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Abstract

Two components are considered, which are subject to common ex-

ternal and possibly fatal shocks. The lifetimes of both components are

characterized by their hazard rates. Each shock can cause the immediate

failure of either one or both components. Otherwise, the hazard rate of

each component is increased by a non fatal shock of a random amount,

with possible dependence between the simultaneous increments of the two

failure rates. An explicit formula is provided for the joint distribution of

the bivariate lifetime. Aging and positive dependence properties are de-

scribed, thereby showing the adequacy of the model as a bivariate failure

time model. The influence of the shock model parameters on the bivari-

ate lifetime is also studied. Numerical experiments illustrate and complete

the study. Moreover, an estimation procedure is suggested in a parametric

framework, under a specific observation scheme.
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1 Introduction

Components are considered, which are made dependent through shocks arising

from a common external environment. Except for these shocks, the components

are assumed to evolve independently. The components may fail either when

the shocks occur or between them. Each shock may hence lead to simultaneous

failures, also called common cause failures. In practice, there are many possible

causes for such shocks. For example, according to [15], they can be due to

“interfaces, the environment, and major adverse events. The inter-

faces include power, cooling, material inputs, and external controls.

The environment can produce excess temperature, pressure, vibra-

tion, impact, noise, and contamination. Events include earthquake,

tsunami, hurricane, tornado, flood, and blizzard.”

According to [20], such shocks can also be due to “the failure of an external

piece of hardware (... such as a pipe leak), or a human error (... such as the

miscalibration of an instrument).” Note also that according to [15], “about ten

per cent of all failures are usually identified as common cause.”

A classical way to model common cause failures is to use the binomial fail-

ure rate (BFR) model introduced in [35] (see also [3]), where each unit can fail

independently or due to a common shock, with fatality for the different units

determined by independent Bernoulli trials, and where the shocks arrive accord-

ing to an independent homogeneous Poisson process. This model has proved its

usefulness in applications; see, e.g., [3, 35] and references therein. However, it

has also been seen to be too restrictive in several ways: First,“the assumption

that the components will fail independently of each other, given that a shock

has occurred, represents a rather serious limitation, and this assumption is often

not satisfied in practice” [30, p. 223]. Secondly, the only dependence between

components included in the BFR model is due to the possibly synchronized

failures whereas, according to [30, p. 213], “even if common cause failures are

caused by a common cause, they do not need to occur at the same time. A

rather long time between failures does not necessarily mean that there is no

dependency between the failure events.”

Indeed, one can think that a shock can simultaneously weaken components

without necessarily entailing their immediate failures, e.g., think of a temporary

high temperature/voltage/pressure... This situation can also reflect the case of

some components of an aircraft engine, which are subject to external shocks

during takeoff and landing. The shocks can simultaneously increase the deterio-

ration of the components without necessarily leading to their immediate failure.

Examples are not restricted to the reliability domain either. In insurance, [11]

highlights the necessity of taking into account some dependence between the

lifetimes of husband and wife (or twins), because of the common shocks (for

2



example accidents or contagious diseases) that they may suffer in their common

life. There is thus a need for describing such situations. As will be seen in the

following, the model proposed in this paper does not share with the BFR model

the two above mentioned restrictions, in addition to improving over it on several

other points.

Many other shock models than the BFR have been developed in the reli-

ability literature; see, e.g., [9, 23, 29, 34]. In these writings, common cause

failures are typically described through the Marshall–Olkin multivariate expo-

nential distribution family [24] or extensions thereof. In the bivariate case, three

independent homogeneous Poisson processes govern the occurrence of shocks,

which all are fatal. Two processes impact a single component each while the

third one impacts both components simultaneously. This model is fundamental

in reliability theory and it remains an important source of inspiration for much

research; see, e.g., [4, 5, 13, 18, 21, 22, 36]. In cumulative shock models [25],

a shock simultaneously increases some intrinsic characteristics (such as hazard

rate, deterioration level, age, etc.) of the components, with possible dependence

between the simultaneous random increments.

Recently, an approach for a realistic shock model has been studied in [6].

This article considers a univariate model that takes into account shocks with a

mixed effect: a shock can be fatal to the system with a probability depending on

the shock’s arrival time; a non fatal shock increases the system failure rate of a

random increment. An extension of this model to multi-component systems has

yet to be considered in full generality. Exceptions are [5] and [27] which both

provide an extension to the case of competing soft and sudden failures, where

soft failures refer to the reaching of some critical threshold for some degradation

level, and sudden failures to accidental failures, characterized by a failure rate.

In [27], the authors are mainly interested in the univariate survival function of

the competing risks and in the influence of the stressing environment on the

system lifetime. As for [5], it focuses on the bivariate survival function of the

competing soft and sudden failures, and on the induced conditional properties.

The authors also consider a condition-based preventive maintenance policy.

The present paper deals with a complex bivariate failure time model where

both lifetimes are characterized by failure rates (only sudden failures). Con-

trary to [27], the fatality of a shock may differ between the components. Also,

unlike the BFR model, the Bernoulli trials governing the fatality for the two

components are not independent and even non fatal shocks can entail some

dependence between components. Here, a non fatal shock increases the fail-

ure rates of the surviving components of a random increment (simultaneous

weakening of the components), with possible dependence between simultaneous

increments. No assumption is made on the joint distribution of simultaneous in-

crements so that the model includes the possibility of getting increments of the
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form (0, x2), (x1, 0) or (x1, x2) (with x1, x2 > 0) depending on the realization.

Hence, a non-fatal shock can act on a single component or on both of them,

simultaneously. As in [5, 27], the probability for a shock to be fatal depends

on the shock’s arrival time and the occurrence of shocks is modeled through a

non-homogeneous Poisson process.

The paper is organized as follows. The model is specified in Section 2. An

explicit formula for the joint distribution of the bivariate lifetime is provided in

Section 3, as well as aging and positive dependence properties (Bivariate New

Better than Used property and Multivariate Total Positivity of order two). The

influence of the shock model parameters on the bivariate lifetime is also studied.

Numerical experiments are presented in Section 4 which not only illustrate the

theoretical results and but also show that stronger results do not hold under the

same assumptions. An attempt is made in Section 5 to provide a few elements

for parametric estimation of the model under a specific observation scheme.

Concluding remarks are given in Section 6.

2 The model

Two components are considered. The lifetime of component i = 1, 2 is char-

acterized by its intrinsic hazard rate function hi(t) or by the corresponding

cumulative hazard rate function Hi(t) =
∫ t

0
hi(u)du. Stresses due to the ex-

ternal environment come in the form of shocks, independently of the compo-

nents’ intrinsic deterioration. Except for shocks, the components are assumed

to behave independently. The shocks occur at time T1, T2, . . . according to a

non-homogeneous Poisson process (Nt)t≥0 with intensity λ(t) and cumulative

intensity Λ(t) =
∫ t

0
λ(x)dx. The nth shock, which occurs at time Tn, increases

the hazard rate of the ith component by a random amount V
(i)
n . The bivariate

increments V1 = (V
(1)
1 , V

(2)
1 ), V2 = (V

(1)
2 , V

(2)
2 ), . . . are assumed to be indepen-

dent and identically distributed (i.i.d.), as well as independent of the shocks

arrival times (Tn)n≥1. Simultaneous increments V
(1)
n and V

(2)
n may however be

dependent. Furthermore, a shock can be fatal, and can possibly induce the im-

mediate failure of either one or both components. The fatality of a shock does

not depend on the system intrinsic deterioration but depends on the shock’s

arrival time. The following notations are used:

p00 (Tn): probability that the shock at time Tn induces the simultaneous failure

of both components,

p11 (Tn): probability that the shock at time Tn induces no failure at all among

the two components,

p01 (Tn): probability that the shock at time Tn is fatal only for the first com-

ponent,
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p10 (Tn): probability that the shock at time Tn is fatal only for the second

component.

Therefore, p00(·) + p01(·) + p10(·) + p11(·) = 1 by definition.

The common distribution of the i.i.d. random vectors V1 = (V
(1)
1 , V

(2)
1 ), . . .,

V2 = (V
(1)
2 , V

(2)
2 ), . . . is denoted by µ(dv1, dv2). When subscript n is unnec-

essary, we drop it and set V =
(
V (1), V (2)

)
to be a generic copy of Vn =

(V
(1)
n , V

(2)
n ). For j = 1, 2, the distribution of V (j) is denoted by µj(dvj).

