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ABSTRACT – Hybrid electric vehicles require an adequate 
energy management strategy in order to actually optimize their 
consumption. Many real-time controls were recently proposed in 
literature, but as each study is performed in a specific context, it 
is difficult to compare their efficiencies. The present paper 
proposes a comparison between 3 recent promising real-time 
strategies: adaptive equivalent consumption minimization 
strategy (A-ECMS), optimal control law (OCL) and stochastic 
dynamic programming (SDP). Two off-line methods are used as 
benchmark: Pontryagin’s minimum principle (PMP) and 
dynamic programming (DP). They have the best performance in 
fuel saving while the other three are near-optimal strategies. 
Simulation results of a parallel HEV show 5% to 18% fuel 
economy, compared to a conventional vehicle.  

Keywords - hybrid electric vehicle, real-time energy 
management, optimal control, A-ECMS, OCL, stochastic dynamic 
programming, Pontryagin minimum principle. 

1. INTRODUCTION  
Hybrid electric vehicles (HEVs) are widely considered as a 

promising short-term mean for fuel economy and emission 
control. HEVs possess one engine (ICE) and at least one 
electric machine (EM) and battery. The energy provided to the 
wheels either comes from the ICE, the EM or both. This degree 
of freedom allows operating the ICE at its best efficiency 
working points and braking energy recovery. However, the fuel 
saving and CO2 emissions reduction strongly depend on the 
energy management strategy used, and finding robust real-time 
optimization algorithms remains a challenge. 

There is a very rich literature on the subject and many 
energy management strategies are proposed. They can be 
divided into four approaches: rule-based strategies [1] [2], 
instantaneous optimization of an equivalent fuel consumption 
[3] [4] [5] [6], global optimization [7] [8] and convex 
optimization [9]. Each strategy is shown to allow a significant 
reduction of fuel consumption and claimed to have better 
performances than others. However, the different studies are 
performed in their own specific context, making it difficult to 
rate and compare them. The present paper proposes a 
comparative analysis between three promising real-time 
strategies, in order to evaluate their pro and cons. For this, the 
strategies are applied to the same parallel HEV, in the same 
context. The interest of the paper is that each strategy is 
implemented using only published material, with a neutral 
point of view. 

The paper is organized as follows: the HEV model and the 
principle of optimal energy management are described in 
Section 2. The different strategies to compare are presented in 
Section 3. The simulation results and the parameter setting 
influence are discussed for each algorithm in Section 4. Finally, 
the paper is concluded in Section 5. 

 

2. HEV MODELING AND OPTIMAL ENERGY MANAGEMENT  
The present comparison is performed in the case of a full 

hybrid HEV, with a parallel powertrain architecture and no 
plug-in capacity (Fig.1). It was studied in a previous work [7] 
and deemed to have a very good potential for fuel consumption 
reduction.  

 
Fig.1  Parallel hybrid electric vehicle powertrain 

2.1. Power components modeling 
The system corresponds to a B-segment vehicle. The engine 

(ICE) is a 50-kW 1.0-liter 3-cylinder in-line gasoline engine 
modeled by a stationary brake specific fuel consumption 
(  in g/kWh) map. The instantaneous fuel consumption      is then determined by (1), where     is the lower 
heating value in kJ/kg.  

63.6*10fuel LHV ICEP Q P BSFC=
 (1) 

The electric machine (EM) is a 50-kW synchronous electric 
machine modeled by its efficiency map       .  

The battery is a Li-ion one modeled by a Thevenin 
equivalent circuit with internal resistance Rbatt and open circuit 
voltage Voc_batt. For a given power     , the battery current      is obtained by (2), where      is the battery energy 
capacity, related to the battery charge capacity      according 
to (3). 
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A continuous speed ratio system (CSR) is used for 
transmission. A constant power demand     is considered for 
auxiliary systems.  

2.2. Optimal energy management 
The purpose of optimal power management is to search for 

the best power split between the internal combustion engine 
and the electric machine, in order to minimize the fuel 
consumption over a given driving cycle, while meeting the 
driver’s power demand and maintaining the battery state of 
charge (SOC).   

