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Abstract. In this work we propose an automatic way of generating and verifying
formal hybrid models of signaling and transcriptional events, gathered in large-
scale regulatory networks.This is done by integrating temporal and stochastic
aspects of the expression of some biological components. The hybrid approach
lies in the fact that measurements take into account both times of lengthening
phases and discrete switches between them. The model proposed is based on a
real case study of keratinocytes differentiation, in which gene time-series data
was generated upon Calcium stimulation.
To achieve this we rely on the Process Hitting (PH) formalism that was designed
to consider large-scale system analysis. We first propose an automatic way of de-
tecting and translating biological motifs from the Pathway Interaction Database
to the PH formalism. Then, we propose a way of estimating temporal and stochas-
tic parameters from time-series expression data of action on the PH. Simulations
emphasize the interest of synchronizing concurrent events.

Keywords: time-series data, large-scale network, hybrid models, compositional
approach, stochastic simulation

1 Introduction

Unraveling and describing the mechanisms involved in the regulation of a cell-based
biological system is a fundamental issue. These mechanisms can be modeled as biolog-
ical regulatory networks, whose analysis requires to preliminary build a mathematical or
computational model. By just considering qualitative regulatory effects between com-
ponents, biological regulatory networks depict fairly well biological systems, and can
be built upon public repositories such as the Pathways Interaction Database [23] and
hiPathDB [30] for human regulatory knowledge. In this work we built a hybrid model
of signaling and transcriptional events, gathered in large-scale regulatory networks, for
which stochastic simulation parameters were inferred from gene expression time-series
data.

http://www.irccyn.ec-nantes.fr/en/
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High-throughput experimental data has been used since more than one decade ago
to infer biological regulatory models. A variety of methods were proposed to infer dy-
namic or static models of protein signaling or gene regulations depending on the na-
ture of the experimental data. We can cite methods that infer static gene regulatory
models from steady-state gene expression datasets of over-expression or knock-down
perturbations using statistical models generating small-scale (ten species) models [8]
or middle-scale (maximum 100 species) models [19]. Additionally, we can cite meth-
ods that recovered gene regulatory dynamic models from time-series data using kinetic
modeling [5,20] generating small-scale models. Recently, static boolean models for
middle and large-scale (over 100 species) signaling protein networks have been de-
rived from a prior network and fitted to steady-state multiple perturbation phosphopro-
teomics data [10,16] using combinatorial optimization through logic and integer linear
programing to explore the vast search space of candidate boolean models. When us-
ing time-series multi-perturbation phosphoproteomics data, results can be extended to
reconstruct middle-scale dynamic signaling models via the use of stochastic search ap-
proaches [14] that do not guarantee an exhaustive exploration of the search space of
candidate models. The approach presented in this work confronts a prior signaling and
gene regulatory large-scale network, obtained from publicly curated databases, to time-
series gene expression data, by using discrete automaton models and stochastic simu-
lations. Our built model verifies the agreement of expression traces over time given a
signed (activations/inhibitions), directed and cyclic prior graph.

The advantages and complementariness of our method with respect to the afore
cited approaches are that it allows us to define a logic that integrates signaling and
transcription events (imposing different regulatory rules on these events), it also inte-
grates multi-valued states of the system components, and importantly it deals with the
complexity of large-scale dynamic models.

Several conceptually different approaches are available for modeling Biological
Regulatory Network (BRN) dynamics. The most common approach is ordinary dif-
ferential equations (ODE) that describe deterministic (population average) behavior in
a continuous manner. Even for simple models including a simple interaction between
two components, the analytical solution is impossible. Thus we must refer to simula-
tion as the only practical method. Furthermore, continuous models require quantitative
knowledge in terms of kinetic coefficients, which are unknown and very difficult to
measure. Thereby, various abstraction approaches have been developed to make BRN
models more convenient for analysis. Synchronous Boolean model was first proposed
by Kauffman [12] and an alternative asynchronous model was proposed by Thomas
[27]. Following these two papers, many other models have been proposed [25,26,7,6]
for modeling dynamic of BRN. All of these models are purely qualitative and discrete,
thus do not incorporate quantitative time or other quantities. As well, discrete models
have been extended to integrate quantitative aspects. Time aspect have been introduced
by [24,4,1,29]. It relies on timed automaton implementations. These models, however,
do not take into account the stochastic aspects of the influences of a BRN.

