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Low-energy spectrum of Toeplitz operators: the
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Université de Strasbourg, France

September 19, 2016

Abstract

In the 1980s, Helffer and Sjöstrand examined in a series of articles
the concentration of the ground state of a Schrödinger operator in the
semi-classical limit. In a similar spirit, and using the asymptotics for
the Szegő kernel, we show a theorem about the localization properties
of the ground state of a Toeplitz operator, when the minimal set of
the symbol is a finite set of non-degenerate critical points. Under the
same condition on the symbol, for any integer K we describe the first
K eigenvalues of the operator.
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1 Introduction

1.1 Motivations

In classical mechanics, the minimum of the energy, when it exists, is a
critical value, and any point in phase space achieving this minimum corre-
sponds to a stationary trajectory. In quantum mechanics, the situation is
quite different. A quantum state cannot be arbitrarily localized in phase
space and occupies at least some small space, because of the uncertainty
principle. Nevertheless, due to the correspondence principle, one expects
the quantum states of minimal energy to concentrate, in some way, near
the minimal set of the Hamiltonian, when the effective Planck constant is
very small.

In a series of articles [10, 11, 12, 13, 14], Helffer and Sjöstrand considered
the Schrödinger operator P (h) = −h2∆ + V , acting on R

n, where V is a
smooth function. Under reasonable assumptions on V , the infimum of the
spectrum of P (h) is a simple eigenvalue. Helffer and Sjöstrand then studied
the concentration properties of a sequence of associated unit eigenvectors,
named a ground state, in the semi-classical limit h → 0. It is well known
that the ground state is O(h∞) outside any fixed neighbourhood of {x ∈
R

n, V (x) = min(V )}. If there is only one such x, then the ground state
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concentrates only on x. But if there are several minima, it is not clear a
priori whether the ground state is evenly distributed on them or not.

In the first articles [10, 11, 12], the potential V is supposed to reach
its minimum only on a finite set of non-degenerate critical points, named
“wells”. It is proven that only some of the wells are selected by the ground
state, that is, the sequence of eigenvectors is O(h∞) outside any fixed neigh-
bourhood of this subset of wells. The selected wells are the most flat, in a
sense that we will make clear later on. Sharper estimates lead to a control,
outside of the wells, of the form exp(−Ch−1), where C is expressed in terms
of the Agmon distance to the selected wells. Moreover, when the potential
V has two symmetric wells, the ground state “tunnels” between these wells,
so that there exists another eigenvalue which is exponentially close to the
minimal one.

In the two last papers [13, 14], the potential V is supposed to reach its
minimal value on a submanifold of Rn. Again, it is easy to prove that the
ground state concentrates on this submanifold. From this fact, a formal
calculus leads to the study of a Schrödinger operator, on the submanifold,
with an effective potential that depends on the 2-jet behaviour of V near
the submanifold. The authors treated the case of an effective potential
with one non-degenerate minimum, which they call the miniwell condition.
In this case, the ground state concentrates only at the miniwell. On the
contrary, when the minimal submanifold corresponds to a symmetry of V ,
the ground state is spread out on the submanifold.

This is an instance of what is called quantum selection: not all points in
phase space where the classical energy is minimal are equivalent in quantum
mechanics. When there is a finite set of minimal points, only some of them
are selected by the ground state. When the minimal set is a submanifold,
the ground state may select only one point. In the physics literature, these
effects are believed to appear in other settings than Schrödinger operators;
the miniwell condition was used in [7] (without mathematical justification)
to study quantum selection effects for spin systems, when the classical phase
space is a product of 2-spheres. However, the arguments used by Helffer
and Sjöstrand depend strongly on the fact that they deal with Schrödinger
operators, when the phase space is T ∗

R
n. Thus, it is mathematically not

clear to which extent the quantum selection can be generalised to a quan-
tization of compact phase spaces.

We propose to study the Kähler quantization, which associate to a sym-
bol on a phase space a Toeplitz operator. In the particular case of the coor-
dinate functions on S

2 = CP
1, the Toeplitz operators are the spin operators

[3], so that our approach contains the physical case of spin systems. In this
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article we prove that quantum selection occurs in the case of wells, with
O(h∞) remainder, extending some of the results of [10, 11, 12]. The case
of miniwells is treated in our next paper. Exponential estimates, and the
study of tunnelling, will be the object of a separate investigation; stronger
conditions on the energy, such as analyticity, will probably be required.

1.2 Kähler quantization

When a compact symplectic manifold is endowed with a Kähler structure,
there is a natural way to define a quantization scheme, which is compatible
with abstract geometric quantization [15, 20].

Definition 1.1. A Kähler manifold is a complex manifold M where the
tangent space at each point is endowed with a hermitian form whose imag-
inary part is a closed 2-form on M .

In particular, a Kähler manifold has both a symplectic and a Rieman-
nian structure, which are respectively the imaginary part and the real part
of the hermitian form.

The Kähler manifolds of interest are those that satisfy the prequantiza-
tion condition: the symplectic form ω has an integer Chern class [15]. This
condition is equivalent [15, 22] to the existence of a hermitian holomorphic
complex line bundle (L, h) π→ M , whose curvature is exactly ω. The hermi-
tian structure on L and the Liouville volume form on M allow us to define
L2(M, L), the space of square-integrable sections of L, with quadratic form

〈s, s′〉 =
∫

M
(s(m), s′(m))hdωn(m).

For every integer N , the tensor power L⊗N inherits a hermitian struc-
ture and we can also consider L2(M, L⊗N ), defined the same way.

We are in presence of what is called in algebraic geometry an ample line
bundle [9].

Definition 1.2. For every integer N , we denote by HN (M, L) the closed
subspace of L2(M, L⊗N ) consisting of holomorphic L2 sections of L⊗N .

The orthogonal projector of L2(M, L⊗N ) onto HN (M, L) is denoted by
SN .

We will not exactly work with the spaces HN (M, L) in the body of
the article, but with equivalent spaces which we call Hardy spaces, see
subsection 2.1. Note that the spaces HN (M, L) are finite-dimensional if M
is compact.
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From now on, M will always denote a compact Kähler manifold of di-
mension n, whose symplectic form will be denoted by ω. We will suppose
that ω satisfies the integer cohomology class condition. Moreover L will
denote a hermitian holomorphic complex line bundle over M , with curva-
ture ω. The projection from L to M will be denoted by π, when there is
no confusion with the numerical constant.

Definition 1.3 (Toeplitz quantization). Let f ∈ C∞(M) be a smooth
function on M . We define the Toeplitz operator associated to f as

TN (f) : HN (M, L) 7→ HN (M, L)
u 7→ SN (fu).

When the symbol f is real-valued, for fixed N , the operator TN (f) is
obviously self-adjoint and acts on a finite-dimensional space. Thus, there
is no theoretical difficulty lying in the study of the spectrum of Toeplitz
operators. The spectrum is the set of the eigenvalues, each of which has a
finite multiplicity. We will call the “lowest eigenvalue” the minimum of the
spectrum of a Toeplitz operator.

