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Two components are considered, which are subject to common external and possibly fatal shocks. The lifetimes of both components are characterized by their hazard rates. Each shock can cause the immediate failure of either one or both components. Otherwise, the hazard rate of each component is increased by a non fatal shock of a random amount, with possible dependence between the simultaneous increments of the two failure rates. An explicit formula is provided for the joint distribution of the bivariate lifetime. Aging and positive dependence properties are described, thereby showing the adequacy of the model as a bivariate failure time model. The influence of the shock model parameters on the bivariate lifetime is also studied. Numerical experiments illustrate and complete the study. Moreover, an estimation procedure is suggested in a parametric framework, under a specific observation scheme.

Introduction

Components are considered, which are made dependent through shocks arising from a common external environment. Except for these shocks, the components are assumed to evolve independently. The components may fail either when the shocks occur or between them. Each shock may hence lead to simultaneous failures, also called common cause failures. In practice, there are many possible causes for such shocks. For example, according to [START_REF] Jones | Common cause failures and ultra reliability[END_REF], they can be due to "interfaces, the environment, and major adverse events. The interfaces include power, cooling, material inputs, and external controls. The environment can produce excess temperature, pressure, vibration, impact, noise, and contamination. Events include earthquake, tsunami, hurricane, tornado, flood, and blizzard."

According to [START_REF] Lai | Periodic replacement model for a parallel system subject to independent and common cause shock failures[END_REF], such shocks can also be due to "the failure of an external piece of hardware (... such as a pipe leak), or a human error (... such as the miscalibration of an instrument)." Note also that according to [START_REF] Jones | Common cause failures and ultra reliability[END_REF], "about ten per cent of all failures are usually identified as common cause."

A classical way to model common cause failures is to use the binomial failure rate (BFR) model introduced in [START_REF] Vesely | Estimating common cause failure probabilities in reliability and risk analysis: Marshall-Olkin specializations[END_REF] (see also [START_REF] Atwood | The binomial failure rate common cause model[END_REF]), where each unit can fail independently or due to a common shock, with fatality for the different units determined by independent Bernoulli trials, and where the shocks arrive according to an independent homogeneous Poisson process. This model has proved its usefulness in applications; see, e.g., [START_REF] Atwood | The binomial failure rate common cause model[END_REF][START_REF] Vesely | Estimating common cause failure probabilities in reliability and risk analysis: Marshall-Olkin specializations[END_REF] and references therein. However, it has also been seen to be too restrictive in several ways: First,"the assumption that the components will fail independently of each other, given that a shock has occurred, represents a rather serious limitation, and this assumption is often not satisfied in practice" [30, p. 223]. Secondly, the only dependence between components included in the BFR model is due to the possibly synchronized failures whereas, according to [30, p. 213], "even if common cause failures are caused by a common cause, they do not need to occur at the same time. A rather long time between failures does not necessarily mean that there is no dependency between the failure events." Indeed, one can think that a shock can simultaneously weaken components without necessarily entailing their immediate failures, e.g., think of a temporary high temperature/voltage/pressure... This situation can also reflect the case of some components of an aircraft engine, which are subject to external shocks during takeoff and landing. The shocks can simultaneously increase the deterioration of the components without necessarily leading to their immediate failure. Examples are not restricted to the reliability domain either. In insurance, [START_REF] Frees | Annuity valuation with dependent mortality[END_REF] highlights the necessity of taking into account some dependence between the lifetimes of husband and wife (or twins), because of the common shocks (for example accidents or contagious diseases) that they may suffer in their common life. There is thus a need for describing such situations. As will be seen in the following, the model proposed in this paper does not share with the BFR model the two above mentioned restrictions, in addition to improving over it on several other points.

Many other shock models than the BFR have been developed in the reliability literature; see, e.g., [START_REF] Finkelstein | Stochastic modelling for reliability[END_REF][START_REF] Mallor | Classification of shock models in system reliability, Monografías del Semin[END_REF][START_REF] Nakagawa | Shock and damage models in reliability theory[END_REF][START_REF] Singpurwalla | Survival in dynamic environments[END_REF]. In these writings, common cause failures are typically described through the Marshall-Olkin multivariate exponential distribution family [START_REF] Marshall | A multivariate exponential distribution[END_REF] or extensions thereof. In the bivariate case, three independent homogeneous Poisson processes govern the occurrence of shocks, which all are fatal. Two processes impact a single component each while the third one impacts both components simultaneously. This model is fundamental in reliability theory and it remains an important source of inspiration for much research; see, e.g., [START_REF] Bayramoglu | The reliability of coherent systems subjected to Marshall-Olkin type shocks[END_REF][START_REF] Cha | A stochastic failure model with dependent competing risks and its applications to condition-based maintenance[END_REF][START_REF] Jamalizadeh | Weighted Marshall-Olkin bivariate exponential distribution[END_REF][START_REF] Kundu | Bivariate generalized exponential distribution[END_REF][START_REF] Li | Stochastic bounds and dependence properties of survival times in a multicomponent shock model[END_REF][START_REF] Li | Generalized Marshall-Olkin distributions and related bivariate aging properties[END_REF][START_REF] Wang | A reliability model for multivariate exponential distributions[END_REF]. In cumulative shock models [START_REF] Marshall | Multivariate shock models for distributions with increasing hazard rate average[END_REF], a shock simultaneously increases some intrinsic characteristics (such as hazard rate, deterioration level, age, etc.) of the components, with possible dependence between the simultaneous random increments.

Recently, an approach for a realistic shock model has been studied in [START_REF] Cha | On a stochastic survival model for a system under randomly variable environment[END_REF]. This article considers a univariate model that takes into account shocks with a mixed effect: a shock can be fatal to the system with a probability depending on the shock's arrival time; a non fatal shock increases the system failure rate of a random increment. An extension of this model to multi-component systems has yet to be considered in full generality. Exceptions are [START_REF] Cha | A stochastic failure model with dependent competing risks and its applications to condition-based maintenance[END_REF] and [START_REF] Mercier | A random shock model with mixed effect, including competing soft and sudden failures, and dependence[END_REF] which both provide an extension to the case of competing soft and sudden failures, where soft failures refer to the reaching of some critical threshold for some degradation level, and sudden failures to accidental failures, characterized by a failure rate. In [START_REF] Mercier | A random shock model with mixed effect, including competing soft and sudden failures, and dependence[END_REF], the authors are mainly interested in the univariate survival function of the competing risks and in the influence of the stressing environment on the system lifetime. As for [START_REF] Cha | A stochastic failure model with dependent competing risks and its applications to condition-based maintenance[END_REF], it focuses on the bivariate survival function of the competing soft and sudden failures, and on the induced conditional properties. The authors also consider a condition-based preventive maintenance policy.

The present paper deals with a complex bivariate failure time model where both lifetimes are characterized by failure rates (only sudden failures). Contrary to [START_REF] Mercier | A random shock model with mixed effect, including competing soft and sudden failures, and dependence[END_REF], the fatality of a shock may differ between the components. Also, unlike the BFR model, the Bernoulli trials governing the fatality for the two components are not independent and even non fatal shocks can entail some dependence between components. Here, a non fatal shock increases the failure rates of the surviving components of a random increment (simultaneous weakening of the components), with possible dependence between simultaneous increments. No assumption is made on the joint distribution of simultaneous increments so that the model includes the possibility of getting increments of the form (0, x 2 ), (x 1 , 0) or (x 1 , x 2 ) (with x 1 , x 2 > 0) depending on the realization. Hence, a non-fatal shock can act on a single component or on both of them, simultaneously. As in [START_REF] Cha | A stochastic failure model with dependent competing risks and its applications to condition-based maintenance[END_REF][START_REF] Mercier | A random shock model with mixed effect, including competing soft and sudden failures, and dependence[END_REF], the probability for a shock to be fatal depends on the shock's arrival time and the occurrence of shocks is modeled through a non-homogeneous Poisson process.

The paper is organized as follows. The model is specified in Section 2. An explicit formula for the joint distribution of the bivariate lifetime is provided in Section 3, as well as aging and positive dependence properties (Bivariate New Better than Used property and Multivariate Total Positivity of order two). The influence of the shock model parameters on the bivariate lifetime is also studied. Numerical experiments are presented in Section 4 which not only illustrate the theoretical results and but also show that stronger results do not hold under the same assumptions. An attempt is made in Section 5 to provide a few elements for parametric estimation of the model under a specific observation scheme. Concluding remarks are given in Section 6.