In the context of modeling and analyzing stochastic and concurrent biological sys-
tems various formalisms have been introduced such as Stochastic Petri Nets which is
suitable for the representation of parallel systems [17]. They have been successfully
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applied in many areas; in particular, the specification of Petri Nets allows an accurate
modeling of a wide range of systems including biological systems [11]. The major
problem of Stochastic Petri Nets is that, generally, they do not lead to compact models.
In addition, they do not provide results to deal with the state space explosion and are
thus computationally expensive when modeling large-scale biological networks. The
Stochastic pi-calculus formalism was introduced by [21] and used in [15] for the mod-
eling of biological systems. Stochastic pi-calculus has a rich expressiveness and is well
adapted for the use of compositional approach. In this work we rely on this formalism
through the Process Hitting (PH) framework [18], since it is especially useful for study-
ing systems composed of biochemical interactions, and provides stochastic simulation
as well as efficient algorithms, based on the verification of state reachability, to study
dynamical properties of the system. The PH framework uses qualitative and discrete
information of the system without requiring enormous parameter estimation tasks for
its stochastic simulation. This framework has been previously used to verify dynami-
cal properties on biological systems without integrating high-throughput experimental
data.

In this work we provide a method to build a time-series data integrated PH model
and we evaluate the prediction power of this model concerning the simultaneously pre-
dicted traces of 12 mRNA expression components of the system upon system stimu-
lation. The main results of this work are: (1) automatic generation of PH models in-
tegrating gene transcription and signaling events, with and without synchronization of
concurrent events, from the Pathways Interaction Database, (2) parameter estimation
from time-series data and parameter integration in the PH model, and (3) comparison
of the PH model predictions and experimental results. To illustrate our approach, we
used a time-series dataset of human keratinocytes cells, which shows the fluctuations
of mRNA expression across time upon Calcium stimulation. This dataset was built to
study keratinocytes differentiation, a time-dependent process in which the sequence of
activation of signaling proteins is not yet completely understood. The method proposed
in this paper remains general and can be applied to other case-studies.

2 Data and Methods

The general workflow for integrating time-series data in a PH model is depicted in
Fig. 1, in the following sections we detail some of the workflow steps.

2.1 Data

Interaction graph.

Definition 1 (Terminal Transient Interaction Graph (TTIG)). A TTIGN is a couple
(V,E), where:

– V = VT
⋃
VI is the finite set of nodes; with VT = {v1t, v2t, . . . , vn1t} the set of

terminal nodes; VI = {v1i, v2i, . . . , vn2i} the set of transient nodes.
– E = {e1, e2, . . . , em} is the set of edges. E ⊆ (VT ×VT )

⋃
(VT ×VI)

⋃
(VI ×VT )
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Fig. 1. Integrating stochastic and temporal information in a large-scale discrete biological
model. The parameters rate (r) and stochasticity absorption factor (sa) will be presented
later in 2.3.

In this definition terminal nodes can be either mRNA expression, proteins, com-
plexes, cellular states, biological processes or positive conditions. On the other side,
transient nodes can be either transcriptions or translocations or modifications or com-
pounds. Edges are of different types: activation (agent), inhibition, output, input and
protein-family-member.

Definition 2 (multi-layer Receptor-Signaling-Transcription-Cell state (RSTC)). A
RSTC network is a TTIG where nodes are linked to a layer (Receptor, Signaling, Tran-
scription, Cell state) according to their position in the cell. The position in the cell
usually induces specific behavior that has to be modeled differently.

