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ABSTRACT
The segmentation, seen as the association of a partition with
an image, is a difficult task. It can be decomposed in two
steps: at first, a family of contours associated with a series of
nested partitions (or hierarchy) is created and organized, then
pertinent contours are extracted. A coarser partition is obtained
by merging adjacent regions of a finer partition. The strength
of a contour is then measured by the level of the hierarchy
for which its two adjacent regions merge. We present an au-
tomatic segmentation strategy using a wide range of stochastic
watershed hierarchies. For a given set of homogeneous images,
our approach selects automatically the best hierarchy and cut
level to perform image simplification given an evaluation score.
Experimental results illustrate the advantages of our approach
on several real-life images datasets.

Index Terms— Mathematical Morphology, Hierarchies,
Segmentation, Stochastic Watershed.

1. INTRODUCTION

Image segmentation is the transformation often described as
the partitioning of the image domain into a set of meaningful
regions according to some pre-specified criteria. It is generally
difficult to directly find the pertinent contours in an image, and
is thus useful to follow a two-steps strategy: first, we produce a
hierarchy, and then extract the meaningful contours out of it.

To formalize the notion of segmentation, one can see the
image as a graph, in which the graph nodes are pixels or
regions of the image, and the graph edges link neighbor regions
according to a dissimilarity measure. Then cutting all edges of
the graph having a valuation superior to a threshold leads to a
forest, i.e. a partition of the image. Thus, our goal is to create
a partial graph (i.e. a subset of all graph edges) such that its
connected components represent the desired segmentation once
we return to the image. To do so, we want to find pertinent edges
valuations that fully exploit information in the image, so that a
cut of the partial graph leads to a segmentation more suitable
for further exploitation. In image processing, such approaches
are known as morphological hierarchical segmentations.

Recently, morphological hierarchical segmentations have
been studied as a robust way to extract important features of the
image [1], to produce robust segmentations of high-dimensional
data [2], to detect important objects in a shape-space [3],
to find optimal partitions from a given functional[4] as well
as regarding computational issues to produce low complexity
implementations [5].

The contributions of this paper are the following: first, we
present a method to reevaluate the weights in morphological
hierarchies to take more into account the structural information
of the images, called stochastic watershed (SWS); second, we
show how composing SWS can lead to better results in the sense
of the extraction of more significant part of the images; third, we
present a workflow to automatically and simultaneously select
the best hierarchy of segmentations and the optimal cut-level
from a given training set.

The paper is organized as follows. Section 2 introduces the
notations and the methodology we propose. The experimental
setup is described in Section 3. Section 4 summarizes the
conclusions and the future work.

2. BACKGROUND AND METHODOLOGY
2.1. Hierarchies and partitions
To be efficient, we work at two resolutions. The lowest level is
the pixel level: the initial image is segmented and a fine partition
produced, for instance a set of superpixels [6], [7] or the basins
produced by classical watershed algorithm [8]. We suppose that
the fine partition produced by an initial segmentation contains
all contours making sense in the image. We define a dissimilarity
measure between adjacent tiles of the fine partition. The parti-
tion and dissimilarity between adjacent tiles are then modelled
as an edge-weighted graph, the region adjacency graph (RAG):
each node represents a tile of the partition; an edge links two
nodes if the corresponding regions are neighbors; the weight
of the edge is equal to the dissimilarity between both regions.
Working on the graph is much more efficient than working on
the image, as there are far less nodes in the graph that there are
pixels in the image.

Formally, we define a non oriented graph G = (V,E,W)
as containing a set V of nodes or vertices, a set E of edges,
an edge being a pair of nodes, and an edges weight function
W : E→ R+. The edge linking the nodes p and q is designated
by epq . The partial graph associated with the edges E0 ⊂ E is
G0 = (V,E0,W).

A path π is a sequence of nodes and edges: for example
π = {p, ept, t, ets, s} is a path linking the nodes p and s. A
connected subgraph is a subgraph where each pair of nodes
is connected by a path. A cycle is a path whose extremities
coincide. A tree is a connected graph without cycle. A spanning
tree is a tree containing all nodes. A minimum spanning tree
(MST) is a spanning tree with minimal possible weight, obtained
for example using the Boruvka algorithm. A forest is a collection
of trees.