The model

Two components are considered. The lifetime of component i = 1, 2 is characterized by its intrinsic hazard rate function h i (t) or by the corresponding cumulative hazard rate function H i (t) = t 0 h i (u)du. Stresses due to the external environment come in the form of shocks, independently of the components' intrinsic deterioration. Except for shocks, the components are assumed to behave independently. The shocks occur at time T 1 , T 2 , . . . according to a non-homogeneous Poisson process (N t ) t≥0 with intensity λ(t) and cumulative intensity Λ(t) = t 0 λ(x)dx. The nth shock, which occurs at time T n , increases the hazard rate of the ith component by a random amount

V (i) n . The bivariate increments V 1 = (V (1) 1 , V (2) 1 ), V 2 = (V (1) 2 , V (2) 
2 ), . . . are assumed to be independent and identically distributed (i.i.d.), as well as independent of the shocks arrival times (T n ) n≥1 . Simultaneous increments V

(1) n and V

(2) n may however be dependent. Furthermore, a shock can be fatal, and can possibly induce the immediate failure of either one or both components. The fatality of a shock does not depend on the system intrinsic deterioration but depends on the shock's arrival time. The following notations are used: 

p 00 (T n ):
V 1 = (V (1) 
1 , V

1 ), . . .,

V 2 = (V (1) 2 , V (2) 
2 ), . . . is denoted by µ(dv 1 , dv 2 ). When subscript n is unnecessary, we drop it and set V = V (1) , V (2) to be a generic copy of

V n = (V (1) n , V (2) 
n ). For j = 1, 2, the distribution of V (j) is denoted by µ j (dv j ). For i = 1, 2, we set (A (i) t ) t≥0 to be the univariate compound Poisson process defined, for all t ≥ 0, by

A (i) t = Nt n=1 V (i) n ,
where an empty sum equals 0 by convention. We also introduce the bivariate compound Poisson process (A t ) t≥0 , where, for all t ≥ 0,

A t = (A (1) 
t , A

t ) = Nt n=1 V (1) n , Nt n=1 V (2) n = Nt n=1 V n . (2) 
Now, let F = σ(A s , s ≥ 0) be the σ-field generated by (A t ) t≥0 . Provided that the ith (i = 1, 2) component is working up to time t, the conditional hazard rate of this component at time t given F is

r i (t) = h i (t) + A (i)
t .

For i = 1, 2, let τ i be the lifetime of the ith component without taking into account the possibility of fatal shocks and let ξ i be the time of the first fatal shock for the ith component. We have

E(1 {τi>t} |F) = exp{-H i (t)} exp - t 0 A (i) s ds = exp{-H i (t)} exp - Nt k=1 V (i) k (t -T k ) = exp{-H i (t)} exp - ∞ k=1 V (i) k (t -T k ) + (1) 
and

E(1 {ξi>t} |F) = Nt k=1 q i (T k )
where q 1 (•) = p 11 (•) + p 10 (•) and q 2 (•) = p 11 (•) + p 01 (•). Given F, the random variables τ 1 and τ 2 are assumed to be conditionally independent, and conditionally independent of ξ 1 and ξ 2 . However, based on the fact that the two components may fail simultaneously at each shock, ξ 1 and ξ 2 are not conditionally independent given F. Given F, their conditional joint survival function is

E(1 {ξ1>s} 1 {ξ2>t} |F) =            Nt i=1 p 11 (T i ) Ns i=Nt+1 q 1 (T i ) if s ≥ t, Ns i=1 p 11 (T i ) Nt i=Ns+1 q 2 (T i ) if s < t (2)
where an empty product is equal to 1 by convention.

Letting Y = (Y 1 , Y 2 ) denote the bivariate lifetime of the two components, it is easy to see that Y i = min(τ i , ξ i ) for i = 1, 2.

3 Theoretical results

Joint survival function

Proposition 1 The joint survival function of Y = (Y 1 , Y 2 ) is given by FY (s, t) =e -H1(s)-H2(t)-Λ{max(s,t)} exp min(s,t) 0 μ(s -w, t -w)p 11 (w)λ(w)dw + 1 {t≤s} s t μ1 (s -w)q 1 (w)λ(w)dw + 1 {t>s} t s μ2 (t -w)q 2 (w)λ(w)dw (3)
for all s, t ≥ 0, where μ stands for the Laplace transform of the bivariate distribution µ of V = (V (1) , V (2) ), defined, for all x 1 , x 2 ≥ 0, by (2) , and for i = 1, 2, the symbol μ(i) stands for the Laplace transform of the univariate distribution µ (i) of V (i) defined, for all x i ≥ 0, by

μ(x 1 , x 2 ) = R 2 + e -x1v1-x2v2 µ(dv 1 , dv 2 ) = E e -x1V (1) -x2V
μi (x i ) = ∞ 0 e -xivi µ i (dv i ) = E e -xiV (i) .
Proof. We have

FY (s, t) = Pr(Y 1 > s, Y 2 > t) = Pr(τ 1 > s, τ 2 > t, ξ 1 > s, ξ 2 > t) = E E(1 {τ1>s} |F)E(1 {τ2>t} |F)E 1 {ξ1>s} 1 {ξ2>t} |F
based on the conditional independence of τ 1 , τ 2 and (ξ 1 , ξ 2 ) given F.

We first consider the case s ≥ t. Substituting (1) and (2) into the previous equation, we get FY (s, t)

= e -H1(s)-H2(t) E e -∞ i=1 V (1) i (s-Ti) + e -∞ i=1 V (2) i (t-Ti) + Nt i=1 p 11 (T i ) Ns i=Nt+1 q 1 (T i ) (4) = e -H1(s)-H2(t) E{e -∞ i=1 ψs,t(V (1) i ,V (2) i ,Ti) } where ψ s,t (v 1 , v 2 , w) = v 1 (s -w) + + v 2 (t -w) + -ln p 11 (w)1 [0,t] (w) -ln q 1 (w)1 (t,s](w) (5) for all v 1 , v 2 , w ∈ R + .
The sequence (V

i , V

i , T i ) i≥1 can be seen as the points of a Poisson random measure with intensity ν(dv 1 , dv 2 , dw) = µ(dv 1 , dv 2 )λ(w)dw; see, e.g., Corollary 3.5 in Chapter 6 of [START_REF] ¸ınlar | Probability and Stochastics[END_REF]. The formula for Laplace functionals of a Poisson random measure (Theorem 2.9 in Chapter 6 of [START_REF] ¸ınlar | Probability and Stochastics[END_REF]) yields

E e -∞ i=1 ψs,t(V (1) i ,V (2) i ,Ti) = exp - R 3 +
1 -e -ψs,t(v1,v2,w) ν(dv 1 , dv 2 , dw) .

Substituting ψ s,t by its expression given in (5), we get

R 3 +
{1 -e -ψs,t(v1,v2,w) }ν(dv 1 , dv 2 , dw)

= Λ(s) + t 0 ∞ 0 ∞ 0 e -v1(s-w)-v2(t-w) µ(dv 1 , dv 2 ) p 11 (w)λ(w)dw + s t ∞ 0 ∞ 0 e -v1(s-w) µ(dv 1 , dv 2 ) q 1 (w)λ(w)dw = Λ(s) + t 0 μ(s -w, t -w)p 11 (w)λ(w) + s t μ1 (s -w)q 1 (w)λ(w)dw.
The case s < t is obtained by symmetry and this provides Formula (3).

Remark 1 One can easily derive the univariate lifetimes of both components. For example, the survival function for the first component is

FY1 (s) = FY (s, 0) = e -Λ(s)-H1(s)+ s 0 μ1(s-w)q1(w)λ(w)dw .
This formula is stated in Theorem 1 from [START_REF] Cha | On a stochastic survival model for a system under randomly variable environment[END_REF] and thus Proposition 1 appears as a generalization of this theorem. Note, however, that the present use of Poisson random measures allows for a shorter proof.

Remark 2 Based on Formula (3), it is clear that the bivariate survival function FY will generally not be differentiable at a point of the main diagonal ∆ = {(x, x) : x ∈ R + }. To be more specific, the distribution of Y admits a non absolutely continuous part with support ∆ and an absolutely continuous part for the remaining of the distribution, which writes:

Pr Y (ds, dt) = f Y (s, s) ds δ s (dt) + f Y (s, t) ds dt
where δ s (dt) stands for the Dirac mass at point s and where

f Y (s, t) =      ∂ 2 ∂s ∂t FY (s, t) if s = t lim h→0 + 1 2h Pr (s -h < Y 1 ≤ s + h, s -h < Y 2 ≤ s + h) if s = t.
In the most general case, f Y (s, t) can be computed through the following:

f Y (s, s) = lim h→0 + 1 2h { FY (s + h, s + h) -FY (s -h, s + h) -FY (s + h, s -h) + FY (s -h, s -h)}
when s = t, and through numerical differentiation when s = t.

