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Comparison of observer approaches for actuator fault estimation in
semi-active suspension systems

M.Q.Nguyen1∗, O.Sename1, L.Dugard 1

Abstract— In this paper, the actuator fault estimation
problem of semi-active suspension systems is considered. For
instance, an oil leakage in the damper could cause a reduction of
the damping force. The fault estimation requires a modeling of
the damper fault (both multiplicative and additive fault models
can be used). Three observer-based approaches are compared
for fault estimation: an observer using fast adaptive fault
estimation (FAFE) approach (used for estimation of additive
faults), a parametric adaptive observer (AO) and a switched
LPV observer (LPVO) (both intended to estimate mulplicative
faults); Since the damper fault estimation is strongly affected by
the unknown road disturbances, an H∞ performance objective is
used to reduce the effect of disturbances on the estimation error
for performance assessment. Some simulations are performed
on a quarter car model to validate these methodologies and a
comparison is then given to shows the interest of each method.

Keywords: Fault estimation, semi-active damper fault,
adaptive observer, fast fault adaptive estimation, LPV ob-
server.

I. INTRODUCTION

Fault Detection and Isolation (FDI) has received signifi-
cant interest in both research and application domains since
the last two decades. For complex systems highly equipped
with sensors and actuators such as automotive applications,
FDI has become one essential issue for reliability and safety.
The design of a FDI procedure includes fault detection,
isolation and estimation. Among them, fault estimation is a
key step in designing a fault tolerant control. Many different
approaches to estimate a fault which can be either actuator or
sensor malfunction. Let us mention some classical methods,
based on the parity space theory [1] to generate the residues
and approximate the fault, or the bank of observers approach
[2], or the sliding mode observers [3]. Recently, a new
approach in [4] considered the fault element as a state of
the augmented system and designed an extended observer
to estimate, at the same time, the state and the fault of
system. However, it is limited to constant faults ( ḟ (t) = 0).
Then, [5] presented a method allowing to evaluate the time-
varying fault by using a fast adaptive fault estimation (FAFE)
methodology based on an adaptive observer. However, the
authors solved the problem with a regular LTI system with-
out considering the disturbances. Recently, [6] proposed an
adaptive polytopic unknow input observer for time-varying
fault estimation, for a class of descriptor LPV systems. Then,
several works have been done for fault estimation and fault
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tolerant control for LPV systems, such as LPV observer
design for state and fault estimation in [7], [8], interval
observer for LPV systems in [9], LPV sliding mode observer
with fault compensation in [10], virtual sensor approaches in
[11].

In the automotive field, the demand is now concerned by
safer and more comfortable vehicles. Among all sub-systems
impacting the vertical vehicle dynamics, the supension sys-
tems play a key role since they ensure the link between
the wheels and the chassis (see [12]). Suspension systems
are efficient actuators to considerably improve not only
passengers comfort but also car road holding [13]. Therefore,
the development of intelligent suspension systems has gained
a lot of attention during last years. In particular, semi-active
suspensions are today more and more used because of their
efficiency, while being less expensive and comsumming less
energy than pure active suspensions. These systems consist
of a shock absorber which is able to online change its
damping characteristics to enhance the vehicle dynamics.

While the semi-active suspensions have big advantages in
enhancing vehicle dynamics, the necessity of fault diagnosis
for these systems is more and more present. In particular,
it has been noted that semi-active dampers are more sus-
ceptible to faults than their traditional counterpart. Therein,
oil leakage is the most common fault, and its effect is a
reduction of the damping force. The estimation of suspension
faults is an indispensable step in the Fault Tolerant Control
(FTC) to prevent handling and comfort deterioration. [14],
[15] proposed a LPV/FTC scheduled by fault estimation
which is based on the parity space theory and fast adaptive
observer approaches respectively. Recently, [16] presented
various methods using an observer-based approach and a
parameter identification approach to estimate damper fault.

