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We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular,

on the local field enhancement which plays a key role as known from the Fowler-Nordheim model

of electronic emission. We study atomic size defects which consist of right angle steps forming an

infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient

electrostatic field. We perform calculations based upon density functional theory in order to charac-

terize the total and induced electronic densities as well as the local electrostatic fields taking into

account the detailed atomic structure of the metal. We show how the results must be processed to

become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We

also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes,

which relies on the microscopic findings to guide, tune, and improve the homogeneous metal

model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field

enhancement characterization. The main physics-wise outcome of this analysis is that limited field

enhancement is to be expected from atomic- and nano-scale defects. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4961216]

I. INTRODUCTION

Electronic field emission1 induced by electrostatic field

can result in vacuum breakdown. This poses challenges to

the design of vacuum insulation structures in high voltage

systems, especially nowadays in the controlled nuclear

fusion industry. Indeed, one of the heating strategies of a

magnetically confined plasma in tokamaks uses high energy

hydrogen or deuterium atoms accelerated by the electro-

static field of a high voltage system, the performance of

which is severely limited by damaging electron currents

induced by field emission.2–4 The intensity of such a field

emission current can be reduced by raising the pressure in

the vacuum system, typically from high or ultrahigh vacuum

to pressures of the order of 10�4 � 10�2 Pa.5–9 This effect

has been known for quite some time10,11 and has been inves-

tigated recently in detail for tungsten carbide and tungsten

cathodes.12–14

These changes in field emission intensity with ambient

pressure are related to modifications of the cathode surface

state at some unknown scale, which may be the micrometer

size scale or an even smaller one. There is indeed no con-

sensus on the detailed nature of these surface changes.

Some believe that these changes in the emitting properties

of the surface result from adsorption of ambient gases or

other contaminants.10,15 In a recent experimental study, the

main contaminant was found to be carbon.14 The theoretical

work concluded that the presence of carbon contamination

increases the work function of tungsten surfaces and hence

decreases electronic emission, which is opposite to the

experimentally observed trend.16 Another mechanism

explaining the observed gas effect should therefore be

looked for.

Others attribute the gas effect to the transformation of

sharp emitting tips into blunt ones by sputtering due to ion

bombardment localized near emitting protrusions.6–8

Modifying tip morphology may impact field emission in two

ways. One of them is through modifications of the local

work function. Theoretical studies on the effects of emitting

surfaces modifications on local work functions have been

performed in Refs. 17–20. Another one is through modifica-

tions of the local field enhancement. It is well known5,21 that

field emission occurs for macroscopic electrostatic field val-

ues that are considerably lower than that of the local field

values predicted by Fowler-Nordheim theory (see Ref. 1 for

the initial theory and Ref. 22 for more recent developments)

because the local field enhancement of the macroscopic field

reduces the electrostatic potential barrier through which

emitted electrons have to tunnel. A local field enhancement

factor b is defined as the ratio between the local field near a

surface emitting site and the macroscopic field. It can be

extracted from Fowler-Nordheim plots, provided the emis-

sion situation is orthodox as defined in Ref. 23, which should

normally be the case for metal emitting surfaces. Such plots

are usually close to straight lines, the slopes of which pro-

vide the enhancement factors b if the work function is

known. This enhancement factor can be related to the

detailed shape and/or the rugosity of the surface, and there is

experimental evidence that smoothing the surface decreases

emission. Typically, b values of several hundreds have been

obtained for an unpolished stainless steel24 or copper25 surfa-

ces, whereas b of several tens have been measured for tita-

nium, molybdenium,26 and niobium,27 for rugosities of the
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order of ten nanometers or more. Notice however that the

connection between enhancement and rugosity is somewhat

loose: for instance, higher field enhancement is obtained for

reduced rugosity in Ref. 28. This may be related to a lack of

control of the emitting surface state at the atomic scale which

we define as being of the order of 1 nm or less and which is a

smaller scale than the one usually considered. If atomic scale

protrusion is a significant contributor to field enhancement,

then control of the rugosity with standard surface treatment

may not be enough to obtain reproducible emission. Finding

out at which scale the surface state needs to be controlled for

reproducible emission is the main objective of the paper.