The interactions of the biological system under study were represented in a RSTC
network, which stands for multi-layer Receptor-Signaling-Transcription-Cell state net-
work and that was generated from the Pathway Interaction Database (PID). In order to
build this network one needs to select a set of seed nodes related to the biological pro-
cess studied. For our case study, the seed nodes were: (1) E-cadherin, which is a protein
having Calcium binding domains and which plays an important role in cell adhesion; (2)
the 12 significantly differentially expressed genes across the 10 time-points; and (3) the
cell states of keratinocytes-differentiation and cell-cycle-arrest. The network was ex-
tracted automatically from the whole content of the PID database by using a subgraph
algorithm to link the seed nodes [9]. In Fig. 2 we show the RSTC network obtained.

Definition 3 (Pattern).
A pattern can be defined as an atomic set of biological components and their inter-

acting roles.

The first column of table 1 shows some examples of patterns that can be found in a
RSTC Network.
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Fig. 2. Interaction graph linking E-cadherin with 12 genes of the time-series dataset. Blue
nodes correspond to E-cadherin entities, red or green, to time-series genes, and cyan nodes to
cellular processes. The graph is composed of 293 nodes and 375 edges (interactions). The set of
nodes are composed of terminal nodes (proteins, complexes, mRNA expression, cellular state, bi-
ological processes and positive conditions) and of transient nodes (transcriptions, translocations,
modifications and compounds). The set of edges are composed of interactions of type activation,
inhibition, output, input and protein-family-member.
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Time-series microarray dataset. We use the time-series microarray data from Cal-
cium stimulated human keratinocyte cells measured at 10 time-points (1h, 2h, 3h, 4h,
5h, 6h, 8h, 12h, 18h, 24h). The expression levels were measured in log2; the expression
of a gene at an specific time point is compared with respect to a control condition (gene
expression in a kerationocyte cell without Calcium stimulation). We selected genes,
which mRNA expression e was significantly (log2(e) ≥ 1) up-regulated or signifi-
cantly (log2(e) ≤ −1.0) down-regulated in at least one time point compared to control.
From this procedure 200 mRNA expression transcripts were selected. We included in
our model a subset of 12 of the 200 selected (see Fig. 3) because these 12 genes had
upstream regulatory mechanisms when querying the PID database and therefore were
connected in the interaction graph to the E-cadherin node.

Fig. 3. Relative expression of selected mRNA upon Calcium stimulation.
The X axis represents time duration of the experiment measured in hours. The Y axis represents

the log2 expression level of genes with respect to control.

2.2 The Process Hitting Framework

In order to model the dynamics of the system, we use the Process Hitting framework
[18]. The Process Hitting (PH) gathers a finite number of concurrent processes grouped
into a finite set of sorts. A sort stands for a component of a biological system while a
process, which belongs to a unique sort, stands for one of its expression levels. At any
time exactly one process of each sort is present. A state of the PH corresponds to such a
set of processes. We denote here a process by ai where a is the sort and i is the process
identifier within the sort a. The concurrent interactions between processes are defined
by a set of actions. Actions describe the replacement of a process by another of the
same sort conditioned by the presence of at most one other process in the current state.
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An action is denoted ai → bj � bk, which is read as “ai hits bj to make it bounce to
bk”, where ai, bj , bk are processes of sorts a and b, called respectively hitter, target and
bounce of the action.

Definition 4 (Process Hitting). A Process Hitting is a triple (Σ,L,H), where:

– Σ = {a, b, . . . } is the finite set of sorts;
– L =

∏
a∈Σ La is the set of states with La = {a0, . . . , ala} the finite set of pro-

cesses of sort a ∈ Σ and la a positive integer, with a 6= b⇒ La ∩ Lb = ∅;
– H = {ai → bj � bk ∈ La ×Lb ×Lb | (a, b) ∈ Σ2 ∧ bj 6= bk ∧ a = b⇒ ai = bj}

is the finite set of actions.

Given a state s ∈ L, the process of sort a ∈ Σ present in s is denoted by s[a]. An action
h = ai → bj � bk ∈ H is playable in s ∈ L if and only if s[a] = ai and s[b] = bj .
In such a case, (s · h) stands for the state resulting from playing the action h in s, with
(s · h)[b] = bk and ∀c ∈ Σ, c 6= b, (s · h)[c] = s[c]. In order to model the fact that
a molecule in the interaction graph is influenced by various molecules, two types of
modeling-scenarios can be proposed: cooperation and synchronization.