For i = 1, 2, we set (A
(i)
t )t≥0 to be the univariate compound Poisson process

defined, for all t ≥ 0, by

A
(i)
t =

Nt∑
n=1

V (i)
n ,

where an empty sum equals 0 by convention. We also introduce the bivariate

compound Poisson process (At)t≥0, where, for all t ≥ 0,

At = (A
(1)
t , A

(2)
t ) =

(
Nt∑
n=1

V (1)
n ,

Nt∑
n=1

V (2)
n

)
=

Nt∑
n=1

Vn.

Now, let F = σ(As, s ≥ 0) be the σ-field generated by (At)t≥0. Provided that

the ith (i = 1, 2) component is working up to time t, the conditional hazard

rate of this component at time t given F is

ri(t) = hi(t) +A
(i)
t .

For i = 1, 2, let τi be the lifetime of the ith component without taking into

account the possibility of fatal shocks and let ξi be the time of the first fatal

shock for the ith component. We have

E(1{τi>t}|F) = exp{−Hi(t)} exp

{
−
∫ t

0

A(i)
s ds

}
= exp{−Hi(t)} exp

{
−

Nt∑
k=1

V
(i)
k (t− Tk)

}

= exp{−Hi(t)} exp

{
−
∞∑
k=1

V
(i)
k (t− Tk)+

}
(1)

and

E(1{ξi>t}|F) =

Nt∏
k=1

qi(Tk)

where q1 (·) = p11 (·) + p10 (·) and q2 (·) = p11 (·) + p01 (·).
Given F , the random variables τ1 and τ2 are assumed to be conditionally

independent, and conditionally independent of ξ1 and ξ2. However, based on

the fact that the two components may fail simultaneously at each shock, ξ1 and
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ξ2 are not conditionally independent given F . Given F , their conditional joint

survival function is

E(1{ξ1>s}1{ξ2>t}|F) =



Nt∏
i=1

p11(Ti)

Ns∏
i=Nt+1

q1(Ti) if s ≥ t,

Ns∏
i=1

p11(Ti)

Nt∏
i=Ns+1

q2(Ti) if s < t

(2)

where an empty product is equal to 1 by convention.

Letting Y = (Y1, Y2) denote the bivariate lifetime of the two components, it

is easy to see that Yi = min(τi, ξi) for i = 1, 2.

3 Theoretical results

3.1 Joint survival function

Proposition 1 The joint survival function of Y = (Y1, Y2) is given by

F̄Y (s, t) =e−H1(s)−H2(t)−Λ{max(s,t)} exp
{∫ min(s,t)

0

µ̃(s− w, t− w)p11(w)λ(w)dw

+ 1{t≤s}

∫ s

t

µ̃1(s− w)q1(w)λ(w)dw + 1{t>s}

∫ t

s

µ̃2(t− w)q2(w)λ(w)dw
}

(3)

for all s, t ≥ 0, where µ̃ stands for the Laplace transform of the bivariate distri-

bution µ of V = (V (1), V (2)), defined, for all x1, x2 ≥ 0, by

µ̃(x1, x2) =

∫∫
R2

+

e−x1v1−x2v2µ(dv1, dv2) = E
(
e−x1V

(1)−x2V
(2))

,

and for i = 1, 2, the symbol µ̃(i) stands for the Laplace transform of the univari-

ate distribution µ(i) of V (i) defined, for all xi ≥ 0, by

µ̃i(xi) =

∫ ∞
0

e−xiviµi(dvi) = E
(
e−xiV

(i))
.

Proof. We have

F̄Y (s, t) = Pr(Y1 > s, Y2 > t)

= Pr(τ1 > s, τ2 > t, ξ1 > s, ξ2 > t)

= E
{

E(1{τ1>s}|F)E(1{τ2>t}|F)E
(
1{ξ1>s}1{ξ2>t}|F

)}
based on the conditional independence of τ1, τ2 and (ξ1, ξ2) given F .
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We first consider the case s ≥ t. Substituting (1) and (2) into the previous

equation, we get

F̄Y (s, t)

= e−H1(s)−H2(t)E
{
e−

∑∞
i=1 V

(1)
i (s−Ti)+e−

∑∞
i=1 V

(2)
i (t−Ti)+

Nt∏
i=1

p11(Ti)

Ns∏
i=Nt+1

q1(Ti)
}

(4)

= e−H1(s)−H2(t)E{e−
∑∞
i=1 ψs,t(V

(1)
i ,V

(2)
i ,Ti)}

where

ψs,t(v1, v2, w) = v1(s− w)+ + v2(t− w)+ − ln p11(w)1[0,t](w)− ln q1(w)1(t,s](w)

(5)

for all v1, v2, w ∈ R+.

The sequence (V
(1)
i , V

(2)
i , Ti)i≥1 can be seen as the points of a Poisson ran-

dom measure with intensity ν(dv1, dv2, dw) = µ(dv1, dv2)λ(w)dw; see, e.g.,

Corollary 3.5 in Chapter 6 of [7]. The formula for Laplace functionals of a

Poisson random measure (Theorem 2.9 in Chapter 6 of [7]) yields

E
{
e−

∑∞
i=1 ψs,t(V

(1)
i ,V

(2)
i ,Ti)

}
= exp

[
−
∫∫∫

R3
+

{
1− e−ψs,t(v1,v2,w)

}
ν(dv1, dv2, dw)

]
.

Substituting ψs,t by its expression given in (5), we get∫∫∫
R3

+

{1− e−ψs,t(v1,v2,w)}ν(dv1, dv2, dw)

= Λ(s) +

∫ t

0

{∫ ∞
0

∫ ∞
0

e−v1(s−w)−v2(t−w)µ(dv1, dv2)

}
p11(w)λ(w)dw

+

∫ s

t

{∫ ∞
0

∫ ∞
0

e−v1(s−w)µ(dv1, dv2)

}
q1(w)λ(w)dw

= Λ(s) +

∫ t

0

µ̃(s− w, t− w)p11(w)λ(w) +

∫ s

t

µ̃1(s− w)q1(w)λ(w)dw.

The case s < t is obtained by symmetry and this provides Formula (3).

Remark 1 One can easily derive the univariate lifetimes of both components.

For example, the survival function for the first component is

F̄Y1(s) = F̄Y (s, 0) = e−Λ(s)−H1(s)+
∫ s
0
µ̃1(s−w)q1(w)λ(w)dw.

This formula is stated in Theorem 1 from [6] and thus Proposition 1 appears as

a generalization of this theorem. Note, however, that the present use of Poisson

random measures allows for a shorter proof.
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Remark 2 Based on Formula (3), it is clear that the bivariate survival func-

tion F̄Y will generally not be differentiable at a point of the main diagonal

∆ = {(x, x) : x ∈ R+}. To be more specific, the distribution of Y admits a

non absolutely continuous part with support ∆ and an absolutely continuous

part for the remaining of the distribution, which writes:

PrY (ds, dt) = fY (s, s) ds δs (dt) + fY (s, t) ds dt

where δs (dt) stands for the Dirac mass at point s and where

fY (s, t) =


∂2

∂s ∂t F̄Y (s, t) if s 6= t

limh→0+
1

2hPr (s− h < Y1 ≤ s+ h, s− h < Y2 ≤ s+ h) if s = t.

In the most general case, fY (s, t) can be computed through the following:

fY (s, s) = lim
h→0+

1
2h{F̄Y (s+ h, s+ h)− F̄Y (s− h, s+ h)

− F̄Y (s+ h, s− h) + F̄Y (s− h, s− h)}

when s = t, and through numerical differentiation when s 6= t.

We now provide two examples where an explicit expression is available for

the joint survival function.

Example 1 Let h1 = h2 = 0 and assume that for all i, j = 0, 1, pi,j is constant,

as is the size increment, viz. V = (v1, v2) ∈ R2
+. This leads to

F̄Y (s, t) =e−Λ{max(s,t)} exp

{
p11

∫ min(s,t)

0

e−v1(s−w)−v2(t−w)λ(w)dw

+1{t≤s}q1

∫ s

t

e−v1(s−w)λ(w)dw + 1{t>s}q2

∫ t

s

e−v2(t−w)λ(w)dw

}
.

