr. SL COBRA

Model 1
m. 0.8733 0.3262
sd. 0.2740 0.1242

Model 2
m. 2.3391 1.3984
sd. 0.4958 0.3804

Model 3
m. 3.1885 3.3201
sd. 1.5101 1.8056

Model 4
m. 25.1073 9.3964
sd. 7.3179 2.8953

Model 5
m. 5.6478 4.9990
sd. 7.7271 9.3103

Model 6
m. 0.8967 1.1988
sd. 0.1197 0.4573

Model 7
m. 3.0367 3.1401
sd. 1.6225 1.6097

Model 8
m. 0.1116 0.1045
sd. 0.0111 0.0216

Table 3: Average CPU-times in seconds.
No parallelization. Means and standard
deviations over 10 independent replica-
tions.

Uncorr. SL COBRA

Model 1
m. 53.92 10.92
sd. 1.42 0.29

Model 2
m. 57.96 11.90
sd. 0.95 0.31

Model 3
m. 53.70 10.66
sd. 0.55 0.11

Model 4
m. 55.00 11.15
sd. 0.74 0.18

Model 5
m. 28.46 5.01
sd. 0.73 0.06

Model 6
m. 22.97 3.99
sd. 0.27 0.05

Model 7
m. 127.80 35.67
sd. 5.69 1.91

Model 8
m. 32.98 6.46
sd. 1.33 0.33

Corr. SL COBRA

Model 1
m. 61.92 11.96
sd. 1.85 0.27

Model 2
m. 70.90 14.16
sd. 2.47 0.57

Model 3
m. 59.91 11.92
sd. 2.06 0.41

Model 4
m. 63.58 13.11
sd. 1.21 0.34

Model 5
m. 31.24 5.02
sd. 0.86 0.07

Model 6
m. 24.29 4.12
sd. 0.82 0.15

Model 7
m. 145.18 41.28
sd. 8.97 2.84

Model 8
m. 31.31 6.24
sd. 0.73 0.11
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SUPPLEMENTARY MATERIAL
COBRA: A Combined Regression Strategy

by G. Biau, A. Fischer, B. Guedj and J. D. Malley

A. Proofs

A.1. Proof of Proposition 2.1
We have

E|Tn(rk(X))− r?(X)|2 = E|Tn(rk(X))−T(rk(X))|2
+E|T(rk(X))− r?(X)|2
−2E[(Tn(rk(X))−T(rk(X)))(T(rk(X))− r?(X))].

As for the double product, notice that

E[(Tn(rk(X))−T(rk(X)))(T(rk(X))− r?(X))]
= E[

E
[
(Tn(rk(X))−T(rk(X)))(T(rk(X))− r?(X))|rk(X),Dn

]]
= E[

(Tn(rk(X))−T(rk(X)))E
[
T(rk(X))− r?(X)|rk(X),Dn

]]
.

But

E[r?(X)|rk(X),Dn]= E[r?(X)|rk(X)]
(by independence of X and Dn)

= E[E[Y |X]|rk(X)]
= E[Y |rk(X)]

(since σ(rk(X))⊂σ(X))
= T(rk(X)).

Consequently,

E[(Tn(rk(X))−T(rk(X)))(T(rk(X))− r?(X))]= 0

and

E|Tn(rk(X))− r?(X)|2 = E|Tn(rk(X))−T(rk(X))|2 +E|T(rk(X))− r?(X)|2.

Thus, by definition of the conditional expectation, and using the fact that
T(rk(X))= E[r?(X)|rk(X)],

E|Tn(rk(X))− r?(X)|2 ≤ E|Tn(rk(X))−T(rk(X))|2 + inf
f
E| f (rk(X))− r?(X)|2,
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where the infimum is taken over all square integrable functions of rk(X). In
particular,

E|Tn(rk(X))− r?(X)|2
≤ min

m=1,...,M
E|rk,m(X)− r?(X)|2 +E|Tn(rk(X))−T(rk(X))|2,

as desired.

A.2. Proof of Proposition 2.2
Note that the second statement is an immediate consequence of the first
statement and Proposition 2.1, therefore we only have to prove that

E |Tn (rk(X))−T (rk(X))|2 → 0 as `→∞.

