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ABSTRACT. Three shapes of cruciform specimen from literatures are redesigned and 
their efficiencies for identifying the forming limits at fracture are considered by means 
of finite element numerical investigations. Based on the numerical investigation, a 
dedicated shape of cruciform specimen is proposed. The AA5086 and DP600 sheets 
with a thickness of 2mm are adopted in the in-plane biaxial tensile tests. The digital 
image correlation (DIC) is used to calculate the deformation field on the specimen 
surface. A method based on the evolution of major strain and the observation of the 
macroscopic image of specimen surface is proposed to identify the onset of fracture and 
the limit strains at fracture.  
 
 
INTRODUCTION  
Necking can cause undesirable surface defects in sheet metal components, so limits in 
sheet metal forming are generally controlled by localized necking rather than fracture. 
However, under certain conditions, fracture can precede necking in traditional sheet 
metal forming processes, particularly with loading under biaxial tension [1]. In that case, 
the limit strain by fracture rather than the limit strain by necking determines the 
deformation achievable. Moreover, it is demonstrated that neck formation is delayed or 
suppressed in some processes, like single point incremental forming (SPIF), and greater 
deformability can be achieved in parts manufactured by SPIF than by traditional sheet 
metal forming processes. The traditional forming limit curve (FLC) is inapplicable to 
describe failure, and the fracture forming limit line (FFL) should be employed [2, 3].  

The in-plane biaxial tensile test with a dedicated cruciform specimen can be used 
to identify the forming limits at necking under linear paths [4] and non-linear paths [5], 
so it could be an interesting method to identify the forming limits at fracture. For 
investigation of fracture in biaxial tensile test, a dedicated cruciform specimen should 
be designed to ensure that the fracture occurs at the central point of the cruciform 
specimen. This condition permits to control the strain path of fracture area thanks to the 
displacement of the four actuators.  



 

In this research, a dedicated cruciform specimen is proposed for investigating the 
fracture based on the comparison of three redesigned cruciform specimens. A method 
based on the evolution of major strain and the observation of the macroscopic image of 
specimen surface is proposed to identify the onset of fracture and the limit strains at 
fracture. 
 
Cruciform specimen design  
Redesign of three cruciform specimens During biaxial tensile test for investigating the fracture, it is very hard to keep that the 
fracture appears in the central point without thickness reduction. However, if the final 
thickness of the central zone is too small, the reduced zone can not represent the 
original sheet in the thickness direction. Therefore, the final thickness of central zone 
should be designed as large as possible on condition that fracture will appear at the 
central point. In previous studies with the use of cruciform specimens, the maximum 
rate of the thickness value at the reduced zone to the original sheet thickness value 
reaches just 25%, and in most cruciform specimens the rate is even less than 10%. In 
this research, 2mm metallic sheets of AA5086 and DP600 are adopted, and the aim is to 
design a cruciform specimen with a thickness of 0.75mm at the central point of the 
reduced zone (37.5% of the original thickness value). 

Three cruciform specimens reported in previous literatures are selected due to the 
observation of large strains in the central zone. As shown in Figure 1, the original sheet 
thickness, the thickness of reduced zone and the dimension of central zone of each 
cruciform specimen are redesigned. Through FE software ABAQUS, their efficiencies 
for investigation of fracture under equi-biaxial tension are numerically investigated.  
 
 
 
 
 
 
 
 
 
 
 
 
 

For the geometry of specimen 1 [6], two steps of thickness reduction are adopted. 
The shape of the first thickness reduction is a circle with flat bottom, while the shape of 
the second thickness reduction is a square with rounded corner and with edges rotated 
by 45° relative to the axes of the arms. Moreover, four tapered arms are used. For the 
geometry of specimen 2 [7], two steps of thickness reduction are used. The first 
thickness reduction is a circle with an arc profile in the thickness direction, and the 
second thickness reduction is a square and its edges are parallel to the arm. Four slits are 

Figure 1. Geometies of cruciform specimen: (a) specimen 1, (b) specimen 2,  
(c) specimen 3. 

(a)  (b)  (c)  



 

added at the arm. For the geometry of cruciform specimen 3 [8], one step of thickness 
reduction is used and the shape of thickness reduction is a circle with a flat bottom. Slits 
are arranged with different locations at each arm. Furthermore, for the specimen 1 and 2, 
the thickness of intermediate zone is 1mm. 