Modeling cooperation. The cooperation between processes to make another process
bounce can be expressed in PH by building a cooperative sort [18]. Fig. 4 shows an ex-
ample of a cooperative sort ab between sorts a and b, which is composed of 4 processes
(one for each sub-state of the presence of processes in a and b). For the sake of clarity,
processes of ab are indexed using the sub-state they represent. Hence, ab01 represents
the sub-state 〈a0, b1〉, and so on. Each process of sort a and b hits ab, which makes it
bounce to the process reflecting the status of the sorts a and b (e.g., a1 → ab00 � ab10
and a1 → ab01 � ab11). Then, to represent the cooperation between processes a1 and
b1, the process ab11 hits c1 to make it bounce to c2 instead of independent hits from
a1 and b1. The same cooperative sort is used to make a0 and b0 cooperate to hit c1 and
make it bounce to c0. Cooperation sort allows to model the fact that two components
cooperate to hit another component.

Modeling synchronization. The synchronization sort implements another type of co-
operation. If we refer to the example of Fig. 4 left, we can similarly construct a synchro-
nization sort ab between sorts a and b, defined with also 4 processes. Then, component
c is activated (c1 bounces to c2 or c0 bounces to c1) if either a or b are activated. There-
fore, each one of these processes ab01, ab10, ab11 can activate c. In order to inhibit c,
both sorts, a and b, need to be in the sub-state 0, i.e. ab00. Notice that this rule is a com-
bination of OR logical gates for activation and AND logical gates for inhibition. Impos-
ing the synchronization sort to model a target component regulated independently by
multiple predecessors avoids oscillations in the behavior of the target component over
time. These oscillations appear because each predecessor can independently activate
the target component when it is active, but when one predecessor is inhibited, it inhibits
the target component. This competition between the predecessors generates oscillations
on the target component.
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Example 1. Fig. 4 represents a PH (Σ,L,H) with Σ = {a, b, c, ab}, and:

La = {a0, a1},
Lb = {b0, b1},
Lab = {ab00, ab01, ab10, ab11},
Lc = {c0, c1, c2}.

This example models a Biological Regulatory Network (BRN) where the component
c has three qualitative levels, components a and b are Boolean and ab is a cooperative
sort. In this BRN, ab inhibits c at level 2 through the cooperative sort ab (e.g. ab00 →
c2 � c1, ab00 → c1 � c0) while a and b activate c through the cooperative sort ab (e.g.
ab11 → c0 � c1 ab11 → c1 � c2 ). Indeed, the reachability of c2 and c0 is conditioned
by a cooperation of a and b as explained above.

a

b

c
+

+
a

0 1

b

0 1

c

0

1

2

ab

00 01 10 11

Fig. 4. (Left) biological pattern example. Nodes represent molecules (components) and edges,
interactions. In this pattern components a and b cooperate to activate c. (Right) equivalent PH
model with four sorts: three components (a, b and c) and a cooperative sort (ab). Actions targeting
processes of c are drawn as thick lines.

2.3 Model construction (from RSTC to PH)

Modeling the RSTC network as a PH model. In order to model the RSTC network
as a PH model we select known biological regulatory patterns (atomic set of biologi-
cal components and their interacting roles), represented as biochemical reactions in the
RSTC network and we propose their PH representation. Table 1 shows some exam-
ples of this transformation. The automatic pattern selection and PH model generation
algorithms use two procedures. The first one takes the graph as parameter argument
and automatically browses it node by node and detects all the patterns in the graph.
For each node (output node of the pattern) we call a recursive procedure, that allows
to detect a minimal set of nodes (input node of the pattern) that has a direct influence
over that node. This set of nodes plus the output node and the way input and output
are linked form a pattern. The type of a pattern is determined by the type of the out-
put node, the type of regulations that come to that node and the type of input nodes of



Integrating time-series data in cell-based discrete models 9

Table 1. Examples of patterns

Biological Patterns PH Transformations Descriptions

a i b

Simple activation
a

0

1

b

0

1

This pattern model the
activation of the component b
by the component a.

