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Stability and complexity in model meta-ecosystems
Dominique Gravel1,*, François Massol2,3,* & Mathew A. Leibold4

The diversity of life and its organization in networks of interacting species has been a

long-standing theoretical puzzle for ecologists. Ever since May’s provocative paper

challenging whether ‘large complex systems [are] stable’ various hypotheses have been

proposed to explain when stability should be the rule, not the exception. Spatial dynamics

may be stabilizing and thus explain high community diversity, yet existing theory on

spatial stabilization is limited, preventing comparisons of the role of dispersal relative

to species interactions. Here we incorporate dispersal of organisms and material into

stability–complexity theory. We find that stability criteria from classic theory are relaxed in

direct proportion to the number of ecologically distinct patches in the meta-ecosystem.

Further, we find the stabilizing effect of dispersal is maximal at intermediate intensity.

Our results highlight how biodiversity can be vulnerable to factors, such as landscape

fragmentation and habitat loss, that isolate local communities.
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T
he diversity of species within natural communities and the
complexity of their interactions in nature have fascinated
ecologists. In particular, the question of whether large

complex ecosystems should be stable has been a pervading theme
in ecology, both theoretically and empirically. More than 40 years
ago, and contrary to previous intuition1,2, May predicted that
diversity and complexity should destabilize ecosystems3,4.
The common observation of highly diverse communities has
consequently been a major puzzle for ecologists. Ensuing work
has focused in part on alternate definitions of ecosystem
stability5–9, and on more complex hypotheses based on
different mechanisms, such as allometric correlations, adaptive
foraging or stage structure, to explain this so-called ‘complexity–
stability’ paradox10–16. Explaining very diverse communities
nonetheless remains elusive and keeps attracting the attention
of ecologists.

May3,4 studied the dynamical properties of randomly
assembled ecosystems. He modelled them using the Jacobian
matrix, which describes the pairwise effects of one species on
another and could be used to investigate the rate at which the
ecosystem returns to the equilibrium following a disturbance
(as measured by the leading eigenvalue of the Jacobian). He found
that stability should decrease with the number of species and
interactions between them. By varying the number of species S,
the connectance c (the proportion of potential interactions among
all pairs of species that are realized), the s.d. of interspecific
interaction strength (s) and the average intraspecific interaction
strength (m), this theory indicates that for a community to be
stable, it must respect the following inequality3,16:

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c S� 1ð Þ

p
om ð1Þ

In other words, there is a three-dimensional trade-off between
species diversity, connectance and the interaction strength that
allows systems to be stable. Inequality (1) stems from the fact that
for random Jacobian matrices following the circular law17, the
empirical spectral distribution of eigenvalues (that is, their
location in the complex plane) forms a disk centred at the
average feedback coefficient among species (that is,
around �m) with a radius proportional to the s.d. of the
Jacobian matrix (here, s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c S� 1ð Þ

p
), and thus comprising

eigenvalues with positive real part (and thus unstable local
equilibria) only when inequality (1) is not verified. In practice,
this means that ecosystems are likely to be relatively simple, so
that the common observation of hundreds to thousands of species
in local communities is difficult to explain.

Since then, numerous hypotheses to explain this paradox have
been invoked8,9,18,19. Most, if not all of them, have some
empirical support, but their absolute or relative importance is not
well understood. One of the most important possibilities is that
meta-ecosystems, defined as local ecosystems connected by spatial
exchanges of individuals, energy and material20–22, could be more
stable than their isolated components23. Spatial flows among local
ecosystems are ubiquitous in nature24, connecting not only
similar habitats (for example, patches of forest and lakes) but also
very different ones (for example, ocean/island, stream/forest and
benthic/pelagic). However, the strength and sign of this effect on
stability is not clear. Most studies so far have focused on small
food web modules25 or have been conducted with different
measurements of stability that are not directly comparable to
May’s local stability25,26.

To understand how spatial flows among local ecosystems
might stabilize dynamics at the meta-ecosystem scale, we expand
the approach taken by May3,4 to look at the structure of the
Jacobian matrix of the meta-ecosystem when placed in a spatial
context27. We considered the technique of local stability analysis,
along with random interaction matrices, as a starting point to

facilitate the comparison with May’s criterion. Although this
approach has been criticized for some of its assumptions5,19, our
goal is to allow a direct comparison of stability on May’s result
with and without spatial effects.