This paper aims at comparing three methodologies to deal
with the actuator fault estimation problem of the semi-active
suspension systems in the framework of observer based
approaches. Note that such a comparison is proposed here
for the first time in the case of suspension system. In the first
method, the fault is represented as an additive fault, then a
fast fault adaptive estimation approach (FAFE approach) is
used for fault estimation. In the latter approaches, the damper
fault is modeled in a multiplicative way using a effectiveness
coefficient. Then, this coefficient can be estimated by a para-
metric adaptive observer (AO approach) and a switched LPV
observer (LPVO approach). The damper fault estimation is
strongly affected by the unknown road disturbances. To deal
with this problem, an H∞ performance objective is used to
reduce the effect of disturbances on the estimation error



for performance assement. The comparison between three
methods is given thereafter.

The paper is organized as follows. Section II presents
the vehicle modeling and problem statement. Section III, IV
and V present the different methods allowing to estimate
the damper fault using FAFE, AO and LPVO approaches
respectively. In section VI, some simulation results are given.
Finally, some conclusions are drawn in the last section.
Notations: PT is the transposed of matrix P, 0 and I denote
zeros and identity matrix of appropriate dimensions, the star
symbol ? in a symmetric matrix denotes the transposed block
in the symmetric position.

II. PROBLEM STATEMENT

The dynamic behavior of a quarter car model with a semi-
active suspension, taken into account in this work, is depicted
as in Fig.1:

Fig. 1. Quarter-car vehicle model

In this model, the quarter vehicle body is represented by
the sprung mass (ms), the wheel and tire are represented by
the unsprung mass (mus). They are connected by a spring
with the stiffness coefficient ks and a semi-active damper.
The tire is modeled by a spring with the constant stiffness
coefficient kt . As seen in the figure, zs (respectively zus) is
the vertical displacement around the equilibrium point of ms
(respectively mus) and zr stands for the road disturbances.

The dynamical equations are governed by:{
msz̈s =−ks(zs− zus)−Fsa
musz̈us = ks(zs− zus)+Fsa− kt(zus− zr)

(1)

where Fsa is the semi-active damper force, which can be
represented by a linear model:

Fsa = cżde f (2)

where c is the damping coefficient that must satisfy the
dissipativity constraint cmin ≤ c≤ cmax.

Let us assume now that a fault occurs on the semi-active
damper e.g an oil leakage which induces the effectiveness
loss of the damper. Denoting α the efficiency coefficient of
the damper, and Fsa(t) stands for the force of the faulty
damper, then one has the following relation:

Fsa(t) = (1−α)Fsa(t) (3)

In this study, α is considered as a constant parameter. For
example α = 0 corresponds to a healthy damper, α = 0.8
corresponds to that the damper losses 80% its efficency. α =
1 represents a completely damper failure. Note that (3) is
multiplicative fault modeling, but an additive fault modeling
could be also used (see section III).

The problem consists now in estimating the damper fault,
i.e the coefficient α which could be estimated by several
approaches: a fast adaptive fault estimation (FAFE) approach
(where an additive fault modeling is used, see section III), an
adaptive observer (section IV) and a switched LPV observer
(section V).

III. METHOD 1: FAFE APPROACH

In this section, an addittive modeling for damper fault
is considered. In fact, let us decompose the total semi-
active damper force as: Fsa(t) = c0żde f (t)+u(t), where c0 is
damping coefficient for the passive damper, żde f is deflection
speed and u(t) is control input. Then, the faulty damper force
in (3) can be rewritten as follows:

Fsa(t) = (1−α)Fsa(t) = c0żde f (t)+u(t)+ f (t) (4)

where f (t) is the loss of damper force and given by f (t) =
−α(c0żde f (t)+u(t)). Note that the effectiveness coefficient
α is slowly varing or constant, but the additive fault f =
−α(c0żde f +u) could be time varying even if α is constant.

Now, the state space representation of quarter car model
(1) while considering a faulty semi-active damper is given
as follows:

ẋ(t) = Ax(t)+B1w(t)+B2u(t)+E f (t) (5)
y(t) = Cx(t)

where x = (zs, żs, zus, żs)
T ∈ Rn is the state vector, w = zr is

the disturbance input, u ∈ Rm is the control input, f stand
for damper fault. y = [zde f , żde f ,zs] ∈ Rp is the output vector.
Such a choice of y allows to satisfy Assumption 1 presented
later.