The problem can be defined by (4), where     and  
are respectively the control and state variables, also denoted by 
u and x.  is the total fuel consumption over the considered 
time interval, while  is the state equation of the system. Since 
the energy is provided solely by the fuel, the consumption 
should be calculated with equal initial and final SOC. In 
between, the SOC variations allow to adjust the ICE working 
point and to recover braking energy. 
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In the case of off-line optimization, the driving cycle is 
fully known in advance and two mathematical approaches 
allow solving the problem: Pontryagin’s minimum principle 
(PMP) and dynamic programming (DP) [4]. PMP is very easy 
to implement and fast, but does not allow to account for 
constraint on the state variable SOC. It may also fail to reach 
exactly the constraint on the final state of charge because the 
instantaneous cost function is discontinuous, and hence not 
convex, at the origin. On the other hand, DP is a much more 
cumbersome method, but is more robust and can handle SOC 
limitations when needed.  

In real world, however, the driving cycle cannot be known 
in advance and so-called “real-time” or “on-line” energy 
management methods are needed. The optimal consumption 
and SOC-sustaining constraint can no longer be guaranteed 
because the information required for that is not available, but 
one can aim at a near-optimal strategy that increases the fuel 
economy while taking the final SOC close to its reference 
value. 

 

3. REAL-TIME CONTROL METHODS 
Many real-time energy management strategies have been 

proposed in literature. In this paper, we focus on three of them, 
recently published, whose authors report excellent 
performances compared to previous work. The first one, called 
adaptive equivalent consumption minimization strategy (A-
ECMS) [3] is derived from PMP. The second, called optimal 
control law (OCL) [6], applies the theory of non linear optimal 

control theory to the considered system. Last, stochastic 
dynamic programming (SDP) generalizes DP in the case where 
the driving cycle to come can be characterized from a statistical 
point of view [8]. The two off-line methods (PMP and DP) 
were used to provide reference results.  

3.1. Adaptive equivalent consumption minimization strategy 
(A-ECMS) 

This method is based on the PMP [10]. It uses the 
Hamiltonian function related to (4) and defined by (5), where 

 is the co-state linked to the state equation of the system.  

.
( , , ) ( ) ( ) ( , )fuelH p u x P u p t SOC x u= +  (5) 

The optimal control policy    ∗  is the one that minimizes 
the function H(p,u,x) at every time step. 

In the case of charge-sustaining problems like the one 
considered here, one can neglect the SOC dependence of the 
battery parameters and show that the co-state  is constant over 
time. It represents the equivalent fuel cost of the battery power. 
A low value favors the use of electric power and leads to a low 
final SOC, whereas on contrary a high value saves electric 
energy and leads to a high final SOC. PMP method consists in 
finding the right value, the one resulting in a final SOC equal to 
the initial one. In the case of off-line optimization, this value is 
easily determined by a binary search algorithm using the 
charge sustaining constraint. This method is also referred to as 
ECMS for “equivalent consumption minimization strategy” 
and was intuitively used before establishing its mathematical 
context through the PMP.  

For on-line conditions, many adaptive ECMS were 
proposed: the idea is to estimate in real-time the equivalent 
factor  by using some empirical feedback on the current SOC. 
The main problem of this approach is that the result of the 
ECMS is extremely sensitive to the value of the equivalent 
factor, which leads to unstable behaviors. In the present paper, 
we focus on the algorithm proposed in [3], for which 
interesting results are reported. The value of the equivalent 
factor is adjusted at regular intervals of time T, with a 
correction proportional to the difference between the current 
and reference SOC values. A new value of  is calculated for 
each period  by using (6), where   is the gain 
of the proportional controller.  

1 -1
1 ( ) ( ( ))
2k k k p refp p p K SOC SOC kT+ = + + −  (6) 

The parameters of the algorithm are the period , the gain   and the initial guesses   and  . Using the value of  at the 
two previous time steps stabilizes the system behavior. It 
should be noted that the authors show good results, but do not 
say anything about the value of those parameters, nor about the 
procedure to determine them. 

3.2. Optimal control law (OCL) 
A-ECMS are basically empirical methods. A more rigorous 

approach, based on non-linear regulation and disturbance 
rejection, was proposed in [6]. The authors use analytical close-
form of the power components (Willans line for the ICE, 
average efficiency for the EM and the battery) in order to 
establish a state feedback control law which guarantees 
optimality and asymptotic stability. As a result, the control 
variable     directly depends on the difference between the 
current and reference SOC values. Since no minimization is 
needed at each step of time, the method is faster for 
implementation on real vehicles. Furthermore, the theoretical 



 

 

context is clear and there is only one tuning parameter, with 
respect to which the method is not over-sensitive. 

