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a b s t r a c t 

The Langevin function is defined by L (x ) = coth (x ) − 1 /x . Its inverse is useful for many applications and 

especially for polymer science. As the inverse exact expression has no analytic representation, many ap- 

proximations have been established. The most famous approximation is the one traditionally used for 

the finitely extensible non-linear elastic (FENE) dumbbell model in which the inverse is approximated 

by L −1 (y ) = 3 y/ (1 − y 2 ) . Recently Martin Kröger has published a paper entitled ‘Simple, admissible and 

accurate approximations of the inverse Langevin and Brillouin functions, relevant for strong polymer de- 

formation and flows’ (Kröger, 2015) in which he proposed approximations with very reduced error in 

relation to the numeric inverse of the Langevin function. The question we aim to analyze in this short 

communication is: when one uses the traditional approximation rather than the more accurate one pro- 

posed by Kröger is that really significant regarding the value of the probability distribution function (PDF) 

in the frame work of a kinetic theory simulation? If yes when we move to the upper scale by evaluating 

the value of the stress, can we observe a significant difference? 

By making some simple 1D simulations in homogeneous extensional flow it is demonstrated in this 

short communication that the PDF prediction within kinetic theory framework as well as the macroscopic 

stress value are both affected by the quality of the approximation. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The Langevin function is defined as 

 (x ) = coth (x ) − 1 /x (1)

The inverse Langevin function is used in rheology of polymer

uspension and in the molecular stress function theory. It results

rom the non-Gaussian statistical theory of rubber elasticity as the

ntropic force developed by polymer chains. When chain length

pproaches its maximal value corresponding to a fully stretched

tate, the chain force tends to infinity which implies asymptotic

ehavior of the inverse function near the value y = 1 . The inverse

angevin function cannot be represented in an explicit form and

ecessitates an approximation using some series that uses non-

ational or rational functions. For that, an accurate approximation

f this function can be based on a high order series expansion. A

igh order series expansion is an easy way to characterize a func-

ion that cannot be expressed in a closed form. There is a corre-

ation between the number of expansion terms and the accuracy
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elated to the convergence rate. The exact value can be sometimes

ifficult to attain. An example of such approaches can be found in

5] where the inverse Langevin function is represented by a Tay-

or series expansion around y = 0 based on the first four nonzero

oefficients 

 

−1 
Kuh 

(y ) = 3 y + 

9 

5 

y 3 + 

297 

175 

y 5 + 

1539 

875 

y 7 + O (y 9 ) (see [5]) (2)

Near the singularity point y = 1 the Taylor series cannot still

ccurately describe the behavior of the inverse Langevin function.

n this case, an approximation by a rational function defined as

 fraction of polynomials can be advantageous since it is able to

eproduce the asymptotic behavior. Some examples of approxima-

ions that can be found in the literature are listed below [6,7] : 

 

−1 
Tre 

(y ) = 

3 y 

1 + 0 . 2 y 6 − 0 . 6 y 2 − 0 . 2 y 
(see [7]) (3) 

 

−1 
Puso 

(y ) = 

3 y 

1 − y 3 
(see [6]) (4) 

 

−1 
Coh 

(y ) = y 
3 − y 2 

1 − y 2 
(see [2]) (5)
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The most famous approximation is the one introduced by

Warner in 1972 [8] traditionally called the FENE approximation. 

L −1 
FENE 

(y ) = 

3 y 

(1 − y 2 ) 
(6)

In this work we are going to focus our attention on the tradi-

tional FENE approximation which will be referred to in the results

as ‘FENE’. Our attention will also be focused on the two approx-

imations proposed by Körger in [4] that will be respectively re-

ferred to as ‘Kr1’ and ‘Kr2’ 

L −1 
Kr1 

(y ) = 

3 y 

(1 − y 2 )(1 + y 2 / 2) 
(7)

L −1 
Kr2 

(y ) = 

3 y − y 
5 
(6 y 2 + y 4 − 2 y 6 ) 

(1 − y 2 ) 
(8)

Cohen approximation [2] had been chosen from the mentioned

four approximations to be added to our illustrations because it has

the best performance from this set of Eqs. (2) –(5) (as discussed in

the mentioned Ref. [4] ). This paper is organized as follows: first the

main equations of the kinetic theory framework are recalled, then

the resolution technique is briefly described and finally results are

discussed. 