Jacobian matrices are obtained by linearizing the system of
equations describing the dynamics of all species making an
ecosystem at equilibrium. A Jacobian matrix thus describes
the direct interactions among all pairs of populations near this
equilibrium. Stability is assessed from its largest eigenvalue, and
the system is stable when the real part of the largest eigenvalue is
negative. Extending the approach of May, the Jacobian matrix J of
a meta-ecosystem can be expressed as the sum of three matrices
(Fig.1):

J¼MþDþA ð2Þ

where M is a deterministic diagonal matrix representing
intraspecific density dependence, with value �mi along the
diagonal and 0 in the rest of the matrix; D is a deterministic
matrix representing dispersal among patches; and A is the
collection of local Jacobian matrices, arranged as diagonal blocks
describing interspecific interactions within each local community.
Following May’s approach, we assume that the sub-matrices A
are stochastic with entries subject to the constraints of having
S species, connectance c and a s.d. of interspecific interaction
strength s. The sub-matrices of A together with M are equivalent
to May’s matrices, but now we combine them with matrix D to
form a meta-ecosystem. Elements of D are density-independent
diffusion coefficients. Their arrangement determines the con-
nectivity among localities. There are n patches (or ecosystems)
and consequently the size of J is n� S. Our method of
adding dispersal creates source–sink relations among the local
communities in which net movement goes from high-density to
low-density patches for each of the species involved.

The analysis of the random matrices J (Supplementary Note 1)
gives us criteria for the stability threshold of meta-ecosystems.

J =A =
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... ... ... ...

... ...
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Figure 1 | Conceptual illustration of the Jacobian matrix in random

meta-ecosystems. The model represents the dynamics of a

meta-ecosystem, pictured as a spatial network of interaction networks

(top left). The Jacobian matrix representing all interactions among pairs of

species and locations is highly structured. It is made of the sub-matrices

A, M and D. The spatial heterogeneity among locations is implemented

by varying interaction coefficients in space (different entries in each

interaction sub-matrix) and the landscape is implemented by varying the

spatial structure of the model (entries in each pairwise dispersal matrix).
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For the sake of simplicity, we consider a meta-ecosystem with
global and homogenous dispersal, that is, a unique diffusion rate
for all species between all pairs of patches (all the non-diagonal
elements of D are equal to each other and all the diagonal
elements of D are also equal; but see Supplementary Note 1 for
analyses of more realistic cases) and we study partially
heterogeneous patches. We allow the entries in the sub-matrices
of A, aij, to be correlated among the n local communities with
correlation coefficient r; thus, r tends to 0 with increasing
heterogeneity of aij among patches and to 1 when different
patches exhibit the same values for aij. In addition, as in May’s
approach, there is also no correlation among pairwise elements of
the sub-matrices A (no specific predator–prey, competitive or
mutualistic coupling). This case is the direct spatial extension to
May’s model and gives us a baseline for thinking about other
possibilities. This last assumption is relaxed below with numerical
simulations.

Analyses of random matrices such as those performed by
May3,4 have been criticized for not considering the feasibility of
the equilibrium (that is, such matrices may often give equilibria
that have negative, and thus meaningless, densities for some of
the species28). Previous work indicates that stability can be
increased when the criterion is applied only to those communities
that have positive values for all the species equilibrium
densities29. In addition, from equation (2), dispersal does not
directly enter the interaction sub-matrices A in the computation
of the Jacobian. In reality however it should indirectly affect A
through an effect on the equilibrium densities due to the role
of emigration and immigration. We consequently conducted
numerical simulations to fully capture the effect of dispersal on
meta-ecosystem stability and account for the feasibility
constraints. Our simulations started with the drawing of
random interaction coefficients. We then solved the equilibrium
for each matrix, in the absence of dispersal, and only retained
those that gave with positive densities for all species. We
subjected each such matrix to a gradient of dispersal and solved
for the resulting largest eigenvalue numerically.