Let us denote ξ, the difference between the reference and 
current SOC:    . The optimal control 
law is expressed as: 
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*
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K p
µ ξ
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 (7) 

where  is a constant to calibrate,    is a coefficient 
calculated using the Willans line model of the ICE (see section 
4.1.2), and  is a constant depending on the average 
efficiencies of the battery and the EM and the battery 
maximum energy capacity     _   , according to (8).  
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3.3. Stochastic dynamic programming (SDP) 
Dynamic programming is a multi-stage decision-making 

process which allows solving optimization problems that can 
be broken down into several sub-problems of the same nature 
[11]. It applies well to the optimization of cumulative costs in 
dynamic systems, such as (4). 

Dynamic programming requires the problem to be 
discretized in time. Let us denote respectively  and  the 
indexes of the initial and final time steps,    and       . The discretized problem is given by (9). 
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A so-called cost-to-go function, denoted   , is defined 
at each time step  . It corresponds to the minimum cost that 
can be obtained by optimal control from the state   at time   
to the final state  . This cost is calculated backwards, starting 
from the final time, according to (10).  ∗   denotes the 
optimal control for at time  , it depends on  . 
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   is a penalty function on the final state, which favors      . At the end of the process,    represents the 
optimal fuel consumption from the initial to the final state. The 
optimal control policy ∗  ∗  is rebuilt 
by a forward process. The reader is referred to [11] for more 
details about the method. 

Real life driving cycles are not known exactly in advance, 
but the itinerary is, and the driving cycle can be described as a 

random process. For example, at a given point of the itinerary, 
the speed of the vehicle can be modeled as a random variable 
and a probability distribution. The optimization problem is 
reformulated according to (11), where   is a random variable 
modeling the uncertainty of the driving cycle at time   and    represents the expectation calculated according to   
probability distribution. 

( )

( )

1

0

1

0

  , .

,
  .

                  

k

N

w fuel k k
k

batt k k
k k

batt

N ref

Minimize J E P u w t

I u w
subject to x x t

Q

x x SOC

−

=

+

 
= ∆ 









 

= − ∆

= =







∑

 (11) 

 The cost-to-go function    now corresponds to the 
minimum average cost that can be obtained by optimal control 
from the state   at time   to the final state  . This cost is 
still calculated backwards, according to (12).  
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At the end of the process,    represents the average 
optimal fuel consumption from the initial to the final state and  ∗   is the control policy enabling to reach it. The forward 
process is applied to the in-line driving cycle. It builds the 
optimal control policy ∗  ∗  for the 
corresponding realization of the random driving cycle. The 
actual cost may not be the lowest one for the considered cycle, 
but it is in an average sense. Once again, the reader is referred 
to [11] to fully understand the method. 

From a practical point of view, it should be underlined that 
the heavy computation, corresponding to the backward part of 
the algorithm, is done only once and off-line, when all possible 
realizations of the random process are evaluated. During the in-
line process, only the forward part of the algorithm is applied to 
the actual driving cycle, and this part is fast. 

SDP is a well established method, but the quality of the 
results relies on the quality of the random process model. In the 
considered problem, a good statistical representation of the 
driving cycles is needed, and this is a challenging problem. In 
the present paper, an approach derived from the one proposed 
in [8] is tested, because it is rather simple and the authors 
report good results. The driving cycle is modeled as a random 
speed characterized by a normal distribution , obtained 
using traffic data of a regular home-office route.  

 

4. SIMULATION RESULTS AND DISCUSSION 

4.1. Implementation of the different methods 
The different strategies were implemented and tested. As 

the current official European driving cycle NEDC is known to 



 

 

poorly represent real world driving behavior, the forthcoming 
WLTC cycle is used (Fig.2). The setting parameters of the 
different strategies were determined off-line using these data. 

 
Fig.2   WLTC driving cycle profile 

The power demand corresponding to this speed profile is 
determined by the dynamic equation of the vehicle: 

21P ( )
2wheel air d wheel r wheelAC v Mg Ma v= ρ + µ +  (13) 

where ρair is density of air; A is the reference area; Cd is the 
drag coefficient; μr is the rolling resistance coefficient; M is the 
vehicle mass; g is the  gravitational acceleration; a is the 
vehicle acceleration  

The setting parameters were determined off-line using the 
WLTC cycle. It should be noted that authors usually do not 
give much information about this procedure, although it is an 
important point for a good implementation.  