2. Polymer kinetic theory equations 

The non-rigid dumbbell model consists of two beads connected

by a spring connector. The bead serves as an interaction point with

the solvent, and the spring contains the local stiffness depending

on local stretching (see [1] for more details). 

The dynamic of the chain is governed by hydrostatic, Brownian,

and connector forces. If we denote by ˙ r 1 and 

˙ r 2 the velocities of

the two beads located at positions r 1 and r 2 , these three contri-

butions can be easily identified in the three terms of each of the

following equation: 

−ζ ( ̇ r 2 − v 0 − κ · r 2 ) − k B T 
∂ 

∂r 2 
( ln �) − F c = 0 (9)

−ζ ( ̇ r 1 − v 0 − κ · r 1 ) − k B T 
∂ 

∂r 1 
( ln �) + F c = 0 (10)

where ζ is the drag coefficient, v is the velocity field, v 0 is an aver-

age velocity, κ is the velocity gradient tensor ( κi j = ∂ v i /∂ x j ), k B is

the Boltzmann constant, T is the absolute temperature and �( x ) is

the probability distribution function for a dumbbell connector vec-

tor x = r 2 − r 1 . From Eqs. (9) and (10) we can derive the following

equation: 

˙ x = κ · x − 2 

ζ

(
k B T 

∂ 

∂x 

( ln �) + F c (x ) 

)
(11)

The connector force can take different forms leading to different

kinetic models. The connector force is given by: 

F c (x ) = 

h 

3 

L −1 
(

x 

x 0 

)
x (12)

where x = | x | , h is the spring coefficient and x 0 is the maximum

spring length. A particularity of this model is that there is no clo-

sure approximation able to substitute the microscopic description

by an equivalent constitutive macroscopic equation [3] . The associ-

ated evolution of the distribution function can be written as: 

∂�

∂t 
= − ∂ 

∂x 

·
{ (

κ · x − 2 

ζ
F c (x ) 

)
�

} 

+ 

2 k B T 

ζ

∂ 2 �

∂x 

2 
(13)

The problem defined by Eq. (13) has a characteristic relaxation

time θ = ζ / 4 h and a dimensionless finite extensibility parame-

ter b = hx 2 
0 
/k B T . Thus vector x can be made dimensionless with√ 

k B T /h , κ with 1/ θ (so it can be viewed as a Weissenberg number

We ), time with θ and the polymer stress tensor with n c k T where
B 
 c is the number of chains in a unit volume. Consequently, the di-

ensionless form of problem (13) writes: 

∂�

∂t 
= − ∂ 

∂x 

·
{ (

κ · x − 1 

2 

H(x ) x 

)
�

} 

+ 

1 

2 

∂ 2 �

∂x 

2 
(14)

here H ( x ) becomes the dimensionless connector force, that in the

ENE model results: 

 FENE (x ) = 

1 

1 − x 2 /b 
(15)

In order to take into account the Kröger approximations this

xpression becomes 

 Kr1 (x ) = 

1 

(1 − x 2 /b)(1 + x 2 / (2 b)) 
(16)

r 

 Kr2 (x ) = 

1 − 1 
15 

(6 x 2 /b + x 4 /b 2 − 2 x 6 /b 3 ) 

1 − x 2 /b 
(17)

nd in the same way the Cohen approximation gives the following

unction: 

 Coh (x ) = 

1 − x 2 / (3 b) 

1 − x 2 /b 
(18)

o be able to evaluate exactly the accuracy of these approxima-

ions we are going to establish a reference solution using the exact

nverse of the Langevin function. In this case the function H Exact ( x )

ill be calculated using a Newton’s method. Another alternative

onsists to use the analytic (but long expression) for an excellent

pproximation to the exact inverse Langevin which is in [4] . These

wo approaches gives exactly the same results. 

Moreover, a normalization condition is associated with the

robability distribution: 
 

�(x ) dx = 1 (19)

Finally, the relation between statistical distribution of dumbbell

onfigurations and the polymer stress τp is provided by Kramers

xpression [1] 

p = 〈 H(x ) xx 〉 − I = 

∫ 
�(x )(H(x ) xx ) dx − I . (20)

I being the unit tensor (takes the value 1 in the 1D case). 