We now provide two examples where an explicit expression is available for the joint survival function.

Example 1 Let h 1 = h 2 = 0 and assume that for all i, j = 0, 1, p i,j is constant, as is the size increment, viz.

V = (v 1 , v 2 ) ∈ R 2
+ . This leads to FY (s, t) =e -Λ{max(s,t)} exp p 11 min(s,t) 0 e -v1(s-w)-v2(t-w) λ(w)dw

+1 {t≤s} q 1 s t e -v1(s-w) λ(w)dw + 1 {t>s} q 2 t s e -v2(t-w) λ(w)dw . Specializing to λ (w) = e αw with α ∈ R\ {0, -v 1 , -v 2 , -v 1 -v 2 }, we easily get FY (s, t) = exp - e α max(s,t) -1 α + p 11 e -v1s-v2t e (v1+v2+α) min(s,t) -1 v 1 + v 2 + α × exp 1 {t≤s} q 1 e -v1s e (v1+α)s -e (v1+α)t v 1 + α + 1 {t>s} q 2 e -v2t e (v2+α)t -e (v2+α)s v 2 + α .
Example 2 Let h 1 = h 2 = 0 and assume that for all i, j = 0, 1, p i,j is constant, as is λ. The size V = (V (1) , V (2) ) of an increment has the Marshall-Olkin distribution with parameters (λ 1 , λ 2 , λ 12 ), so that its bivariate survival function is given, for all x 1 , x 2 ≥ 0, by

F(V (1) ,V (2) ) (x 1 , x 2 ) = e -λ1x1-λ2x2-λ12 max(x1,x2) ;
see [START_REF] Marshall | A multivariate exponential distribution[END_REF]. Using [START_REF] Jamalizadeh | Weighted Marshall-Olkin bivariate exponential distribution[END_REF]Theorem 3.4] for the moment-generating function of the Marshall-Olkin bivariate exponential distribution with parameter (α, λ 1 , λ 2 , λ 12 ) and letting α → ∞, we get

μ(s, t) = 1 γ + s + t λ 1 γ 2 γ 2 + t + λ 2 γ 1 γ 1 + s + λ 12 where γ = λ 1 + λ 2 + λ 12 , γ 1 = λ 1 + λ 12 , γ 2 = λ 2 + λ 12 and, for i = 1, 2, μi (s) = γ i γ i + s .
For s ≤ t, easy (but tedious) computations yield

FY (s, t) = e -λt+p11λ s 0 μ(s-w,t-w) dw+q2λ t s μ2(t-w) dw = e -λt γ 2 + t γ 2 -s + t γ -s + t γ + s + t p11λ λ 1 γ 2 γ-2γ 2 +s-t γ 1 + s γ 1 γ -s + t γ + s + t p11λ λ 2 γ 1 γ-2γ 1 -s+t × γ + s + t γ -s + t p11λ λ 12 2 γ 2 -s + t γ 2 q2λγ2
(with a similar expression for s > t). Furthermore, one has, for i = 1, 2, FYi (s) = e -λs γ i + s γ i qiλγi .

A bivariate aging property

Let us first recall that the univariate lifetime Y i of a component with cumulative hazard rate H i has the New Better than Used (NBU) property if and only if

H i is super-additive, i.e., H i (x i + y i ) ≥ H i (x i ) + H(y i ) for all x i , y i ≥ 0, which is equivalent to FYi (x i + y i ) ≤ FYi (x i ) FYi (y i ) for all x i , y i ≥ 0.
This property means that the lifetime of a new component is stochastically larger than the lifetime of an older component (see, e.g., [START_REF] Lai | Stochastic aging and dependence for reliability[END_REF]) and it is a so-called aging property. In the bivariate setting, there are different ways to define a Bivariate New Better than Used (BNBU) property (see Section 8.5 in [START_REF] Lai | Stochastic aging and dependence for reliability[END_REF] for example). We provide here sufficient conditions under which Y has the BNBU property in the following sense:

FY (s 1 + s 2 , t 1 + t 2 ) ≤ FY (s 1 , t 1 ) FY (s 2 , t 2 ) (6) for all s 1 , s 2 , t 1 , t 2 ≥ 0 such that (s 1 -t 1 )(s 2 -t 2 ) ≥ 0.
Proposition 2 Assume that H 1 , H 2 , Λ are super-additive and that the functions p 11 (w)λ(w) and q i (w)λ(w) (i = 1, 2) are non-increasing. Then Y is BNBU.

Proof. For any s ≤ t, let us write FY (s, t) = e -H1(s)-H2(t)-Λ(t)+A(s,t)+B(s,t) ,

where

A (s, t) = s 0 μ(s -w, t -w)p 11 (w)λ(w)dw, B (s, t) = t s μ2 (t -w)q 2 (w)λ(w)dw.
The objective is to prove [START_REF] Cha | On a stochastic survival model for a system under randomly variable environment[END_REF]. Let us first suppose that s i ≤ t i for i = 1, 2.

Because H 1 , H 2 and Λ are super-additive, we already know that e -H1(s1)-H2(t1)-Λ(t1) e -H1(s2)-H2(t2)-Λ(t2) ≥ e -H1(s1+s2)-H2(t1+t2)-Λ(t1+t2) .

Thus, using [START_REF] ¸ınlar | Probability and Stochastics[END_REF] for (s 1 , t 1 ), (s 2 , t 2 ) and (s 1 + s 2 , t 1 + t 2 ), we can see that it is sufficient to prove that

A (s 1 , t 1 ) + A (s 2 , t 2 ) ≥ A (s 1 + s 2 , t 1 + t 2 ) , (8) 
B (s 1 , t 1 ) + B (s 2 , t 2 ) ≥ B (s 1 + s 2 , t 1 + t 2 ) . (9) 
Writing

s1+s2 0 = s1 0 + s1+s2 s1
, we have

A (s 1 + s 2 , t 1 + t 2 ) = a (s 1 , s 2 , t 1 , t 2 ) + b (s 1 , s 2 , t 1 , t 2 ) (10) with a (s 1 , s 2 , t 1 , t 2 ) = s1 0 μ(s 1 + s 2 -w, t 1 + t 2 -w)p 11 (w)λ(w)dw ≤ s1 0 μ(s 1 -w, t 1 -w)p 11 (w)λ(w)dw = A (s 1 , t 1 ) (11) 
(by non-increasingness of μ) and

b (s 1 , s 2 , t 1 , t 2 ) = s1+s2 s1 μ(s 1 + s 2 -w, t 1 + t 2 -w)p 11 (w)λ(w)dw = s2 0 μ(s 2 -u, t 1 + t 2 -s 1 -u)p 11 (u + s 1 )λ(u + s 1 )du ≤ s2 0 μ(s 2 -u, t 2 -u)p 11 (u)λ(u)du = A (s 2 , t 2 ) (12) 
(setting u = w -s 1 in the second line, and using the non-increasingness of both p 11 (w)λ(w) and μ for the inequality). Gathering ( 10), ( 11) and ( 12) provides [START_REF] Denuit | Laplace transform ordering of actuarial quantities[END_REF]. Inequality ( 9) can be proved in a similar way by writing

t1+t2 s1+s2 = t1+s2 s1+s2 + t1+t2 t1+s2 in B (s 1 + s 2 , t 1 + t 2 )
and showing that the first (resp. second) term is smaller than B (s 1 , t 1 ) (resp. B (s 2 , t 2 )) under non increasingness of q 2 (w)λ(w).

The case s i ≥ t i , i = 1, 2 is similar, given the non-increasingness of q 1 (w)λ(w).

These assumptions are quite natural to guarantee that Y is BNBU. Indeed, the super-additivity of H 1 and H 2 states that without taking into account the effect of the external environment, both components are NBU. The superadditivity of Λ means that the shocks are more and more frequent. The decreasing property of the functions p 11 (w)λ(w), q i (w)λ(w), i = 1, 2 implies that non-fatal shocks appear more and more rarely, and consequently, as shocks are more and more frequent, that the probability of a fatal shock is increasing.

Remark 3 Specializing to s = t, it is easy to see that FY (s, s) is the probability that both components are still working at time s, so that FY (s, s) appears as the reliability of a two-unit series system at time s. Then, writing the BNBU property for s i = t i (i = 1, 2), it can be seen that, under the conditions of Proposition 2, the lifetime of the series system has the (univariate) NBU property. Now, recall that a stronger BNBU property is provided by

FY (s 1 + s 2 , t 1 + t 2 ) ≤ FY (s 1 , t 1 ) FY (s 2 , t 2 ) ( 13 
)
for all s 1 , s 2 , t 1 , t 2 ≥ 0. One may consequently wonder whether this stronger BNBU property (or the even stronger property from [START_REF]A class of multivariate new better than used distributions[END_REF]) could be valid under the assumption of Proposition 2. The answer is negative as will be shown in Example 4; see Section 4.