The Toeplitz quantization has many similarities with the Weyl quanti-
zation. One can indeed find a star product on the space of formal series
C∞(M)[[ν]] that coincides with the composition of Toeplitz operators, that
is, such that TN (f ⋆ g(N−1)) = TN (f)TN (g) + O(N−∞) [18]. In fact, it is
known since at least [4] that there is a correspondence between the sym-
bolic calculus of Toeplitz operators and that of Weyl quantization. Thus,
a possible approach to the spectral study of Toeplitz operators would be
a formal conjugation, either to a pseudo-differential operator whose spec-
trum is known by previous work [10], or to the Toeplitz quantization of a
completely integrable system, in the spirit of [21, 17]. This last approach
via Birkhoff normal forms could possibly give an asymptotic expansion for
eigenvalues in a larger window than the one we consider in this article.
However, each of these approaches require a priori results on the concen-
tration of eigenvectors. As our future work will focus on the case when the
minimal set of the symbol is a submanifold, where a priori concentration is
not known, it is unclear whether these approaches are sufficient. For this
reason, and the sake of simplicity, we have chosen a more direct approach.

We slightly extend the definition of Toeplitz operators in order to deal
with the Kähler manifold M = C

n, which is not compact. This does not
affect the definitions of HN (M, L) and SN , except that the space HN (Cn, L)
has infinite dimension in this case. If f ∈ C∞(Cn), one can define the
Toeplitz operator T flat

N (f) as an unbounded operator, and it is an essentially
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self-adjoint operator when the symbol is a positive quadratic form (see
section 3.3).

1.3 Main results

In this article, we adapt the results from [10] to the setting of Toeplitz
quantization. In particular, we are only interested in the following situation:

Definition 1.4. A function h ∈ C∞(M) is said to satisfy the wells condi-
tion under the two following conditions:

• min(h) = 0;

• Every critical point at which h vanishes is non-degenerate.

Observe that, by definition, Morse functions satisfy the wells condition,
as does the square modulus of a generic holomorphic section of L⊗N for N
large. Note that a function that satisfies the wells condition has a finite
cancellation set.

In subsection 2.2, we consider convenient local maps of “normal co-
ordinates” around any point P ∈ M , which preserve infinitesimally the
Kähler structure. If a non-negative function h vanishes with positive Hes-
sian at P ∈ M , the 2-jet of h at P reads in these coordinates as a positive
quadratic form q(P ) on C

n. The first eigenvalue µ of the Toeplitz opera-
tor T flat

N (q(P )) (which we call model quadratic operator) does not, in fact,
depend on the choice of coordinates. We define this value to be µ(P ).

Remark 1.5. The value of µ(P ) is related to the first eigenvalue of the
Weyl quantization of q, when C

n is identified with T ∗
R

n. This value is
explicit in terms of the Jordan form of Jq, where

J =

(

0 Id
−Id 0

)

,

but we will not make use of an explicit expression.

We need the following definition to state our main theorems:

Definition 1.6. Let Z be a subset of M , and let

Vδ(N) = {m ∈ M, dist(m, Z) > N−δ}.

A sequence (uN )N∈N, with uN ∈ HN (M, L) for every N , is said to
concentrate on Z when, for every δ ∈]0, 1

2 [, one has

‖uN 1Vδ(N)‖L2(M,L⊗N ) = O(N−∞).

6



Note that concentration, in the sense of the definition above, implies
microsupporting in the sense of Charles [4], that is, a O(N−∞) estimate
outside any fixed neighbourhood of the considered set.

Theorem A. Let h be a smooth function on M that satisfies the wells
condition of definition 1.4. For every N ∈ N, let λN be the first eigenvalue
of the operator TN (h), and uN an associated normalized eigenfunction.

Then the sequence (uN )N∈N concentrates on the vanishing points of h
on which µ is minimal.

If there is only one such point P0, then there is a real sequence (ak)k≥0

with a0 = µ(P0) such that, for each K, one has

λN = N−1
K
∑

k=0

N−Kak + O(N−K−2).

Moreover, if there is only one such point, then λN is simple, and there
exists C > 0 such that λN is the only eigenvalue of TN in the interval
[0, N−1(µ(P0) + C)].

Theorem B. Let h be a smooth function on M that satisfies the wells
condition. Let C > 0. Then there is a bounded number of eigenvalues
(counted with multiplicity) of TN (h) in the interval [0, CN−1).

More precisely, let K and (ak)0≤k≤K be such that

{a0,k, k ≤ K} =
⋃

P ∈M

h(P )=0

Sp
(

T flat
1 (q(P ))

)

∩ [0, C]

with multiplicity.
Then one can find c > 0 and a list of real numbers (bk)0≤k≤K such that,

for each k, one of the eigenvalues of TN (h) lies in the interval

[N−1ak + N−3/2bk − cN−2, N−1ak + N−3/2bk + cN−2].

Moreover, there are at most K eigenvalues of TN (h) in [0, CN−1) and each
of them belongs to one of the intervals above.

For generic symbols, the eigenvalues in [0, CN−1) admit an expansion
in integer powers of N−1.

The case of “miniwells”, a transposition of [13], will be treated in fu-
ture work. Under analyticity conditions, we also hope to state results on
exponential decay in the forbidden region and on tunnelling, like in [12].
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1.4 Outline

We review in section 2 the definitions and semiclassical properties of the
Szegő kernel. Using well-known results about the semiclassical expansion
[19, 4, 6], we derive a useful lemma of universality.

In Section 3, we remind the reader of the symbolic properties of Toeplitz
operators [18]. The state of the art is such that one can compose Toeplitz
operators with classical symbols. We then show a new result on localiza-
tion: low-energy eigenvalues concentrate (in some sense which we will make
precise) where the symbol is minimal. Finally, we study in detail a par-
ticular case of Toeplitz operators, when the base manifold is C

n and the
symbol is a positive quadratic form.

Section 4 is devoted to the proof of Theorem A. We build an approxi-
mate eigenfunction of the Toeplitz operator and prove that the correspond-
ing eigenvalue is the lowest one. The most important part is proposition
4.2 for which we use the same method than in [10]. For this, we consider
the hessian of h at a cancellation point, as read in local coordinates; this
is a function q on C

n. Then we compare the Toeplitz operator TN (h) with
the Toeplitz operator T flat

N (q), which we call model quadratic operator.
In section 5, we modify the arguments used in section 4 to describe, un-

der the same hypotheses on the symbol, the spectrum of a Toeplitz operator
in the interval [0, CN−1) where C > 0 is arbitrary (Theorem B).

2 The Szegő projector

2.1 Geometric context

We are mainly interested in this article with square-integrable holomorphic
sections of Kähler manifolds, that is, the sequence of spaces HN (M, L) =
L2

holo(M, L⊗N ). Each HN (M, L) is a closed subspace of L2(M, L⊗N ). To
make their study easier, the following construction reformulates the spaces
HN as subspaces of the same L2 space, following the idea of “Grauert
tubes” (as presented in [9], chapter VI, section 6).

Let L∗ denote the dual bundle of L, with h∗ the dual metric. Define

D = {(m, v) ∈ L∗, h∗(v) < 1}
X = ∂D = {(m, v) ∈ L∗, h∗(v) = 1}.

Let us consider the Hardy space on X, defined as follows.

Definition 2.1. If Y is the boundary of an open set U in a complex
manifold, we call Hardy space on Y and denote by H(Y ) the closed subspace
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of L2(Y ) consisting of functions which are boundary values of holomorphic
functions inside U . The orthogonal projector from L2(Y ) onto H(Y ) is
denoted by S, the Szegő projector.