a i b

Simple inhibition
a

0

1

b

0

1

This pattern model the
inhibition of the component b
by the component a

a

i

b

c

Activation or inhibition

a

0

1

b

0

1

c

0

1

This pattern model either the
activation of the component c
by the component a or the
inhibition of the component c
by the component b

the pattern. Consequently, the algorithm of patterns detection returns the pattern and
its type to another procedure which translates the pattern into the PH formalism. This
transformation takes care of different cases (cooperation, synchronization, simple acti-
vation, simple inhibition, etc.) For example a molecule a cooperating with a molecule
b to activate a molecule c (Fig. 4, left), is a regulatory pattern because it is a protein-
complex biochemical reaction that appears at recurrent times. We model this pattern
by four sorts (Fig. 4, right) a, b, c and ab. Sorts a, b and c stand for components a, b
and c. The cooperative sort ab is introduced in order to characterize constraints on the
components a and b. In the RSTC network, we find 25 regulatory patterns. We show
some examples in Table 1.

Estimating the parameters for the PH-simulation from time-series gene expression
data. Since the simulation of the execution of the PH actions is done stochastically,
we need to relate each action with temporal and stochastic parameters introduced into
the PH framework to achieve dynamic refinement [18]. To fire an action in the PH
framework we need to provide two parameters: (1) the rate r = t−1, where t is the
mean time for firing an action, and (2) the stochasticity absorption factor sa, which is
introduced to control the variance of firing time of an action.

For the model components which have a measurement in the time-series data we
estimate the r and sa parameters and they are introduced in the PH model. The other



10 Louis Fippo Fitime et al.

t0 1 5 7 10

Expression Level

0

1

2

MaxLevel

MinLevel

th1

th2

t1 t2 t3 t4

Fig. 5. Estimating temporal parameters from time series data: The mean firing time of
an action that makes a component (mRNA expression) change of sub-state is estimated as
ri = 1

ti−ti−1
. MaxLevel represents the maximum expression of a mRNA expression, while

MinLevel, its minimum expression. The thresholds th1 and th2 define the PH discrete sub-
states (e.g. 0,1,2) of a component according to its gene expression data.

components are assigned default parameters. In order to estimate ri and sai for each
action hi ∈ H, we need to know the different times ti when the action could be fired as
illustrated in Fig. 5. Each ti represents the time at which we assume that a component
moves from one process to another. Therefore the action that leads this change must
be played at the rate ri = 1

ti−ti−1
. The integer sa represents the window of firing

the action at rate r : the larger the sa is, the smaller the variance around r is. Studies
[2,3,22] have proposed more elaborated methods for parameters estimation from gene
expression data. These methods are well adapted in the case of biochemical reactions
where the concept of threshold is implicit. In the proposed case we assume an explicit
threshold. Thus a basic estimation algorithm can be used for temporal and stochastic
parameter estimation.

Discretization of time-series data. Because the outputs of a PH simulation are discrete
traces of PH components, we discretized continuous experimental data to facilitate the
comparison with simulation outputs. When looking at the time-series data (see Fig. 3)
one can distinguish a high level of activity in early hours [0h-5h] and a low level in
late hours [5h-10h]. This trend was confirmed by the SMA (Simple moving average)
function of the R package TTR which allows us to smooth time-series data. We used the
SMA function with parameter n = 2 and we observed that more than 50% of the time-
series data presented these two levels of activities. We implemented a discretization
method to capture these two activation times. For each time-series, we introduced two
thresholds th1 and th2 (see Fig. 5) were introduced: th1 = 1

3 (MaxLevel−MinLevel)
and th2 = 2

3 (MaxLevel −MinLevel). In this way, the expression level in the range
[0 − th1] is at level 0, the one in the range [th1 − th2] is at level 1, and the one in the
last range is at level 2.
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2.4 Simulation

We set the same initial conditions to PH components belonging to the same network
layer, chosen from the RSTC structure. These initial conditions are detailed below and
summarized in Fig. 6.