We start with a technical lemma, whose proof can be found in the monograph
by Györfi et al. (2002).

Lemma A.1. Let B(n, p) be a binomial random variable with parameters
n ≥ 1 and p > 0. Then

E

[
1

1+B(n, p)

]
≤ 1

p(n+1)

and

E

[1{B(n,p)>0}

B(n, p)

]
≤ 2

p(n+1)
.

For all distributions of (X,Y ), using the elementary inequality (a+ b+ c)2 ≤
3(a2 +b2 + c2), note that

E|Tn(rk(X))−T(rk(X))|2

= E
∣∣∣∣∣∑̀i=1

Wn,i(X) (Yi −T(rk(Xi))+T(rk(Xi))−T(rk(X))+T(rk(X)))

−T(rk(X))
∣∣∣∣2

≤ 3E

∣∣∣∣∣∑̀i=1
Wn,i(X)(T(rk(Xi))−T(rk(X)))

∣∣∣∣∣
2

(A.1)

+3E

∣∣∣∣∣∑̀i=1
Wn,i(X)(Yi −T(rk(Xi)))

∣∣∣∣∣
2

(A.2)

+3E

∣∣∣∣∣
(∑̀

i=1
Wn,i(X)−1

)
T(rk(X))

∣∣∣∣∣
2

. (A.3)
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Consequently, to prove the proposition, it suffices to establish that (A.1),
(A.2) and (A.3) tend to 0 as ` tends to infinity. This is done, respectively, in
Proposition A.1, Proposition A.2 and Proposition A.3 below.

Proposition A.1. Under the assumptions of Proposition 2.2,

lim
`→∞

E

∣∣∣∣∣∑̀i=1
Wn,i(X)(T(rk(Xi))−T(rk(X)))

∣∣∣∣∣
2

= 0.

Proof of Proposition A.1. By the Cauchy-Schwarz inequality,

E

∣∣∣∣∣∑̀i=1
Wn,i(X)(T(rk(Xi))−T(rk(X)))

∣∣∣∣∣
2

= E
∣∣∣∣∣∑̀i=1

√
Wn,i(X)

√
Wn,i(X) (T(rk(Xi))−T(rk(X)))

∣∣∣∣∣
2

≤ E
[∑̀

j=1
Wn, j(X)

∑̀
i=1

Wn,i(X) |T(rk(Xi))−T(rk(X))|2
]

= E
[∑̀

i=1
Wn,i(X) |T(rk(Xi))−T(rk(X))|2

]
:= An.

The function T is such that E[T2(rk(X))] <∞. Therefore, it can be approxi-
mated in an L2 sense by a continuous function with compact support, say T̃
(see, e.g., Theorem A.1 in Györfi et al., 2002). More precisely, for any η > 0,
there exists a function T̃ such that

E
∣∣T(rk(X))− T̃(rk(X))

∣∣2 < η.

Consequently, we obtain

An = E
[∑̀

i=1
Wn,i(X)|T(rk(Xi))−T(rk(X))|2

]

≤ 3E

[∑̀
i=1

Wn,i(X)|T(rk(Xi))− T̃(rk(Xi))|2
]

+3E

[∑̀
i=1

Wn,i(X)|T̃(rk(Xi))− T̃(rk(X))|2
]

+3E

[∑̀
i=1

Wn,i(X)|T̃(rk(X))−T(rk(X))|2
]

:= 3An1 +3An2 +3An3.
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Computation of An3. Thanks to the approximation of T by T̃,

An3 = E
[∑̀

i=1
Wn,i(X)|T(rk(X))− T̃(rk(X))|2

]
≤ E ∣∣T(rk(X))− T̃(rk(X))

∣∣2 < η.

Computation of An1. Denote by µ the distribution of X. Then,

An1 = E
[∑̀

i=1
Wn,i(X)|T̃(rk(Xi))−T(rk(Xi))|2

]

= `E
 1⋂M

m=1{|rk,m(X)−rk,m(X1)|≤ε`}∑`
j=1 1⋂M

m=1{|rk,m(X)−rk,m(X j)|≤ε`}

|T̃(rk(X1))−T(rk(X1))|2
 .

