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SPECTRAL ASYMPTOTICS FOR THE SCHRÖDINGER
OPERATOR ON THE LINE WITH SPREADING AND

OSCILLATING POTENTIALS

V. DUCHÊNE AND N. RAYMOND

Abstract. This study is devoted to the asymptotic spectral analysis of multiscale
Schrödinger operators with oscillating and decaying electric potentials. Different
regimes, related to scaling considerations, are distinguished. By means of a normal
form filtrating the oscillations, a reduction to a non-oscillating effective Hamilton-
ian is performed.

1. The problem

1.1. Context and motivation. In this work, we study the asymptotic behavior
(as ε→ 0) of the low-lying spectrum of the following multiscale Schrödinger operator
on the line:

(1.1) Lε,β := εβD2
x + q

(
x,
x

ε

)
,

where q(x, y) is localised in the first variable, and 1-periodic and zero-mean in the
second variable. In other words, we are interested in the non-zero solutions of the
following eigenvalue equation:

(1.2) Lε,βϕε,β(x) = λε,βϕε,β(x) , ϕε,β ∈ L2(R) .

In addition to its intrinsic mathematical interest, the spectral investigation of (1.1)
can be motivated by two reasons:

- this is a toy problem for the propagation of waves in a material with high contrast
microstructure (see for instance [1]),

- it can also be related to the famous Anderson localization phenomenon (see for
instance [11]). In the present context, we will see a discrete spectral structure
emerging from the strong oscillations of the electric potential. Here, in some sense,
the oscillations play the role of randomness.

Of course, in the case of the trivial potential q ≡ 0, the spectrum is purely essential,
and no eigenfunction with finite energy is allowed. Adding a sufficiently localized po-
tential q

(
x, x

ε

)
does not perturb the essential spectrum [21], so that spess(Lε,β) = R+.

However, as we shall see, the presence of the highly oscillatory potential generates
negative eigenvalues. Our aim is to describe the asymptotic behavior of these eigen-
values through non-oscillatory, effective operators of the form:

Leff
ε,β := εβD2

x + εγV (x) on L2(R) ,

where V is given in terms of q and does not depend on ε, and γ = γ(β) ∈ R.
The eigenvalue asymptotics may be very different, depending on the value of the

parameter β, as one can see by looking at the following two cases which have been
treated in the literature.
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i. The case β = 0 corresponds to the classical case of homogenization. Although
standard homogenization arguments yield an effective potential

Veff(x) =

∫
S1
q(x, y)dy = 0 ,

a more precise study [4, 9] shows that the low-lying spectrum is driven by a non-
trivial effective potential Veff(x) = ε2V (x) ≤ 0. Consistently, there exists a nega-

tive eigenvalue, λε,0 ∼ −ε4 14
( ∫

R V
)2

. This eigenvalue is unique for ε sufficiently

small, and the corresponding eigenfunction behaves like ϕε,0 ∼ exp(−
√
−λε,0|·|).

ii. The case β = 2 has been studied in [8], and corresponds to a semiclassical
scaling. In particular, Dimassi shows that the number of negative eigenvalues
grows as ε → 0 and satisfies a Weyl type asymptotics. Although the method
therein relies on the use of an effective Hamiltonian, it is not clear how to relate
this effective Hamiltonian to an effective potential, even in our one-dimensional
setting.

1.2. Results. Here we aim at studying the case β ∈ (0, 2) in a unified manner. We
find it convenient to first rescale our problem: let α = β

2−β , ε = ε1−β/2 and (abusing

notations) ϕε,α = ϕε,β(εβ/2x), λε,α(x) = λε,β. Then the eigenproblem (1.2) reads

(1.3) Lε,αϕε,α(x) :=
(
D2
x + q(εαx, x/ε)

)
ϕε,α(x) = λε,αϕε,α(x), ϕε,α ∈ L2(R).

From now on, we shall only focus on the eigenproblem (1.3) rather than (1.2).

1.2.1. An effective Hamiltonian to describe the low-lying spectrum. Let us describe
how the effective potential may be extracted from the knowledge of q. Consistently
with homogenization techniques, we introduce the auxiliary cell operator

MX,ε := ε−2D2
y + q(X, y) on L2(S1),

where X ∈ R is a fixed parameter. For ε sufficiently small, we can (and will) prove
that there exists a unique negative eigenvalue, µε(X) ∼

ε→0
ε2V (X) where

(1.4) V (X) = −
∫
S1
|∂yΨ0(X, y)|2dy ,

and Ψ0(X, ·) is the unique zero-mean solution to

D2
yΨ0(X, y) = −q(X, y) .

We then show that ε2V (εα·) acts as an effective potential, in the sense that the
asymptotic behavior of the low-lying spectrum of our original operator, Lε,α, may
be described through the one of the non-oscillatory effective operator:

(1.5) Leff
ε,α := D2

x + ε2V (εαx) on L2(R) .

In the whole paper, we work under the following assumption.

Assumption 1.1. q ∈ W 4,∞(R;L∞(S1)), 〈·〉V ′ ∈ L∞(R) and V (X)→ 0 as |X| → ∞.

Notation 1.2. Thereafter, we denote∥∥q∥∥
W `,∞(R×S1) = sup

l∈{0,...,`}

∥∥∂lXq∥∥L∞(R×S1) .
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Notation 1.3. Denote λn,ε,α be the nth (necessarily simple) eigenvalue of Lε,α
counted increasingly, and λn,ε,α = 0 afterwards. Define similarly λeff

n,ε,α through

the eigenvalues of Leff
ε,α.

We can now state one of our main results.

Theorem 1.4. Assume α > −1. There exist ε0, C > 0, depending only on α,∥∥q∥∥
W 4,∞(R×S1) and

∥∥〈·〉V ′∥∥
L∞

, such that for all ε ∈ (0, ε0) and for all n ∈ N, one has

|λn,ε,α − λeff
n,ε,α| ≤ Cεmin{4,2+2α} .

Remark 1.5. The benefit of the estimate of Theorem 1.4 is that the asymptotic
behavior of λeff

n,ε,α for V sufficiently localized, depending on the value of α, is well
understood. There are three different regimes at stake:

α > 1 The low-lying spectrum of (1.5) is dictated by a semiclassical limit. There
is a growing number of simple negative eigenvalues accumulating below the
edge of the essential spectrum, as ε→ 0;

α < 1 The low-lying spectrum of (1.5) is dictated by a weak coupling limit. Since
the effective potential has negative mass, there exists for ε sufficiently small
a unique negative eigenvalue, at a distance O(ε4−2α) of the origin;

α = 1 In this regime, the effective problem is self-similar, and there exists a (non-
zero) finite number of eigenvalues below the essential spectrum.

Notice α = 0 (respectively α = +∞) corresponds to β = 0 and (respectively β = 2),
already described, and the eigenvalue asymptotics are, of course, consistent.

1.2.2. About the approximation of the eigenfunctions. Theorem 1.4 shows that the
asymptotic behavior of λn,ε,α follows the one of λeff

n,ε,α provided that the spectral gap is

asymptotically smaller than εmin{2+2α,3+α}. This generically occurs for α ∈
(
1
2
, 3
)
. In

that case, the effective potential also allows to describe asymptotically the behavior
of the corresponding eigenfunctions as we shall see in the following propositions.

Proposition 1.6 (Semiclassical regime). Assume α ∈ (1, 3). We also assume that
X 7→ V (X) has a unique minimum at X = 0 and that it is non-degenerate. Let
N ∈ N. Then there exists ε0 > 0, such that if ε ∈ (0, ε0), then Lε,α has at least N
negative eigenvalues, λ1,ε,α < · · · < λN,ε,α, satisfying

λn,ε,α = ε2V (0) + ε1+α(2n− 1)

√
V ′′(0)

2
+ O(εmin{4,2α}) .

Up to changing its sign, the corresponding nth L2-normalized eigenfunction, ψn,ε,α,
satisfies ∥∥ψn,ε,α − ϕeff

n,ε,α

∥∥
L2(R) = O(ε3−α) ,

where ϕeff
n,ε,α is the nth L2-normalized eigenfunction of the effective operator (1.5).