 
Numerical investigation of the redesigned cruciform specimens The equi-biaxial tensile test is simulated and only one-quarter of the specimen is 
analyzed for considering the symmetry of the specimen geometry. For elasticity, 
Young's modulus E=70GPa and Poisson's ratio v=0.33 are considered. For plasticity, 
isotropic Mises yield criterion and a representative isotropic hardening behaviour of 
AA5086 are adopted. For each specimen, the tetrahedral elements of type C3D4 are 
used and the mesh size at the central area is 0.25mm. 

All the numerical results presented correspond to the moment when the maximum 
value of major strain reaches 20% at one point of the specimen. At the same time, the 
field of equivalent plastic strain and the evolution of strain along the specified path are 
presented. 

Figure 2 shows the numerical results of specimen 1. The maximum value of major 
strain and the maximum value of equivalent plastic strain are all located at the transition 
zone of arms. From the evaluations of major strain and equivalent plastic strain along 
path 1, it can be seen that the major strain is much higher at the transition of arms (18%) 
than at the central point (6%). The equivalent plastic strain has two rapid changes at the 
boundary between two zones with different thicknesses.  

 
 
 
 
 
 
 
 
 

 
 
Figure 3 shows the numerical results of specimen 2. The maximum value of major 

strain reaches 20% at the tip of slit while the maximum value of equivalent plastic strain 
is located at the central point. For path 1, the value of major strain is much higher at the 
slit (17%) than at the central point (7%). For path 2, there is a sharp increase at the 
boundary of the reduced zone and the value of major strain is about 19%, which may 
cause fracture.  

Figure 4 shows the numerical results of specimen 3. The maximum value of major 
strain reaches 20% at the tip of slit and the maximum value of equivalent plastic strain 
is also located at the tip of slit. For path 1, the value of major strain is much higher at 
the slit (18%) than at the central point (7%). There is an increase in the major strain and 
equivalent plastic strain at the boundary of the reduced central zone because of the flat 

Figure 2. Numerical results of specimen 1: (a) Field of major strain, (b) Field of 
equivalent plastic strain, (c) Strains along path 1 

(a)  (b)  
(c)  



 

bottom, where fracture may happen. Same phenomenon can be seen in path 2. 
Moreover, the concave shape of the transition zone of arms is complex. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the above results, a basic cruciform specimen including one step of 
thickness reduction, an arc profile in the thickness direction of a circular reduced zone 
and several slits at each arm is considered and the dimensions will be optimized.  

Figure 3. Numerical results of specimen 2: (a) Field of major strain, (b) Field of 
equivalent plastic strain, (c) Strains along path 1, (d) Strains along path 2. 

(a)  (b)  

(c)  (d)  

Figure 4. Numerical results of specimen 3: (a) Field of major strain, (b) Field of 
equivalent plastic strain, (c) Strains along path 1, (d) Strains along path 2. 

 

(a)  (b)  
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An optimized cruciform specimen  An optimized cruciform specimen is proposed, as shown in Figure 5. A circle zone in 
the center of the specimen is reduced with a radius value of 7mm. In the thickness 
direction of the reduced zone, a circle profile is adopted to lead the strain localization to 
the central point. Six slits are added at each arm and the arrangement of slits is 
optimized.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 6 shows the numerical results of the optimized specimen. The maximum 

value of major strain reaches 20% at the tip of slit, while the maximum value of 
equivalent plastic strain reaches about 30% at the central point. From the evaluations of 
major strain and equivalent plastic strain along path 1, path 2 and path 3, it can be seen 
that the values of major strain and equivalent plastic strain are much higher at the 
central point than at the arm or at the transition zone of arms. Though the value of major 

Figure 5 Geometry of the optimized cruciform specimen 

Figure 6. Numerical results of the optimized cruciform specimen: (a) Field of major 
strain, (b) Field of equivalent plastic strain, (c) Strains along path 1, (d) Strains along 
path 2, (e) Strains along path 3. 

 

(a)  (b)  (c)  

(d)  (e)  



 

strain is little higher at the slit than at the central point, the value of equivalent plastic 
strain is much higher at the central point than at the slit. Therefore, the optimized 
cruciform specimen has potential to obtain fracture at the central point.  
 