Results
Stability criterion for random matrices. The stability criteria for
matrix J is generally complicated, but can be simplified under
some conditions. Assuming that both S and n are large and that d
is also sufficiently large, we obtain the following stability criterion
(Fig. 2c):

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c S� 1ð Þ=ne

p
om ð3Þ

where ne ¼ n= 1þ n� 1ð Þr½ � is the effective number of ecologi-
cally independent patches in the meta-ecosystem. When elements
of the random matrices are perfectly correlated among patches
(that is, r¼ 1), equation (3) simplifies to May’s formula, that is,
equation (1). By contrasts, when elements of the random matrices
are all completely independent (r¼ 0), the stability criterion then
reduces to s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c S� 1ð Þ=n

p
om, that is, the maximal admissible

complexity parameter s2c S� 1ð Þis multiplied by the number of
patches.

The effect of the effective number of patches ne in equation (3)
results from the statistical thinning of the variance of the ‘average
ecosystem’ obtained by linking all ecosystems through dispersal
(that is, as an instance of the central limit theorem). In other
words, meta-ecosystems are stabilized because the main effect of
dispersal is to make stability dependent on interaction coefficients
averaged over many ecosystems, rather than on local interaction
coefficients per se. By way of being average quantities, these
meta-ecosystem interaction coefficients have lower variance, and
hence correspond to an empirical spectral distribution with a
smaller radius. These results indicate that dispersal can stabilize
meta-ecosystem dynamics in proportion to its effective ecological
size (the number of effectively independent habitat patches). To
the degree that different local ecosystems have similar conditions
(r increases and thus ne decreases) however, this effect is
weakened and the effect of dispersal disappears if all the local
ecosystems are identical (that is, when ne¼ 1 and r¼ 1) and we
recover May’s equation (1).

When d is small (and S and n large), however, the effect of
dispersal is very different (Supplementary Note 1 and Fig. 2b).
The criterion corresponding to equation (3) in this situation is

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c S� 1ð Þ

p
omþ d ð4Þ

In this case, stability increases with d, regardless of the value of ne

and it does so additively (at least in cases where d is very small) in
comparison with the criterion for isolated ecosystems. In this
case, environmental heterogeneity is not important—emigration
alone is the factor improving the stability of meta-ecosystems and
its importance will depend on its magnitude relative to the
intraspecific density dependence. Analytical results hold even in
presence of heterogeneity among species in dispersal rates
(Supplementary Note 1).

Simulations of feasible meta-ecosystems. We were unable to
find analytical solutions for intermediate levels of dispersal, so we
turned to numerical simulations to do so. In addition, we used
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these simulations to address concerns that feasibility constraints
(requiring non-negative equilibrium densities) might also affect
our conclusions. An illustrative result for an average of 100
random meta-ecosystems of 15 species and 10 patches is shown
in Fig. 3. We found that stability first increased with dispersal,
peaking at intermediate rates and then slightly dropped and
became almost insensitive to dispersal at high levels (Fig. 3a).
Dispersal affects stability through its effects on various
characteristics of the Jacobian matrix: the variance among its
entries increased with the dispersal rate, the inter-patch correla-
tion (r) increased and the mean diagonal elements decreased
(Fig. 3b–d). Note that the inter-patch correlation coefficient
increases but never reaches a value of 1 because, if biomass is
more homogeneous with high dispersal, the per capita interaction
coefficients would be independent of it and therefore the elements
of J will never perfectly correlate. Finally, we also considered
other topologies for dispersal and interactions to relax some of
the assumptions of the random matrix theory. We find similar
stability–dispersal relationships with local connectivity among

localities (the extreme case of a spatially explicit dispersal;
Fig. 4a). Further, simulations of more realistic predator–prey
interaction matrices increases stability, but keep the relationship
with dispersal.

Discussion
Our analyses reveal that meta-ecosystem dynamics are stabilizing
because of the effects of dispersal on the structure of the Jacobian
matrix and its corresponding eigenvalues. In the case of high
dispersal we find that the eigenvalues of the meta-ecosystem differ
from those of local communities in two aspects. First, we find that
a large subset of the real parts of eigenvalues of the community
matrix are contained in a distribution with a range of
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c S� 1ð Þ n� 1ð Þ=n

p
, centred on a value of �m� nd= n� 1ð Þ,

while the remaining S eigenvalues are enclosed in distribution of
range s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c S� 1ð Þ=ne

p
centred around �m (Fig. 2). Dispersal thus

affects stability through two mechanisms: (i) it moves the
distribution of most of the eigenvalues towards more negative
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values; and (ii) it shrinks the range of the remaining eigenvalues
in proportion to the number of effective patches (Fig. 2c). We call
mechanism (i) the eigenvalue pushback effect and mechanism
(ii) the Jacobian averaging effect. The mechanism involved at low
dispersal differs (Fig. 2b). The primary effect of a low dispersal
on the dynamics is emigration, which acts as a negative
intraspecific feedback and is known to be stabilizing30. We call
this mechanism (iii) the negative feedback effect.