– Receptor layer: E-cadherin. We choose the pulse signal for the input node E-
cadherin to be active for a duration of 5 time units in average. This choice was
made in orders to take into account the average time of the Calcium stimuli effect.

– Signaling layer: signaling proteins. The components in this layer are activated
and inhibited with the same rate and the same stochasticity absorption factor. The
actions between a controller component A and a controlled component B are con-
strained so thatB is first activated byA and then inhibited. That is, the time interval
in which an inhibition action from A to B fires is greater than the time interval in
which an activation action from A to B fires. Additionally, these two time intervals
must not overlap. These constraints can be seen as reachability constraints from
the entry node (E-cadherin) to the output nodes (mRNA expression). The values of
these parameters are selected by considering the delay of signal transduction from
the entry node to the output nodes.

– Transcription layer: transcription factors. In this layer, the activation/inhibition
over a transcription factor (TF) comes from signaling proteins; however, for all TFs
we introduced an auto-inhibition action that represents their degradation over time.

– mRNA expression. The mRNA expression are activated or inhibited according to
the estimated values from time-series data.

2.5 Automatic analysis of simulation traces

Due to the stochastic and concurrent aspects of the system, each execution of the model
can generate a different dynamic trace. Therefore, to validate the proposed model we
analyzed the traces generated by each component for a set of simulations of the model.
The idea was to calculate the percentage of traces that reproduced the expected dynamic
of the system. To achieve this goal, we take each trace generated at each simulation for
a given component and passed it to an automaton (Ai) that recognize the experimental
trace of that component. Thus we can count the number of accepted traces (Traceaccp);
the percentage of accepted traces is Traceaccp

TraceN
if TraceN is the total number of simula-

tions. Following this we introduce the concept of tolerance in accepting traces. It means
that an automaton can accept a trace with a difference of one or more levels at each
state. In our case study we used a tolerance T1 that allows accepting a difference of one
between the simulated trace and the expected trace at each state.

3 Results

3.1 Automatic generation of PH model from the PID network

PH models are written using the PINT3 format. PINT implements stochastic simulations
and static analyses for computing dynamical properties on very large-scale PH models.

3 http://process.hitting.free.fr

http://process.hitting.free.fr
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Fig. 6. RSTC network structure and initial conditions assigned to each node in the layer

For the PINT code generation two procedures were used. The first procedure detects
motifs (controller and controlled components) in graphs from the Pathway Interaction
Database; the second, generates the PINT code by choosing an adequate concurrency
rule, based on synchronization sorts, to represent the motif dynamic in PH. With this
method it is possible to convert the whole content of the PID database into a PH model,
as well as individual pre-selected pathways, as is the case for the system under study. It
is implemented in Java and available upon request.

3.2 Simulation of Calcium stimulated biological system

We simulated the model with and without the inclusion of the synchronization sort. In
the following, we present the results of the simulation.

Without the introduction of the synchronization sort. One can notice in Fig. 7 the
occurrence of oscillations. Whereas it is not the expected behavior from the biologi-
cal system, it is coherent with the choice of the modeling and the way the simulator
works as explained in Section 2.2. In this simulation, cooperation sorts were used to
model multiple controllers of a common controlled (target) component. It is important
to notice that the intensity of the oscillation is linked with the size of the concurrence,
i.e. the number of controllers a controlled component has. Despite the presence of the
oscillations, the model reproduces expected dynamical behaviors namely the dynamics
of components, the signal transduction and takes into account the stochastic and time
aspect of the model.
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Fig. 7. Results of system simulations without introducing the synchronization sort for 9
genes. The traces representing the discretized time-series data are shown as black lines. The
traces representing the simulated traces are shown as blue lines.
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With the introduction of the synchronization sort. In Fig. 8 we can see that the in-
troduction of the synchronization sort significantly reduces the impact of concurrency.
The result shows a clear elimination of the previously observed oscillations (Fig. 7).
Comparing the simulated results with the ones observed experimentally, we found four
different cases. We found 5 simulation traces (IL8, uPAR, IL1 beta, ET1, A20) that
matched the sequence of all the component expression levels perfectly. In this case,
delays exist among simulation and experiment but these delays are not comparable
since experimental time-points are measured in hours and simulation-units for the sim-
ulated PH model. We found 6 simulation traces (MKP1, MKP3, Hes5, SM22, TfR,
DKK1) that matched the sequence of experimental discrete expression levels missing
one expression-level. We found 1 components (TNF-alpha) in which at least 2 expres-
sion levels are missed.

