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Chapter 1

General context

Optimizing while dealing with uncertainties is a shared goal by many sectors in the industry.
For example in the banking system:

• Some options such as American options necessitate, in order to be valuated, to find
an optimal exercise strategy to maximize the gain on average.

• When dealing with assets management, a fund manager may want to find a strategy
to optimize his gains by investing in different assets while trying to satisfy some risk
constraints.

• When dealing with credit risk in the case of option selling, some CVA modelization
necessitates to solve some high dimensional problem in order to evaluate the option
value.

In the energy financial sector, many problems involve stochastic optimization:

• some options, known as swing options, permit the owner to get some energy at some
chosen dates with constraints on volumes. The price paid is either deterministic such
as in the electricity market or can be an index which is an average of some commodity
prices such as in the gas market.

• When some batteries on installed on a network, the battery has to be filled in or
discharged optimally in order to avoid the use of some costly thermal units.

• The optimal management of some gas storages or some thermal assets taking into
account commodities prices is a target shared by all asset owners in the sector.

• Even in regulated energy market, when some water is used to produce electricity, a
common target consists in finding an optimal management of the water in order to
maximize the profit on average.

A target shared by many industries is the risk management problem: which financial assets
to buy to secure a given earning by immunizing a financial portfolio to some uncertainties.
All this problems and many others necessitates:

• either to solve some PDEs when the control has to be evaluated continuously,
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• or to calculate some conditional expectation in the case where the control has to be
taken at some discrete dates. The problem is then solved by some dynamic program-
ming method.

The STochastic OPTimization library (StOpt)
https://gitlab.com/stochastic-control/StOpt

aims at providing tools for solving some stochastic optimization problems encountered in
finance or in the industry. This library is a toolbox used to ease the work of developers
wanting to solve some stochastic optimization problems by providing a general framework
and some commonly used objects in stochastic programming. Many effective methods are
implemented and the toolbox should be flexible enough to use the library at different levels
either being an expert or only wanting to use the general framework.
The python interface permits to use the library at a low level. The test cases are either in
C++ , either in python or in the both language.
The user is encouraged to have a look at the different test cases providing in order to have
global view of the resolution methods. All the test cases are described in the last section of
the documentation and deal with the problems encountered in the banking system or the
energy sector.

• American options are solved by dynamic programming part III in python or C++
using regression (section 4) or using a scenario tree 5.
Regression are achieved:

1. either by local polynomials either with basis support with the same size (subsec-
tion 4.4) or with an adapted size of the support (subsection 4.2) ,

2. either by global polynomials (section 4.7)

3. either by sparse grid regression (section 4.6) useful in high dimension

4. or by kernel regression (section4.8)

In the test, a trinomial tree is developed as an example and the valorisation of an
American option for the Black-Scholes model is given using this tree.

• Gas storage problems are solved

– either by dynamic programming (part III) in python or C++ using regression
(section 4) or tree (section 5) and stock interpolation ( chapter 3).
Regression are achieved:

1. either by Local polynomials with an adapted size of the support (subsection
4.2) ,

2. either by global polynomials (section 4.7)

3. or kernel regression (section 4.8)

As before the trinomial tree developed in tests is used in tree methods.
Interpolation between stock points is either linear or quadratic.

– either by the SDDP method (chapter 14) in C++ using both regressions and tree
methods.

8
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• Swing options are solved by dynamic programming (part III) in python or C++ using
regression with local polynomials with an adapted size of the support (subsection 4.2)

• The optimal management of a lake with stochastic inflows is solved by dynamic pro-
gramming (part III) in python or C++ using local polynomials with an adapted size
of the support (subsection 4.2)

• The optimal hedge of an option using a mean variance criterion of the hedged portfolio
is solved in C++ by dynamic programming (part III) using the methodology in chapter
11.

• Some reservoir management is solved by the SDDP method (chapter 14) in C++
trying to minimize the cost of providing some energy to satisfy a given demand with
the possibility to buy some energy at price that can be stochastic.

• The continuous optimization of a portfolio composed of some assets following an Heston
model is achieved in C++ solving the corresponding PDE with the Monte Carlo nesting
method (part VII).

• Some microgrid problems in the energy sector is solved using the python interface
by dynamic programming methods (part III) using the grids with linear interpolation
(subsection 3.1.1) to discretize the energy level in the battery and different regressors
using:

1. either local polynomials with an adapted size of the support (subsection 4.2) ,

2. either global polynomials (section 4.7)

3. or kernel regression (section 4.8)

9



Chapter 2

General mathematical setting

In a continuous setting, the controlled state is given by a stochastic differential equation{
dXx,t

s = ba(t,X
x,t
s )ds+ σa(s,X

x,t
s )dWs

Xx,t
t = x

where

• Wt is a d-dimensional Brownian motion on a probability space (Ω,F ,P) endowed with
the natural (completed and right-continuous) filtration F = (Ft)t≤T generated by W
up to some fixed time horizon T > 0,

• σa is a Lipschitz continuous function of (t, x, a) defined on [0, T ]×Rd×Rn and taking
values in the set of d-dimensional square matrices,

• ba is a Lipschitz continuous function of (t, x, a) defined on [0, T ]×Rd×Rn and taking
values in Rd,

• a a control adapted to the filtration taking values in Rn.

Suppose we want to minimize a cost function J(t, x, a) = E[
∫ T
t
fa(s,X

x,t
s )e

∫ s
t ca(u,Xx,t

u )duds +

e
∫ T
t ca(u,Xx,t

u )g(Xx,t
T )] with respect to the control a. It is well known [15] that the optimal

value Ĵ(t, x) = infa J(T − t, x, a) is a viscosity solution of the equation

∂v

∂t
(t, x) − inf

a∈A

(
1

2
tr(σa(t, x)σa(t, x)TD2v(t, x)) + ba(t, x)Dv(t, x)

+ca(t, x)v(t, x) + fa(t, x)

)
= 0 in Rd

v(0, x) = g(x) in Rd (2.1)

Under some classical assumptions on the coefficients [15], the previous equation known as
the Hamilton Jacobi Bellman equation admits an unique viscosity solution ([24]).
The resolution of the previous equation is quite hard especially in dimension greater than 3
or 4.
The library provides tools to solve this equation and simplified versions of it.
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• a first method supposes that Xx,t
s = (Xx,t

1,s , X
x,t
2,s) where Xx,t

1,s is not controlled{
dXx,t

1,s = b(t,Xx,t
1,s)ds+ σ(s,X

x,t
1,s)dWs

Xx,t
1,t = x

(2.2)

and Xx,t
2,s has no diffusion term{

dXx,t
2,s = ba(t,X

x,t
2,s)ds

Xx,t
2,t = x

In this case we can use Monte Carlo methods based on regression to solve the problem.
The method is based on the Dynamic Programming principle and can be used even if
the non controlled SDE is driven by a general Levy process. This method can be used
even if the controlled state takes only some discrete values.
A second approach based on Dynamic Programming uses scenario trees: in this case,
uncertainties evolve on a tree only taking some discrete values.

• The second case is a special case of the previous one when the problem to solve is
linear and when the controlled state takes some values in some continuous intervals.
The value function has to be convex or concave with respect to the controlled vari-
ables. This method, the SDDP method, is used when the dimension of the controlled
state is high, preventing the use of the Dynamic Programming method. As before,
uncertainties can be either described by scenarios or by a scenario tree.

Remark 1 The use of this method requires other assumptions that will be described
the devoted chapter.

• A third method permits to solve the problem with Monte Carlo when a process is
controlled but by the mean of an uncontrolled process. This typically the case of the
optimization of a portfolio:

– The portfolio value is controlled and deterministically discretized on a grid,

– The portfolio evolution is driven by an exogenous process not controlled: the
market prices.

• In the fourth method, we will suppose that the state takes continuous values, we will
solve equation (2.1) using semi-Lagrangian methods discretizing the Brownian motion
with two values and using some interpolations on grids.

• At last we present a pure Monte Carlo general method based on automatic differen-
tiation and randomization of the time step to solve general non linear equations and
that can be used to solve some control problems.

In the sequel, we suppose that a time discretization is given for the resolution of the opti-
mization problem. We suppose the step discretization is constant and equal to h such that
ti = ih. First, we describe some useful tools developed in the library for stochastic control.
Then, we explain how to solve some optimization problems using these developed tools.

Remark 2 In the library, we heavily relies on the Eigen library: ArrayXd stands for a
vector of double, ArrayXXd for a matrix of double and ArrayXi a vector of integer.

11
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Part II

Useful tools for stochastic control
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Chapter 3

The grids and their interpolators

In this chapter we develop the tools used to interpolate a function discretized on a given grid.
A grid is a set of point in Rd defining some meshes that can be used to interpolate a function
on an open set in Rd. These tools are used to interpolate a function given for example at
some stock points, when dealing with storages. These are also useful for semi-Lagrangian
methods, which need effective interpolation methods. In StOpt currently four kinds of grids
are available:

• the first and second one are grids used to interpolate a function linearly on a grid;

• the third kind of grid, starting from a regular grid, permits to interpolate on a grid at
the Gauss–Lobatto points on each mesh;

• the last grid permits to interpolate a function in high dimension using the sparse grid
method. The approximation is linear, quadratic, or cubic in each direction.

To each kind of grids are associated some iterators. An iterator on a grid permits to iterate
on all points of the grids. All iterators derive from the abstract class GridIterator

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef GRIDITERATOR_H

5 #define GRIDITERATOR_H

6 #include <Eigen/Dense >

7

8 /** \file GridIterator.h

9 * \brief Defines an iterator on the points of a grid

10 * \author Xavier Warin

11 */

12 namespace StOpt

13 {

14

15 /// \class GridIterator GridIterator.h

16 /// Iterator on a given grid

17 class GridIterator

18 {

19

20 public :

21

22 /// \brief Constructor

23 GridIterator () {}

24

25 /// \brief Destructor

13



26 virtual ~GridIterator () {}

27

28 /// \brief get current coordinates

29 virtual Eigen:: ArrayXd getCoordinate () const = 0 ;

30

31 /// \brief Check if the iterator is valid

32 virtual bool isValid(void) const = 0;

33

34 /// \brief iterate on point

35 virtual void next() = 0;

36

37 /// \brief iterate jumping some point

38 /// \param p_incr increment in the jump

39 virtual void nextInc(const int &p_incr) = 0;

40

41 /// \brief get counter : the integer associated the current point

42 virtual int getCount () const = 0;

43

44 /// \brief Permits to jump to a given place given the number of processors (permits to

use MPI and openmp)

45 /// \param p_rank processor rank

46 /// \param p_nbProc number of processor

47 /// \param p_jump increment jump for iterator

48 virtual void jumpToAndInc(const int &p_rank , const int &p_nbProc , const int &p_jump) =

0;

49

50 /// \brief return relative position

51 virtual int getRelativePosition () const = 0 ;

52

53 /// \brief return number of points treated

54 virtual int getNbPointRelative () const = 0 ;

55

56 /// \brief Reset the interpolator

57 virtual void reset() = 0 ;

58

59 };

60 }

61 #endif /* GRIDITERATOR_H */

All the iterators share some common features:

• the getCount method permits to get the number associated to the current grid point,

• the next method permits to go to the next point, while the nextInc method permits
to jump forward to the p incr point,

• the isValid method permits to check that we are still on a grid point,

• the getNbPointRelative method permits to get the number of points that a given
iterator can iterate on,

• the getRelativePosition get the number of points already iterated by the iterator.

Besides, we can directly jump to a given point: this feature is useful for “mpi” when a
treatment on the grid is split between some processor and threads. This possibility is given
by the jumpToAndInc method.
Using a grid regGrid the following source code permits to iterate on the points of the grids
and get coordinates. For each coordinate, a function f is used to fill in an array of values.
As pointed out before, each type of grid has its own grid iterator that can be obtained by
the getGridIterator method.

14



1 ArrayXd data(regGrid.getNbPoints ()); // create an array to store the values of the

function f

2 shared_ptr <GridIterator > iterRegGrid = regGrid.getGridIterator ();

3 while (iterRegGrid ->isValid ())

4 {

5 ArrayXd pointCoord = iterRegGrid ->getCoordinate (); // store the coordinates of the

point

6 data(iterRegGrid ->getCount ()) = f(pointCoord); // the value is stored in data at

place iterRegGrid ->getCount ()

7 iterRegGrid ->next(); // go to next point

8 }

It is also possible to “jump” some points and iterate to “p” points after. This possibility is
useful for multithreaded tasks on points.
To each kind of grids, an interpolator is provided to interpolate a function given on a grid.
Notice that the interpolator is created for a given point where we want to interpolate.
All interpolators (not being spectral interpolators) derive from Interpolator whose source
code is given below.

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef INTERPOLATOR_H

5 #define INTERPOLATOR_H

6 #include <vector >

7 #include <Eigen/Dense >

8 /** \file Interpolator.h

9 * \brief Defines a interpolator on a full grid

10 * \author Xavier Warin

11 */

12 namespace StOpt

13 {

14

15 /// \class Interpolator Interpolator.h

16 /// Interpolation base class

17 class Interpolator

18 {

19 public :

20

21 /// \brief Default constructor

22 Interpolator () {}

23

24 /// \brief Default Destructor

25 virtual ~Interpolator () {}

26

27 /** \brief interpolate

28 * \param p_dataValues Values of the data on the grid

29 * \return interpolated value

30 */

31 virtual double apply(const Eigen::Ref < const Eigen :: ArrayXd > &p_dataValues) const =

0;

32

33 /** \brief interpolate and use vectorization

34 * \param p_dataValues Values of the data on the grid. Interpolation is achieved for

all values in the first dimension

35 * \return interpolated value

36 */

37 virtual Eigen:: ArrayXd applyVec(const Eigen:: ArrayXXd &p_dataValues) const = 0;

38

39 /** \brief Same as above but avoids copy for Numpy eigen mapping due to storage

conventions

40 * \param p_dataValues Values of the data on the grid. Interpolation is achieved

for all values in the first dimension

41 * \return interpolated value

42 */
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43 virtual Eigen:: ArrayXd applyVecPy(Eigen::Ref < Eigen::ArrayXXd , 0, Eigen::Stride <Eigen

::Dynamic , Eigen ::Dynamic > > p_dataValues) const = 0;

44

45 };

46 }

47 #endif

All interpolators provide a constructor specifying the point where the interpolation is achieved
and the two functions apply and applyVec interpolating either a function (and sending back
a value) or an array of functions sending back an array of interpolated values.

All the grid classes derive from an abstract class SpaceGrid below permitting to get
back an iterator associated to the points of the grid (with possible jumps) and to create an
interpolator associated to the grid.

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef SPACEGRID_H

5 #define SPACEGRID_H

6 #include <array >

7 #include <memory >

8 #include <Eigen/Dense >

9 #include "StOpt/core/grids/GridIterator.h"

10 #include "StOpt/core/grids/Interpolator.h"

11 #include "StOpt/core/grids/InterpolatorSpectral.h"

12

13 /** \file SpaceGrid.h

14 * \brief Defines a base class for all the grids

15 * \author Xavier Warin

16 */

17 namespace StOpt

18 {

19

20 /// \class SpaceGrid SpaceGrid.h

21 /// Defines a base class for grids

22 class SpaceGrid

23 {

24 public :

25 /// \brief Default constructor

26 SpaceGrid () {}

27

28 /// \brief Default destructor

29 virtual ~SpaceGrid () {}

30

31 /// \brief Number of points of the grid

32 virtual size_t getNbPoints () const = 0;

33

34 /// \brief get back iterator associated to the grid

35 virtual std::shared_ptr < GridIterator > getGridIterator () const = 0;

36

37 /// \brief get back iterator associated to the grid (multi thread)

38 virtual std:: shared_ptr < GridIterator > getGridIteratorInc(const int &p_iThread) const =

0;

39

40 /// \brief Get back interpolator at a point Interpolate on the grid

41 /// \param p_coord coordinate of the point for interpolation

42 /// \return interpolator at the point coordinates on the grid

43 virtual std:: shared_ptr <Interpolator > createInterpolator(const Eigen:: ArrayXd &p_coord)

const = 0;

44

45 /// \brief Get back a spectral operator associated to a whole function

46 /// \param p_values Function value at the grids points

47 /// \return the whole interpolated value function

48 virtual std:: shared_ptr <InterpolatorSpectral > createInterpolatorSpectral(const Eigen ::

ArrayXd &p_values) const = 0;
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49

50 /// \brief Dimension of the grid

51 virtual int getDimension () const = 0 ;

52

53 /// \brief get back bounds associated to the grid

54 /// \return in each dimension give the extreme values (min , max) of the domain

55 virtual std:: vector <std::array < double , 2> > getExtremeValues () const = 0;

56

57 /// \brief test if the point is strictly inside the domain

58 /// \param p_point point to test

59 /// \return true if the point is strictly inside the open domain

60 virtual bool isStrictlyInside(const Eigen :: ArrayXd &p_point) const = 0 ;

61

62 /// \brief test if a point is inside the grid (boundary include)

63 /// \param p_point point to test

64 /// \return true if the point is inside the open domain

65 virtual bool isInside(const Eigen :: ArrayXd &p_point) const = 0 ;

66

67 /// \brief truncate a point that it stays inside the domain

68 /// \param p_point point to truncate

69 virtual void truncatePoint(Eigen:: ArrayXd &p_point) const = 0 ;

70

71 };

72 }

73 #endif /* SPACEGRID.H */

All the grids objects, interpolators and iterators on grids point are in

StOpt/core/grids

The grids objects are mapped with python, giving the possibility to get back the iterators
and the interpolators associated to a grid. Python examples can be found in

test/python/unit/grids

3.1 Linear grids

3.1.1 Definition and C++ API

Two kinds of grids are developed:

• the first one is the GeneralSpaceGrid with constructor

1 GeneralSpaceGrid(const std::vector <shared_ptr <Eigen ::ArrayXd > > &p_meshPerDimension

)

where std::vector<shared ptr<Eigen::ArrayXd>> is a vector of (pointer of) arrays
defining the grids points in each dimension. In this case the grid is not regular and
the mesh size varies in space (see figure 3.1).

• the second one is the RegularSpaceGrid with constructor

1 RegularSpaceGrid(const Eigen:: ArrayXd &p_lowValues , const Eigen :: ArrayXd &p_step ,

const Eigen:: ArrayXi &p_nbStep)

The p lowValues correspond to the bottom of the grid, p step the size of each mesh,
p nbStep the number of steps in each direction (see figure 3.2)
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Figure 3.1: 2D general grid

Figure 3.2: 2D regular grid

For each grid, a linear interpolator can be generated by call to the createInterpolator

method or by creating directly the interpolator:

1 /** \brief Constructor

2 * \param p_grid is the grid used to interpolate

3 * \param p_point is the coordinates of the points used for interpolation

4 */

5 LinearInterpolator( const FullGrid * p_grid , const Eigen :: ArrayXd &p_point):

Its construction from a grid (regLin) and an array data containing the values of the function
at the grids points is given below (taking an example above to fill in the array data)

1 ArrayXd data(regGrid.getNbPoints ()); // create an array to store the values of the

function f

2 shared_ptr <GridIterator > iterRegGrid = regGrid.getGridIterator ();

3 while (iterRegGrid ->isValid ())

4 {

5 ArrayXd pointCoord = iterRegGrid ->getCoordinate (); // store the coordinate of the

point

6 data(iterRegGrid ->getCount ()) = f(pointCoord); // the value is stored in data at

place iterRegGrid ->getCount ()

7 iterRegGrid ->next(); // go to next point

8 }

9 // point where to interpolate

10 ArrayXd point = ArrayXd :: Constant(nDim , 1. / 3.);

11 // create the interpolator

12 LinearInterpolator regLin (&regGrid , point);

13 // get back the interpolated value

14 double interpReg = regLin.apply(data);
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Let I1,∆X denote the linear interpolator where the mesh size is ∆x = (∆x1, . . . ,∆xd). We
get for a function f in Ck+1(Rd) with k ≤ 1

||f − I1,∆xf ||∞ ≤ c

d∑
i=1

∆xk+1
i sup

x∈[−1,1]d
|∂

k+1f

∂xk+1
i

| (3.1)

In particular if f is only Lipschitz

||f − I1,∆xf ||∞ ≤ K sup
i

∆xi.

3.1.2 The python API

The python API makes it possible to use the grids with a similar syntax to the C++ API.
We give here an example with a regular grid

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import unittest

6 import random

7 import math

8 import StOptGrids

9

10 # unit test for regular grids

11 ############################

12

13 class testGrids(unittest.TestCase):

14

15 # 3 dimensional test for linear interpolation on regular grids

16 def testRegularGrids(self):

17 # low value for the meshes

18 lowValues =np.array ([1. ,2.,3.] , dtype=np.float)

19 # size of the meshes

20 step = np.array ([0.7 ,2.3 ,1.9] , dtype=np.float)

21 # number of steps

22 nbStep = np.array ([4,5,6], dtype=np.int32)

23 # create the regular grid

24 grid = StOptGrids.RegularSpaceGrid(lowValues ,step ,nbStep)

25 iterGrid = grid.getGridIterator ()

26 # array to store

27 data = np.empty(grid.getNbPoints ())

28 # iterates on points and store values

29 while( iterGrid.isValid ()):

30 #get coordinates of the point

31 pointCoord = iterGrid.getCoordinate ()

32 data[iterGrid.getCount ()] = math.log(1. + pointCoord.sum())

33 iterGrid.next()

34 # get back an interpolator

35 ptInterp = np.array ([2.3 ,3.2 ,5.9] , dtype=np.float)

36 interpol = grid.createInterpolator(ptInterp)

37 # calculate interpolated value

38 interpValue = interpol.apply(data)

39 print(("Interpolated value" , interpValue))

40 # test grids function

41 iDim = grid.getDimension ()

42 pt = grid.getExtremeValues ()

43

44 if __name__ == ’__main__ ’:

45 unittest.main()

A similar example can be given for general grid with linear interpolation
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1 # Copyright (C) 2017 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import unittest

6 import random

7 import math

8 import StOptGrids

9

10 # unit test for general grids

11 #############################

12

13 class testGrids(unittest.TestCase):

14

15

16 # test general grids

17 def testGeneralGrids(self):

18 # low value for the mesh

19 lowValues =np.array ([1. ,2.,3.] , dtype=np.float)

20 # size of the mesh

21 step = np.array ([0.7 ,2.3 ,1.9] , dtype=np.float)

22 # number of step

23 nbStep = np.array ([4,5,6], dtype=np.int32)

24 # degree of the polynomial in each direction

25 degree = np.array ([2,1,3], dtype=np.int32)

26

27 # list of mesh

28 mesh1= np.array ([1. + 0.7*i for i in np.arange (5)] ,dtype=np.float)

29 mesh2= np.array ([2.+2.3*i for i in np.arange (6)],dtype=np.float)

30 mesh3= np.array ([3.+1.9*i for i in np.arange (7)],dtype=np.float)

31

32 # create the general grid

33 grid = StOptGrids.GeneralSpaceGrid ([mesh1 ,mesh2 ,mesh3] )

34

35 iterGrid = grid.getGridIterator ()

36 # array to store

37 data = np.empty(grid.getNbPoints ())

38 # iterates on point

39 while( iterGrid.isValid ()):

40 #get coordinates of the point

41 pointCoord = iterGrid.getCoordinate ()

42 data[iterGrid.getCount ()] = math.log(1. + pointCoord.sum())

43 iterGrid.next()

44 # get back an interpolator

45 ptInterp = np.array ([2.3 ,3.2 ,5.9] , dtype=np.float)

46 interpol = grid.createInterpolator(ptInterp)

47 # calculate interpolated value

48 interpValue = interpol.apply(data)

49 # test grids function

50 iDim = grid.getDimension ()

51 pt = grid.getExtremeValues ()

52

53

54 if __name__ == ’__main__ ’:

55 unittest.main()

3.2 Legendre grids

With linear interpolation, in order to get an accurate solution, it is needed to refine the
mesh so that ∆x goes to zero. Another approach consists in trying to fit on each mesh a
polynomial by using a high degree interpolator.
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3.2.1 Approximation of a function in 1 dimension

From now, by re-scaling we suppose that we want to interpolate a function f on [−1, 1]. All
the following results can be extended by tensorization in dimension greater than 1. PN is
the set of the polynomials of total degree below or equal to N . The minmax approximation
of f of degree N is the polynomial P ∗N(f) such that:

||f − P ∗N(f)||∞ = min
p∈PN

||f − p||∞

We call IXN interpolator from f on a grid of N + 1 points of [−1, 1] X = (x0, . . . , xN), the
unique polynomial of degree N such that

IXN (f)(xi) = f(xi), 0 ≤ i ≤ N

This polynomial can be expressed in terms of the Lagrange polynomial lXi , 0 ≤ i ≤ N
associated to the grid (lXi is the unique polynomial of degree N taking value equal to 1 at
point i and 0 at the other interpolation points).

IXN (f)(x) =
N∑
i=0

f(xi)l
X
i (x)

The interpolation error can be expressed in terms of the interpolation points:

||IXN (f)(x)− f ||∞ ≤ (1 + λN(X))||f − P ∗N(f)||∞

where λN(X) is the Lebesgue constant associated to Lagrange quadrature on the grid:

λN(X) = max
x∈[−1,1]

N∑
i=0

|lXi (x)|.

We have the following bound

||IXN (f)(x)||∞ ≤ λN(X)supxi∈X |f(xi)| ≤ λN(X)||f ||∞

and the Erdös theorem states that

λN(X) >
2

Π
log(N + 1)− C

It is well–known that the use of a uniform grid Xu is not optimal, because as N −→∞, the
Lebesgue constant satisfies

λN(Xu) '
2N+1

eN lnN

and the quadrature error in L∞ increases a lot with N . Its use brings some oscillations giving
the Runge effect. On Figures 3.3a, 3.3b, 3.3c, 3.3d, we plot the Runge function 1

1+25x2 against
its interpolation with polynomial with equidistant interpolation. So we are interested in hav-
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(a) (b)

(c) (d)

Figure 3.3: Runge function 1
1+25x2 and its polynomial interpolations with degrees 3, 4, 8,

and 18.

ing quadrature with an “optimal” Lebesgue constant. For example Gauss–Chebyshev inter-
polation points (corresponding to the 0 of the polynomial TN+1(x) = cos((N + 1) arccos(x))
give a Lebesgue constant λN(XGC) equal to

λN(XGC) ' 2

Π
ln(N + 1)

For our problem, we want to interpolate a function on meshes with high accuracy on the
mesh while respecting the continuity of the function between the meshes. In order to ensure
this continuity we want the extreme points on the re-scaled mesh [−1,−1] (so −1, 1) to be
on the interpolation grid. This leads to the Gauss–Lobatto–Chebyshev interpolation grid.
In the library we choose to use the Gauss–Lobatto–Legendre interpolation grids which is
as efficient as the Gauss–Lobatto–Chebyshev grids (in term of the Lebesgue constant) but
computationally less costly due to absence of trigonometric function. We recall that the
Legendre polynomial satisfies the recurrence

(N + 1)LN+1(x) = (2N + 1)xLN(x)−NLN−1(x)

with L0 = 1, L1(x) = x.

These polynomials are orthogonal with the scalar product (f, g) =
∫ 1

−1
f(x)g(x)dx. We are

interested in the derivatives of these polynomials L
′
N that satisfy the recurrence

NL
′

N+1(x) = (2N + 1)xL
′

N(x)− (N + 1)L
′

N−1(x)
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these polynomials are orthogonal with the scalar product (f, g) =
∫ 1

−1
f(x)g(x)(1 − x2)dx.

The Gauss–Lobatto–Legendre grids points for a grids with N+1 points are η1 = −1, ηN+1 =
1 and the ηi (i = 2, . . . , N) zeros of L

′
N . The ηi (i = 2, . . . , N) are eigenvalues of the matrix

P

P =


0 γ1 . . . 0 0
γ1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 γN−2

0 0 . . . γN−2 0

 ,

γn =
1

2

√
n(n+ 2)

(n+ 1
2
)(n+ 3

2
)
, 1 ≤ n ≤ N − 2,

The interpolation IN(f) is expressed in term of the Legendre polynomials by

IN(f) =
N∑
k=0

f̃kLk(x),

f̃k =
1

γk

N∑
i=0

ρif(ηi)Lk(ηi),

γk =
N∑
i=0

Lk(ηi)
2ρi,

and the weights satisfies

ρi =
2.

(M + 1)ML2
M(ηi)

, 1 ≤ i ≤ N + 1.