Specializing to λ (w) = eαw with α ∈ R\ {0,−v1,−v2,−v1 − v2}, we easily get

F̄Y (s, t)

= exp

{
−e

αmax(s,t) − 1

α
+ p11e

−v1s−v2t e
(v1+v2+α) min(s,t) − 1

v1 + v2 + α

}
× exp

{
1{t≤s}q1e

−v1s e
(v1+α)s − e(v1+α)t

v1 + α
+ 1{t>s}q2e

−v2t e
(v2+α)t − e(v2+α)s

v2 + α

}
.

Example 2 Let h1 = h2 = 0 and assume that for all i, j = 0, 1, pi,j is constant,

as is λ. The size V = (V (1), V (2)) of an increment has the Marshall–Olkin

distribution with parameters (λ1, λ2, λ12), so that its bivariate survival function
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is given, for all x1, x2 ≥ 0, by

F̄(V (1),V (2)) (x1, x2) = e−λ1x1−λ2x2−λ12 max(x1,x2);

see [24]. Using [13, Theorem 3.4] for the moment-generating function of the

Marshall–Olkin bivariate exponential distribution with parameter (α, λ1, λ2, λ12)

and letting α→∞, we get

µ̃(s, t) =
1

γ + s+ t

(
λ1γ2

γ2 + t
+

λ2γ1

γ1 + s
+ λ12

)
where γ = λ1 + λ2 + λ12, γ1 = λ1 + λ12, γ2 = λ2 + λ12 and, for i = 1, 2,

µ̃i(s) =
γi

γi + s
.

For s ≤ t, easy (but tedious) computations yield

F̄Y (s, t) = e−λt+p11λ
∫ s
0
µ̃(s−w,t−w) dw+q2λ

∫ t
s
µ̃2(t−w) dw

= e−λt
(

γ2 + t

γ2 − s+ t

γ − s+ t

γ + s+ t

)p11λ λ1γ2
γ−2γ2+s−t

(
γ1 + s

γ1

γ − s+ t

γ + s+ t

)p11λ λ2γ1
γ−2γ1−s+t

×
(
γ + s+ t

γ − s+ t

)p11λλ122 (
γ2 − s+ t

γ2

)q2λγ2
(with a similar expression for s > t). Furthermore, one has, for i = 1, 2,

F̄Yi(s) = e−λs
(
γi + s

γi

)qiλγi
.

3.2 A bivariate aging property

Let us first recall that the univariate lifetime Yi of a component with cumulative

hazard rate Hi has the New Better than Used (NBU) property if and only

if Hi is super-additive, i.e., Hi(xi + yi) ≥ Hi(xi) + H(yi) for all xi, yi ≥ 0,

which is equivalent to F̄Yi(xi + yi) ≤ F̄Yi(xi)F̄Yi(yi) for all xi, yi ≥ 0. This

property means that the lifetime of a new component is stochastically larger

than the lifetime of an older component (see, e.g., [19]) and it is a so-called

aging property. In the bivariate setting, there are different ways to define a

Bivariate New Better than Used (BNBU) property (see Section 8.5 in [19] for

example). We provide here sufficient conditions under which Y has the BNBU

property in the following sense:

F̄Y (s1 + s2, t1 + t2) ≤ F̄Y (s1, t1)F̄Y (s2, t2) (6)

for all s1, s2, t1, t2 ≥ 0 such that (s1 − t1)(s2 − t2) ≥ 0.
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Proposition 2 Assume that H1, H2, Λ are super-additive and that the func-

tions p11(w)λ(w) and qi(w)λ(w) (i = 1, 2) are non-increasing. Then Y is

BNBU.

Proof. For any s ≤ t, let us write

F̄Y (s, t) = e−H1(s)−H2(t)−Λ(t)+A(s,t)+B(s,t), (7)

where

A (s, t) =

∫ s

0

µ̃(s− w, t− w)p11(w)λ(w)dw,

B (s, t) =

∫ t

s

µ̃2(t− w)q2(w)λ(w)dw.

The objective is to prove (6). Let us first suppose that si ≤ ti for i = 1, 2.

Because H1, H2 and Λ are super-additive, we already know that

e−H1(s1)−H2(t1)−Λ(t1)e−H1(s2)−H2(t2)−Λ(t2) ≥ e−H1(s1+s2)−H2(t1+t2)−Λ(t1+t2).

Thus, using (7) for (s1, t1), (s2, t2) and (s1 + s2, t1 + t2), we can see that it is

sufficient to prove that

A (s1, t1) +A (s2, t2) ≥ A (s1 + s2, t1 + t2) , (8)

B (s1, t1) +B (s2, t2) ≥ B (s1 + s2, t1 + t2) . (9)

Writing
∫ s1+s2

0
=
∫ s1

0
+
∫ s1+s2
s1

, we have

A (s1 + s2, t1 + t2) = a (s1, s2, t1, t2) + b (s1, s2, t1, t2) (10)

with

a (s1, s2, t1, t2) =

∫ s1

0

µ̃(s1 + s2 − w, t1 + t2 − w)p11(w)λ(w)dw

≤
∫ s1

0

µ̃(s1 − w, t1 − w)p11(w)λ(w)dw

= A (s1, t1) (11)
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(by non-increasingness of µ̃) and

b (s1, s2, t1, t2) =

∫ s1+s2

s1

µ̃(s1 + s2 − w, t1 + t2 − w)p11(w)λ(w)dw

=

∫ s2

0

µ̃(s2 − u, t1 + t2 − s1 − u)p11(u+ s1)λ(u+ s1)du

≤
∫ s2

0

µ̃(s2 − u, t2 − u)p11(u)λ(u)du

= A (s2, t2) (12)

(setting u = w− s1 in the second line, and using the non-increasingness of both

p11(w)λ(w) and µ̃ for the inequality). Gathering (10), (11) and (12) provides

(8).

Inequality (9) can be proved in a similar way by writing∫ t1+t2

s1+s2

=

∫ t1+s2

s1+s2

+

∫ t1+t2

t1+s2

in B (s1 + s2, t1 + t2) and showing that the first (resp. second) term is smaller

than B (s1, t1) (resp. B (s2, t2)) under non increasingness of q2(w)λ(w).

The case si ≥ ti, i = 1, 2 is similar, given the non-increasingness of q1(w)λ(w).

These assumptions are quite natural to guarantee that Y is BNBU. In-

deed, the super-additivity of H1 and H2 states that without taking into account

the effect of the external environment, both components are NBU. The super-

additivity of Λ means that the shocks are more and more frequent. The de-

creasing property of the functions p11(w)λ(w), qi(w)λ(w), i = 1, 2 implies that

non-fatal shocks appear more and more rarely, and consequently, as shocks are

more and more frequent, that the probability of a fatal shock is increasing.

Remark 3 Specializing to s = t, it is easy to see that F̄Y (s, s) is the probability

that both components are still working at time s, so that F̄Y (s, s) appears as

the reliability of a two-unit series system at time s. Then, writing the BNBU

property for si = ti (i = 1, 2), it can be seen that, under the conditions of Propo-

sition 2, the lifetime of the series system has the (univariate) NBU property.

Now, recall that a stronger BNBU property is provided by

F̄Y (s1 + s2, t1 + t2) ≤ F̄Y (s1, t1)F̄Y (s2, t2) (13)

for all s1, s2, t1, t2 ≥ 0. One may consequently wonder whether this stronger

BNBU property (or the even stronger property from [26]) could be valid under

the assumption of Proposition 2. The answer is negative as will be shown in

Example 4; see Section 4.
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3.3 A positive dependence property

Given a bivariate random vector Y = (Y1, Y2), we recall that F̄Y is multivariate

totally positive of order 2 (MTP2) if

∀x,y∈R2
+

F̄Y (y)F̄Y (x) ≤ F̄Y (x ∨ y)F̄Y (x ∧ y)

or equivalently if

F̄Y (x1, x2)F̄Y (y1, y2) ≤ F̄Y (x1, y2)F̄Y (y1, x2)

for all x1 ≤ y1 and x2 ≥ y2.