A =


0 1 0 0
−ks
ms

−c0
ms

ks
ms

c0
ms

0 0 0 1
ks

mus

c0
mus

− ks+kt
mus

− c0
mus

, B1 =


0
0
0
kt

mus

,

B2 =
[

0 −1
ms

0 1
mus

]T
, E =

[
0 −1

ms
0 1

mus

]T
,

C =

 1 0 −1 0
0 1 0 −1
1 0 0 0


The fault estimation problem consists now in estimating

f̂ (t), and the estimation of α can be given by: α̂ = f̂/Fsa.
Since f (t) can be fast time varying, so in order to get

a good estimation of the damper fault, the Fast Adaptive
Fault Estimation (FAFE) approach proposed in [5], [6] is
used. Moreover, since the vehicle dynamic is affected by the
road disturbance, in order to improve the estimation quality,
some extended results using an H∞ performance is used
to attenuate the disturbance effects on the state and fault
estimation error.



Let us consider now the state space repesentation (5) with
additive fault f . The following assumptions are satisfied:
• Assumption 1: rank (CE) = rank(E), and the invariant

zeros of (A,E,C) are on the left half plane.
• Assumption 2: The fault f (t) and its time derivative are

norm bounded i.e: 0≤‖ f (t) ‖<α1 and 0≤‖ ḟ (t) ‖<α2
with 0≤ α1,α2 < ∞.

The state space repesentation (5) includes the road distur-
bance w = zr which is an unknown input disturbance in
the suspension system. Therefore, while estimating the fault
actuator f (t), one needs to take into account the effect of this
unknown input. To deal with this problem, an unknown input
adaptive fault observer is proposed and given as follows:

ż(t) = Nz(t)+Gu(t)+Ly(t)+T1E f̂ (t)

x̂(t) = z(t)+T2y(t) (6)
ŷ(t) = Cx̂(t)

where z ∈ Rn is the state variables of the observer, x̂ ∈ Rn

the estimated state variables. ŷ ∈ Rp is the estimated output
vector and f̂ (t) ∈ Rr is the estimation of the damper fault
f (t). N,G,L,T1,T2 are the observer matrices to be designed
to enable the convergence of the state and fault.

Denote ex(t) = x(t)− x̂(t), ey(t) = y(t)− ŷ(t), e f (t) =
f (t)− f̂ (t) as the state, output and fault estimation er-
ror respectively. Since there exists a full-row rank matrix

[T1 T2][
I
C] = I, i.e T1 = I−T2C, then ex = (I−T2C)x− z =

T1x− z and

ėx = T1ẋ− ż

= T1(Ax+B1w+B2u+E f )− (Nz+Gu+Ly+T1E f̂ )

After some manipulations, one has:

ėx = Nex +T1Ee f +

+ (T1A−NT1−LC)x+(T1B2−G)u+T1B1w

If the following conditions hold:

T1A−NT1−LC = 0,T1B2−G = 0,

then, the estimation error dynamic is given by:

ėx = Nex +T1Ee f +T1B1w (7)
ey = Cex

Since T1 = I−T2C, then by denoting K = NT2−L, one has
N = T1A+KC.

The equation (7), governing the state and fault estima-
tion errors, is affected by the unknown road disturbance
w. If T1B1 = 0, the effect of the road disturbance on the
estimated states is cancelled. This condition is equivalent
to (I − T2C)B1 = 0, where T2 has to be determined. This
equation is solvable if and only if rank(CB1) = rank(B1).
Otherwise, the disturbance effect has to be minimized and
the problem is to find N such that N is stable and the effect
of w on ey is minimized.

In order to minimize the disturbance effect on the esti-
mation error, we use the Bounded Real Lemma for the H∞

performance index to design the observer.

Then, the following theorem gives an extension to the
results in [5] and aims at minimizing the disturbance effect
on the estimation error and ensuring the convergence of the
estimation error in (7):

Theorem 1: Under the assumptions 1-2, given scalars
σ ,µ,γ2 > 0, if there exist symmetric positive definite ma-
trices Q,P1, and matrices W,U such that the following
conditions hold:  M11 M12 M13

? M22 M23
? ? M33

< 0 (8)

and
ET T T

1 Q =UC (9)

where:

M11 = (T1A)T Q+Q(T1A)+CTW T +WC+CTC

M12 = − 1
σ
[(T1A)T Q+CTW T ]T1E

M13 = QT1B1

M22 = − 2
σ

ET T T
1 QT1E +

1
σ µ

P1

M23 = − 1
σ

ET T T
1 QT1B1

M33 = −γ
2
2 I

then, the following fault estimation algorithm:
˙̂f (t) = ΓU(ėy(t)+σey(t)) (10)

can ensure that ex(t) and e f (t) are uniformly bounded, where
Γ∈Rr×r is a symmetric positive definite learning rate matrix.
Proof: Consider the following Lyapunov function:

V (ex,e f ) = eT
x (t)Qex(t)+

1
σ

eT
f (t)Γ

−1e f (t) (11)

Then, the L2 induced gain conditon ‖ ey ‖2< γ2 ‖ w ‖2 is
satisfied if:

V̇ + eT
y ey− γ

2
2 wT w < 0 (12)

Thanks to the Bounded Real Lemma and following the
same procedure as in [5], the proof can be infered easily �.

Then, it is easy to show that the estimated fault can be
deduced from the expression (10) as follows :

f̂ (t) = ΓU
(

ey(t)+σ

∫ t

t f

ey(τ)dτ

)
(13)

where t f is the time since fault occurs. The fault reconstruc-
tion in (13) combines a proportional term with an integral
one that allows to improve the fault estimation speed.
Therefore, to estimate the fault, one needs to solve the 2
conditions in Theorem 1 which consists of a Linear Matrix
Inequality (8) and an equality matrix constraint (9) which
are transformed into the following optimization problem:
Min γ subjects to (8) and[

γI ET Q−UC
(ET Q−UC)T γI

]
> 0 (14)



Solving this optimization problem, the observer matrices
can be computed by: N = T1A+KC, K = Q−1W and the
estimation of the fault actuator is performed.

IV. METHOD 2: ADAPTIVE OBSERVER (AO) APPROACH

This part shows the procedure to estimate a multiplicative
damper fault. As section III, the total damper force is still
written as: Fsa(t) = c0żde f (t) + u(t), where c0 is damping
coefficient for the passive damper, u(t) is control input. From
(3), one has:

Fsa(t) = (1−α)Fsa(t) = (1−α)(c0żde f (t)+u(t)) (15)

Then the state space representation of the quarter model (1)
under the damper fault is given by:

ẋ(t) = Ax(t)+B1w(t)+B2u(t)+Ψ(y,u, t)α (16)
y(t) = Cx(t)

where x = (zs, żs, zus, żs)
T ∈ Rn is the state vector, w = zr is

the disturbance input, u ∈ Rm is the control input, α stand
for damper fault. y = [zde f , żde f ,zs]∈ Rp is the output vector,.

A =


0 1 0 0
−ks
ms

−c0
ms

ks
ms

c0
ms

0 0 0 1
ks

mus

c0
mus

− ks+kt
mus

− c0
mus

, B1 =


0
0
0
kt

mus

,

B2 =
[

0 −1
ms

0 1
mus

]T
, C =

 1 0 −1 0
0 1 0 −1
1 0 0 0


Ψ =−

[
0 −1

ms
0 1

mus

]T
(c0żde f +u).

Since the multiplicative fault α is slowly varying or
constant, the fault estimation can be considered as a problem
of parameter estimation. This problem can be solved based
on an adaptive observer for joint state-parameter estimation
[17]. However, the effect of the disturbances is not taken into
account explicitly. Moreover, regarding to vertical vehicle
dynamics, the system is always affected by the unknown
road disturbances. Therefore, the developements in [17] are
adapted to our problem and applied for the automotive ap-
plications. An H∞ performance is here proposed to attenuate
the disturbance effects on the state and fault estimation.

Let us consider now system (16) with multiplicative fault
α . It is assumed that the matrix pair (A,C) in (16) is
observable. Following [17], an adaptive observer of the
following structure can be proposed to estimate both states
and fault α:

ϒ̇(t) = (A−KC)ϒ(t)+Ψ(y,u, t)
˙̂x = Ax̂+B2u+Ψ(y,u, t)α̂ +K(y−Cx̂)+ϒ(t) ˙̂α
˙̂α = Γϒ′C′Σ(y−Cx̂)

(17)

where K is the adaptive observer gain to be determined. Γ,Σ
are some bounded symmetric positive-definite matrices to be
tuned. Since the quarter car model is a LTI system, K,Γ,Σ are
considered constant. ϒ(t) satisfies the following assumption:

Assumption 1: ϒ∈ Rn×Rp is a matrix of signals generated
by the ordinary differential equation (ODE) system

ϒ̇(t) = [A−KC]ϒ(t)+Ψ(t) (18)

Morever, to apply the adaptive observer approach, an im-
portant required condition is that Ψ(y,u, t) is persistently
exciting. The following lemma is used to get the convergence
of the adaptive observer.