A positive dependence property

Given a bivariate random vector Y = (Y 1 , Y 2 ), we recall that FY is multivariate totally positive of order 2 (MTP2) if

∀ x,y∈R 2 + FY (y) FY (x) ≤ FY (x ∨ y) FY (x ∧ y) or equivalently if FY (x 1 , x 2 ) FY (y 1 , y 2 ) ≤ FY (x 1 , y 2 ) FY (y 1 , x 2 )
for all x 1 ≤ y 1 and x 2 ≥ y 2 .

We also recall that Y 2 is said to be Right-Tail-Increasing in Y 1 , written RTI(Y 2 |Y 1 ), as soon as Pr(

Y 2 > x 2 |Y 1 > x 1 ) is non-decreasing in x 1 for all x 2 ≥ 0. Finally, Y 2 is said to be Left-Tail-Decreasing in Y 1 , written LTD(Y 2 |Y 1 ), as soon as Pr(Y 2 ≤ x 2 |Y 1 ≤ x 1 ) is non-increasing in x 1 for all x 2 > 0. Both RTI(Y 2 |Y 1 )
and LTD(Y 2 |Y 1 ) properties are positive dependence properties, which imply association and positive quadrant dependence of Y ; see, e.g., [START_REF] Lai | Stochastic aging and dependence for reliability[END_REF]Chapter 9] for more details on these different notions.

Theorem 3 FY is MTP2.
The proof of Theorem 3 is long and technical, and hence postponed to Appendix A.

As is well known, the MTP2 property of FY entails that both RTI(Y 2 |Y 1 ) and RTI(Y 1 |Y 2 ) properties are true; see, e.g., Theorem 8.5 in [START_REF] Joe | Dependence modeling with copulas[END_REF]. However, as will be shown in Example 5 from Section 4, the LTD(Y 2 |Y 1 ) property is not always true. As the MTP2 property of F Y implies that both LTD(Y 2 |Y 1 ) and LTD(Y 1 |Y 2 ) properties are true, F Y is not always MTP2, again by Theorem 8.5 in [START_REF] Joe | Dependence modeling with copulas[END_REF].

Influence of the shock model parameters on the bivariate lifetime

We now study the influence of different parameters on the bivariate lifetime.

To this end, two similar systems are considered (S and S, say), with identical parameters except from one. An upper bar is added to all quantities referring to the second system. (For instance, we use λ (w) for the second system). The bivariate lifetimes Y and Ȳ are next compared, using different stochastic orders whose definitions are now recalled. Let X = (X 1 , X 2 ) and Y = (Y 1 , Y 2 ) be two bivariate random vectors. Then X is said to be smaller than Y with respect to the Upper Orthant (UO) order

(denoted by X ≤ U O Y ) if ∀ (x1,x2)∈R 2 + FX (x) ≤ FY (x),
or equivalently (in the two-dimensional case) if

∀ (x1,x2)∈R 2 + F X (x) ≤ F Y (x).
Also, X is said to be smaller than Y in the sense of the Weak Hazard Rate order (X ≤ W HR Y ) if FY (x)/ FX (x) is non-decreasing with respect of x ∈ {y ∈ R 2 + : FY (y) > 0}). The random variable X is said to be weaker than Y in the Hazard Rate sense (X ≤ HR Y ) if

∀ x,y∈R 2 + FY (y) FX (x) ≤ FY ( x ∨ y) FX (x ∧ y).
The HR order implies the WHR order.

Finally, X is said to be smaller than Y in the sense of the bivariate Laplace transform order (denoted by

X ≤ L Y ) if ∀ s=(s1,s2)∈R 2 + L X (s) = E e -s1X1-s2X2 ≥ L Y (s) = E e -s1Y1-s2Y2 ;
see [START_REF] Shaked | Stochastic comparisons of multivariate random sums in the laplace transform order, with applications[END_REF]. Note in passing that [START_REF] Denuit | Laplace transform ordering of actuarial quantities[END_REF] uses the reverse inequality.

The following result now shows that, as expected, the more frequent the shocks, the shorter the bivariate lifetime Y .

Proposition 4 Let us consider two systems S and S with the same parameters except from the intensity of the non-homogeneous Poisson process. Assume that λ(w) ≤ λ(w) for all w ≥ 0. Then Ȳ is smaller than Y in the sense of the Hazard Rate order ( Ȳ ≤ HR Y ).

Proof. We first show that Ȳ ≤ W HR Y . Note that F Ȳ (x)/ FY (x) = F Ỹ (x), where Ỹ stands for the bivariate lifetime of a similar system to S and S with identical parameters, except from the intrinsic failure rates with h = 0 and the intensity of shocks, with λ = λ -λ. As F Ỹ (x) is non-increasing in x, it is clear that FY (x)/ F Ȳ (x) is non-decreasing in x and Ȳ ≤ W HR Y . Now, remembering that FY is MTP2 from Theorem 3, we conclude that Ȳ ≤ HR Y from Theorem 6.D.1 in [START_REF] Shaked | Stochastic orders[END_REF].

Remark 4 As the HR order implies the UO order [32, Eq. (6.G.10)]) and as the UO order implies the Laplace transform order (consequence of Theorem 6.G.14 in [START_REF] Shaked | Stochastic orders[END_REF] in the bivariate case), we deduce from the previous result that if λ(w) ≤ λ(w) for all w ≥ 0, then Ȳ ≤ U O Y and Ȳ ≤ L Y as well. Based on [START_REF] Hu | Multivariate hazard rate orders[END_REF], we also conclude that

∀ x∈R 2 + m Ȳ (x) = E( Ȳ -x| Ȳ > x) ≤ m Y (x) = E(Y -x|Y > x),
where m Ȳ (x) and m Y (x) are the bivariate mean residual lifetimes of Ȳ and Y , respectively.

The next result shows that the larger the fatality of shocks, the shorter the bivariate lifetime Y .

Proposition 5 For each t ≥ 0, let U (t) with distribution Pr {U (t) = (i, j)} = p ij (t) for all i, j ∈ {0, 1} and let Ū (t) be defined in the same way with respect to the family {p ij (t)} i,j∈{0,1} . Let us assume that

U (t) ≤ U O Ū (t) for all t ≥ 0. Then Y ≤ U O Ȳ .
Proof. As U (t) ≤ U O Ū (t), we know that for all i, j ∈ {0, 1},

Pr {U (t) ≥ (i, j)} ≤ Pr Ū (t) ≥ (i, j) .
Taking (i, j) = (1, 1) (resp. (1, 0), (0, 1)) this yields p 11 (t) ≤ p11 (t) (resp.

p 11 (t) + p 10 (t) = q 1 (t) ≤ q1 (t), p 11 (t) + p 01 (t) = q 2 (t) ≤ q2 (t)). Therefore, one has FY (x) ≤ F Ȳ (x) for all x ∈ R 2 + . Hence Y ≤ U O Ȳ .
Example 7 from Section 4 shows that even if U (t) ≤ W HR Ū (t) for all t ≥ 0, then Y is not always smaller than Ȳ in the WHR sense.

The next and last result shows that the larger the increments of hazard rates are at jump times, the shorter the bivariate lifetime Y is.

Proposition 6 Assume V to be smaller than V in the sense of the bivariate Laplace transform order (V ≤ L V ). Then Ȳ ≤ U O Y .

Proof. Based on V ≤ L V , we have μ(x 1 , x 2 ) ≥ μ(x 1 , x 2 ) and μi (x i ) ≥ μi (x i ) for all x i ≥ 0 and i = 1, 2. Inserting these inequalities into Eq. ( 3) easily provides the result.

Let us assume that V and V have identical marginal distributions and remark that Y and Ȳ then share the same property. Under this assumption and in the present bivariate case, the concordance order is known to boil down to the UO order; see [START_REF] Müller | Comparison methods for stochastic models and risks[END_REF] for more details on this notion. Also, the concordance order measures the dependence between the margins of a random vector (with given marginal distributions). In that case, the previous result means that the larger the increments of hazard rates are at jump times (with respect to ≤ L ), the less dependent the marginal lifetimes are. As the Laplace transform order is implied by the concordance (or UO) order, we also derive that the more dependent the increments of hazard rates are (V ≤ C V ), the less dependent the marginal lifetimes are ( Ȳ ≤ C Y ).

Remark 5 As already noticed in Remark 3, F (t, t) corresponds to the reliability of a series system at time t. Then, all of the above comparison results entail similar ones for the series system: if λ(w) increases, then the lifetime of the series system decreases with respect to the univariate HR order; if U (t) increases with respect to the UO order, or if V decreases with respect to the Laplace order, then the lifetime of the series system increases with respect to the usual stochastic (or UO) order.