We must notice with respect to Eq. (14) that this equation de-

nes the time evolution of the distribution function, whose inte-

ration requires to specify the initial distribution denoted by �0 .

hus, a reasonable choice lies in taking as initial distribution the

quilibrium steady state related to a null velocity gradient. That

istribution can be obtained by solving the following equation: 

∂ 

∂x 

·
{ (

1 

2 

H(x ) x 

)
�0 

} 

+ 

1 

2 

∂ 2 �0 

∂x 

2 
= 0 (21)

The resulting distribution �0 will be considered as the initial

ondition. 

. Finite Element resolution technique 

We consider simple flows characterized by homogeneous veloc-

ty gradients, which implies that the previous material derivative

educes to the partial derivative. Taking into account the homoge-

ous gradient of velocity, no discretization in physical variables is

equired, and therefore, we proceed by discretizing with respect to

he conformation coordinates. 

∂�

∂t 
+ E 0 (x )� + E 1 (x ) 

∂�

∂x 

− 1 

2 

∂ 2 �

∂x 

2 
= 0 (22)
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Fig. 1. Steady state PDF and transient stress for We = 1 and b = 10 . 
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Fig. 2. Steady state PDF and transient stress for We = 10 and b = 10 . 
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From a practical point of view, the configuration domain � is

ounded. This domain is chosen such that the distribution func-

ion can be assumed vanishing on its boundary. Firstly, the prob-

em is formulated in the Finite Element framework using a weight-

ng function �∗
 

�
�∗ d�

dt 
d� + 

∫ 
�

�∗E 0 (x )�d�

+ 

∫ 
�

�∗E 1 (x ) 
∂�

∂x 

d� −
∫ 
�

1 

2 

�∗ ∂ 2 �

∂x 

2 
d� = 0 

here 

 0 (x ) = 

∂ 

∂x 

·
(
κ · x − 1 

2 

x H(x ) 
)

 1 (x ) = κ · x − 1 

2 

x H(x ) 

The Galerkin Finite Element discretization writes 

(x ) = 

n ∑ 

i =1 

N i (x ) �i (24) 

here n is the total number of nodes, N i are compact support

hape functions for each node i . They take the value 1 for the

ode i and vanish for all other nodes (see for example [9] for more

etails). Due to the advection–diffusion character of Eq. (23) an

ppropriate stabilization of the Finite Element scheme is needed

o avoid numerical instabilities induced by the convection term.

n upwinding formulation is considered here, which modifies the

eighting function 

∗(x ) = 

n ∑ 

i =1 

N i (x ) �i (25) 
ith 

 i (x ) = N i (x ) + 

β	x 

2 

E 1 (x ) 

| E 1 (x ) | ·
∂N i 

∂x 

(x ) (26)

β is related to the local Peclet number and given by 

= coth ( Pe ) − 1 

Pe 
(27) 

here the local Peclet number is calculated by 

e = | E 1 (x ) | 	x (28)

x being the local distance between two nodes of the mesh. The

ntegration of Eq. (23) allows to obtain a linear system that has to

e solved at each time step. 

∗T 
M 

˙ � + �∗T 
G � = 0 (29)

here 

 i j = 

∫ 
�

N i (x ) N j (x ) d�

G i j = 

∫ 
�

E 0 (x ) N i (x ) N j (x ) + E 1 (x ) N i (x ) 
∂ N j (x ) 

∂x 

+ 

1 

2 

∂N i (x ) 

∂x 

∂N j (x ) 

∂x 

d�

In the framework of an Euler implicit time integration scheme

ith a time step 	t , the updating of the PDF can be done using: 

t+	t = (M + 	tG ) −1 
M �t (30)
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Fig. 3. Steady state PDF and transient stress for We = 1 and b = 50 . 
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4. Results and discussion 

The two parameters used in the simulation are the Weissenberg

number We and the parameter characterizing the chain length b .

Two values are considered for the Weissenberg number (W e = 1

and 10) and also for the parameter b (b = 10 and 50). Hence,

four parameter combinations are considered. In all of the re-

sults presented below the two approximations ‘Kr1’ and ‘Kr2’ are

found to be similar and very close to the exact solution. For the

PDF steady state and the transient stress the representations re-

lated to both Kröger’s models are practically identical to the ex-

act model. The Cohen model exhibits small differences. However

the behavior of the FENE model (the dashed line) is fundamentally

different. 