Moreover, we have the approximation∥∥ϕeff
n,ε,α(x)− ε

1+α
4 Hn(ε

1+α
2 x)

∥∥
L2(R) = O(ε

α−1
2 ) ,

where Hn is the n-th rescaled Hermite function satisfying

−H ′′n +
V ′′(0)

2
x2Hn = (2n− 1)

√
V ′′(0)

2
Hn .

If it exists, any other negative eigenvalue satisfies λ̃ε,α ≥ ε2V (0)+ε1+α(2N)
√

1
2
V ′′(0).
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Proposition 1.7 (Weak coupling regime). Let α ∈
(
1
2
, 1
)

and assume that V is not
almost everywhere zero and satisfies (1 + | · |)V ∈ L1(R). Then there exists ε0 > 0
such that for any ε ∈ (0, ε0), Lε,α has one negative eigenvalue, λε,α, satisfying

λε,α = −1

4
ε4−2α

(∫
R
V

)2

+O(εmin{2+2α,6−4α}) ,

with L2-normalized corresponding eigenfunction satisfying∥∥ψε,α(x)− ϕeff
ε,α(x)

∥∥
L2(R) = O(ε4α−2) ,

where ϕeff
ε,α is the unique L2-normalized eigenfunction of the effective operator (1.5).

Moreover, we have the approximation∥∥∥∥∥ϕeff
ε,α(x)−

(
ε2−α

2

∫
R
|V |
) 1

2

exp
(
|x|ε

2−α

2

∫
R
V
)∥∥∥∥∥

L2(R)

= O(ε
4
3
(1−α)) .

If it exists, any other negative eigenvalue satisfies λ̃ε,α = O(ε2+2α).

Proposition 1.8 (Critical regime). Let α = 1 and assume that V is not almost
everywhere zero and satisfies (1 + | · |)V ∈ L1(R). For n = 1, . . . , N , denote λn,V
the nth negative eigenvalue of D2

x + V , and ϕn,V its corresponding L2-normalized
eigenfunction. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0), Lε,α has at
least N negative eigenvalue, λn,ε, satisfying

λn,ε = ε2λn,V +O(ε4) ,

with L2-normalized corresponding eigenfunction satisfying∥∥ψn,ε(x)− ε1/2ϕn,V (εx)
∥∥
L2(R) = O(ε2) .

If it exists, any other negative eigenvalue satisfies λ̃ε = O(ε4).

1.2.3. Numerical illustration. In Figures 2, 3 and 4, below, we plot eigenfunctions
of Lε,α in the three different regimes, and compare them with the approximations
involved in our results, i.e. the eigenfunction of the effective operator, Leff

ε,α, and

its asymptotic approximation —namely ϕapp
n,ε,α := ε

1+α
4 Hn(ε

1+α
2 ·) in the semiclassical

regime, and ϕapp
ε,α :=

(
ε2−α

2

∫
R |V |

) 1
2 exp

(
| · | ε2−α

2

∫
R V
)

in the weak coupling regime).
The numerical scheme used for computing the eigenfunctions is described in Ap-

pendix A. We defined the oscillatory potential by

q(X, y) = 4 cos(2πy)× exp(−X2/8) ,

(see Figure 1), so that

Ψ0(X, y) = − 1

π2
cos(2πy)× exp(−X2/8) , V (X) = − 2

π2
exp(−X2/4) .

The value of the parameters are ε = 1/5, and α = 2 (semiclassical regime), α = 1/2
(weak coupling regime) and α = 1 (critical regime).

A striking observation on these numerical experiments is that, as suggested in
Propositions 1.6, 1.7 and 1.8, the main source of imprecision arises when approxi-
mating the eigenfunction of the effective problem, ϕeff with its semiclassical or weak
coupling asymptotics, ϕapp. Notice however that, in our results, the estimates be-
tween the exact and effective eigenfunctions is still much less precise than the eigen-
value approximation, due to the smallness of the spectral gap. As a matter of fact,
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(a) Semiclassical regime, α = 2, and ε = 1/5
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(b) Weak coupling regime, α = 1/2, and ε = 1/5

Figure 1. Large and small-scale behavior of the oscillatory potential, q(εα·, ·/ε).
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(a) First three normalized eigenfunctions, ψn,ε,α
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(b) Close-up and comparison with effective eigen-
function, ϕeff

1,ε,α, and its approximation, ϕapp
1,ε,α

Figure 2. Semiclassical regime, α = 2.

the crudeness of the former estimates hides a finer structure for the eigenfunctions,
suggested by our proof: we show that

ψε,α(x) ≈ φε(x)× ϕeff
ε,α

(∫ x

0

|φε|−2(x′)dx′
)
, φε(x) ≈ 1 + ε2Ψ0(ε

αx, x/ε) .

Notice the above shows three different scales, as the scaling involved in ϕeff
ε,α is dif-

ferent form the ones involved by φε, unless α = 1. In particular, oscillations are
localized on a smaller region than the one defined by the eigenfunction in the weak
coupling regime, in contrast with the semiclassical regime. Although the precision
of our results is insufficient to demonstrate this three-scale structure, the latter is
fully supported by our numerical simulations. Indeed, had we plotted

ϕ̃eff
ε,α(x) =

(
1 + ε2Ψ0(ε

αx, x/ε)
)
× ϕeff

ε,α(x) ,

in Figures 2, 3 and 4, then its graph would have been superimposed with the one of
the exact eigenfunction.
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(a) Normalized eigenfunction, ψε,α
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(b) Close-up and comparison with effective eigen-
function, ϕeff

ε,α, and its approximation, ϕapp
ε,α

Figure 3. Weak coupling regime, α = 1/2.
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(a) First normalized eigenfunction, ψ1,ε
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1,ε = εϕ1,V (ε1/2·)

Figure 4. Critical regime, α = 1.

1.3. Related results and analogies in the literature. Let us now briefly discuss
the relation of our results with the existing literature.

1.3.1. Homogenization. The problem of describing the large scale behavior of partial
differential equations with periodically oscillating coefficients on a small scale is
often tackled by the so-called homogenization process. Our approach is closely
related, as can be seen in particular from the use of an auxiliary “cell” problem for
describing the effective behavior. Notice however that our problem involves three
scales whereas standard works based on homogenization techniques typically involve
only two scales, as in the case α = 0 or α = 1. This transpires for instance in [2, 3, 1]
where, in order to deal with large potentials, the authors introduce a factorization
principle which is similar to our normal form transformation (see below), although
without the change of variable. We would also like to mention the recent works
[18, 6, 19], where similar multiscale problem as ours are studied.
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1.3.2. Born-Oppenheimer reduction. The derivation of the effective operator Leff
ε,α

from the initial operator Lε,α is reminiscent of the famous Born-Oppenheimer ap-
proximation. This method of dimensional reduction, that is a quantum averaging
strategy, was initially introduced in [5] (see also [15] in relation with molecular
physics) and has been developed in many different contexts (see for instance the
review [13]), and in particular to derive spectral asymptotic results (see [16, 20]).
Let us explain the analogy. Consider the two-dimensional operator

D2
x1

+D2
x2

+ q(εαx1, ε
−1x2) ,

acting on L2(R×S1) with q satisfying the same assumptions as above. This operator
is formally obtained by introducing a fictitious variable x2 and duplicating the second
derivative. Using the rescaling y = ε−1x2, we are reduced to the unitarily equivalent
operator:

D2
x1

+ ε−2D2
y + q(εαx1, y) .

This operator is in the Born-Oppenheimer form: it is partially semiclassical with
respect to the variable x1 andMεαx1,ε = ε−2D2

y +q(εαx1, y) can be interpreted as an
operator-valued potential. It can be proved in a rather general framework (see for
instance [17] in the context of pseudo-differential operators) that, generically, the
low-lying spectrum is well described by the one of the reduced operator

D2
x1

+ µε(ε
αx1) .

Though the context is different, this general strategy will serve as a rough guideline
for our study. However, note that we will have to overcome the fact that the variables
x1 and x2 are not independent.