The role of protrusions on electrostatic field and emission

enhancement has already been considered from a theoretical

point of view (for a review, see, for instance, Ref. 29).

Typically, an order of magnitude of the b factors obtained for

different shapes of protrusions is given by b � D
r , where D is

the height of the emitter tip above the electrode plane which

plays the role of a ground plane and r its apex radius of curva-

ture. Beyond this simple scaling law, more accurate results

can be obtained by solving the Poisson equation with analyti-

cal or numerical methods where the metallic electrodes play

the role of boundary conditions for the electrostatic field.29

Within such a model, the electrode is considered at the macro-

scopic scale as an homogeneous metal without consideration

of its atomic structure. We refer to such a classical conductor

model as Homogeneous Metal Model (HMM) in the follow-

ing. Yet, the use of HMM for atomic size protrusions is obvi-

ously questionable and requires care. At this scale, it is

expected that quantum mechanical methods taking into

account the atomic structure of the emitting electrode must be

used to obtain realistic electronic distributions. Besides, as the

use of HMM remains desirable because of its simplicity, care-

ful thought must be given to how to implement it to minimize

errors and to gain predictive power. In particular, how should

be defined the radius of curvature r of the protrusion tip,

which can consist of a single atom in the limiting case? All of

these issues are addressed in the present study.

The present paper is organized as follows. In Section II,

we describe the protrusion model which we consider to study

the local enhancement of an applied external field. We

explain how we implement the chosen quantum mechanical

method, namely, Density Functional Theory (DFT), to

study this problem. Our work is thus one of the very few

studies20,30,31 on electrostatic field interactions with conduc-

tors based on a realistic quantum mechanical description of

the material at the atomic scale. Section III is split into 3

parts. First, we analyze the three-dimensional electronic den-

sity and electrostatic field distributions resulting from the

DFT calculations. Second, we compare these results with

those of a standard electrostatic HMM, where the structure is

described by its geometry without consideration of its atomic

structure, as is done routinely in engineering applications.29

This allows to show how the HMM can be implemented to

provide results in somewhat surprisingly good agreement

with quantum mechanical predictions even in the case of

atomic scale protrusions. Third, from these results, we

extrapolate conditions which have to be fulfilled for the size

and the geometry of a protrusion to achieve a given level of

field enhancement. Section IV provides our conclusions, in

particular, on the enhancement of external fields by atomic-

and nano-scale protrusions.

II. COMPUTATIONAL METHODS

A. Structure model

We consider bcc tungsten as this is a common basic

material for electrodes which we have already considered in

a previous study of the effect of carbon adsorption on flat

(100) surfaces.16 We know from this previous study that the

lattice parameter is a ¼ 3:18 Å. We now consider a tungsten

surface with defects which consist of right angle steps of

width and height 6a parallel to the (100) and (010) planes.

Such steps are common surface defects at the atomic scale.

A single step is shown on the upper half of Fig. 1 with the x
and z axes tilted at 45

�
with respect to the step planes. A

symmetric structure is generated by reflection through the

(x, y) plane. This structure is the unit cell of our calculation.

It consists in two (x, z) atomic planes separated by a distance

a=2 ¼ 1:59 Å along the y direction. It contains a total of 132

atoms, 72 in the first plane and 60 in the second. By repeat-

ing periodically this unit cell in the y direction, the step

length becomes infinite along the y direction. Periodic exten-

sion along the x direction generates an infinite staircase

made of square steps. The final structure can also be viewed

as consisting of triangular parallel ridges, or equivalently of

two lines of an infinite thickness (along y) right angle saw

FIG. 1. Unit cell considered in the DFT model of the tungsten step structure.

The structure reproduces periodically along the x and y (perpendicular to the

figure plane) directions. Three atomic (x, z) planes are shown: the 1st and

3rd ones which are identical by periodicity correspond to the grey atoms,

and the 2nd one to the blue atoms. The size of the bulk cubic unit cell a ¼
3:18Å is also shown. a is also the distance between the 1st and 3rd atomic

planes of the figure.
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teeth. The upper line describes defects on the cathode, the

lower one on the anode, and they reflect each other through

the x, y mid-plane. The teeth tips and the troughs between

them are distant (along z) from this mid-plane by 4
ffiffiffi
2
p

a ¼
18: Å and

ffiffiffi
2
p

a ¼ 4:5 Å, respectively. On a given side of the

mid-plane, the lateral distance (along x) between neighboring

tips is 6
ffiffiffi
2
p

a ¼ 27: Å.