In the paper, X plays the role of Y . The space H(X) can be further
decomposed, because X admits an S1 action rθ : (m, v) 7→ (m, eiθv). Thus,
for N ∈ N, we can say that an element f of H is N -equivariant when,
for each x ∈ X and θ ∈ S1, the identity f(rθx) = eiNθf(x) holds. The
space of N -equivariant functions is denoted by HN (X); then H(X) is the
orthogonal sum of the different spaces HN (X) for N ≥ 1. We will call SN

the orthogonal projection on HN (X).
The main point is that HN (X) and HN (M, L) are isometric, the isom-

etry being as follows: to any section s ∈ HN (M, L), we can associate
ŝ ∈ L2(X) with the formula ŝ(m, v) = 〈v⊗N , s(m)〉. The function ŝ has
the same norm as s. It belongs to H(X), and it is the trace of the func-
tion on D defined with the same formula. Moreover, ŝ is N -equivariant.
Reciprocally, each function in HN (X) may be expressed this way.

As a helpful illustration (see [8] or [16] for a full review), we consider the
usual n-dimensional complex space C

n, with the natural Kähler structure.
Strictly speaking, this is not an example as C

n is not compact, but the
previous definitions can be extended.

Because C
n is contractile, the bundle L is isomorphic to C

n+1, but the
hermitian structure h is not the trivial one, whose curvature is zero. Indeed,
one can show that h(m, v) = e−|m|2 |v|2. Here, the spaces HN (Cn, L) are
called the Bargmann spaces and will be denoted by BN . They can be
expressed as

BN ≃ {f holomorphic in C
n, e− N

2
|·|2f(·) ∈ L2(Cn)}.

The projector on BN has a Schwartz kernel. Indeed, one Hilbert basis

of BN is the family (eν)ν∈Zn with eν(z) = Nn
N |ν|/2zν

πn
√

ν!
. Hence the kernel

may be expressed as:

ΠN (x, y) =
Nn

πn
exp(−N/2|x|2 − N/2|y|2 + Nx · y). (1)

The space BN is isometric to B1 by a dilatation of factor N1/2. More-
over, there is a unitary transformation between B1 and L2(Rn), called the
Bargmann transform. The transformation B1 : L2(Rn) 7→ B1 reads:

B1f(z) =
∫

exp[−(1/2z · z + 1/2x · x − 2
√

2z · x)]f(x)dx.
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From B1, one can deduce an isometry from BN to L2(Rn) by composing
the scaling isometry and the Bargmann transform.

One noteworthy subspace of B1 is the dense subset of functions f ∈ B1

such that fP ∈ B1 for any polynomial P . That space is denoted by D.
Any element of the previously given Hilbert basis belongs to D and the
Bargmann transform is a bijection from S(Rn) to D; the preimage of eν is
the function x 7→ Cνxνe−|x|2/2, where Cν is a normalizing factor.

2.2 Semiclassical asymptotics

Semi-classical expansions of SN are derived in [23, 19, 16, 4, 2], in different
settings. In [23, 19], the Fourier Integral Operator approach is used to prove
an asymptotic expansion of SN in a neighbourhood of size N1/2 of a point.
In [4, 16, 2], one derives asymptotic expansions of SN in a neighbourhood
of fixed size of a point.

The off-diagonal of the Szegő kernel is rapidly decreasing as N → +∞:

Proposition 2.2 ([6], prop 4.1). For every k ∈ N and ǫ > 0, there exists
C > 0 such that, for every N ∈ N, for every x, y ∈ X, if

dist(π(x), π(y)) ≥ ǫ,

then
|SN (x, y)| ≤ CN−k.

The analysis of the Szegő kernel near the diagonal requires a convenient
choice of coordinates, that we will use throughout this paper.

Let P0 ∈ M . The real tangent space TP0
M carries a euclidian structure

and an almost complex structure coming from the Kähler structure on M .
We then can (non-uniquely) identify C

n with TP0
M .

Definition 2.3. Let U be a neighbourhood of 0 in C
n and V be a neigh-

bourhood of P0 in M .
A smooth diffeomorphism ρ : U × S

1 → π−1(V ) is said to be a normal
map or map of normal coordinates under the following conditions:

• ∀(z, v) ∈ U × S
1, ∀θ ∈ R, ρ(z, veiθ) = rθρ(z, v);

• Identifying C
n with TP0

M as previously, one has:

∀(z, v) ∈ U × S
1, π(ρ(z, v)) = exp(z).

The following theorem states that, as N → +∞, in normal coordinates,
the Szegő kernel has an asymptotical expansion whose first term is the flat
kernel of equation (1):
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Proposition 2.4 ([6], theorem 4.18). Let P0 ∈ X and ρ a normal map on
X such that ρ(0, 0) = P0. For z, w ∈ C

n small enough and N ∈ N, let

SP0

N (z, w) := e−iN(θ−φ)SN (ρ(z, θ), ρ(w, φ)),

which does not depend on θ and φ.
There exist C > 0, C ′ > 0, m ∈ N, ǫ > 0 and a sequence of polynomials

(bj)j≥1, with bj of same parity as j, such that, for any N ∈ N,K ≥ 0 and
|z|, |w| ≤ ǫ, one has:

∣

∣

∣

∣

∣

∣

SP0

N (z, w) − Π1(z, w)N



1 +
K
∑

j=1

N−j/2bj(
√

Nz,
√

Nw)





∣

∣

∣

∣

∣

∣

≤

CNn−(K+1)/2
(

1 + |
√

Nz| + |
√

Nw|
)m

e−C′
√

N |z−w| + O(N−∞). (2)

Hence, the typical range of interaction of SN is of size N−1/2. In par-
ticular, we are able to refine the proposition 2.2:

Corollary 2.5. For every k ∈ N and δ > 0, there exists C > 0 such that,
for every N ∈ N, for every x, y ∈ X with dist(π(x), π(y)) ≥ N−δ, one has:

|SN (x, y)| ≤ CN−k.

In particular, if u ∈ L2(X) is O(N∞) outside the pull-back of a ball
of size N−δ, then SN (u) is O(N−∞) outside the pull-back of a ball of size
2N−δ.

Remark 2.6. The proposition 2.4 gives asymptotics for the kernel of SN ,
read in local coordinates. However, the normal maps of definition 2.3 do
not preserve the volume form, except infinitesimally on the fiber over P0.

If dV ol is the volume form on X and dLeb is the Lebesgue form on C
n,

one has, for any normal map ρ:

ρ∗(dLeb ⊗ dθ) = h dV ol,

for some function h on M with h(P0) = 1. Hence, replacing SP0

N in equation
(2) by the corresponding half-form corresponds to multiplying the other
terms by

√

h(z)h(w). On the one hand, for some m′, one has:
∣

∣

∣

∣

∣

∣

Π1(z, w)N



1 +
K
∑

j=1

N−j/2bj(
√

Nz,
√

Nw)





(

1 −
√

h(z)h(w)
)

∣

∣

∣

∣

∣

∣

≤ C(|z| + |w|)m′

e− 1

2
N |z−w|2

≤ CNn−(K+1)/2
(

|
√

Nz| + |
√

Nw|
)m′+K+1−2n

e−C′
√

N |z−w|.

11



On the other hand, there holds:

Nn−(K+1)/2
(

1 + |
√

Nz| + |
√

Nw|
)m

e−C′
√

N |z−w|
∣

∣

∣

∣

1 −
√

h(z)h(w)
∣

∣

∣

∣

≤ Nn−(K+1)/2
(

1 + |
√

Nz| + |
√

Nw|
)(

m + K + 1 − 2n)e−C′
√

N |z−w|.

Hence, the effects of the volume form can be absorbed in the error terms
of equation (2), and the proposition 2.4 also holds when SN is replaced by
the corresponding half-form.

2.3 Universality

In the previously given local expansions of the Szegő kernel (2), the domi-
nant term is the projector on the Bargmann spaces of equation (1). Thus
the Bargmann spaces appear to be a universal model for Hardy spaces,
at least locally. To make this intuition more precise, we derive a useful
proposition.