1.4. Strategy and outline. Let us describe the key elements of the proof of our
results. The main idea is a normal form transformation. We show that the con-
tributions of the oscillatory potential q(εαx, x/ε) may be factorized thanks to a
two-scale function Φε(ε

αx, x/ε), where Φε is constructed as a quasimode for the
two-dimensional operator

ε−2D2
y + q(X, y)− 2εα−1∂X∂y − ε2α∂2X .

The first step of the construction of Φε consists in studying the groundstate of
the cell operator MX,ε := ε−2D2

y + q(X, y), where X is now a parameter, and the
effective potential arises as the leading order of the lowest eigenvalue, µε. The
construction and asymptotic behavior of Φε are detailed in Section 2. The normal
form of the operator is made explicit and compared with the effective operator, Leff

ε,α,
in Section 2.2.

In Section 3, we apply the normal form transformation so as to compare the
Rayleigh quotients associated with Lε,α and the ones associated with Leff

ε,α. Theo-
rem 1.4 quickly follows from the min-max principle. We then deduce the asymptotic
behavior of the eigenvalues in the three aforementioned regimes.

In Section 4, we use again the normal form of our operator to construct quasi-
modes. We detail in Section 4.1 (respectively Section 4.2 and Section 4.3) the semi-
classical regime, α > 1 (respectively weak coupling regime, α < 1 and critical
regime, α = 1). The spectral theorem, together with the previously obtained results
on the eigenvalues, allows to deduce the asymptotic behavior of the corresponding
eigenfunctions, as stated above.
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2. The auxiliary cell problems

2.1. The cell eigenproblem. In this section, we study the spectrum of the follow-
ing Schrödinger operator (for fixed X ∈ R and ε > 0)

MX,ε := ε−2D2
y + q(X, y) on S1.

Since q(X, ·) is bounded from below and S1 is bounded, the resolvent of MX,ε is
compact and its spectrum is purely discrete, and we denote its eigenvalues

µε,1(X) < µε,2(X) ≤ . . . ,

counted with multiplicity. What is more, µε,1(X) is simple and the corresponding
eigenvalue does not vanish. For simplicity, we shall denote µε(X) := µε,1(X) and Ψε

the positive normalized corresponding eigenvalue:

(2.1) MX,εΨε(X, y) = µε(X)Ψε(X, y),
∥∥Ψε(X, y)

∥∥
L2(S1) = 1, Ψε(X, y) > 0.

We shall describe the asymptotic behavior of µε,Ψε in the limit ε→ 0, through the
following auxiliary functions.

Lemma 2.1. For any X ∈ R, there exist unique Ψ0,Ψ1 ∈ L∞(R;L2(S1)) satisfying

D2
yΨ0(X, y) = −q(X, y) , Ψ0(X, ·) ∈ L2(S1) ,

∫ 1

0

Ψ0(X, y) dy = 0 ,(2.2)

D2
yΨ1 = V (X)− q(X, ·)Ψ0(X, ·) , Ψ1(X, ·) ∈ L2(S1) ,

∫ 1

0

Ψ1(X, y) dy = 0 .

(2.3)

Moreover, one has

sup
X∈R

∥∥Ψ0(X; ·)
∥∥
H2(S1) ≤ C(

∥∥q∥∥
L∞(R×S1)) , sup

X∈R

∥∥Ψ1(X, ·)
∥∥
H2(S1) ≤ C(

∥∥q∥∥
L∞(R×S1)) .

In particular,

sup
X∈R
|V (X)| ≤ C(

∥∥q∥∥
L∞(R×S1)) , V (X) := −

∫
S1
|∂yΨ0(X, y)|2dy .

Proof. The equations (2.2) and (2.3) are uniquely solvable if the right-hand sides are
zero-mean. This follows from the definition of q and from∫

S1
V (X)− q(X, y)Ψ0(X, y)dy

= −
∫
S1
|∂yΨ0(X, y)|2dy +

∫
S1

(D2
yΨ0(X, y))Ψ0(X, y)dy = 0 .

We consider the equation (2.2) and we immediately get∥∥D2
yΨ0

∥∥
L2(S1) =

∥∥q∥∥
L∞(R×S1)

and ∥∥DyΨ0

∥∥2
L2(S1) ≤

∥∥q∥∥
L∞(R×S1)

∥∥Ψ0

∥∥
L2(S1) ≤

1

2π

∥∥q∥∥
L∞(R×S1)

∥∥DyΨ0

∥∥
L2(S1) ,

where we used Wirtinger’s inequality (or the min-max principle since the mean value
of Ψ0 is zero, and the second lowest eigenvalue of D2

y on L2(S1) is 4π2) for the last
inequality. The completion of the proof is now straightforward. �

We are now in position to describe the asymptotic behavior of µε,Ψε in (2.1).
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Lemma 2.2. There exist M, ε0 > 0, depending only on
∥∥q∥∥

L∞(R×S1), such that for

all ε ∈ (0, ε0) and X ∈ R,

|µε(X)− ε2V (X)| ≤Mε4 and µε,2(X) ≥ 4π2ε−2 −
∥∥q∥∥

L∞(R×S1) .

Moreover,
sup
X∈R

∥∥Ψε −Ψapp
ε

∥∥
H2(S1) ≤Mε6 ,

where

Ψapp
ε (X, y) :=

1 + ε2Ψ0(X, y) + ε4Ψ1(X, y)∥∥1 + ε2Ψ0(X, y) + ε4Ψ1(X, y)
∥∥
L2(S1)

and Ψ0,Ψ1 and V are defined in Lemma 2.1.

Proof. Let us first remark that one has MX,ε ≥ ε−2D2
y −

∥∥q∥∥
L∞(R×S1), so that the

min-max principle ensures

(2.4) µε,2 ≥ 4π2ε−2 −
∥∥q∥∥

L∞(R×S1) .

We now compute∥∥(MX,ε − ε2V (X)
)

Ψapp
ε

∥∥
L2(S1) = ε4

∥∥−VΨ0 + qΨ1 − ε2VΨ1

∥∥
L2(S1)∥∥1 + ε2Ψ0(X, y) + ε4Ψ1(X, y)
∥∥
L2(S1)

≤ ε4C(
∥∥q∥∥

L∞(R×S1)),

where the last inequality follows from Lemma 2.1, and the choice of ε ∈ (0, ε0)
sufficiently small. By the spectral theorem, we infer that for any ε > 0, there exists
nε ∈ N? such that

|µε,nε(X)− ε2V (X)| ≤ ε4C(
∥∥q∥∥

L∞(R×S1)).

By (2.4), we can restrict ε ∈ (0, ε0) in order to ensure that nε ≡ 1, i.e. µε,nε(X) =
µε(X).

As a consequence, one has

(2.5)
∥∥(MX,ε − µε(X))

(
Ψapp
ε − 〈Ψapp

ε ,Ψε〉L2(S1)Ψε

)∥∥
L2(S1) ≤ ε4C(

∥∥q∥∥
L∞(R×S1)).

Moreover, since Ψapp
ε −〈Ψapp

ε ,Ψε〉L2(S1)Ψε is orthogonal to Ψε, the function associated
with the first eigenvalue of MX,ε − µε(X), the min-max principle and Cauchy-
Schwarz inequality ensure

(µε,2(X)− µε(X))
∥∥Ψapp

ε − 〈Ψapp
ε ,Ψε〉L2(S1)Ψε

∥∥2
L2(S1)

≤ ε4C(
∥∥q∥∥

L∞(R×S1))×
∥∥Ψapp

ε − 〈Ψapp
ε ,Ψε〉L2(S1)Ψε

∥∥
L2(S1) ,

and therefore

(2.6)
∥∥Ψapp

ε − 〈Ψapp
ε ,Ψε〉L2(S1)Ψε

∥∥
L2(S1) ≤ ε6C(

∥∥q∥∥
L∞(R×S1)).

By the normalization and triangular inequality and since Ψε and Ψapp
ε are positive

for ε sufficiently small, we deduce

|1− 〈Ψapp
ε ,Ψε〉L2(S1)| ≤ ε6C(

∥∥q∥∥
L∞(R×S1)).