This unit cell is enclosed in a box including vacuum on

both sides of the structure, which is 117 Å long in the z direc-

tion. As we use a periodic DFT method, the structure is repli-

cated periodically in the z direction and the box has to be

large enough to avoid electrostatic interactions between rep-

licates. This box size also complies with the rule,32 which

states that the distance between the electrode and the counter

electrode (here 117 Å) must be several times larger than that

of the height of the field-enhancing structure (here 18. Å) to

avoid the distribution of field near this structure to be signifi-

cantly affected by the proximity of the counter-electrode.

Both sides of this structure are embedded in a static far field

E1 pointing along the negative z direction so that the upper

and lower step sides play the role of a cathode and of an

anode, respectively. The cathode-anode separation through

the thickness of the structure varies between 2
ffiffiffi
2
p

a ¼ 9 Å

and 8
ffiffiffi
2
p

a ¼ 36 Å at the tip. Since anode and cathode are

thus well separated, they can be considered as noninteracting

between each other. We use this stepped structure as a sim-

ple model for protrusions, and we obtain results simulta-

neously for anode and cathode configurations.

B. DFT computations

The ab initio total-energy and molecular dynamics pro-

gram Vienna ab initio simulation program (VASP) devel-

oped at the Institut f€ur Materialphysik of the Universit€at

Wien has been used for all DFT calculations.33–36 We use

this program in a way very similar to the one already

described in Ref. 16. The electron-ion interaction for tung-

sten is described by the projector augmented wave potential

(PAW).37,38 The exchange-correlation energy is calculated

within the generalized gradient approximation (GGA) using

the revised form of the Perdew, Burke, and Ernzerhof func-

tional (PBE).39–41 We consider six 5d6s valence electrons

for each tungsten atom, and we use the convergence parame-

ters resulting from a previous study.16 Fractional occupan-

cies are calculated using a second-order Methfessel-Paxton

smearing function42 with a width of 0:2 eV. All plane waves

of the basis set are expanded up to a kinetic energy cutoff of

580 eV, ensuring a good convergence of total energies with

an accuracy of the order of 5 meV. We use a (5� 11� 1) k-

point grid, and we checked convergence in comparison with

(7� 11� 1) and (5� 15� 1) grids. We do not allow for

geometry relaxation of the tungsten structure in our study.

Not only this simplification maintains computing times

within reasonable limits but also it is furthermore necessary

in order to compare our quantum mechanical results with

HMM ones performed for undistorted geometric shapes.

The DFT step model is embedded in an external electro-

static field E1 ¼ 0:1V=Å. This is strong in comparison

with macroscopic fields likely to be met in engineering

applications but enables operating local field values (typi-

cally 0:1� 1V=Å) to be achieved with field enhancement

factors of modest size. In the presence of this external field,

an artificial dipole must be added in the vacuum region to

allow for periodicity of the electrostatic potential between

the upper and lower rim of the supercell. This correction also

cancels the long range dipolar interactions between the peri-

odic replicates of the structure in the z direction.

The DFT calculations provide 3-dimensional (3D) quan-

tities like the charge density qðx; y; zÞ and the electrostatic

potential Vðx; y; zÞ, from which the electrostatic field

Eðx; y; zÞ can be easily derived. These quantities oscillate

strongly as a function of the position especially near the

atoms forming the metallic structure and are not well suited

for direct comparison with HMM results. Indeed, the HMM

quantities are smooth ones, and HMM charge density and

electrostatic field are null inside the structure. Following Fall

et al.,17–19 we define locally averaged quantities labelled

with bars, for instance: �qðx; y; zÞ ¼
Ð Ð Ð

vðx;y;zÞdx0dy0dz0

qðx0; y0; z0Þ=vðx; y; zÞ. The integration is performed on a
affiffi
2
p ; a; affiffi

2
p

h i
rectangular cuboid vðx; y; zÞ centered around the

point (x, y, z). Locally averaged quantities do have the same

behaviour as the HMM ones inside the bulk of the material

(zero total charge and field). With our particular choice of

average length in the y direction, equal to the periodicity a,

the locally averaged quantities are independent of y and will

be represented in the following as two-dimensional x, z quan-

tities. Derivations and averaging of the 3D quantities have

been performed by using Fourier transforms.