We also recall that Y2 is said to be Right-Tail-Increasing in Y1, written

RTI(Y2|Y1), as soon as Pr(Y2 > x2|Y1 > x1) is non-decreasing in x1 for all

x2 ≥ 0. Finally, Y2 is said to be Left-Tail-Decreasing in Y1, written LTD(Y2|Y1),

as soon as Pr(Y2 ≤ x2|Y1 ≤ x1) is non-increasing in x1 for all x2 > 0. Both

RTI(Y2|Y1) and LTD(Y2|Y1) properties are positive dependence properties, which

imply association and positive quadrant dependence of Y ; see, e.g., [19, Chapter

9] for more details on these different notions.

Theorem 3 F̄Y is MTP2.

The proof of Theorem 3 is long and technical, and hence postponed to Ap-

pendix A.

As is well known, the MTP2 property of F̄Y entails that both RTI(Y2|Y1)

and RTI(Y1|Y2) properties are true; see, e.g., Theorem 8.5 in [14]. However,

as will be shown in Example 5 from Section 4, the LTD(Y2|Y1) property is not

always true. As the MTP2 property of FY implies that both LTD(Y2|Y1) and

LTD(Y1|Y2) properties are true, FY is not always MTP2, again by Theorem 8.5

in [14].

3.4 Influence of the shock model parameters on the bi-

variate lifetime

We now study the influence of different parameters on the bivariate lifetime.

To this end, two similar systems are considered (S and S̄, say), with identical

parameters except from one. An upper bar is added to all quantities referring

to the second system. (For instance, we use λ̄ (w) for the second system). The

bivariate lifetimes Y and Ȳ are next compared, using different stochastic orders

whose definitions are now recalled.

Let X = (X1, X2) and Y = (Y1, Y2) be two bivariate random vectors. Then

X is said to be smaller than Y with respect to the Upper Orthant (UO) order

12



(denoted by X ≤UO Y ) if

∀(x1,x2)∈R2
+

F̄X(x) ≤ F̄Y (x),

or equivalently (in the two-dimensional case) if

∀(x1,x2)∈R2
+

FX(x) ≤ FY (x).

Also, X is said to be smaller than Y in the sense of the Weak Hazard

Rate order (X ≤WHR Y ) if F̄Y (x)/F̄X(x) is non-decreasing with respect of

x ∈ {y ∈ R2
+ : F̄Y (y) > 0}). The random variable X is said to be weaker than

Y in the Hazard Rate sense (X ≤HR Y ) if

∀x,y∈R2
+

F̄Y (y)F̄X(x) ≤ F̄Y ( x ∨ y)F̄X(x ∧ y).

The HR order implies the WHR order.

Finally, X is said to be smaller than Y in the sense of the bivariate Laplace

transform order (denoted by X ≤LY ) if

∀s=(s1,s2)∈R2
+
LX (s) = E

(
e−s1X1−s2X2

)
≥ LY (s) = E

(
e−s1Y1−s2Y2

)
;

see [31]. Note in passing that [8] uses the reverse inequality.

The following result now shows that, as expected, the more frequent the

shocks, the shorter the bivariate lifetime Y .

Proposition 4 Let us consider two systems S and S̄ with the same parameters

except from the intensity of the non-homogeneous Poisson process. Assume that

λ(w) ≤ λ̄(w) for all w ≥ 0. Then Ȳ is smaller than Y in the sense of the

Hazard Rate order (Ȳ ≤HR Y ).

Proof. We first show that Ȳ ≤WHR Y . Note that F̄Ȳ (x)/F̄Y (x) = F̄Ỹ (x),

where Ỹ stands for the bivariate lifetime of a similar system to S and S̄ with

identical parameters, except from the intrinsic failure rates with h̃ = 0 and

the intensity of shocks, with λ̃ = λ̄ − λ. As F̄Ỹ (x) is non-increasing in x,

it is clear that F̄Y (x)/F̄Ȳ (x) is non-decreasing in x and Ȳ ≤WHR Y . Now,

remembering that F̄Y is MTP2 from Theorem 3, we conclude that Ȳ ≤HR Y

from Theorem 6.D.1 in [32].

Remark 4 As the HR order implies the UO order [32, Eq. (6.G.10)]) and as the

UO order implies the Laplace transform order (consequence of Theorem 6.G.14

in [32] in the bivariate case), we deduce from the previous result that if λ(w) ≤
λ̄(w) for all w ≥ 0, then Ȳ ≤UO Y and Ȳ ≤L Y as well. Based on [12], we also

conclude that

∀x∈R2
+

mȲ (x) = E(Ȳ − x|Ȳ > x) ≤ mY (x) = E(Y − x|Y > x),
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where mȲ (x) and mY (x) are the bivariate mean residual lifetimes of Ȳ and Y ,

respectively.

The next result shows that the larger the fatality of shocks, the shorter the

bivariate lifetime Y .

Proposition 5 For each t ≥ 0, let U (t) with distribution Pr {U (t) = (i, j)} =

pij (t) for all i, j ∈ {0, 1} and let Ū (t) be defined in the same way with respect

to the family {p̄ij (t)}i,j∈{0,1}. Let us assume that U (t) ≤UO Ū (t) for all t ≥ 0.

Then Y ≤UO Ȳ .

Proof. As U (t) ≤UO Ū (t), we know that for all i, j ∈ {0, 1},

Pr {U (t) ≥ (i, j)} ≤ Pr
{
Ū (t) ≥ (i, j)

}
.

Taking (i, j) = (1, 1) (resp. (1, 0), (0, 1)) this yields p11(t) ≤ p̄11(t) (resp.

p11(t) + p10(t) = q1(t) ≤ q̄1(t), p11(t) + p01(t) = q2(t) ≤ q̄2(t)). Therefore, one

has F̄Y (x) ≤ F̄Ȳ (x) for all x ∈ R2
+. Hence Y ≤UO Ȳ .

Example 7 from Section 4 shows that even if U (t) ≤WHR Ū (t) for all t ≥ 0,

then Y is not always smaller than Ȳ in the WHR sense.

The next and last result shows that the larger the increments of hazard rates

are at jump times, the shorter the bivariate lifetime Y is.

Proposition 6 Assume V to be smaller than V̄ in the sense of the bivariate

Laplace transform order (V ≤LV̄ ). Then Ȳ ≤UO Y .

Proof. Based on V ≤L V̄ , we have µ̃(x1, x2) ≥ ˜̄µ(x1, x2) and µ̃i(xi) ≥ ˜̄µi(xi)

for all xi ≥ 0 and i = 1, 2. Inserting these inequalities into Eq. (3) easily

provides the result.

Let us assume that V and V̄ have identical marginal distributions and remark

that Y and Ȳ then share the same property. Under this assumption and in the

present bivariate case, the concordance order is known to boil down to the UO

order; see [28] for more details on this notion. Also, the concordance order

measures the dependence between the margins of a random vector (with given

marginal distributions). In that case, the previous result means that the larger

the increments of hazard rates are at jump times (with respect to ≤L), the less

dependent the marginal lifetimes are. As the Laplace transform order is implied

by the concordance (or UO) order, we also derive that the more dependent

the increments of hazard rates are (V ≤C V̄ ), the less dependent the marginal

lifetimes are (Ȳ ≤C Y ).

Remark 5 As already noticed in Remark 3, F̄ (t, t) corresponds to the reliability

of a series system at time t. Then, all of the above comparison results entail

similar ones for the series system: if λ(w) increases, then the lifetime of the

14



Figure 1: Example 3, Joint survival function of Y

series system decreases with respect to the univariate HR order; if U(t) increases

with respect to the UO order, or if V decreases with respect to the Laplace order,

then the lifetime of the series system increases with respect to the usual stochastic

(or UO) order.

4 Numerical experiments

In all the following experiments, we take hi = 0 for i = 1, 2. In Examples 4,

6, 7 and 8, V = (V (1), V (2)) has a Marshall–Olkin distribution with parameters

(λ1, λ2, λ12) as in Example 2. In the other examples, we take V (i) = U (i) +

U (3), i = 1, 2, where U (1), U (2) and U (3) are independent and U (i) is gamma

or exponentially distributed for i = 1, 2, 3, where the parametrization of the

gamma distribution is such that

f(x) =
ab

Γ(a)
xa−1 e−bx1{x>0}.