= `E
{∫

Rd
|T̃(rk(u))−T(rk(u))|2

×E
[∫

Rd

1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`}

1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`} +

∑`
j=2 1⋂M

m=1{|rk,m(x)−rk,m(X j)|≤ε`}

µ(dx)

∣∣∣∣Dk

]
µ(du)

}
.

Letting

A′
n1 = E

[∫
Rd

1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`}

1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`} +

∑`
j=2 1⋂M

m=1{|rk,m(x)−rk,m(X j)|≤ε`}

µ(dx)

∣∣∣∣Dk

]
,

let us prove that A′
n1 ≤ 2M

`
. To this aim, observe that

A′
n1 = E

∫
Rd

1{x∈⋂M
m=1 r−1

k,m([rk,m(u)−ε`,rk,m(u)+ε`])}

1+∑`
j=2 1{X j∈⋂M

m=1 r−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])}

µ(dx)
∣∣∣∣Dk


= E

∫
Rd

1{x∈⋃
(a1,...,aM )∈{1,2}M r−1

k,1(Ia1
n,1(u))∩···∩r−1

k,M (IaM
n,M (u))}

1+∑`
j=2 1{X j∈⋂M

m=1 r−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])}

µ(dx)
∣∣∣∣Dk


≤

2M∑
p=1

E

∫
Rd

1{x∈Rp
n (u)}

1+∑`
j=2 1{X j∈⋂M

m=1 r−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])}

µ(dx)
∣∣∣∣Dk

 .

4



Here, I1
n,m(u) = [rk,m(u)− ε`, rk,m(u)], I2

n,m(u) = [rk,m(u), rk,m(u)+ ε`], and
Rp

n(u) is the p-th set of the form r−1
k,1(Ia1

n,1(u))∩ ·· ·∩ r−1
k,M(IaM

n,M(u)) assuming
that they have been ordered using the lexicographic order of (a1, . . . ,aM).

Next, note that

x ∈ Rp
n(u)⇒ Rp

n(u)⊂
M⋂

m=1
r−1

k,m([rk,m(x)−ε`, rk,m(x)+ε`]).

To see this, just observe that, for all m = 1, . . . , M, if rk,m(z) ∈ [rk,m(u)−
ε`, rk,m(u)], i.e., rk,m(u)−ε` ≤ rk,m(z)≤ rk,m(u), then, as rk,m(u)−ε` ≤ rk,m(x)≤
rk,m(u), one has rk,m(x)− ε` ≤ rk,m(z) ≤ rk,m(x)+ ε`. Similarly, if rk,m(u) ≤
rk,m(z) ≤ rk,m(u)+ ε`, then rk,m(u) ≤ rk,m(x) ≤ rk,m(u)+ ε` implies rk,m(x)−
ε` ≤ rk,m(z)≤ rk,m(x)+ε`. Consequently,

A′
n1 ≤

2M∑
p=1

E

[∫
Rd

1{x∈Rp
n (u)}

1+∑`
j=2 1{X j∈Rp

n (u)}
µ(dx)

∣∣∣∣Dk

]

=
2M∑
p=1

E

[
µ{Rp

n(u)}
1+∑`

j=2 1{X j∈Rp
n (u)}

∣∣∣∣Dk

]

≤
2M∑
p=1

E

[
µ{Rp

n(u)}
`µ{Rp

n(u)}

∣∣∣∣Dk

]

≤ 2M

`

(by the first statement of Lemma A.1). Thus, returning to An1, we obtain

An1 ≤ 2ME
∣∣T̃(rk(X)−T(rk(X)))

∣∣2 < 2Mη.