More details can be found in [2]. In figure 3.4, we give the interpolation obtained with the
Gauss–Lobatto–Legendre quadrature with two degrees of approximation.

Figure 3.4: Interpolation with Gauss–Legendre–Lobatto grids

• When the function is not regular we introduce a notion weaker than the notion of
derivatives. We note w(f, δ) the modulus of continuity on [−1, 1] of a function f as

w(f, δ) = sup
x1, x2 ∈ [−1, 1]
|x1 − x2| < δ

|f(x1)− f(x2)|
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The modulus of continuity permits to express the best approximation of a function by
a polynomial with the Jackson theorem:

Theorem 1 For a continuous function f on [−1, 1]

||f − P ∗N(f)||∞ ≤ Kw(f,
1

N
)

and we deduce that for a grid of interpolation X

||IXN (f)(x)− f ||∞ ≤ M(N)

M(N) ' Kw(f,
1

N
)λN(X)

a function is Dini–Lipschitz continuous if w(f, δ)log(δ) −→ 0 as δ −→ 0. It is clear that
Lipschitz functions are Dini–Lipschitz continuous because w(f, δ)log(δ) ≤ Klog(δ)δ.

• When the solution is more regular we can express the interpolation error as a function
of its derivatives and we get the following Cauchy theorem for an interpolation grid X
(see [39])

Theorem 2 If f is CN+1, and X an interpolation grid with N + 1 points, then the
interpolation error verifies

E(x) = f(x)− IXN (f)(x) =
fN+1(η)

(N + 1)!
WX
N+1(x) (3.2)

where η ∈ [−1, 1] and WX
N+1(x) is the nodal polynomial of degree N+1 (the polynomial

with the monomial of the highest degree with coefficient 1 being null at all the N + 1
points of X)

If we partition a domain I = [a, b] in some meshes of size h and we use a Lagrange
interpolator for the function f ∈ Ck+1 , k ≤ N we obtain

||f − IXN,∆xf ||∞ ≤ chk+1||f (k+1)||∞

3.2.2 Extension in dimension d

In dimension d, we note P ∗N the best multivariate polynomial approximation of f of total
degree lesser than N on [−1, 1]d. On a d multidimensional grid X = Xd

N , we define the
multivariate interpolator as the composition of one dimensional interpolator IXN (f)(x) =
IXN ,1N × IXN ,2N · · · × IXN ,dN (f)(x) where IXN ,iN stands for the interpolator in dimension i. We
get the following interpolation error

||IXN (f)− f ||∞ ≤ (1 + λN(XN))d||f − P ∗N(f)||∞,

The error associated to the min max approximation is given by Feinerman and Newman
[14], Soardi [42]

||f − P ∗N(f)||∞ ≤ (1 +
π2

4

√
d)w(f,

1

N + 2
)
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We deduce that if f is only Lipschitz

||IXN (f)(x)− f ||∞ ≤ C
√
d

(1 + λN(X))d

N + 2

If the function is regular (in Ck+1([−1, 1]d), k < N) we get

||f − P ∗N(f)||∞ ≤ Ck
Nk

d∑
i=1

sup
x∈[−1,1]d

|∂
k+1f

∂xk+1
i

|

If we partition the domain I = [a1, b1]×· · ·×[ad, bd] in meshes of size ∆x = (∆x1,∆x2, . . . ,∆xd)
and use a Lagrange interpolation on each mesh we obtain

||f − IXN,∆xf ||∞ ≤ c
(1 + λN(X))d

Nk

d∑
i=1

∆xk+1
i sup

x∈[−1,1]d
|∂

k+1f

∂xk+1
i

|

On figure 3.5 we give the Gauss–Legendre–Lobatto points in 2D for 2 × 2 meshes and a
polynomial of degree 8 in each direction

Figure 3.5: Gauss–Legendre–Lobatto points on 2× 2 meshes.

3.2.3 Troncature

In order to avoid oscillations while interpolating, a troncature is used on each mesh such
that the modified interpolator ÎXN,∆x satisfies:

ÎXN,∆xf(x) = min
xi∈M

f(xi) ∧ IXN,∆xf(x) ∨ max
xi∈M

f(xi) (3.3)

where the xi are the interpolation points on the mesh M containing the point x. For all
characteristics of this modified operator, one can see [47].
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3.2.4 The C++ API

The grid using Gauss–Legendre–Lobatto points can be created by the use of this constructor:

1 RegularLegendreGrid(const Eigen:: ArrayXd &p_lowValues , const Eigen:: ArrayXd &p_step ,

const Eigen:: ArrayXi &p_nbStep , const Eigen:: ArrayXi & p_poly);

The p lowValues correspond to the bottom of the grid, p step the size of each mesh,
p nbStep the number of steps in each direction (see figure 3.2). On each mesh the polynomial
approximation in each dimension is specified by the p poly array.

Remark 3 If we take a polynomial of degree 1 in each direction this interpolator is equiva-
lent to the linear interpolator. It is somehow slightly less efficient than the linear interpolator
on a Regular grid described in the above section.

We illustrate the use of the grid, its iterator and its interpolator used in order to draw
the figures 3.4.

1

2 ArrayXd lowValues = ArrayXd :: Constant (1,-1.); // corner point

3 ArrayXd step= ArrayXd :: Constant (1,2.); // size of the meshes

4 ArrayXi nbStep = ArrayXi :: Constant (1,1); // number of mesh in each direction

5 ArrayXi nPol = ArrayXi :: Constant(1,p_nPol); // polynomial approximation

6 // regular Legendre

7 RegularLegendreGrid regGrid(lowValues , step , nbStep , nPol);

8

9 // Data array to store values on the grid points

10 ArrayXd data(regGrid.getNbPoints ());

11 shared_ptr <GridIterator > iterRegGrid = regGrid.getGridIterator ();

12 while (iterRegGrid ->isValid ())

13 {

14 ArrayXd pointCoord = iterRegGrid ->getCoordinate ();

15 data(iterRegGrid ->getCount ()) = 1./(1.+25* pointCoord (0)*pointCoord (0)); // store

runge function

16 iterRegGrid ->next();

17 }

18 // point

19 ArrayXd point (1);

20 int nbp = 1000;

21 double dx = 2./ nbp;

22 for (int ip =0; ip <= nbp; ++ip)

23 {

24 point (0)= -1+ ip* dx;

25 // create interpolator

26 shared_ptr <Interpolator > interp = regGrid.createInterpolator( point);

27 double interpReg = interp ->apply(data); // interpolated value

28 }

The previously defined operator is more effective when we interpolate many function at the
same point. Its is the case for example for the valorization of a storage with regression where
you want to interpolate all the simulations at the same stock level.

In some case it is more convenient to construct an interpolator acting on a global func-
tion. It is the case when you have a single function and you want to interpolate at many
points for this function. In this specific case an interpolator deriving from the class Inter

polatorSpectral can be constructed:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef INTERPOLATORSPECTRAL_H
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5 #define INTERPOLATORSPECTRAL_H

6 #include <Eigen/Dense >

7 //#include "StOpt/core/grids/SpaceGrid.h"

8

9 /** \file InterpolatorSpectral.h

10 * \brief Defines an interpolator for a grid : here is a global interpolator , storing the

representation of the function

11 * to interpolate : this interpolation is effective when interpolating the same

function many times at different points

12 * Here it is an abstract class

13 * \author Xavier Warin

14 */

15 namespace StOpt

16 {

17

18 /// forward declaration

19 class SpaceGrid ;

20

21 /// \class InterpolatorSpectral InterpolatorSpectral.h

22 /// Abstract class for spectral operator

23 class InterpolatorSpectral

24 {

25

26 public :

27 virtual ~InterpolatorSpectral () {}

28

29 /** \brief interpolate

30 * \param p_point coordinates of the point for interpolation

31 * \return interpolated value

32 */

33 virtual double apply(const Eigen :: ArrayXd &p_point) const = 0;

34

35

36 /** \brief Affect the grid

37 * \param p_grid the grid to affect

38 */

39 virtual void setGrid(const StOpt :: SpaceGrid *p_grid) = 0 ;

40 };

41 }

42 #endif

Its constructor is given by:

1 /** \brief Constructor taking in values on the grid

2 * \param p_grid is the grid used to interpolate

3 * \param p_values Function value at the grids points

4 */

5 LegendreInterpolatorSpectral(const shared_ptr < RegularLegendreGrid > &p_grid , const

Eigen:: ArrayXd &p_values) ;

This class has a member permitting to interpolate at a given point:

1 /** \brief interpolate

2 * \param p_point coordinates of the point for interpolation

3 * \return interpolated value

4 */

5 inline double apply(const Eigen:: ArrayXd &p_point) const

We give an example of the use of this class, interpolating a function f in dimension 2.

1 ArrayXd lowValues = ArrayXd :: Constant (2 ,1.); // bottom of the domain

2 ArrayXd step = ArrayXd :: Constant (2,1.); // size of the mesh

3 ArrayXi nbStep = ArrayXi :: Constant (2,5); // number of meshes in each direction

4 ArrayXi nPol = ArrayXi :: Constant (2,2) ; // polynomial of degree 2 in each direction

5 // regular

6 shared_ptr <RegularLegendreGrid > regGrid(new RegularLegendreGrid(lowValues , step , nbStep

, nPol));

7 ArrayXd data(regGrid ->getNbPoints ()); // Data array

27



8 shared_ptr <GridIterator > iterRegGrid = regGrid ->getGridIterator (); // iterator on the

grid points

9 while (iterRegGrid ->isValid ())

10 {

11 ArrayXd pointCoord = iterRegGrid ->getCoordinate ();

12 data(iterRegGrid ->getCount ()) = f(pointCoord);

13 iterRegGrid ->next();

14 }

15

16 // spectral interpolator

17 LegendreInterpolatorSpectral interpolator(regGrid ,data);

18 // interpolation point

19 ArrayXd pointCoord (2, 5.2);

20 // interpolated value

21 double vInterp = interpolator.apply(pointCoord);

3.2.5 The python API

Here is an example using Legendre grids:

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import unittest

6 import random

7 import math

8 import StOptGrids

9

10 # unit test for Legendre grids

11 #############################

12

13 class testGrids(unittest.TestCase):

14

15

16 # test Legendre grids

17 def testLegendreGrids(self):

18 # low value for the mesh

19 lowValues =np.array ([1. ,2.,3.] , dtype=np.float)

20 # size of the mesh

21 step = np.array ([0.7 ,2.3 ,1.9] , dtype=np.float)

22 # number of step

23 nbStep = np.array ([4,5,6], dtype=np.int32)

24 # degree of the polynomial in each direction

25 degree = np.array ([2,1,3], dtype=np.int32)

26 # create the Legendre grid

27 grid = StOptGrids.RegularLegendreGrid(lowValues ,step ,nbStep ,degree )

28 iterGrid = grid.getGridIterator ()

29 # array to store

30 data = np.empty(grid.getNbPoints ())

31 # iterates on point

32 while( iterGrid.isValid ()):

33 #get coordinates of the point

34 pointCoord = iterGrid.getCoordinate ()

35 data[iterGrid.getCount ()] = math.log(1. + pointCoord.sum())

36 iterGrid.next()

37 # get back an interpolator

38 ptInterp = np.array ([2.3 ,3.2 ,5.9] , dtype=np.float)

39 interpol = grid.createInterpolator(ptInterp)

40 # calculate interpolated value

41 interpValue = interpol.apply(data)

42 print(("Interpolated value Legendre" , interpValue))

43 # test grids function

44 iDim = grid.getDimension ()

45 pt = grid.getExtremeValues ()

46
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47

48 if __name__ == ’__main__ ’:

49 unittest.main()

3.3 Sparse grids

A representation of a function in dimension d for d small (less than 4) is achieved by ten-
sorization in the previous interpolation methods. When the function is smooth and when its
cross derivatives are bounded, one can represent the function using the sparse grid methods.
This methods permits to represent the function with far less points than classical without
losing too much while interpolating. The sparse grid method was first used supposing that
the function f to represent is null at the boundary Γ of the domain. This assumption is
important because it permits to limit the explosion of the number of points with the dimen-
sion of the problem. In many application this assumption is not realistic or it is impossible
to work on f − f|Γ. In this library we will suppose that the function is not null at the
boundary and provide grid object, iterators and interpolators to interpolate some functions
represented on the sparse grid. Nevertheless, for the sake of clarity of the presentation, we
will begin with the case of a function vanishing on the boundary.

3.3.1 The linear sparse grid method

We recall some classical results on sparse grids that can be found in [38]. We first assume
that the function we interpolate is null at the boundary. By a change of coordinate an
hyper-cube domain can be changed to a domain ω = [0, 1]d. Introducing the hat function
φ(L)(x) = max(1 − |x|, 0) (where (L) stands for linear), we obtain the following local one
dimensional hat function by translation and dilatation

φ
(L)
l,i (x) = φ(L)(2lx− i)

depending on the level l and the index i, 0 < i < 2l. The grid points used for interpolation
are noted xl,i = 2−li. In dimension d, we introduce the basis functions

φ
(L)
l,i (x) =

d∏
j=1

φ
(L)
lj ,ij

(xj)

via a tensor approach for a point x = (x1, . . . , xd), a multi-level l := (l1, . . . , ld) and
a multi-index i := (i1, . . . , id). The grid points used for interpolation are noted xl,i :=
(xl1,i1 , . . . , xld,id).
We next introduce the index set

Bl :=
{
i : 1 ≤ ij ≤ 2lj − 1, ij odd , 1 ≤ j ≤ d

}
and the space of hierarchical basis

W
(L)
l := span

{
φ

(L)
l,i (x) : i ∈ Bl

}
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Figure 3.6: One dimensional W (L) spaces: W
(L)
1 , W

(L)
2 , W

(L)
3 , W

(L)
4 and the nodal represen-

tation W
(L,N)
4

A representation of the space W
(L)
l is given in dimension 1 on figure 3.6. The sparse grid

space is defined as:

Vn = ⊕
|l|1≤n+d−1

W
(L)
l (3.4)

Remark 4 The conventional full grid space is defined as V F
n = ⊕

|l|∞≤n
W

(L)
l .

At a space of hierarchical increments W
(L)
l corresponds a space of nodal function W

(L,N)
l

such that

W
(L,N)
l := span

{
φ

(L)
l,i (x) : i ∈ BN

l

}
with

BN
l :=

{
i : 1 ≤ ij ≤ 2lj − 1, 1 ≤ j ≤ d

}
.

On figure 3.6 the one dimensional nodal base W
(L,N)
4 is spawned by W

(L)
4 and the dotted

basis function. The space Vn can be represented as the space spawn by the W
(L,N)
l such that

|l|1 = n+ d− 1:

Vn = span
{
φ

(L)
l,i (x) : i ∈ BN

l , |l|1 = n+ d− 1
}

(3.5)

A function f is interpolated on the hierarchical basis as

I(L)(f) =
∑

|l|1≤n+d−1,i∈Bl

α
(L)
l,i φ

(L)
l,i

where α
(L)
l,i are called the surplus (we give on figure 3.7 a representation of these coefficients).

These surplus associated to a function f are calculated in the one dimension case for a node
m = xl,i as the difference of the value of the function at the node and the linear representation
of the function calculated with neighboring nodes. For example on figure 3.8, the hierarchical
value is given by the relation:

α(L)(m) := α
(L)
l,i = f(m)− 0.5(f(e(m)) + f(w(m)))
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Figure 3.7: Example of hierarchical coefficients

Figure 3.8: Node involved in linear, quadratic and cubic representation of a function at node
m and n

where e(m) is the east neighbor of m and w(m) the west one. The procedure is generalized
in d dimension by successive hierarchization in all the directions. On figure 3.9, we give a
representation of the W subspace for l ≤ 3 in dimension 2.
In order to deal with functions not null at the boundary, two more basis are added to the

Figure 3.9: The two dimensional subspace W
(L)
l up to l = 3 in each dimension. The

additional hierarchical functions corresponding to an approximation on the full grid are
given in dashed lines.

first level as shown on figure 3.10. This approach results in many more points than the one
without the boundary. As noted in [38] for n =5, in dimension 8 you have nearly 2.8 millions
points in this approximation but only 6401 inside the domain. On figure 3.11 we give the
grids points with boundary points in dimension 2 and 3 for a level 5 of the sparse grid.

If the boundary conditions are not important (infinite domain truncated in finance for
example) the hat functions near the boundaries are modified by extrapolation (see figure
3.10) as explained in [38]. On level 1, we only have one degree of freedom assuming the
function is constant on the domain. On all other levels, we extrapolate linearly towards the
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Figure 3.10: One dimensional W (L) spaces with linear functions with “exact” boundary
(left) and “modified” boundary (right): W

(L)
1 , W

(L)
2 , W

(L)
3 , W

(L)
4

Figure 3.11: Sparse grid in dimension 2 and 3 with boundary points

boundary the left and right basis functions, other functions remaining unchanged. So the
new functions basis in 1D φ̃ becomes

φ̃
(L)
l,i (x) =



1 if l = 1 and i = 1{
2− 2lx if x ∈ [0, 2−l+1]

0 else

}
if l > 1 and i = 1{

2l(x− 1) + 2 if x ∈ [1− 2−l+1, 1]
0 else

}
if l > 1 and i = 2l − 1

φ
(L)
l,i (x) otherwise

On figure 3.12 we give the grids points eliminating boundary points in dimension 2 and 3
for a level 5 of the sparse grid.

The interpolation error associated to the linear operator I1 := I(L) is linked to the
regularity of the cross derivatives of the function [9, 10, 11]. If f is null at the boundary

and admits derivatives such that || ∂2du
∂x2

1...∂x
2
d
||∞ <∞ then

||f − I1(f)||∞ = O(N−2log(N)d−1), (3.6)

with N the number of points per dimension.
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Figure 3.12: Sparse grid in dimension 2 and 3 without boundary points

3.4 High order sparse grid methods

Changing the interpolator enables us to get a higher rate of convergence mainly in region
where the solution is smooth. Following [10] and [11], it is possible to get higher order
interpolators. Using a quadratic interpolator, the reconstruction on the nodal basis gives a
quadratic function on the support of the previously defined hat function and a continuous
function of the whole domain. The polynomial quadratic basis is defined on [2−l(i−1), 2−l(i+
1)] by

φ
(Q)
l,i (x) = φ(Q)(2lx− i)

with φ(Q)(x) = 1− x2.
The hierarchical surplus (coefficient on the basis) in one dimension is the difference between
the value function at the node and the quadratic representation of the function using nodes
available at the preceding level. With the notation of figure 3.8

α(m)(Q) = f(m)− (
3

8
f(w(m)) +

3

4
f(e(m))− 1

8
f(ee(m)))

= α(m)(L)(m)− 1

4
α(m)(L)(e(m))

= α(m)(L)(m)− 1

4
α(m)(L)(df(m))

where df(m) is the direct father of the node m in the tree.
Once again the quadratic surplus in dimension d is obtained by successive hierarchization
in the different dimensions.
In order to take into account the boundary conditions, two linear functions 1− x and x are
added at the first level (see figure 3.13).
A version with modified boundary conditions can be derived for example by using linear
interpolation at the boundary such that

φ̃
(Q)
l,i (x) =

{
φ̃

(L)
l,i if i = 1 or i = 2l − 1,

φ
(Q)
l,i (x) otherwise

In the case of the cubic representation, on figure 3.8 we need 4 points to define a function
basis. In order to keep the same data structure, we use a cubic function basis at node m
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Figure 3.13: One dimensional W (Q) spaces with quadratic with “exact” boundary (left) and

“modified” boundary (right): W
(Q)
1 , W

(Q)
2 , W

(Q)
3 , W

(Q)
4

with value 1 at this node and 0 at the node e(m), w(m) and ee(m) and we only keep the
basis function between w(m) and e(m) [10].
Notice that there are two kinds of basis function depending of the position in the tree. The
basis functions are given on [2−l+1i, 2−l+1(i+ 1)] by

φ
(C)
l,2i+1(x) = φ(C),1(2lx− (2i+ 1)), if i even

= φ(C),2(2lx− (2i+ 1)), if i odd

with φ(C),1(x) = (x2−1)(x−3)
3

, φ(C),2(x) = (1−x2)(x+3)
3

.
The coefficient surplus can be defined as before as the difference between the value function
at the node and the cubic representation of the function at the father node. Because of the
two basis functions involved there are two kind of cubic coefficient.

• For a node m = xl,8i+1 or m = xl,8i+7 , α(C)(m) = α(C,1)(m), with

α(C,1)(m) = α(Q)(m)− 1

8
α(Q)(df(m))

• For a node m = xl,8i+3 or m = xl,8i+5 , α(C)(m) = α(C,2)(m), with

α(C,2)(m) = α(Q)(m) +
1

8
α(Q)(df(m))

Notice that a cubic representation is not available for l = 1 so a quadratic approximation
is used. As before boundary conditions are treated by adding two linear functions basis at
the first level and a modified version is available. We choose the following basis functions
as defined on figure 3.14:

φ̃
(C)
l,i (x) =

{
φ̃

(Q)
l,i if i ∈ {1, 3, 2l − 3, 2l − 1},

φ
(C)
l,i (x) otherwise
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Figure 3.14: One dimensional W (C) spaces with cubic and “exact” boundary (left) and

“modified” boundary (right): W
(C)
1 , W

(C)
2 , W

(C)
3 , W

(C)
4

According to [9, 10, 11], if the function f is null at the boundary and admits deriva-

tives such that supαi∈{2,...,p+1}

{
||∂α1+···+αdu
∂x
α1
1 ...∂x

αd
d

||∞
}
< ∞ then the interpolation error can be

generalized for I2 := I(Q), I3 := I(C) by:

||f − Ip(f)||∞ = O(N−(p+1)log(N)d−1), p = 2, 3

with N the number of points per dimension.

3.5 Anisotropy

In many situations, it is useless to refine as much in each direction. For example, when
dealing with multidimensional storages we expect the mesh size to be of the same order
in each direction. When the different storages have very different sizes, we want to refine
more the storage with the highest capacity. In order to treat this anisotropy an extension
of Sparse grids can be achieved by defining weight w in each direction. The definition 3.4 is
replaced by:

Vn = ⊕∑d
i=1 liw(i)≤n+d−1

W
(L)
l (3.7)

3.6 Adaptation

When the solution is not smooth, typically Lipschitz, there is no hope to get convergence
results for classical Sparse Grids (see above the interpolation error linked to the cross deriva-
tives of the function). So classical sparse grids have to be adapted such that the solution is
refined near singularities. In all adaptations methods hierarchical surplus αl,i are used to get
an estimation of the local error. These coefficients give an estimation of the smoothness of
the function value at the discrete points by representing the discrete mix second derivative
of the function. There is mainly two kinds of adaptation used:

• the first one is performing local adaptation and only adds points locally [12, 19, 20, 30],
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• the second one is performing adaptation at the level of the hierarchical space Wl

(anisotropic sparse grid). This approach detects important dimensions that needs
refinement and refines all the points in this dimension [16]. This refinement is also
achieved in areas where the solution can be smooth. A more local version has been
developed in [26].

In the current version of the library only dimension adaptation is available. Details on the
algorithm can be bound in [16]. After a first initialization with a first initialization with a
space

Vn = ⊕∑d
i=1 li≤n+d−1

W
(L)
l (3.8)

A set of active level A is created gathering all levels l such that
∑d

i=1 li = n + d − 1. All
other levels are gathered in a set O. At each level l in A an error is estimated el and with all
local error el a global error E is calculated. Then the refinement Algorithm 1 is used noting
ek the canonical basis in dimension k. Sometimes, using sparse grids during time iterations,

Algorithm 1 Dimension refinement for a given tolerance η

1: while E > η do
2: select l with the highest local error el
3: A = A\ {l}
4: O = O ∪ {l}
5: for k = 1 to d do
6: m = l + ek
7: if m− eq ∈ O for q ∈ [1, d] then
8: A = A ∪ {m}
9: Hierarchize all points belonging to m

10: calculate em
11: update E
12: end if
13: end for
14: end while

it can be interesting to coarsen the meshes. A similar Algorithm 2 can be used to eliminate
levels with a very small local error.
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Algorithm 2 Dimension coarsening for a given tolerance η

B all elements of A with a local error below η
while B non nonempty do

select l ∈ B with the lowest local error el
for k = 1 to d do

m = l − ek
if mk > 0 then

if m+ eq ∈ B for q ∈ [1, d] then
A = A \ {m+ eq, q ∈ [1, d]}
B = B \ {m+ eq, q ∈ [1, d]}
A = A ∪ {m}
Add m to B if local error below η
O = O \ {m}
Break

end if
end if

end for
if l ∈ B then
B = B \ {l}

end if
end while

3.7 C++ API

The construction of the Sparse Grid including boundary point is done by the following
constructor

1 SparseSpaceGridBound(const Eigen :: ArrayXd &p_lowValues , const Eigen:: ArrayXd &

p_sizeDomain , const int &p_levelMax , const Eigen:: ArrayXd &p_weight ,

2 const size_t &p_degree)

with

• p lowValues corresponds to the bottom of the grid,

• p sizeDomain corresponds to the size of the resolution domain in each dimension,

• p levelMax is the level of the sparse grids, the n in equation 3.7,

• p weight the weight for anisotropic sparse grids, the w in equation 3.7,

• p degree is equal to 1 (linear interpolator), or 2 (quadratic interpolator) or 3 (for
cubic interpolator),

With the same notations the construction eliminating boundary points is done by the fol-
lowing constructor

1 SparseSpaceGridNoBound(const Eigen :: ArrayXd &p_lowValues , const Eigen:: ArrayXd &

p_sizeDomain , const int &p_levelMax , const Eigen:: ArrayXd &p_weight ,

2 const size_t &p_degree)
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The data structure of type SparseSet to store the sparse grid is defined by a map with keys
an array A storing a multi level and values a map with keys an array B storing the multi
index associated to a point (A,B) and values the number of point (A,B):

1 #define SparseSet std::map < Eigen::Array <char ,Eigen::Dynamic ,1 > , std::map < Eigen

::Array <unsigned int ,Eigen ::Dynamic ,1> , size_t , OrderTinyVector < unsigned int > > ,

OrderTinyVector < char > >

It is sometimes convenient to get back this data structure from the SparseGrid object: this
is achieved by the following method:

1 std::shared_ptr <SparseSet > getDataSet () const ;

The previous two classes own two specific member functions to hierarchize (see section
above) the value function known at the grids points for the whole grid.

• the first work on a single function:

1 /// \brief Hierarchize a function defined on the grid

2 /// \param p_toHierachize function to hierarchize

3 void toHierarchize( Eigen :: ArrayXd & p_toHierachize );

• the second work on a matrix, permitting to hierarchize many functions in a single call
(each row corresponds to a function representation)

1

2 /// \brief Hierarchize a set of functions defined on the grid

3 /// \param p_toHierachize function to hierarchize

4 void toHierarchizeVec( Eigen:: ArrayXXd & p_toHierachize )

The two classes own two specific member functions to hierarchize point by point a value
function at given points in the sparse grid:

• the first work on a single function:

1 /// \brief Hierarchize some points defined on the sparse grids

2 /// Hierarchization is performed point by point

3 /// \param p_nodalValues function to hierarchize

4 /// \param p_sparsePoints vector of sparse points to hierarchize (all

points should belong to the dataset structure)

5 /// \param p_hierarchized array of all hierarchized values (it is updated)

6 virtual void toHierarchizePByP(const Eigen:: ArrayXd &p_nodalValues , const std::

vector <SparsePoint > &p_sparsePoints , Eigen:: ArrayXd &p_hierarchized) const

• the second work on a matrix, permitting to hierarchize many functions in a single call
(each row corresponds to a function representation)

1 /// \brief Hierarchize some points defined on the sparse grids for a set of

functions

2 /// Hierarchization is performed point by point

3 /// \param p_nodalValues functions to hierarchize (the row corresponds to

the function number)

4 /// \param p_sparsePoints vector of sparse points to hierarchize (all

points should belong to the dataset structure)

5 /// \param p_hierarchized array of all hierarchized values (it is updated)

6 virtual void toHierarchizePByPVec(const Eigen:: ArrayXXd &p_nodalValues , const std

::vector <SparsePoint > &p_sparsePoints , Eigen :: ArrayXXd &p_hierarchized) const

The SparsePoint object is only a “typedef”:
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1 #define SparsePoint std::pair < Eigen::Array <char , Eigen ::Dynamic , 1> , Eigen::Array <

unsigned int , Eigen::Dynamic , 1> >

where the first array permits to store the multi level associated to the point and the second
the multi index associated.
At last it is possible to hierarchize all points associated to a multi level. As before two
methods are available:

• a first permits to hierarchize all the points associated to a given level. Hierarchized
values are updated with these new values.