Fig. 1. A: a partition represented by an edge weighed graph; B: a minimum spanning
tree of the graph; C: two connected subtrees, obtained by cutting all edges with a
weight above 6, and the underlying segmentation indicated by the two colors.

Cutting all edges having valuations superior to a threshold λ
in a RAG leads to a forest in which each tree represents a region
in the image. By giving the same labels to all nodes of the same
trees, one obtains a segmentation of the image. So that the more
edges are cut, the more the subtrees are subdivised and the finer
the segmentation. An illustration of the passage from a RAG to
a partition/segmentation can be found in Figure 1. In this regard,
the obtained result is the same whether we work with the graph
or with an MST of the graph. For the sake of simplicity, we thus
work only with the MST in the sequel. In the MST, cutting the
n highest edges leads to a minimal spanning forest (MSF) of
n+1 trees. Cutting another edge subdivides one of these n+1
trees in two subtrees.

Cutting edges by decreasing valuations thus gives an
indexed hierarchy of partitions (H,λ), with H a hierar-
chy of partitions i.e. a chain of nested partitions H =
{P0,P1, . . . ,Pn|∀j, k, 0 ≤ j ≤ k ≤ n ⇒ Pj v Pk},
with Pn the single-region partition and P0 the finest partition
on the image, and λ : H → R+ being an increasing map
taking its values into the decreasing cut valuations, such that for
two nested partitions P ⊂ P′, we have λ(P) < λ(P′). This
increasing map allows us to value each contour according to
the cut level of the hierarchy for which it disappears: this is the
saliency of the contour, and the higher the saliency, the strongest
the contour, as illustrated in Figure 3.

The quality of the hierarchy, i.e. the pertinence of the ob-
tained regions at various levels of it, depends on the dissimilarity
used. If the dissimilarity reflects only a local contrast, the most
salient regions in the image are the small contrasted ones, as
illustrated in Figure 3b. In the following section, we explain
how to construct more pertinent and informative dissimilarities.

2.2. Marker-based segmentation

To do so, one can select a node in each region or object
of interest that will serve as a root in each wanted tree. We
then construct an MSF in which each tree takes root in one
of the selected nodes. The roots are also called markers and
this process referred to as marker-based segmentation. The final
result is obtained by suppressing, for each pair of markers, the
highest edge on the unique path on the MST linking them. This
is illustrated in Figures 2A,B.

Let us consider an edge est of the MST of weight λ, and let
us examine what markers lead to a selection of this edge. If we
put at least one marker within the domains spanned by each of
these trees, then the highest edge on the unique path on the MST

Fig. 2. A: a MST with markers - highest edges on the path linking them are cut; B:
the corresponding partition; C: considering two markers m1 and m2 falling into the
regions spanned by the two subtrees Ts and Tt obtained when cutting an edge est on
the MST, the highest edge on the path linking them is indeed est.

linking them is indeed est, which is thus cut in the associated
segmentation. This mechanism can be observed on Figure 2C),
in which we can see that the highest edge on the path linking
two markers m1 and m2 put respectively in Ts and Tt is indeed
est. We say that a root is chosen in Ts if at least one marker
lies within its corresponding region in the image obtained by
replacing each node of the tree by the region it represents.

Note that this process is robust to the choice of markers,
since the selection of any node of a region as a root leads to a
segmentation of this region.

2.3. Stochastic Watershed Hierarchies
Rather than using deterministic markers, one can use random
markers following a given distribution and thus generate random
MSF. Then, one can assign to each edge of the MST the
probability for it to be cut accordingly, which corresponds to the
probability of appearance of the underlying contour. Depending
on the distribution of markers used, the obtained segmentation
can be very variable.

This idea finds its source in the stochastic watershed pre-
sented by Angulo in [9]. If we see the image as a topographic
relief, flooding this image leads to watershed lines, i.e. to a
segmentation. By spreading random flooding sources multiple
times and flooding the image accordingly, one can characterize
each contour of the image by its frequency of appearance in the
associated segmentations. We obtain similar results with com-
putations made directly on graphs following the nomenclature
presented in section 2.1.

Moreover, we can define many ways to generate markers,
depending on the probability law used to implant them, but also
on their sizes or shapes if they are non-points. Each particular
mechanism favors the emergence of a certain type of regions
to the detriment of others. Keen readers are invited to refer to
[10] for more details. We take advantage of this versatility to
compute new dissimilarity values that are more linked with the
semantic information present in the image.