We can pull-back by a normal map the projector ΠN on the Bargmann
spaces by the following formula:

ρ∗ΠN (ρ(z, θ), ρ(w, φ)) := eiN(θ−φ)ΠN (z, w).

By convention, ρ∗ΠN is zero outside π−1(V )2.

Proposition 2.7 (Universality). Let ǫ > 0. There exists δ ∈ (0, 1/2), a
constant C > 0 and an integer N0 such that, for any N ≥ N0, for any
function u ∈ L2(X) such that the support of u is contained in the fibres
over a ball on M of radius N−δ, one has:

‖Π∗
N u − SNu‖L2(X) ≤ CN−1/2+ǫ‖u‖L2(X).

Here Π∗
N denotes the pull-back of ΠN by a normal map centred on a point

in the support of u.

Proof. Equation (2), for K = 0, can be formulated as:

e−iN(θ−φ)SN (ρ(z, θ), ρ(w, φ)) = Π1(z, w)N + R(z, w) + O(N−∞),

with
|R(z, w)| ≤ CN−1/2(1 + |

√
Nz| + |

√
Nw|)me−C′

√
N |z−w|.

Let δ ∈ (0, 1/2) and u a function contained in the pull-back of a ball of
size N−δ.
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Let v = SNu − Π∗
N u. Because of Corollary 2.5, v is O(N−∞) outside

ρ(B(0, 4N−δ) × S
1). Hence, it is sufficient to consider the behaviour of the

kernel SN − Π∗
N on ρ(B(0, 4N−δ) × S

1) × ρ(B(0, 4N−δ) × S
1).

Let S∗
N : (z, θ, w, φ) 7→ e−iN(θ−φ)SN (ρ(z, θ), ρ(w, φ)) denote the kernel

SN as read in local coordinates. For |z| and |w| small enough, one has:

(S∗
N − ΠN )(z, w) = NnR(z, w) + O(N−∞).

It remains to estimate the norm of the operator with kernel NnR, using a
standard result of operator theory:

Lemma 2.8 (Schur test). Let k ∈ C∞(V × V ) be a smooth function of two
variables in an open subset V of R

d. Let K be the associated unbounded
operator on L2(V ).

Let

‖k‖L∞L1 := max

(

sup
x∈V

‖k(x, ·)‖L1(V ), sup
y∈V

‖k(·, y)‖L1(V )

)

.

If ‖k‖L∞L1 is finite, then K is a bounded operator. Moreover

‖K‖L2(V )7→L2(V ) ≤ ‖k‖L∞L1 .

Thus, we want to estimate the quantity:

sup
|z|≤4N−δ

∫

|w|≤4N−δ
Nn−1/2(1 + |

√
Nz| + |

√
Nw|)me−C′|z−w|.

After a change of variables and up to a multiplicative constant, it remains
to estimate:

N−1/2 sup
|z|≤4N1/2−δ

∫

|u|≤4N1/2−δ
(1 + |z| + |u|)m e−C|u|.

This quantity is O(N (m−1) 1

2
−mδ). Thus, for any ǫ > 0, there exists δ such

that the above quantity is O(N− 1

2
+ǫ).

By the Schur test, the L2 norm of a symmetric kernel operator is con-
trolled by the L∞L1 norm of the kernel. When restricted on B(0, 4N−δ)2,
the kernel of S∗

N − ΠN has a L∞L1 norm of order N−ǫ, from which we can
conclude. �
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3 Toeplitz operators

3.1 Calculus of Toeplitz operators

Let us reformulate the definition 1.3 as acting on HN (X).

Definition 3.1. If f ∈ C∞(M) is a smooth function, one defines the
Toeplitz operator with symbol f as the sequence of operators TN (f) =
SNf(N−1) from HN (X) to itself.

Alternative conventions exist for the quantization (associating an op-
erator to a symbol), though they define the same class of operators. The
convention of definition 3.1 is sometimes called contravariant [4]. The rea-
son for this choice is that we rely crucially on the positivity condition: if f
is real and nonnegative, then TN (f) is nonnegative.

The composition of two Toeplitz operators is a formal series of Toeplitz
operators. The theorem 2.2 of [18] states for instance that there exists a
formal star-product on C∞(M)[[ν]], written as f ⋆ g =

∑+∞
j=0 νjCj(f, g),

that coincides with the Toeplitz operator composition: as N → +∞, one
has, for every integer K, that

TN (f)TN (g) −
K
∑

j=0

N−jTN (Cj(f, g)) = O(N−K).

The functions Cj are bilinear differential operators of degree less than 2j,
and C0(f, g) = fg.

3.2 A general localization result

Using the C∗-algebra structure of Toeplitz operators, one can prove a fairly
general localization result:

Proposition 3.2. Let h be a smooth nonnegative function on M . Let
Z = {h = 0}, and suppose that h vanishes exactly at order 2 on Z, that is,
there exists C > 0 such that h ≥ C dist(·, Z)2.

Let t > 0, and define

VN := {(m, v) ∈ X, dist(m, Z) < t}.

For every k ∈ N, there exists C > 0 such that, for every N ∈ N, for
every t > 0, and for every u ∈ HN such that TN (h)u = λu for some λ ∈ R,
one has

‖u1X\Vt
‖L2 ≤ C

(

max(λ, N−1)
t2

)k

.
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Proof. By a trivial induction, the k-th star power of a symbol f is of the
form

f⋆k = fk + N−1C1,k(f, · · · , f) + N−2C2,k(f, · · · , f) + . . . ,

where Ci,k is a k-multilinear differential operator of order at most 2i.
We want to study Ci,k(h, · · · , h) for i ≤ k. The function h is smooth

and nonnegative, hence
√

h is a Lipschitz function. In other terms, there
exists C such that, for every (x, ξ) ∈ T M with ‖ξ‖ ≤ 1, one has ∂ξh(x) ≤
C
√

h(x).
In local coordinates, the function Ci,k(h, · · · , h) is a sum of terms of the

form a∂ν1h∂ν2h . . . ∂νk h, where
∑k

j=1 |νj | = 2i and a is smooth.

• If νj = 0, then ∂νj h = h.

• If |νj | = 1, then |∂νj h| ≤ C
√

h.

• If |νj | ≥ 2, then |∂νj h| ≤ C.

Hence |a∂ν1h∂ν2h . . . ∂νkh| ≤ Chk−i, from which we can conclude :

|Ci,k(h, · · · , h)| ≤ Chk−i.

This means that, for every k ≥ 0, the function h⋆k is of the form:

h⋆k = hk +
k−1
∑

i=1

νifi,k + ν−kg(ν),

where g is bounded independently on µ and where, for each i and k there
exists C such that |fi,k| ≤ Chk−i.

Using this, we can prove by induction on k that there exists Ck such
that, for every N and for every eigenvector u of TN (h) with eigenvalue λ,
one has

|〈u, hku〉| ≤ Ck max(λ, N−1)k‖u‖2.

Indeed, this is clearly true for k = 1, because 〈u, hu〉 = λ‖u‖2.
Let us suppose that, for all j ≤ k−1, there holds 〈uN , hjuN 〉 = O(N−j).

Because uN is an eigenvector for TN (h), it is an eigenvector for its powers,
hence

TN (h⋆k)u = TN (h)ku + O(N−∞) = λku + O(N−∞).