Numerical experiments

In all the following experiments, we take h i = 0 for i = 1, 2. In Examples 4, 6, 7 and 8, V = (V (1) , V (2) ) has a Marshall-Olkin distribution with parameters (λ 1 , λ 2 , λ 12 ) as in Example 2. In the other examples, we take V (i) = U (i) + U (3) , i = 1, 2, where U (1) , U (2) and U (3) are independent and U (i) is gamma or exponentially distributed for i = 1, 2, 3, where the parametrization of the gamma distribution is such that

f (x) = a b Γ(a)
x a-1 e -bx 1 {x>0} .

Example 3

The parameters are: λ(x) = 2x, p 11 (x) = p 01 (x) = p 10 (x) = e -x /4 and the U (i) 's (i = 1, 2, 3) are gamma distributed with respective parameters (1, 1), (2, 1) and (3, 1). The joint survival function of Y is displayed in Figure 1.

As expected (see Remark 2), the joint survival function FY (s, t) is continuous on R 2 + but it is not differentiable at points (s, s) of the main diagonal.

Example 4

The parameters are p 01 (x) = p 10 (x) = p 11 (x) = 1/4, λ(x) = 2 and V is Marshall-Olkin distributed with parameters (1, 1, 1). The assumptions of Proposition 2 are verified. We take s 2 = 0.10 < t 2 = 0.14 and we set The function D (s 1 , t 1 ) is plotted in Figure 2 in the case where s 1 < t 1 (left) and also removing this condition (right). We observe that, as expected, D (s 1 , t 1 ) remains non-negative on the left plot, which shows that Y is BNBU in the sense of Proposition 2. However, this is no longer true when condition s 1 < t 1 is removed. Hence, Y is not BNBU in the stronger sense provided by [START_REF] Jamalizadeh | Weighted Marshall-Olkin bivariate exponential distribution[END_REF].

D (s 1 , t 1 ) = FY (s 1 , t 1 ) FY (s 2 , t 2 ) -FY (s 1 + s 2 , t 1 + t 2 ).
Example 5 The parameters are: λ(x) = e x , p 11 (x) = p 01 (x) = p 10 (x) = e -x /4. Also, the U (i) 's (i = 1, 2, 3) are exponentially distributed with respective means 1, 5 and 6. Taking y = (0.1, 0.675), the difference

d(x) = FY (y) FY (x) -FY (x ∨ y) FY (x ∧ y)
is plotted in Figure 3. We observe that it remains non-positive, which is coherent with the MTP2 property from Theorem 3. Figure 4 (left) shows the right tail RT (x 1 ) = FY (x 1 , x 2 )/ FY1 (x 1 ) with respect to x 1 for various values of x 2 . Whatever x 2 is, we observe that the right tail is always increasing (RTI (Y 2 |Y 1 ) property), which is coherent with the fact that FY is MTP2 (see the lines follow- ing Theorem 3). However, the left tail LT (x 2 ) = F Y (x 1 , x 2 )/F Y2 (x 2 ) is plotted in Figure 4 (right) for x 1 = 1.2 and we observe that it is not monotonic. The LTD (Y 2 |Y 1 ) property is consequently not true and the MTP2 property cannot hold for F Y in a general setting.

Example 6 The parameters are p 01 (x) = p 10 (x) = p 11 (x) = e -x /4 and V is Marshall-Olkin distributed with parameters (1, 2, 1). We consider λ(x) = x ≤ λ(x) = 2x, so that the assumptions of Proposition 4 hold true. Taking y = (0.36, 0.2), the difference

d(x) = FY (y) F Ȳ (x) -FY (x ∨ y) F Ȳ (x ∧ y)
is always non-positive (see Figure 5). This means that Ȳ is weaker than Y in the HR sense, in accordance with Proposition 4. We have U ≤ U O Ū and, as expected from Proposition 5, the difference D = F Ȳ -FY is always non-negative; see Figure 6 (left). Accordingly, the bivariate lifetime Y is larger than Ȳ in the sense of the UO order. However, taking x 1 = 0.7, Figure 6 (right) shows that r(x 1 , x 2 ) = F Ȳ (x 1 , x 2 )/ FY (x 1 , x 2 ) is not monotone with respect to x 2 . It implies that Y and Ȳ are not comparable with respect to the WHR order (even though U ≤ W HR Ū is valid).

Example 8 This example illustrates the influence of the size of V , as measured by the Laplace transform order; see Proposition 6. All parameters are the same as in Example 4 except from a Marshall-Olkin distribution with parameters (1, 1, 1) for V and with parameters (1, 1, 2) for V . It is then easy to check that V ≤ U O V , and hence that V ≤ L V . We observe in Figure 7 (left) that, as expected, the difference D = F Ȳ -FY is always non-negative, so that Y is smaller than Ȳ , in the sense of the upper orthant order. Also, Figure 7 (right) plots r(x 1 , x 2 ) = F Ȳ (x 1 , x 2 )/ FY (x 1 , x 2 ) with respect of x 2 for x 1 = 0.725. As it is not monotonic, Y and Ȳ are not comparable with respect to the WHR order.

Example 9 As a last example, we look at the influence of the dependence between V (1) and V (2) on the bivariate lifetime, when the marginal distributions of V are fixed. We take p 1,1 (x) = 1, λ(x) = 2x. The U (i) 's (i = 1, 2, 3) are gamma distributed with respective parameters (3, 1), (3, 1) and (0, 1), and the parameters for the Ū (i) 's are (0, 1), (0, 1) and (3, 1), which leads to identical marginal (1) and V (2) distributions for V and V . It is easy to check that V ≤ L V . As expected, the difference D = F Ȳ -FY is always non-negative; see the left panel of Figure 8. However, for y = (0.7, 0.7), the difference

d(x) = FY (y) F Ȳ (x) -FY (x ∨ y) F Ȳ (x ∧ y)
is not always of the same sign, which shows that Y and Ȳ are not comparable with respect to the HR order (nor to the WHR order, due to the MTP2 property of FY ).

Estimation procedure

Assuming a parametric framework, we briefly suggest here some possible approaches for estimating the model parameters, according to the observation scheme. The estimation procedures are illustrated in Example 2, where we recall that the bivariate failure rate increments have a Marshall-Olkin distribution. For each estimation method, 500 independent sets of n M C independent bivariate lifetimes are generated. The parameters are estimated for each set of n M C bivariate data. This provides 500 estimates for each parameter, from which we report the mean, the standard deviation and the 2.5% and 97.25% quantiles (q 0.025 and q 0.975 ).

Observation of failure times

Based on Remark 2, it is possible to compute the density function f Y (s, t) of the distribution of Y with respect to ds dt + ds δ s (dt) (at least numerically). It is hence possible to use the standard maximum likelihood (ML) method. For i = 1, 2, the marginal density f Yi (s) = -∂ FYi (s)/∂s of the distribution of Y i with respect to Lebesgue measure is also available and can be used to compute ML estimators for the marginal parameters. We consequently suggest the following two-step procedure:

1. Estimation of λ and of the marginal parameters from the marginal data.

In Example 2, this provides ( λ(i) , γi , qi ) for i = 1, 2 where λ(i) for i = 1, 2 refer to the two different estimation results based on the two marginal data sets.

2. New estimation of λ (starting from ( λ(1) + λ(2) )/2 as an initial guess) and of the remaining parameters from the bivariate data. In Example 2, this provides ( λ, γ, p11 ).

Results are provided in Table 1 for n M C = 500 and one parameter set. Note that this parameter set provides a probability Q 11 that the failures of the two components are simultaneous (and consequently due to a shock) of about 10.5%. The probability that the failure of one component (Q 1 and Q 2 ) is due to a shock is about 22% for each of them. As can be seen in Table 1, the ML method does not provide reliable results, even for the marginal parameters. This is not very surprising based on the large number of parameters to estimate. Even if enlarging the number n M C of observations provides better results (see Table 2 where n M C = 1000), it seems that this method requires too large a sample size for the results to be reliable in practice.

However, in a real life application, expert advice (or the data themselves) can provide additional information that can be of great help for estimation Parameter True value Mean (std) [q 0.025 , q 0.075 ] q 1 0. purposes. As an example, it can be considered that simultaneous failures are impossible or on the contrary that failures induced by shocks always induce simultaneous failures (when both components are still alive). Also, it may be possible that the two components could be considered as identical. All these situations allow to reduce the number of parameters to be estimated and will consequently improve the estimation results. Another situation that typically fits most examples we have in mind corresponds to the case where the times of shocks are observed. Contrary to the previously described situations, this one requires a specific estimation procedure which we now describe.