To summarize, departing from a tree which valuations are
those of the initial graph, one obtains a tree with identical struc-
ture but different edges valuations. To go further, this new tree
can then be used as a departure point for a similar construction
but based upon another type of markers and another random
distribution law of them. We call this process composition of
hierarchies.

Note that to each pair of markers and distribution corre-
sponds a new hierarchy of partitions. So that we now wonder,



(a) I (b) λGrad

(c) λSSurf(λGrad) (d) λSVol(λGrad)

(e) λ(SSurf,ε→)(λGrad) (f) λ(SSurf,ε↑)(λGrad)

Fig. 3. The indexed hierarchies are illustrated by their saliency function λ. ε◦ denotes
the erosion with a circle of size four as structuring element. ε→ denotes the erosion
with a horizontal segment of size four as structuring element. ε↑ denotes the erosion
with a vertical segment of size fifteen as structuring element

for a given segmentation task, which one of these hierarchies
approaches us more to our final purpose, i.e. to obtain a
representative partition of the analyzed scene.

The subject of our paper is to present, for given segmentation
task and images set, a procedure enabling us to automatically
select pertinent hierarchy and cut level in order to get an
adequate segmentation.

In our paper, we get a partition from a hierarchy by thresh-
olding the highest edges as described above. A marker-based
segmentation can be applied to the result as well and other ap-
proaches have been proposed, such as interactive segmentation

or energy minimization techniques [4].

2.4. Finding a well-suited hierarchy and cut level from a
training set

We have now many ways to interrogate our images using
different combination of hierarchies. A segmentation of the
image is given by choosing a level of a hierarchy applied
to this image. Although, it is hard to know, for a given set
of images, which hierarchy and which level of this hierarchy
would give good results regarding the segmentation task. It is
common that images to segment share similar properties, due
to their nature or to the tools allowing us to visualize them,
as for example for cells images in microscopy, or bones and
tissues images in radiography. To facilitate the obtention of a
satisfying segmentation, it is in our interest to find a hierarchy
that takes into account these shared properties amongst each
images collection. In a tailor approach, we thus propose a
methodology to automatically select a pertinent hierarchy and
a good cut level of it for a given set of homogeneous images, so
that a suitable segmentation can be obtained for a new image of
the same kind without effort.

Let us say we have at our disposal a score(I, (H, λ))
to judge the quality of a segmentation (H, λ) obtained for an
image I. Note that (H, λ) is the partition obtained after setting
the value of the indexed hierarchy (H,λ) to λ. Thus, we would
like to find the best hierarchy and the best cut level λ according
to the score evaluated on a training set of images. Formally,
given a training set T = {I1, . . . , I|T |} and a set of indexed
hierarchies H = {(H1,λ1), (H2,λ2), . . . , (H|H|,λ|H|)},
we are interested in finding the hierarchy H and cut level λ
that minimize the score for the training set, i.e.,

(H∗, λ∗) := argmin
(H,λ∈λ)∈H

T∑
i=1

score(Ii, (H, λ)). (1)

Let us consider a set of homegenous images, that we
subdivide into training and testing subsets, and a set of indexed
hierarchies H (possibly composition of hierarchies as in Section
2.1). We take advantage of the low computational cost of
our approach (only involving updates in the MST) to find the
optimal hierarchy in (1) by an exhaustive search on the training
subset. We call this learned hierarchy the model hierarchy.

To test its pertinence, we apply it on the testing subset. For
each test image I, we can also find by an exhaustive search as
well the best possible hierarchy and cut level, designated as the
oracle:

(Horacle, λoracle) := argmin
(H,λ∈λ)∈H

score(I, (H, λ)). (2)

One can say we have effectively found a good model
hierarchy for the set of images if the difference between the
scores obtained for the model 1 and the oracle 2 is on average
low on the test subset.



3. EXPERIMENTAL RESULTS
We consider in this work all combinations up to depth two of
the following SWS hierarchies: watershed hierarchy (or gra-
dient based), surface-based, volume-based, surface-based after
erosion and volume-based after erosion.

3.1. Type of Scores
The model proposed in the previous section is suitable for any
score that we want to minimize (or maximize) in order to get
a good segmentation. To test this model, we use two different
scores.