1 /// \brief Hierarchize all points defined on a given level of the sparse grids

2 /// Hierarchization is performed point by point

3 /// \param p_nodalValues function to hierarchize

4 /// \param p_iterLevel iterator on the level of the point to hierarchize

5 /// \param p_hierarchized array of all hierarchized values (it is updated)

6 virtual void toHierarchizePByPLevel(const Eigen:: ArrayXd &p_nodalValues , const

SparseSet :: const_iterator &p_iterLevel , Eigen :: ArrayXd &p_hierarchized) const

• the second permits to hierarchize different functions together

1 /// \brief Hierarchize all points defined on a given level of the sparse grids for

a set of functions

2 /// Hierarchization is performed point by point

3 /// \param p_nodalValues function to hierarchize (the row corresponds to

the function number)

4 /// \param p_iterLevel iterator on the level of the point to hierarchize

5 /// \param p_hierarchized array of all hierarchized values (it is updated)

6 virtual void toHierarchizePByPLevelVec(const Eigen:: ArrayXXd &p_nodalValues , const

SparseSet :: const_iterator &p_iterLevel , Eigen :: ArrayXXd &p_hierarchized)

const

In the following example, the sparse grids with boundary points is constructed. The
values of a function f at each coordinates are stored in an array valuesFunction, storing 2
functions to interpolate. The 2 global functions are hierarchized (see section above) in the
array hierarValues, and then the interpolation can be achieved using these hierarchized
values.

1 ArrayXd lowValues = ArrayXd ::Zero (5); // bottom of the grid

2 ArrayXd sizeDomain = ArrayXd :: Constant (5,1.); // size of the grid

3 ArrayXd weight = ArrayXd :: Constant (5,1.); // weights

4 int degree =1 ; // linear interpolator

5 bool bPrepInterp = true; // precalculate neighbors of nodes

6 level = 4 ; // level of the sparse grid

7

8 // sparse grid generation

9 SparseSpaceGridBound sparseGrid(lowValues , sizeDomain , level , weight , degree ,

bPrepInterp);

10

11 // grid iterators

12 shared_ptr <GridIterator > iterGrid = sparseGrid.getGridIterator ();

13 ArrayXXd valuesFunction (1, sparseGrid.getNbPoints ());

14 while (iterGrid ->isValid ())

15 {

16 ArrayXd pointCoord = iterGrid ->getCoordinate ();

17 valuesFunction (0,iterGrid ->getCount ()) = f(pointCoord) ;

18 valuesFunction (1,iterGrid ->getCount ()) = f(pointCoord)+1 ;

19 iterGrid ->next();

20 }

21

22 // Hierarchize
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23 ArrayXXd hieraValues =valuesFunction;

24 sparseGrid.toHierarchizeVec(hieraValues);

25

26 // interpolate

27 ArrayXd pointCoord = ArrayXd :: Constant (5 ,0.66);

28 shared_ptr <Interpolator > interpolator = sparseGrid.createInterpolator(pointCoord);

29 ArrayXd interVal = interpolator ->applyVec(hieraValues);

Remark 5 Point by point hierarchization on the global grid could have been calculated as
below

1 std::vector <SparsePoint > sparsePoints(sparseGrid.getNbPoints ());

2 std:: shared_ptr <SparseSet > dataSet = sparseGrid.getDataSet ();

3 // iterate on points

4 for (typename SparseSet :: const_iterator iterLevel = dataSet ->begin(); iterLevel !=

dataSet ->end(); ++ iterLevel)

5 for (typename SparseLevel :: const_iterator iterPosition = iterLevel ->second.begin();

iterPosition != iterLevel ->second.end(); ++ iterPosition)

6 {

7 sparsePoints[iterPosition ->second] = make_pair(iterLevel ->first , iterPosition ->

first);

8 }

9 ArrayXXd hieraValues = sparseGrid.toHierarchizePByPVec(valuesFunction , sparsePoints)

;

In some cases, it is more convenient to construct an interpolator acting on a global function.
It is the case when you have a single function and you want to interpolate at many points
for this function. In this specific case an interpolator deriving from the class Interpolator
Spectral (similarly to Legendre grid interpolators) can be constructed:

1 /** \brief Constructor taking in values on the grid

2 * \param p_grid is the sparse grid used to interpolate

3 * \param p_values Function values on the sparse grid

4 */

5 SparseInterpolatorSpectral(const shared_ptr < SparseSpaceGrid > &p_grid , const Eigen ::

ArrayXd &p_values)

This class has a member to interpolate at a given point:

1 /** \brief interpolate

2 * \param p_point coordinates of the point for interpolation

3 * \return interpolated value

4 */

5 inline double apply(const Eigen:: ArrayXd &p_point) const

See section 3.2 for an example (similar but with Legendre grids) to use this object.
Sometimes, one wish to iterate on points on a given level. In the example below , for each
level an iterator on all points belonging to a given level is got back and the values of a
function f at each point are calculated and stored.

1 // sparse grid generation

2 SparseSpaceGridNoBound sparseGrid(lowValues , sizeDomain , p_level , p_weight , p_degree ,

bPrepInterp);

3

4 // test iterator on each level

5 ArrayXd valuesFunctionTest(sparseGrid.getNbPoints ());

6 std::shared_ptr <SparseSet > dataSet = sparseGrid.getDataSet ();

7 for (SparseSet :: const_iterator iterLevel = dataSet ->begin (); iterLevel != dataSet ->end

(); ++ iterLevel)

8 {

9 // get back iterator on this level
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10 shared_ptr <SparseGridIterator > iterGridLevel = sparseGrid.getLevelGridIterator(iterLevel

);

11 while(iterGridLevel ->isValid ())

12 {

13 Eigen:: ArrayXd pointCoord = iterGridLevel ->getCoordinate ();

14 valuesFunctionTest(iterGridLevel ->getCount ()) = f(pointCoord);

15 iterGridLevel ->next();

16 }

17 }

At last adaptation can be realized with two member functions:

• A first one permits to refine adding points where the error is important. Notice that a
function is provided to calculate from the hierarchical values the error at each level of
the sparse grid and that a second one is provided to get a global error from the error
calculated at each level. This permits to specialize the refining depending for example
if the calculation is achieved for integration or interpolation purpose.

1 /// \brief Dimension adaptation nest

2 /// \param p_precision precision required for adaptation

3 /// \param p_fInterpol function to interpolate

4 /// \param p_phi function for the error on a given level in the

m_dataSet structure

5 /// \param p_phiMult from an error defined on different levels , send back

a global error on the different levels

6 /// \param p_valuesFunction an array storing the nodal values

7 /// \param p_hierarValues an array storing hierarchized values (updated)

8 void refine(const double &p_precision , const std::function <double(const Eigen::

ArrayXd &p_x)> &p_fInterpol ,

9 const std::function < double(const SparseSet :: const_iterator &, const

Eigen:: ArrayXd &)> &p_phi ,

10 const std::function < double(const std::vector < double > &) > &p_phiMult

,

11 Eigen:: ArrayXd &p_valuesFunction ,

12 Eigen:: ArrayXd &p_hierarValues);

with

– p precision the η tolerance in the algorithm,

– p fInterpol the function permitting to calculate the nodal values,

– p phi function permitting to calculate el the local error for a given l,

– p phiMult a function taking as argument all the el (local errors) and giving back
the global error E,

– p valuesFunction an array storing the nodal values (updated during refinement)

– p hierarValues an array storing the hierarchized values (updated during refine-
ment)

• A second one permits to coarsen the mesh, eliminating point where the error is too
small

1 /// \brief Dimension adaptation coarsening: modify data structure by trying to

remove all levels with local error

2 /// below a local precision

3 /// \param p_precision Precision under which coarsening will be realized

4 /// \param p_phi function for the error on a given level in the

m_dataSet structure

5 /// \param p_valuesFunction an array storing the nodal values (modified on the

new structure)

41



6 /// \param p_hierarValues Hierarchical values on a data structure (modified on

the new structure)

7 void coarsen(const double &p_precision , const std::function < double(const

SparseSet :: const_iterator &, const Eigen :: ArrayXd &)> &p_phi ,

8 Eigen:: ArrayXd &p_valuesFunction ,

9 Eigen:: ArrayXd &p_hierarValues);

with arguments similar to the previous function.

3.8 Python API

Here is an example of the python API used for interpolation with Sparse grids with boundary
points and without boundary points. The adaptation and coarsening is available with an
error calculated for interpolation only.

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import unittest

6 import random

7 import math

8 import StOptGrids

9

10 # function used

11 def funcToInterpolate( x):

12 return math.log(1. + x.sum())

13

14 # unit test for sparse grids

15 ############################

16

17 class testGrids(unittest.TestCase):

18

19

20 # test sparse grids with boundaries

21 def testSparseGridsBounds(self):

22 # low values

23 lowValues =np.array ([1. ,2. ,3.])

24 # size of the domain

25 sizeDomValues = np.array ([3. ,4. ,3.])

26 # anisotropic weights

27 weights = np.array ([1. ,1. ,1.])

28 # level of the sparse grid

29 level =3

30 # create the sparse grid with linear interpolator

31 sparseGridLin = StOptGrids.SparseSpaceGridBound(lowValues ,sizeDomValues , level ,

weights ,1)

32 iterGrid = sparseGridLin.getGridIterator ()

33 # array to store

34 data = np.empty(sparseGridLin.getNbPoints ())

35 # iterates on point

36 while( iterGrid.isValid ()):

37 data[iterGrid.getCount ()] = funcToInterpolate(iterGrid.getCoordinate ())

38 iterGrid.next()

39 # Hierarchize the data

40 hierarData = sparseGridLin.toHierarchize(data)

41 # get back an interpolator

42 ptInterp = np.array ([2.3 ,3.2 ,5.9] , dtype=np.float)

43 interpol = sparseGridLin.createInterpolator(ptInterp)

44 # calculate interpolated value

45 interpValue = interpol.apply(hierarData)

46 print(("Interpolated value sparse linear" , interpValue))

47 # create the sparse grid with quadratic interpolator
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48 sparseGridQuad = StOptGrids.SparseSpaceGridBound(lowValues ,sizeDomValues , level ,

weights ,2)

49 # Hierarchize the data

50 hierarData = sparseGridQuad.toHierarchize(data)

51 # get back an interpolator

52 ptInterp = np.array ([2.3 ,3.2 ,5.9] , dtype=np.float)

53 interpol = sparseGridQuad.createInterpolator(ptInterp)

54 # calculate interpolated value

55 interpValue = interpol.apply(hierarData)

56 print(("Interpolated value sparse quadratic " , interpValue))

57 # now refine

58 precision = 1e-6

59 print(("Size of hierarchical array " , len(hierarData)))

60 valueAndHierar = sparseGridQuad.refine(precision ,funcToInterpolate ,data ,hierarData)

61 print(("Size of hierarchical array after refinement " , len(valueAndHierar [0])))

62 # calculate interpolated value

63 interpol1 = sparseGridQuad.createInterpolator(ptInterp)

64 interpValue = interpol1.apply(valueAndHierar [1])

65 print(("Interpolated value sparse quadratic after refinement " , interpValue))

66 # coarsen the grid

67 precision = 1e-4

68 valueAndHierarCoarsen = sparseGridQuad.coarsen(precision ,valueAndHierar [0],

valueAndHierar [1])

69 print(("Size of hierarchical array after coarsening " , len(valueAndHierarCoarsen

[0])))

70 # calculate interpolated value

71 interpol2 = sparseGridQuad.createInterpolator(ptInterp)

72 interpValue = interpol2.apply(valueAndHierarCoarsen [1])

73 print(("Interpolated value sparse quadratic after refinement " , interpValue))

74

75

76 # test sparse grids eliminating boundaries

77 def testSparseGridsNoBounds(self):

78 # low values

79 lowValues =np.array ([1. ,2.,3.] , dtype=np.float)

80 # size of the domain

81 sizeDomValues = np.array ([3.,4. ,3.], dtype=np.float)

82 # anisotropic weights

83 weights = np.array ([1. ,1. ,1.])

84 # level of the sparse grid

85 level =3

86 # create the sparse grid with linear interpolator

87 sparseGridLin = StOptGrids.SparseSpaceGridNoBound(lowValues ,sizeDomValues , level ,

weights ,1)

88 iterGrid = sparseGridLin.getGridIterator ()

89 # array to store

90 data = np.empty(sparseGridLin.getNbPoints ())

91 # iterates on point

92 while( iterGrid.isValid ()):

93 data[iterGrid.getCount ()] = funcToInterpolate(iterGrid.getCoordinate ())

94 iterGrid.next()

95 # Hierarchize the data

96 hierarData = sparseGridLin.toHierarchize(data)

97 # get back an interpolator

98 ptInterp = np.array ([2.3 ,3.2 ,5.9] , dtype=np.float)

99 interpol = sparseGridLin.createInterpolator(ptInterp)

100 # calculate interpolated value

101 interpValue = interpol.apply(hierarData)

102 print(("Interpolated value sparse linear" , interpValue))

103 # create the sparse grid with quadratic interpolator

104 sparseGridQuad = StOptGrids.SparseSpaceGridNoBound(lowValues ,sizeDomValues , level ,

weights ,2)

105 # Hierarchize the data

106 hierarData = sparseGridQuad.toHierarchize(data)

107 # get back an interpolator

108 ptInterp = np.array ([2.3 ,3.2 ,5.9] , dtype=np.float)

109 interpol = sparseGridQuad.createInterpolator(ptInterp)

110 # calculate interpolated value

111 interpValue = interpol.apply(hierarData)
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112 print(("Interpolated value sparse quadratic " , interpValue))

113 # test grids function

114 iDim = sparseGridQuad.getDimension ()

115 pt = sparseGridQuad.getExtremeValues ()

116 # now refine

117 precision = 1e-6

118 print(("Size of hierarchical array " , len(hierarData)))

119 valueAndHierar = sparseGridQuad.refine(precision ,funcToInterpolate ,data ,hierarData)

120 print(("Size of hierarchical array after refinement " , len(valueAndHierar [0])))

121 # calculate interpolated value

122 interpol1 = sparseGridQuad.createInterpolator(ptInterp)

123 interpValue = interpol1.apply(valueAndHierar [1])

124 print(("Interpolated value sparse quadratic after coarsening " , interpValue))

125 # coarsen the grid

126 precision = 1e-4

127 valueAndHierarCoarsen = sparseGridQuad.coarsen(precision ,valueAndHierar [0],

valueAndHierar [1])

128 print(("Size of hierarchical array after coarsening " , len(valueAndHierarCoarsen

[0])))

129 # calculate interpolated value

130 interpol2 = sparseGridQuad.createInterpolator(ptInterp)

131 interpValue = interpol2.apply(valueAndHierarCoarsen [1])

132 print(("Interpolated value sparse quadratic after coarsening " , interpValue))

133

134 if __name__ == ’__main__ ’:

135 unittest.main()
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Chapter 4

Introducing the regression resolution

Suppose the the stochastic differential equation in the optimization problem is not controlled:

dXx,t = b(t,Xx,t
s )ds+ σ(s,X

x,t
s )dWs

This case is for example encountered while valuing American options in finance, when an
arbitrage is realized between the pay off and the expected future gain if not exercising at the
current time. In order to estimate this conditional expectation (depending of the Markov
state), first suppose that a set of N Monte Carlo Simulation are available at dates ti for a
process Xt := X0,x

t where x is the initial state at date t = 0 and that we want to estimate
f(x) := E[g(t+ h,Xt+h) | Xt = x] for a given x and a given function g. This function f lies
the infinite dimensional space of the L2 functions. In order to approximate it, we try to find
it in a finite dimensional space. Choosing a set of basis functions ψk for k = 1 to M , the
conditional expectation can be approximated by

f(x) '
M∑
k=1

αkψk(Xt) (4.1)

where (α̂ti,Nk )k≤M minimizes

N∑
`=1

∣∣∣∣∣g(X l
t+h)−

M∑
k=1

αkψk(X
l
t)

∣∣∣∣∣
2

(4.2)

over (αk)k≤M ∈ RM . We have to solve a quadratic optimization problem of the form

min
α∈RM

‖Aα−B‖2 (4.3)

Classically the previous equation is reduced to the normal equation

A′Aα = A′B , (4.4)

which is solved by a Cholesky like approach when the matrix A′A is definite otherwise the
solution with the minimum L2 norm can be computed using the pseudo inverse of A′A.
When the different component of Xx,t are highly correlated i can be convenient to rotate
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the data set onto its principal components using the PCA method. Rotating the dataset
before doing regression has been advocated in [44] and [41] for example. The right-hand
side of Figure 4.1 illustrates the new evaluation grid obtained on the same dataset. One can
observe the better coverage and the fewer empty areas when using local regression that we
will detail in this section.

Figure 4.1: Evaluation grid: rotation

4.1 C++ global API

All the regression classes derive from the BaseRegression abstract class, which stores a
pointer to the “particles” (a matrix storing the simulations of Xx,t: the first dimension of
the matrix corresponds to the dimension of Xx,t, and the second dimension corresponds to
the particle number), and stores if the current date t is 0 (then the conditional expectation
is only an expectation).

1 // Copyright (C) 2016, 2017 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef BASEREGRESSION_H

5 #define BASEREGRESSION_H

6 #include <memory >

7 #include <vector >

8 #include <iostream >

9 #include <Eigen/Dense >

10 #include <Eigen/SVD >

11 #include "StOpt/core/grids/InterpolatorSpectral.h"

12

13 /** \file BaseRegression.h

14 * \brief Base class to define regressor for stochastic optimization by Monte Carlo

15 * \author Xavier Warin

16 */

17 namespace StOpt

18 {

19 /// \class BaseRegression BaseRegression.h

20 /// Base class for regression

21 class BaseRegression

22 {

23 protected :

24

25 bool m_bZeroDate ; ///< Is the regression date zero ?
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26 bool m_bRotationAndRescale ; ///< do we rescale particles and do a rotation with SVD on

data

27 Eigen:: ArrayXd m_meanX ; ///< store scaled factor in each direction (average of

particles values in each direction)

28 Eigen:: ArrayXd m_etypX ; ///< store scaled factor in each direction (standard

deviation of particles in each direction)

29 Eigen:: MatrixXd m_svdMatrix ; ///< svd matrix transposed used to transform particles

30 Eigen:: ArrayXd m_sing ; ///< singular values associated to SVD

31 Eigen:: ArrayXXd m_particles; ///< Particles used to regress: first dimension :

dimension of the problem , second dimension : the number of particles. These

particles are rescaled and a rotation with SVD is achieved to avoid degeneracy in

case of high correlations

32

33 // rotation for data and rescaling

34 void preProcessData ();

35

36 public :

37

38 /// \brief Default constructor

39 BaseRegression ();

40

41 /// \brief Default destructor

42 virtual ~BaseRegression () {}

43

44 /// \brief Default constructor

45 BaseRegression(const bool &p_bRotationAndRescale);

46

47 /// \brief Constructor storing the particles

48 /// \param p_bZeroDate first date is 0?

49 /// \param p_particles particles used for the meshes.

50 /// First dimension : dimension of the problem ,

51 /// second dimension : the number of particles

52 /// \param p_bRotationAndRescale do we rescale particle

53 BaseRegression(const bool &p_bZeroDate , const Eigen:: ArrayXXd &p_particles , const bool

&p_bRotationAndRescale);

54

55 /// \brief Constructor used in simulation , no rotation

56 /// \param p_bZeroDate first date is 0?

57 /// \param p_bRotationAndRescale do we rescale particle

58 BaseRegression(const bool &p_bZeroDate , const bool &p_bRotationAndRescale);

59

60

61 /// \brief Last constructor used in simulation

62 /// \param p_bZeroDate first date is 0?

63 /// \param p_meanX scaled factor in each direction (average of particles

values in each direction)

64 /// \param p_etypX scaled factor in each direction (standard deviation of

particles in each direction)

65 /// \param p_svdMatrix svd matrix transposed used to transform particles

66 /// \param p_bRotationAndRescale do we rescale particle

67

68 BaseRegression(const bool &p_bZeroDate , const Eigen:: ArrayXd &p_meanX , const Eigen

:: ArrayXd &p_etypX , const Eigen :: MatrixXd &p_svdMatrix , const bool &

p_bRotationAndRescale);

69

70 /// \brief Copy constructor

71 /// \param p_object object to copy

72 BaseRegression(const BaseRegression &p_object);

73

74 /// \brief update the particles used in regression and construct the matrices

75 /// \param p_bZeroDate first date is 0?

76 /// \param p_particles particles used for the meshes.

77 /// Firs dimension : dimension of the problem ,

78 /// second dimension : the number of particles

79 void updateSimulationsBase(const bool &p_bZeroDate , const Eigen:: ArrayXXd &p_particles)

;

80

81 /// \brief Get some local accessors

82 ///@{
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83 virtual inline Eigen :: ArrayXXd getParticles () const

84 {

85 return m_particles ;

86 }

87

88 /// \brief Get bRotationAndRescale

89 virtual inline bool getBRotationAndRescale () const

90 {

91 return m_bRotationAndRescale ;

92 }

93

94 /// \brief Get average of simulation per dimension

95 virtual inline Eigen :: ArrayXd getMeanX () const

96 {

97 return m_meanX;

98 }

99

100 /// \brief get standard deviation per dimension

101 virtual inline Eigen :: ArrayXd getEtypX () const

102 {

103 return m_etypX;

104 }

105

106 /// \brief get back the SVD matrix used for rescaling particles

107 virtual inline Eigen :: MatrixXd getSvdMatrix () const

108 {

109 return m_svdMatrix;

110 }

111

112 /// \brief get back singular values

113 virtual inline Eigen :: ArrayXd getSing () const

114 {

115 return m_sing;

116 }

117

118 /// \brief Get dimension of the problem

119 virtual inline int getDimension () const

120 {

121 return m_particles.rows();

122 }

123

124 /// \brief Get the number of simulations

125 virtual inline int getNbSimul () const

126 {

127 return m_particles.cols() ;

128 }

129

130 /// \brief get back particle by its number

131 /// \param p_iPart particle number

132 /// \return the particle (if no particle , send back an empty array)

133 virtual Eigen:: ArrayXd getParticle(const int &p_iPart) const;

134

135 /// \brief get the number of basis functions

136 virtual int getNumberOfFunction () const = 0 ;

137

138 ///@}

139 /// \brief Constructor storing the particles

140 /// \brief update the particles used in regression and construct the matrices

141 /// \param p_bZeroDate first date is 0?

142 /// \param p_particles particles used for the meshes.

143 /// First dimension : dimension of the problem ,

144 /// second dimension : the number of particles

145 virtual void updateSimulations(const bool &p_bZeroDate , const Eigen:: ArrayXXd &

p_particles) = 0 ;

146

147 /// \brief conditional expectation basis function coefficient calculation

148 /// \param p_fToRegress function to regress associated to each simulation used in

optimization

149 /// \return regression coordinates on the basis (size : number of meshes multiplied by
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the dimension plus one)

150 /// @{

151 virtual Eigen:: ArrayXd getCoordBasisFunction(const Eigen :: ArrayXd &p_fToRegress) const

= 0;

152 ///@}

153 /// \brief conditional expectation basis function coefficient calculation for multiple

functions to regress

154 /// \param p_fToRegress function to regress associated to each simulation used in

optimization (size : number of functions to regress \times the number of Monte

Carlo simulations)

155 /// \return regression coordinates on the basis (size : number of function to regress

\times number of meshes multiplied by the dimension plus one)

156 /// @{

157 virtual Eigen:: ArrayXXd getCoordBasisFunctionMultiple(const Eigen :: ArrayXXd &

p_fToRegress) const = 0 ;

158 ///@}

159

160 /// \brief conditional expectation calculation

161 /// \param p_fToRegress simulations to regress used in optimization

162 /// \return regressed value function

163 /// @{

164 virtual Eigen:: ArrayXd getAllSimulations(const Eigen:: ArrayXd &p_fToRegress) const = 0;

165 virtual Eigen:: ArrayXXd getAllSimulationsMultiple(const Eigen :: ArrayXXd &p_fToRegress)

const = 0;

166 ///@}

167

168 /// \brief Use basis functions to reconstruct the solution

169 /// \param p_basisCoefficients basis coefficients

170 ///@{

171 virtual Eigen:: ArrayXd reconstruction(const Eigen:: ArrayXd &p_basisCoefficients)

const = 0 ;

172 virtual Eigen:: ArrayXXd reconstructionMultiple(const Eigen:: ArrayXXd &

p_basisCoefficients) const = 0;

173 /// @}

174

175 /// \brief use basis function to reconstruct a given simulation

176 /// \param p_isim simulation number

177 /// \param p_basisCoefficients basis coefficients to reconstruct a given conditional

expectation

178 virtual double reconstructionASim(const int &p_isim , const Eigen:: ArrayXd &

p_basisCoefficients) const = 0 ;

179

180 /// \brief conditional expectation reconstruction

181 /// \param p_coordinates coordinates to interpolate (uncertainty sample)

182 /// \param p_coordBasisFunction regression coordinates on the basis (size: number of

meshes multiplied by the dimension plus one)

183 /// \return regressed value function reconstructed for each simulation

184 virtual double getValue(const Eigen:: ArrayXd &p_coordinates ,

185 const Eigen:: ArrayXd &p_coordBasisFunction) const = 0;

186

187 /// \brief conditional expectation reconstruction for a lot of simulations

188 /// \param p_coordinates coordinates to interpolate (uncertainty sample) size

uncertainty dimension by number of samples

189 /// \param p_coordBasisFunction regression coordinates on the basis (size: number of

meshes multiplied by the dimension plus one)

190 /// \return regressed value function reconstructed for each simulation

191 Eigen:: ArrayXd getValues(const Eigen:: ArrayXXd &p_coordinates ,

192 const Eigen:: ArrayXd &p_coordBasisFunction) const

193 {

194 Eigen:: ArrayXd valRet(p_coordinates.cols());

195 for (int is = 0; is < p_coordinates.cols(); ++is)

196 valRet(is) = getValue(p_coordinates.col(is), p_coordBasisFunction);

197 return valRet;

198 }

199

200 /// \brief permits to reconstruct a function with basis functions coefficients values

given on a grid

201 /// \param p_coordinates coordinates (uncertainty sample)

202 /// \param p_ptOfStock grid point
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203 /// \param p_interpFuncBasis spectral interpolator to interpolate the basis

functions coefficients used in regression on the grid (given for each basis

function)

204 virtual double getAValue(const Eigen:: ArrayXd &p_coordinates , const Eigen :: ArrayXd &

p_ptOfStock ,

205 const std::vector < std:: shared_ptr <InterpolatorSpectral > > &

p_interpFuncBasis) const = 0;

206

207 /// \brief is the regression date zero

208 inline bool getBZeroDate () const

209 {

210 return m_bZeroDate;

211 }

212

213 /// \brief Clone the regressor

214 virtual std:: shared_ptr <BaseRegression > clone() const = 0 ;

215

216

217 };

218

219 }

220

221 #endif

All regression classes share the same constructors:

• a first constructor stores the members of the class and computes the matrices for the
regression: it is used for example to build a regression object at each time step of a
resolution method,

• the second constructor is used to prepare some data which will be shared by all future
regressions. It has to be used with the updateSimulation method to update the
effective matrix construction. In a resolution method with many time steps, the object
will be constructed only once and at each time step the Markov state will be updated
by the updateSimulation method.

All regression classes share the common methods:

• updateSimulationBase (see above),

• getCoordBasisFunction takes the values g(t+h,Xt+h) for all simulations and returns
the coefficients αk of the basis functions,

• getCoordBasisFunctionMultiple is used if we want to do the previous calculation on
multiple g functions in one call. In the matrix given as argument, the first dimension
has a size equal to the number of Monte Carlo simulations, while the second dimension
has a size equal to the number of functions to regress. As output, the first dimension
has a size equal to the number of function to regress and the second equal to the
number of basis functions.

• getAllSimulations takes the values g(t+h,Xt+h) for all simulations and returns the
regressed values for all simulations f(Xt)

• getAllSimulationMultiple is used if we want to do the previous calculation on
multiple g functions in one call. In the matrix given as argument, the first dimension
has a size equal to the number of Monte Carlo simulations, while the second dimension
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has a size equal to the number of functions to regress. The regressed values are given
back in the same format.

• reconstruction takes the αk coefficient of the basis functions as input and returns
all the f(Xt) for the simulations stored by applying equation (4.1).

