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The strong correlation between the level of eddy current losses in copper conductors and the winding geometry shows the necessity to 

pay attention to the manner of disposition of coils in machine slots. Finite-element modeling of electric machines includes moving band 

technique to perform the rotor motion and Newton-Raphson iterations to take into consideration the non-linearity of magnetic circuits. 

In order to calculate the copper losses, finite element method leads then to a substantial calculation time and hinders any process of 

conception and optimization of winding geometries. An analytic calculation is proposed, it presents clear interests in repetitive analysis. 
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I. INTRODUCTION 

he copper losses are subdivided into classical ohmic DC 

losses and additional eddy current losses. The latter exists 

due to the strong electromagnetic coupling between the 

current density and the time varying magnetic fields 

penetrating the copper conductors. Due to the fact that this 

interaction between electric and magnetic variables cannot be 

solved easily, then finite-element (FE) methods can be used to 

give a numerical solution. A strong correlation exists between 

the level of eddy current losses and the disposition of coils in 

machine slots [1]. Since, the choice of the optimized geometry 

distribution of the winding turns using the FE resolution leads 

to a substantial calculation time and requires large storage 

capacity. Therefore, this article proposes an analytic copper 

losses calculation which provides clear advantages in 

repetitive analyses for optimization problems in terms of 

copper losses. The test problem is a switched reluctance 

machine (SRM) wounded with different winding 

configurations. The analytic values of copper losses are 

compared to those calculated by the 2D FE modeling method. 

II. FE METHOD FORMULATION 

    At low frequencies the Maxwell’s equations in an 

electromagnetic system and the associated constitutive 

medium relationships are given by: 

                      ,            ,                              
(1a-b-c) 

 

         ,          (2a-b) 

An easy coupling with the electric circuit leads to use in a 

privileged way the potentials for example the magnetic vector 

potential    and the electric scalar potential V. The resultant 

vector potential formulation from (1) and (2) is given by: 
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A combined circuit equation reflects that the current feeding 

the conductor of cross section   is     : 
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The 2D FE formulation of (3), as well as considering (4) 

and the backward Euler method for time discretization, leads 

to the following matrix system [2]: 
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Where    is the electric potential drop (voltage) per unit 

length and    is the z-component at the instant t of the 

magnetic vector potential.  

III. ANALYTIC COPPER LOSSES CALCULATION 

We consider the case of n individual conductors, placed in a 

symmetric slot with parallel edges and each fed by the 

imposed current I(t). We start from the assumptions that the 

permeability of the iron is very high then the magnetic field in 

the lamination material is negligible and that the magnetic and 

electric fields are independent of x and z (Fig. 1) and have one 

component            and            respectively [3]. 

Applying Ampere’s law and Faraday’s law to a conductor 

section of height dy, length along z-axis   and width    placed 

in a slot of width   , results in the following differential 

equations of      and     : 
       

  
 

   
  

     
       

  
           (6a-b) 

Where   and   are the copper permeability and conductivity 

respectively. Assuming sinusoidal quantities and combining 

(6a) and (6b) yield a second order differential equation: 
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with the solving approach: 
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To determine the constants    and   , the boundary 

conditions of the magnetic field of the regarded conductor can 

be utilized. The origin of the coordinate system is considered 

located at the lower edge of the regarded conductor. A 

parameter p identifies the conductor layer within the slot with 

1 ≤ p ≤ n, where n is the total number of slot conductors 

placed on top of each other. The line of magnetic flux passing 

T 



through the lower edge of the conductor at y=0 surrounds     

(p-1) times the current I(t) and that at y=h surrounds p times 

the current I(t). Where h is the height of the conductor layer. 

Determining    and    gives the magnetic field distribution 

along the conductor. The expression of the electric field can be 

deduced from (6a). By multiplying the electric field with  , 

the current density valid for layer p is calculated to: 
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The total copper losses of conductor p can be calculated 

according to the following equation : 
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(12) 

 

(13) 

 

Where   is the rms value of the sinusoidal current I(t). In case 

of periodic non sinusoidal current waveforms, the total losses 

can be calculated by summing the losses of each Fourier 

spectral component. 

IV. APPLICATION EXAMPLE 

We start the study of two test case examples. The first one is 

a skin effect example, it is about one conductor (n=1) of cross 

section S placed in a symmetric slot with parallel edges and 

fed by a typical SRM phase current I(t) at the frequency of 

1000 Hz. The second is a proximity effect example, it is about 

18 conductors (3x6) fed each one by the current I(t)/18. (3x6) 

configuration means that we have three horizontal layers with 

6 vertical conductors by layer. Each conductor has a cross 

section of S/18. Due to symmetry reasons, the current 

distribution inside the six conductors of each layer must be 

equal since all conducctors are fed by the same current and are 

penetrated by the same magnetic field      . Hence, the six 

conductors can be merged into one solid conductor fed by the 

current I(t)/3. The proximity effect example is then about 3 

individual conductors which can be interpreted as three-layer 

winding (n=3) (Fig. 1).  

 

Fig.1 Left: Skin effect example (n=1). Right: Proximity effect example (n=3). 

 Although the chosen conductor dimensions and the excitation 

frequency do not match realistic conditions for a slot winding 

application, the examples illustrate the strong influence of the 

winding configuration on the ac losses. Both configurations 

have the same dc resistance and produce the same amount of 

magnetomotive force but still the ac losses of the second 

example are 1.5 times higher than those of the first example. 

The FE simulations copper losses are very close to analytic 

values with an error that does not exceed the 3.2%  (Table 1). 

Table 1. Comparison between the loss calculation methods for the examined 

test case examples. 

Test Case 

Copper Losses in W Ohmic 

Losses in 

W 
Analytic Calculation FE Model 

Example 1 (n=1) 87.81 89.43 
29.18 

Example 2 (n=3) 131.92 127.72 

 

An SRM 8/6 is taken as another example. Only one phase is 

fed, it consists of two coils connected in series; each of them 

has 18 turns. These turns can be distributed in the slot in 

multiple configurations. They can be placed horizontally 

(18x1), vertically (1x18) or as other different configurations 

such as (9x2), (6x3), (3x6) or (2x9). For analytic loss 

calculations according to (11) several geometry parameters 

  ,  ,    and   need to be determined. Since the slot edges in 

SRM are not parallel, it seams reasonable to calculate a mean 

value for   . Then we come accross the geometry studied in 

the test case example. The analytic calculation in case of 

sinusoidal currents shows the correlation between the copper 

losses and the winding geometry configurations (Fig.2). Now, 

two real operating points at speeds 1100 and 5000 rev/min and 

three winding configurations are studied as an example   

(Table 2). The configuration (9x2) seems to be the optimal 

choice. Analytic calculation does not give very similar copper 

loss values to those calculated by FE method in case of SRM, 

but it can be used as an efficient mean to choose the optimized 

winding configuration for a given frequency operating range. 

 

Fig.2 Correlation between the copper losses and the winding configurations. 

Table 2. Comparison between the loss calculation methods for the SRM  

Configuration Type 

Copper Losses in W 

Operating point 1 Operating point 2 

Analytic FE Analytic FE 

(2x9) 79.9 85.3 14.4 22.2 

(3x6) 78.3 81.1 11.9 18.1 

(9x2) 77.1 77.9 9.1 10.9 

Ohmic Losses in W 76.9 8.6 

V. CONCLUSION 

Starting from several simplifying assumptions, the analytic 

model allows very fast calculation of winding copper losses. 

As a coarse model, it may be associated with the finite 

element modeling and can be used thus in optimization 

methodologies such as the output space mapping technique. 
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