Replacing h⋆k by its expansion and using the fact that h ≥ 0, we find:

〈u, hku〉 ≤ CN−K‖u‖2 +
k−1
∑

i=1

N−i〈u, fi,ku〉.
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Now recall |fi,k| ≤ Ci,khk−i, and the induction hypothesis:

〈u, hk−iu〉 ≤ Ci max(λ, N−1)k−i‖u‖2

for every i > 0. Hence

〈u, hku〉 ≤ O(N−k) +
k−1
∑

i=1

Ci,kCiN
−i max(λ, N−1)k−i‖u‖2,

hence there exists Ck such that 〈u, hku〉 ≤ Ck max(λ, N−1)k‖u‖2

Now we can conclude: for every k, there exists C such that, for every
t > 0 one has

∀z /∈ Vt, hk ≥ Ct2k.

Finally, for every k there exists C such that, for every N ∈ N, t > 0
and u an eigenvector of TN (h) with eigenvalue λ, there holds

‖u1X\Vt
‖L2 ≤ C

(

max(λ, N−1)
t2

)k

.

�

This proposition leads to the following definition, which we will use
extensively in what follows:

Definition 3.3. Let A be a closed set of M , and uN be a sequence of
normalized elements of L2(X).

We say that uN concentrates on A if for each δ ∈]0, 1/2[, with

VN = {(m, v) ∈ X, dist(m, A) < N−δ},

one has
‖uN1X\VN

‖L2 = O(N−∞).

In this article, we will mainly specialize the proposition 3.2 to the case
λ = O(N−1) and t = N−δ for 0 < δ < 1/2:

Corollary 3.4. Let u = (uN )N∈N be a sequence of unit eigenvectors of
TN (h), with sequence of eigenvalues λN = O(N−1). Then u concentrates
on the zero set of h.

We can reformulate the proposition 3.2 in these terms: if h is a positive
smooth function on M , then any sequence of normalized eigenvectors of
TN (h) whose eigenvalues are O(N−1) concentrates on the zero set of h.

Remark 3.5. An independent work by Charles and Polterovich, that ap-
pears partially in [5], focuses on the case of a regular value of a real symbol,
with similar results.
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3.3 Quadratic symbols on the Bargmann spaces

Toeplitz operators can also be defined in the Bargmann spaces setting, but
one should be careful about the domain of such operators.

This section is devoted to a full survey of the quadratic case, which is
very useful as a model case for the general setting. Let q be a positive
quadratic form on C

n. Let

AN = {f ∈ BN , e−N |·|2/2
√

q(·)f(·) ∈ L2(Cn)}.

Then AN is a dense subspace which contains D. It is the domain of the
positive quadratic form tN : (u, v) 7→

∫

quv, and AN is closed for the norm
‖u‖AN

= ‖u‖L2 + tN (u, u). Moreover, the injection

(AN , ‖ · ‖AN
) → (BN , ‖ · ‖L2)

is compact. Using the usual results of spectral theory, the asssociated
operator T flat

N is positive and has compact resolvent. The spectrum of
T flat

N thus consists of a sequence of nonnegative eigenvalues, whose only
accumulation point is +∞.

We now recall that the normalized scaling on C
n by a factor N1/2 sends

BN into B. This conjugation sends T flat
N to N−1T flat

1 .

Proposition 3.6. The first eigenvalue µN of T flat
N is simple.

Proof. As q is positive a.e, the quadratic form tN is strictly convex, hence
the first eigenvalue is simple. �

Proposition 3.7. Let T ∗
R

n be identified with C
n. Let OpW (q) denote the

Weyl quantization of QN , as a symbol in T ∗
R

n, and recall that BN is the
N -th Bargmann transform. Then BN T flat

N B−1
N = OpW (q) + N−1 tr(q).

In particular, the first eigenvalue of T flat
N is positive.

Proof. Let j, k be two indices in [|1, n|].
If q : z 7→ zjzk = (xj + iyj)(xk + iyk), then tr(q) = 0, so the two

operators should coincide. T1 is the operator of multiplication by zjzk.
This operator is conjugated via B1 to the operator (xj + i∂j)(xk + i∂k) =
xjxk − ∂j∂k + ixj∂k + i∂jxk. Moreover, the Weyl quantization of q is the
operator

OpW (q) = xjxk − ∂j∂k +
i

2
(∂kxj + xj∂k + ∂jxk + xk∂j).

These two operators coincide whether j = k or not.
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If q : z 7→ zjzk = (xj − iyj)(xk − iyk), then again tr(q) = 0. Moreover,
T flat

N is the operator of holomorphic differentiation ∂zj ∂zk
. This operator

is conjugated via B1 to the operator (xj − i∂j)(xk − i∂k) = xjxk − ∂j∂k −
ixj∂k − i∂jxk. Moreover, the Weyl quantization of q is

OpW (q) = xjxk − ∂j∂k − i

2
(∂kxj + xj∂k + ∂jxk + xk∂j).

Again the two operators coincide.
If q : z 7→ zjzk = (xj + iyj)(xk − iyk), then tr(q) = 2δj

k. In that case,
T flat

N = ∂zk
zj . This operator is conjugated to (xk − i∂k)(xj + i∂j). The

Weyl quantization of q is

OpW (q) = xjxk + ∂j∂k +
i

2
(−∂kxj − xj∂k + ∂jxk + xk∂j).

The two operators coincide when k 6= j, and when k = j the difference is
2.

From the conjugation, it is clear that the first eigenvalue of T flat
N is

positive, because the Weyl quantization of q is nonnegative and tr(q) > 0.
�

Because T flat
N is conjugated to N−1T1, one has µN = N−1µ1, and for

some C > 0,
dist(µN , Sp(T flat

N ) \ {µN}) = CN−1.

The first eigenvalue µ1 of T1 depends on q, but is invariant under an
unitary change of variables on C

n. From now on we will use the notation
µ(q) to denote µ1.

Remark 3.8. The computation of µ(q) is non-trivial. As explained in [1],
the first eigenvalue of OpW

1 (q) can be obtained the following way: let M ∈
S++

2n (R) denote the symmetric matrix associated with q in the canonical
coordinates. Let J be the matrix of the symplectic structure:

J =

(

0 −Id
Id 0

)

Let A denote a Jordan form of JM . The diagonal of A is purely imaginary,
and the blocks of A appear by pairs of blocks of the same size, one with
diagonal value iλ, and one with diagonal value −iλ. Then µ is the sum of
the imaginary parts of the elements on the diagonal of A whose imaginary
part is positive.

18



4 The first eigenvalue

4.1 Statement of the main result

If at a point P0 ∈ M a non-negative function h vanishes with positive
Hessian, one can build a convenient local map from a neighbourhood of P0

to a neighbourhood of 0 in C
n. Thus the 2-jet of h at P0 maps to a positive

quadratic form q on C
n, up to a U(n) change of variables. Hence, the map

associating to P0 the first eigenvalue µ of the model quadratic operator
T flat

N (q) is well-defined. From now on, we will also call µ this map.

Theorem A. Let h be a smooth function on M that satisfies the wells
condition of definition 1.4. For every N ∈ N, let λN be the first eigenvalue
of the operator TN (h), and uN an associated normalized eigenfunction.

Then the sequence (uN )N∈N concentrates on the vanishing points of h
on which µ is minimal.

If there is only one such point P0, then there is a real sequence (ak)k≥0

with a0 = µ(P0) such that, for each K, one has

λN = N−1
K
∑

k=0

N−Kak + O(N−K−2).

Moreover, if there is only one such point, then λN is simple, and there
exists C > 0 such that λN is the only eigenvalue of TN in the interval
[0, N−1(µ(P0) + C)].