• reconstructionMultiple is used if we want to do the previous calculation on multiple
g functions in one call. As input the αk coefficients of the basis functions are given
(number of function to regress for first dimension, number of basis functions for second
dimension). As a result the f(Xt) for all simulations and allf functions are sent back
( number of Monte Carlo simulations in first dimension, number of function to regress
en second dimension).

• reconstructionASim takes a simulation number isim (optimization part) and αk
coefficient of the basis functions as input and returns f(X isim

t ) by applying equation
(4.1),

• getValue takes as first argument a sample of Xt, the basis function αk and reconstruct
the regressed solution of equation (4.1).

• getValues takes as first argument some samples of Xt (array size dimension of un-
certainty by number of samples), the basis function αk and reconstruct the regressed
solution of equation (4.1) (an array).

4.2 Adapted local polynomial basis with same proba-

bility

The description of the method and its properties can be found in [8]. We just recall the
methodology. These local adapted methods can benefit from a rotation in the its principal
axis using the PCA method. The rotation is activated by a flag in the constructor of the
objects?

4.2.1 Description of the method

The method essentially consists in applying a non-conform finite element approach rather
than a spectral like method as presented above.

The idea is to use, at each time step ti, a set of functions ψq, q ∈ [0,MM ] having local hy-
per cube supportDi1,i2,...,id where ij = 1 to Ij, MM =

∏
k=1,d Ik, and {Di1,...,id}(i1,...,id)∈[1,I1]×···×[1,Id]

is a partition of [mink=1,N X
1,(k)
ti , maxk=1,N X

1,(k)
ti ]× · · · ×[mink=1,N X

d,(k)
ti ,maxk=1,N X

d,(k)
ti ].

On each Dl, l = (i1, . . . , id), depending on the selected method, ψl is

• either a constant function, so the global number of degrees of freedom is equal to MM ,

• or a linear function with 1 + d degrees of freedom, so the global number of degrees of
freedom is equal to MM ∗ (1 + d).
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This approximation is “non-conform” in the sense that we do not assure the continuity of
the approximation. However, it has the advantage to be able to fit any, even discontinuous,
function. In order to avoid oscillations and to allow classical regression by the Cholesky
method, the supports are chosen so that they contain roughly the same number of particles.

On Figure 4.2, we have plotted an example of supports in the case of 6 = 4 × 4 local
basis cells, in dimension 2.
Sometimes we can do further exploiting knowledge on the continuation value. In the case

Figure 4.2: Support of 2D function basis

of an American basket option for example we have convexity of this continuation value with
respect to the underlying prices. It is possible to modify the previous algorithm to try to
impose that the numerical method repeats this convexity. The algorithm in [31] has been
implemented as an option. This algorithm may not converge when used in multi dimension
but it permits to improve the convexity of the solution while iterating a few times.

4.2.2 C++ API

The constant per cell approximation

The constructor of the local constant regression object is achieved by

1 LocalConstRegression(const Eigen:: ArrayXi &p_nbMesh , bool p_bRotationAndRecale =

false);

where:
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• p nbMesh is an array giving the number of meshes used in each direction ( (4, 4) for
the figure 4.2 for example).

• p bRotationAndRecale is an optimal argument by default set to false meaning that
no rotation of the data in its principal components axis is achieved. In the case
of rotation, the direction are sorted with their singular values decreasing and the
number of meshes in p nbMesh are defined for these sorted directions: p nbMesh(0) is
associated with first direction with the highest singular value, p nbMesh(1) with the
direction associated to the second highest singular value etc.

The second constructor permits the construct the regression matrix,

1 LocalConstRegression(const bool &p_bZeroDate ,

2 const shared_ptr < ArrayXXd > &p_particles ,

3 const Eigen:: ArrayXi &p_nbMesh ,

4 bool p_bRotationAndRecale = false)

where

• p bZeroDate is true if the regression date is 0,

• p particles the particles Xt for all simulations (dimension of Xt for first dimension,
number of Monte Carlo simulations in second dimension),

• p nbMesh is an array giving the number of meshes used in each directions (4, 4) for the
figure 4.2,

• p bRotationAndRecale is an optimal argument by default set to false meaning that
no rotation of the data in its principal components axis is achieved. In the case
of rotation, the direction are sorted with their singular values decreasing and the
number of meshes in p nbMesh are defined for these sorted directions: p nbMesh(0) is
associated with first direction with the highest singular value, p nbMesh(1) with the
direction associated to the second highest singular value etc.

The linear per cell approximation

The constructor of the local linear regression object is achieved by

1 LocalLinearRegression(const Eigen :: ArrayXi &p_nbMesh , bool p_bRotationAndRecale =

false);

where

• p nbMesh is an array giving the number of meshes used in each direction ( (4, 4) for
the figure 4.2 for example),

• p bRotationAndRecale is an optimal argument by default set to false meaning that
no rotation of the data in its principal components axis is achieved. In the case
of rotation, the direction are sorted with their singular values decreasing and the
number of meshes in p nbMesh are defined for these sorted directions: p nbMesh(0) is
associated with first direction with the highest singular value, p nbMesh(1) with the
direction associated to the second highest singular value etc.
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The second constructor permits the construct the regression matrix,

1 LocalLinearRegression(const bool &p_bZeroDate ,

2 const shared_ptr < ArrayXXd > &p_particles ,

3 const Eigen:: ArrayXi &p_nbMesh ,

4 bool p_bRotationAndRecale = false)

where

• p bZeroDate is true if the regression date is 0,

• p particles the particles Xt for all simulations (dimension of Xt for first dimension,
number of Monte Carlo simulations in second dimension),

• p nbMesh is an array giving the number of meshes used in each directions (4, 4) for the
figure 4.2

• p bRotationAndRecale is an optimal argument by default set to false meaning that
no rotation of the data in its principal components axis is achieved. In the case
of rotation, the direction are sorted with their singular values decreasing and the
number of meshes in p nbMesh are defined for these sorted directions: p nbMesh(0) is
associated with first direction with the highest singular value, p nbMesh(1) with the
direction associated to the second highest singular value etc.

This class can benefit of the methodology in [31] implementing a generalization of the mem-
ber function getAllSimulations:

1 Eigen:: ArrayXd getAllSimulationsConvex(const Eigen :: ArrayXd &p_fToRegress , const int &

p_nbIterMax)

where

• p fToRegress is the set of points we want to regress preserving convexity of the re-
gressed function value

• p nbIterMax is the maximal number of iteration of the method.

It returns the regressed values for all simulations of the uncertainties.

An example in the linear case

Below we give a small example where toRegress corresponds to g(t+ h,Xt+h) for all simu-
lations and x store Xt for all simulations.

1 // create the mesh for a 2 dim problem , 4 meshes per direction

2 ArrayXi nbMesh = ArrayXi :: Constant(2, 4);

3 // t is not zero

4 bool bZeroDate = 0;

5 // constructor , no rotation of the data

6 LocalLinearRegression localRegressor(nbMesh);

7 // update particles values

8 localRegressor.updateSimulations(bZeroDate , x);

9 // regressed values

10 ArrayXd regressedValues = localRegressor.getAllSimulations(toRegress);
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4.2.3 Python API

Here is a similar example using the second constructor of the linear case

1 import StOptReg

2 nbSimul = 5000000;

3 np.random.seed (000)

4 x = np.random.uniform (-.,1.,size=(1, nbSimul));

5 # real function

6 toReal = (2+x[0 ,:]+(+x[0,:]) *(1+x[0,:]))

7 # function to regress

8 toRegress = toReal + 4*np.random.normal (0., nbSimul)

9 # mesh

10 nbMesh = np.array ([6], dtype=np.int32)

11 # Regressor without rotation of data

12 regressor = StOptReg.LocalLinearRegression(False ,x,nbMesh)

13 y = regressor.getAllSimulations(toRegress).transpose ()[0]

Of course the constant per cell case in python is similar. As in C++ the linear case permits
to try to regress preserving convexity by using the getAllSimulationsConvex method.

4.3 Adapted local basis by K-Means clustering meth-

ods

This method can be interesting when a small number of particles is available to calculate the
regressions and we propose a K-Means clustering method to cluster simulations together.
The classical K-Means clustering method is the following: N points Xk with k = 1 to N
are given. A partition of the domain S = (Sm)m≤p with p ≤ N domains is achieved by
minimizing

arg min
S

p∑
k=1

∑
Xj∈Sk

||Xj − µk||2,

where µk is the barycenter of all points Xj ∈ Sk.
The classical Lloyd algorithm is used to calculated to calculated the cluster:

Algorithm 3 Lloyd algorithm

1: Choose p points as initialization for µ1
k, k = 1, p

2: while Not converged do
3: affect each particle to its Voronoi cell:

Slk = {X i : ||X i − µlk|| ≤ ||X i − µlm||,m = 1, p}

4: Update

µl+1
k =

1

|Slk|
∑
Xi∈Slk

X i

5: end while
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This algorithm is effective in 1D by sorting the particles coordinates. Its extension in the
general case is expensive due the calculation of the Voronoi cells and the distance between
all points.
We suppose that, as in the adaptive case with same probability, we want to have a partition
such that the number of meshes in each direction is Ik for k = 1, d.
We propose a recursive algorithm to calculate the meshes. This algorithm is given by 4 and
5,

Algorithm 4 Recursive 1D Lloyd algorithm

1: procedure RecurKMeans(id,Xi1,...,iid−1
, Si1,...,iid−1

)
2: Sort the particle in dimension id and use Lloyd algorithm to partition Si1,...,iid−1

in
the dimension id and get Si1,...,iid , iid = 1, Iid.

3: for iid = 1, Iid do
4: Xi1,...,iid = {X ∈ Xi1,...,iid−1

/X ∈ Si1,...,iid}
5: if id < d then
6: RecurKMeans( id+ 1, Xi1,...,iid , Si1,...,iid)
7: end if
8: end for
9: end procedure

Algorithm 5 Modified Lloyd algorithm

1: S = Rd, X = {X i/i = 1, N}
2: RecurKMeans(1, X, S)

and an example of a resulting partition is given on figure 4.3 in 2D for I1 = 3, I2 = 4.
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Figure 4.3: Possible 2D partition due to modified K-Means algorithm

Once the partition is achieved, regression are achieved with a constant per mesh repre-
sentation:
We note (Sik)k=1,p , a partition with the above method at date ti using the Monte Carlo

particles X
(k)
ti , k = 1, N . To calculate the conditional expectation of a function g of Xti+1

,
we use the constant per mesh representation and we then have:

E[g(Xti+1
)/Xti = Xk

ti
] ' 1

|Sip|
∑

j/Xj
ti
∈Sip

g(Xj
ti+1

)

where Xk
ti+1
∈ |Sip|.

4.3.1 C++ API

The constructor of the local K-Means regression object is similar to the one obtained for
the LocalConstRegression object in section 4.2.2. We then don’t recall the signification of
all the arguments.
A first constructor is:

1 LocalKMeansRegression(const Eigen :: ArrayXi &p_nbMesh , bool p_bRotationAndRecale =

false);

and the second constructor permits the construct the regression matrix,

1 LocalKMeansRegression(const bool &p_bZeroDate ,

2 const shared_ptr < ArrayXXd > &p_particles ,

3 const Eigen:: ArrayXi &p_nbMesh ,

4 bool p_bRotationAndRecale = false)
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4.3.2 Python api

The C++ API being the same as the one for LocalConstRegression object, we have the
same python binding as in section 4.2.3.

4.4 Local polynomial basis with meshes of same size

In some cases, instead of using adapted meshes, on can prefer to fix the mesh with a constant
step in each direction with Ik meshes in each direction so that the total number of cells is
MM =

∏
k=1,d Ik. On each cell as in section 4.2, one can have two approximations:

• either a constant function, so the global number of degrees of freedom is equal to MM ,

• or a linear function with 1 + d degrees of freedom, so the global number of degrees of
freedom is equal to MM ∗ (1 + d).

Because we define in each direction, the domain for the local basis, we don’t use any rotation
of the data.

4.5 C++ API

4.5.1 The constant per cell approximation

The constructor of the local constant regression object is achieved by

1 LocalSameSizeConstRegression(const Eigen:: ArrayXd &p_lowValues , const Eigen:: ArrayXd &

p_step , const Eigen:: ArrayXi &p_nbStep);

• p lowValues is an array giving the first point of the grid in each direction,

• p step is an array giving the size of the meshes in each direction,

• p nbStep is an array giving the number of meshes used in each direction.

The second constructor permits the construct the regression matrix,

1 LocalSameSizeConstRegression(const bool &p_bZeroDate ,

2 const std:: shared_ptr < Eigen:: ArrayXXd > &p_particles ,

3 const Eigen:: ArrayXd &p_lowValues ,

4 const Eigen:: ArrayXd &p_step ,

5 const Eigen:: ArrayXi &p_nbStep);

where

• p bZeroDate is true if the regression date is 0,

• p particles the particles Xt for all simulations (dimension of Xt for first dimension,
number of Monte Carlo simulations in second dimension),

• p lowValues is an array giving the first point of the grid in each direction,

• p step is an array giving the size of the meshes in each direction,

• p nbStep is an array giving the number of meshes used in each direction.
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4.5.2 The linear per cell approximation

The constructor of the local linear regression object is achieved by

1 LocalSameSizeLinearRegression(const Eigen:: ArrayXd &p_lowValues , const Eigen :: ArrayXd

&p_step , const Eigen:: ArrayXi &p_nbStep);

where

• p lowValues is an array giving the first point of the grid in each direction,

• p step is an array giving the size of the meshes in each direction,

• p nbStep is an array giving the number of meshes used in each direction.

The second constructor permits the construct the regression matrix,

1 LocalSameSizeLinearRegression(const bool &p_bZeroDate ,

2 const std:: shared_ptr < Eigen:: ArrayXXd > &p_particles ,

3 const Eigen:: ArrayXd &p_lowValues ,

4 const Eigen:: ArrayXd &p_step ,

5 const Eigen :: ArrayXi &p_nbStep)

where

• p bZeroDate is true if the regression date is 0,

• p particles the particles Xt for all simulations (dimension of Xt for first dimension,
number of Monte Carlo simulations in second dimension),

• p lowValues is an array giving the first point of the grid in each direction,

• p step is an array giving the size of the meshes in each direction,

• p nbStep is an array giving the number of meshes used in each direction.

4.5.3 An example in the linear case

Below we give a small example where toRegress is the array to regress with respect to an
array “x” in dimension p nDim:

1 // create a random ‘‘x’’ array

2 shared_ptr <ArrayXXd > x(new ArrayXXd(ArrayXXd :: Random(p_nDim , p_nbSimul)));

3 // create the mesh by getting min and max value on the samples

4 double xMin = x->minCoeff () - tiny;

5 double xMax = x->maxCoeff () + tiny;

6 ArrayXd lowValues = ArrayXd :: Constant(p_nDim , xMin);

7 ArrayXd step = ArrayXd :: Constant(p_nDim , (xMax - xMin) / p_nMesh);

8 ArrayXi nbStep = ArrayXi :: Constant(p_nDim , p_nMesh);

9 // constructor

10 LocalLinearRegression localRegressor(lowValues ,step , nbStep);

11 // update particles values

12 localRegressor.updateSimulations(bZeroDate , x);

13 // regressed values

14 ArrayXd regressedValues = localRegressor.getAllSimulations(toRegress);
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4.5.4 Python API

Here is a similar example using the second constructor of the linear case

1 import StOptReg

2 nbSimul = 5000000;

3 np.random.seed (000)

4 x = np.random.uniform (-.,1.,size=(1, nbSimul));

5 # real function

6 toReal = (2+x[0 ,:]+(+x[0,:]) *(1+x[0,:]))

7 # function to regress

8 toRegress = toReal + 4*np.random.normal(0.,,nbSimul)

9 # mesh

10 nStep = 20

11 lowValue = np.array ([ -1.0001] , dtype=np.float)

12 step = np.array ([2.0002/ nStep],dtype=np.float)

13 nbMesh = np.array([nStep],dtype=np.int32)

14 # Regressor

15 regressor = StOptReg.LocalSameSizeLinearRegression(False ,x,lowValue ,step ,nbMesh)

16 y = regressor.getAllSimulations(toRegress).transpose ()[0]

Of course the constant per cell case in python is similar.

4.6 Sparse grid regressor

In the case of a sparse regressor, the grid is an object SparseSpaceGridNoBound (extrap-
olation for the boundary conditions). The basis functions are given by the section 3.3 for
linear, quadratic or cubic function basis. No rotation of the data is available.

4.6.1 C++ API

Two specific constructor are available:

• The first one to be used with the updateSimulations methods

1 SparseRegression(const int &p_levelMax , const Eigen:: ArrayXd &p_weight , const int

&p_degree , bool p_bNoRescale = false);

where

– p levelMax corresponds to n in the equation (3.4),

– p weight the weight for anisotropic sparse grids (see equation (3.7),

– p degree is equal to (linear basis function ), or 2 (quadratic basis) or 3 (for cubic
basis functions),

– p bNoRescale if true no rescaling of the particles is used. Otherwise a re scaling
of the mesh size is achieved (as for local basis functions, see section 4.2)

• The second one take the same arguments as the first constructor but adds a Boolean
to check if the regression date is 0 and the particles Xt (here the re scaling is always
achieved):

1 SparseRegression(const bool &p_bZeroDate ,

2 const shared_ptr < Eigen :: ArrayXXd > &p_particles ,

3 const int &p_levelMax , const Eigen :: ArrayXd &p_weight ,

4 const int &p_degree);

60



A simple example to express the regression of toRegress

1 // second member to regress

2 ArrayXd toRegress(p_nbSimul);

3 // for testing

4 toRegress.setConstant (.);

5 shared_ptr <ArrayXXd > x(new ArrayXXd(ArrayXXd :: Random(p_nDim , p_nbSimul)));

6 // constructor : the current date is not zero

7 bool bZeroDate = 0;

8 // constructor

9 SparseRegression sparseRegressor(p_level , weight , p_degree);

10 sparseRegressor.updateSimulations(bZeroDate , x); // update the state

11 // then just calculate function basis coefficient

12 ArrayXd regressedFuntionCoeff = sparseRegressor.getCoordBasisFunction(toRegress);

13 // use the getValue method to get back the regressed values

14 for (int is = 0; is < p_nbSimul; ++is)

15 {

16 Map <ArrayXd > xloc(x->col(is).data(), p_nDim);

17 double reg = sparseRegressor.getValue(xloc , regressedFuntionCoeff);

18 }

19 // get back all values once for all

20 ArrayXd regressedAllValues = localRegressor.getValues (*x,regressedFuntionCoeff) ;

4.6.2 Python API

Here is a simple example of the python API:

1 import StOptReg

2 nbSimul = 2000000;

3 np.random.seed (000)

4 x = np.random.uniform (-.,1.,size=(1, nbSimul));

5 # real function

6 toReal = (2+x[0 ,:]+(+x[0,:]) *(1+x[0,:]))

7 # function to regress

8 toRegress = toReal + 4*np.random.normal(0.,,nbSimul)

9 # level for sparse grid

10 iLevel = 5;

11 # weight for anisotropic sparse grids

12 weight= np.array([],dtype=np.int32)

13 # Regressor degree

14 regressor = StOptReg.SparseRegression(False ,x,iLevel , weight , )

15 y = regressor.getAllSimulations(toRegress)

16 # get back basis function

17 regressedFuntionCoeff= regressor.getCoordBasisFunction(toRegress)

18 # get back all values

19 ySecond= regressor.getValues(x,regressedFuntionCoeff)

4.7 Global polynomial basis

4.7.1 Description of the method

In this section, the ψk(Xt) involved in equation 4.1 are some given polynomials. Available
polynomials are the canonical one, the Hermite and the Chebyshev ones.

• Hermite polynomials Hm(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 are orthogonal with respect to the

weight w(x) = e−
x2

2 and we get∫ +∞

−∞
Hm(x)Hn(x)dx = δmn

√
2πn!
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they satisfy the recurrence:

Hn+1(x) = xHn(x)−H ′n(x)

assuming Hn(x) =
∑n

k=0 an,kx
k, we get the recurrence

an+1,k = an,k−1 − nan−1,k, k > 0 (4.5)

an+1,0 = −nan−1,0 (4.6)

• Chebyshev polynomials are TN+1(x) = cos((N+1)arcs(x)). They are orthogonal with
respect to the weight w(x) = 1√

1−x2 and

∫ 1

−1

TN(x)TM(x)w(x)dx =


0, if M 6= N
π, if M = N = 0
π
2
, if M = N 6= 0

They satisfy the following recurrence:

TN+2(x) = 2xTN+1(x)− TN(x)

As an option rotation of the data is possible even if the advantage of the rotation seem to
be limited for global polynomials.

4.7.2 C++ API

The GlobalRegression class is template by the type of the polynomial (Canonical, Tcheby
chev or Hermite) The first constructor:

1 GlobalRegression(const int & p_degree , const int & p_dim , bool p_bRotationAndRecale =

false);

where p degree is the total degree of the polynomial approximation, p dim is the dimension
of the problem, p bRotationAndRecale is an optional flag set to true if rotation of the data
should be achieved (default is no rotation). A second constructor is provided:

1 GlobalRegression(const bool &p_bZeroDate ,

2 const std:: shared_ptr < Eigen:: ArrayXXd > &p_particles ,

3 const int & p_degree , bool p_bRotationAndRecale = false)

where

• p bZeroDate is true if the regression date is 0,

• p particles the particles Xt for all simulations (dimension of Xt for first dimension,
number of Monte Carlo simulations in second dimension),

• p degree is the total degree of the polynomial approximation,

• p bRotationAndRecale is an optional flag set to true if rotation of the data should
be achieved (default is no rotation)
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Below we give a small example where toRegress corresponds to g(t+ h,Xt+h) for all simu-
lations and x store Xt for all simulations.

1 // total degree equal to 2

2 int degree =2;

3 // t is not zero

4 bool bZeroDate = 0;

5 // constructor with Hermite polynomials , no rotation

6 GlobalRegression <Hermite > localRegressor(degree ,x.rows());

7 // update particles values

8 localRegressor.updateSimulations(bZeroDate , x);

9 // regressed values

10 ArrayXd regressedValues = localRegressor.getAllSimulations(toRegress);

In the above example the Hermite regression can be replaced by the canonical one:

1 GlobalRegression <Canonical > localRegressor(degree ,x.rows());

or by a Chebyshev one:

1 GlobalRegression <Tchebychev > localRegressor(degree ,x.rows());

4.7.3 Python API

Here is a similar example using the second constructor

1 import StOptReg

2 nbSimul = 5000000;

3 np.random.seed (1000)

4 x = np.random.uniform (-.,1.,size=(1, nbSimul));

5 # real function

6 toReal = (2+x[0 ,:]+(+x[0,:]) *(1+x[0,:]))

7 # function to regress

8 toRegress = toReal + 4*np.random.normal(0.,,nbSimul)

9 # degree

10 degree =2

11 # Regressor , no rotation

12 regressor = StOptReg.GlobalHermiteRegression(False ,x,degree)

13 y = regressor.getAllSimulations(toRegress).transpose ()[0]

Available regressors are GlobalHermiteRegression as in the example above , GlobalCanon
icalRegression and GlobalTchebychevRegression with an obvious correspondence.

4.8 Kernel regression

Let (x1, y1), (x2, y2), . . . , (xN , yN) be a sample of N input points xi and output points yi
drawn from a joint distribution (X, Y ). The kernel density estimator (aka Parzen–Rosenblatt
estimator) of the density of X at the evaluation point z is given by:

f̂KDE(z) :=
1

N

N∑
i=1

Kh(xi − z) (4.7)

where Kh(u) := 1
h
K
(
u
h

)
with kernel K and bandwidth h. The Nadaraya–Watson kernel

regression estimator of E [Y |X = z ] is given by:

f̂NW(z) :=

∑N
i=1Kh(xi − z)yi∑N
i=1 Kh(xi − z)

(4.8)
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The estimator f̂NW(z) performs a kernel-weighted local average of the response points yi
that are such that their corresponding inputs xi are close to the evaluation point z. It can
be described as a locally constant regression. More generally, locally linear regressions can
be performed:

f̂L(z) := min
α(z),β(z)

N∑
i=1

Kh(xi − z) [yi − α(z)− β(z)xi]
2 (4.9)

The well known computational problem with the implementation of the kernel smoothers
(4.7)-(4.8)-(4.9) is that their direct evaluation on a set of M evaluation points would require
O(M × N) operations. In particular, when the evaluation points coincide with the input
points x1, x2, . . . , xN , a direct evaluation requires a quadratic O(N2) number of operations.
In StOpt we develop the methodology described in [28] permitting to get a N logN cost
function.

4.8.1 The univariate case

In one dimension, StOpt uses the one dimensional Epanechnikov kernel

K(u) =
3

4
(1− u2)1{|u| ≤ 1}

and the fast summing algorithm is used: Let (x1, y1), (x2, y2), . . . , (xN , yN) be a sample of N
input (source) points xi and output points yi, and let z1, z2, . . . , zM be a set of M evaluation
(target) points. Without loss of generality, we assume that the input points and evaluation
points are sorted: x1 ≤ x2 ≤ . . . ≤ xN and z1 ≤ z2 ≤ . . . ≤ zM . In order to compute the
kernel density estimator (4.7), the kernel regression (4.8) and the locally linear regression
(4.9) for every evaluation point zj, one needs to compute sums of the type

Sj = Sp,qj :=
1

N

N∑
i=1

Kh(xi − zj)xpi y
q
i =

1

Nh

N∑
i=1

K

(
xi − zj
h

)
xpi y

q
i , p = 0, 1, q = 0, 1 (4.10)

for every j ∈ {1, 2, . . . ,M}. The direct, independent evaluation of these sums would require
O(N × M) operations (a sum of N terms for each j ∈ {1, 2, . . . ,M}). The idea of fast
sum updating is to use the information from the sum Sj to compute the next sum Sj+1

without going through all the N input points again. Using the Epanechnikov (parabolic)
kernel K(u) = 3

4
(1− u2)1{|u| ≤ 1} we get:

Sp,qj =
1

Nh

N∑
i=1

3

4

(
1−

(
xi − zj
h

)2
)
xpi y

q
i 1{zj−h ≤ xi ≤ zj+h}

=
1

Nh

3

4

N∑
i=1

(
1−

z2
j

h2
+ 2

zj
h2
xi −

1

h2
x2
i

)
xpi y

q
i 1{zj−h ≤ xi ≤ zj+h}

=
3

4Nh

{(
1−

z2
j

h2

)
Sp,q([zj−h, zj+h]) + 2

zj
h2
Sp+1,q([zj−h, zj+h])− 1

h2
Sp+2,q([zj−h, zj+h])

}
(4.11)
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where

Sp,q([L,R]) :=
N∑
i=1

xpi y
q
i 1{L ≤ xi ≤ R} (4.12)

These sums Sp,q([zj − h, zj + h]) can be evaluated quickly from j = 1 to j = M as long as
the input points xi and the evaluation points zj are sorted in increasing order. Indeed,

Sp,q([zj+1−h, zj+1+h]) =
N∑
i=1

xpi y
q
i 1{zj+1−h ≤ xi ≤ zj+1+h}

=
N∑
i=1

xpi y
q
i 1{zj−h ≤ xi ≤ zj+h}

−
N∑
i=1

xpi y
q
i 1{zj−h ≤ xi < zj+1−h}+

N∑
i=1

xpi y
q
i 1{zj+h < xi ≤ zj+1+h}

= Sp,q([zj−h, zj+h])− Sp,q([zj−h, zj+1−h[) + Sp,q(]zj+h, zj+1+h]) (4.13)

Therefore one can simply update the sum Sp,q([zj − h, zj+1 + h]) for the evaluation point
zj to obtain the next sum Sp,q([zj+1 − h, zj+1 + h]) for the next evaluation point zj+1 by
subtracting the terms xpi y

q
i for which xi lie between zj − h and zj+1 − h, and adding the

terms xpi y
q
i for which xi lie between zj + h and zj+1 + h. This can be achieved in a fast

O(M + N) operations by going through the input points xi, stored in increasing order at
a cost of O(N logN) operations, and through the evaluation points zj, stored in increasing
order at a cost of O(M logM) operations.

4.8.2 The multivariate case

We now turn to the multivariate case. Let d be the dimension of the inputs. We consider
again a sample (x1, y1), (x2, y2), . . . , (xN , yN) of N input points xi and output points yi,
where the input points are now multivariate:

xi = (x1,i, x2,i, . . . , xd,i) , i ∈ {1, 2, . . . , N}

StOpt library uses the additive Epanechnikov kernel in the muti-dimensional case.