Observation of both shocks and failure times

We only consider the case where h 1 = h 2 = 0, which means that only the influence of shocks is estimated. Here, the shock times are observed, which allows to use the standard ML method for estimating the Poisson process parameters. This first step is not developed in the following, as it is standard. In the second step, the other parameters are estimated from the failure data, based on a conditional likelihood function given the shock times.

Starting again from (4), one easily obtains that the conditional survival

function FY |{Tn} (•, •| {t n }) of Y given {T n = t n , ∀n ∈ N * } is given by FY |{Tn} (s, t| {t n }) = nt i=1 p 11 (t i ) ns i=nt+1 q 1 (t i )E{e -ns i=n t +1 V (1) i (s-ti) }E e - n t i=1 V (1) i (s-ti)+V (2) i (t-ti) = nt i=1 {p 11 (t i )μ (s -t i , t -t i )} ns i=nt+1 {q 1 (t i )μ 1 (s -t i )} (14) 
for s ≥ t (with a similar expression for s < t), where n s (resp. n t ) stands for the observation of N s (resp. N t ). Also:

FY k |{Tn} (s| {t n }) = ns i=1 {q k (t i )μ k (s -t i )} for k = 1, 2.
One easily deduces that the conditional distribution of Y k given {T n = t n : n = 1, 2, . . .} has the following density with respect to ds+ +∞ j=1 δ tj (ds):

f Y k |{Tn} (s| {t n }) =    - ns i=1 {q k (t i )μ k (s -t i )} if s / ∈ {t n } , (1 -q k (t n )) n-1 i=1 {q k (t i )μ 1 (t n -t i )} if s = t n with n ≥ 1,
where μ k stands for the derivative of μk . This enables one to write down the conditional (log)-likelihood function for the marginal data. Now, setting f Y (s, t| {t n }) to be the bivariate density of the conditional distribution of Y given {T n = t n : n ≥ 1} with respect to

ds dt + +∞ j=1 ds δ tj (dt) + +∞ j=1 δ tj (ds) dt + +∞ j=1 +∞ k=1 δ (tj ,t k ) (ds, dt) , we first have f (s, t| {t n }) = ∂ 2 ∂s ∂t FY |(Tn) (s, t| {t n }) for all s, t ∈ R + \ {t n }.
Starting again from ( 14), we observe that

Pr (Y 1 > s, Y 2 = t k | {T n = t n }) = FY |(Tn) (s, t - k | {t n }) -FY |(Tn) (s, t k | {t n }) =            p 10 (t k )μ 1 (s -t k ) k-1 i=1 {p 11 (t i )μ (s -t i , t k -t i )} × ns i=k+1 {q 1 (t i )μ 1 (s -t i )} if s ≥ t k , {1 -q 2 (t k )} ns i=1 {p 11 (t i )μ (s -t i , t k -t i )} × k-1 i=ns+1 {q 2 (t i )μ 2 (t k -t i )} if s < t k .
Parameter True value Mean (std)

[q 0.025 , q 0.075 ] q 1 0. For s ∈ R + \ {t n }, we can get

f (s, t k | {t n }) = - ∂ ∂s Pr (Y 1 > s, Y 2 = t k | {T n = t n })
and a similar expression for f (t k , t) and t ∈ R + \ {t n }. Finally,

f (t j , t k | {t n }) = Pr Y 1 > t - j , Y 2 = t k | {T n = t n } -Pr (Y 1 > t j , Y 2 = t k | {T n = t n }) =        p 00 (t j ) j-1 i=1 {p 11 (t i )μ (t j -t i , t j -t i )} if j = k, p 01 (t j ) (1 -q 2 (t k )) μ2 (t k -t j ) j-1 i=1 {p 11 (t i )μ (t j -t i , t k -t i )} × k-1 i=j+1 {q 2 (t i )μ 2 (t k -t i )} if j < k,
with a similar expression for j > k. It is then possible to write the conditional (log)-likelihood function for the bivariate data.

We now provide results for Example 2 with n M C = 100 (and 500 replications). The estimation results are displayed in Table 3. Comparing to the estimation results from Table 1, one can see that these estimations are much better, even though the data size is 5 times smaller in the present case than in Table 1).

Though the procedure clearly deserves a more thorough study (with more numerical experiments), it seems possible to estimate the model parameters when shock times are observed. In case of unobserved shock times, a possibility might be to consider them as masked data and to use an EM algorithm as in, e.g., [START_REF] Franco | Multivariate extension of modified sarhan-balakrishnan bivariate distribution[END_REF] or [START_REF] Karlis | ML estimation for multivariate shock models via an EM algorithm[END_REF], where the authors use such a method for estimating the parameters of multivariate extensions either of the modified Sarhan-Balakrishnan or the Marshall-Olkin class of distributions. However, the development of an EM (or SEM) algorithm requires much more work in our present setting.

Concluding remarks

We proposed here a bivariate random shock model with competing failure modes. The model takes into account different kinds of dependence between components arising from an external environment. The joint survival function of the bivariate lifetime is obtained explicitly. Conditions under which the bivariate life time has a BNBU property are provided. It is also numerically observed that under such conditions, the bivariate system lifetime is not BNBU in any stronger sense. Note that there exist many other multivariate aging properties in the literature, that have not been considered here and hence require further study. As an example, it would be of interest to investigate aging properties based on conditional distributions such as those developed in [START_REF] Arias-Nicolás | A multivariate IFR notion based on the multivariate dispersive ordering[END_REF][START_REF] Arriaza | On a new multivariate IFR aging notion based on the standard construction[END_REF][START_REF]Multivariate conditional hazard rate functions-an overview[END_REF].

A strong positive dependence property (the MTP2 property) is also proved in the paper for the bivariate survival function, without any additional assumption. This entails that the RTI property is valid, too. The dual LTD property is however observed not to hold in a general setting. This shows that neither the MTP2 property for the bivariate cumulative distribution function nor the stochastic increasingness property of one lifetime with respect to the other [START_REF] Lai | Stochastic aging and dependence for reliability[END_REF] can hold in a similar general setting.

The influence of the shocks parameters is also studied. It is proved that the more frequent the shocks, the smaller the bivariate lifetime, in the sense of the (strong) hazard rate order. It is also showed that the smaller the fatality of shocks, the larger the bivariate lifetime. Finally, the larger the increments of hazard rates, the larger the bivariate lifetime, in the sense of the upper orthant order (but not in the sense of the weak hazard rate order). As a by-product, the more dependent the increments are, the less dependent the marginal lifetimes are.

The proposed model has thus many desirable aging and positive dependence properties to be used as a bivariate lifetime in reliability. A next step might be to propose and study preventive maintenance policies to enlarge the components lifetimes.

Finally, a parametric estimation procedure has been proposed, which seems to well behaved in case of observed shock times. As already mentioned, however, the procedure needs to be studied more thoroughly. Also, the case of non observed shock times requires further investigation such as (maybe?) the development of an EM (or SEM) algorithm. with

g (x 1 , x 2 ) = A (x 1 , x 2 ) + B 1 (x 1 , x 2 ) + B 2 (x 1 , x 2 ) where A (x 1 , x 2 ) = min(x1,x2) 0 {-1 + μ(x 1 -w, x 2 -w)p 11 (w)} λ (w) dw, B 1 (x 1 , x 2 ) = 1 {x2≤x1} x1 x2 {-1 + μ1 (x 1 -w)q 1 (w)} λ (w) dw, B 2 (x 1 , x 2 ) = 1 {x2>x1} x2 x1 {-1 + μ2 (x 2 -w)q 2 (w)} λ (w) dw.
The function (x 1 , x 2 ) -→ e -H1(x1)-H2(x2) is clearly MTP2, because both H 1 and H 2 are non-decreasing. As the product of MTP2 functions is MTP2 [START_REF] Karlin | Classes of orderings of measures and related correlation inequalities. i. multivariate totally positive distributions[END_REF]Prop. 3.3], it is sufficient to show that

(x 1 , x 2 ) -→ G(x 1 , x 2 ) = exp {g (x 1 , x 2 )} is MTP2. Note that we have included the term -Λ{max(x 1 , x 2 )} in the function g because the function (x 1 , x 2 ) → exp{-max(x 1 , x 2 )} is not MTP2 so that (x 1 , x 2 ) → exp[-Λ{max(x 1 , x 2
)}] will generally not be MTP2 either.