Plugging this estimate into (2.6) and (2.5) yields, respectively,∥∥Ψapp
ε −Ψε

∥∥
L2(S1) ≤ ε6C(

∥∥q∥∥
L∞(R×S1))
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and ∥∥(MX,ε − µε(X))
(
Ψapp
ε −Ψε

)∥∥
L2(S1) ≤ ε4C(

∥∥q∥∥
L∞(R×S1)).

The desired estimate now follows from straightforward computations. �

Lemma 2.3. For all ` ≥ 1, there exist M`, depending only on ` and
∥∥q∥∥

W `,∞(R×S1),

such that under the hypothesis of Lemma 2.2, one has

sup
X∈R

∥∥∂`XΨε(X, ·)
∥∥
H2(S1) + sup

X∈R
|µ(`)
ε (X)| ≤ ε2M` .

Proof. The proof may be done by induction. Let us start with ` = 1.
By formally differentiating the eigenvalue equation (2.1), we find

(2.7)
(
ε−2D2

y + q(X, y)− µε(X)
)
∂XΨε(X, y) =

(
µ′ε(X)− ∂Xq(X, y)

)
Ψε(X, y) .

By the Fredholm alternative, the Feynman-Hellmann formula holds:

µ′ε(X) =

∫
S1
∂Xq(X, y)|Ψε(X, y)|2dy ,

where we used the L2 normalization of Ψε. Using the approximation on Ψε given in
Lemma 2.2 and since

∫
S1 ∂Xq(X, y)dy = 0, we deduce

sup
X∈R
|µ′ε(X)| ≤ ε2C(

∥∥q∥∥
L∞(R×S1))

∥∥∂Xq∥∥L∞(R×S1) .

By using that
∫
S1(∂XΨε)Ψε = 1

2
d
dX

∥∥Ψε

∥∥2
L2(S1) = 0, the min-max principle yields

(µε,2(X)− µε(X))
∥∥∂XΨε

∥∥2
L2(S1) ≤

∫
S1

(∂XΨε)
(
µ′ε(X)− ∂Xq(X, y)

)
Ψε(X, y)

≤ C(
∥∥q∥∥

L∞(R×S1))
∥∥∂Xq∥∥L∞(R×S1)

∥∥∂XΨε

∥∥
L2(S1) .

By Lemma 2.2, one has

(2.8) µε,2(X)− µε(X) ≥ cε−2 ,

so that ∥∥∂XΨε

∥∥
L2(S1) ≤ ε2C(

∥∥q∥∥
L∞(R×S1))

∥∥∂Xq∥∥L∞(R×S1) .

The similar control of
∥∥D2

y∂XΨε

∥∥
L2(S1) immediately follows from (2.7), and the es-

timates of the statement, for ` = 1, are proved. The above calculations are made
rigorous by replacing X-derivatives with the well-defined difference quotient, and
taking the limit.

Let us assume now assume that the conclusion holds for k ∈ {1, . . . , `}. When
differentiating equation (2.1) `+ 1 times with respect to X, one has by the Leibniz
formula(

ε−2D2
y + q(X, y)− µε(X)

)
∂`+1
X Ψε(X, y)

= µ(`+1−k)
ε (X)Ψε(X, y) +

∑̀
k=0

(
`+ 1

k

)(
µ(`+1)
ε (X)− ∂`+1−k

X q(X, y)
)
∂kXΨε(X, y) .

As above, by considering the Fredholm condition and the induction assumption, we
find that

|µ(`+1)
ε (X)| ≤ ε2C(M`,

∥∥q∥∥
W `+1,∞(R×S1)) .
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and consequently∥∥(MX,ε − µε(X)
)
∂`+1
X Ψε

∥∥
L2(S1) ≤ C(M`,

∥∥q∥∥
W `+1,∞(R×S1)) .

Now, differentiating the identity

〈Ψε,Ψε〉L2(S1) = 1 ,

we find

2〈Ψε, ∂
`+1
X Ψε〉L2(S1) = −

∑̀
k=1

(
`+ 1

k

)
〈∂kXΨε, ∂

`+1−k
X Ψε〉L2(S1)

so that, by the induction assumption and Cauchy-Schwarz inequality, we have

|〈Ψε, ∂
`+1
X Ψε〉L2(S1)| ≤ 2ε4 M2

` .

It follows that∥∥(MX,ε − µε(X))
(
∂`+1
X Ψε − 〈Ψε, ∂

`+1
X Ψε〉L2(S1)Ψε

)∥∥
L2(S1) ≤ C(M`,

∥∥q∥∥
W `+1,∞(R×S1)) .

As above, by the min-max principle and (2.8), we deduce

cε−2
∥∥∂`+1

X ψX,ε − 〈Ψε, ∂
`+1
X Ψε〉L2(S1)Ψε

∥∥
L2(S1) ≤ C(M`,

∥∥q∥∥
W `+1,∞(R×S1)) ,

and the result follows. �

2.2. The normal form. In this section, we introduce the normal form which is the
key ingredient of our strategy.

2.2.1. The function φε. The main element of the normal form is a function of the
form

(2.9) φε(x) = Φε(ε
αx, x/ε)

which we construct so as to satisfy

(2.10)
(
Lε,αφε

)
(x) ∼ε→0 µε(ε

αx)φε(x) .

Notice that (
Lε,αφε

)
(x) =

(
MX,ε − 2εα−1∂X∂y − ε2α∂2X

)
Φε(ε

αx, x/ε) .

Thus we define Φε as

(2.11) Φε(X, y) := Ψε(X, y) + εα−1Ψ̃ε(X, y)

where Ψε has been defined in (2.1), and Ψ̃ε is defined by

(2.12) (MX,ε−µε)Ψ̃ε = 2∂X∂yΨε+ε
α+1∂2XΨε−〈2∂X∂yΨε+ε

α+1∂2XΨε,Ψε〉L2(S1)Ψε .

Note here that the correction Ψ̃ε is added so that the remainder in (2.10) is suffi-
ciently small. This is crucial to get our eigenvalues and eigenfunctions asymptotic
results.

Lemma 2.4. Assume α > −1. There exists ε0, depending only on α and
∥∥q∥∥

W 4,∞(R×S1),

such that for any ε ∈ (0, ε0), one has∥∥φε∥∥W 2,∞(R) ≤ C(
∥∥q∥∥

W 4,∞(R×S1)) ,∥∥φε − 1
∥∥
L∞(R) ≤ ε2C(

∥∥q∥∥
W 4,∞(R×S1)) ≤ 1/2 ,

and ∥∥(Lε,α − µε(εα·))φε
∥∥
L∞(R) ≤ εmin{3+α,2+2α}C(

∥∥q∥∥
W 4,∞(R×S1)) .
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Proof. We first remark that Ψ̃ε is well-defined by (2.12) since the right-hand side,
which we denote rε in the following, satisfies

rε ∈ L2(S1) and 〈rε,Ψε〉L2(S1) = 0 .

What is more, the min-max principle and (2.8) gives, for any fixed X ∈ R,

cε−2
∥∥Ψ̃ε

∥∥2
L2(S1) ≤ (µε,2(X)−µε(X))

∥∥Ψ̃ε

∥∥2
L2(S1) ≤ |〈rε, Ψ̃ε〉L2(S1)| ≤

∥∥Ψ̃ε

∥∥
L2(S1)

∥∥rε∥∥L2(S1) .

By Lemma 2.3, we deduce

sup
X∈R

∥∥Ψ̃ε

∥∥
L2(S1) ≤ ε2 sup

X∈R

∥∥rε∥∥L2(S1) ≤ ε4 C(
∥∥q∥∥

W 2,∞(R×S1)).

Plugging this estimate in (2.12), one immediately finds

sup
X∈R

∥∥Ψ̃ε

∥∥
H2(S1) ≤ ε4 C(

∥∥q∥∥
W 2,∞(R×S1)).

Differentiating (2.12) with respect to X and proceeding as above eventually yields

sup
X∈R

(∥∥Ψ̃ε

∥∥
H2(S1) +

∥∥∂XΨ̃ε

∥∥
H2(S1) +

∥∥∂2XΨ̃ε

∥∥
H2(S1)

)
≤ ε4 C(

∥∥q∥∥
W 4,∞(R×S1)).