The method of proof is the following: for each vanishing point P0, we
construct a sequence of functions which concentrates on P0, which is almost
an eigenstate, and whose associated eigenvalue is equivalent to N−1µ(P0).
We then show a positivity estimate for eigenfunctions concentrating on a
single well. The uniqueness and the spectral gap property follow from a
similar argument. At every step, we compare TN (h) with the operator on
BN whose symbol is the Hessian of h at the point of interest.

4.2 Existence

We let h denote a smooth function satisfying the wells condition. For every
cancellation point of h, one can find a candidate for the ground state of
TN (h). Instead of finding exact eigenfunctions, we search for approximate
eigenfunctions. This is motivated by the following lemma:

Lemma 4.1. Let T be a self-adjoint operator on a Hilbert space H, λ ∈ R,
and u ∈ D(T ) with norm 1.

Then dist(λ, Sp(H)) ≤ ‖T (u) − λu‖.
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Let P0 ∈ M be a point where h vanishes. Let ρ be a local map of normal
coordinates in a neighbourhood of π−1(P0). Recall from equation (2) that,
for every N ∈ N and every z, w ∈ C

n such that (z/
√

N, 0, w
√

N, 0) belongs
to the domain of ρ, one has

N−nπnei(φ−θ)SN

(

ρ

(

z√
N

,
θ

N

)

, ρ

(

w√
N

,
φ

N

))

= Π1(z, w)

(

1 +
K
∑

k=1

N−k/2bk(z, w))

)

+ R(z, w, N) + O(N−∞). (3)

Here the bj ’s are polynomials of the same parity as j, and

|r(z, w, N)| ≤ CNn−(K+1)/2e−C′|z−w|(1 + |z|m + |w|m).

The functions that we will consider are supported on the pull-back of
contractible open set of M , so we drop the fibre variable θ and φ.

The main proposition is

Proposition 4.2. There exists a sequence (uj)j≥0 of Schwartz functions
in C

n, with 〈u0, uk〉 = δ0
k, and a sequence (λj)j≥0 of real numbers, with

λ0 = µ(P0) and λj = 0 for j odd, such that, for each K and N , if uK(N) ∈
L2(X) and λK(N) ∈ R are defined as:

uK(N)(ρ(z, θ)) := eiNθNn
K
∑

j=0

N−j/2uj(
√

Nz),

uK(N) is supported in the image of ρ,

λK(N) = N−1
K
∑

j=0

N−j/2λj,

there holds, as N → +∞,

‖SN hSNuK(N) − λK(N)uK(N)‖ = O(N−(K+3)/2).

Remark 4.3. The functions uK(N) do not lie inside HN (X), because they
are identically zero on an open set. Nevertheless, the operator SNhSN on
L2(X) decomposes orthogonally into the desired operator on HN , and 0 on
its orthogonal. Hence a nonzero eigenvalue of SNhSN must correspond to
an eigenvalue of TN (h) with same eigenspace. The same holds for almost
eigenvalues.

Considering λK as a polynomial in N−1/2 whose odd terms vanish may
seem surprising. However, in the proof, we construct λK as a polynomial
in N−1/2, as we do for uK . The fact that it is a polynomial in N−1 is due
to parity properties.
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Proof. Let us try to solve the successive orders of

(SNhSN − λK(N))uK(N) ≈ 0.

We write the Taylor expansion of h around P0 as

h(x) = q(x) +
K
∑

j=3

rj(x) + E(x).

Because of equation (3), the kernel of SNhSN , read in the map ρ, is:

SNhSN

(

ρ

(

z√
N

)

, ρ

(

w√
N

))

= N−1Nn
∫

(

q(y) +
K
∑

k=1

N−k/2rk(y) + NE(y/
√

N)

)

×


Π1(z, y)



1 +
K
∑

j=1

N−jbj(z, y, N)



 + R(z, w, N)





×
[

Π1(y, z)

(

1 +
K
∑

l=1

N−lbl(y, w, N)

)

+ R(y, z, N)

]

dy

+ O(N−∞).

The dominant order is simply

z, w 7→ Nn−1
∫

Cn
Π1(z, y)q(y)Π1(y, w)dy.

It is the kernel of the Toeplitz operator Q = T flat
1 (q) on B1 associated

to the quadratic symbol q, which we studied in subsection 3.3. Its resolvant
is compact, the first eigenvalue µ(P0) is simple, and if u0 is an associated
eigenvector, the operator Q − µ(P0) has a continuous inverse on u⊥

0 which
sends D into itself. Moreover u0 is an even function.

This determines u0 and λ0 = µ(P0). Here u0 ∈ D, so we can trun-
cate the function z, θ 7→ eiNθNnu0(N1/2z) to a function supported on the
domain of ρ, with only O(N−∞) error. The push-forward by ρ of this
truncation, extended by zero outside the image of ρ, is denoted by u0(N).

The error is thus:
∫

|SNhSN u0(N)−N−1λ0u0(N)|2 ≤ CN−2
∫

A(z, y, w, N)2 |u0(w)|2dydw

+ O(N−∞),
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where

A(z, y, w, N) = N |E(y/
√

N)Π1(z, y)Π1(y, w)|

+h(y)
(

|R(z, y, N)|Π1(y, w)+|R(y, w, N)|Π1(z, y)+|R(z, y, N)R(y, w, N)|
)

.

Here, E is a Taylor remainder of order 3 on a compact set, so

|NE(y/
√

N)| ≤ C|y|N−1/2.

Moreover, recall that

|R(z, y, N)| ≤ CN−1/2e−C′|z−y|(1 + |z|m + |y|m).

Hence

|A(z, y, w, N)| ≤ CN−1/2e−C′|z−y|−C′|y−w|(1 + |z|m + |y|m + |w|m).

Because u0 ∈ D, there holds:

N3
∫

|SN hSNu0 − N−1λ0u0|2

≤ C

∫∫∫

e−2C′|z−y|−2C′|y−w|(1 + |z|2m + |y|2m + |w|2m)|u0(w)|2dydzdx

+ O(N−∞)

≤ C

(∫

|u|2me−C′|u|du

)2 ∫

|w|2m|u0(w)|2dw + O(N−∞)

≤ C.

From there we deduce that u0 is an approximate eigenvector:

SNhSNu0 − N−1λ0u0 = O(N−3/2).

This proves the proposition for K = 0.
We construct by induction on K the following terms of the expansion.
For j ∈ N, we let Jj : B1 7→ L2(e−|·|2Leb), unbounded and symmetric,

whose kernel is

Jj(x, z) =
∫

Π1(x, y)Π1(y, z)





∑

k+l+m=j

bk(x, y)r2+l(z)bm(y, z)



 dy.

The dense subspace D is included in the domain of Jj , moreover Jj(D) ⊂ D.
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Let K ∈ N, and suppose we found functions (uk)k≤K ∈ D, orthogonal
to u0, and of the same parity as k, and real numbers λk that vanish when
k is odd, and such that, for each k ≤ K, there holds:

(Q − λ0)uk =
k
∑

j=1

Jjuk−j + λku0 +
k−1
∑

j=1

λjuk−j. (4)

Let us find uK+1, orthogonal to u0, and λK+1 so that equation (4) also
holds for k = K + 1: take the scalar product with u0. As Q is symmetric,
the left hand side vanishes, so λK+1 is determined. Moreover if K + 1 is
odd, this equation boils down to λK+1 = 0.

We now are able to find uK+1 because we can inverse Q − λ0 on the
orthogonal set of u0. Finally, uK+1 is of the same parity as K + 1.

It remains to show that to this sequence of functions u corresponds an
approximate eigenvector of SNhSN .