Let x 1 ≤ y 1 and x 2 ≥ y 2 be fixed. One needs to prove that

g(x 1 , x 2 ) + g (y 1 , y 2 ) ≤ g (x 1 , y 2 ) + g (y 1 , x 2 ) , namely A (x 1 , x 2 ) + B 1 (x 1 , x 2 ) + B 2 (x 1 , x 2 ) + A (y 1 , y 2 ) + B 1 (y 1 , y 2 ) + B 2 (y 1 , y 2 ) ≤ A (x 1 , y 2 ) + B 1 (x 1 , y 2 ) + B 2 (x 1 , y 2 ) + A (y 1 , x 2 ) + B 1 (y 1 , x 2 ) + B 2 (y 1 , x 2 ) . (15) 
Let us write all A (z 1 , z 2 ) terms in [START_REF] Jones | Common cause failures and ultra reliability[END_REF] as

A (z 1 , z 2 ) = A 1 (z 1 , z 2 ) + A 2 (z 1 , z 2 ) with A 1 (z 1 , z 2 ) = min(x1,y2) 0 {-1 + μ (z 1 -w, z 2 -w) p 11 (w)} λ (w) dw, A 2 (z 1 , z 2 ) = min(z1,z2) min(x1,y2) {-1 + μ (z 1 -w, z 2 -w) p 11 (w)} λ (w) dw.
We will prove that

A 1 (x 1 , x 2 ) + A 1 (y 1 , y 2 ) ≤ A 1 (x 1 , y 2 ) + A 1 (y 1 , x 2 ) (16) 
and

A 2 (x 1 , x 2 ) + B 1 (x 1 , x 2 ) + B 2 (x 1 , x 2 ) + A 2 (y 1 , y 2 ) + B 1 (y 1 , y 2 ) + B 2 (y 1 , y 2 ) ≤ B 1 (x 1 , y 2 ) + B 2 (x 1 , y 2 ) + A 2 (y 1 , x 2 ) + B 1 (y 1 , x 2 ) + B 2 (y 1 , x 2 ) (17) 
(note that A 2 (x 1 , y 2 ) = 0), which will provide (15) by summation. To prove [START_REF] Karlin | Classes of orderings of measures and related correlation inequalities. i. multivariate totally positive distributions[END_REF], we first note that it is equivalent to

min(x1,y2) 0 {μ (x 1 -w, y 2 -w) + μ (y 1 -w, x 2 -w) -μ (y 1 -w, y 2 -w) -μ (x 1 -w, x 2 -w)} p 11 (w) λ (w) dw ≥ 0. (18) 
As x 1 ≤ y 1 and x 2 ≥ y 2 , we have

μ (x 1 -w, y 2 -w) + μ (y 1 -w, x 2 -w) -μ (y 1 -w, y 2 -w) -μ (x 1 -w, x 2 -w) = E[{e -(x1-w)V (1) -e -(y1-w)V (1) }{e -(y2-w)V (2) -e -(x2-w)V (2) }]
≥ 0 for all w ∈ [0, min (x 1 , y 2 )]. We deduce that inequality ( 18) is true, as well as inequality [START_REF] Karlin | Classes of orderings of measures and related correlation inequalities. i. multivariate totally positive distributions[END_REF]. We now come to inequality [START_REF] Karlis | ML estimation for multivariate shock models via an EM algorithm[END_REF] and we distinguish between different cases.

Case 1. Assume that y 1 ≤ y 2 . Hence:

x 1 ≤ y 1 ≤ y 2 ≤ x 2 . Noting that A 2 (x 1 , x 2 ) = B 1 (x 1 , x 2 ) = B 1 (y 1 , y 2 ) = B 1 (x 1 , y 2 ) = B 1 (y 1 , x 2 ) = 0, we must prove that B 2 (x 1 , x 2 ) + A 2 (y 1 , y 2 ) + B 2 (y 1 , y 2 ) ≤ B 2 (x 1 , y 2 ) + A 2 (y 1 , x 2 ) + B 2 (y 1 , x 2 ) .
This can be rewritten as 

x2 x1 {-1 + μ2 (x 2 -w)q 2 (w)} λ (w) dw + y1 x1 {-1 + μ (y 1 -w, y 2 -w) p 11 (w)} λ (w) dw + y2 y1 {-1 + μ2 (y 2 -w)q 2 (w)} λ (w) dw ≤ y2 x1 {-1 + μ2 (y 2 -w)q 2 (w)} λ (w) dw + y1 x1 {-1 + μ (y 1 -w, x 2 -w) p 11 (w)} λ (w) dw + x2 y1 {-1 + μ2 (x 2 -w)q 2 (w)} λ (w) dw,
Based on

y 2 ≤ x 2 , we have μ2 (y 2 -w) -μ2 (x 2 -w) ≥ 0 for all w ∈ [x 1 , y 1 ].
Using also that q 2 ≥ p 11 and x 1 ≤ y 1 , we get

y1 x1 [{μ (y 1 -w, x 2 -w) -μ (y 1 -w, y 2 -w)} p 11 (w) + {μ 2 (y 2 -w) -μ2 (x 2 -w)} q 2 (w)] λ (w) dw ≥ y1 x1 {μ (y 1 -w, x 2 -w) -μ (y 1 -w, y 2 -w) + μ2 (y 2 -w) -μ2 (x 2 -w)} p 11 (w) λ (w) dw = y1 x1 E 1 -e -(y1-w)V (1) e -(y2-w)V (2) -e -(x2-w)V (2) p 11 (w) λ (w) dw ≥ 0.
Therefore, inequality ( 19) is true, which concludes this case.

Case 2. Assume that x 1 ≤ y 2 ≤ y 1 ≤ x 2 . We must prove that

B 2 (x 1 , x 2 ) + A 2 (y 1 , y 2 ) + B 1 (y 1 , y 2 ) ≤ B 2 (x 1 , y 2 ) + A 2 (y 1 , x 2 ) + B 2 (y 1 , x 2 ) .
This may be written as

x2 x1 {-1 + μ2 (x 2 -w)q 2 (w)} λ (w) dw + y2 x1 {-1 + μ (y 1 -w, y 2 -w) p 11 (w)} λ (w) dw + y1 y2 {-1 + μ1 (y 1 -w)q 1 (w)} λ (w) dw ≤ y2 x1 {-1 + μ2 (y 2 -w)q 2 (w)} λ (w) dw + y1 x1 {-1 + μ (y 1 -w, x 2 -w) p 11 (w)} λ (w) dw + x2 y1
{-1 + μ2 (x 2 -w)q 2 (w)} λ (w) dw which may then be simplified to 

Splitting the domain of integration into (x 1 , y 2 ) and (y 2 , y 1 ) and considering the two terms separately, we first have to prove that 

which is true, using similar arguments as for [START_REF] Lai | Stochastic aging and dependence for reliability[END_REF]. Looking at the second integral, we must next show that y1 y2 μ2 (x 2 -w)q 2 (w) λ (w) dw + y1 y2

{-1 + μ1 (y 1 -w)q 1 (w)} λ (w) dw ≥ 0, we can conclude that ( 22) is true, so that (20) is also true, upon summing [START_REF] Li | Stochastic bounds and dependence properties of survival times in a multicomponent shock model[END_REF] and [START_REF] Li | Generalized Marshall-Olkin distributions and related bivariate aging properties[END_REF].

Case 3. Assume that x 1 ≤ y 2 ≤ x 2 ≤ y 1 . We have to prove that B 2 (x 1 , x 2 ) + A 2 (y 1 , y 2 ) + B 1 (y 1 , y 2 ) ≤ B 2 (x 1 , y 2 ) + A 2 (y 1 , x 2 ) + B 1 (y 1 , x 2 ) .

After simplification, one gets 

which is clear, using similar arguments as for [START_REF] Lai | Stochastic aging and dependence for reliability[END_REF]. We now look at the x2 y2 remaining terms in [START_REF] Mallor | Classification of shock models in system reliability, Monografías del Semin[END_REF], which may be written as and may be treated in a similar way as [START_REF] Li | Generalized Marshall-Olkin distributions and related bivariate aging properties[END_REF], which allows to conclude this case.

Case 4. Assume that y 2 ≤ x 1 ≤ x 2 ≤ y 1 . We have to prove that A 2 (x 1 , x 2 ) + B 2 (x 1 , x 2 ) + B 1 (y 1 , y 2 ) ≤ B 1 (x 1 , y 2 ) + A 2 (y 1 , x 2 ) + B 1 (y 1 , x 2 ) .