III. RESULTS

A. DFT results

Figure 2 (left) shows the locally averaged electronic

density �qðE1 ¼ 1 GV=mÞ around the structure embedded in

the external field E1 ¼ 1 GV=m. This figure is undistin-

guishable from the one obtained without external field. This

density is constant inside the bulk, and its value �q0 ¼
0:37e=Å

3
(e: electron charge) which compensates the con-

stant locally averaged tungsten nuclei positive charge (6

charges per atom, 2 atoms per cubic unit cell, a ¼ 3:18 Å)

and provides global electrical neutrality. Using a Thomas-

Fermi model, it is possible to show that the density decreases

from the bulk value to zero over a distance of the order of

the Thomas-Fermi screening length given by (Ref. 43, p.

281): ks � p
1
6

2:3
1
6

ða
3
0

�q0
Þ

1
6; where a0 is the Bohr radius, which gives

in the present case: ks � 0:42 Å. As confirmed by the more

exact theory of Lang and Kohn,44,45 this smooth decrease is

associated with an excess of a net (i.e., including nuclei

charges) positive charge at the interface on the bulk side and

an excess of negative charge on the vacuum side. This elec-

tric dipolar sheet generates a surface electrostatic field point-

ing toward the vacuum as shown in Fig. 3 (left). This field

which can be as high as 6.5 V/Å in the present case contrib-

utes to the confinement of the metal electron gas.

The perturbation associated with the external electro-

static field E1 ¼ 1 GV=m on �q is very small. Indeed, Fig. 2

(right) shows that the difference between the 2 electronic
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charge distributions, with and without external field

�qðE1 ¼ 0:1V=ÅÞ � �qðE1 ¼ 0:0V=ÅÞ, is typically 3 orders

of magnitude smaller than that of the electronic charge distri-

bution �q itself. As expected, there is an excess of electrons

on the cathode side and a deficit on the anode side. These

induced charges concentrate mainly close to the tips of the

structure. Interestingly, the induced charge is not localized

on the top most atomic planes but is shifted toward the vac-

uum. We define the Induced Charge Barycenter (ICB) by

zICB x; y;E1ð Þ ¼
Ð

z �q x; y; z;E1ð Þ � �q x; y; z; 0ð Þ
� �

dzÐ
�q x; y; z;E1ð Þ � �q x; y; z; 0ð Þ
� �

dz
; (1)

and we call ztip ¼ 618 Å the height of the atom at the tip of

the cathode or anode steps. This definition is similar to the

one proposed in Ref. 45 in the context of the modelling of flat

metallic surfaces in the jellium picture. We can easily com-

pute the shift of the induced charge with respect to the tip, and

we find: jzICBðxtip; ytip;E1 ¼ 1 GV=mÞ � ztipj ¼ 1:61 and

2.13 Å on the anode and cathode sides, respectively. This shift

is equivalent to the “repulsion distance” used in the charged

surfaces theory in field ion emission contexts.46,47 For flat

tungsten (110), this repulsion distance was calculated in Ref.

47 to be 157 pm, which is close to the present results.

Figure 3 (left) shows the norm of the locally averaged

electrostatic field around the metallic structure in the pres-

ence of the external field. The maximum intensity near the

surface is 6.5 V/Å, much larger than that of the asymptotic

value E1 ¼ 0:1V=Å. Let us consider the field along the

vertical line passing through the tips (fixed xtip; ytipÞ. By sym-

metry, along this line, only the z component of the field is

nonzero. By convention, we choose positive values for this

component when the field is pointing downward. On the

anode side, the field z component increases uniformly from

its positive asymptotic value to its maximum 6.5 V/Å at a

distance jzEmax � ztipj ¼ 1:2 Å from the tip-atom nucleus. On

the contrary, on the cathode side, the field z component

decreases from its asymptotic value, changes sign at

jz0 � ztipj ¼ 3:8Å, and reaches a minimum �6:5V=Å at a

distance jzEmin � ztipj ¼ 1:1 Å. Therefore, the anode and the

cathode do not behave similarly with respect to the external

field, and instead of a field enhancement on the cathode side,

a field inversion is observed.