Together with Lemmata 2.1, 2.2, and 2.3, one deduces the first and second estimates
of the statement.

Let us now study the component

pε := 〈2∂X∂yΨε + εα+1∂2XΨε,Ψε〉L2(S1)Ψε.

By Lemmata 2.2 and 2.3, one has

sup
X∈R
|〈εα+1∂2XΨε,Ψε〉L2(S1)| ≤ ε3+αC(

∥∥q∥∥
W 2,∞(R×S1))

sup
X∈R
|〈∂X∂yΨε,Ψε − 1〉L2(S1)| ≤ ε4C(

∥∥q∥∥
W 1,∞(R×S1))

and 〈∂X∂yΨε, 1〉L2(S1) = 0, so that

sup
X∈R

∥∥pε∥∥H2(S1) ≤ εmin{3+α,4}C(
∥∥q∥∥

W 2,∞(R×S1)).

There now only remains to compute(
Lε,α − µε(εαx)

)
φε(x) =

(
MX,εΦε − 2εα−1∂X∂y − ε2α∂2X − µε(X)

)
Φε(ε

αx, x/ε)

=
(
−εα−1pε − 2ε2(α−1)∂X∂yΨ̃ε − ε3α−1∂2XΨ̃ε

)
(εαx, x/ε)

and the second estimate of the statement follows. �

2.2.2. The normal form. We may now introduce the normal form of our operator,
Lε,α, thanks to the following transformation.

Lemma 2.5. Let α > −1 and ε ∈ (0, ε0) as in Lemma 2.4. The application

T : ϕ 7→ ψ, ψ(x) := φε(x)ϕ

(∫ x

0

|φε|−2(x′)dx′
)

defines a continuous isomorphism from Hk(R) into Hk(R) for k = 0, 1, 2, and one
has ∥∥T (ϕ)− ϕ

∥∥
L2(R) ≤ ε2C(

∥∥q∥∥
W 4,∞(R×S1))

∥∥ϕ∥∥
L2(R) ,∥∥T (ϕ)

∥∥
Hk(R) +

∥∥T−1(ϕ)
∥∥
Hk(R) ≤ C(

∥∥q∥∥
W 4,∞(R×S1))

∥∥ϕ∥∥
Hk(R) .
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The normal form is obtained by considering T−1Lε,αT . More precisely, we will
make use of the following identity.

Lemma 2.6. Let α > −1 and ε ∈ (0, ε0) as in Lemma 2.4. Let ϕ ∈ H2(R) and
ψ(x) := T (ϕ)(x). Then

(Lε,αψ)(x) = φ−3ε (x)
(
D2
x + V red

ε,α (x)
)
ϕ(x̃) ,

where we denote x̃ =
∫ x
0
|φε|−2(x′)dx′, and V red

ε,α := φ3
εLε,αφε.

Proof. Since V red
ε,α , φ

−1
ε ∈ L∞(R), and T defines a continuous isomorphism from

H2(R) into H2(R), the following identities are well-defined in L2(R). One has

(Lε,αψ)(x) :=
(
D2
x + q(εαx, x/ε)

)
ψ(x)

= q(εαx, x/ε)ψ(x)− iDx

(
φ′ε(x)ϕ(x̃) + φ−1ε (x)ϕ′(x̃)

)
= ϕ (x̃)

(
D2
x + q(εαx, x/ε)

)
φε(x) + φ−3ε (x)(D2

xϕ) (x̃)

= φ−3ε (x)
(
D2
x + V red

ε,α (x)
)
ϕ(x̃) ,

which concludes the proof. �

It is now natural to compare the normal form of our operator with the effective
operator, Leff

ε,α := D2
x+ε2V (εαx). Indeed, by construction of φε, one has the following

approximation.

Lemma 2.7. Let α > −1 and ε ∈ (0, ε0) as in Lemma 2.4. One has∥∥V red
ε,α (x)− ε2V (εαx̃)

∥∥
L∞(R) ≤ C(

∥∥q∥∥
W 4,∞(R×S1),

∥∥〈·〉V ′∥∥
L∞

)εmin{4,2+2α} ,

where we recall the notation x̃ =
∫ x
0
|φε|−2(x′)dx′.

Proof. By Lemma 2.4, one has for ε ∈ (0, ε0) with ε0 sufficiently small,∥∥φε − 1
∥∥
L∞(R) ≤ ε2C(

∥∥q∥∥
W 4,∞(R×S1)) ≤

1

2
,

and ∥∥(Lε,α − µε(εαx)
)
φε
∥∥
L∞(R×S1) ≤ εmin{3+α,2+2α}C(

∥∥q∥∥
W 4,∞(R×S1)) ,

where µε is defined in (2.1). By Lemmata 2.1, 2.2 and 2.4, we find∣∣µε(εαx)φ4
ε(x)− ε2V (εαx)

∣∣ ≤ ε4C(
∥∥q∥∥

W 4,∞(R×S1)) .

Collecting the above information yields∥∥V red
ε,α (x)− ε2V (εαx)

∥∥
L∞(R) ≤ εmin{4,2+2α}C(

∥∥q∥∥
W 4,∞(R×S1)) .

Now, we remark that

|x̃− x| =

∣∣∣∣∣
∫ x

0

1− |φε|2(x′)
|φε|2(x′)

dx′

∣∣∣∣∣ ≤ C(
∥∥q∥∥

W 4,∞(R×S1))ε
2|x| .

By the Taylor formula, one has, for x 6= 0,

V (εαx̃)− V (εαx) =
x̃− x
x

∫ 1

0

rε(x, t)
−1εαxrε(x, t)V

′ (εαxrε(x, t)) dt ,

where

rε(x, t) := 1 + t
x̃− x
x

.
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We deduce that∥∥V (εαx̃)− V (εαx)
∥∥
L∞(R) ≤ C(

∥∥q∥∥
W 4,∞(R×S1))

∥∥〈·〉V ′∥∥
L∞
ε2 ,

and the desired estimate follows by triangular inequality. �

Remark 2.8. The change of variable x̃ :=
∫ x
0
|φε|−2(x′)dx′ is used to eliminate the

derivative of order 1 in Lemma 2.6. It turns out that this change of variable is crucial
for the construction of quasimodes (see Section 4), but not so much for the estimate
of the eigenvalues (Section 3.1, Theorem 3.1), where the simple factorization by φε
would suffice.

3. Asymptotic analysis of the eigenvalues

3.1. Comparison of eigenvalues. In this section, we prove Theorem 1.4, recalled
below.

Theorem 3.1. Assume α > −1. There exist ε0, C > 0, depending only on α,∥∥q∥∥
W 4,∞(R×S1) and

∥∥〈·〉V ′∥∥
L∞

, such that for all ε ∈ (0, ε0) and for all n ∈ N, one has

|λn,ε,α − λeff
n,ε,α| ≤ Cεmin{4,2+2α} .

Proof. The result is based on the min-max principle; thus we introduce the quadratic
forms associated with our operators, respectively

Qε,α(ψ) :=

∫
R
|ψ′|2(x) + q(εαx, x/ε)|ψ|2(x)dx ,

and

Qeff
ε,α(ψ) =

∫
R
|ψ′|2(x) + ε2V (εαx)|ψ|2(x)dx .

Let f ∈ H1(R). Then φεf ∈ H1(R), and one has

Qε,α(φεf) =

∫
R

(
|φεf ′|2 + |φ′εf |

2 + 2φεφ
′
εff

′) (x) + q(εαx, x/ε)|φεf |2(x)dx

=

∫
R
|φε|2(x)|f ′|2(x) + |f |2(x)

(
|φ′ε|

2(x)−
(
φεφ

′
ε

)′
(x) + q(εαx, x/ε)|φε|2(x)

)
dx

=

∫
R
|φε|2(x)|f ′|2(x) + |f |2(x)φε(x) (−φ′′ε(x) + q(εαx, x/ε)φε(x)) dx

=

∫
R
|φε|2(x)

(
|f ′|2(x) + µε(ε

αx)|f |2(x)
)

dx+ r1(f) ,

with

r1(f) :=

∫
R
|f |2(x)φε(x)

(
Lε,α − µε(εαx)

)
φε(x)dx .