Kd (u1, . . . , ud) =
1

d2d−1

d∑
k=1

K(uk)
d∏

k0=1

1{|uk0| < 1} =
3

d2d+1

d∑
k=1

(
1− u2

k

) d∏
k0=1

1{|uk0| < 1}

(4.14)
One can show ([28]) that the computation of the multivariate version of the kernels smoothers
(4.7), (4.8) and (4.9) boils down to the computation of the following sums:

Sj = Sp1,p2,q
k1,k2,j

:=
1

N

N∑
i=1

Kd,h(xi − zj)xp1

k1,i
xp2

k2,i
yqi

=
1

NΠd
k=1hk

N∑
i=1

Kd

(
x1,i − z1,j

h1

,
x2,i − z2,j

h2

, . . . ,
xd,i − zd,j

hd

)
xp1

k1,i
xp2

k2,i
yqi (4.15)
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for each evaluation point zj = (z1,j, z2,j, . . . , zd,j) ∈ Rd, j ∈ {1, 2, . . . ,M}, for powers
p1, p2, q = 0, 1 and for dimension index k1, k2 = 1, 2, . . . , d.

Kernel development

Using the multivariate kernel (4.14), one can develop the sum (4.15) as follows:

Sp1,p2,q
k1,k2,j

=
1

N
∏d

k=1 hk

N∑
i=1

Kd

(
x1,i − z1,j

h1

,
x2,i − z2,j

h2

, . . . ,
xd,i − zd,j

hd

)
xp1

k1,i
xp2

k2,i
yqi

=
3

d2d+1N
∏d

k=1 hk

N∑
i=1

d∑
k=1

(
1− (xk,i − zk,j)2

h2
k

)
xp1

k1,i
xp2

k2,i
yqi

d∏
k0=1

1{|xk0,i − zk0,j| ≤ 1}

=
3

d2d+1N
∏d

k=1 hk

d∑
k=1

N∑
i=1

(
1−

z2
k,j

h2
k

+ 2
zk,j
h2
k

xk,i −
1

h2
k

x2
k,i

)
xp1

k1,i
xp2

k2,i
yqi

d∏
k0=1

1{|xk0,i − zk0,j| ≤ 1}

=
3

d2d+1N
∏d

k=1 hk

d∑
k=1

{(
1−

z2
k,j

h2
k

)
S [0,p1,p2],q

[k,k1,k2] ([zj − hj, zj + hj])+

= 2
zk,j
h2
k

S [1,p1,p2],q
[k,k1,k2] ([zj − hj, zj + hj])−

1

h2
k

S [2,p1,p2],q
[k,k1,k2] ([zj − hj, zj + hj])

}
(4.16)

where

Sp,q
k ([L,R]) :=

N∑
i=1

(
3∏
l=1

(xkl,i)
pl

)
yqi

d∏
k0=1

1{Lk0 ≤ xk0,i ≤ Rk0} (4.17)

for any hypercube [L,R] := [L1, R1] × [L2, R2] × . . . × [Ld, Rd] ⊆ Rd, powers p :=
(p1, p2, p3) ∈ N3, q ∈ N and indices k := (k1, k2, k3) ∈ {1, 2, . . . , d}3, and where [zj − hj, zj +
hj] := [z1,j − h1,j, z1,j + h1,j]× [z2,j − h2,j, z2,j + h2,j]× . . .× [zd,j − hd,j, zd,j + hd,j]

To sum up what has been obtained so far, computing multivariate kernel smoothers (ker-
nel density estimation, kernel regression, locally linear regression) boils down to computing
sums of the type (4.17) on hypercubes of the type [zj − hj, zj + hj] for every evaluation
point j ∈ {1, 2, . . . ,M}. In the univariate case, these sums could be computed efficiently
by sorting the input points xi, i ∈ {1, 2, . . . , N} and updating the sums from one evaluation
point to the next (equation (4.13)). Our goal is now to set up a similar efficient fast sum
updating algorithm for the multivariate sums (4.17). To do so, we are first going to partition
the input data into a multivariate rectilinear grid (subsection 4.8.2), by taking advantage
of the fact that the evaluation grid is rectilinear and that the supports of the kernels have
a hypercube shape. Then, we are going to set up a fast sweeping algorithm using the sums
on each hypercube of the partition as the unit blocks to be added and removed (subsection
4.8.2), unlike the univariate case where the input points themselves were being added and
removed iteratively.

Data partition

The first stage of the multivariate fast sum updating algorithm is to partition the sam-
ple of input points into a rectilinear grid. To do so, we partition each dimension inde-
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pendently as follows: for each dimension k ∈ {1, 2, . . . , d}, the set of threshold points
G̃k := {zk,jk − hk,jk}jk∈{1,2,...,Mk} ∪ {zk,jk + hk,jk}jk∈{1,2,...,Mk} is used to partition the k-th
axis. The second row of Figure 4.4 illustrates this partition on a set of 4 points, where for
simplicity the evaluation points are the same as the input points. Denote the sorted points
of the partition G̃k as g̃k,1 ≤ g̃k,2 ≤ . . . ≤ g̃k,2Mk

G̃k = {g̃k,1, g̃k,2, . . . , g̃k,2Mk
}

and define the partition intervals Ĩk,l := [g̃k,l, g̃k,l+1] for l ∈ {1, 2, . . . , 2Mk − 1}.
Because for each dimension k ∈ {1, 2, . . . , d}, all the bandwidths edges zk,jk − hk,jk and

zk,jk + hk,jk , jk ∈ {1, 2, . . . ,Mk}, belong to G̃k, there exists, for any evaluation point zj =

(z1,j1 , z2,j2 , . . . , zd,jd) ∈ Rd, some indices
(
L̃1,j1 , L̃2,j2 , . . . , L̃d,jd

)
and

(
R̃1,j1 , R̃2,j2 , . . . , R̃d,jd

)
such that

[zj − hj, zj + hj] = [z1,j1 − h1,j1 , z1,j1 + h1,j1 ]× . . .× [zd,jd − hd,jd , zd,jd + hd,jd ]

=
[
g̃1,L̃1,j1

, g̃1,R̃1,j1
+1

]
× . . .×

[
g̃d,L̃d,jd

, g̃d,R̃d,jd+1

]
=

⋃
(l1,...,ld)∈{L̃1,j1

,...,R̃1,j1
}×...×{L̃d,jd,...,R̃d,jd}

Ĩ1,l1× . . .× Ĩd,ld (4.18)

and, consequently, such that the sum (4.17) on the hypercube [zj − hj, zj + hj] is equal to
the sum of sums (4.17) on all the hypercubes of the partition included in [zj − hj, zj + hj]
(namely all the hypercubes Ĩ1,l1 × Ĩ2,l2 × . . .× Ĩd,ld such that lk ∈ {L̃k,jk , L̃k,jk + 1, . . . , R̃k,jk}
in each dimension k ∈ {1, 2, . . . , d}):

Sp,q
k ([zj − hj, zj + hj]) =

⋃
(l1,...,ld)∈{L̃1,j1

,...,R̃1,j1
}×...×{L̃d,jd,...,R̃d,jd}

Sp,q
k

(
Ĩ1,l1 × . . .× Ĩd,ld

)
(4.19)

where we assume without loss of generality that the bandwidth grid hj =(h1,j1 ,h2,j2 ,. . .,hd,jd),
jk ∈ {1, 2, . . . ,Mk}, k ∈ {1, 2, . . . d} is such that G̃k does not contain any input xk,i,
i ∈ {1, 2, . . . , N}, to ensure there is no input point on the boundaries of the inner hy-
percubes.

The sum decomposition (4.19) is the cornerstone of the fast multivariate sum updating
algorithm, but before going further, one can simplify the partitions G̃k, k ∈ {1, 2, . . . , d}
while maintaining a sum decomposition of the type (4.19). Indeed, the partitions G̃k =
{zk,jk − hk,jk , zk,jk + hk,jk ; jk = 1, . . . ,Mk} can in general produce empty intervals (intervals
which do not contain any input points, cf. the grey intervals on the second row of Figure
4.4). To avoid keeping track of sums Sp,q

k on the corresponding hypercubes known to be
empty, one can trim the partitions G̃k by shrinking each succession of empty intervals into
one new partition threshold (cf. the final partition on the third row of Figure 4.4). Denote
as Gk the resulting simplified partitions, containing the points gk,1 < gk,2 < . . . < gk,mk :

Gk = {gk,1, gk,2, . . . , gk,mk}

where 2 ≤ mk ≤ 2Mk, k ∈ {1, 2, . . . , d}, and m :=
∏d

k=1mk ≤ 2dM . Define the partition
intervals Ik,l := [gk,l, gk,l+1], l ∈ {1, 2, . . . ,mk − 1}. Because the only intervals to have been
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Figure 4.4: From bandwidths to partition (1D)

modified from G̃k to Gk were empty, the following still holds:
For any evaluation point zj = (z1,j1 , z2,j2 , . . . , zd,jd) ∈ Rd, jk ∈ {1, 2, . . . ,Mk}, k ∈ {1, 2, . . . d}
, there exists indices (L1,j1 , L2,j2 , . . . , Ld,jd) and (R1,j1 , R2,j2 , . . . , Rd,jd), where Lk,jk ∈ {1, 2, . . . ,mk−
1} and Rk,jk ∈ {1, 2, . . . ,mk − 1} with Lk,jk ≤ Rk,jk , k ∈ {1, 2, . . . d}, such that

Sp,q
k ([zj − hj, zj + hj]) =

⋃
(l1,...,ld)∈{L1,j1

,...,R1,j1
}×...×{Ld,jd,...,Rd,jd}

Sp,q
k (I1,l1 × . . .× Id,ld) (4.20)

Figure 4.5: From bandwidths to partition (2D)

To complement the illustration of univariate partition given by Figure 4.4, Figure 4.5
provides a bivariate partition example. There are four points, each at the center of their
respective rectangular kernel (in orange). On the left-hand side, the bandwidths boundaries
are used to produce the partitions G̃k in each dimension. One can see that most of the
resulting hypercubes (rectangles) are empty. On the right-hand side, the empty hypercubes
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are removed/merged, resulting in the trimmed partitions Gk in each dimension. Remark
that this is a simple example for which every final hypercube only contains one point.

Fast multivariate sweeping algorithm

So far, we have shown that computing multivariate kernel smoothers is based on the com-
putation of the kernel sums (4.15), which can be decomposed into sums of the type (4.17),
which themselves can be decomposed into the smaller sums (4.20) by decomposing every
kernel support of every evaluation point onto the rectilinear partition described in the pre-
vious subsection 4.8.2. The final task is to define an efficient algorithm to traverse all
the hypercube unions

⋃
(l1,...,ld)∈{L1,j1

,...,R1,j1
}×...×{Ld,jd,...,Rd,jd}

I1,l1× . . .× Id,ld , so as to compute

the right-hand side sums (4.20) in an efficient fast sum updating fashion that extends the
univariate updating (4.13).

First, to simplify notations, we introduce the multi-index idx := (p, q,k) ∈ {0, 1, 2} ×
{0, 1}3×{1, 2, . . . , d}3 to summarize the polynomial

(∏3
l=1(xkl,i)

pl
)
yqi in the sum Sp,q

k ([L,R])
(equation (4.17)), and introduce the compact notation

S idx
l1,l2,...,ld

:= Sp,q
k (I1,l1× . . .× Id,ld) (4.21)

to simplify the notation on the right-hand side of equation (4.20). In summary, S idx
l1,l2,...,ld

corresponds to the sum of the polynomials
(∏3

l=1(xkl,i)
pl
)
yqi over all the data points within

the hypercube I1,l1× . . .× Id,ld . We precompute all the sums S idx
l1,l2,...,ld

, and use them as the
input material for the fast multivariate sum updating.

In the bivariate case, we first provide an algorithm to compute the sums T idx
1,l2

:=∑R1,j1
l1=L1,j1

S idx
l1,l2

, for every l2 ∈ {1, 2, . . . ,m2 − 1} and every indices interval [L1,j1 , R1,j1 ],

j1 ∈ {1, 2, . . . ,M1}. Starting with j1 = 1, we first compute T idx
1,l2

=
∑R1,1

l1=L1,1
S idx
l1,l2

for every

l2 ∈ {1, 2, . . . ,m2 − 1}. Then we iteratively increment j1 from j1 = 1 to j1 = M1. After
each increment of j1, we update T idx

1,l2
by fast sum updating

R1,j1∑
l1=L1,j1

S idx
l1,l2

=

R1,j1−1∑
l1=L1,j1−1

S idx
l1,l2

+

R1,j1∑
l1=R1,j1−1+1

S idx
l1,l2
−

L1,j1
−1∑

l1=L1,j1−1

S idx
l1,l2

(4.22)

The second stage is to perform a fast sum updating in the second dimension, with

the sums T idx
1,l2

=
∑R1,j1

l1=L1,j1
S idx
l1,l2

as input material. Our goal is to compute the sums T idx
2 :=∑R2,j2

l2=L2,j2
T idx

1,l2
for every indices interval [L2,j2 , R2,j2 ], j2 ∈ {1, 2, . . . ,M2}. In a similar manner,

we start with j2 = 1 and the initial sum T idx
2 =

∑R2,1

l2=L2,1
T idx

1,l2
. We then increment j2 from

j2 = 1 to j2 = M2 iteratively. After each increment of j2, we update T idx
2 by fast sum

updating:
R2,j2∑

l2=L2,j2

T idx
1,l2

=

R2,j2−1∑
l2=L2,j2−1

T idx
1,l2

+

R2,j2∑
l2=R2,j2−1+1

T idx
1,l2
−

L2,j2
−1∑

l2=L2,j2−1

T idx
1,l2

(4.23)

Using the notation change (4.21) and equation (4.20), the resulting sum
∑R2,j2

l2=L2,j2
T idx

1,l2
=∑R1,j1

l1=L1,j1

∑R2,j2
l2=L2,j2

S idx
l1,l2

is equal to Sp,q
k ([zj−hj, zj +hj]), which can be used to compute the
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kernel sums Sj = Sp1,p2,q
k1,k2,j

using equation (4.16), from which the bivariate kernel smoothers
(kernel density estimator, kernel regression, locally linear regression) can be computed.

This ends the description of the fast sum updating algorithm in the bivariate case.
Finally, the general multivariate case is a straightforward extension of the bivariate case.

4.8.3 C++ API

The constructor permits to defines the kernel regressor:

1 LocalGridKernelRegression(const bool &p_bZeroDate ,

2 const std:: shared_ptr < Eigen:: ArrayXXd > &p_particles ,

3 const double &p_coeffBandWidth ,

4 const double &p_coefNbGridPoint ,

5 const bool &p_bLinear);

where

• p bZeroDate is true if the regression date is 0,

• p particles the particles Xt for all simulations (dimension of Xt for first dimension,
number of Monte Carlo simulations in second dimension),

• p coeffBandWidth between 0 and 1 defines the percentage of points to be used to
define the bandwidth for each point.

• p coefNbGridPoint is a multiplicative factor defining the number of points z used for
the multi-grid approximation: a PCA is used to define a rotation of the data. The
kernel regression is achieved according the base defined by the eigenvectors associated
to the PCA. The number of points along the axes defined by the eigenvectors is given
according the singular value associated to the eigenvector. The total number of eval-
uation points along the axes of the new base is roughly the number of simulations
(p particles.cols()) by p coefNbGridPoint.

• p bLinear when set to false states that the simple kernel density estimation (4.8) is
used. When p bLinear is true, the linear kernel regression (4.9) is used.

Below we give a small example where toRegress corresponds to g(t+ h,Xt+h) for all simu-
lations and x store Xt for all simulations.

1

2 // t is not zero

3 bool bZeroDate = 0;

4 // proportion of points used to define bandwidth

5 double prop =0.1;

6 // multiplicative factor equal to one : number of evaluation points equals to the

number of particles

7 double q =1.

8 // choose a linear regression

9 bool bLin= true;

10 // constructor

11 LocalGridKernelRegression kernelReg(bZeroDate , x, prop , q, bLin);

12 // update particles values

13 localRegressor.updateSimulations(bZeroDate , x);

14 // regressed values

15 ArrayXd regressedValues = localRegressor.getAllSimulations(toRegress);
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4.8.4 Python API

As usual the python constructors are similar to the c++ constructors. here is a small
example the use of the kernel regression method.

1 import StOptReg

2 nbSimul = 5000000;

3 np.random.seed (1000)

4 x = np.random.uniform (-.,1.,size=(1, nbSimul));

5 # real function

6 toReal = (2+x[0 ,:]+(+x[0,:]) *(1+x[0,:]))

7 # function to regress

8 toRegress = toReal + 4*np.random.normal(0.,,nbSimul)

9 # bandwidth

10 bandwidth = 0.1

11 # factor for the number of points

12 factPoint =1

13 # Regressor

14 regressor = StOptReg.LocalGridKernelRegression(False ,x,bandwidth ,factPoint , True)

15 # nb simul

16 nbSimul= regressor.getNbSimul ()

17 # particles

18 part = regressor.getParticles ()

19 # get regressed

20 y = regressor.getAllSimulations(toRegress).transpose ()[0]
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Chapter 5

Calculating conditional expectation
by trees

A popular method to calculate conditional expectation consists in using scenario trees.
In the finance community, binary and trinomial trees are generally used to valuate options.
When the asset is modelized by a Black Scholes model, a binary model is used, while a
trinomial model is used to model mean reversion using a Vaciseck model for interest rate for
example [23]. An example a trinomial tree is given in figure 5.1 for an Ornstein–Uhlenbeck
model (so in dimension 1). This tree modelizes the possible evolution of a state Xt in

Figure 5.1: Trinomial tree

dimension 1 and each node correspond to a possible value of Xt. These trees are recombining.
Nodes at each dates i are numbered from 0 to Ni− 1 with increasing values X i

t of the state.
From a node i at a date t, 3 nodes can be reached at date t+ 1. The probability transition
to go to a node down f(i, t)− 1 is pt,id while the probability to go to a node middle f(i, t) is
pt,im and the probability to go to a node up f(i, t) + 1 is pt,iu .
Then conditional expectation of a function with values gt+1

j = g(Xj
t+1) at node j at date

i+ 1 is simply given by:

E[g(Xt+1)/Xt = X i
t ] ' pt,id g

t+1
f(t,i)−1 + pt,img

t+1
f(t,i) + pt,iu g

t+1
f(t,i)+1 (5.1)

In the literature, non recombining scenario trees are used by the discrete stochastic opti-
mization community. These non recombining trees may be obtained by reduction of some
recombining trees (see [21] for example, or [27] for a more recent survey developing algorithm
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minimizing the Kantorovich or Wasserstein metric between the initial tree and a subtree of
the initial tree). An example of non recombining tree is given in figure 5.2.
On figure 5.2, supposing that X2 has the possible values Y2, Y3 at node 2 and 3, supposing

Figure 5.2: Non recombining tree

that X3 have discrete values at nodes 4, . . . , 9 at date t = 3 and that values of g(X3) has
value gi at node i at date 3, then

E[g(X3/X2 = Y3] = P3,7g7 + P3,8g8 + P3,9g9 (5.2)

5.0.1 C++ API

Calculating conditional expectation

As explained, conditional expectation are easy to calculate with trees. The library provides
a Tree object permitting to do such calculations.

1 Tree(const std::vector <double > &p_proba , const std::vector < std::vector < std::array <int ,

2> > > &p_connected)

with

• p proba a vector of probabilities at a given date defining probability transition between
nodes at current date and nodes at following date.

• p connected the connection between nodes and index in probability vector.

p proba[p connected[i][j].second]

is the probability to go from node i at current date to node p connected[i][j].first

at next date. So p connected[i].size() give the number of nodes connected to node
i.
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As for regression objects some methods are provided to calculate conditional expectations:

• expCond takes an Eigen array with size the number of nodes at following date and
calculate conditional expectation of values at nodes of current date,

• expCondMultiple does the same for multiple functions to regress (size number of
function by number of nodes at following date) and return a 2 dimensional Eigen
array (size number of function by number of nodes at current date).

Python API

The python interface for tree is obtained importing the StOptTree module. An example
taking a trinomial simulator is given below

1 # Mean Reverting model

2 mr = 0.3;

3 sig = 0.6;

4

5 # nb grid points

6 nbStock =4

7

8 # step

9 dt = 1. / 100.

10

11 # simulation dates

12 dates = dt * np.arange (0 ,16)

13

14 # simulaton dates

15 tree = Simulators.TrinomialTreeOUSimulator(mr, sig , dates)

16

17 iFirst = 10

18 iLast = 14

19

20 # nodes at dates 5

21 points = tree.getPoints(iFirst)

22

23 # nodes at last date

24 pointsNext = tree.getPoints(iLast)

25

26 # probabilities

27 proba = tree.getProbability(iFirst , iLast)

28

29 # connection matrix

30 connectAndProba = tree.calConnected(proba);

31

32 # to regress

33 toTreeress= np.zeros( (nbStock , np.shape(pointsNext)[1]))

34 for i in range(nbStock):

35 toTreeress[i,:] = i + pointsNext [0,:]

36

37 # grid for storage

38 grid = StOptGrids.RegularSpaceGrid(np.array ([0.]) , np.array ([1.]) , np.array([

nbStock - 1]))

39

40 # conditional expectation object by trees

41 tree= StOptTree.Tree(connectAndProba [1], connectAndProba [0])

42

43 # conditional expectation taken

44 valTree = tree.expCondMultiple(toTreeress)
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Chapter 6

Continuation values objects and
similar ones

In a first part we develop the different continuation objects using regression to calculate
conditional expectations. Then we explain the structure of continuation object with tree to
calculate these conditional expectations.

6.1 Continuation values objects with regression meth-

ods

In a first part we describe a way to store and use continuation values calculated during the use
of regression methods to estimate conditional expectations. In a second part, we introduce
an object used to interpolate a function both discretized on grids for its deterministic part
and estimated by regressor for its stochastic part. The second object is similar to the first
in spirit but being dedicated to interpolation is more effective to use in simulations realized
after the optimization part of a problem.
A third object is the continuation cut object used to approximate concave or convex Bellman
values by cuts.
It is use when the transition problem is solve using a LP.

6.1.1 Continuation values object

A special case is the case where the state Xx,t in equation (2.1) can be separated into two
parts Xx,t = (Xx,t

1 , Xx,t
2 ) where

1. the first part is given by the following equation

dXx,t
s,1 = b(t,Xx,t

s,1)ds+ σ(s,X
x,t
s,1)dWs (6.1)

and is not controlled: the stochastic process is exogenous,

2. the second part is given by the following equation

dXx,t
s,2 = ba(t)ds (6.2)
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such that the Xx,t
2 is a degenerated version of 2.1 without diffusion, a representing the

control.

This first case is for example encountered while valuing American options in finance. In this
case, Xx,t

1 holds the values of the stocks involved in the option and Xx,t
2 is for example an

integer valued process equal to one if the option is not exercised and 0 if it has already been
exercised.
Another classical case happening while dealing with stocks for example is a Gas Storage
valuation. In this simple case, the process Xx,t

1 is the value of the gas on the market and
Xx,t

2 is the position (in volume) in the gas storage. The library offers to store the conditional
expectation for all the states Xx,t

2 .

• Xx,t
2 will be stored on a grid of points (see section 3)

• for each point i of the grid the conditional expectation of a function gi(X
x,t
2 ) associated

to the point i using a regressor (see section 3) can be calculated and stored such that
the continuation value C is a function of (Xx,t

1 , Xx,t
2 ).

C++ API

As for regressions two constructors are provided

• The first one is the default construction: it is used in simulation algorithm with the
loadForSimulation method to store the basis coefficients αik for the grid point i (see
equation (4.1)),

• The second one

1 ContinuationValue(const shared_ptr < SpaceGrid > & p_grid ,

2 const shared_ptr < BaseRegression > & p_condExp ,

3 const Eigen:: ArrayXXd &p_cash)

with

– p grid the grids associated to the control deterministic space,

– p condExp the conditional expectation operator

– p cash the function to regress depending on the grid position (first dimension the
number of simulations, second dimension the grid size)

This constructor constructs for all point i all the αik (see equation (4.1)).

The main methods provided are:

• a first method used in simulation permitting to load for grid point i the coefficient αik
associated to the function gi,

1 void loadForSimulation(const shared_ptr < SpaceGrid > & p_grid ,

2 const shared_ptr < BaseRegression > & p_condExp ,

3 const Eigen:: ArrayXXd &p_values)

with
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– p grid the grid associated to the controlled deterministic space,

– p condExp the conditional expectation operator,

– p values the αik for all grid points i (size the number of function basis, the
number of grid points)

• a second method taking as input a point to be interpolated in the grid and returning
the conditional expectation at the interpolated point for all simulations:

1 Eigen:: ArrayXd getAllSimulations(const Eigen:: ArrayXd &p_ptOfStock)

• a method taking as input an interpolator in the grid and returning the conditional
expectation for all simulations at the interpolated point used to construct the inter-
polator:

1 Eigen:: ArrayXd getAllSimulations(const Interpolator &p_interpol)

• a method taking as input a simulation number used in optimization and a point used
to interpolate in the grid and returning the conditional expectation at the interpolated
point for the given simulation used in optimization.

1 double getASimulation(const int &p_isim , const Eigen:: ArrayXd &p_ptOfStock)

• a method taking as input a simulation number used in optimization and an interpolator
in the grid and returning the conditional expectation at the interpolated point used
to construct the interpolator for the given simulation used in optimization:

1 double getASimulation(const int &p_isim , const Interpolator &p_interpol)

• a method that permits to calculate the conditional expectation for a sample of Xx,t
1 :

1 double getValue(const Eigen:: ArrayXd &p_ptOfStock , const Eigen :: ArrayXd &

p_coordinates) const

where:

– p ptOfStock the point where we interpolate the conditional expectation (a real-
ization of Xx,t

2 )

– p coordinates the sample of Xx,t
1 used to estimate the conditional expectation

– and the function returns C(Xx,t
1 , Xx,t

2 ).

Below we regress an identical function for all grid points (here a grid of 4 points in dimension
1):

1 int sizeForStock = 4;

2 // second member to regress with one stock

3 ArrayXXd toRegress = ArrayXXd :: Constant(p_nbSimul ,sizeForStock , 1.);

4 // grid for stock

5 Eigen:: ArrayXd lowValues (1), step (1);

6 lowValues (0) = 0. ;

7 step (0) = 1;

8 Eigen:: ArrayXi nbStep (1);

9 nbStep (0) = sizeForStock - 1;

77



10 // grid

11 shared_ptr < RegularSpaceGrid > regular = MyMakeShared <RegularSpaceGrid >(lowValues ,

step , nbStep);

12 // conditional espectation (local basis functions)

13 ArrayXi nbMesh = ArrayXi :: Constant(p_nDim , p_nbMesh);

14 shared_ptr <LocalLinearRegression > localRegressor = MyMakeShared <

LocalLinearRegression >(false , x, nbMesh);

15

16 // creation continuation value object

17 ContinuationValue continuation(regular , localRegressor , toRegress);

18

19 // regress with continuation value object

20 ArrayXd ptStock (1) ;

21 ptStock (0) = sizeForStock / 2; // point where we regress

22 // calculation the regression values for the current point for all the simulations

23 ArrayXd regressedByContinuation = continuation.getAllSimulations(ptStock);

Python API

Here is an example of the use of the mapping

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import unittest

6 import random

7 import math

8

9

10 # unit test for continuation values

11 ##################################

12

13 class testContValues(unittest.TestCase):

14

15 # test a regular grid for stocks and a local function basis for regression

16 def testSimpleGridsAndRegressor(self):

17 import StOptGrids

18 import StOptReg

19 # low value for the meshes

20 lowValues =np.array ([1. ,2.,3.] , dtype=np.float)

21 # size of the meshes

22 step = np.array ([0.7 ,2.3 ,1.9] , dtype=np.float)

23 # number of steps

24 nbStep = np.array ([3,2,4], dtype=np.int32)

25 # create the regular grid

26 #########################

27 grid = StOptGrids.RegularSpaceGrid(lowValues ,step ,nbStep)

28 # simulation

29 nbSimul =10000

30 np.random.seed (1000)

31 x = np.random.uniform (-1.,1.,size=(1, nbSimul));

32 # mesh

33 nbMesh = np.array ([16] , dtype=np.int32)

34 # Create the regressor

35 #####################

36 regressor = StOptReg.LocalLinearRegression(False ,x,nbMesh)

37 # regressed values

38 toReal = (2+x[0 ,:]+(1+x[0,:]) *(1+x[0,:]))

39 # function to regress

40 toRegress = toReal + 4*np.random.normal (0.,1, nbSimul)

41 # create a matrix (number of stock points by number of simulations)

42 toRegressMult = np.zeros(shape=(len(toRegress),grid.getNbPoints ()))

43 for i in range(toRegressMult.shape [1]):

44 toRegressMult [:,i] = toRegress

45 # Now create the continuation object
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46 ####################################

47 contOb = StOptReg.ContinuationValue(grid ,regressor ,toRegressMult)

48 # get back the regressed values at the point stock

49 ptStock= np.array ([1.2 ,3.1 ,5.9] , dtype=np.float)

50 regressValues = contOb.getAllSimulations(ptStock)

51 # do the same with an interpolator

52 interp = grid.createInterpolator(ptStock)

53 regressValuesInterp = contOb.getAllSimulations(interp)

54 # test create of an interpoaltion object mixing grids for stocks and regression for

uncertainties

55 #

################################################################################################

56 gridAndRegressed = StOptReg.GridAndRegressedValue(grid ,regressor ,toRegressMult)

57 # get back the regressed value for a point stock and an uncertainty

58 valRegressed = gridAndRegressed.getValue(ptStock , x[:,0])

59

60 # test some mapping of GneralSpaceGrid

61 def testGeneralGridInheritance(self):

62 from StOptGrids import GeneralSpaceGrid , RegularSpaceGrid

63 from StOptReg import LocalLinearRegression , ContinuationValue

64

65 x = np.random.randn (5)

66 regressor = LocalLinearRegression ([1])

67

68 regular = RegularSpaceGrid(np.array ([0.]) , np.array ([0.5]) , np.array ([3]))

69 ContinuationValue(regular , regressor , x)

70

71 general = GeneralSpaceGrid ([[0., 1., 1.2, 1.5]])

72 ContinuationValue(general , regressor , x)

73

74

75 if __name__ == ’__main__ ’:

76 unittest.main()

6.1.2 The GridAndRegressedValue object

As explained above, when we want to interpolate a function discretized partly on a grid and
by regression a specific object can we used. As for the continuation it has a getValue to
estimate the function at a state with both a deterministic ,and a stochastic part.