The first score used is a Mumford-Shah score [11], so
that the problem we want to solve is an energy minimization
problem. This score contains two terms, a data fidelity term
and a regularization term: by climbing in the hierarchy towards
coarser levels, the value of the first term increases and the value
of the second one decreases. Both terms are linked by a scale
parameter. It has this form:

MS(π = (I,H, λ)) =
∑
Ri∈π

var(Ri) + sC(π), (3)

where var(Ri) represents the total variance of the image in
the region Ri of the partition π = (I,H, λ), Cπ represents the
length of the contours present in the partition π, and s is a scale
parameter that allows to have a trade-off between data fidelity
and a simplification of the image.

The second score that we used is a new metric called
“weighted human disagreement rate”(WHDR), introduced in
[12] to evaluate intrinsic decomposition results. It is associated
with the large-scale public database, Intrinsic Images in the Wild
(IIW), built in [12], and composed of 5230 manually annotated
images of complex real indoor scenes. WHDR measures the
level of agreement between the judgements made by algorithms
being evaluated and those of humans. The cut of the hierarchy
allows us to obtain a kind of reflectance image for each test
image and so to use this score to evaluate it. The WHDR varies
between 0 and 1, being close to 0 when the reflectance image is
consistent with human judgment, and close to 1 otherwise.

3.2. Results
In a first approach, we tested our strategy with a set of cells
images for the Mumford-Shah score, and with homogeneous
subsets of images from the IIW database, of bedrooms, bath-
rooms and people. Some visual results can be found on Figs.4
and 5.

For each set of images, we train our system on a subset to
learn the best hierarchy among any hierarchy or combination
of two hierarchies presented before, which provides us with a
model hierarchy. Then, for each image of the test subset, we
compute the optimal hierarchy for this precise image, that is the
oracle hierarchy, the score attached to it, as long as the score
given by the model hierarchy on this test image. A summary of
the results for the WHDR score is given in Table 1.

Furthermore, we can have insights about why a hierarchy
has been chosen for a given set of images. For the cells images,

Database µ(WHDRoracle) µ(WHDRmodel) µ(error) σ(error)
Bathrooms 0.154 0.178 0.024 0.025
People 0.282 0.133 0.148 0.093
Bedrooms 0.125 0.237 0.112 0.107

Table 1. Mean and standard deviation of the error between oracle and model, i.e.
the difference between WHDRmodel and WHDRoracle, and averages of the scores for
the oracle and model for the different test databases and the WHDR measure.

(a) Some examples in the training set

(b) I (c) model (d) oracle

(e) I (f) model (g) oracle

(h) I (i) model (j) oracle

Fig. 4. Results on some examples of cells, for a Mumford-Shah score with a scale
parameter s = 1.168. (b),(e),(h) are images from the testing set, (c),(f),(i) the model
segmentations and (d),(g),(j) the oracle segmentations.

the model hierarchy found by the algorithm is a composition of
a volumic SWS followed by a surfacic SWS. We can interpret it
as a first step eliminating non pertinent objects with a trade-off
between area and gradient, and a second pass emphasizing the
cells based on their surface, since it is often of the same order.
For the IIW images, the hierarchy selected is a composition of
volumic SWS, with different sizes and orientations for structur-
ing elements depending of the dataset. One can interpret that the
type of objects usually present in the image differs regarding the
scenes, and thus the adaptive hierarchies depend on the forms
found in the images. Surfacic SWS are not very pertinent here
since there is a wide variety of objects of different sizes in the
images.



(a) Some examples in the training set

(b) I (c) model (d) oracle

(e) I (f) model (g) oracle

(h) I (i) model (j) oracle

Fig. 5. Results on some examples of Intrinsic Images in the Wild, for a WHDR
score.(b),(e),(h) are images from the testing set, (c),(f),(i) the model segmentations
and (d),(g),(j) the oracle segmentations.

4. CONCLUSIONS
In this paper we have presented a novel approach to compose
hierarchies of segmentations. The proposed workflow has been
evaluated for a difficult task: the obtention of the best hierarchy
and cut to perform image simplification given an evaluation
score. To go further, several enhancements of the system are
conceivable. One could use combinations of hierarchies longer
than two. The first scores here used may also be replaced by
other ones, more adapted for a given task, for example a score
to use for interactive segmentation translating the difficulty for
the user to get the desired result from the obtained segmenta-
tion. One could also imagine using a similar methodology to
characterize sets of homogeneous images.
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