After simplification, this reduces to μ (y 1 -w, x 2 -w) p 11 (w) λ (w) dw which is clear, using similar arguments as for [START_REF] Lai | Stochastic aging and dependence for reliability[END_REF]. We now look at the and may be handled in a similar way as [START_REF] Li | Generalized Marshall-Olkin distributions and related bivariate aging properties[END_REF]. Case 5. Assume that y 2 ≤ x 2 ≤ x 1 ≤ y 1 . We have to prove that A 2 (x 1 , x 2 ) + B 1 (x 1 , x 2 ) + B 1 (y 1 , y 2 ) ≤ A 2 (y 1 , x 2 ) + B 1 (x 1 , y 2 ) + B 1 (y 1 , x 2 ) or equivalently that This may be proved in a similar way as [START_REF] Lai | Stochastic aging and dependence for reliability[END_REF]. Case 6. Assume that y 2 ≤ x 1 ≤ y 1 ≤ x 2 . We have to prove that A 2 (x 1 , x 2 ) + B 2 (x 1 , x 2 ) + B 1 (y 1 , y 2 ) ≤ B 1 (x 1 , y 2 ) + B 2 (y 1 , x 2 ) + A 2 (y 1 , x 2 ) which may be simplified into This case may be proved in a similar way as Case 3., which achieves this proof.
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 1 Figure 1: Example 3, Joint survival function of Y

Figure 2 :Figure 3 :

 23 Figure 2: Example 4, BNBU property, case s1 < t1 (left) and without condition (right)

Figure 4 :

 4 Figure 4: Example 5, RTI and not LTD property

Figure 5 :

 5 Figure 5: Example 6, d(x) is non positive -influence of intensity

Figure 6 :

 6 Figure 6: Example 7 -Influence of fatality of shocks

Figure 7 :Figure 8 :

 78 Figure 7: Example 8 -Influence of the size of V

which may be simplified to y1 x1 μ2 (x 2 -

 x12 w)q 2 (w) λ (w) dw + y1 x1 μ (y 1 -w, y 2 -w) p 11 (w) λ (w) dw ≤ y1 x1 μ2 (y 2 -w)q 2 (w) λ (w) dw + y1 x1 μ (y 1 -w, x 2 -w) p 11 (w) λ (w) dw.

{- 1

 1 2 -w)q 2 (w) λ (w) dw + y2 x1 μ (y 1 -w, y 2 -w) p 11 (w) λ (w) dw + y1 y2 + μ1 (y 1 -w)q 1 (w)} λ (w) dw ≤ y2 x1 μ2 (y 2 -w)q 2 (w) λ (w) dw + y1 x1 μ (y 1 -w, x 2 -w) p 11 (w) λ (w) dw.

  2 -w)q 2 (w) λ (w) dw + y2 x1 μ (y 1 -w, y 2 -w) p 11 (w) λ (w) dw ≤ y2 x1 μ2 (y 2 -w)q 2 (w) λ (w) dw + y2 x1 μ (y 1 -w, x 2 -w) p 11 (w) λ (w) dw,

  1 -w, x 2 -w) p 11 (w) λ (w) dw.[START_REF] Li | Generalized Marshall-Olkin distributions and related bivariate aging properties[END_REF] Noting thatμ (y 1 -w, x 2 -w) p 11 (w) -μ2 (x 2 -w)q 2 (w) + 1 -μ1 (y 1 -w)q 1 (w) = {μ (y 1 -w, x 2 -w) -μ2 (x 2 -w) -μ1 (y 1 -w)} p 11 (w) -μ2 (x 2 -w)p 01 (w) + 1 -μ1 (y 1 -w)p 10 (w) = E[{1 -e -(y1-w)V (1)}{1 -e -(x2-w)V (2) } -1]p 11 (w) -μ2 (x 2 -w)p 01 (w) + 1 -μ1 (y 1 -w)p 10 (w) ≥ -p 11 (w) -p 01 (w) + 1 -p 10 (w)

{- 1

 1 2 -w)q 2 (w) λ (w) dw + y2 x1 μ (y 1 -w, y 2 -w) p 11 (w) λ (w) dw + x2 y2 + μ1 (y 1 -w)q 1 (w)} λ (w) dw ≤ y2 x1 μ2 (y 2 -w)q 2 (w) λ (w) dw + x2 x1 μ (y 1 -w, x 2 -w) p 11 (w) λ (w) dw.

  2 -w)q 2 (w) λ (w) dw + y2 x1 μ (y 1 -w, y 2 -w) p 11 (w) λ (w) dw ≤ y2 x1 μ2 (y 2 -w)q 2 (w) λ (w) dw + y2 x1 μ (y 1 -w, x 2 -w) p 11 (w) λ (w) dw,

  2 -w)q 2 (w) λ (w) dw + x2 y2 {-1 + μ1 (y 1 -w)q 1 (w)} λ (w) dw ≤ x2 y2 μ (y 1 -w, x 2 -w) p 11 (w) λ (w) dw(25)

{- 1

 1 1 -w, x 2 -w) p 11 (w) λ (w) dw+ x2 x1 + μ2 (x 2 -w)q 2 (w)} λ (w) dw + x2 y2 μ1 (y 1 -w)q 1 (w) λ (w) dw ≤ x1 y2 μ1 (x 1 -w)q 1 (w) λ (w) dw + x2 y2 μ (y 1 -w, x 2 -w) p 11 (w) λ (w) dw 1 -w, x 2 -w) p 11 (w) λ (w) dw + x1 y2 μ1 (y 1 -w)q 1 (w) λ (w) dw ≤ x1 y2 μ1 (x 1 -w)q 1 (w) λ (w) dw + x1 y2

{- 1

 1 + μ2 (x 2 -w)q 2 (w)} λ (w) dw + x2 x1 μ1 (y 1 -w)q 1 (w) λ (w) dw ≤ x2 x1 μ (y 1 -w, x 2 -w) p 11 (w) λ (w) dw

  1 -w, x 2 -w)p 11 (x)λ(w)dw + x2 y2 μ1 (y 1 -w)q 1 (w)λ(w)dw ≤ x2 y2 μ(y 1 -w, x 2 -w)p 11 (w)λ(w)dw + x2 y2μ1 (x 1 -w)q 1 (w)λ(w)dw.

  1 -w, x 2 -w)p 11 (w)λ(w)dw + y1 x1 {-1 + μ2 (x 2 -w)q 2 (w)} λ(w)dw + y1 y2 μ1 (y 1 -w)q 1 (w)λ(w)dw ≤ x1 y2 μ1 (x 1 -w)q 1 (w)λ(w)dw + y1 y2μ(y 1 -w, x 2 -w)p 11 (w)λ(w)dw.

  probability that the shock at time T n induces the simultaneous failure of both components, p 11 (T n ): probability that the shock at time T n induces no failure at all among the two components, p 01 (T n ): probability that the shock at time T n is fatal only for the first component, p 10 (T n ): probability that the shock at time T n is fatal only for the second component.

	Therefore, p 00 (•) + p 01 (•) + p 10 (•) + p 11 (•) = 1 by definition.
	The common distribution of the i.i.d. random vectors

Table 1 :

 1 Estimation results for ML estimates based on failure data with nMC = 500; computing time 399 c.p.u. time; Q11 10.5%, Q1 22.5%, Q2 22.5%.

		8	0.8011(0.1889) [0.3910, 1]
	γ 1	0.15	0.3144(0.4314) [0.0500, 1.9999]
	q 2	0.8	0.8109(0.1803) [0.4013, 1]
	γ 2	0.15	0.2939(0.4037) [0.0500, 1.9999]
	λ	0.4	0.3964 (0.0566) [0.2808, 0.5267]
	p 11	0.7	0.6452(0.2732) [0.0773, 1]
	γ	0.25	0.4908(0.6086) [0.0825, 2.3155]
	Parameter True value Mean (std)	[q 0.025 , q 0.075 ]
	q 1	0.8	0.8115(0.1457) [0.4954, 1]
	γ 1	0.15	0.2149(0.2335) [0.0500, 0.7759]
	q 2	0.8	0.8108(0.1460) [0.5161, 1]
	γ 2	0.15	0.2111(0.2272) [0.0500, 0.7528]
	λ	0.4	0.3983 (0.0324) [0.3316, 0.4719]
	p 11	0.7	0.6880(0.2522) [0.0773, 1]
	γ	0.25	0.3371(0.3295) [0.0931, 1.3477]

Table 2 :

 2 Estimation results for ML estimates based on failure data with nMC = 1000, computing time 708 c.p.u. time; Q11 10.5%, Q1 22.5%, Q2 22.5%

Table 3 :

 3 Estimation results for ML estimates based on failure data and shock times for nMC = 100; λ = 0.4; 399 c.p.u. time; Q11 10.5%, Q1 22.5%, Q2 22.5%
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Appendix A

In this appendix, we show Theorem 3, namely we prove that FY is MTP2. Let us first write FY (x 1 , x 2 ) = e -H1(x1)-H2(x2) exp {g (x 1 , x 2 )}