Now, we apply the near-identity change of variable

x̃ =

∫ x

0

|φε|−2(x′)dx′ ⇐⇒ x = θ(x̃) ,

and deduce

Qε,α(φεf) =

∫
R
|φε|4(θ(x̃))

(
|f ′|2(θ(x̃)) + µε(ε

αθ(x̃))|f |2(θ(x̃))
)

dx̃+ r1(f) .
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Finally, denoting ψ(x̃) = f(θ(x̃)), one has

Qε,α(φεf) =

∫
R
|ψ′|2(x̃) + |φε|4(θ(x̃))µε(ε

αθ(x̃))|ψ|2(x̃)dx̃+ r1(f) ,

that is to say
Qε,α(T (ψ)) = Qeff

ε,α(ψ) + r1(f) + r2(ψ) ,

with

r2(ψ) :=

∫
R
|ψ|2(x̃)

(
|φε|4(θ(x̃))µε(ε

αθ(x̃))− ε2V (εαx̃)
)

dx .

By Lemma 2.4, one has

|r1(f)| ≤ εmin{3+α,2+2α}C(
∥∥q∥∥

W 4,∞(R×S1))
∥∥f∥∥2

L2(R).

By the estimates in the proof of Lemma 2.7, one has

|r2(ψ)| ≤ ε4C(
∥∥q∥∥

W 4,∞(R×S1),
∥∥〈·〉V ′∥∥

L∞
)
∥∥ψ∥∥2

L2(R).

By the min-max principle, and using Lemma 2.5, we deduce that

λn,ε,α ≤ λeff
n,ε,α + Cε2|λeff

n,ε,α|+ Cεmin{4,2+2α}

and
λeff
n,ε,α ≤ λn,ε,α + Cε2|λn,ε,α|+ Cεmin{4,2+2α},

with C = C(
∥∥q∥∥

W 4,∞(R×S1),
∥∥〈·〉V ′∥∥

L∞
). Since by Lemma 2.1, one has

∀X ∈ R, 0 ≤ −V (X) ≤ C(
∥∥q∥∥

W 4,∞(R×S1)) ,

we deduce 0 ≤ −λeff
n,ε,α ≤ ε2C(

∥∥q∥∥
W 4,∞(R×S1)), and Theorem 3.1 follows. �

3.2. Application. In this section, we obtain the asymptotic behavior of the low-
lying spectrum of the operator Lε,α. We showed in Theorem 3.1 that the eigenvalues
can be compared with the ones of the effective operator,

Leff
ε,α := D2

x + ε2V (εαx),

where we recall that

V (X) := −
∫
S1
|∂yΨ0(X, y)|2dy ,

with

D2
yΨ0(X, y) = −q(X, y) , Ψ0(X, ·) ∈ L2(S1) ,

∫ 1

0

Ψ0(X, y) dy = 0 .

As previously mentioned, the asymptotic behavior of the low-lying spectrum of Leff
ε,α

strongly depends on the value of α, and we detail below the different regimes corre-
sponding to different values of α.

Proposition 3.2 (Semiclassical regime). Let α ∈ (1, 3) and N ∈ N. Assume that
X 7→ V (X) has a unique non-degenerate minimum at X = 0. Then there exists
ε0 > 0, such that if ε ∈ (0, ε0), then Lε,α has at least N negative eigenvalues,
λ1,ε,α < · · · < λN,ε,α, satisfying

λn,ε,α = ε2V (0) + ε1+α(2n− 1)

√
V ′′(0)

2
+ O(εmin{4,2α}) .

If it exists, any other negative eigenvalue satisfies λ̃ε,α ≥ ε2V (0)+ε1+α(2N)
√

1
2
V ′′(0).
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Proof. By a rescaling argument, λeff
ε,α is an eigenvalue of the effective operator, Leff

ε,α,

if and only if ε−2λeff
ε,α is an eigenvalue of

Ls.c.
ε,α := ε2(α−1)D2

x + V.

Thus (see classical references [23, 7, 12] for instance), as h = εα−1 → 0, one has

ε−2λeff
ε,α = V (0) + (2n− 1)εα−1

√
V ′′(0)

2
+O(ε2(α−1)) .

The result now follows from Theorem 3.1, since the restriction α ∈ (1, 3) ensures
that 1 + α < min{4, 2 + 2α, 2α} = min{4, 2α}. �

Proposition 3.3 (Weak coupling regime). Let α ∈ (1/2, 1), and assume that V is
not almost everywhere zero and such that (1 + | · |)V ∈ L1. Then there exists ε0 > 0
such that for any ε ∈ (0, ε0), Lε,α has a negative eigenvalue, λε,α, satisfying

λε,α = −1

4
ε4−2α

(∫
R
V

)2

+O(εmin{2+2α,6−4α}) .

If it exists, any other negative eigenvalue satisfies λ̃ε,α = O(ε2+2α).

Proof. By a rescaling argument, λeff
ε,α is an eigenvalue of the effective operator, Leff

ε,α,

if and only if ε−2αλeff
ε,α is an eigenvalue of

Ls.a.
ε,α := D2

x + ε2(1−α)V.

Since α < 1, (1 + | · |)V ∈ L1, and V ≤ 0 by (1.4), the results of [22, 14] apply. Thus
for ε sufficiently small, Leff

ε,α has a unique negative eigenvalue, λeff
ε,α, and

ε−2αλeff
ε,α = −1

4
ε4−4α

(∫
R
V

)2

+O(ε6−6α) .

The result now follows from Theorem 3.1, since the restriction α ∈ (1/3, 1) ensures
that 4− 2α < min{4, 2 + 2α, 6− 4α} = min{2 + 2α, 6− 4α}. �

Proposition 3.4 (Critical regime). Let α = 1, and assume that V is not almost
everywhere zero and such that (1 + | · |)V ∈ L1. Denote

λ1 < λ2 < · · · < λN < 0

the negative eigenvalues of

Lcr := D2
x + V.

Then for ε sufficiently small, Lε,α has N negative eigenvalues, λn,ε, satisfying

λn,ε = ε2λn +O(ε4) .

If it exists, any other negative eigenvalue λ̃ε satisfies λ̃ε = O(ε4).

Proof. By a rescaling argument, λeff
ε is an eigenvalue of the effective operator, if and

only if ε−2λeff
ε is an eigenvalue of Lcr. The result then follows from Theorem 3.1. �
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4. Description of the eigenfunctions

This section is dedicated to the description of the eigenfunctions associated with
the low-lying spectrum of our operator Lε,α, as described in Theorem 3.1. The main
tool is the transformation defined in Lemma 2.5 which, as seen in Lemma 2.6, allows
to transform the oscillatory problem into a normal form, the latter being described
at first order by the effective operator (see Lemma 2.7), Leff

ε,α := D2
x + ε2V (εαx).

Consequently, the eigenmodes of the oscillatory operator define quasimodes of the
effective operator. When the precision of the constructed quasimode is smaller than
the spectral gap, one obtains an asymptotic description of the eigenfunctions. In
the following sections, we carry out this strategy in the different regimes so as to
prove Propositions 1.6, 1.7 and 1.8.

4.1. Semiclassical regime α > 1; proof of Proposition 1.6. We shall make use
of the following properties on the eigenfunctions of Leff

ε,α in the semiclassical limit.
This proposition is a consequence of the harmonic approximation (see the classical
references [23, 7, 12]).