Computation of An2. For any δ> 0, write

An2 = E
[∑̀

i=1
Wn,i(X)|T̃(rk(Xi))− T̃(rk(X))|2

]

= E
[∑̀

i=1
Wn,i(X)|T̃(rk(Xi))− T̃(rk(X))|21⋃M

m=1{|rk,m(X)−rk,m(Xi)|>δ}

]

+E
[∑̀

i=1
Wn,i(X)|T̃(rk(Xi))− T̃(rk(X))|21⋂M

m=1{|rk,m(X)−rk,m(Xi)|≤δ}

]
from which we get that

An2 ≤ 4 sup
u∈Rd

|T̃(rk(u))|2E
[∑̀

i=1
Wn,i(X)1⋃M

m=1{|rk,m(X)−rk,m(Xi)|>δ}

]
(A.4)

+
(

sup
u,v∈Rd ,

⋂M
m=1{|rk,m(u)−rk,m(v)|≤δ}

|T̃(rk(v))− T̃(rk(u))|
)2

. (A.5)
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With respect to the term (A.4), if δ> ε`, then

∑̀
i=1

Wn,i(X)1⋃M
m=1{|rk,m(X)−rk,m(Xi)|>δ}

= ∑̀
i=1

1⋂M
m=1{|rk,m(X)−rk,m(Xi)|≤ε`}1⋃M

m=1{|rk,m(X)−rk,m(Xi)|>δ}∑`
j=1 1⋂M

m=1{|rk,m(X)−rk,m(X j)|≤ε`}

= 0.

It follows that, for all δ> 0, this term converges to 0 as ` tends to infinity. On
the other hand, letting δ→ 0, we see that the term (A.5) tends to 0 as well, by
uniform continuity of T̃. Hence, An2 tends to 0 as ` tends to infinity. Letting
finally η go to 0, we conclude that An vanishes as ` tends to infinity.

Proposition A.2. Under the assumptions of Proposition 2.2,

lim
`→∞

E

∣∣∣∣∣∑̀i=1
Wn,i(X)(Yi −T(rk(Xi)))

∣∣∣∣∣
2

= 0.

Proof of Proposition A.2.

E

∣∣∣∣∣∑̀i=1
Wn,i(X)(Yi −T(rk(Xi)))

∣∣∣∣∣
2

= ∑̀
i=1

∑̀
j=1
E[Wn,i(X)Wn, j(X)(Yi −T(rk(Xi)))(Y j −T(rk(X j)))]

= E
[∑̀

i=1
W2

n,i(X)|Yi −T(rk(Xi))|2
]

= E
[∑̀

i=1
W2

n,i(X)σ2(rk(Xi))

]
,

where
σ2(rk(x))= E[|Y −T(rk(X))|2|rk(x)].

For any η> 0, σ2 can be approximated in an L1 sense by a continuous func-
tion with compact support σ̃2, i.e.,

E|σ̃2(rk(X))−σ2(rk(X))| < η.
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Thus

E

[∑̀
i=1

W2
n,i(X)σ2(rk(Xi))

]

≤ E
[∑̀

i=1
W2

n,i(X)σ̃2(rk(Xi))

]

+E
[∑̀

i=1
W2

n,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|
]

≤ sup
u∈Rd

|σ̃2(rk(u))|E
[∑̀

i=1
W2

n,i(X)

]

+E
[∑̀

i=1
Wn,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|

]
.

With the same argument as for An1, we obtain

E

[∑̀
i=1

Wn,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|
]
≤ 2Mη.

Therefore, it remains to prove that E
[∑`

i=1 W2
n,i(X)

]
→ 0 as `→ ∞. To this

aim, fix δ> 0, and note that

∑̀
i=1

W2
n,i(X)=

∑`
i=1 1⋂M

m=1{|rk,m(X)−rk,m(Xi)|≤ε`}(∑`
j=1 1⋂M

m=1{|rk,m(X)−rk,m(X j)|≤ε`}

)2

≤min

δ,
1∑`

i=1 1⋂M
m=1{|rk,m(X)−rk,m(Xi)|≤ε`}


≤ δ+

1{∑`
i=1 1⋂M

m=1{|rk,m(X)−rk,m(Xi )|≤ε`}>0
}

∑`
i=1 1⋂M

m=1{|rk,m(X)−rk,m(Xi)|≤ε`}

.