Simulating biological processes. To validate our model, we studied the prediction of
non-observed components of such a system and we focused on biological processes
linked to Calcium stimulation, such as keratinocyte-differentiation, cell-adhesion and
cell-cycle arrest. Our results are shown in Fig. 9 and confirm literature experimental
evidences on these processes. In the case of keratinocyte-differentiation, this was a
functional behavior measured on the cultured cells upon Calcium stimulation, so there
was experimental evidences of this effect before measuring the gene expression. In the
case of cell-cycle arrest, the switch-on of this component represents the fact that the
E-cadherin stimulated model predicts the stop of growth, as confirmed by literature in
human and mouse keratinocytes [13]. Finally, the cell-adhesion component is predicted
to switch-on, also in according to published evidence [28] in human and mouse ker-
atinocytes.

3.3 Model validation: traces analysis

To validate the results of the simulations, we automatically analyzed the traces gener-
ated by a set of 100 simulations. Table 2 shows the results of the percentage of accep-
tance for the traces of each of the 12 mRNA expressions. One can observe that there
are 4 components with a good acceptance rate (> 76%), which are: A20, IL1 beta,
IL8, uPar; 4 traces with a good acceptance rate (> 94%) when considering 1 level of
tolerance, which are: MKP1, MKP3, SM22, and TfR; and finally 4 traces, for which
the model failed to predict their expressions: ET1, Hes5, DKK1, and TNFa. All in all,
for this case study our model predicts relatively well, 8 out of 12, the experimental
traces. Errors on the prediction of the missing 4 components may be because of missing
regulatory interactions.

4 Conclusion

This work describes the steps towards the integration of time-series data in large-scale
cell-based models. We proposed an automatic method to build a timed and stochastic
PH model from pathways of biochemical reactions present in the Pathway Interaction
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Fig. 8. Results of simulations by introducing the synchronization sort. The gray traces repre-
sent the experimental expected behaviors from the discretization of the time-series data. The blue
traces show the simulated behavior.



16 Louis Fippo Fitime et al.

Fig. 9. Results of the prediction of biological processes. The gray traces represent the experi-
mental and literature-based evidence. The blue traces show the simulated behavior of E-cadherin
and three biological processes.

Database (PID). As a case-study we built a model combining signaling and transcrip-
tion events relevant to keratinocyte differentiation induced by Calcium, which linked
E-cadherin nodes and 12 genes, which expression profiles was measured upon Cal-
cium stimulation over time. The interaction graph represented by the model had 293
nodes and 375 edges. We proposed a method to discretize time-series gene expression
data, so they can be integrated to the PH simulations and logically explained by the PH
stochastic analyses. Additionally, we implemented a method to automatically estimate
the temporal and stochastic parameters for the PH simulation, so this estimation process
will not be biased by over fitting. Our results show that we can observe dynamic effects
on 11 out of 12 genes, for which 5 of them represent accurate predictions, and 6 of them
missed few dynamic levels. This error may be also a result from the incompleteness of
the regulatory information in PID. Moreover, when observing the predicted behavior of
biological processes linked to Calcium stimulation, our predictions agreed with exper-
imental and literature-based evidences. Overall, with this work we show the feasibility
of modeling and simulating large-scale networks with very few parameter estimation
and having good quality predictions. As perspectives of this work we intend to study
the effects of computing automatically the concurrent rules on this system. Also, we
intend to improve the model prediction quality by empirically obtaining the dynamics
of the system components by performing large stochastic simulations, as well as by im-
plementing static analysis of quantitative properties by adding probabilistic features to
the PH static solver.
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Table 2. Percentage of acceptance traces. First column represents the Automaton (Ai(w), where
Ai is the Automaton and w is the word recognized by Ai) that is used to check if a given trace
is accepted for a component in the second column. One can observe that many components can
be recognized by the same Automaton. In the third column we show the percentage of accepted
traces; in the fourth column, the percentage of acceptance with a tolerance of one level (T1).