Let K ≥ 0, fixed in what follows. For each N ∈ N, we can build a
function uK(N) on X, supported in the image of ρ and such that, for x
in the image of ρ, one has uK(N)(ρ(z, θ)) = eiNθNn∑K

k=0 N−kuk(
√

Nz).
Note that uK(N) concentrates on P0.

Let

λK(N) = N−1
K
∑

k=0

N−kλk.

We evaluate (SN MhSN − λK(N))uK(N) =: fK(N). Consider an open set
V1, containing P0, and compactly included in the image of ρ. One has

‖fK(N)‖L∞(cV1) = O(N−∞)

because uK(N) concentrates on P0.
To compute fK(N) in V1, we use the equation (3) at order K. A change

of variables leads to:

N−n−1e−iNθfK(N)
(

ρ(x/
√

N, θ)
)

=
K
∑

k=0

N− k
2



(Q − λ0)uk(x) −
k
∑

j=1

Jjuk−j(x) − λku0(x) −
k−1
∑

j=1

λjuk−j(x)





+
2K
∑

k=K+1

N− k
2



−
K
∑

j=k−K

(Jj − λj)uk−j(x)





+
K
∑

k,j,l=0

N− k+j+l
2 Ej,l,Nuk(x)+

K
∑

k,j=0

N− k+j
2 E′

j,Nuk(x)+
K
∑

k=0

N− k
2 E′′

Nuk(x).
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By construction, the right-hand term of the first line vanishes. The
second line O(N−(K+1)/2).

There are three error terms in the last line. Ej,l,N is the operator with
kernel:

Ej,l,N(x, z) =
∫

Π1(x, y)Π1(y, z)bj(x, y)bl(y, z)E(N−1/2y)dy.

By dominated convergence, for each function u ∈ D, one has

‖Ej,l,N(u)‖L2 = O(N−(K+1)/2).

In particular it is true of the functions uk.
E′

j,N is the operator with kernel:

E′
j,N(x, z) =

∫

Π1(x, y)bj(x, y)h(N−1/2y)RK(y, z, N)dy

+
∫

Π1(y, z)bj(y, z)RK(x, y, N)h(N−1/2y)dy.

For u ∈ D, there holds, for m large enough:
∫

|E′
j,Nu(x)|2dx

≤ 2
∫
∣

∣

∣

∣

∫∫

Π1(x, y)Π1(y, z)bj(x, y)h(N−1/2y)rK(y, z, N)u(z)dydz

∣

∣

∣

∣

2

dx

≤ CN−(K+1)
∫∫∫

e−2C′|x−y|−2C′|y−z|(1 + |x| + |y| + |z|)m|u(z)|2dxdydz

≤ CN−(K+1)
∫∫∫

e−C′|v|−C′|w|(1 + |v|m + |w|m + |z|m)|u(z)|2dudvdz

≤ CN−(K+1).

E′′
N is the operator with kernel

E′′
N (x, z) =

∫

rK(x, y, N)h(N−1/2y)rK(y, z, N)dy.
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For u ∈ B0, there holds, for m large enough:

N2(K+1)
∫

|E′′
N (x, z)u(x)|2dx

≤ N2(K−1)
∫
∣

∣

∣

∣

∫∫

rK(x, y, N)h(N−1/2y)rK(y, z, N)u(z)dydz

∣

∣

∣

∣

2

dx

≤ C

∫∫∫

e−C′|x−y|−C′|y−z|(1 + |x − y|m + |y − z|m + |z|m)|u(z)|2dxdydz

≤ C

∫∫∫

e−C′|v|−C′|w|(1 + |u|m + |v|m + |w|m)|u(z)|2dvdwdz

≤ C.

This concludes the proof. �

From this proposition we conclude that, for every well P , there exists an
eigenvalue of TN (h) which has an asymptotical expansion in inverse powers
of N , the dominant term being N−1µ(P ). In particular, the first eigenvalue
of TN (h) is O(N−1).

4.3 Positivity

The following proposition implies that the first eigenfunctions only concen-
trate on the wells that are minimal:

Proposition 4.4. Let (vN )N∈N a sequence of normalized functions in L2(X).
Suppose v localizes on a point P0, on which h cancels. Then for each ǫ > 0
there exists N0 and C such that, if N > N0,

〈vN , hvN 〉 ≥ N−1µ(P0) − CN−3/2+ǫ.

Proof. Let δ ≤ 1/2 be close to 1/2. Let (z, θ) denote normal coordinates
around P0, and ρ the associated map. Then the sequence (wN )N≥0 =
(ρ∗vN )N>0 is such that ‖wN ‖L2(cB(0,N−δ)) = O(N−∞). Then

‖ΠNwN ‖L2(cB(0,2N−δ)) = O(N−∞)

‖S∗
NwN ‖L2(cB(0,2N−δ)) = O(N−∞)

as well.
Using the Proposition 2.7, for δ close enough to 1

2 , if Π∗
N is a push-

forward of ΠN by ρ, one has ‖(SN − Π∗
N )vN ‖ ≤ CN− 1

2
+ǫ. Hence, if SN is

a pull-back of SN by ρ, one has ‖(S∗
N − ΠN )wN ‖ ≤ CN− 1

2
+ǫ.

25



If q is the Hessian of h at P0 read in the chosen coordinates, the spectrum
of the model quadratic operator ΠNqΠN is known: one has

〈wN , ΠN qΠN , wN 〉 ≥ N−1µ(P0)‖ΠN wN‖2.

Moreover, on B(0, 2N−δ) the following holds : CN−2δ ≥ h ≥ q − CN−3δ.
Now, if δ is close enough to 1

2 , one has:

〈wN , S∗
NhS∗

N wN 〉
≥ 〈wN , S∗

NqS∗
NwN 〉 − CN−3δ

= 〈wN , S∗
NqΠN wN 〉 + 〈wN , S∗

N q(S∗
N − ΠN )wN 〉 − CN−3δ

≥ 〈wN , S∗
NqΠN wN 〉 − CN−2δ−min(δ, 1

2
−ǫ)

= 〈wN , ΠN qΠNwN 〉 + 〈wN , (S∗
N − ΠN )qΠN wN 〉 − CN−2δ−min(δ, 1

2
−ǫ)

≥ 〈wN , ΠN qΠNwN 〉 − CN−2δ−min(δ, 1

2
−ǫ)

≥ N−1µ(P0) − CN−2δ−min(δ, 1

2
−ǫ).

This concludes the proof. �

Remark 4.5. In the proof, we used not fully the fact that v localizes on
P0, but only the fact that, for some δ determined by the geometry of M ,
one has

‖vN1
π(x)/∈B(P0,N−

1
2

+δ)
‖L2 = O(N−∞).

Thus, this proposition could be used in a more general context.

4.4 Uniqueness and spectral gap

Proposition 4.6. Suppose h satisfies the wells condition, and that there is
only one well with minimal µ. Then the approximate eigenvalue of propo-
sition 4.2 associated to this well corresponds to the first eigenvalue λN of
TN (h). This eigenvalue is simple; moreover there exists C > 0 such that,
for N large enough

dist(λN , Sp(TN (h)) \ λN ) ≥ CN−1.

Proof. The proposition is equivalent to the following claim: let uK(N)
denote the approximate eigenvector of order K associated to the well with
minimal µ. Let FN be the orthogonal complement of uK(N) in HN (X),
and PN be the orthogonal projection from HN(X) to FN Then the operator
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T ♯
N (h) : FN → FN , defined as T ♯

N (h) = PN TN (h), is bounded from below
by λN + CN−1.