To complete the proof, we have to establish that the expectation of the right-
hand term tends to 0. Denoting by I a bounded interval on the real line, we
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have

E


1∑`

i=1 1{
Xi∈

⋂M
m=1 r−1

k,m([rk,m(X)−ε`,rk,m(X)+ε`])
}>0

∑`
i=1 1{

Xi∈⋂M
m=1 r−1

k,m([rk,m(X)−ε`,rk,m(X)+ε`])
}



≤ E


1∑`

i=1 1{
Xi∈

⋂M
m=1 r−1

k,m([rk,m(X)−ε`,rk,m(X)+ε`])
}>0


1{

X∈⋂M
m=1 r−1

k,m(I)
}

∑`
i=1 1{

Xi∈⋂M
m=1 r−1

k,m([rk,m(X)−ε`,rk,m(X)+ε`])
}


+µ

( M⋃
m=1

r−1
k,m(I c)

)

= E

E


1∑`
i=1 1{

Xi∈
⋂M

m=1 r−1
k,m([rk,m(X)−ε`,rk,m(X)+ε`])

}>0


1{

X∈⋂M
m=1 r−1

k,m(I)
}

∑`
i=1 1{

Xi∈⋂M
m=1 r−1

k,m([rk,m(X)−ε`,rk,m(X)+ε`])
}

∣∣∣Dk,X
]]

+µ
( M⋃

m=1
r−1

k,m(I c)
)

≤ 2
(`+1)

E

 1{
X∈⋂M

m=1 r−1
k,m(I)

}
µ(

⋂M
m=1 r−1

k,m([rk,m(X)−ε`, rk,m(X)+ε`]))


+µ

( M⋃
m=1

r−1
k,m(I c)

)
.

The last inequality arises from the second statement of Lemma A.1. By an
appropriate choice of I, according to the technical statement (2.2), the second
term on the right-hand side can be made as small as desired. Regarding the
first term, there exists a finite number N` of points z1, . . . ,zN`

such that

M⋂
m=1

r−1
k,m(I)⊂ ⋃

( j1,..., jM )∈{1,...,N`}M
r−1

k,1(In,1(z j1))∩·· ·∩ r−1
k,M(In,M(z jM )),

where In,m(z j)= [z j−ε`/2,z j+ε`/2]. Suppose, without loss of generality, that
the sets

r−1
k,1(In,1(z j1))∩·· ·∩ r−1

k,M(In,M(z jM ))

are ordered, and denote by Rp
n the p-th among the NM

`
= (d|I|/ε`e)M sets.

Here |I| denotes the length of the interval I and dxe denotes the smallest
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integer greater than x. For all p,

x ∈ Rp
n ⇒ Rp

n ⊂
M⋂

m=1
r−1

k,m([rk,m(x)−ε`, rk,m(x)+ε`]).

Indeed, if v ∈ Rp
n , then, for all m = 1, . . . , M, there exists j ∈ {1, . . . , N`} such

that rk,m(v) ∈ [z j −ε`/2,z j +ε`/2], that is z j −ε`/2 ≤ rk,m(v) ≤ z j +ε`/2. Since
we also have z j −ε`/2≤ rk,m(X)≤ z j +ε`/2, we obtain rk,m(X)−ε` ≤ rk,m(v)≤
rk,m(X)+ε`. In conclusion,

E

 1{
X∈⋂M

m=1 r−1
k,m(I)

}
µ(

⋂M
m=1 r−1

k,m([rk,m(X)−ε`, rk,m(X)+ε`]))


≤

NM∑̀
p=1

E

[
1{X∈Rp

n}
µ(

⋂M
m=1 r−1

k,m([rk,m(X)−ε`, rk,m(X)+ε`]))

]

≤
NM∑̀
p=1

E

[
1{X∈Rp

n}
µ(Rp

n)

]
= NM

`

=
⌈ |I|
ε`

⌉M
.

The result follows from the assumption lim`→∞`εM
`

=∞.

Proposition A.3. Under the assumptions of Proposition 2.2,

lim
`→∞

E

∣∣∣∣∣
(∑̀

i=1
Wn,i(X)−1

)
T(rk(X))

∣∣∣∣∣
2

= 0.