Example 3 The parameters are: λ(x) = 2x, p11(x) = p01(x) = p10(x) = e−x/4

and the U (i)’s (i = 1, 2, 3) are gamma distributed with respective parameters

(1, 1), (2, 1) and (3, 1). The joint survival function of Y is displayed in Figure 1.

As expected (see Remark 2), the joint survival function F̄Y (s, t) is continuous

on R2
+ but it is not differentiable at points (s, s) of the main diagonal.

Example 4 The parameters are p01(x) = p10(x) = p11(x) = 1/4, λ(x) = 2 and

V is Marshall–Olkin distributed with parameters (1, 1, 1). The assumptions of

Proposition 2 are verified. We take s2 = 0.10 < t2 = 0.14 and we set

D (s1, t1) = F̄Y (s1, t1)F̄Y (s2, t2)− F̄Y (s1 + s2, t1 + t2).

15



Figure 2: Example 4, BNBU property, case s1 < t1 (left) and without condition (right)

Figure 3: Example 5, MTP2 property

The function D (s1, t1) is plotted in Figure 2 in the case where s1 < t1 (left)

and also removing this condition (right). We observe that, as expected, D (s1, t1)

remains non-negative on the left plot, which shows that Y is BNBU in the sense

of Proposition 2. However, this is no longer true when condition s1 < t1 is

removed. Hence, Y is not BNBU in the stronger sense provided by (13).

Example 5 The parameters are: λ(x) = ex, p11(x) = p01(x) = p10(x) =

e−x/4. Also, the U (i)’s (i = 1, 2, 3) are exponentially distributed with respective

means 1, 5 and 6. Taking y = (0.1, 0.675), the difference

d(x) = F̄Y (y)F̄Y (x)− F̄Y (x ∨ y)F̄Y (x ∧ y)

is plotted in Figure 3. We observe that it remains non-positive, which is coher-

ent with the MTP2 property from Theorem 3. Figure 4 (left) shows the right

tail RT (x1) = F̄Y (x1, x2)/F̄Y1
(x1) with respect to x1 for various values of x2.

Whatever x2 is, we observe that the right tail is always increasing (RTI (Y2|Y1)

property), which is coherent with the fact that F̄Y is MTP2 (see the lines follow-
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Figure 4: Example 5, RTI and not LTD property

Figure 5: Example 6, d(x) is non positive - influence of intensity

ing Theorem 3). However, the left tail LT (x2) = FY (x1, x2)/FY2(x2) is plotted

in Figure 4 (right) for x1 = 1.2 and we observe that it is not monotonic. The

LTD (Y2|Y1) property is consequently not true and the MTP2 property cannot

hold for FY in a general setting.

Example 6 The parameters are p01(x) = p10(x) = p11(x) = e−x/4 and V

is Marshall–Olkin distributed with parameters (1, 2, 1). We consider λ(x) =

x ≤ λ̄(x) = 2x, so that the assumptions of Proposition 4 hold true. Taking

y = (0.36, 0.2), the difference

d(x) = F̄Y (y)F̄Ȳ (x)− F̄Y (x ∨ y)F̄Ȳ (x ∧ y)

is always non-positive (see Figure 5). This means that Ȳ is weaker than Y in

the HR sense, in accordance with Proposition 4.
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Figure 6: Example 7 - Influence of fatality of shocks

Example 7 This example illustrates the influence of the fatality of shocks on

the bivariate lifetime as in Proposition 5. Let Y and Ȳ be the lifetimes cor-

responding to p11(x) = p10(x) = p01(x) = 1/6 and p̄11(x) = 1/2, p̄10(x) =

p̄01(x) = 1/6. The V (i)’s have a Marshall–Olkin distribution with parame-

ters (4, 4, 1) and the intensity is λ(x) = 1. We have U ≤UO Ū and, as ex-

pected from Proposition 5, the difference D = F̄Ȳ − F̄Y is always non-negative;

see Figure 6 (left). Accordingly, the bivariate lifetime Y is larger than Ȳ in

the sense of the UO order. However, taking x1 = 0.7, Figure 6 (right) shows

that r(x1, x2) = F̄Ȳ (x1, x2)/F̄Y (x1, x2) is not monotone with respect to x2. It

implies that Y and Ȳ are not comparable with respect to the WHR order (even

though U ≤WHR Ū is valid).

Example 8 This example illustrates the influence of the size of V , as measured

by the Laplace transform order; see Proposition 6. All parameters are the same

as in Example 4 except from a Marshall–Olkin distribution with parameters

(1, 1, 1) for V and with parameters (1, 1, 2) for V̄ . It is then easy to check that

V̄ ≤UO V , and hence that V̄ ≤L V . We observe in Figure 7 (left) that, as

expected, the difference D = F̄Ȳ − F̄Y is always non-negative, so that Y is

smaller than Ȳ , in the sense of the upper orthant order. Also, Figure 7 (right)

plots r(x1, x2) = F̄Ȳ (x1, x2)/F̄Y (x1, x2) with respect of x2 for x1 = 0.725. As it

is not monotonic, Y and Ȳ are not comparable with respect to the WHR order.

Example 9 As a last example, we look at the influence of the dependence be-

tween V (1) and V (2) on the bivariate lifetime, when the marginal distributions of

V are fixed. We take p1,1(x) = 1, λ(x) = 2x. The U (i)’s (i = 1, 2, 3) are gamma

distributed with respective parameters (3, 1), (3, 1) and (0, 1), and the parame-

ters for the Ū (i)’s are (0, 1), (0, 1) and (3, 1), which leads to identical marginal
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Figure 7: Example 8 - Influence of the size of V

Figure 8: Example 8 - Influence of the dependence between V (1) and V (2)

distributions for V and V̄ . It is easy to check that V ≤L V̄ . As expected, the

difference D = F̄Ȳ − F̄Y is always non-negative; see the left panel of Figure 8.

However, for y = (0.7, 0.7), the difference

d(x) = F̄Y (y)F̄Ȳ (x)− F̄Y (x ∨ y)F̄Ȳ (x ∧ y)

is not always of the same sign, which shows that Y and Ȳ are not comparable

with respect to the HR order (nor to the WHR order, due to the MTP2 property

of F̄Y ).
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5 Estimation procedure

Assuming a parametric framework, we briefly suggest here some possible ap-

proaches for estimating the model parameters, according to the observation

scheme. The estimation procedures are illustrated in Example 2, where we

recall that the bivariate failure rate increments have a Marshall–Olkin distribu-

tion. For each estimation method, 500 independent sets of nMC independent

bivariate lifetimes are generated. The parameters are estimated for each set

of nMC bivariate data. This provides 500 estimates for each parameter, from

which we report the mean, the standard deviation and the 2.5% and 97.25%

quantiles (q0.025 and q0.975).

5.1 Observation of failure times

Based on Remark 2, it is possible to compute the density function fY (s, t) of

the distribution of Y with respect to ds dt + ds δs (dt) (at least numerically).

It is hence possible to use the standard maximum likelihood (ML) method.

For i = 1, 2, the marginal density fYi (s) = −∂F̄Yi(s)/∂s of the distribution

of Yi with respect to Lebesgue measure is also available and can be used to

compute ML estimators for the marginal parameters. We consequently suggest

the following two-step procedure:

1. Estimation of λ and of the marginal parameters from the marginal data.

In Example 2, this provides (λ̂(i), γ̂i, q̂i) for i = 1, 2 where λ̂(i) for i = 1, 2

refer to the two different estimation results based on the two marginal

data sets.

2. New estimation of λ (starting from (λ̂(1) + λ̂(2))/2 as an initial guess) and

of the remaining parameters from the bivariate data. In Example 2, this

provides (λ̂, γ̂, p̂11).

Results are provided in Table 1 for nMC = 500 and one parameter set.

Note that this parameter set provides a probability Q11 that the failures of the

two components are simultaneous (and consequently due to a shock) of about

10.5%. The probability that the failure of one component (Q1 and Q2) is due

to a shock is about 22% for each of them. As can be seen in Table 1, the

ML method does not provide reliable results, even for the marginal parameters.