Lemma 1: [17] Assume that Ψ(t) is persistently exciting,
so that there exist positive constants α,β ,T and some
bounded symmetric positive definitve matrix Σ ∈ Rm×Rm

such that, for all t, the following inequalities hold:

αI ≤
∫ t+T

t
ϒ

T (τ)CT (τ)Σ(τ)C(τ)ϒ(τ)dτ ≤ β I (19)

then the system: ż(t) = −Γϒ′C′ΣCϒz(t) is exponentially
stable

Let us denote ex(t) = x(t)− x̂(t), eα(t) = α(t)− α̂(t) the
state and fault estimation errors respectively.

Since α is constant or slowly varying, then α̇ ' 0, then
(see [17]):{

eα = α− α̇ =− ˙̂α
ėx = ẋ− ˙̂x = (A−KC)ex +Ψ(y,u)eα +B1w−ϒ ˙̂α

(20)

Let us now define η as a combination of state and fault
estimation errors, i.e:

η = ex−ϒeα ,

ex = η +ϒeα = η−ϒ ˙̂α

then:

η̇ = (A−KC)η +B1w (21)

ėα = −Γϒ
′C′ΣCη−Γϒ

′C′ΣCϒeα (22)

As seen in the above equations, the estimation errors ex,eα

are affected by the unknown road disturbance w(t). Then, the
disturbance effect has to be minimized. It is worth noting
that from the Lemma 1, the homogenous term of (22), i.e
ėα = −Γϒ′C′ΣCϒeα is exponentially stable. Therefore, if
η(t)−→ 0, then eα −→ 0, and ex = η +ϒeα −→ 0 provided
that ϒ is bounded. However, due to the presence of the road
disturbance w, in this work, we aim at minimizing the effect
of w on the estimation errors ex,eα . To this aim, the effect
of w on η in (21) is minimized as follows:

Proposition 1: If there exists a matrix K ∈ Rn×m so that
the system:

η̇(t) = [A−KC]η(t)+B1w(t) (23)

satisfies the following conditions:
• when w(t)≡ 0, the system is exponentially stable
• when w(t) 6= 0, the following L2-induced gain perfor-

mance criterion is satisfied :

min γ s.t ‖ η ‖2< γ ‖ w ‖2 (24)

where ‖ . ‖2 stands for L2 norm.
Or equivalenty, if there exist a matrix Y such that A′P+PA−C′Y ′−YC PB1 I

? −γ2I 0
? ? −I

< 0 (25)



then state and fault estimation can be performed using the
adaptive observer (17), and the gain K is given by K =P−1Y .

Proof: Let us consider a candidate Lyapunov function
V (η) = ηT Pη for the system (23). In order to satisfy the
condition in (24), then the following inequality should be
ensured:

V̇ +η
T

η− γ
2wT w < 0 (26)

By applying The Bounded Real Lemma, it leads to: (A−KC)′P+P(A−KC) PB1 I
? −γ2I 0
? ? −I

< 0 (27)

Let Y = PK, one obtains (25).
Finally, the observer design problem consists in solving

the following optimization problem:

min γ s.t P > 0 and (25) holds (28)

Then the observer gain K is computed by: K = P−1Y , and
the damper fault is given by α̂ �.

V. METHOD 3: A SWITCHED LPV OBSERVER APPROACH

This section briefly presents the method, presented in [18],
to estimate an actuator fault using a switched LPV observer.
This method is applied here for the first time to damper fault
estimation. For this method, we consider directly the total
damper force as the control input u(t) , i.e: u(t) = Fsa(t).
Let us now reconsider faulty damper force:

Fsa(t) = (1−α)Fsa(t) = λFsa(t) = λu(t) ( λ = 1−α) (29)

Then under the damper fault, the state space representation
of the quarter vehicle model (1) is given as follows:

ẋ(t) = Ax(t)+B2λu(t)+B1w(t) (30)
y(t) = Cx(t)

x = (zs, żs, zus, żs)
T ∈ Rn is the state vector, w = zr is the

disturbance input, u ∈ Rm is the control input.