C++ API

The object has five constructors and we only described the two more commonly used:

• The first one

1 GridAndRegressedValue(const std::shared_ptr < SpaceGrid > &p_grid ,

2 const std:: shared_ptr < BaseRegression > &p_reg ,

3 const Eigen:: ArrayXXd &p_values)

with

– p grid the grid associated to the control deterministic space,

– p reg the regressor object

– p values the functions at some points on the deterministic and stochastic grid.

• A second constructor only stores the grid and regressor:
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1 GridAndRegressedValue(const std::shared_ptr < SpaceGrid > &p_grid ,

2 const std:: shared_ptr < BaseRegression > &p_reg)

The main methods are the following ones:

• the main method that permits to calculate the function C(Xx,t
1,s , X

x,t
2,s) value for a point

Xx,t
s = (Xx,t

1,s , X
x,t
2,s) where Xx,t

2,s is on the grid and Xx,t
1,s is the part treated by regression.

1 double getValue(const Eigen:: ArrayXd &p_ptOfStock , const Eigen :: ArrayXd &

p_coordinates) const

where:

– p ptOfStock Xx,t
2,s part of Xx,t

s

– p coordinates Xx,t
1,s part of Xx,t

s .

• the method getRegressedValues that permits to get all regression coefficients for all
points of the grid. The array returned has a size (number of function basis, number
of points on the grid)

1 Eigen:: ArrayXXd getRegressedValues () const

• the method setRegressedValues permits to store all the values regressed coefficients
on a grid of a function of Xx,t

s = (Xx,t
1,s , X

x,t
2,s).

1 void setRegressedValues(const Eigen:: ArrayXXd &p_regValues)

where p regValues has a size (number of function basis, number of points on the
grid).

Python API

The python API is similar to the one of the ContinuationValue object (see Section 6.1.1).

6.1.3 The continuation cut object

Suppose the control problem is continuous and that the state of the system has the dynamic
given by (6.1) et (6.2). This is the case of some storages modelized associated to the
maximization of a certain objective function. Then the Bellman value associated to this
problem is concave. For a given value of some margin process Xx,t

s,1 , the Bellman curve can
be approximated by cuts (see 6.1) Solving a PL for a given uncertainty and a given state in
the storage levels ŷi in dimension d , we get a cut

κ(Xx,t
s,1 , y) =a0(Xx,t

s,1) +

g∑
i=1

ai(X
x,t
s,1)(yi − ŷi)

For s
′ ≤ s a conditional cut can be obtained calculating

θ(Xx,t

s′ ,1
, y) = E

[
a0(Xx,t

s,1)|Xx,t

s′ ,1

]
+

d∑
i=1

E
[
a0(Xx,t

s,1)|Xx,t

s
′
,1

]
(yi − ŷi)
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Figure 6.1: Bellman cuts

Than using a regressor (see chapter 4) it is possible to represent each conditional cut on a
basis for j = 0, . . . , d.

E
[
ai(X

x,t
s,1)|Xx,t

s′ ,1

]
=

N∑
j=1

ai,jψj(X
x,t

s′ ,1
) (6.3)

where the ψj correspond to some basis function.

C++ API

As for regressions two constructors are provided

• The first one is the default construction: it is used in simulation algorithm with the
loadForSimulation method to store the basis coefficients aki,j for the grid point k,

• The second one

1 ContinuationCuts(const shared_ptr < SpaceGrid > & p_grid ,

2 const shared_ptr < BaseRegression > & p_condExp ,

3 const Eigen:: ArrayXXd &p_values)

with

– p grid the grids associated to the control deterministic space,

– p condExp the conditional expectation operator

– p values the coefficients of the cut to regress depending on the grid position
(first dimension the number of simulations by the number of components of the
cut (nb storage+1), second dimension the grid size)
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This constructor constructs for all stock points the ai,j coefficients of the cuts (6.3).
Notice that for a stock point k with coordinates yk, the coefficients stored are âk0,j =

ak0,j −
∑d

i=1 a
k
i,jy

k
i and the âki,j = aki,j, i = 1, . . . d. Then the conditional cut can be

written as:

θ(Xx,t

s′ ,1
, y) =

N∑
j=1

â0,jψj(X
x,t

s′ ,1
) +

d∑
i=1

N∑
j=1

âi,jψj(X
x,t

s′ ,1
)yi

The main methods provided are:

• a first method used in simulation permitting to load for grid point i the coefficient αik
associated to the function gi,

1 void loadForSimulation(const shared_ptr < SpaceGrid > & p_grid ,

2 const shared_ptr < BaseRegression > & p_condExp ,

3 const Eigen::Array <Eigen::ArrayXXd > &p_values)

with

– p grid the grid associated to the controlled deterministic space,

– p condExp the conditional expectation operator,

– p values the ai,j coefficients to reconstruct the cuts: its size corresponds to the
number of cut coefficients. Then the element i of p values permits to store the
ai,j coefficients for j = 1, . . . , N and all stock points.

• a second method taking as input a description of an hypercube (nb storages,2) describes
by its extreme coordinates:

– (i,0) coordinate corresponds to minimal coordinate value in dimension i

– (i,1) coordinate corresponds to maximal coordinate value in dimension i

1 Eigen:: ArrayXXd getCutsAllSimulations(const Eigen:: ArrayXXd &p_hypStock) const

It return an array of cuts coefficients for all particles state stored in its BaseRegression
member.

– First dimension correspond to the number of cuts coefficients by the number of
simulations.

– The second dimension corresponds to the number of points in the hypercube
p hypStock.

• a method to get an array of cuts for a given uncertainty.

1 Eigen:: ArrayXXd getCutsASim(const Eigen:: ArrayXXd &p_hypStock , const Eigen ::

ArrayXd &p_coordinates) const

where:

– p hypStock corresponds to an hypercube used to select some stock points as
previously,
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– p coordinates corresponds to the coordinates of the uncertainty to consider.

It returns an array with in first dimension the cut coefficient number, the second
dimension correspond to the number of the cut (corresponding to a stock point in the
hypercube).

• a method that permits to get the coefficients calculated.

1 const Eigen::Array < Eigen::ArrayXXd , Eigen::Dynamic , 1 > &getValues () const

Python API

Here is an example of the use of the mapping

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import unittest

6 import random

7 import math

8 import StOptGrids

9 import StOptReg

10

11

12 # unit test for continuation values

13 ##################################

14

15 class testContValues(unittest.TestCase):

16

17 # unit test for continuation cuts

18 def testSimpleGridsAndRegressor(self):

19 # low value for the meshes

20 lowValues =np.array ([1. ,2.,3.] , dtype=np.float)

21 # size of the meshes

22 step = np.array ([0.7 ,2.3 ,1.9] , dtype=np.float)

23 # number of steps

24 nbStep = np.array ([3,2,4], dtype=np.int32)

25 # create the regular grid

26 #########################

27 grid = StOptGrids.RegularSpaceGrid(lowValues ,step ,nbStep)

28 # simulation

29 nbSimul =10000

30 np.random.seed (1000)

31 x = np.random.uniform (-1.,1.,size=(1, nbSimul));

32 # mesh

33 nbMesh = np.array ([16] , dtype=np.int32)

34 # Create the regressor

35 #####################

36 regressor = StOptReg.LocalLinearRegression(False ,x,nbMesh)

37 # regressed values

38 toReal = (2+x[0 ,:]+(1+x[0,:]) *(1+x[0,:]))

39 # function to regress

40 toRegress = toReal + 4*np.random.normal (0.,1, nbSimul)

41 # fictitous cuts with 0 sensibility (1 dimension)

42 toRegressCuts = np.zeros(shape =(4* len(toRegress),grid.getNbPoints ()))

43 for i in range(toRegressCuts.shape [1]):

44 toRegressCuts [:len(toRegress),i] = toRegress

45

46 # Now create the continuation cut object

47 ########################################

48 contOb = StOptReg.ContinuationCut(grid ,regressor ,toRegressCuts)

49 hyperCube = np.array ([[ lowValues [0], lowValues [0]+ step [0]* nbStep [0]],

50 [lowValues [1], lowValues [1]+ step [1]* nbStep [1]],
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51 [lowValues [2], lowValues [2]+ step [2]* nbStep [2]]])

52 regressCuts = contOb.getCutsAllSimulations(hyperCube)

53

54

55 if __name__ == ’__main__ ’:

56 unittest.main()

6.2 Continuation objects and associated with trees

6.2.1 Continuation object

Similarly instead of using a regressor, a tree can be used to create a continuation object.

C++ API

As for ContinuationValue object two constructors are provided:

• A default constructor, permitting to load the grid coefficients at each node of the tree
with the loadForSimulation method,

• And the second one:

1 ContinuationValueTree(const std::shared_ptr < SpaceGrid > &p_grid ,

2 const std:: shared_ptr < Tree > &p_condExp ,

3 const Eigen:: ArrayXXd &p_valuesNextDate)

with

– p grid the grids associated to the control deterministic space,

– p condExp the tree object permitting to calculate conditional expectation: tak-
ing some values defined at nodes of following date, it calculates the conditional
expected values at each node at the current date.

– p valuesNext the function value at next date (first dimension the number of
nodes at next date, second dimension the grid size)

The main methods provided are:

• a first method used in simulation permitting to load for grid point i the expected value
of the function gi (valuesNextDate) for all nodes at current date,

1 void loadForSimulation(const shared_ptr < SpaceGrid > & p_grid ,const Eigen ::

ArrayXXd &p_values)

with

– p grid the grid associated to the controlled deterministic space,

– p values the continuation values for all nodes and stock points (size number of
nodes by number of grid points at current date)

• a second method taking as input a point to be interpolated in the grid and returning
the conditional expectation at the interpolated point for all nodes:
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1 Eigen:: ArrayXd getValueAtNodes(const Eigen:: ArrayXd &p_ptOfStock)

• a method taking as input an interpolator in the grid and returning the conditional
expectation for all nodes at the interpolated point used to construct the interpolator:

1 Eigen:: ArrayXd getValueAtNodes(const Interpolator &p_interpol)

• a method taking as input a node number used in optimization and a point used to
interpolate in the grid and returning the conditional expectation at the interpolated
point for the given node used in optimization.

1 double getValueAtANode(const int &p_node , const Eigen:: ArrayXd &p_ptOfStock)

• a method taking as input a simulation number used in optimization and an interpolator
in the grid and returning the conditional expectation at the interpolated point used
to construct the interpolator for the given node used in optimization:

1 double getValueAtANode(const int &p_node , const Interpolator &p_interpol)

• a method that permits to get back all conditional expectations for all nodes:

1 double getValues () const

Python API

Used importing the StOptTree module, the syntax is similar to the c++ one. Continuing
example in section 5.0.1;

1 # continuation object

2 continuation = StOptTree.ContinuationValueTree(grid , tree , toTreeress.transpose ())

3

4 # interpolation point

5 ptStock = np.array ([0.5* nbStock ])

6

7 # conditional expectation using continuation object

8 treeByContinuation = continuation.getValueAtNodes(ptStock);

6.2.2 GridTreeValues

This object permits to interpolate in some grid values for some function defined on nodes
values and grid values.
The constructor

1 GridTreeValue(const std::shared_ptr < SpaceGrid > &p_grid ,

2 const Eigen:: ArrayXXd &p_values)

where:

• p grid the grids associated to the control deterministic space,

• p values value to store at nodes and on grid (size number of nodes at current date by
number of points in grid)
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The methods:

• The following one permits to interpolate at a given stock point for a given node

1 double getValue(const Eigen:: ArrayXd &p_ptOfStock , const int & p_node) const

– p ptOfStock corresponds to a value of Xx,t
2,s part of Xx,t

s

– p node node number in the tree describing Xx,t
1,s

• The second one gives the interpolated values at all nodes

1 Eigen:: ArrayXd getValues(const Eigen:: ArrayXd &p_ptOfStock) const

Python API

Importing the StOptTree, previous constructor and methods are available.

6.2.3 Continuation Cut with trees

As with regressor (section 6.1.3), we can provide cuts when approximating some concave or
convex function at each node of the tree.

C++ API

• The first one is the default construction: it is used in simulation algorithm with the
loadForSimulation method to load the values at nodes for the grid points,

• The second one

1 ContinuationCutsTree(const std::shared_ptr < SpaceGrid > &p_grid ,

2 const std::shared_ptr < Tree > &p_condExp ,

3 const Eigen:: ArrayXXd &p_values)

with

– p grid the grids associated to the controlled deterministic space,

– p condExp the conditional expectation operator for tree

– p values the coefficients of the cut of which we take conditional expectation de-
pending on the grid position (first dimension the number of nodes by the number
of components of the cut (nb storage+1), second dimension the grid size)

This constructor constructs for all stock points the coefficients of the cuts ai for i =
0, d. Notice that for a stock point k with coordinates yk, the coefficients stored are
âk0 = ak0 −

∑d
i=1 a

k
i y

k
i and the âki = aki , i = 1, . . . d such that a cut has an affine

representation at a point y: âk0 +
∑d

i=1 â
k
i yi.

The main methods provided are:
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• a first method used in simulation permitting to load for grid point i the cuts values at
nodes.

1 void loadForSimulation(const shared_ptr < SpaceGrid > & p_grid ,

2 const shared_ptr < Tree > & p_condExp ,

3 const const std::vector < Eigen:: ArrayXXd > &p_values)

with

– p grid the grid associated to the controlled deterministic space,

– p condExp the conditional expectation operator by tree,

– p values the ai coefficients to reconstruct the cuts: its size corresponds to the
number of cut coefficients. Then the element i of p values permits to store the
ai coefficients for all nodes and all stock points.

• a second method taking as input a description of an hypercube (nb storages,2) describes
by its extreme coordinates:

– (i,0) coordinate corresponds to minimal coordinate value in dimension i

– (i,1) coordinate corresponds to maximal coordinate value in dimension i

1 Eigen:: ArrayXXd getCutsAllNodes(const Eigen:: ArrayXXd &p_hypStock) const

It return an array of cuts coefficients for all nodes in the tree at grid points inside the
hypercube.

– First dimension corresponds to the number of cuts coefficients by the number of
nodes.

– The second dimension corresponds to the number of points in the hypercube
p hypStock.

• a method to get an array of cuts for a give node.

1 Eigen:: ArrayXXd getCutsANode(const Eigen:: ArrayXXd &p_hypStock , const int &p_node

) const

where:

– p hypStock corresponds to an hypercube used to select some stock points as
previously,

– p node corresponds to the node number in the tree.

It returns an array with in first dimension the cut coefficient number, the second
dimension correspond to the number of the cut (corresponding to a stock point in the
hypercube).

• a method that permits to get the coefficients calculated.

1 const std::vector < Eigen::ArrayXXd > getValues () const

Python API

Importing the StOptTree module, the ContinuationCutsTree object is available in python.
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Part III

Solving optimization problems with
dynamic programming methods
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Chapter 7

Creating simulators

In order to optimize the control problem, the user has to develop some simulators permitting
to draw some trajectories of the uncertainties. This trajectories are used while optimizing
or in a simulation part testing the optimal control.

7.1 Simulators for regression methods

In the sequel, we suppose that we have developed a Simulator generating some Monte Carlo
simulations at the different optimization dates. In order to use the different frameworks
developed in the sequel we suppose that the Simulator is derived from the abstract class
SimulatorDPBase.

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef SIMULATORDPBASE_H

5 #define SIMULATORDPBASE_H

6 #include <Eigen/Dense >

7

8 /* \file SimulatorDPBase.h

9 * \brief Abstract class for simulators for Dynamic Programming Programms

10 * \author Xavier Warin

11 */

12

13 namespace StOpt

14 {

15 /// \class SimulatorDPBase SimulatorDPBase.h

16 /// Abstract class for simulator used in dynamic programming

17 class SimulatorDPBase

18 {

19

20

21 public :

22

23 /// \brief Constructor

24 SimulatorDPBase () {}

25 /// \brief Destructor

26 virtual ~SimulatorDPBase () {}

27 /// \brief get current markovian state : dimension of the problem for the first

dimension , second dimension the number of Monte Carlo simulations

28 virtual Eigen:: MatrixXd getParticles () const = 0;

29 /// \brief a step forward for simulations

30 virtual void stepForward () = 0;

31 /// \brief a step backward for simulations

32 virtual void stepBackward () = 0;

89



33 /// \brief a step forward for simulations

34 /// \return current particles (markovian state as assets for example) (dimension of

the problem times simulation number)

35 virtual Eigen:: MatrixXd stepForwardAndGetParticles () = 0;

36 /// \brief a step backward for simulations

37 /// \return current particles (markovian state as assets for example) (dimension of

the problem times simulation number)

38 virtual Eigen:: MatrixXd stepBackwardAndGetParticles () = 0;

39 /// \brief get back dimension of the regression

40 virtual int getDimension () const = 0;

41 /// \brief get the number of steps

42 virtual int getNbStep () const = 0;

43 /// \brief Get the current step size

44 virtual double getStep () const = 0;

45 /// \brief Get current time

46 virtual double getCurrentStep () const = 0 ;

47 /// \brief Number of Monte Carlo simulations

48 virtual int getNbSimul () const = 0;

49 /// \brief Permit to actualize for one time step (interest rate)

50 virtual double getActuStep () const = 0;

51 /// \brief Permits to actualize at the initial date (interest rate)

52 virtual double getActu () const = 0 ;

53

54 };

55 }

56 #endif /* SIMULATORDPBASE_H */

Supposing that the Simulator is a Black Scholes simulator for P assets, simulating M
Monte Carlo simulations, at N + 1 dates t0, . . . , tN , the Markov state for particle j, date ti,
Monte Carlo simulation k and asset p is Xk

p,i and we give below the meaning of the different
methods of SimulatorDPBase:

• the getParticle method gives at the current optimization/simulation date ti the
Markov states Xk

p,i in a matrix A such that A(p, k) = Xk
p,i,

• the stepForward method is used while simulating the assets evolution in forward: a
step forward is realized from ti to ti+1 and Brownian motions used for the assets are
updated at the new time step,

• the stepBackward method is used for simulation of the asset from the last date to
time 0. This method is used during an asset optimization by Dynamic Programming,

• the stepForwardAndGetParticles method: second and first method in one call,

• the stepBackwardAndGetParticles method: third and first method in one call,

• the getDimension method returns the number of assets,

• the getNbStep method returns the number of step (N),

• the getStep method returns the time step ti+1 − ti at the current time ti,

• the getNbSimul method returns M .

• the getActuStep method return the actualization factor on one time step

• the getActu method returns an actualization factor at the “0” date.

90



7.2 Simulators for trees

In order to develop solvers using tree methods, the user has to create a simulator derived from
the class SimulatorDPBaseTree. This simulator at each date reads in a geners archive, the
values of uncertainties at nodes and the probability transition. It is used in a deterministic
way in backward mode: nodes values are all explored sequentially. In forward mode, it
permits to sample discrete values of the state through the tree.

1 // Copyright (C) 2019 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef SIMULATORDPBASETREE_H

5 #define SIMULATORDPBASETREE_H

6 #include <Eigen/Dense >

7 #include "geners/BinaryFileArchive.hh"

8

9 /* \file SimulatorDPBaseTree.h

10 * \brief Abstract class for simulators for Dynamic Programming Programms with tree

11 * \author Xavier Warin

12 */

13

14 namespace StOpt

15 {

16 /// \class SimulatorDPBaseTree SimulatorDPBaseTree.h

17 /// Abstract class for simulator used in dynamic programming with trees

18 class SimulatorDPBaseTree

19 {

20 protected :

21

22 std::shared_ptr <gs:: BinaryFileArchive > m_binForTree ; ///< archive for tree

23 Eigen:: ArrayXd m_dates ; ///< list of dates in the archive

24 int m_idateCur ; ///< current date index

25 Eigen:: ArrayXXd m_nodesCurr ; ///< storing coordinates of the nodes at current date (

dim , nbnodes)

26 Eigen:: ArrayXXd m_nodesNext; ///< storing coordinates of the nodes at next date (dim ,

nbnodes)

27 std::vector <double > m_proba ; ///< value stores probability to go from on node at

index m_dateCurc to node at next date m_dateNext.

28 std::vector < std::vector < std::array <int , 2> > > m_connected ; ///<for each node at

current date , give a list of connected nodes at next date and index in probability

vector

29 /// \brief load a date

30 void load(const int &p_idateCur);

31

32 public :

33

34 /// \brief Constructor

35 SimulatorDPBaseTree () {}

36

37 /// \brief Constructor : use in backward

38 /// \param p_binforTree binary geners archive with structure

39 /// - dates -> eigen array of dates , size ndate

40 /// - nodes -> nDate array , each array containing nodes coordinates with

size (ndim , nbNodes)

41 /// - proba -> probabilities to go from node to another from a date to

the next date

42 /// - connected -> connecton matrix for a node at current date to go to a node

at next date

43 ///

44 SimulatorDPBaseTree(const std:: shared_ptr <gs:: BinaryFileArchive > &p_binForTree);

45

46 /// \brief Destructor

47 virtual ~SimulatorDPBaseTree () {}

48

49 /// \brief a step forward for simulations

50 virtual void stepForward () = 0;
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51

52 /// \brief sample one simulation in forward mode

53 /// \param p_nodeStart starting node

54 /// \param p_randUni uniform random in [0,1]

55 /// \return node reached

56 int getNodeReachedInForward(const int &p_nodeStart , const double &p_randUni) const ;

57

58

59 /// \brief a step backward for simulations

60 virtual void stepBackward () = 0;

61 /// \brief get back dimension of the problem

62 virtual int getDimension () const

63 {

64 return m_nodesCurr.rows();

65 }

66 /// \brief get the number of steps

67 virtual int getNbStep () const

68 {

69 return m_dates.size() - 1;

70 }

71 /// \brief Number of nodes at current date

72 virtual int getNbNodes () const

73 {

74 return m_nodesCurr.cols();

75 }

76 /// \brief Number of nodes at next date

77 virtual int getNbNodesNext () const

78 {

79 return m_nodesNext.cols();

80 }

81

82 /// \brief get back dates

83 inline Eigen :: ArrayXd getDates () const

84 {

85 return m_dates;

86 }

87

88 /// \brief get back the last date index

89 inline int getBackLastDateIndex () const

90 {

91 return m_dates.size() - 1;

92 }

93

94 /// \brief get back connection matrix :for each node at current date , give the node

connected

95 std::vector < std::vector < std::array <int , 2 > > > getConnected () const

96 {

97 return m_connected ;

98 }

99

100 /// \brief get back probabilities

101 inline std::vector < double > getProba () const

102 {

103 return m_proba;

104 }

105

106 /// \brief get current nodes

107 inline Eigen :: ArrayXXd getNodes () const

108 {

109 return m_nodesCurr ;

110 }

111

112 /// \brief get nodes at next date

113 inline Eigen :: ArrayXXd getNodesNext () const

114 {

115 return m_nodesNext ;

116 }

117

118 /// \brief Get number of simulations used in forward
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119 virtual inline int getNbSimul () const = 0;

120

121

122 /// \brief Get node number associated to a node

123 /// \param p_nodeIndex index of the node

124 virtual Eigen:: ArrayXd getValueAssociatedToNode(const int &p_nodeIndex) const = 0;

125

126 /// \brief get node associated to a simulation

127 /// \param p_isim simulation number

128 /// \return number of the node associated to a simulation

129 virtual int getNodeAssociatedToSim(const int &p_isim) const = 0;

130 };

131 }

132 #endif /* SIMULATORDPBASETREE_H */

While designing its tree the user has to call the based simulator constructor by providing a
geners archive giving

• An Eigen ArrayXd of the set of dates (size N) associated with the tree.

• A vector of probabilities P at each of the first N − 1 dates.

• A vector of vector of pair of int at each of the first N − 1 dates. Such a vector v,
at a given date, has the size of the number of nodes in the tree at this date. For a
node i, v[i] is the vector of arrival nodes number and probability index in P. Then
v[i][j].first is the number of a node at next date connected to node i at current
date. The transition probability is given by P[v[i][j].second].

In the geners archive, the storage is achieved as in the dump function in the file Trinomial

TreeOUSimulator.cpp storing the probabilities of connection matrix of a trinomial tree.

1 void TrinomialTreeOUSimulator ::dump(const std:: string &p_name , const Eigen :: ArrayXi &

p_index)

2 {

3 gs:: BinaryFileArchive binArxiv(p_name.c_str (), "w");

4 ArrayXd ddates(p_index.size());

5 for (int i = 0; i < p_index.size(); ++i)

6 ddates(i) = m_dates(p_index(i));

7 binArxiv << gs:: Record(ddates , "dates", "");

8 for (int i = 0 ; i < p_index.size(); ++i)

9 {

10 ArrayXXd points = getPoints(p_index(i));

11 binArxiv << gs:: Record(points , "points", "");

12 }

13 for (int i = 0 ; i < p_index.size() - 1; ++i)

14 {

15 ArrayXXd proba = getProbability(p_index(i), p_index(i + 1));

16 pair < vector < vector < array <int , 2> > >, vector < double > > conAndProb =

calConnected(proba);

17 binArxiv << gs:: Record(conAndProb.second , "proba", "");

18 binArxiv << gs:: Record(conAndProb.first , "connection", "");

19 }

20 }

The different methods the use has to provide are

• the stepForward method is used while simulating the assets evolution in forward:
a step forward is realized from ti to ti+1 and samples are generated to give discrete
uncertainties in the tree.
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• the stepBackward method is used while optimizing an asset from the last date to time
0 by Dynamic Programming. It should update the structure of the tree (probabilities,
connection between nodes)

• the getNbSimul giving the number of samples used in forward mode,

• the getValueAssociatedToNode method taking the number of a node and giving back
the state associated to this node,

• the getNodeAssociatedToSim method giving for a trajectory number in forward mode,
the number of the node visited at current date.

An example of simulator for HJM model with trinomial tree for the OU process is
MeanRevertingSimulatorTree.
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Chapter 8

Using conditional expectation to solve
simple problems

In this chapter we give some examples to value an American option. This use of the condi-
tional expectation operators can be extended to many stochastic problem using this previ-
ously developed objects.

8.1 American option by regression

8.1.1 The American option valuing by Longstaff–Schwartz

Suppose in this example that the payoff of the American option is given by g and that the
interest rate is 0. The value of the option is given by

Pt = esssupτ∈T[t,T ]
E(g(τ,Xτ ) | Ft) for t ≤ T P− a.s. , (8.1)

where T[t,T ] denotes the set of stopping times with values in [t, T ].

We recall the classical Longstaff–Schwartz Algorithm 6 estimating the empirical condi-
tional expectation using the regression estimation previously seen.