Figure 3 (right) shows the norm of the difference of the

electrostatic fields with and without asymptotic field:

D E ¼ j�EðE1 ¼ 0:1V=ÅÞ � �EðE1 ¼ 0V=ÅÞj. D E is gener-

ated by the induced charge of Fig. 2 (right). At the vertical of

the tips, DE has a maximum on both sides of the structure

DE ¼ 0:15V=Å for: jzDEmax � ztipj � 3:3 Å. We show in

Section III B that this maximum can be related to the usual

electrostatic field enhancement occurring in the vicinity of

metallic tips.

B. Comparison with HMM results

In the HMM, the tungsten step is described as an homo-

geneous metal, without consideration of the atomic scale

structure. The geometry considered and shown in Fig. 4 is a

FIG. 2. Left: locally averaged electronic charge density �qðE1 ¼ 0:1V=ÅÞ
in e =Å

3
. As the averaging is performed on the periodicity of the structure a

in the y direction, the locally averaged charge density is independent of y.

The structure is subjected to the E1 ¼ 0:1V=Å far field parallel to the z axis

and symbolized by the pairs of vertical arrows on both sides of the metallic

structure. The contours range from 0:01e=Å
3

to 0:33e=Å
3

and are equally

spaced by 0:08e=Å
3
. The dots indicate the locations of the tungsten atoms.

The constant value of the locally averaged electronic density in the bulk of

the metal is 0:37e=Å
3
. Right: induced locally averaged electronic charge

�qðE1 ¼ 0:1V=ÅÞ � �qðE1 ¼ 0:0V=ÅÞ resulting from the effect of the verti-

cal, downward external field E1 ¼ 0:1V=Å (vertical arrows). The contours

range from �7� 10�4 e=Å
3

to 7� 10�4e=Å
3

and are equally spaced by

2� 10�4e=Å
3
. As expected, there is an excess charge density with a maxi-

mum value of 7:1e=Å
3

near the tip on the upper (cathode) side, and a deficit

with a maximum absolute value 7:25e=Å
3

near the tip on the lower (anode)

side.

(a) (b)

FIG. 3. Left: norm of the locally averaged electrostatic field j�EðE1
¼ 0:1V=ÅÞj multiplied by the sign of its z component. As the averaging is

performed on the periodicity of the structure a in the y direction, the locally

averaged electrostatic field is independent of y. Downward field is positive.

The contours range from �5:9V=Å to 6.1 V/Å and are equally spaced by 2

V/Å. The far electrostatic field E1 symbolized by the triplets of vertical

arrows is the same on both sides of the metallic structure; it is parallel to the

z axis, with an amplitude of 0.1 V/Å. The dots indicate the locations of the

tungsten atoms. On the upper side of the metallic structure (cathode side),

the field is pointing upward (negative contour values), in the opposite direc-

tion to that of the applied field. On the lower side (anode), the field is point-

ing downward. Right: norm of the induced field, defined as the difference of

the electrostatic fields with and without asymptotic field j�EðE1 ¼ 0:1V=ÅÞ
��EðE1 ¼ 0V=ÅÞj. The contours now range from �0:01V=Å to 1:5V=Å

and are equally spaced by 0.02 V/Å.
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right angle step of finite size L terminated by a tip with a

radius of curvature r. This 2D step can also be considered

as a 3D one extending infinitely in the direction perpendicu-

lar to the plane of the figure. The meshed area corresponds

to the vacuum between the step at the bottom and a metallic

plate at height H. Fields and charges are computed with a

commercial electrostatic solver for the ambient field E1 ¼
1 GV=m already considered for the DFT model. The step

contour is at zero potential, and the upper plate is at the

appropriate potential to generate this ambient electrostatic

field. As previously, the step is periodically replicated later-

ally to generate an infinite staircase by implementing appro-

priate periodic boundary conditions on the left and right

sides of the meshed area. This HMM corresponds to one of

the two step configurations, the anode and the cathode, con-

sidered simultaneously in the DFT model of Section III A.