This is not very surprising based on the large number of parameters to estimate.

Even if enlarging the number nMC of observations provides better results (see

Table 2 where nMC = 1000), it seems that this method requires too large a

sample size for the results to be reliable in practice.

However, in a real life application, expert advice (or the data themselves)

can provide additional information that can be of great help for estimation
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Parameter True value Mean (std) [q0.025, q0.075]
q1 0.8 0.8011(0.1889) [0.3910, 1]
γ1 0.15 0.3144(0.4314) [0.0500, 1.9999]
q2 0.8 0.8109(0.1803) [0.4013, 1]
γ2 0.15 0.2939(0.4037) [0.0500, 1.9999]
λ 0.4 0.3964 (0.0566) [0.2808, 0.5267]
p11 0.7 0.6452(0.2732) [0.0773, 1]
γ 0.25 0.4908(0.6086) [0.0825, 2.3155]

Table 1: Estimation results for ML estimates based on failure data with nMC = 500;
computing time ' 399 c.p.u. time; Q11 ' 10.5%, Q1 ' 22.5%, Q2 ' 22.5%.

Parameter True value Mean (std) [q0.025, q0.075]
q1 0.8 0.8115(0.1457) [0.4954, 1]
γ1 0.15 0.2149(0.2335) [0.0500, 0.7759]
q2 0.8 0.8108(0.1460) [0.5161, 1]
γ2 0.15 0.2111(0.2272) [0.0500, 0.7528]
λ 0.4 0.3983 (0.0324) [0.3316, 0.4719]
p11 0.7 0.6880(0.2522) [0.0773, 1]
γ 0.25 0.3371(0.3295) [0.0931, 1.3477]

Table 2: Estimation results for ML estimates based on failure data with nMC = 1000,
computing time ' 708 c.p.u. time; Q11 ' 10.5%, Q1 ' 22.5%, Q2 ' 22.5%

purposes. As an example, it can be considered that simultaneous failures are

impossible or on the contrary that failures induced by shocks always induce

simultaneous failures (when both components are still alive). Also, it may be

possible that the two components could be considered as identical. All these

situations allow to reduce the number of parameters to be estimated and will

consequently improve the estimation results. Another situation that typically

fits most examples we have in mind corresponds to the case where the times of

shocks are observed. Contrary to the previously described situations, this one

requires a specific estimation procedure which we now describe.

5.2 Observation of both shocks and failure times

We only consider the case where h1 = h2 = 0, which means that only the influ-

ence of shocks is estimated. Here, the shock times are observed, which allows

to use the standard ML method for estimating the Poisson process parameters.

This first step is not developed in the following, as it is standard. In the sec-

ond step, the other parameters are estimated from the failure data, based on a

conditional likelihood function given the shock times.

Starting again from (4), one easily obtains that the conditional survival
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function F̄Y |{Tn}(·, ·| {tn}) of Y given {Tn = tn,∀n ∈ N∗} is given by

F̄Y |{Tn}(s, t| {tn})

=

nt∏
i=1

p11(ti)

ns∏
i=nt+1

q1(ti)E{e−
∑ns
i=nt+1 V

(1)
i (s−ti)}E

[
e
−

∑nt
i=1

{
V

(1)
i (s−ti)+V (2)

i (t−ti)
}]

=

nt∏
i=1

{p11(ti)µ̃ (s− ti, t− ti)}
ns∏

i=nt+1

{q1(ti)µ̃1 (s− ti)} (14)

for s ≥ t (with a similar expression for s < t), where ns (resp. nt) stands for

the observation of Ns (resp. Nt). Also:

F̄Yk|{Tn}(s| {tn}) =

ns∏
i=1

{qk(ti)µ̃k (s− ti)}

for k = 1, 2. One easily deduces that the conditional distribution of Yk given

{Tn = tn : n = 1, 2, . . .} has the following density with respect to ds+
∑+∞
j=1 δtj (ds):

fYk|{Tn} (s| {tn}) =

 −
∏ns
i=1 {qk(ti)µ̃

′
k (s− ti)} if s /∈ {tn} ,

(1− qk(tn))
∏n−1
i=1 {qk(ti)µ̃1 (tn − ti)} if s = tn with n ≥ 1,

where µ̃′k stands for the derivative of µ̃k. This enables one to write down the

conditional (log)-likelihood function for the marginal data.

Now, setting fY (s, t| {tn}) to be the bivariate density of the conditional

distribution of Y given {Tn = tn : n ≥ 1} with respect to

ds dt+

+∞∑
j=1

ds δtj (dt) +

+∞∑
j=1

δtj (ds) dt+

+∞∑
j=1

+∞∑
k=1

δ(tj ,tk) (ds, dt) ,

we first have

f (s, t| {tn}) =
∂2

∂s ∂t
F̄Y |(Tn)(s, t| {tn})

for all s, t ∈ R+\ {tn}.
Starting again from (14), we observe that

Pr (Y1 > s, Y2 = tk| {Tn = tn})

= F̄Y |(Tn)(s, t
−
k | {tn})− F̄Y |(Tn)(s, tk| {tn})

=


p10(tk)µ̃1 (s− tk)

∏k−1
i=1 {p11(ti)µ̃ (s− ti, tk − ti)}

×
∏ns
i=k+1 {q1(ti)µ̃1 (s− ti)} if s ≥ tk,

{1− q2(tk)}
∏ns
i=1{p11(ti)µ̃ (s− ti, tk − ti)}

×
∏k−1
i=ns+1 {q2(ti)µ̃2 (tk − ti)} if s < tk.
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Parameter True value Mean (std) [q0.025, q0.075]
q1 0.8 0.8003(0.0363) [0.7248, 0.8696]
γ1 0.15 0.1534(0.0267) [0.1056, 0.2108]
q2 0.8 0.7992(0.0354) [0.7350, 0.8704]
γ2 0.15 0.1533(0.0276) [0.1065, 0.2091]
p11 0.7 0.7480(0.0503) [0.6399, 0.8296]
γ 0.25 0.2523(0.0578) [0.1529, 0.3624]

Table 3: Estimation results for ML estimates based on failure data and shock times
for nMC = 100;λ = 0.4; 399 c.p.u. time; Q11 ' 10.5%, Q1 ' 22.5%, Q2 ' 22.5%

For s ∈ R+\ {tn}, we can get

f (s, tk| {tn}) = − ∂

∂s
Pr (Y1 > s, Y2 = tk| {Tn = tn})

and a similar expression for f (tk, t) and t ∈ R+\ {tn}. Finally,

f (tj , tk| {tn}) = Pr
(
Y1 > t−j , Y2 = tk| {Tn = tn}

)
− Pr (Y1 > tj , Y2 = tk| {Tn = tn})

=


p00(tj)

∏j−1
i=1 {p11(ti)µ̃ (tj − ti, tj − ti)} if j = k,

p01(tj) (1− q2(tk)) µ̃2 (tk − tj)
∏j−1
i=1 {p11(ti)µ̃ (tj − ti, tk − ti)}

×
∏k−1
i=j+1 {q2(ti)µ̃2 (tk − ti)} if j < k,

with a similar expression for j > k. It is then possible to write the conditional

(log)-likelihood function for the bivariate data.

We now provide results for Example 2 with nMC = 100 (and 500 repli-

cations). The estimation results are displayed in Table 3. Comparing to the

estimation results from Table 1, one can see that these estimations are much

better, even though the data size is 5 times smaller in the present case than in

Table 1).

Though the procedure clearly deserves a more thorough study (with more

numerical experiments), it seems possible to estimate the model parameters

when shock times are observed. In case of unobserved shock times, a possibility

might be to consider them as masked data and to use an EM algorithm as in, e.g.,

[10] or [17], where the authors use such a method for estimating the parameters

of multivariate extensions either of the modified Sarhan–Balakrishnan or the

Marshall–Olkin class of distributions. However, the development of an EM (or

SEM) algorithm requires much more work in our present setting.