Proof of Proposition A.3. Since |∑`
i=1 Wn,i(X)−1| ≤ 1, one has∣∣∣∣∣

(∑̀
i=1

Wn,i(X)−1

)
T(rk(X))

∣∣∣∣∣
2

≤ T2(rk(X)).

Consequently, by Lebesgue’s dominated convergence theorem, to prove the
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proposition, it suffices to show that Wn,i(X) tends to 1 almost surely. Now,

P

(∑̀
i=1

Wn,i(X) 6= 1

)

=P
(∑̀

i=1
1⋂M

m=1{|rk,m(X)−rk,m(Xi))|≤ε`} = 0

)

=P
(∑̀

i=1
1{

Xi∈⋂M
m=1 r−1

k,m([rk,m(X)−ε`,rk,m(X)+ε`])
} = 0

)

=
∫
Rd
P

(
∀i = 1, . . . ,`,1{

Xi∈⋂M
m=1 r−1

k,m([rk,m(x)−ε`,rk,m(x)+ε`])
} = 0

)
µ(dx)

=
∫
Rd

[
1−µ(∩M

m=1r−1
k,m

(
[rk,m(x)−ε`, rk,m(x)+ε`]

)
)
]`
µ(dx).

Denote by I a bounded interval. Then,

P

(∑̀
i=1

Wn,i(X) 6= 1

)

≤
∫
Rd

exp
(
−`µ(∩M

m=1r−1
k,m

(
[rk,m(x)−ε`, rk,m(x)+ε`]

)
)
)

×1{x∈⋂M
m=1 r−1

k,m(I)}µ(dx)+µ
( M⋃

m=1
r−1

k,m(I c)
)

≤max
u

ue−u
∫
Rd

1{x∈⋂M
m=1 r−1

k,m(I)}

`µ(∩M
m=1r−1

k,m

(
[rk,m(x)−ε`, rk,m(x)+ε`]

)
)
µ(dx)

+µ
( M⋃

m=1
r−1

k,m(I c)
)
.

Using the same arguments as in the proof of Proposition A.2, the probability

P
(∑`

i=1 Wn,i(X) 6= 1
)

is bounded by e−1

`

⌈ |I|
ε`

⌉M
. This bound vanishes as n tends

to infinity since, by assumption, lim`→∞`εM
`

=∞.

A.3. Proof of Theorem 2.1
Choose x ∈Rd. An easy calculation yields that

E[|Tn(rk(x))−T(rk(x))|2∣∣rk(X1), . . . ,rk(X`),Dk]

= E
[∣∣Tn(rk(x))−E[Tn(rk(x))

∣∣rk(X1), . . . ,rk(X`),Dk]
∣∣2 (A.6)∣∣∣rk(X1), . . . ,rk(X`),Dk

]
+ ∣∣E[Tn(rk(x))

∣∣rk(X1), . . . ,rk(X`),Dk]−T(rk(x))
∣∣2

:= E1 +E2. (A.7)
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On the one hand, we have

E1 = E
[∣∣Tn(rk(x))−E[Tn(rk(x))|rk(X1), . . . ,rk(X`),Dk]

∣∣2∣∣∣rk(X1), . . . ,rk(X`),Dk

]
= E

[∣∣∣∣∣∑̀i=1
Wn,i(x)(Yi −E[Yi|rk(Xi)])

∣∣∣∣∣
2

|rk(X1), . . . ,rk(X`),Dk

]
.

Developing the square and noticing that E
[
Y j|Yi,rk(X1), . . . ,rk(X`),Dk

]= E[Y j|rk(X j)],
since Y j is independent of Yi and of the X j ’s with j 6= i, we have

E1 = E
[∑`

i=1 1⋂M
m=1{|rk,m(x)−rk,m(Xi)|≤ε`}|Yi −E[Yi|rk(Xi)]|2∣∣∣∑`

i=1 1⋂M
m=1{|rk,m(x)−rk,m(Xi)|≤ε`}

∣∣∣2 (A.8)

∣∣∣∣rk(X1), . . . ,rk(X`),Dk

]
= ∑̀

i=1
V(Yi|rk(Xi))

1⋂M
m=1{|rk,m(x)−rk,m(Xi)|≤ε`}∣∣∣∑`

i=1 1⋂M
m=1{|rk,m(x)−rk,m(Xi)|≤ε`}

∣∣∣2 .