Indeed, it is enough to consider a single configuration in the

HMM, where the anode and the cathode are fully symmet-

ric, whereas they are not in the DFT, as described in

Section III A.

The geometry considered in the DFT calculation pro-

vides L ¼ 13:5 Å in the HMM, but it does not give indica-

tions on what should be the appropriate value for the tip

radius r to obtain HMM results in good agreement with DFT

ones. It is therefore necessary to test different r values, com-

pute HMM charges and electrostatic fields, and compare

them with the DFT results of Section III A. After a few itera-

tions, we found that r ¼ 1:62 Å provides HMM results in

good agreement with DFT ones. This is a typical atomic

radius value for tungsten, for instance, we used the atomic

radius ra ¼ 1:38 Å in Ref. 16 in a different context. Finally,

the height H is not a critical parameter, it has to be taken

large enough so that the field near the upper plate is uniform

and small enough for the calculation to be tractable, H ¼
135 Å was found to be a good compromise. The mesh of this

geometry involving a significant refinement near the tip

where charges and fields are strongly dependent on position

corresponds to 5524 domain elements and 268 frontier

elements.

Figure 5 shows the HMM surface charge density as a

function of the reduced abscissa �x ¼ x=L. As expected,

charge density is symmetric and largest at the tip location

�x ¼ 0. In order to compare with DFT volumic charge den-

sity, integration is performed over the thickness of the mate-

rial, and we define an induced DFT surface charge:

rDFTðx; yÞ ¼ j
Ð

dzð�qðx; y; z;E1Þ � �qðx; y; z; 0ÞÞj, where the

integrand is the induced volumic charge difference already

shown in Fig. 2 (right). Integration is performed for z< 0

and z> 0 for the cathode and anode cases, respectively.

Apart from the faint oscillations reminiscent of the atomic

structure, the cathode and anode DFT integrated densities

are close to each other, as shown in Fig. 5. They however

differ somewhat from the HMM surface density. Agreement

can be improved if a geometrical factor is taken into account.

Indeed, if the HMM provided a volumic charge density, sur-

face density would be obtained by integrating along the nor-

mal to the surface, and not along the z direction as is done

with the DFT volume distribution. Such a z integration can

be straightforwardly mimicked in the HMM by considering

rG ¼ r= cos hs, where hs is the angle between the normal to

the surface and the z axis. This HMM surface charge density

with geometrical correction is then much closer to the DFT

induced integrated charge density, as shown in Fig. 5.

Figure 6 compares the DFT averaged induced field (the

same as the one already shown in the 2D plot of Fig. 3

(right)) with the HMM electrostatic field. The best agreement

is obtained when the metallic surface is chosen, not as the

top most atomic planes, but as the planes defined by the

FIG. 4. Example of a mesh used in the Homogeneous Metal Model (HMM).

The meshed part is the vacuum, and periodic boundary conditions are

applied on the left and right sides. Perfect metal boundary conditions are

applied on the upper side, set at some arbitrary nonzero potential, and on the

step contour, set at zero potential. Also shown is the step size L, the vacuum

thickness H, and the radius of curvature r of the tip.

FIG. 5. Absolute value of the induced surface charge as a function of the

reduced abscissa �x ¼ x=L (x as in Figs. 2 or 3). Full lines: difference between

the locally averaged charge distributions resulting from the DFT model for the

applied external fields E1 ¼ 0:1V=Å and E1 ¼ 0:0V=Å after integration

along the field direction z: j
Ð

dzð�qðx; y; z;E1Þ � �qðx; y; z; 0ÞÞj. Anode (blue)