A =


0 1 0 0
−ks
ms

0 ks
ms

0
0 0 0 1
ks

mus
0 − ks+kt

mus
0

, B1 =


0
0
0
kt

mus

,

B2 =
[

0 −1
ms

0 1
mus

]T
, C =

 1 0 −1 0
0 1 0 −1
1 0 0 0


Let consider now the faulty damper system (30), it can be
seen that if the control input u(t) = 0, then the damper fault
information λ in (30) becomes unobservable. It may cause
the infeasibility problem in the observer design step when
the control input equals zero. Thus, an interesting remedy,
proposed in [18], is to consider a switched model depending
on the sign of u(t) in the observer synthesis step. Moreover,
since the control input u(t) is known, the system (30) can
be represented as an LPV system by choosing u(t) as a
scheduling parameter. Let us rewrite u(t) = |u(t)|sign(u(t)),
and denote ρ(t) = |u(t)| as a scheduling parameter. Then,

u(t) = ρ(t)sign(u(t)) =

{
ρ(t) i f u(t))≥ 0
−ρ(t) i f u(t)< 0

(31)

The scheduling parameter ρ is assumed to satisfy: ε ≤ ρ ≤
ρm, where ε > 0,ρm = um is the bound of the parameter
ρ . The system (30) is now rewritten as the following LPV
system:

ẋ(t) = Ax(t)+Bσ (ρ)λ +B1w(t) (32)

where Bσ (ρ) = B2ρsign(u(t)).
The original system (30) can be augmented in the follow-

ing form:[
ẋ
λ̇

]
=

[
A Bσ (ρ)
0 0

]
︸ ︷︷ ︸

Ae(ρ)

[
x
λ

]
+

[
B1
0

]
w (33)

y = [C 0]︸ ︷︷ ︸
Ce

[
x
λ

]

The system (33) is actually a switched system where σ(t)
is the switching rule that depends on the value of the function
sign(u(t)). Actually, one has Bσ (ρ) ∈ {−B2ρ,B2ρ}. Thus,
the system (33) can be rewritten in the following form of a
switched LPV system:[

ẋ
λ̇

]
= Ae,σ (ρ)

[
x
λ

]
+

[
B1
0

]
w (34)

y = Ce

[
x
λ

]
where Ae,σ (ρ) switches among 2 subsystems{[

A −B2ρ

0 0

]
,

[
A B2ρ

0 0

]}
.

Consider the switched LPV system (34), the following
switched LPV extended observer is proposed to estimate the
system’s state and the effectiveness coefficient λ :[

˙̂x
˙̂
λ

]
= Ae,σ (ρ)

[
x̂
λ̂

]
+Kσ (t)(y− ŷ) (35)

ŷ = Ce

[
x̂
λ̂

]
From (34) and (35), the estimation error e(t) is calculated
by:

ė =
[

ėx
ėλ

]
= Ae,σ (ρ)

[
ex
eλ

]
−Kσ (t)(y− ŷ)+

[
B1
0

]
w

Or equivalently:

ė =
[

ėx
ėλ

]
= (Ae,σ (ρ)−Kσ (t)Ce)

[
ex
eλ

]
+B1ew

where B1e =

[
B1
0

]
and Kσ (t) is the observer gain which

has to be determined. The design of the LPV observer (35)
is based also on the H∞ performance while one aims at
minimizing the effect of the disturbances w on the estimation
error. The following theorem (whose complete proof is in
[18]) allows to solve this problem:

Theorem 2: [18] Consider the switched system (34) and
the switched extended observer (35), if there exists a col-
lection of matrices Pi,k > 0,Yi,k,k = 0, ...K, i = 1,2, of



appropriate dimensions and K is prescribed integer, such that
for all i = 1,2 and j = 1,2, the following LMIs hold:

(Pi,k+1−Pi,k)

T/K
+He[Pi,hA( j)

e,σ −Yi,hCe] ? ?