Thus,

E1 ≤ 4R2

1{∑`
i=1 1⋂M

m=1{|rk,m(x)−rk,m(Xi )|≤ε`}>0
}

∑`
i=1 1⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}

, (A.9)

where V(Z) denotes the variance of a random variable Z. On the other hand,
recalling the notation Σ introduced in Section 3, we obtain for the second
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term E2:

E2 =
∣∣E[Tn(rk(x))|rk(X1), . . . ,rk(X`),Dk]−T(rk(x))

∣∣2
=

∣∣∣∣∣∑̀i=1
Wn,i(x)E[Yi|rk(Xi)]−T(rk(x))

∣∣∣∣∣
2

1{Σ>0} +T2(rk(x))1{Σ=0}

≤
∑`

i=1 1⋂M
m=1{|rk,m(x)−rk,m(Xi)|≤ε`} |E[Yi|rk(Xi)]−T(rk(x))|2∑`

j=1 1⋂M
m=1{|rk,m(x)−rk,m(X j)|≤ε`}

1{Σ>0} (A.10)

+T2(rk(x))1{Σ=0}

(by Jensen’s inequality)

=
∑`

i=1 1⋂M
m=1{|rk,m(x)−rk,m(Xi)|≤ε`} |T(rk(Xi))−T(rk(x))|2∑`

j=1 1⋂M
m=1{|rk,m(x)−rk,m(X j)|≤ε`}

1{Σ>0} (A.11)

+T2(rk(x))1{Σ=0}

≤ L2ε2
`+T2(rk(x))1{Σ=0}. (A.12)

Now,

E|Tn(rk(X))−T(rk(X))|2 ≤
∫
Rd
E|(Tn(rk(x))−T(rk(x))|2µ(dx).

Then, using the decomposition (A.7) and the upper bounds (A.9) and (A.12),

E|Tn(rk(X))−T(rk(X))|2

≤
∫
Rd
E

[
4R21{Σ>0}

B

]
µ(dx)+L2ε2

`+
∫
Rd
E
[
T2(rk(x))1{Σ=0}

]
µ(dx)

≤
∫
Rd
E

{
E

[
4R21{Σ>0}

B

∣∣∣Dk

]}
µ(dx)+L2ε2

`

+
∫
Rd
E
{
E
[
T2(rk(x))1{Σ=0}|Dk

]}
µ(dx).

Thus, thanks to Lemma A.1,

E|Tn(rk(X))−T(rk(X))|2

≤ 8R2

(`+1)

∫
Rd

1
µ(

⋂M
m=1{|rk,m(x)− rk,m(X)| ≤ ε`})

µ(dx)+L2ε2
`

+
∫
Rd

T2(rk(x))

(
1−µ(

M⋂
m=1

{|rk,m(x)− rk,m(X)| ≤ ε`})

)`
µ(dx).
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Consequently,

E|Tn(rk(X))−T(rk(X))|2

≤ 8R2

(`+1)

∫
Rd

1
µ(

⋂M
m=1{|rk,m(x)− rk,m(X)| ≤ ε`})

µ(dx)+L2ε2
`

+
∫
Rd

T2(rk(x))exp

(
−`µ(

M⋂
m=1

{|rk,m(x)− rk,m(X)| ≤ ε`})

)
µ(dx)

≤ 8R2

(`+1)

∫
Rd

1
µ(

⋂M
m=1{|rk,m(x)− rk,m(X)| ≤ ε`})

µ(dx)+L2ε2
`

+
(

sup
x∈Rd

T2(rk(x))max
u∈R+ ue−u

×
∫
Rd

1
`µ(

⋂M
m=1{|rk,m(x)− rk,m(X)| ≤ ε`})

µ(dx)
)
.