The first part of our analysis follows May’s formalism to
facilitate the comparison with his work and comparisons with
ongoing studies that use random matrix theory16. This approach
allows us to rigorously identify the contribution of spatial
dynamics to community stability by comparison with reference
theory. We find that it reduces the effective complexity of the
system (by shifting it from s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c S� 1ð Þ

p
to s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c S� 1ð Þ=ne

p
) and

also promotes negative density dependence (it increases the
diagonal elements). Analytical results (section 5 of Supplementary
Note 1) also confirm this result is robust to variability of
connectivity matrix (not all locations are connected to each other)
and of diffusion coefficients (different species have different
dispersal rates). The approximation of random matrix theory is a
powerful analytical approach to provide a basis for comparison;
however, it comes with several assumptions that have been
raised repeatedly (for example, refs 9,20), such as the random
distribution of interaction strength, the shape of the distribution
and the topology of the interactions. This approach has thus
been criticized for its lack of realism, and the investigation of
empirical ecosystems indeed revealed they contribute to affect the
stability–complexity relationship31. Nevertheless, the basic
qualitative results are still found in more complex scenarios
even if they cannot be expressed in such simple ways. The
approach thus has tremendous heuristic value even if it is not
likely to adequately represent any real meta-ecosystems.

We nonetheless performed simulation analyses to relax some
of the critical assumptions of random matrix theory and
thereafter evaluate the robustness of our conclusions. Simulations
account for the constraints that come from feasible systems, with
different topologies and more realistic dispersal scenarios.
Additional simulations confirmed our main conclusion that
dispersal tends to stabilize meta-ecosystem dynamics. Even
though these extra simulations are still idealized scenarios, they
represent extreme cases with the reality somewhere between them
and the assumption of random Jacobian matrices. Most of all,
they confirm the generality of the mechanisms we underline,
some of which had already been documented for simpler systems
(see the review in ref. 25). Source–sink dynamics is a powerful
stabilizing mechanism that arises as soon as there is some form
of spatial heterogeneity and passive dispersal. It tends to
homogenize the meta-ecosystem and thereby reduce the
complexity of the Jacobian (the Jacobian averaging effect). While
the assumption of diffusive dispersal could also be criticized,
a density-dependent nonlinear dispersal process would even
further stabilizes the dynamics because it would strengthen
negative density dependence, moving the entire distribution of
eigenvalues towards more negative values (the negative feedback
effect).

Dispersal can promote local enrichment, compensatory
dynamics and local coexistence because of source–sink
dynamics32, and can consequently affect the feasibility as well
as the stability of meta-ecosystems33. On the basis of simulation
results (Fig. 3), we found that stability first increased with
dispersal, peaked at intermediate rates and then slightly dropped
and became almost insensitive to dispersal at high levels. The
increase in stability agrees with both the eigenvalue pushback
effect and the Jacobian averaging effect presented above.
New mechanisms arise from the simulations because of the way

we account for the feasibility constraint. First, we noted a slight
decrease in the s.d. of the off diagonal elements of the Jacobian
(Fig. 3b), although this effect might be negligible on average. We
also found that on average, the correlation between patches of
elements of the Jacobian does increase with dispersal (Fig. 3c).
These two results could also be interpreted as a Jacobian
averaging effect. Finally, we find that the diagonal elements of
the Jacobian decrease linearly with dispersal (Fig. 3d), which
correspond to the negative feedback effect. The maximization of
stability at intermediate dispersal rates thus results from a
mixture of the stabilizing and destabilizing effects of dispersal that
we found in the limited cases described by our analytical
approach.