Proposition 4.1. Let α > 1 and assume that X 7→ V (X) has a unique non-
degenerate minimum at X = 0. Then there exists C, ε0 > 0 such that if ε ∈ (0, ε0),
then there exists λeff

1,ε,α < · · · < λeff
N,ε,α eigenvalues and ϕeff

1,ε,α, . . . , ϕ
eff
N,ε,α corresponding

eigenfunctions of Leff
ε,α = D2

x + ε2V (εαx). Moreover, ϕeff
n,ε,α is uniquely determined by∥∥ϕeff

n,ε,α

∥∥
L2(R) = 1 ,

∫
R
ϕeff
n,ε,α(x)Hn(ε

1+α
2 x)dx > 0 ,

and one has

(4.1)

∣∣∣∣∣λeff
n,ε −

(
ε2V (0) + ε1+α(2n− 1)

√
V ′′(0)

2

)∣∣∣∣∣ ≤ C × ε2α ,

and

ϕeff
n,ε,α(x) = ε

1+α
4

(
Hn(ε

1+α
2 x) + rn,ε(ε

1+α
2 x)

)
with

(4.2)
∥∥rn,ε∥∥L2(R) ≤ C × ε

α−1
2 .

Proof. Let us only sketch the main steps of the proof. Using the rescaling x̂ = εαx
and denoting h = εα−1 the effective semiclassical parameter, the study reduces to
the spectral analysis of

Lh = h2D2
x̂ + V (x̂) .

Since X 7→ V (X) has a unique non-degenerate minimum at X = 0 that is not at-
tained at infinity (as V (X)→ 0 as |X| → ∞), the standard harmonic approximation
shows that, for all n ≥ 1, there exist Cn > 0 and hn > 0 such that for all h ∈ (0, hn),
the nth eigenvalue of Lh, denoted λn(h), satisfies

(4.3)

∣∣∣∣∣λn(h)− V (0)− (2n− 1)h

√
V ′′(0)

2

∣∣∣∣∣ ≤ Cnh
2 ,

and the constants Cn, hn depend only on n and
∥∥V ∥∥

W 3,∞(R) (and thus on
∥∥q∥∥

W 3,∞(R×S1)).

We deduce (4.1).
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From the estimate (4.3), it is possible to deduce an approximation of the corre-
sponding eigenfunctions by observing that∥∥∥∥∥

(
Lh − V (0)− (2n− 1)h

√
V ′′(0)

2

)
h−

1
4Hn(h−

1
2 ·)

∥∥∥∥∥
L2(R)

≤ Cnh
3
2 .

Since the nth eigenspace is one-dimensional (and the spectral gap of order h), we get

that the nth normalized eigenfunction is at a distance, in L2-norm, at most Cnh
1
2

of the normalized quasimode h−
1
4Hn(h−

1
2 ·). In other words, if r̂h is the difference

between the quasimode and the normalized eigenfunction, we have
∥∥r̂h∥∥L2(R) ≤ Ch

1
2 .

After rescaling, we deduce (4.2). �

We can now prove Proposition 1.6. Let ψn,ε,α be the normalized eigenfunction as-
sociated with λn,ε,α, eigenvalue of Lε,α, as defined by Proposition 3.2. By Lemma 2.6,
it follows that ϕn,ε,α := T−1(ψn,ε,α) satisfies(

D2
x + V red

ε,α (x)
)
ϕn,ε,α(x̃) = λn,ε,αφ

4
ε(x)ϕn,ε,α(x̃).

By Lemma 2.7, Theorem 3.1 and Lemma 2.4 and since 4 < 2 + 2α, one deduces∥∥(Leff
ε,α − λeff

n,ε,α)ϕn,ε,α
∥∥
L2(R) ≤ ε4C(

∥∥q∥∥
W 4,∞(R×S1),

∥∥〈·〉V ′∥∥
L∞(R))

∥∥ϕn,ε,α∥∥L2(R) .

The spectral gap is of order εα+1 and thus, for α ∈ (1, 3), the spectral theorem yields∥∥ϕn,ε,α − ϕeff
n,ε,α

∥∥
L2(R) ≤ ε3−αC

∥∥ϕn,ε,α∥∥L2(R) .

Proposition 1.6 now follows from Lemma 2.5 and Proposition 4.1.

4.2. Weak coupling regime α < 1; proof of Proposition 1.7. We shall make
use of the following properties on the eigenfunctions of Leff

ε,α in the weak coupling
limit.

Proposition 4.2. Let α < 1, and assume that X 7→ V (X) is not almost everywhere
zero and satisfies the integrability condition (1 + | · |)V ∈ L1(R). Then there exists
C, ε0 > 0 such that if ε ∈ (0, ε0), Leff

ε,α = D2
x + ε2V (εαx) has a unique eigenvalue

denoted λeff
ε,α < 0. The corresponding eigenfunction, ϕeff

ε,α, is uniquely determined by∥∥ϕeff
ε,α

∥∥
L2(R) = 1 ,

∫
R
ϕeff
ε,α(x)dx > 0 ,

and one has

(4.4)

∣∣∣∣∣λeff
ε,α +

1

4
ε4−2α

(∫
R
V

)2
∣∣∣∣∣ ≤ C × ε6−4α ,

and

ϕeff
ε,α(x) =

(
ε2−α

2

∫
R
|V |
) 1

2
(

exp
(
|x|ε

2−α

2

∫
R
V
)

+ rε,α(ε2−αx)

)
with

(4.5)
∥∥rε,α∥∥L2(R) ≤ C × ε

4
3
(1−α) .
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Proof. By rescaling, (λeff
ε,α, ϕ

eff
ε,α) is an eigenmode of the operator Leff

ε,α if and only if

(ε−2αλeff
ε,α, ϕ

eff
ε,α(ε−α·)) is an eigenmode of

Ls.a.
ε,α := D2

x + ε2(1−α)V.

The existence and uniqueness for ε2(1−α) sufficiently small of a negative eigenvalue
(since V is real-valued, has negative mass and satisfies the integrability condition)
as well as its asymptotic behavior as ε2(1−α) → 0, yielding (4.4), is a classical result
of Simon [22] and Klaus [14]. As far as we know, the corresponding eigenfunction
asymptotic has been first described in [24], but their result is restricted to smooth,
compactly supported potentials. A less precise estimate was given in [10, Theo-
rem 3.1], namely

sup
x∈R

∣∣∣∣ϕeff
ε,α(ε−αx)−K exp

(
|x|ε

2(1−α)

2

∫
R
V
)∣∣∣∣ = O(ε1−α) ,

with renormalization constant K ∈ R. We prove below a variant of this estimate,
which allows to control the L2-norm.

Define x = ε2−αx, λeff
ε,α =: −ε4−2αθ2 and ϕeff

ε,α =: ε1−α/2ϕ(ε2−αx), so that(
D2
x + θ2

)
ϕ(x) = −δ−1V (δ−1x)ϕ(x) ,

where δ = ε2−2α is a small parameter. Applying the Fourier transform, we find

(4.6) (4π2| · |2 + θ2)ϕ̂ = −V̂ (δ·) ? ϕ̂ ,
where the Fourier transform of a function f is defined by the formula

∀ξ ∈ R , f̂(ξ) =

∫
R
e−2iπxf(x)dx .

Then, we decompose the solution of (4.6) in terms of small and large frequencies

ϕ̂ = ϕ̂small + ϕ̂large = χ(| · | ≤ δ−r)× ϕ̂+ χ(| · | > δ−r)× ϕ̂ ,
with χ(S) the characteristic function of the set S, and r > 0 is a parameter, to be
determined. With these notations, (4.6) implies that

ϕ̂large =
χ(| · | > δ−r)

4π2| · |2 + θ2
V̂ (δ·) ?

(
ϕ̂small + ϕ̂large

)
,(4.7)

ϕ̂small =
χ(| · | ≤ δ−r)

4π2| · |2 + θ2
V̂ (δ·) ?

(
ϕ̂small + ϕ̂large

)
.(4.8)

One easily checks that the operator

T : f̂ 7→ χ(| · | > δ−r)

4π2| · |2 + θ2
V̂ (δ·) ? f̂

is bounded as an operator from L1(R) to L1(R). Moreover, one has∥∥T f̂∥∥
L1(R) ≤

∥∥∥∥χ(| · | > δ−r)

4π2| · |2 + θ2

∥∥∥∥
L1(R)

∥∥V̂ (δ·) ? f̂
∥∥
L∞(R) ≤ δrC(

∥∥V̂ ∥∥
L∞(R))

∥∥f̂∥∥
L1(R) .