Automate components % of acceptance % of acceptance T1

A2(01210) A20 91 100

A2(01210) IL1 beta 81 100

A2(01210) IL8 93 100

A2(01210) TNF alpha 0 0

A3(01211) uPar 76 99

A3(01211) ET1 8 19

A4(0121210) DKK1 13 43

A5(0121211) Hes5 0 17

A5(0121211) MKP1 9 97

A6(0212) SM22 11 100

A7(02010) MKP3 11 98

A8(02121) Tfr 0 94
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A Algorithm of patterns detection

Here are the algorithms that allow to detect and construct a process hitting model from
an RSTC network. These algorithms have a polynomial time running that correspond
to the running time of the procedure 2.

Proposition 1. Algorithm 2 has a time complexity of O(|V | log (h)). Where h is the
average height of the patterns in the RSTC network. In the worst case h = logV (|V |).

Algorithm 1 : Algorithm for Pattern detection in an RSTC Network in order to
generate the equivalent model in the PH formalism
Require: Net {The RSTC network}
Ensure: generate the PH Model associated to Net
1: for all Node n in Net.getSetOfNodes() do
2: Pat = detectPattern (Net, n)
3: patternInPHModel (out, Pat)
4: end for
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Algorithm 2 : Algorithm for pattern detection, function detectPattern (Net, n)
Require: Net, n {Net is the network and n is the current node}
Ensure: Build a set of nodes associated to node n that we call pattern.
1: switch (n)
2: case TerminalNode:
3: add node n to the pattern Pat
4: numberPredecessor= n.getNumberOfPredecessor()
5: switch (numberPredecessor)
6: case 1:
7: for all p in setOfPredecessor (n) do
8: switch (p)
9: case TerminalNode:

10: add node n to the pattern Pat
11: case TransientNode:
12: detectPattern (Net, p);
13: end switch
14: end for
15: Set the code of pattern Pat;
16: return Pat;
17: case 2:
18:
19: end switch
20: case TransientNode:
21: numberPredecessor= n.getNumberOfPredecessor()
22: switch (numberPredecessor)
23: case 1:
24: for all p in setOfPredecessor (n) do
25: switch (p)
26: case TerminalNode:
27: added node to the pattern Pat;
28: case TransientNode:
29: detectPattern (Net, p);
30: end switch
31: end for
32: Set the code of pattern Pat;
33: return Pat;
34: case 2:
35:
36: end switch
37: end switch
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Algorithm 3 : Algorithm for writing a given pattern into a file, function patternIn-
PHModel (out, Pat)
Require: out, Pat {Pat is The pattern to be translated into the PH Model, out is the output file}
Ensure: The correspondent PH Model of the given pattern Pat will write into the file out

nocp = Pat.getNumberOfComponents() {Number of the components of the pattern Pat}
tabPat = Pat.getTableOfPattern() {return the components of the pattern in tabPat}
switch (nocp)
case 2:

switch (code)
case A:

out.write (tabPat[1] 1 → tabPat[0] 0 1 ra saa); {Component tabPat[1] activates
component tabPat[0] with r = ra and sa = saa }

case I:
out.write (tabPat[1] 0 → tabPat[0] 1 0 ri sai); {Component tabPat[1] inhibits compo-
nent tabPat[0] with r = ri and sa = sai }
end switch

case 3:
switch (code)
case C:

out.write (coop ([tabPat[2];tabPat[1])] → tabPat[0] 0 1); {Cooperation between
tabPat[1] and tabPat[2] to activate tabPat[0]}

case S:
out.write (coop ([tabPat[2];tabPat[1])] → tabPat[0] 0 1); {Synchronization between
tabPat[1] and tabPat[2] to activate tabPat[0]}
default:

out.write ((*unknow pattern*));
end switch

end switch
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