and cathode (red) cases correspond to integration on complementary sides

with respect to the mid-plane of the metallic structure for z< 0 and z> 0,

respectively. Dashed line: surface charge r resulting from the electrostatic

HMM, with E1 ¼ 0:1V=Å and r ¼ 1:62 Å; L ¼ 13:5 Å; H ¼ 135 Å. Dotted

line: modified induced surface charge rG ¼ r= cos hs, where hs is the angle

between the normal to the surface and the vertical axis z.
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induced charge barycenter zICBðx; y;E1Þ (see Eq. (1)). The

shifts with respect to the atom location planes are 2.13 Å on

the cathode side and 1.61 Å on the anode side (z< 0). The

maximum HMM electrostatic field at these locations is

0.26 V/Å, which corresponds to a field enhancement factor

b ¼ 2:6 only. The DFT maximum induced field is smaller

and is only 0.15 V/Å only. This field decreases abruptly over

a distance of 2 Å or so inside the volumic charge distribution

near the surface which screens the external field.

As a conclusion of this section, we have shown that a

simple HMM is capable of reproducing charge and field dis-

tributions at the atomic scale if they are appropriately proc-

essed. Induced charges and fields have to be extracted from

raw DFT results and subject to averaging and integration

procedures. An appropriate radius of curvature must be cho-

sen for the tips in the HMM. For the present right angle step,

we found that the right angle must be represented by a radius

of curvature of the order of the atomic radius of the tip atom.

Finally, we found in both models a modest field enhance-

ment of the order of a factor of 2.

C. Extrapolation to other defect sizes

We now study what should be the appropriate size range

for the defect considered (right angle step) to yield a given

local field enhancement b. For the atomic size step consid-

ered up to now, an enhancement is small. What should be

the conditions for larger enhancement? This study is most

likely not feasible within the DFT framework due to com-

puter time limitation, but it is straightforward with HMM

using an electrostatic model, once the relation between

HMM and DFT results is established according to the results

of Section III B.

We first notice that among the 3 geometrical parameters

r, L, and H in the HMM, H can be ignored as it is a mere

numerical convergence parameter not related to the physics

of the problem. Simply, H must be chosen large enough to

ensure that the structure is embedded in a uniform far field.

Then, one should notice that the problem can be made inde-

pendent of L by using reduced coordinates: �r ¼ r=L and

�z ¼ ðz� ztipÞ=L. Fig. 7 shows the enhancement factor bð�r; �zÞ
as a function of the reduced distance at the vertical of the tip

for different geometries labelled by �r . In the interval

r < z� ztip � L, the relation between the enhancement fac-

tor and the reduced distance can be fitted with a simple

power law bað�zÞ

b �r ; �zð Þ � ba �zð Þ ¼ 9

20 �z

� �1
3

: (2)

This power law is reminiscent of the infinite step case.

Indeed, the electrostatic field and charge distributions associ-

ated to a two-dimensional right angle metallic step of infinite

length (similar to that of Fig. 4 but assuming r¼ 0 and

L!1) can be easily obtained analytically through a con-

formal map (Ref. 48, p. 298). The field at the vertical of this

infinite tip is given by the power law: Ez / ðz� ztipÞ�
1
3.

Similarly, the charge per unit surface r on the metal at a dis-

tance d from the apex is: r / d�
1
3. Both field and density

thus diverge at the tip, in contrast with the DFT and HMM

results for finite L. But according to Eq. (2), we find numeri-

cally the same (�1/3) power law at finite L. This law is uni-

versal, bað�zÞ being independent if �r for r < z� L, as

expected far enough from the tip where apex details have no

significant influence.

On the other hand, when z� r, the enhancement

becomes independent of z, the dependence of this constant

value with respect to �r can be fitted again accurately by a

power law

FIG. 6. Full line: Density functional theory (DFT) result: difference

(EzðE1 ¼ 0:0V=ÅÞ - EzðE1 ¼ 0:1V=ÅÞ) between locally averaged, z com-

ponent electrostatic fields corresponding to E1 ¼ 0:0V=Å and

E1 ¼ 0:1V=Å, along a line perpendicular to the slab passing through the tip

(z axis on Fig. 1). Dashed line: Electrostatic field resulting from the electro-

static HMM with r ¼ 1:62 Å; L ¼ 13:5 Å; H ¼ 135 Å. The conductor planes

used in the HMM do not coincide with the atomic planes, but with the

Induced Charge (shown on Fig. 2) Barycenter (ICB) planes (see text, Eq.