It follows that, provided r > 0 and δ is chosen sufficiently small, (4.7) defines
uniquely ϕ̂large, and we get the following rough microlocalization estimate:

(4.9)
∥∥ϕ̂large

∥∥
L1(R) ≤ δrC(

∥∥V̂ ∥∥
L∞(R))

∥∥ϕ̂small

∥∥
L1(R) .
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Now, by (4.8), we get

(4.10) (4π2|·|2+θ2)ϕ̂small = χ(|·| ≤ δ−r)V̂ (0)

∫
R
χ(|η| ≤ δ−r)ϕ̂small(η)dη +RI+RII ,

where

RI := χ(| · | ≤ δ−r)V̂ (δ·) ? ϕ̂large , RII := χ(| · | ≤ δ−r)
(
V̂ (δ·)− V̂ (0)

)
? ϕ̂small .

We estimate below the two remainders. By Young’s inequality, one gets∥∥(1+|·|)−1RI

∥∥
L2(R) ≤

∥∥χ(| · | ≤ δ−r)

1 + | · |
∥∥
L2(R)

∥∥V̂ (δ·)?ϕ̂large

∥∥
L∞(R) ≤ C(

∥∥V̂ ∥∥
L∞(R))

∥∥ϕ̂large

∥∥
L1(R) ,

and thus, with (4.9),∥∥(1 + | · |)−1RI

∥∥
L2(R) ≤ δrC(

∥∥V̂ ∥∥
L∞(R))

∥∥ϕ̂small

∥∥
L1(R) ,

and by Cauchy-Schwarz inequality,

(4.11)
∥∥(1 + | · |)−1RI

∥∥
L2(R) ≤ δrC(

∥∥V̂ ∥∥
L∞(R))

∥∥(1 + | · |)ϕ̂small

∥∥
L2(R) .

By the Taylor formula and the fact that (1 + | · |)V ∈ L1(R), we can write∥∥(1 + | · |)−1RII

∥∥2
L2(R)

≤
∫
Rξ

χ(| · | ≤ δ−r)

1 + ξ2

(∫
Rη
|V̂ (δξ − δη)− V̂ (0)|ϕ̂small(η)dη

)2

dξ

≤
∥∥V̂ ′∥∥2

L∞(R)

∥∥(1 + | · |)ϕ̂small

∥∥2
L2(R)

∫
R2

δ2|ξ − η|2

(1 + ξ2)(1 + η2)
χ(|ξ| ≤ δ−r)χ(|η| ≤ δ−r)dηdξ .

From elementary considerations to estimate the last integral, we deduce that

(4.12)
∥∥(1 + | · |)−1RII

∥∥
L2(R) ≤ δ1−

r
2C(

∥∥V̂ ′∥∥
L∞(R))

∥∥(1 + | · |)ϕ̂small

∥∥
L2(R) .

Combining (4.11) and (4.12), we are led to take r = 2
3

and we get∥∥(1 + | · |)−1(RI +RII)
∥∥
L2(R) . δ

2
3C(

∥∥V̂ ∥∥
W 1,∞(R))

∥∥(1 + | · |)ϕ̂small

∥∥
L2(R) .

Coming back to (4.10) and using [10, Lemma 4.4], we find that there exists K > 0
such that

(4.13)

∥∥∥∥(1 + | · |)
(
ϕ̂small −K

χ(| · | ≤ δ−r)

4π2| · |2 + θ20

)∥∥∥∥
L2(R)

≤ δ
2
3C(

∥∥V̂ ∥∥
W 1,∞(R)) ,

where we denote θ0 = 1
2
|V̂ (0)|.

Let us notice that, by (4.7) and Young’s inequality for the convolution,∥∥ϕ̂large

∥∥
L2(R) ≤ δ

3r
2 C(

∥∥V̂ ∥∥
L∞(R))

(∥∥ϕ̂small

∥∥
L1(R) +

∥∥ϕ̂large

∥∥
L1(R)

)
.

Then, we notice, from the definition of ϕ̂small, Cauchy-Schwarz inequality and Plancherel’s
theorem, that ∥∥ϕ̂small

∥∥
L1(R) ≤ δ−

r
2

∥∥ϕ̂small

∥∥
L2(R) ≤ δ−

r
2 .

Thus by the above and (4.9), one obtains∥∥ϕ̂large

∥∥
L2(R) ≤ δrC(

∥∥V̂ ∥∥
L∞(R)) .
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It is now easy to deduce from (4.13) that ϕ, the solution to (4.6), satisfies∥∥∥∥ϕ̂−K 1

4π2| · |2 + θ20

∥∥∥∥
L2(R)

. δ
2
3 = ε

4
3
(1−α) .

Estimate (4.5) follows by using the inverse Fourier transform, while the value of
the constant, K, is determined by the normalization of ϕeff

ε,α. Proposition 4.2 is
proved. �

We prove Proposition 1.7 as in the previous section. Let (λε,α, ψn,ε,α) be the
eigenmode of Lε,α uniquely defined by Proposition 3.3. By Lemma 2.6, Lemma 2.7,
Theorem 3.1 and Lemma 2.4, and since 2 + 2α < 4, ϕε,α := T−1(ψε,α) satisfies∥∥(Leff

ε,α − λeff
ε,α)ϕε,α

∥∥
L2(R) ≤ ε2+2αC(

∥∥q∥∥
W 4,∞(R×S1),

∥∥〈·〉V ′∥∥
L∞(R))

∥∥ϕε,α∥∥L2(R) .

The spectral gap is of order ε4−2α and thus, for α ∈ (1/3, 1),∥∥ϕε,α − ϕeff
ε,α

∥∥
L2(R) ≤ Cε4α−2

∥∥ϕε,α∥∥L2(R) .

Proposition 1.7 now follows from Lemma 2.5 and Proposition 4.2.

4.3. Critical regime α = 1; proof of Proposition 1.8. The proof in the case
α = 1 is that same as in the previous two sections. The eigenmodes of the effective
operator correspond to the ones of the operator D2

x + V after a straightforward
rescaling. Proposition 3.4 allows to compare the corresponding eigenfunction to the
ones of our original operator, Lε,α, as above. We leave the details to the reader.

Appendix A. Numerical scheme

In this section, we present the numerical scheme used in Figures 2, 3 and 4. Since
our potential, q, and the expected solutions decay exponentially at infinity, it is
convenient to truncate the infinite spatial domain to a periodic interval S1(−L,L),
and turn to Fourier spectral methods. However, because of the several scales of our
problem, it is too costly to approximate the solution to the eigenvalue problem

Lε,αψε,α(x) :=
(
D2
x + q(εαx, x/ε)

)
ψε,α(x) = λε,αψε,α(x), ψε,α ∈ L2(R) .

with a complete set of Fourier modes:

ψε,α(x) ≈
N∑

k=−N

ake
ik π
L
x .

Thus we restrict to a limited number of well-chosen Fourier modes. Motivated by
our results, we define

Kn :=
⋃

j∈{−2,−1,0,1,2}

{k ∈ Z, |kπ
L
− 2πj

ε
| ≤ nπ

L
} .

and seek

ψε,α(x) ≈
∑
k∈Kn

ake
ik π
L
x.
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In other words, defining the orthogonal projections

ΠN := f 7→
N∑

k=−N

〈eik πL ·, f〉L2(−L,L)

〈eik πL ·, eik πL ·〉L2(−L,L)
eik

π
L
· ,

ΠKn := f 7→
∑
k∈Kn

〈eik πL ·, f〉L2(−L,L)

〈eik πL ·, eik πL ·〉L2(−L,L)
eik

π
L
· ,

we numerically solve(
D2
x + ΠKn

(
ΠNq(ε

α·, ·/ε)
))
ψ̃ε,α = λ̃ε,αψ̃ε,α , ψ̃ε,α = ΠKnψ̃ε,α ,

as an eigenvalue problem for a matrix of size 5(2n+ 1)× 5(2n+ 1).
For Figures 2 3 and 4, we set L = 500, N = 222, and n = 300.
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