A problem stemming from our simulations is the relatively
high diagonal elements in the interaction matrix (intraspecific
density dependence) in comparison to off-diagonal elements.
This situation arises from the constraint of generating feasible
communities from random interaction matrices. We are not the
first to face this problem, for instance, Jansen and Kokkoris34

found that the probability of obtaining a feasible equilibrium
decreases with connectance and mean interaction strength.
Thébault and Fontaine35 also had to tune their diagonal
elements to make sure they obtain feasible predator–prey and
mutualistic communities. Similarly, Bastolla et al.36 considered
strong intraspecific density dependence for plants when they
investigated how the structure of mutualistic networks minimized
competition and promoted coexistence. We know from the
analytical theory that high diagonal elements only shift the
distribution of eigenvalues (Fig. 2) but do not impact the
relationship between stability and complexity. This conclusion,
however, holds only if the strength of interactions, the diagonal
elements and the diffusion coefficients are all independent of each
other. If they do correlate (and they might, since the density
dependence affects the equilibrium biomass and thus the
elements of the Jacobian), then we might observe some
discrepancy with the results we presented. For instance, a
reduction in the diagonal elements is expected to increase the
off-diagonal elements (switching from bottom-up to top-down
regulation), which should decrease the stability. It is not clear
however how this should interact with spatial dynamics, as very
complex interactions would likely emerge.

Of course, May’s approach, as well as ours, is highly abstract
relative to what happens in natural communities. The new
stabilizing mechanisms we reveal with our theoretical analysis
nonetheless correspond to ecological processes that are well
documented. The Jacobian averaging effect is essentially driven by
source–sink dynamics. Exchanges of materials, energy and
organisms have been widely documented for a whole range of
ecosystems32,37 In general (with few exceptions), dispersal has
tendency to homogenize systems with a redistribution of
populations and abiotic material32. This coupling presumably
stabilizes the dynamics38. The second mechanism, the negative
feedback effect, is also evidently at play in many systems. In some
cases, such as seed dispersal, the movement will not strongly
affect the locality producing the propagules because their biomass
is negligible relative to the source location. But for many
organisms, emigration will negatively affect population
dynamics in the source location and thus should act on its
regulation. Territoriality is such an extreme case of density-
dependent dispersal that should contribute to stabilize
community dynamics. Although both mechanisms have been
well documented in the field, what remains to test is their
contribution to stability.

We found that spatial heterogeneity is key to the stabilizing
effect of dispersal. Spatial heterogeneity on its own, in the absence
of dispersal, increases the variability of interaction strength and
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should consequently reduce the stability. Heterogeneity, however,
interacts with dispersal, via source–sink dynamics, and
consequently the Jacobian averaging effect could only occur in
spatially heterogeneous landscapes. Such heterogeneity could be
driven by different primary productivities, or alternatively abiotic
environmental conditions affecting the demography39 and the
interaction strength40. Our analysis considers a relatively uniform
meta-ecosystem, as species composition (presence/absence)
remains essentially constant across the localities even if
interaction coefficients and steady-state densities differed
among them. Our results consequently do not directly apply to
more contrasted meta-ecosystems, such as terrestrial–aquatic or
above/below ground coupling. This distinction, however, does not
prevent the mechanisms to play a role in such contexts; we even
expect them to be reinforced in such situations. The Jacobian
averaging effect will increase with the difference between
localities. Similarly, the negative density dependence will be
much stronger if there are no immigrants towards sources.
Obviously further analysis will be required to assess the generality
of our conclusions, but based on previous work and our
understanding of the mechanisms at play, we expect them to be
quite robust to the different assumptions of our models.

Additional stabilizing and destabilizing processes, such as the
relative strengths of weak and strong feedbacks and frequency-
dependent spatial effects41 or the proportions of the different
types of interaction16, are also likely to be involved. A full
understanding of their consequences, including the ways they
may modify our general predictions for the stabilizing effects of
dispersal in meta-ecosystem, is needed. Nevertheless, many
plausible additions to the initial model proposed by May could
actually increase stability even more in spatially structured
ecosystems and thus act synergistically rather than
antagonistically with the mechanisms we propose. For example,
it has been shown that adaptive habitat selection by top predators
can also be strongly stabilizing regardless of environmental
heterogeneity22. In the same vein, adaptive foraging might be a
strongly stabilizing factor in food webs10. Food webs may also be
stabilized when top predators couple fast and slow energy
channels38, for example, occurring in different patches of a
meta-ecosystem, when interactions are structured as ‘weak links
in long loops’42 or when the number of predator and prey species
are (respectively) negatively and positively correlated with species
body mass14. Many of these effects could be incorporated into a
more detailed description of the matrix J and applying theory on
the empirical spectral distribution of random matrices17.