4.1.1. A-ECMS method 
The setting parameters of the algorithm are the period , 

the gain   and the initial guesses   and  . They are 
determined by a trial-and-error procedure, which objective is to 
reach the lowest consumption for the WLTC cycle while 
respecting the final SOC constraint. When doing so, one 
notices that the results are very sensitive to the parameters, and 
that there is no obvious trend or rule of the thumb to help. 

4.1.2. Optimal Control Law 
The parameters of the OCL are denoted ,   and .   and   are determined using physical parameters of the system, 

whereas  is a constant to calibrate.  is given by (8) and 
requires to calculate the battery and EM average efficiencies.    is calculated using the Willans line model of the ICE, 
which states that at given speed    , the input (chemical) 
power  is  as an affine function of the output (mechanical) 
power (14). 

( ) ( )( ) ( )( ) ( )( )0 1 .fuel ICE ICE ICEP t e t e t P t= ω + ω  (14) 

Fig.3 shows the Willians lines corresponding to the ICE 
used in the present study.  

 
Fig.3   Willans lines of the ICE for different rotational speeds      

The OCL is based on a close form of the Willans lines, in 
which the speed dependence of the slope   and intercept   is 
neglected. The coefficient   is then defined by : 

1
3

LHV

ep
Q

=  (15) 

Lastly, after the numerical values of the parameters 
K=3.18.10-7, p3=5.86.10-5 kg/J have been calculated, the 
parameter  is tuned in order to obtain the expected final SOC 
for the WLTC driving cycle. 

4.1.3. Stochastic dynamic programing 
In the case of SDP, the problem is to model the driving 

cycle as a random process. As in [8], the vehicle velocity is 
assumed to be a random variable with a normal distribution  

 (Fig.4). The parameters μ and σ are inferred from the 
WLTC data by the maximum-likelihood estimation.   

 
Fig.4   Probability density function of speed based on the WLTC cycle 

4.2. Results for the WLTC cycle 
The different strategies, including PMP and DP which give 

the lowest possible consumption, were applied to the WLTC 
driving cycle. Table 1 reports the results in terms of fuel 
consumption and fuel saving with respect to the consumption 
of a conventional vehicle (CV) driving the same cycle:  

Fuel saving (%) 100%HEV VC

VC

J J
J

−
= ×  (16) 

The control policies found by every strategy as well as the 
associate SOC evolution are plotted in Fig.5 and Fig.6. 

Table 1. Simulation results on the WLTC cycle 

Strategy Parameter 
setting 

Fuel 
consumption 

(liter per 100km) 

Fuel 
saving 

(%) 
Computation 

time 

PMP du=1kW 3.48 -18.7 0.1s 

DP du=1kW; 
dx=0.1% 3.53 -17.5 2s 

A-
ECMS 

du=1kW; 
p0=p1=50; 

T=20s; 
Kp=10 

3.74 -12.2 0.1s 

OCL μ=65kg 4.07 -4.9 0.1s 

SDP 
du=1kW; 
dx=0.1%; 

dvwheel=1m/s 
3.88 -9.3 Forward: 3min 

Backward: 0.1s 

CV - 4.28 - - 

The results show that DP and PMP have similar 
performances. However, DP requires much more computation 
time, which is the main reason why it is often abandoned [12]. 
Yet, this method remains interesting if one needs to account for 
SOC limitation [7].  

The SOC trajectory is quite different from one real-time 
optimization strategy to another (Fig.6). Since the future 
driving pattern is not known a priori, the final SOC differs 
from the initial one.  



 

 

 
Fig.5   Optimal control policy for the WLTC cycle 

 
Fig.6   Battery SOC trajectories 

The A-ECMS tries to adjust the equivalent fuel-cost of 
electrical power to its optimal value. This optimal equivalent 
cost depends on the driving cycle and can be obtained off-line 
using the PMP. Fig.7 shows its optimal value and how it is 
adjusted on line by the A-ECMS method.  

 
Fig.7   A-ECMS’ equivalent cost evolution with time 

According to Fig.6, the OCL favors battery discharge along 
the driving cycle and tries to refill it during the final 
deceleration, while the A-ECMS tends to keep the battery SOC 
close to its reference value all along the cycle. The SDP 
requires a fair amount of ICE power from time to time during 
lower propulsion power phases to maintain the SOC level. 
When a bigger power demand comes, unlike the A-ECMS 
which acts immediately to recharge the battery, the SDP allows 
remaining at a low SOC and waiting for braking energy 
recovery.  