B′1ePi,h −γ2I ?
I 0 −I

< 0

(36)
for k = 0, ...K−1, h = k,k+1, A( j)′

e,σ Pi,K −C′eY
′
i,K +Pi,KA( j)

e,σ −Yi,KCe ? ?

B′1ePi,K −γ2I ?
I 0 −I

< 0

(37)
Pi,K −Pl,0 ≥ 0 ∀l = 1,2 & l 6= i. (38)

then

Kσ(t)(t)=Pσ(t)(t)
−1Yσ(t)(t)=


P̂−1

i,k Ŷi,k i f t ∈ [τs,k, τs,k+1)

P−1
i,K Yi,K i f t ∈ [τs,K , τs+1,0)

P−1
i0,KYi0,K i f t ∈ [0,τ1)

(39)
is the gain of the extended observer (35) and the error

estimation asymptotically converges to zero for a dwell time
of T , where

Yσ(t)(t)=


Yi,k +(Yi,k+1−Yi,k)

t− τs,k

T/K
:= Ŷi,k, i f t ∈ [τs,k,τs,k+1)

Yi,K i f t ∈ [τs,K ,τs+1,0)
Yi0,K i f t ∈ [0,τ1)

(40)
By designing the switched LPV observer, one obtain the
estimation of λ , and the damper fault estimation is given
by: α̂ = 1− λ̂ .

VI. SIMULATION RESULTS

The physical parameters characterize the considered quar-
ter car model is given in the Table I.

Parameter ms[kg] mus[kg] ks[N/m] kt [N/m] c[Nm/s]
Value 315 37.5 29500 210000 {700,5000}

TABLE I
PARAMETERS OF RENAULT MÉGANE COUPÉ QUARTER CAR MODEL

The following scenario is used to test the performance of
three different observers. It is assumed that the vehicle runs
at 30km/h over a sinusoid road profile w(t) = 0.03sin(2πt).
Then, the nominal semi-active damper force is given by:
Fsa = cżde f (blue line in Fig. 2), where c is controlled
damping of semi-active damper, satisfies 700≤ c≤ 5000.

The vehicle has a faulty semi-active damper because of a
oil leakage. In the detail, from t = 0−5s, the damper looses
20% of its total force (α = 0.2). From t = 5−8s, an higher
fault occurs and the damper looses 60% of its efficiency
(α = 0.6).

It is noted that all observers are activated from t = 0.6s.
Fig. 2 plots the behavior of the nominal damper force

Fsa (blue liine), the faulty damper force Fsa(= (1−α)Fsa =
Fsa + f ) (green line) and the estimation of the additive fault
f̂ (t) (red line).
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Fig. 3. Damper fault α estimation

Fig. 3 shows the comparison of the damper fault estimation
using 3 different approaches: fast adaptive fault estimation
approach (FAFE), Adaptive Observer approach (AO) and
switched LPV observer approach (LPVO). The AO approach
gives the estimation of α . For the FAFE approach, the
additive faut f (t) is estimated and for LPVO approach, λ

is estimated. Then, the corresponding α is computed from
f (t),λ by α̂ = f̂/Fsa or α̂ = 1− λ̂ . It can be seen from
the estimation results that, despite of the presence of road
disturbance, the estimation errors still converge to zeros.
All three methods give a good estimation of damper fault.
Moreover, it seems that the AO approach provides a better
estimation than LPVO and FAFE approaches.

Now, let us consider the second scenario. It is assumed
that the damper oil leak slowly from t = 0− 6s, one has a
loss of efficiency from 0→ 80%.
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Fig. 4. Fault estimation α scenario 2

Fig. 4 demonstrates once again that the damper fault can
be well estimated using the different observer approaches.

VII. CONCLUSIONS

The paper provides a comparison of different methods for
actuator fault estimation in semi-active suspension systems
using FAFE observer, AO approach and a switched LPV
observer approach. The damper fault is firstly modeled in
different ways: additive model or multiplicative model. An
H∞ performance is used to attenuate the effect of the road
disturbance on the estimation error. The simulation results
show that all three methods can give a good estimation
results for damper fault. For the future work, fault tolerant
control can be designed thanks to the fault estimation, and
the implementation on a real testbed will be done.
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