We considered local stability analysis and Lotka–Volterra
analysis to pursue the tradition initiated by May and to ensure
our results are comparable to the long list of studies that followed.
This approach has however strong limitations and is still distant
from empirical investigations of stability. Among the most severe
assumptions, it considers a linear approximation of the dynamics,
in the neighbourhood of the equilibrium. Real systems are rarely
at equilibrium, being constantly disturbed by environmental
fluctuations and strong nonlinear interactions. Other metrics of
stability should thus be considered, in addition to the asymptotic
stability we studied here. For instance, recent analytical results on
the reactivity of random matrices43,44 show that the dynamics
during the transient phase following a disturbance could bring
additional information, provided that the community matrix is
not symmetric. Spatial dynamics could also be represented with
strong fluctuations in densities25. Other measures of stability
such as the spatial variance, the amplitude of fluctuations or
persistence, could be considered as well. For instance, Gravel
et al.45 found a positive relationship between the complexity of
spatial food webs and their persistence when they are subject to
colonization–extinction dynamics. Similarly, McCann et al.22

proposed that the capacity of a predator to switch between
patches, fluctuating asynchronously, also reduces the magnitude
of oscillations.

This discussion emphasizes that a major challenge for both
theoretical and empirical ecologists is to integrate the multiple
dimensions of stability. The contribution of spatial dynamics to
stability of ecosystems is a multi-faceted problem that will only be
solved by a diversity of approaches. The different metrics are not
independent from one another and fortunately there are only a
few dimensions to stability46. Future studies will require not only
investigating these multiple dimensions but also the mechanisms
linking them. Some of the metrics of stability, such as the
coefficient of variation of population dynamics47, are easier to
measure on the field than asymptotic stability. We consequently
need to derive theory that would bridge the results from
the investigation of random matrix theory and empirical
measurements of stability.

Our study confirms that spatial dynamics in meta-ecosystems
can be a remarkably strong stabilizing force that can facilitate
coexistence among many interacting species. More importantly,
our model indicates that this effect can be directly related to
May’s criteria and thus expands the applicability of random
matrix theory to meta-ecosystems. Our model indicates that in
cases with very low dispersal (low connectivity) the effects are
proportional to the dispersal rate; that at high dispersal (high
connectivity) the effects are proportional to the ecological size of
the metacommunity, and that the effects are maximized at
intermediate dispersal (intermediate connectivity). In relatively
well-mixed meta-ecosystems, our results indicate that high
species richness in local communities (S) can be easily explained
if there is sufficient spatial heterogeneity in pairwise species
interactions. Experimental work in natural systems indicates that
species interactions do change with environmental context48,49

suggesting that simple spatial effects of dispersal could be a
powerful stabilizing force that may explain very diverse
communities of highly interactive species and thus provides a
major possible solution to May’s paradox of diversity. If so, high
diversity is likely to depend critically on how landscapes are
spatially structured by the joint effects of fragmentation (affecting
dispersal) and the distribution of diverse local environments
(affecting the ecological size of the meta-ecosystem).

Methods
Jacobian matrix structure. We used the following convention: all interaction and
Jacobian matrices in our work are assumed to be ordered by patch (one matrix
block¼ one patch), then species within a patch. For instance, the Sth coefficient on
the first row describes the effect of species S on species 1 in patch 1, while the
Sþ 1th coefficient describes the effect of species 1 from patch 2 on species 1 in
patch 1.

Random Jacobian model. We analysed the asymptotic empirical spectral
distribution (ESD17) of Jacobian matrices following equation (2) when S goes
towards infinity. Coefficients of the Ax matrices (intra-patch Jacobian within
patch x) were obtained as follows: for each ordered pair of species i,j, an interaction
exists with probability c. Because this applies to ordered pairs, this means that the
action of i on j might exist while the reverse action do not. Each coefficient aijx is
drawn from a normal distribution (mean¼ 0 and s.d.¼s). In the homogenous
case, the same is true except that all values of aijx are identical across all values of x
(given i and j). The assumption of zero-mean is necessary, but normality is not17:
as long as the distribution of A’s coefficients is independent and identically
distributed, only the knowledge of its s.d. matters to uncover its asymptotic ESD.