Furthermore, most of the SDP’s computation time indicated 
in the Table 1 is taken to determine the matrix J(x,t), which can 

be calculated off-line. Its application on line takes just as much 
as the A-ECMS. 

4.3. Results in the case of INRETS cycles 
From Table 1, A-ECMS seems to be the best real-time 

strategy among the three. To confirm it, a series of ten INRETS 
cycles [13], with different average speeds (Table 2), was used 
for robustness analysis. The parameters settings are equal to 
those optimal found for the WLTC cycle, whose average speed 
is 47 km/h. 

Table 2. INRETS cycles 

Type Urban Road Highway 
Cycle UL1 UL2 UF1 UF2 UF3 R1 R2 R3 A1 A2 

Average 
speed 
(km/h) 

4 7 10 19 24 32 41 57 74 95 

Fig.8 illustrates the HEV consumption economy compared 
to a CV and the difference in energy between the final and 
initial battery states. Each of them is plotted as a function of the 
cycle average speed.  

 
Fig.8   Real-time strategies’ results for INRETS cycles, compared to off-line 
strategies’ 

The A-ECMS result shows a good fuel economy for urban 
or road trips using the parameters calculated for the WLTC 
cycle which is a combination of all three driving types (Fig.8). 
However, the same parameter setting is not adapted to highway 
cycles. A parameter specific to each type of driving conditions 
(urban, road and highway) may help to improve the results. It 
should be noticed that with three parameters (p0=p1, T and Kp) 
to adjust at the same time, any wrong guess of parameter 
setting may make HEV burning more fuel even than a CV.  

The OCL method was developed to obtain an easier 
calibration than A-ECMS. According to the author of [6], it 
gives a solution close to the optimal one and is stable enough to 
work for any driving cycle with one single parameter (μ). The 
reduction of the number of strategy parameters indeed 
eliminates the setting difficulty. However, by testing different 
INRETS cycles, the robustness analysis of the OCL method 
shows that OCL fails to decrease significantly the fuel 
consumption and insure charge sustaining at the same time 
(Fig.9). 

 
Fig.9   OCL results for INRETS cycles, for six different values of the setting 
parameter of the method 



 

 

The SDP, a proven method in other area, uses statistics to 
model the driver’s future power demand and calculates an 
average optimal solution. The implementation proposed in [8] 
was tested and shows poor results (Fig.8). In fact, the SDP 
performance relies on an adequate probability distribution of 
the vehicle’s driving speed. In previous subsection 4.2, the 
SDP method shows an average performance between A-ECMS 
and OCL because it used the same real-time simulation cycle 
as statistical data to calculate the control policy   ∗   in 
(12). This statistical model based on the WLTC cycle is 
certainly not adequate for INRETS cycles.  

It should be noted that an adequate probability distribution 
of the vehicle’s driving speed requires a large amount of data. 
This can be seen as a drawback or on the contrary as a way to 
include more information about the current trip of the vehicle.  

 

 

5. CONCLUSIONS 
Three promising real-time strategies from the literature 

have been selected and implemented. Once well calibrated off-
line, none of them guarantees an excellent fuel economy in any 
real-world driving conditions while taking the final SOC close 
to its reference value.  

A-ECMS performances are largely affected by the setting 
parameters. With parameters correctly chosen, it is able to 
approach the maximal fuel saving under certain circumstances. 
However, three parameters to adjust at the same time make it 
difficult to achieve manually. A genetic algorithm may help but 
will surely increase the computational load. 

With only one parameter to set, OCL’s calibration phase is 
much easier than A-ECMS. The simulation results show that it 
is also more robust, but is not as powerful as A-ECMS on the 
fuel economy. Besides, this method may not be as sensitive to 
parameter setting as A-ECMS, but an inaccurate value could 
lead to higher consumption.  

SDP always meets the SOC-sustaining requirement but its 
fuel saving performance is not better than OCL. In fact, SDP is 
a optimization method based on mathematical models. The 
quality of its results relies directly on the accuracy of the 
probability distribution of the vehicle’s driving conditions. In 
this article as in [8], only the vehicle speed is considered. 
However, the power demand in (13) depends not only on the 
instantaneous speed, but also on its variation. 

The further work will be:  

- Improving A-ECMS’ robustness by applying a set of 
parameters specific to each type of driving conditions 
(urban, road and highway) 

- Searching for the adequate range of OCL’s parameter 
values for real-world application 

- Implementation of SDP based on both vehicle velocity 
and associate power demand using Markov chains [14] 
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