(1)). These ICB plane positions are symbolized by the vertical blue arrows.

The resulting shifts with respect to the atom locations are 2:13 Å on the cath-

ode side (z> 0 on the figure) and 1.61 Å on the anode side (z< 0). The

HMM electrostatic field at these locations is 0.26 V/Å. Grey dots: atomic

plane locations.

FIG. 7. Numerical field enhancement bð�z; �rÞ as a function of the reduced

distance: �z ¼ z�ztip

L for different reduced radii �r ¼ r
L. The dotted line repre-

sents the function: bað�zÞ ¼ 9
20�z

� �1
3, which fits closely bð�z; �rÞ in the intermedi-

ate distance region �r < �z � 1 where the field enhancement is independent

of �r . The HMM situation depicted in Fig. 6 corresponds to �r ¼ 0:12 and

b ¼ 2:6, close to the blue curve (�r ¼ 0:1).
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b �r; �z ¼ 0ð Þ � 9

4 �r

� �1
3

¼ ba �r=5ð Þ: (3)

The above equation can be used to guess the appropriate

step size for some target enhancement b. This equation

indeed provides the appropriate �r . From Section III B, we

know that the radius of curvature at the apex should be close

to an atomic radius: r � ra. Hence, an appropriate step size

for some target enhancement is given by

L bð Þ � ra
4b3

9
: (4)

As a consequence of this cubic law, large enhancement fac-

tors require large step sizes. For instance, b¼ 20 requires

micrometer-size steps: L � 0:6 lm. A large enhancement

cannot be achieved by atomic scale steps at right angle

a ¼ p=2. This rule is presumably generalizable to steps with

any tip angle value a. Following again Ref. 48, p. 297, we

know that the analytical field dependence with respect to the

distance from an infinite step with tip angle a is given by the

power law: Ez / ðz� ztipÞ�
p�a
2p�a. The appropriate step size

yielding b enhancement becomes: LðbÞ / b
2p�a
p�a , the smallest

step being obtained for the limiting and unrealistic case

a¼ 0, yielding LðbÞ / b2. Even in this latter case, the square

law provides a minimum step size which increases quickly

with target enhancement factor. Better enhancement fac-

tors49 can be achieved if cylindrically symmetric geometries

(around z) like rounded whiskers are used instead of the

translationally invariant (along y) ridges considered here,

even for a¼ 0.

IV. CONCLUSION

We studied the effect of local atomic- and nano-scale

protrusions on field emission and, in particular, on the local

field enhancement which plays a key role as shown by the

Fowler-Nordheim model of emission. We focused on model

local defects which consist of right angle steps aligned as an

infinite length staircase on a tungsten surface. This structure

was embedded in a strong external electrostatic field. We

performed calculations based upon the density functional

theory in order to characterize the total and induced elec-

tronic densities as well as the local electrostatic fields,

thereby taking into account the atomic structure of the metal.

We showed how DFT results could be transformed in order

to be compared with those stemming from a simple electro-

static homogeneous metal model. Thus, we achieved some-

what surprisingly good agreement. From that transformation,

we also described a procedure to extrapolate our results to

defects at different size scales. Hence and qualitatively, we

not only validated the homogeneous metal model against the

microscopic one but also used the DFT findings to guide,

tune, and improve the HMM which in turn gained predictive

power. Furthermore, we evidenced analytical power laws for

the field enhancement characterization. The main physics-

wise outcome of this analysis is that limited field enhance-

ment is to be expected from atomic- and nano-size scale

defects and that the current polishing procedures for emitting

surfaces, where rugosity can be of the order of 10 nm but is

often larger, are good enough to provide field enhancement

control. In perspective, our innovative strategy combining

the microscopic and macroscopic points of view enables

highly efficient nanoscale modelling while preserving a good

level of accuracy. It can obviously be applied to investigate

other kinds of nanoscale protrusions and defects, including

impurities and vacancies. It should also prove useful for

engineering applications.
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