The effects of the dispersal matrix D on the Jacobian depends on the
homogeneity of dispersal among species. In the simple case, dispersal is assumed to
be identical for all species, so that diagonal elements of intra-patch matrix blocks
take value –d while inter-patch matrix blocks have d/(n–1) on the diagonal.

Further material on the ESD analysis, as well as results on more complex cases
incorporating non-global and heterogeneous dispersal, is provided in
Supplementary Information.
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Numerical analysis. We considered a general implementation of a Lotka–Volterra
model with spatial dynamics. The model represents the dynamics of species i at
location x given its interaction with all S species j and n locations y:

dNix

dt
¼ Nix mix þ

X
j

aijxNjx

 !
þDNix ð5Þ

where mix is the intrinsic rate of increase, Nix is the density of species i at location x,
aijx is the per capita effect of species j on species i at location x (which is not necessary
symmetric) and DNix is the migration balance for species i at location x. The latter
could be based on several functional forms for dispersal (for example, dispersal,
density-dependent dispersal and so on). Here we considered passive dispersal and
used a general function allowing different rates across locations and species:

DNix ¼
X

y

dixy Niy �Nix
� �

ð6Þ

where dixy is the dispersal rate of species i between locations x and y. Each
species therefore exchanges individuals between locations x and y at rate
dixy¼diyx¼ d/(n–1). When simulating Lotka–Volterra dynamics, we only
considered the simplest system where all localities are connected to each other
with the same rate for all species and localities.

Parameterization. We follow the rules used by May3,4 to facilitate the comparison.
An interaction occurs with probability c¼ 0.2. Interspecific interaction coefficients
are drawn randomly from a normal distribution centred on zero and with a s.d. of
0.25. We also considered a predator–prey structure determined according to
iterations of the niche model of food web structure50. For this particular case,
we specified that the interaction coefficients from a prey to a predator has the same
absolute value but opposed sign to the interaction coefficient from predator to the
prey. All diagonal elements (intraspecific interaction coefficients) are set to –1.
A regional average interaction coefficient is drawn for all pairs of species and then
this coefficient is multiplied by a random normal deviate with mean of 1 and s.d. of
0.1 to account for spatial environmental heterogeneity (thus generating a positive
correlation between inter-patch elements). Only the non-null elements of the
interaction matrix are affected by environmental variability.

The definition of the model (Fig. 1) is general enough to account for all types of
spatial variation of the environment. As with the work on Jacobian matrices, we
considered the extreme scenario of covariance among species in their response to
environmental variability where the random deviation from the average pairwise
interaction aijx is independent among all species. The analytical results suggest that
the results should be similar whether only off diagonal elements or the diagonal
elements are subject to environmental variation and we consequently only
considered the former for simulations. All simulations are conducted assuming a
global dispersal (all patches are related to each other by equal diffusion rates)
except when specified otherwise. Additional simulations were run with nearest
local connectivity (patch x being connected to patch x–1 and xþ 1). A torus shape
was assumed so that the patch x¼ 1 is connected to patch x¼ 2 and x¼ 10.

We investigated the impact of increasing dispersal on the stability of feasible
random meta-ecosystems. To do so, we ran simulations on a gradient of dispersal
values, d, ranging from 0.001 to 1,000, with a step of 0.01 on a logarithmic scale.
We drew random interaction matrices according to the above rules. We then
combined interaction matrices with dispersal and followed the standard procedure
of local stability analysis with the Lotka–Volterra system of equations: calculation
of the equilibrium solution to the system of equation, linearization of the system of
equations around the equilibrium to obtain the Jacobian matrix and finally
computation of the eigenvalues using numerical methods. All simulations were run
with S¼ 15 species and N¼ 10 locations. We present results for 1,000 replicates of
random meta-ecosystems for each parameter combination.

Data availability. The authors declare that all data supporting the findings of these
studies are available with the article and its Supplementary Information File.
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