Let vN be a sequence of normalized eigenvectors of T ♯
N , and µN the

sequence of associated eigenvalues. One has TN (h)vN = µNvN +CNuK(N).
Because uK is a sequence of normalized functions and SN is bounded, the
sequence CN is bounded.

Assume µ = O(N−1). In this slightly different setting, we can repeat
the proof of the proposition 3.2 using the fact that uK(N) is itself an
eigenfunction of TN (h). There holds:

TN (h⋆k)vN = µk
NvN + CN

k
∑

j=1

µj
Nλk−j

N uN .

Hence vN concentrates on the vanishing points of h.
If P0, P1, . . . , Pd are the vanishing points of h, one can decompose vN =

v0,N + v1,N + . . . + vd,N + O(N−∞), where each sequence vi,N concentrates
on Pi. The proposition 4.4 gives estimates for vi,N if i 6= 0. Namely, if C is
such that NλN + C < µ(Pi) for all i and for N large enough, then

〈vi,N , SNhSN vi,N 〉 ≥ (λN + CN−1)‖vi‖2
2.

Recall that uK(N) has an asymptotic expansion whose first term u0 is
the pull-backed ground state of the operator on the Bargmann space with
quadratic symbol. This operator has a spectral gap of order N−1. Moreover
〈v0,N , u0〉 = o(1), then for C strictly smaller than the spectral gap of the
quadratic operator, one has for N large

〈v0,N , SNhSN v0,N 〉 ≥ (λN + CN−1)‖v0,N ‖2
2.

The functions vi,N are orthogonal to each other with disjoint support,
so that 〈vi,N , SNhSN vj,N〉 = O(N−∞) whenever i 6= j, and ‖vN‖2

2 =
∑

j ‖vj,N‖2
2 + O(N−∞). Thus the two inequalities allow us to conclude.

�

4.5 End of the proof

It remains to show that, in the case where only one well P0 has minimal
µ, then the ground state is O(N−∞) in a fixed neighbourhood of the other
wells.

Let K an integer. We have constructed in subsection 4.2 a sequence
(UK(N))N∈N which vanishes outside a fixed neighbourhood of P0, and
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which is a sequence of approximate unit eigenvectors of TN (h), with ap-
proximate eigenvalue λK(N). One has

λK(N) = N−1µ(P0) + O(N−3/2),

and
dist(λK(N), Sp(TN (h)) = O(N−K).

Moreover we proved in subsection 4.4 that there can be only one eigenvalue
of TN (h) in [0, N−1(µ(P0) + C)] for some C, and that this eigenvalue is
simple. Hence, denoting λ∞(N) this sequence of eigenvalues, one has

λ∞(N) = min Sp(TN (h)),

and
|λ∞(N) − λK(N)| = O(N−K).

Let U∞(N) denote a sequence of unit eigenvectors associated to λ∞(N),
and decompose UK(N) = c(N)U∞(N) + wK(N), where wK(N) ⊥ U∞(N).
Then

(TN (h) − λ∞(N))wK(N) = O(N−K).

The operator TN (h) − λ∞(N) is invertible on U∞(N)⊥ and its inverse has
a norm bounded by N , so wK(N) = O(N−K+1). Because both UK and
U∞ are normalized, one has c(N) → 1.

Finally, if V is a neighbourhood of another well, then UK(N) is zero on
V , so that

‖U∞(N)‖L2(V ) = ‖wK(N)‖L2(V ) = O(N−K+1).

This concludes the proof.

5 Eigenvalues in a scaled window

5.1 Statement of the result

The last section is devoted to the proof of the following theorem :

Theorem B. Let h be a smooth function on M that satisfies the wells
condition. Let C > 0. Then there is a bounded number of eigenvalues
(counted with multiplicity) of TN (h) in the interval [0, CN−1).

More precisely, let K and (ak)0≤k≤K be such that

{a0,k, k ≤ K} =
⋃

P ∈M

h(P )=0

Sp
(

T flat
1 (q(P ))

)

∩ [0, C]
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with multiplicity.
Then one can find c > 0 and a list of real numbers (bk)0≤k≤K such that,

for each k, one of the eigenvalues of TN (h) lies in the interval

[N−1ak + N−3/2bk − cN−2, N−1ak + N−3/2bk + cN−2].

Moreover, there are at most K eigenvalues of TN (h) in [0, CN−1) and each
of them belongs to one of the intervals above.

For generic symbols, the eigenvalues in [0, CN−1) admit an expansion
in integer powers of N−1.

5.2 Approximate eigenvectors

In the proof of the proposition 4.2, the first guess for an approximate eigen-
vector of TN (h) was the first eigenvector of the model quadratic operator
at one of the wells.

If, instead of the first eigenvector, we start from any eigenvector of the
model, we can proceed the same way; however the recursion stops after one
step, in general.

Proposition 5.1. Let P ∈ M on which h cancels, and Q be a model
quadratic operator in some normal coordinates around P . Let λ be an
eigenvalue of Q.

Then one can find a suitable orthonormal basis of the eigenspace Eλ

so that, from each base vector, one can build a sequence of approximate
eigenvectors of TN (h), modulo O(N−2).

Moreover, if dim Eλ = 1, then from a unit eigenvector of Q, one can
build a sequence of approximate eigenvectors of TN (h), modulo O(N−∞).

Proof. Recall from proposition 4.2 that one can find an approximate
eigenvector at any order, starting from the ground state u0 of Q.

Let us replace u0 by an arbitrary eigenfunction of Q, which still belongs
to D. Let λ be the associated eigenvalue. When λ is a simple eigenvalue,
one can solve equation (4) at any order. Observe that u0 is either even or
odd, so that only negative integer powers of N remain in the expansion of
the eigenvalue.

If Q − λ is not invertible on u⊥
0 , the equation (4) can still be solved for

k = 1. Consider an orthonormal basis (v1, . . . , vL) of the eigenspace Eλ.
Suppose u0 = v1. The equation (4) reads :

(Q − λ)u1 = J1u0 + λ1u0.

Taking the scalar product with u0 yields λ1 = −〈v1, J1v1〉. But we also
need to check that 0 = 〈vl, J1v1〉 for l 6= 1. This is done by choosing an
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orthogonal basis in which J1 is diagonal. One can then find u1 in E⊥
λ . The

proof of the error estimate is the same. �

5.3 Uniqueness properties

Now we prove that each eigenspace of TN (h), with eigenvalue less than
CN−1, is spanned by eigenfunctions that we have constructed in the pre-
vious proposition.

Proposition 5.2. Let C > 0. Consider the set E of approximate eigen-
vectors that we can construct with the proposition 5.1, starting from eigen-
vectors of model quadratic operators with eigenvalue less than C. Then, for
all ǫ > 0, the operator TN (h), corestricted on E⊥, is bounded from below
by (C − ǫ)N−1.

Proof. We simply mimic the proof of the uniqueness proposition in the
last section.

Let vN be a sequence of eigenvalues of TN (h). Then vN is O(N−∞)
outside any fixed neighbourhood of {h = 0}. Decomposing vN =

∑

vi,N +
O(N−∞), where vi,N is supported in a small ball around Pi, the pull-
back of vi,N is approximatively orthogonal (with O(N−1/2) error) to all
eigenfunctions of the local quadratic operator whose eigenvalues are less
than C. One then has

〈vi,N , Π∗
N qiΠ∗

Nvi,N 〉 ≥ (C − ǫ/2)N−1‖vi,N‖2,

from which one can deduce

〈vi,N , SN hSNvi,N 〉 ≥ (C − ǫ)N−1‖vi,N‖2.

�
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