In the following figures it is impossible to distinguish between

the ‘Exact’, the ‘Kr1’ and the ‘Kr2’ curves as they are practically

superposed. Fig. 4 shows a zoomed view in order to highlight the

differences between the curves. 

Fig. 1 shows that for W e = 1 and b = 10 the PDF steady state

solution exhibits a notable error with the FENE approximation. The

extreme value of the FENE curve is lower and shifted to the left

in relation to the other models. Also the steady state stress value

shows a relative difference of the order of 20% compared to the

exact value. 

When the Weissenberg number is increased (W e = 10 , b = 10)

as shown in Fig. 2 , the same tendency is observed in the PDF

steady state solution. But a fundamental difference in the transient

stress can be seen. In fact when looking at the time interval be-

tween 0.1 and 0.3 a notable difference in the slope of the curves

for the FENE model and the others can be seen. This shows how
he quality of the inverse approximation can significantly modify

he apparent relaxation time and gives a warning concerning the

se of the FENE approximation in similar conditions. 

For Figs. 3 and 4 simulations have been performed with W e =
 , 10 and b = 50 . It can be observed that when the value of b is

ncreased, the FENE shift in the PDF curves becomes more pro-

ounced. Although the tendency in the stress evolution seems to

e similar, the value of the steady state relative error remains large

of the order of 20% for W e = 1 ). As some of the simulations re-

ults are similar, an accurate estimation of the error for the dif-

erent models is made using two numerical criteria: the first one

s related to the difference in the steady state PDFs and the sec-

nd one is related to the extra stress value (characterizing the

MFlambard
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Table 1 

Comparison of errors on the PDF for the different approximations. 

Err � We = 1 , 

b = 10 

We = 10 , 

b = 10 

We = 1 , 

b = 50 

We = 10 , 

b = 50 

We = 100 , 

b = 50 

We = 0 . 1 , 

b = 50 

FENE 34 .38 59 .16 75 .95 100 .0 99 .29 1 .013 

Kr1 1 .027 1 .003 2 .894 0 .803 0 .103 0 .146 

Kr2 0 .247 0 .439 0 .807 0 .394 0 .050 0 .089 

Cohen 6 .382 1 .805 15 .76 2 .433 0 .265 0 .239 

Table 2 

Comparison of errors on the stress value for the different approximations. 

Err τ We = 1 , 

b = 10 

We = 10 , 

b = 10 

We = 1 , 

b = 50 

We = 10 , 

b = 50 

We = 100 , 

b = 50 

We = 0 . 1 , 

b = 50 

FENE 20 .27 11 .36 20 .56 1 .696 3 .160 3 .695 

Kr1 0 .169 0 .674 0 .519 0 .010 0 .033 0 .039 

Kr2 0 .119 0 .609 0 .166 0 .004 0 .027 0 .616 

Cohen 3 .706 0 .763 3 .738 0 .030 0 .036 1 .198 
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[  

[  

[  

[  

[  
acroscopic scale). The two error definitions are: 

rr � = 100 

√ ∫ 
�(�∞ 

FENE, Kr1, Kr2, Coh 
− �∞ 

Exact 
) 2 d�√ ∫ 

�(�∞ 

Exact 
) 2 d�

(31) 

rr τ = 100 

| τFENE,Kr1,Kr2,Coh − τExact | 
τExact 

(32) 

The calculation of these errors is summarized in Tables 1 and 2 .

he two error estimations, in terms of stress and PDF, show gen-

rally the same tendencies and confirm the previously discussed

onclusions. 

In order to observe the effect of the We number limit values

wo columns have been added to Tables 1 and 2 . These columns

how the results of simulations with b = 50 and W e = 100 , 0 . 1 .
his limit analysis confirms the previous simulations and confirms

he robustness of Kröger’s approximation in relation to the FENE

ne. The Cohen approximation in this different case seems to be

cceptable although it does not exceed Kröger’s approximations in

erms of accuracy. 

. Conclusion 

The analysis of the FENE approximation for dilute polymer ki-

etic theory confirms its poor quality in terms of the PDF predic-

ion as well as in terms of stress calculation. This could be harmful

hen this model is used in a micro-macro simulation. For all those

ho are interested in computational rheology it is henceforth rec-

mmended to use one of the two approximations provided by Eq.

7) or (8) that are not much more expensive to write or to imple- 

ent than Eq. (6) . 
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