Algorithm 6 Algorithm with regression [optimal exercise time estimation]

Initialization:
Set τ̂

1,π,(j)
κ := T , j ≤ N

Backward induction:
for i = κ− 1 to 0 do

set τ̂ 1,π
i := ti1A1

i
+ τ̂ 1,π

i+11(A1
i )
c where A1

i := {g(ti, Xti) ≥ Ê[g(τ̂ 1,π
i+1, Xτ̂1,π

i+1
) | Fti ]}.

end for
Price estimator at 0: P̂ 1,π

0 := Ê[g(τ̂ 1,π
0 , Xτ̂1,π

0
)].
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American option by regression with the C++ API

We value in the algorithm below an American option using a simulator p sim, a regressor
p regressor, a payoff function p payoff:

1 double step = p_sim.getStep (); // time step increment

2 // asset simulated under the neutral risk probability: get the trend of the first

asset to get the interest rate

3 double expRate = exp(-step * p_sim.getMu ()(0));

4 // Terminal pay off

5 VectorXd Cash(p_payOff(p_sim.getParticles ()));

6 for (int iStep = 0; iStep < p_sim.getNbStep (); ++ iStep)

7 {

8 shared_ptr <ArrayXXd > asset(new ArrayXXd(p_sim.stepBackwardAndGetParticles ())); //

asset = Markov state

9 VectorXd payOffLoc = p_payOff (* asset); // pay off

10 // update conditional expectation operator for current Markov state

11 p_regressor.updateSimulations ((( iStep == (p_sim.getNbStep () - 1)) ? true : false),

asset);

12 // conditional expectation

13 VectorXd condEspec = p_regressor.getAllSimulations(Cash) * expRate;

14 // arbitrage between pay off and cash delivered after

15 Cash = (condEspec.array() < payOffLoc.array()).select(payOffLoc , Cash * expRate);

16 }

17 return Cash.mean();

American option with the Python API

Using the python API the American resolution is given below:

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import math as maths

6

7 # american option by Longstaff -Schwartz

8 # p_sim Monte Carlo simulator

9 # p_payOff Option pay off

10 # p_regressor regressor object

11 def resolution(p_simulator , p_payOff , p_regressor) :

12

13 step = p_simulator.getStep ()

14 # asset simulated under the neutral risk probability : get the trend of first asset to

get interest rate

15 expRate = np.exp(-step * p_simulator.getMu()[0])

16 # Terminal

17 particle = p_simulator.getParticles ()

18 Cash = p_payOff.operator(particle)

19

20 for iStep in range(0, p_simulator.getNbStep ()):

21 asset = p_simulator.stepBackwardAndGetParticles ()

22 payOffLoc = p_payOff.operator(asset)

23 isLastStep = False

24 if iStep == p_simulator.getNbStep () - 1 :

25 isLastStep = True

26

27 p_regressor.updateSimulations(isLastStep , asset)

28 # conditional expectation

29 condEspec = p_regressor.getAllSimulations(Cash).squeeze () * expRate

30 # arbitrage

31 Cash = np.where(condEspec < payOffLoc , payOffLoc , Cash * expRate)

32

33 return maths.fsum(Cash) / len(Cash)
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8.2 American options by tree

Using trees, American options are solved calculating the Bellman values at each date instead
of valuing them as expectation of payoff at optimal stopping time.

Algorithm 7 Algorithm with tree: Bellman value (0 interest rate)

Initialization:
Set P j := g(Xj

T ), j ≤ N(κ) . Number of node at last date
Backward induction:
for i = κ− 1 to 0 do

set P j = max[E[P | Xj
ti ], g(Xj

ti ], j ≤ N(i)
end for
Price estimator at 0: P 0.

8.2.1 The American option by tree

1 // a backward simulator

2 MeanRevertingSimulatorTree < OneDimData <OneDimRegularSpaceGrid , double > > backSimulator1

(binArxiv , futureGrid , sigma , mr);

3

4 // strike of put

5 double strike = 50.;

6

7 // actualization

8 double actu = exp(r * dates(dates.size() - 1));

9 // spot provided by simulator

10 ArrayXd spot = backSimulator1.getSpotValues () * actu;

11 // actualized value for payoff

12 ArrayXd val1 = (strike - spot).cwiseMax (0.) / actu;

13 for (int istep = 0; istep < nbDtStep; ++ istep)

14 {

15 // one step backward to update probabilities and connectons between nodes

16 backSimulator1.stepBackward ();

17 // probabilities

18 std::vector <double > proba = backSimulator1.getProba ();

19 // get connection between nodes

20 std::vector < std::vector <std::array <int , 2> > > connected = backSimulator1.

getConnected ();

21 // conditional expectation operator

22 StOpt::Tree tree(proba , connected);

23 // interest rates

24 actu = exp(r * dates(dates.size() - 1 - (istep + 1) * nInc));

25 // spot : add interest rate

26 spot = backSimulator1.getSpotValues () * actu;

27 // pay off

28 ArrayXd payOff = (strike - spot).cwiseMax (0.) / actu;

29 // actualize value

30 val1 = tree.expCond(val1);

31 // arbitrage

32 val1 = (val1 > payOff).select(val1 , payOff);

33 }

34

35 double finalValue = val1 (0);

8.2.2 Python API
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1 # backward simulator

2 backSimulator = Simulators.MeanRevertingSimulatorTree(archiveToRead , futureGrid ,

sigma , mr)

3

4 # strike

5 strike = 50.

6

7 # actu

8 actu = np.exp(r*dates[indexT [ -1]])

9 # spot : add interest rate

10 spot = backSimulator.getSpotValues ()*actu

11 # actualized payoff

12 val1= np.where( strike -spot >0,strike -spot ,0)/actu

13 for istep in np.arange(np.shape(indexT)[0]-1):

14 # backward in simulator

15 backSimulator.stepBackward ()

16 # get back probability matrix

17 proba = backSimulator.getProba ()

18 # and connection matrix

19 connected = backSimulator.getConnected ()

20 # creta tree for conditional expectation

21 tree=StOptTree.Tree(proba ,connected)

22 # interest rates

23 actu = np.exp(r*dates[indexT[-2-istep ]])

24 # spot : add interest rate

25 spot = backSimulator.getSpotValues ()*actu

26 # pay off

27 payOff = np.where( strike -spot >0,strike -spot ,0)/actu

28 # actualize value

29 val1 = tree.expCond(val1)

30 # arbitrage

31 val1 = np.where( val1 > payOff , val1 , payOff)

32

33 final = val1 [0]
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Chapter 9

Using the general framework to
manage stock problems

In this chapter the state is separated into three parts Xx,t = (Xx,t
1 , Xx,t

2 , It). (Xx,t
1 , Xx,t

2 ),
which corresponds to the special case of chapter 6 where Xx,t

1 is not controlled and Xx,t
2 is

controlled. Two cases can be tackled:

• the first case corresponds to the case where Xx,t
2 is deterministic (think of storage

management),

• the second case corresponds to the case where Xx,t
2 is stochastic (think of portfolio

optimization).

It takes some integers values and is here to describe some finite discrete regimes (to treat
some switching problems). A general framework is available to solve this kind of problem.
First, the second part Xx,t

2 is discretized on a grid as explained in chapter 6.

• Either a full grid is used for Xx,t
2 and two types of resolutions either sequential or

parallel be can considered:

– a resolution can be achieved sequentially or a parallelization with MPI on the
calculations can be achieved (speed up but no size up). This approach can be
used for problems in small dimension.

– a resolution can be achieved with a parallelization by the MPI framework by
spreading the work to be achieved on the grid points, and spread the data be-
tween processors (speed up and size up). We will denote this parallelization tech-
nique a “distribution” technique. This approach is necessary to tackle very big
optimization problems where the global solution cannot be stored in the memory
of a single processor.

• or the grid for Xx,t
2 is not full (so sparse) and only a parallelization by thread and MPI

can be achieved on the calculations (speed up and no size up). With sparse grids, only
the case Xx,t

2 deterministic is treated.

In the case of the MPI parallelization technique distributing task and data (full grids only),
[32] and [43] are used. Suppose that the grid is the same at each time step (only here to
ease the case), and that we have 4 processors (figure 9.1) then:
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• at the last time step, the final values at each point for each simulation are computed
(each processor computes the values for its own grid points),

• at the previous time step, from a grid point own by a processor, we are able to localize
the grids points attained at the next time step by all the commands,

• on figure 9.1, we give the points owned by other processors that can be reached from
points owned by processor 3,

• some MPI communications are achieved bringing back the data (values calculated at
the previous treated time step) needed by processor 3 to be able to update the value
calculated by dynamic programming at the current time for all the points owned by
processor 3,

• all the communications between all processors are achieved together.

Figure 9.1: Data to send to processor 3

The global state of the the problem is store in the StateWithStocks object.

9.1 General requirement about business object

In order to use the framework, the developer has to describe the problem he wants to solve
on one time step staring from a state Xx,t. This business object has to offer some common
methods and it is derived from OptimizerBase.

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef OPTIMIZERBASE_H

5 #define OPTIMIZERBASE_H

6 #include <Eigen/Dense >

7

8 /** \file OptimizerBase.h

9 * \brief Define an abstract class for Dynamic Programming problems solved by Monte Carlo

methods
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10 * \author Xavier Warin

11 */

12

13 namespace StOpt

14 {

15

16 /// \class OptimizerBase OptimizerBase.h

17 /// Base class for optimizer for Dynamic Programming with and without regression methods

18 class OptimizerBase

19 {

20

21

22 public :

23

24 OptimizerBase () {}

25

26 virtual ~OptimizerBase () {}

27

28 /// \brief defines the dimension to split for MPI parallelism

29 /// For each dimension return true is the direction can be split

30 virtual Eigen::Array < bool , Eigen ::Dynamic , 1> getDimensionToSplit () const = 0 ;

31

32 /// \brief defines the diffusion cone for parallelism

33 /// \param p_regionByProcessor region (min max) treated by the processor for

the different regimes treated

34 /// \return returns in each dimension the min max values in the stock that can be

reached from the grid p_gridByProcessor for each regime

35 virtual std::vector < std::array < double , 2> > getCone(const std::vector < std::array <

double , 2> > &p_regionByProcessor) const = 0;

36

37

38 /// \brief Get the number of regimes allowed for the asset to be reached at the

current time step

39 virtual int getNbRegime () const = 0 ;

40

41

42 /// \brief get back the dimension of the control

43 virtual int getNbControl () const = 0 ;

44

45 /// \brief get size of the function to follow in simulation

46 virtual int getSimuFuncSize () const = 0;

47

48 };

49 }

50 #endif /* OPTIMIZERBASE_H */

We detail all the methods that have to be implemented for all resolution methods (with or
without regressions).

• the getNbRegime permits to get the number of regimes of the problem: for example,
in switching problems, when there is a cost of switching, the working regime has to be
incorporated in the state. Another example is the case of conditional delta to calculate
for an asset: two regimes can be used: one to calculate the asset value and the second
one to calculate the ∆. This number of regimes can be time dependent: in this case
for a current resolution date t the getNbRegime method send the number of regimes
at the very beginning of the time step (in t−) such that a switch to a new regime can
occurred in t+.

• the getSimulator method is used to get back the simulator giving the Monte Carlo
simulations,

• the getSimuFuncSize method is used in simulation to define the number of functions
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to follow in the simulation part. For example in a stochastic target problem where the
target is a given wealth with a given probability, one may want to follow the evolution
of the probability at each time step and the wealth obtained while trading. In this
case the getSimuFuncSize returns 2.

• the getCone method is only relevant if the MPI framework with distribution is used.
As argument it take a vector of size the dimension of the grid. Each component of the
vector is an array containing the minimal and maximal coordinates values of points
in the current grid defining an hyper cube H1. It returns for each dimension, the
coordinates min and max of the hyper cube H2 containing the points that can be
reached by applying a command from a grid point in H1.

• the getDimensionToSplit method permits to define in the MPI framework with dis-
tribution which directions to split for solution distribution on processors. For each
dimension it returns a Boolean where true means that the direction is a candidate for
splitting.

• the stepSimulateControl method is used after optimization using the optimal con-
trols calculated in the optimization part. From a state p state (storing the Xx,t), the
optimal control calculated in optimization p control, the optimal functions values
along the current trajectory are stored in p phiInOut. The state p state is updated
during at the end of the call function.

In a first part we present the framework for problems where conditional expecta-
tion is calculated by regression (case where X t,x

2 is not controlled). Then we develop the
framework not using regression for conditional expectation calculations. All conditional ex-
pectation are calculated using exogenous particles and interpolation. This will be typically
the case for portfolio optimization.

9.2 Solving the problem using conditional expectation

calculated by regressions

In this part we suppose that Xx,t
2 is controlled and deterministic so regression methods can

be used.

9.2.1 Requirement to use the framework

The OptimizerBaseInterp is an optimizer class common to all regression methods used by
dynamic programming. We detail the methods of OptimizerBaseInterp which is a derived
from OptimizerBase. Only one method is added:

• the stepSimulateControl method is used after optimization using the optimal con-
trols calculated in the optimization part. From a state p state (storing the Xx,t), the
optimal control calculated in optimization p control, the optimal functions values
along the current trajectory are stored in p phiInOut. The state p state is updated
during at the end of the call function.
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9.2.2 Classical regression

By classical regression, we mean regression problems with storages where the optimal com-
mand is calculated on one time step and estimated by testing all possible discretized com-
mands.
In order to use the framework with regression for conditional expectation, a business object
describing the business on one time step from one state is derived from OptimizerDPBase

itself derived from OptimizerBaseInterp.

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef OPTIMIZERDPBASE_H

5 #define OPTIMIZERDPBASE_H

6 #include <Eigen/Dense >

7 #include "StOpt/core/utils/StateWithStocks.h"

8 #include "StOpt/core/grids/SpaceGrid.h"

9 #include "StOpt/regression/BaseRegression.h"

10 #include "StOpt/regression/ContinuationValue.h"

11 #include "StOpt/regression/GridAndRegressedValue.h"

12 #include "StOpt/dp/SimulatorDPBase.h"

13 #include "StOpt/dp/OptimizerBaseInterp.h"

14

15 /** \file OptimizerDPBase.h

16 * \brief Define an abstract class for Dynamic Programming problems solved by regression

methods

17 * \author Xavier Warin

18 */

19

20 namespace StOpt

21 {

22

23 /// \class OptimizerDPBase OptimizerDPBase.h

24 /// Base class for optimizer for Dynamic Programming with regression methods

25 class OptimizerDPBase : public OptimizerBaseInterp

26 {

27

28

29 public :

30

31 OptimizerDPBase () {}

32

33 virtual ~OptimizerDPBase () {}

34

35 /// \brief defines the diffusion cone for parallelism

36 /// \param p_regionByProcessor region (min max) treated by the processor for

the different regimes treated

37 /// \return returns in each dimension the min max values in the stock that can be

reached from the grid p_gridByProcessor for each regime

38 virtual std::vector < std::array < double , 2> > getCone(const std::vector < std::array <

double , 2> > &p_regionByProcessor) const = 0;

39

40 /// \brief defines the dimension to split for MPI parallelism

41 /// For each dimension return true is the direction can be split

42 virtual Eigen::Array < bool , Eigen ::Dynamic , 1> getDimensionToSplit () const = 0 ;

43

44 /// \brief defines a step in optimization

45 /// \param p_grid grid at arrival step after command

46 /// \param p_stock coordinates of the stock point to treat

47 /// \param p_condEsp continuation values for each regime

48 /// \param p_phiIn for each regime gives the solution calculated at the previous

step ( next time step by Dynamic Programming resolution) : structure of the 2D

array ( nb simulation ,nb stocks )

49 /// \return a pair :

50 /// - for each regimes (column) gives the solution for each particle (row)

51 /// - for each control (column) gives the optimal control for each
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particle (rows)

52 /// .

53 virtual std::pair < Eigen ::ArrayXXd , Eigen ::ArrayXXd > stepOptimize(const std::

shared_ptr < StOpt::SpaceGrid > &p_grid , const Eigen:: ArrayXd &p_stock ,

54 const std::vector < StOpt:: ContinuationValue > &p_condEsp ,

55 const std:: vector < std::shared_ptr < Eigen:: ArrayXXd > > &p_phiIn) const = 0;

56

57

58 /// \brief defines a step in simulation

59 /// Notice that this implementation is not optimal but is convenient if the control is

discrete.

60 /// By avoiding interpolation in control we avoid non admissible control

61 /// Control are recalculated during simulation.

62 /// \param p_grid grid at arrival step after command

63 /// \param p_continuation defines the continuation operator for each regime

64 /// \param p_state defines the state value (modified)

65 /// \param p_phiInOut defines the value functions (modified) : size number of

functions to follow

66 virtual void stepSimulate(const std::shared_ptr < StOpt ::SpaceGrid > &p_grid , const std

::vector < StOpt:: GridAndRegressedValue > &p_continuation ,

67 StOpt:: StateWithStocks &p_state ,

68 Eigen::Ref <Eigen ::ArrayXd > p_phiInOut) const = 0 ;

69

70

71 /// \brief Defines a step in simulation using interpolation in controls

72 /// \param p_grid grid at arrival step after command

73 /// \param p_control defines the controls

74 /// \param p_state defines the state value (modified)

75 /// \param p_phiInOut defines the value function (modified): size number of

functions to follow

76 virtual void stepSimulateControl(const std::shared_ptr < StOpt::SpaceGrid > &p_grid ,

const std::vector < StOpt:: GridAndRegressedValue > &p_control ,

77 StOpt:: StateWithStocks &p_state ,

78 Eigen::Ref <Eigen ::ArrayXd > p_phiInOut) const = 0 ;

79

80

81

82 /// \brief Get the number of regimes allowed for the asset to be reached at the

current time step

83 /// If \f$ t \f$ is the current time , and $\f$ dt \f$ the resolution step , this is

the number of regime allowed on \f$[ t- dt, t[\f$

84 virtual int getNbRegime () const = 0 ;

85

86 /// \brief get the simulator back

87 virtual std:: shared_ptr < StOpt:: SimulatorDPBase > getSimulator () const = 0;

88

89 /// \brief get back the dimension of the control

90 virtual int getNbControl () const = 0 ;

91

92 /// \brief get size of the function to follow in simulation

93 virtual int getSimuFuncSize () const = 0;

94

95 };

96 }

97 #endif /* OPTIMIZERDPBASE_H */

We detail the different methods derived from OptimizerDPBase to implement in addition
to the methods of OptimizerBaseInterp:

• the stepOptimize method is used in optimization. We want to calculate the optimal
value at current ti at a grid point p stock using a grid p grid at the next date ti+1,
the continuation values for all regimes p condEsp permitting to calculate conditional
expectation of the optimal value function calculated at the previously treated time
step ti+1. From a grid point p stock it calculates the function values and the optimal
controls. It returns a pair where the

104



– first element is a matrix (first dimension is the number of simulations, second
dimension the number of regimes) giving the function value,

– second element is a matrix (first dimension is the number of simulations, second
dimension the number of controls) giving the optimal control.

• the stepSimulate method is used after optimization using the continuation values
calculated in the optimization part. From a state p state (storing the Xx,t), the
continuation values calculated in optimization p continuation, the optimal functions
values along the current trajectory are stored in p phiInOut.

In the case of a gas storage [45], the holder of the storage can inject gas from the network
in the storage (paying the market price) or withdraw gas from the storage on the network
(receiving the market price). In this case the Optimize object is given in the Optimize

GasStorage.h file. You can have a look at the implementation of the getCone method.

The framework in optimization with classical regressions

Once an Optimizer is derived for the project, and supposing that a full grid is used for the
stock discretization, the framework provides a TransitionStepRegressionDPDist object
in MPI that permits to solve the optimization problem with distribution of the data on one
time step with the following constructor:

1 TransitionStepRegressionDPDist(const shared_ptr <FullGrid > &p_pGridCurrent ,

2 const shared_ptr <FullGrid > &p_pGridPrevious ,

3 const shared_ptr <OptimizerDPBase > &p_pOptimize):

with

• p pGridCurrent is the grid at the current time step (ti),

• p pGridPrevious is the grid at the previously treated time step (ti+1),

• p pOptimize the optimizer object

Remark 6 A similar object is available without the MPI distribution framework Transi

tionStepRegressionDP with still enabling parallelization with threads and MPI on the cal-
culations on the full grid points.

Remark 7 In the case of sparse grids with only parallelization on the calculations (threads
and MPI) TransitionStepRegressionDPSparse object can be used.

The main method is

1 std::vector < shared_ptr < Eigen:: ArrayXXd > > OneStep(const std::vector < shared_ptr <

Eigen:: ArrayXXd > > &p_phiIn ,

2 const shared_ptr < BaseRegression > &p_condExp)

with

• p phiIn the vector (its size corresponds to the number of regimes) of matrix of optimal
values calculated at the previous time iteration for each regime. Each matrix is a
number of simulations by number of stock points matrix.
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• p condExp the conditional expectation operator,

returning a pair:

• first element is a vector of matrix with new optimal values at the current time step
(each element of the vector corresponds to a regime and each matrix is a number of
simulations by number of stock points matrix).

• second element is a vector of matrix with new optimal controls at the current time
step (each element of the vector corresponds to a control and each matrix is a number
of simulations by number of stock points matrix).

Remark 8 All TransitionStepRegressionDP derive from a TransitionStepRegression

Base object having a pure virtual OneStep method.

A second method is provided permitting to dump the continuation values of the problem
and the optimal control at each time step:

1 void dumpContinuationValues(std::shared_ptr <gs:: BinaryFileArchive > p_ar , const std::

string &p_name , const int &p_iStep ,

2 const std::vector < std:: shared_ptr < Eigen:: ArrayXXd > > &

p_phiInPrev ,

3 const std::vector < std:: shared_ptr < Eigen:: ArrayXXd > > &

p_control ,

4 const std::shared_ptr <BaseRegression > &p_condExp ,

5 const bool &p_bOneFile) const

with:

• p ar is the archive where controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the solution at the previous time step used to calculate the continuation
values that are stored,

• p control stores the optimal controls calculated at the current time step,

• p condExp is the conditional expectation object permitting to calculate conditional
expectation of functions defined at the previous time step treated p phiInPrev and
permitting to store a representation of the optimal control.

• p bOneFile is set to one if the continuation and optimal controls calculated by each
processor are dumped on a single file. Otherwise the continuation and optimal controls
calculated by each processor are dumped on different files (one by processor). If the
problem gives continuation and optimal control values on the global grid that can be
stored in the memory of the computation node, it can be more interesting to dump
the continuation/control values in one file for the simulation of the optimal policy.

Remark 9 As for the TransitionStepRegressionDP and the TransitionStepRegres

sionDPSparse object, their dumpContinuationValues does not need a p bOneFile argu-
ment: obviously optimal controls and solutions are stored in a single file.
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We give here a simple example of a time resolution using this method when the MPI distri-
bution of data is used

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifdef USE_MPI

5 #include <fstream >

6 #include <memory >

7 #include <functional >

8 #include <boost/lexical_cast.hpp >

9 #include <boost/mpi.hpp >

10 #include <Eigen/Dense >

11 #include "geners/BinaryFileArchive.hh"

12 #include "StOpt/core/grids/FullGrid.h"

13 #include "StOpt/regression/BaseRegression.h"

14 #include "StOpt/dp/FinalStepDPDist.h"

15 #include "StOpt/dp/TransitionStepRegressionDPDist.h"

16 #include "StOpt/core/parallelism/reconstructProc0Mpi.h"

17 #include "StOpt/dp/OptimizerDPBase.h"

18 #include "StOpt/dp/SimulatorDPBase.h"

19

20

21 using namespace std;

22

23 double DynamicProgrammingByRegressionDist(const shared_ptr <StOpt ::FullGrid > &p_grid ,

24 const shared_ptr <StOpt:: OptimizerDPBase > &p_optimize ,

25 shared_ptr <StOpt :: BaseRegression > &p_regressor ,

26 const function <double(const int &, const Eigen :: ArrayXd &, const Eigen :: ArrayXd &)>

&p_funcFinalValue ,

27 const Eigen:: ArrayXd &p_pointStock ,

28 const int &p_initialRegime ,

29 const string &p_fileToDump ,

30 const bool &p_bOneFile)

31 {

32 // from the optimizer get back the simulator

33 shared_ptr < StOpt:: SimulatorDPBase > simulator = p_optimize ->getSimulator ();

34 // final values

35 vector < shared_ptr < Eigen:: ArrayXXd > > valuesNext = StOpt:: FinalStepDPDist(p_grid ,

p_optimize ->getNbRegime (), p_optimize ->getDimensionToSplit ())(p_funcFinalValue ,

simulator ->getParticles ().array ());

36 // dump

37 boost::mpi:: communicator world;

38 string toDump = p_fileToDump ;

39 // test if one file generated

40 if (! p_bOneFile)

41 toDump += "_" + boost:: lexical_cast <string >( world.rank());

42 shared_ptr <gs:: BinaryFileArchive > ar;

43 if ((! p_bOneFile) || (world.rank() == 0))

44 ar = make_shared <gs:: BinaryFileArchive >( toDump.c_str (), "w");

45 // name for object in archive

46 string nameAr = "Continuation";

47 for (int iStep = 0; iStep < simulator ->getNbStep (); ++ iStep)

48 {

49 Eigen:: ArrayXXd asset = simulator ->stepBackwardAndGetParticles ();

50 // conditional expectation operator

51 p_regressor ->updateSimulations ((( iStep == (simulator ->getNbStep () - 1)) ? true :

false), asset);

52 // transition object

53 StOpt:: TransitionStepRegressionDPDist transStep(p_grid , p_grid , p_optimize);

54 pair < vector < shared_ptr < Eigen :: ArrayXXd > >, vector < shared_ptr < Eigen :: ArrayXXd

> > > valuesAndControl = transStep.oneStep(valuesNext , p_regressor);

55 transStep.dumpContinuationValues(ar, nameAr , iStep , valuesNext , valuesAndControl.

second , p_regressor , p_bOneFile);

56 valuesNext = valuesAndControl.first;

57 }

58 // reconstruct a small grid for interpolation

59 return StOpt :: reconstructProc0Mpi(p_pointStock , p_grid , valuesNext[p_initialRegime],
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p_optimize ->getDimensionToSplit ()).mean();

60

61 }

62 #endif

An example without distribution of the data can be found in the DynamicProgrammingByRe

gression.cpp file. We give at last a table with the different TransitionStepRegression

objects to use depending on the type of parallelization used.

Table 9.1: Which TransitionStepRegression object to use depending on the grid used
and the type of parallelization used.

Full grid Sparse grid
Sequential TransitionStepRegressionDP TransitionStepRegressionDPSparse

Parallelization on calculations TransitionStepRegressionDP TransitionStepRegressionDPSparse

threads and MPI
Distribution of calculations TransitionStepRegressionDPDist Not available

and data

The framework in simulation with classical regressions

Once the optimization has been achieved, continuation values are dumped in one file (or
some files) at each time step. In order to simulate the optimal policy, we can use the
continuation values previously calculated (see chapter 6) or we can use the optimal controls
calculated in optimization. In continuous optimization, using the control is more effective in
term of computational cost. When the control is discrete, interpolation of the controls can
lead to non admissible controls and simulation with the value function is more accurate.
While simulating the optimal control, two cases can occur:

• For most of the case (small dimensional case), the optimal control or the optimal
function value can be stored in the memory of the computing node and function values
and controls are stored in a single file. In this case a simulation of the optimal control
can easily be achieved by distributing the Monte Carlo simulations on the available
calculations nodes: this can be achieved by using the SimulateStepRegression or
SimulateStepRegressionControl objects at each time step of the simulation.

• When dealing with very large problems, optimization is achieved by distributing the
data on the processors and it is impossible to store the optimal command on one
node. In this case, optimal controls and optimal solutions are stored in the memory
of the node that has been used to calculate them in optimization. Simulations are
reorganized at each time step and gathered so that they occupy the same part of the
global grid. Each processor will then get from other processors a localized version
of the optimal control or solution that it needs. This methodology is used in the
SimulateStepRegressionDist and SimulateStepRegressionControlDist objects.