 
Experimental validation 
Biaxial testing machine and strain measurement As shown in Figure 7, the experimental device is a servo-hydraulic testing machine 
provided with four independent dynamic actuators allowing biaxial tensile tests on 
cruciform specimens following two perpendicular axes. The central area of the 
cruciform specimen can be deformed under various strain paths when different speeds 
are set on the two perpendicular axes. Here, the speed of 1mm/s is used for two 
perpendicular axes to produce the equi-biaxial tension state.  
 
 
 
 
 
 
 
 
 
 
 
 
 

The digital image correlation (DIC) is used to evaluate the strain components 
during the tests. A Fastcam APX-RS camera associated with a macro lens is used to 
capture the consecutive images and an acquisition of 250 i/s is adopted. The commercial 
digital imaging program CORRELA2006, developed by LMS at the University of 
Poitiers, is employed to evaluate the surface strains of the cruciform specimen. The DIC 
technique requires a random speckle pattern so that the image of the surface of 
specimen could be represented by a discrete function of values depending on grey levels. 
However, the surface of the reduced side of the cruciform specimen is curved while the 
surface of the non-reduced side is plane. The measuring results of strains by the two 
shapes of surface will be compared.  
 
Identification of the forming limits at fracture Figure 8 shows the surface images (reduced side) of the AA5086 specimen under 
biaxial tension and the evolution of strain. It can be seen that the fracture occurs at the 
central point. The central zone with the size of 2.5×2.5mm is used to measure the 
evolution of major strain. The level of major strain in the central zone increases with the 
time and a macrosopic crack occurs accompanying with an abrupt change of major 
strain during 0.004s at the last of test, while there is no macrosopic crack before. The 

Figure 7. The in-plane biaxial tensile machine 



 

major strain and the minor strain at 0.004s before fracture can be defined as the forming 
limit strains at fracture. The identified major strain at fracture by the surface of the 
reduced side is about 0.324.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 shows the identification result of fracture by the non-reduced side of the 
AA5086 specimen under biaxial tension. The fracture in the center of the cruciform 
specimen can also be identified by the evolution of major strain and the observation of 
macroscopic images of specimen surface at the non-reduced side. The identified major 

Figure 9. Identification of fracture for AA5086 specimen (non-reduced side) under 
biaxial tension: (a) 0.004s before fracture, (b) fracture, (c) Evolution of strain. 

Fracture (b)  (a)  

Central zone  

(c)  (c)  

Figure 10. Identification of fracture for DP600 specimen (non-reduced side) under 
biaxial tension: (a) 0.004s before fracture, (b) fracture, (c) evolution of strain. 

Central zone  

(a)  

Fracture 

(b)  (c)  (c)  

Figure 8. Identification of fracture for AA5086 specimen (reduced side) under biaxial 
tension: (a) 0.004s before fracture, (b) fracture, (c) Evolution of strain. 
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strain at fracture by the surface of the non-reduced side is about 0.321, which is almost 
the same to the value identified by the surface of the reduced side. It means that the 
effect of the surface shape of the proposed cruciform specimen is very small.  

The shape of the optimized cruciform specimen is also used for investigating the 
forming limits of DP600 sheets under equi-biaxial tension. As shown in Figure 10, the 
fracture happens at the central point of the cruciform specimen and the onset of the 
fracture can also be identified by the evolution of major strain and the observation of the 
macroscopic images of specimen surface. The identified major strain at fracture by the 
surface of the non-reduced side is about 0.650 
 
 
CONCLUSIONS AND PERSPECTIVES  
For the proposed shape of cruciform specimen, experiments have been led on 2mm 
metallic sheets of AA5086 and DP600. Results show that fracture happens at the central 
point of the cruciform specimen, which is in good agreement with the numerical 
simulation result. The onset of fracture and the limit strains at fracture for the metallic 
sheets of AA5086 and DP600 can be identified by the proposed method based on the 
evolution of major strain and the observation of the macroscopic image of specimen 
surface, due to the fact that the appearance of macroscopic crack is accompanied with 
an abrupt increase of major strain.  

In the next study, the forming limit strains at fracture under different linear strain 
paths will be identified by the proposed method with the optimized cruciform specimen. 
Moreover, different ductile fracture criteria for determining the forming limit strains at 
fracture will be calibrated in numerical simulations.  
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