6 Concluding remarks

We proposed here a bivariate random shock model with competing failure

modes. The model takes into account different kinds of dependence between
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components arising from an external environment. The joint survival function

of the bivariate lifetime is obtained explicitly. Conditions under which the bivari-

ate life time has a BNBU property are provided. It is also numerically observed

that under such conditions, the bivariate system lifetime is not BNBU in any

stronger sense. Note that there exist many other multivariate aging properties

in the literature, that have not been considered here and hence require further

study. As an example, it would be of interest to investigate aging properties

based on conditional distributions such as those developed in [1, 2, 33].

A strong positive dependence property (the MTP2 property) is also proved in

the paper for the bivariate survival function, without any additional assumption.

This entails that the RTI property is valid, too. The dual LTD property is

however observed not to hold in a general setting. This shows that neither

the MTP2 property for the bivariate cumulative distribution function nor the

stochastic increasingness property of one lifetime with respect to the other [19]

can hold in a similar general setting.

The influence of the shocks parameters is also studied. It is proved that the

more frequent the shocks, the smaller the bivariate lifetime, in the sense of the

(strong) hazard rate order. It is also showed that the smaller the fatality of

shocks, the larger the bivariate lifetime. Finally, the larger the increments of

hazard rates, the larger the bivariate lifetime, in the sense of the upper orthant

order (but not in the sense of the weak hazard rate order). As a by-product, the

more dependent the increments are, the less dependent the marginal lifetimes

are.

The proposed model has thus many desirable aging and positive dependence

properties to be used as a bivariate lifetime in reliability. A next step might be

to propose and study preventive maintenance policies to enlarge the components

lifetimes.

Finally, a parametric estimation procedure has been proposed, which seems

to well behaved in case of observed shock times. As already mentioned, how-

ever, the procedure needs to be studied more thoroughly. Also, the case of

non observed shock times requires further investigation such as (maybe?) the

development of an EM (or SEM) algorithm.

Appendix A

In this appendix, we show Theorem 3, namely we prove that F̄Y is MTP2. Let

us first write

F̄Y (x1, x2) = e−H1(x1)−H2(x2) exp {g (x1, x2)}
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with

g (x1, x2) = A (x1, x2) +B1 (x1, x2) +B2 (x1, x2)

where

A (x1, x2) =

∫ min(x1,x2)

0

{−1 + µ̃(x1 − w, x2 − w)p11(w)}λ (w) dw,

B1 (x1, x2) = 1{x2≤x1}

∫ x1

x2

{−1 + µ̃1(x1 − w)q1(w)}λ (w) dw,

B2 (x1, x2) = 1{x2>x1}

∫ x2

x1

{−1 + µ̃2(x2 − w)q2(w)}λ (w) dw.

The function (x1, x2) 7−→ e−H1(x1)−H2(x2) is clearly MTP2, because both H1

and H2 are non-decreasing. As the product of MTP2 functions is MTP2 [16,

Prop. 3.3], it is sufficient to show that

(x1, x2) 7−→ G(x1, x2) = exp {g (x1, x2)}

is MTP2. Note that we have included the term −Λ{max(x1, x2)} in the function

g because the function (x1, x2) 7→ exp{−max(x1, x2)} is not MTP2 so that

(x1, x2) 7→ exp[−Λ{max(x1, x2)}] will generally not be MTP2 either.

Let x1 ≤ y1 and x2 ≥ y2 be fixed. One needs to prove that

g(x1, x2) + g (y1, y2) ≤ g (x1, y2) + g (y1, x2) ,

namely

A (x1, x2) +B1 (x1, x2) +B2 (x1, x2) +A (y1, y2) +B1 (y1, y2) +B2 (y1, y2)

≤ A (x1, y2) +B1 (x1, y2) +B2 (x1, y2) +A (y1, x2) +B1 (y1, x2) +B2 (y1, x2) .

(15)

Let us write all A (z1, z2) terms in (15) as

A (z1, z2) = A1 (z1, z2) +A2 (z1, z2)

with

A1 (z1, z2) =

∫ min(x1,y2)

0

{−1 + µ̃ (z1 − w, z2 − w) p11 (w)}λ (w) dw,

A2 (z1, z2) =

∫ min(z1,z2)

min(x1,y2)

{−1 + µ̃ (z1 − w, z2 − w) p11 (w)}λ (w) dw.

We will prove that

A1 (x1, x2) +A1 (y1, y2) ≤ A1 (x1, y2) +A1 (y1, x2) (16)
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and

A2 (x1, x2) +B1 (x1, x2) +B2 (x1, x2) +A2 (y1, y2) +B1 (y1, y2) +B2 (y1, y2)

≤ B1 (x1, y2) +B2 (x1, y2) +A2 (y1, x2) +B1 (y1, x2) +B2 (y1, x2) (17)

(note that A2 (x1, y2) = 0), which will provide (15) by summation. To prove

(16), we first note that it is equivalent to∫ min(x1,y2)

0

{µ̃ (x1 − w, y2 − w) + µ̃ (y1 − w, x2 − w)

−µ̃ (y1 − w, y2 − w)− µ̃ (x1 − w, x2 − w)} p11 (w)λ (w) dw ≥ 0.

(18)

As x1 ≤ y1 and x2 ≥ y2, we have

µ̃ (x1 − w, y2 − w) + µ̃ (y1 − w, x2 − w)− µ̃ (y1 − w, y2 − w)− µ̃ (x1 − w, x2 − w)

= E[{e−(x1−w)V (1)

− e−(y1−w)V (1)

}{e−(y2−w)V (2)

− e−(x2−w)V (2)

}]

≥ 0

for all w ∈ [0,min (x1, y2)]. We deduce that inequality (18) is true, as well as

inequality (16). We now come to inequality (17) and we distinguish between

different cases.

Case 1. Assume that y1 ≤ y2. Hence: x1 ≤ y1 ≤ y2 ≤ x2. Noting that

A2 (x1, x2) = B1 (x1, x2) = B1 (y1, y2) = B1 (x1, y2) = B1 (y1, x2) = 0, we must

prove that

B2 (x1, x2) +A2 (y1, y2) +B2 (y1, y2) ≤ B2 (x1, y2) +A2 (y1, x2) +B2 (y1, x2) .

This can be rewritten as∫ x2

x1

{−1 + µ̃2(x2 − w)q2 (w)}λ (w) dw +

∫ y1

x1

{−1 + µ̃ (y1 − w, y2 − w) p11 (w)}λ (w) dw

+

∫ y2

y1

{−1 + µ̃2(y2 − w)q2 (w)}λ (w) dw

≤
∫ y2

x1

{−1 + µ̃2(y2 − w)q2 (w)}λ (w) dw +

∫ y1

x1

{−1 + µ̃ (y1 − w, x2 − w) p11 (w)}λ (w) dw

+

∫ x2

y1

{−1 + µ̃2(x2 − w)q2 (w)}λ (w) dw,
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which may be simplified to∫ y1

x1

µ̃2(x2 − w)q2 (w)λ (w) dw +

∫ y1

x1

µ̃ (y1 − w, y2 − w) p11 (w)λ (w) dw

≤
∫ y1

x1

µ̃2(y2 − w)q2 (w)λ (w) dw +

∫ y1

x1

µ̃ (y1 − w, x2 − w) p11 (w)λ (w) dw.

(19)

Based on y2 ≤ x2, we have µ̃2(y2 − w) − µ̃2(x2 − w) ≥ 0 for all w ∈ [x1, y1].

Using also that q2 ≥ p11 and x1 ≤ y1, we get∫ y1

x1

[{µ̃ (y1 − w, x2 − w)− µ̃ (y1 − w, y2 − w)} p11 (w) + {µ̃2(y2 − w)− µ̃2(x2 − w)} q2 (w)]λ (w) dw

≥
∫ y1

x1

{µ̃ (y1 − w, x2 − w)− µ̃ (y1 − w, y2 − w) + µ̃2(y2 − w)− µ̃2(x2 − w)} p11 (w)λ (w) dw

=

∫ y1

x1

E
[{

1− e−(y1−w)V (1)
}{

e−(y2−w)V (2)

− e−(x2−w)V (2)
}]

p11 (w)λ (w) dw

≥ 0.

Therefore, inequality (19) is true, which concludes this case.