Introducing a bounded interval I as in the proof of Proposition 2.2, we ob-
serve that the boundedness of the rk yields that

µ

(
M⋃

m=1
r−1

k,m(I c)

)
= 0,

as soon as I is sufficiently large, independently of k. Then, proceeding as in
the proof of Proposition 2.2, we obtain

E|Tn(rk(X))−T(rk(X))|2

≤ 8R2
⌈ |I|
ε`

⌉M 1
`+1

+L2ε2
`+R2 max

u∈R+ ue−u
⌈ |I|
ε`

⌉M 1
`

≤ C1
R2

`εM
`

+L2ε2
`,

for some positive constant C1, independent of k. Hence, for the choice ε` ∝
`−

1
M+2 , we obtain

E|Tn(rk(X))−T(rk(X))|2 ≤ C`−
2

M+2 ,

for some positive constant C depending on L, R and independent of k, as
desired.

B. Numerical results
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Table 4 (SM): Quadratic errors of the implemented machines and COBRA in high-dimensional
situations. Means and standard deviations over 200 independent replications.

lars ridge fnn tree rf COBRA

Model 9
m. 1.5698 2.9752 3.9285 1.8646 1.5001 0.9996
sd. 0.2357 0.4171 0.5356 0.3751 0.2491 0.1733

Model 10
m. 5.2356 5.1748 6.1395 6.1585 4.8667 2.7076
sd. 0.6885 0.7139 0.9192 0.9298 0.6634 0.3810

Model 11
m. 0.1584 0.1055 0.1363 0.0058 0.0327 0.0049
sd. 0.0199 0.0119 0.0176 0.0010 0.0052 0.0009

Table 5 (SM): Quadratic errors of exponentially weighted aggregate (EWA) and COBRA. 200
independent replications.

EWA COBRA

Model 9
m. 1.1712 1.1360
sd. 0.2090 0.2468

Model 10
m. 9.4789 12.4353
sd. 5.6275 9.1267

Model 11
m. 0.0244 0.0128
sd. 0.0042 0.0237

Model 12
m. 0.4175 0.3124
sd. 0.0513 0.0884
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Figure 2 (SM): Examples of calibration of parameters ε` and α. The bold point is the mini-
mum.

(a) Model 5, uncorrelated design.
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(b) Model 5, correlated design.
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(c) Model 9.
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(d) Model 12.
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Figure 3 (SM): Boxplots of quadratic errors, uncorrelated design. From left to right: lars,
ridge, fnn, tree, randomForest, COBRA.
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(c) Model 3.
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(f) Model 6.
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(g) Model 7.
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(h) Model 8.
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Figure 4 (SM): Boxplots of quadratic errors, correlated design. From left to right: lars,
ridge, fnn, tree, randomForest, COBRA.
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(b) Model 2.
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(d) Model 4.
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(e) Model 5.
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(f) Model 6.
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Figure 5 (SM): Prediction over the testing set, uncorrelated design. The more points on the
first bissectrix, the better the prediction.
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Figure 6 (SM): Prediction over the testing set, correlated design. The more points on the
first bissectrix, the better the prediction.
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Figure 7 (SM): Examples of reconstruction of the functional dependencies, for covariates 1
to 4.

(a) Model 1, uncorrelated design.
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(b) Model 1, correlated design.
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(c) Model 3, uncorrelated design.
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Figure 8 (SM): Boxplot of errors, high-dimensional models.

(a) Model 9

●
●

●

●

●

●

●

Lasso Ridge FNN CART RF COBRA

0
1

2
3

4
5

(b) Model 10

●

●

●●
●

●

●

●

●

●

●

●

Lasso Ridge FNN CART RF COBRA

0
2

4
6

8
10

(c) Model 11

●

●

●

●

●●

●

●●●●

●

●

●●●●

Lasso Ridge FNN CART RF COBRA

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 9 (SM): How stable is COBRA?

(a) Boxplot of errors: Initial sample is ran-
domly cut (1000 replications of Model 12).
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(b) Empirical risk with respect to the size of
subsample Dk, in Model 12.
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Figure 10 (SM): Boxplot of errors: EWA vs COBRA
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Figure 11 (SM): Prediction over the testing set, real-life data sets.

(a) Concrete Slump Test.
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Figure 12 (SM): Boxplot of quadratic errors, real-life data sets.
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