Case 2. Assume that x1 ≤ y2 ≤ y1 ≤ x2. We must prove that

B2 (x1, x2) +A2 (y1, y2) +B1 (y1, y2) ≤ B2 (x1, y2) +A2 (y1, x2) +B2 (y1, x2) .

This may be written as∫ x2

x1

{−1 + µ̃2(x2 − w)q2 (w)}λ (w) dw +

∫ y2

x1

{−1 + µ̃ (y1 − w, y2 − w) p11 (w)}λ (w) dw

+

∫ y1

y2

{−1 + µ̃1(y1 − w)q1 (w)}λ (w) dw

≤
∫ y2

x1

{−1 + µ̃2(y2 − w)q2 (w)}λ (w) dw +

∫ y1

x1

{−1 + µ̃ (y1 − w, x2 − w) p11 (w)}λ (w) dw

+

∫ x2

y1

{−1 + µ̃2(x2 − w)q2 (w)}λ (w) dw

which may then be simplified to∫ y1

x1

µ̃2(x2 − w)q2 (w)λ (w) dw +

∫ y2

x1

µ̃ (y1 − w, y2 − w) p11 (w)λ (w) dw

+

∫ y1

y2

{−1 + µ̃1(y1 − w)q1 (w)}λ (w) dw

≤
∫ y2

x1

µ̃2(y2 − w)q2 (w)λ (w) dw +

∫ y1

x1

µ̃ (y1 − w, x2 − w) p11 (w)λ (w) dw.

(20)

27



Splitting the domain of integration into (x1, y2) and (y2, y1) and considering the

two terms separately, we first have to prove that∫ y2

x1

µ̃2(x2 − w)q2 (w)λ (w) dw +

∫ y2

x1

µ̃ (y1 − w, y2 − w) p11 (w)λ (w) dw

≤
∫ y2

x1

µ̃2(y2 − w)q2 (w)λ (w) dw +

∫ y2

x1

µ̃ (y1 − w, x2 − w) p11 (w)λ (w) dw,

(21)

which is true, using similar arguments as for (19). Looking at the second inte-

gral, we must next show that∫ y1

y2

µ̃2(x2 − w)q2 (w)λ (w) dw +

∫ y1

y2

{−1 + µ̃1(y1 − w)q1 (w)}λ (w) dw

≤
∫ y1

y2

µ̃ (y1 − w, x2 − w) p11 (w)λ (w) dw. (22)

Noting that

µ̃ (y1 − w, x2 − w) p11 (w)− µ̃2(x2 − w)q2 (w) + 1− µ̃1(y1 − w)q1 (w)

= {µ̃ (y1 − w, x2 − w)− µ̃2(x2 − w)− µ̃1(y1 − w)} p11 (w)− µ̃2(x2 − w)p01 (w)

+ 1− µ̃1(y1 − w)p10 (w)

= E[{1− e−(y1−w)V (1)

}{1− e−(x2−w)V (2)

} − 1]p11 (w)− µ̃2(x2 − w)p01 (w)

+ 1− µ̃1(y1 − w)p10 (w)

≥ −p11 (w)− p01 (w) + 1− p10 (w)

≥ 0,

we can conclude that (22) is true, so that (20) is also true, upon summing (21)

and (22).

Case 3. Assume that x1 ≤ y2 ≤ x2 ≤ y1. We have to prove that

B2 (x1, x2) +A2 (y1, y2) +B1 (y1, y2) ≤ B2 (x1, y2) +A2 (y1, x2) +B1 (y1, x2) .

After simplification, one gets∫ x2

x1

µ̃2(x2 − w)q2 (w)λ (w) dw +

∫ y2

x1

µ̃ (y1 − w, y2 − w) p11 (w)λ (w) dw

+

∫ x2

y2

{−1 + µ̃1(y1 − w)q1 (w)}λ (w) dw

≤
∫ y2

x1

µ̃2(y2 − w)q2 (w)λ (w) dw +

∫ x2

x1

µ̃ (y1 − w, x2 − w) p11 (w)λ (w) dw.

(23)
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Here again, we use
∫ x2

x1
=
∫ y2
x1

+
∫ x2

y2
and we first look at the

∫ y2
x1

terms. We

obtain∫ y2

x1

µ̃2(x2 − w)q2 (w)λ (w) dw +

∫ y2

x1

µ̃ (y1 − w, y2 − w) p11 (w)λ (w) dw

≤
∫ y2

x1

µ̃2(y2 − w)q2 (w)λ (w) dw +

∫ y2

x1

µ̃ (y1 − w, x2 − w) p11 (w)λ (w) dw,

(24)

which is clear, using similar arguments as for (19). We now look at the
∫ x2

y2

remaining terms in (23), which may be written as∫ x2

y2

µ̃2(x2 − w)q2 (w)λ (w) dw +

∫ x2

y2

{−1 + µ̃1(y1 − w)q1 (w)}λ (w) dw

≤
∫ x2

y2

µ̃ (y1 − w, x2 − w) p11 (w)λ (w) dw (25)

and may be treated in a similar way as (22), which allows to conclude this case.

Case 4. Assume that y2 ≤ x1 ≤ x2 ≤ y1. We have to prove that

A2 (x1, x2) +B2 (x1, x2) +B1 (y1, y2) ≤ B1 (x1, y2) +A2 (y1, x2) +B1 (y1, x2) .

After simplification, this reduces to∫ x1

y2

µ̃ (x1 − w, x2 − w) p11 (w)λ (w) dw +

∫ x2

x1

{−1 + µ̃2(x2 − w)q2 (w)}λ (w) dw

+

∫ x2

y2

µ̃1(y1 − w)q1 (w)λ (w) dw

≤
∫ x1

y2

µ̃1(x1 − w)q1 (w)λ (w) dw +

∫ x2

y2

µ̃ (y1 − w, x2 − w) p11 (w)λ (w) dw

(26)

Here again, we use
∫ x2

y2
=
∫ x1

y2
+
∫ x2

x1
and we first look at the

∫ x1

y2
terms. This

yields∫ x1

y2

µ̃ (x1 − w, x2 − w) p11 (w)λ (w) dw +

∫ x1

y2

µ̃1(y1 − w)q1 (w)λ (w) dw

≤
∫ x1

y2

µ̃1(x1 − w)q1 (w)λ (w) dw +

∫ x1

y2

µ̃ (y1 − w, x2 − w) p11 (w)λ (w) dw

which is clear, using similar arguments as for (19). We now look at the
∫ x2

x1
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remaining terms in (26), namely∫ x2

x1

{−1 + µ̃2(x2 − w)q2 (w)}λ (w) dw +

∫ x2

x1

µ̃1(y1 − w)q1 (w)λ (w) dw

≤
∫ x2

x1

µ̃ (y1 − w, x2 − w) p11 (w)λ (w) dw

and may be handled in a similar way as (22).

Case 5. Assume that y2 ≤ x2 ≤ x1 ≤ y1. We have to prove that

A2(x1, x2) +B1(x1, x2) +B1(y1, y2) ≤ A2(y1, x2) +B1(x1, y2) +B1(y1, x2)

or equivalently that∫ x2

y2

µ̃(x1 − w, x2 − w)p11(x)λ(w)dw +

∫ x2

y2

µ̃1(y1 − w)q1(w)λ(w)dw

≤
∫ x2

y2

µ̃(y1 − w, x2 − w)p11(w)λ(w)dw +

∫ x2

y2

µ̃1(x1 − w)q1(w)λ(w)dw.

This may be proved in a similar way as (19).

Case 6. Assume that y2 ≤ x1 ≤ y1 ≤ x2. We have to prove that

A2(x1, x2) +B2(x1, x2) +B1(y1, y2) ≤ B1(x1, y2) +B2(y1, x2) +A2(y1, x2)

which may be simplified into∫ x1

y2

µ̃(x1 − w, x2 − w)p11(w)λ(w)dw +

∫ y1

x1

{−1 + µ̃2(x2 − w)q2(w)}λ(w)dw

+

∫ y1

y2

µ̃1(y1 − w)q1(w)λ(w)dw

≤
∫ x1

y2

µ̃1(x1 − w)q1(w)λ(w)dw +

∫ y1

y2

µ̃(y1 − w, x2 − w)p11(w)λ(w)dw.

This case may be proved in a similar way as Case 3., which achieves this

proof.
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