We detail the simulations objects using the optimal function value calculated in optimization
and the optimal control for the case of very big problems.
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• Simulation step using the value function calculated in optimization:

In order to simulate one step of the optimal policy, an object SimulateStepRegres

sionDist is provided with constructor

1 SimulateStepRegressionDist(gs:: BinaryFileArchive &p_ar , const int &p_iStep , const

std:: string &p_nameCont ,

2 const shared_ptr <FullGrid > &p_pGridFollowing , const

shared_ptr <OptimizerDPBase > &p_pOptimize ,

3 const bool &p_bOneFile)

where

– p ar is the binary archive where the continuation values are stored,

– p iStep is the number associated to the current time step (0 at the beginning
date of simulation, the number is increased by one at each time step simulated),

– p nameCont is the base name for continuation values,

– p GridFollowing is the grid at the next time step (p iStep+1),

– p Optimize the Optimizer describing the transition from one time step to the
following one,

– p OneFile equal to true if a single archive is used to store continuation values.

Remark 10 A version without distribution of data but with multithreaded and with
MPI possible on calculations is available with the object SimulateStepRegression.
The p OneFile argument is omitted during construction.

This object implements the method oneStep

1 void oneStep(std::vector <StateWithStocks > &p_statevector , Eigen:: ArrayXXd &

p_phiInOut)

where:

– p statevector store the states for the all the simulations: this state is updated
by application of the optimal command,

– p phiInOut stores the gain/cost functions for all the simulations: it is updated
by the function call. The size of the array is (nb, nbSimul) where nb is given
by the getSimuFuncSize method of the optimizer and nbSimul the number of
Monte Carlo simulations.

An example of the use of this method to simulate an optimal policy with distribution
is given below:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef SIMULATEREGREGRESSIONDIST_H

5 #define SIMULATEREGREGRESSIONDIST_H

6 #include <functional >

7 #include <memory >
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8 #include <Eigen/Dense >

9 #include <boost/mpi.hpp >

10 #include "geners/BinaryFileArchive.hh"

11 #include "StOpt/core/grids/FullGrid.h"

12 #include "StOpt/core/utils/StateWithStocks.h"

13 #include "StOpt/dp/SimulateStepRegressionDist.h"

14 #include "StOpt/dp/OptimizerDPBase.h"

15 #include "StOpt/dp/SimulatorDPBase.h"

16

17

18 /** \file SimulateRegressionDist.h

19 * \brief Defines a simple program showing how to use simulation

20 * A simple grid is used

21 * \author Xavier Warin

22 */

23

24

25 /// \brief Simulate the optimal strategy , mpi version

26 /// \param p_grid grid used for deterministic state (stocks for

example)

27 /// \param p_optimize optimizer defining the optimization between two

time steps

28 /// \param p_funcFinalValue function defining the final value

29 /// \param p_pointStock initial point stock

30 /// \param p_initialRegime regime at initial date

31 /// \param p_fileToDump name associated to dumped bellman values

32 /// \param p_bOneFile do we store continuation values in only one file

33 double SimulateRegressionDist(const std::shared_ptr <StOpt ::FullGrid > &p_grid ,

34 const std:: shared_ptr <StOpt:: OptimizerDPBase > &

p_optimize ,

35 const std::function <double(const int &, const Eigen ::

ArrayXd &, const Eigen:: ArrayXd &)> &

p_funcFinalValue ,

36 const Eigen:: ArrayXd &p_pointStock ,

37 const int &p_initialRegime ,

38 const std:: string &p_fileToDump ,

39 const bool &p_bOneFile)

40 {

41 boost::mpi:: communicator world;

42 // from the optimizer get back the simulator

43 std::shared_ptr < StOpt:: SimulatorDPBase > simulator = p_optimize ->getSimulator ();

44 int nbStep = simulator ->getNbStep ();

45 std::vector < StOpt:: StateWithStocks > states;

46 states.reserve(simulator ->getNbSimul ());

47 for (int is = 0; is < simulator ->getNbSimul (); ++is)

48 states.push_back(StOpt:: StateWithStocks(p_initialRegime , p_pointStock , Eigen ::

ArrayXd ::Zero(simulator ->getDimension ())));

49 std:: string toDump = p_fileToDump ;

50 // test if one file generated

51 if (! p_bOneFile)

52 toDump += "_" + boost:: lexical_cast <std::string >( world.rank());

53 gs:: BinaryFileArchive ar(toDump.c_str(), "r");

54 // name for continuation object in archive

55 std:: string nameAr = "Continuation";

56 // cost function

57 Eigen:: ArrayXXd costFunction = Eigen :: ArrayXXd ::Zero(p_optimize ->getSimuFuncSize ()

, simulator ->getNbSimul ());

58 for (int istep = 0; istep < nbStep; ++istep)

59 {

60 StOpt:: SimulateStepRegressionDist(ar, nbStep - 1 - istep , nameAr , p_grid ,

p_optimize , p_bOneFile).oneStep(states , costFunction);

61

62 // new stochastic state

63 Eigen:: ArrayXXd particles = simulator ->stepForwardAndGetParticles ();

64 for (int is = 0; is < simulator ->getNbSimul (); ++is)

65 states[is]. setStochasticRealization(particles.col(is));

66

67 }

68 // final : accept to exercise if not already done entirely (here suppose one
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function to follow)

69 for (int is = 0; is < simulator ->getNbSimul (); ++is)

70 costFunction (0, is) += p_funcFinalValue(states[is]. getRegime (), states[is].

getPtStock (), states[is]. getStochasticRealization ()) * simulator ->getActu

();

71

72 return costFunction.mean();

73 }

74

75 #endif /* SIMULATEREGRESSIONDIST_H */

The version of the previous example using a single archive storing the control/solution
is given in the SimulateRegression.h file.

• Simulation step using the optimal controls calculated in optimization:

1 SimulateStepRegressionControlDist(gs:: BinaryFileArchive &p_ar , const int &p_iStep

, const std:: string &p_nameCont ,

2 const std:: shared_ptr <FullGrid > &p_pGridCurrent

,

3 const std:: shared_ptr <FullGrid > &

p_pGridFollowing ,

4 const std::shared_ptr <OptimizerDPBase > &

p_pOptimize ,

5 const bool &p_bOneFile);

where

– p ar is the binary archive where the continuation values are stored,

– p iStep is the number associated to the current time step (0 at the beginning
date of simulation, the number is increased by one at each time step simulated),

– p nameCont is the base name for control values,

– p GridCurrent is the grid at the current time step (p iStep),

– p GridFollowing is the grid at the next time step (p iStep+1),

– p Optimize is the Optimizer describing the transition from one time step to the
following one,

– p OneFile equals true if a single archive is used to store continuation values.

Remark 11 A version where a single archive storing the control/solution is used is
available with the object SimulateStepRegressionControl

This object implements the method oneStep

1 void oneStep(std::vector <StateWithStocks > &p_statevector , Eigen:: ArrayXd &

p_phiInOut)

where:

– p statevector stores for all the simulations the state: this state is updated by
application of the optimal commands,
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– p phiInOut stores the gain/cost functions for all the simulations: it is updated
by the function call. The size of the array is (nb, nbSimul) where nb is given
by the getSimuFuncSize method of the optimizer and nbSimul the number of
Monte Carlo simulations.

An example of the use of this method to simulate an optimal policy with distribution
is given below:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifdef USE_MPI

5 #ifndef SIMULATEREGREGRESSIONCONTROLDIST_H

6 #define SIMULATEREGREGRESSIONCONTROLDIST_H

7 #include <functional >

8 #include <memory >

9 #include <Eigen/Dense >

10 #include <boost/mpi.hpp >

11 #include "geners/BinaryFileArchive.hh"

12 #include "StOpt/core/grids/FullGrid.h"

13 #include "StOpt/core/utils/StateWithStocks.h"

14 #include "StOpt/dp/SimulateStepRegressionControlDist.h"

15 #include "StOpt/dp/OptimizerDPBase.h"

16 #include "StOpt/dp/SimulatorDPBase.h"

17

18

19 /** \file SimulateRegressionControlDist.h

20 * \brief Defines a simple program showing how to use simulation

21 * A simple grid is used

22 * \author Xavier Warin

23 */

24

25

26 /// \brief Simulate the optimal strategy using optimal controls calculated in

optimization , mpi version

27 /// \param p_grid grid used for deterministic state (stocks for

example)

28 /// \param p_optimize optimizer defining the optimization between two

time steps

29 /// \param p_funcFinalValue function defining the final value

30 /// \param p_pointStock initial point stock

31 /// \param p_initialRegime regime at initial date

32 /// \param p_fileToDump name associated to dumped bellman values

33 /// \param p_bOneFile do we store continuation values in only one file

34 double SimulateRegressionControlDist(const std::shared_ptr <StOpt::FullGrid > &p_grid ,

35 const std:: shared_ptr <StOpt:: OptimizerDPBase > &

p_optimize ,

36 const std::function <double(const int &, const

Eigen:: ArrayXd &, const Eigen:: ArrayXd &)> &

p_funcFinalValue ,

37 const Eigen:: ArrayXd &p_pointStock ,

38 const int &p_initialRegime ,

39 const std:: string &p_fileToDump ,

40 const bool &p_bOneFile)

41 {

42 boost::mpi:: communicator world;

43 // from the optimizer get back the simulator

44 std::shared_ptr < StOpt:: SimulatorDPBase > simulator = p_optimize ->getSimulator ();

45 int nbStep = simulator ->getNbStep ();

46 std::vector < StOpt:: StateWithStocks > states;

47 states.reserve(simulator ->getNbSimul ());

48 for (int is = 0; is < simulator ->getNbSimul (); ++is)

49 states.push_back(StOpt:: StateWithStocks(p_initialRegime , p_pointStock , Eigen ::

ArrayXd ::Zero(simulator ->getDimension ())));

50 std:: string toDump = p_fileToDump ;

51 // test if one file generated
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52 if (! p_bOneFile)

53 toDump += "_" + boost:: lexical_cast <std::string >( world.rank());

54 gs:: BinaryFileArchive ar(toDump.c_str(), "r");

55 // name for continuation object in archive

56 std:: string nameAr = "Continuation";

57 // cost function

58 Eigen:: ArrayXXd costFunction = Eigen :: ArrayXXd ::Zero(p_optimize ->getSimuFuncSize ()

, simulator ->getNbSimul ());

59 for (int istep = 0; istep < nbStep; ++istep)

60 {

61 StOpt:: SimulateStepRegressionControlDist(ar , nbStep - 1 - istep , nameAr ,

p_grid , p_grid , p_optimize , p_bOneFile).oneStep(states , costFunction);

62

63 // new stochastic state

64 Eigen:: ArrayXXd particules = simulator ->stepForwardAndGetParticles ();

65 for (int is = 0; is < simulator ->getNbSimul (); ++is)

66 states[is]. setStochasticRealization(particules.col(is));

67 }

68 // final : accept to exercise if not already done entirely (here suppose one

function to follow)

69 for (int is = 0; is < simulator ->getNbSimul (); ++is)

70 costFunction (0, is) += p_funcFinalValue(states[is]. getRegime (), states[is].

getPtStock (), states[is]. getStochasticRealization ()) * simulator ->getActu

();

71

72 return costFunction.mean();

73 }

74

75 #endif /* SIMULATEREGRESSIONCONTROLDIST_H */

76 #endif

The version of the previous example using a single archive storing the control/solution
is given in the SimulateRegressionControl.h file.

In the table below we indicate which simulation object should be used at each time step
depending on the TransitionStepRegressionDP object used in optimization.
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9.2.3 Regressions and cuts for linear continuous transition prob-
lems with some concavity, convexity features

When optimizing for example a storage, we may want to solve the transition problem on
some time steps supposing that uncertainties are known. The Bellman values for a given
uncertainty are then concave with respect to the storage when trying to maximize some
earnings for example. When the problem is linear continuous, we can use some bender cuts
to approximate the Bellman value with respect to the storage level as in the SDDP method
14. In order to use this cuts a business object using some LP solver has to be created. This
business object is derived from OptimizerDPCutBase itself derived from OptimizerBaseIn

terp.

1 // Copyright (C) 2019 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef OPTIMIZERDPCUTBASE_H

5 #define OPTIMIZERDPCUTBASE_H

6 #include <Eigen/Dense >

7 #include "StOpt/core/utils/StateWithStocks.h"

8 #include "StOpt/core/grids/SpaceGrid.h"

9 #include "StOpt/regression/BaseRegression.h"

10 #include "StOpt/regression/ContinuationCuts.h"

11 #include "StOpt/dp/SimulatorDPBase.h"

12 #include "StOpt/dp/OptimizerBase.h"

13

14 /** \file OptimizerDPCutBase.h

15 * \brief Define an abstract class for Dynamic Programming problems solved by regression

methods using cust to approximate

16 * Bellman values

17 * \author Xavier Warin

18 */

19

20 namespace StOpt

21 {

22

23 /// \class OptimizerDPCutBase OptimizerDPCutBase.h

24 /// Base class for optimizer for Dynamic Programming with regression methods and cuts , so

using LP to solve transitional problems

25 class OptimizerDPCutBase : public OptimizerBase

26 {

27

28

29 public :

30

31 OptimizerDPCutBase () {}

32

33 virtual ~OptimizerDPCutBase () {}

34

35 /// \brief defines the diffusion cone for parallelism

36 /// \param p_regionByProcessor region (min max) treated by the processor for

the different regimes treated

37 /// \return returns in each dimension the min max values in the stock that can be

reached from the grid p_gridByProcessor for each regime

38 virtual std::vector < std::array < double , 2> > getCone(const std::vector < std::array <

double , 2> > &p_regionByProcessor) const = 0;

39

40 /// \brief defines the dimension to split for MPI parallelism

41 /// For each dimension return true is the direction can be split

42 virtual Eigen::Array < bool , Eigen ::Dynamic , 1> getDimensionToSplit () const = 0 ;

43

44 /// \brief defines a step in optimization

45 /// \param p_grid grid at arrival step after command

46 /// \param p_stock coordinates of the stock point to treat

47 /// \param p_condEsp continuation values for each regime
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48 /// \return For each regimes (column) gives the solution for each particle , and cut

(row)

49 /// For a given simulation , cuts components (C) at a point stock \$ \bar S

\f$ are given such that the cut is given by

50 /// \f$ C[0] + \sum_{i=1}^d C[i] (S_i - \bat S_i) \f$

51 virtual Eigen:: ArrayXXd stepOptimize(const std:: shared_ptr < StOpt::SpaceGrid > &

p_grid , const Eigen:: ArrayXd &p_stock ,

52 const std::vector < StOpt:: ContinuationCuts > &

p_condEsp) const = 0;

53

54

55 /// \brief defines a step in simulation

56 /// Control are recalculated during simulation using a local optimzation using the LP

57 /// \param p_grid grid at arrival step after command

58 /// \param p_continuation defines the continuation operator for each regime

59 /// \param p_state defines the state value (modified)

60 /// \param p_phiInOut defines the value functions (modified) : size number of

functions to follow

61 virtual void stepSimulate(const std::shared_ptr < StOpt ::SpaceGrid > &p_grid , const std

::vector < StOpt:: ContinuationCuts > &p_continuation ,

62 StOpt:: StateWithStocks &p_state ,

63 Eigen::Ref <Eigen ::ArrayXd > p_phiInOut) const = 0 ;

64

65

66 /// \brief Get the number of regimes allowed for the asset to be reached at the

current time step

67 /// If \f$ t \f$ is the current time , and $\f$ dt \f$ the resolution step , this is

the number of regime allowed on \f$[ t- dt, t[\f$

68 virtual int getNbRegime () const = 0 ;

69

70 /// \brief get the simulator back

71 virtual std:: shared_ptr < StOpt:: SimulatorDPBase > getSimulator () const = 0;

72

73 /// \brief get back the dimension of the control

74 virtual int getNbControl () const = 0 ;

75

76 /// \brief get size of the function to follow in simulation

77 virtual int getSimuFuncSize () const = 0;

78

79 };

80 }

81 #endif /* OPTIMIZERDPCUTBASE_H */

We detail the different methods to implement in addition to the methods of OptimizerBa

seInterp:

• the stepOptimize method is used in optimization. We want to calculate the optimal
value and the corresponding sensibilities with respect to the stocks at current ti at a
grid point p stock using a grid p grid at the next date ti+1, the continuation cuts
values for all regimes p condEsp permitting to calculate an upper estimation (when
maximizing) of conditional expectation of the optimal values using some optimization
calculated at the previously treated time step ti+1. From a grid point p stock it calcu-
lates the function values and the corresponding sensibilities. It returns a matrix (first
dimension is the number of simulations by the number of cuts components (number of
storage +1), second dimension the number of regimes) giving the function value and
sensibilities.

• the stepSimulate method is used after optimization using the continuation cuts values
calculated in the optimization part. From a state p state (storing the Xx,t), the
continuation cuts values calculated in optimization p continuation, the optimal cash
flows along the current trajectory are stored in p phiInOut.
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In the case of a gas storage the Optimize object is given in the OptimizeGasStorageCut.h

file.

The framework in optimization using some cuts methods

Once an Optimizer object describing to the Business problem to solve with cuts is created for
the project, and supposing that a full grid is used for the stock discretization, the framework
provides a TransitionStepRegressionDPCutDist object in MPI that permits to solve the
optimization problem with distribution of the data on one time step with the following
constructor:

1 TransitionStepRegressionDPCutDist(const shared_ptr <FullGrid > &p_pGridCurrent ,

2 const shared_ptr <FullGrid > &p_pGridPrevious ,

3 const shared_ptr <OptimizerDPCutBase > &p_pOptimize):

with

• p pGridCurrent is the grid at the current time step (ti),

• p pGridPrevious is the grid at the previously treated time step (ti+1),

• p pOptimize the optimizer object

The construction is very similar to classical regression methods only using command dis-
cretization.

Remark 12 A similar object is available without the MPI distribution framework Transi

tionStepRegressionDPCut with still enabling parallelization with threads and MPI on the
calculations on the full grid points.

The main method is

1 std::vector < shared_ptr < Eigen:: ArrayXXd > > OneStep(const std::vector < shared_ptr <

Eigen:: ArrayXXd > > &p_phiIn ,

2 const shared_ptr < BaseRegression > &p_condExp)

with

• p phiIn the vector (its size corresponds to the number of regimes) of matrix of optimal
values and sensibilities calculated at the previous time iteration for each regime. Each
matrix has a number of rows equal to the number of simulations by the number of
stock plus one. The number of columns is equal to the number of stock points on the
grid. In the row, the number of simulations by the number of stock plus one value are
stored as follows:

– The first values (number of simulations : NS) corresponds to the optimal Bellman
values at a given stock point,

– The NS values following corresponds to sensibilities ∂V
∂S1

to first storage

– The NS values following corresponds to sensibilities to the second storage...

– . . .

• p condExp the conditional expectation operator,
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returning a vector of matrix with new optimal values and sensibilities at the current time
step (each element of the vector corresponds to a regime and each matrix has a size equal
to the (number of simulations by (the number of storage plus one)) by the number of stock
points). The structure of the output is then similar to the input p phiIn.
A second method is provided permitting to dump the continuation values and cuts of the
problem and the optimal control at each time step:

1 void dumpContinuationCutsValues(std:: shared_ptr <gs:: BinaryFileArchive > p_ar , const std

:: string &p_name , const int &p_iStep ,

2 const std::vector < std:: shared_ptr < Eigen:: ArrayXXd > > &

p_phiInPrev ,

3 const std::shared_ptr <BaseRegression > &p_condExp ,

4 const bool &p_bOneFile) const

with:

• p ar is the archive where controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the solution at the previous time step used to calculate the continuation
cuts values that are stored,

• p condExp is the conditional expectation object permitting to calculate conditional
expectation of functions defined at the previous time step treated p phiInPrev.

• p bOneFile is set to one if the continuation cuts values calculated by each proces-
sor are dumped on a single file. Otherwise the continuation cuts values calculated
by each processor are dumped on different files (one by processor). If the problem
gives continuation cuts values on the global grid that can be stored in the memory
of the computation node, it can be more interesting to dump them in one file for the
simulation of the optimal policy.

We give here a simple example of a time resolution using this method when the MPI distri-
bution of data is used

1 // Copyright (C) 2019 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifdef USE_MPI

5 #include <fstream >

6 #include <memory >

7 #include <functional >

8 #include <boost/lexical_cast.hpp >

9 #include <boost/mpi.hpp >

10 #include <Eigen/Dense >

11 #include "geners/BinaryFileArchive.hh"

12 #include "StOpt/core/grids/FullGrid.h"

13 #include "StOpt/regression/BaseRegression.h"

14 #include "StOpt/dp/FinalStepDPCutDist.h"

15 #include "StOpt/dp/TransitionStepRegressionDPCutDist.h"

16 #include "StOpt/core/parallelism/reconstructProc0Mpi.h"

17 #include "StOpt/dp/OptimizerDPCutBase.h"

18 #include "StOpt/dp/SimulatorDPBase.h"

19

20

21 using namespace std;

22 using namespace Eigen;

23
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24 double DynamicProgrammingByRegressionCutDist(const shared_ptr <StOpt::FullGrid > &p_grid ,

25 const shared_ptr <StOpt:: OptimizerDPCutBase > &p_optimize ,

26 shared_ptr <StOpt :: BaseRegression > &p_regressor ,

27 const function < ArrayXd(const int &, const ArrayXd &, const ArrayXd &)> &

p_funcFinalValue ,

28 const ArrayXd &p_pointStock ,

29 const int &p_initialRegime ,

30 const string &p_fileToDump ,

31 const bool &p_bOneFile)

32 {

33 // from the optimizer get back the simulator

34 shared_ptr < StOpt:: SimulatorDPBase > simulator = p_optimize ->getSimulator ();

35 // final values

36 vector < shared_ptr < ArrayXXd > > valueCutsNext = StOpt:: FinalStepDPCutDist(p_grid ,

p_optimize ->getNbRegime (), p_optimize ->getDimensionToSplit ())(p_funcFinalValue ,

simulator ->getParticles ().array ());

37 // dump

38 boost::mpi:: communicator world;

39 string toDump = p_fileToDump ;

40 // test if one file generated

41 if (! p_bOneFile)

42 toDump += "_" + boost:: lexical_cast <string >( world.rank());

43 shared_ptr <gs:: BinaryFileArchive > ar;

44 if ((! p_bOneFile) || (world.rank() == 0))

45 ar = make_shared <gs:: BinaryFileArchive >( toDump.c_str (), "w");

46 // name for object in archive

47 string nameAr = "Continuation";

48 for (int iStep = 0; iStep < simulator ->getNbStep (); ++ iStep)

49 {

50 ArrayXXd asset = simulator ->stepBackwardAndGetParticles ();

51 // conditional expectation operator

52 p_regressor ->updateSimulations ((( iStep == (simulator ->getNbStep () - 1)) ? true :

false), asset);

53 // transition object

54 StOpt:: TransitionStepRegressionDPCutDist transStep(p_grid , p_grid , p_optimize);

55 vector < shared_ptr < ArrayXXd > > valueCuts = transStep.oneStep(valueCutsNext ,

p_regressor);

56 transStep.dumpContinuationCutsValues(ar, nameAr , iStep , valueCutsNext , p_regressor ,

p_bOneFile);

57 valueCutsNext = valueCuts;

58 }

59 // reconstruct a small grid for interpolation

60 ArrayXd valSim = StOpt:: reconstructProc0Mpi(p_pointStock , p_grid , valueCutsNext[

p_initialRegime], p_optimize ->getDimensionToSplit ());

61 return (( world.rank() == 0) ? valSim.head(simulator ->getNbSimul ()).mean() : 0.);

62

63 }

64 #endif

An example without distribution of the data can be found in the DynamicProgrammingByRe

gressionCut.cpp file.

The framework in simulation using cuts to approximate the Bellman values

Once the optimization has been achieved, continuation cuts values are dumped in one file (or
some files) at each time step. In order to simulate the optimal policy, we use the continuation
cuts values previously calculated.

• For most of the case (small dimensional case), the optimal cut function values can be
stored in the memory of the computing node and cuts values are stored in a single file.
In this case a simulation of the optimal control can easily be achieved by distributing
the Monte Carlo simulations on the available calculations nodes: this can be achieved
by using the SimulateStepRegressionCut object at each time step of the simulation.
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• When dealing with very large problems, optimization is achieved by distributing the
data on the processors and it is impossible to store the optimal cuts values on one node.
In this case, optimal cuts values are stored in the memory of the node that has been
used to calculate them in optimization. Simulations are reorganized at each time step
and gathered so that they occupy the same part of the global grid. Each processor will
then get from other processors a localized version of the optimal control or solution
that it needs. This methodology is used in the SimulateStepRegressionCutDist

objects.

We detail the simulations objects using the optimal cuts values calculated in optimization
for the case of very big problems.
In order to simulate one step of the optimal policy, an object SimulateStepRegressionCut
Dist is provided with constructor

1 SimulateStepRegressionCutDist(gs:: BinaryFileArchive &p_ar , const int &p_iStep , const

std:: string &p_nameCont ,

2 const shared_ptr <FullGrid > &p_pGridFollowing , const

shared_ptr <OptimizerDPCutBase > &p_pOptimize ,

3 const bool &p_bOneFile)

where

• p ar is the binary archive where the continuation values are stored,

• p iStep is the number associated to the current time step (0 at the beginning date of
simulation, the number is increased by one at each time step simulated),

• p nameCont is the base name for continuation values,

• p GridFollowing is the grid at the next time step (p iStep+1),

• p Optimize the Optimizer describing the transition problem solved using a LP pro-
gram.

• p OneFile equal to true if a single archive is used to store continuation values.

Remark 13 A version without distribution of data but with multithreaded and with MPI
possible on calculations is available with the object SimulateStepRegressionCut. The
p OneFile argument is omitted during construction.

This object implements the method oneStep

1 void oneStep(std::vector <StateWithStocks > &p_statevector , Eigen:: ArrayXXd &p_phiInOut)

where:

• p statevector store the states for the all the simulations: this state is updated by
application of the optimal command,

• p phiInOut stores the gain/cost functions for all the simulations: it is updated by
the function call. The size of the array is (nb, nbSimul) where nb is given by the
getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo
simulations.

120



An example of the use of this method to simulate an optimal policy with distribution is
given below:

1 // Copyright (C) 2019 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef SIMULATEREGREGRESSIONCUTDIST_H

5 #define SIMULATEREGREGRESSIONCUTDIST_H

6 #include <functional >

7 #include <memory >

8 #include <Eigen/Dense >

9 #include <boost/mpi.hpp >

10 #include "geners/BinaryFileArchive.hh"

11 #include "StOpt/core/grids/FullGrid.h"

12 #include "StOpt/core/utils/StateWithStocks.h"

13 #include "StOpt/dp/SimulateStepRegressionCutDist.h"

14 #include "StOpt/dp/OptimizerDPCutBase.h"

15 #include "StOpt/dp/SimulatorDPBase.h"

16

17

18 /** \file SimulateRegressionCutDist.h

19 * \brief Defines a simple program showing how to use simulations when optimizaton achived

with transition problems solved with cuts.

20 * A simple grid is used

21 * \author Xavier Warin

22 */

23

24

25 /// \brief Simulate the optimal strategy , mpi version , Bellman cuts used to allow LP

resolution of transition problems

26 /// \param p_grid grid used for deterministic state (stocks for example)

27 /// \param p_optimize optimizer defining the optimization between two time

steps

28 /// \param p_funcFinalValue function defining the final value cuts

29 /// \param p_pointStock initial point stock

30 /// \param p_initialRegime regime at initial date

31 /// \param p_fileToDump name associated to dumped bellman values

32 /// \param p_bOneFile do we store continuation values in only one file

33 double SimulateRegressionCutDist(const std::shared_ptr <StOpt::FullGrid > &p_grid ,

34 const std:: shared_ptr <StOpt:: OptimizerDPCutBase > &

p_optimize ,

35 const std::function < Eigen:: ArrayXd(const int &, const

Eigen:: ArrayXd &, const Eigen:: ArrayXd &)> &

p_funcFinalValue ,

36 const Eigen:: ArrayXd &p_pointStock ,

37 const int &p_initialRegime ,

38 const std:: string &p_fileToDump ,

39 const bool &p_bOneFile)

40 {

41 boost::mpi:: communicator world;

42 // from the optimizer get back the simulator

43 std::shared_ptr < StOpt:: SimulatorDPBase > simulator = p_optimize ->getSimulator ();

44 int nbStep = simulator ->getNbStep ();

45 std::vector < StOpt:: StateWithStocks > states;

46 states.reserve(simulator ->getNbSimul ());

47 for (int is = 0; is < simulator ->getNbSimul (); ++is)

48 states.push_back(StOpt:: StateWithStocks(p_initialRegime , p_pointStock , Eigen ::

ArrayXd ::Zero(simulator ->getDimension ())));

49 std:: string toDump = p_fileToDump ;

50 // test if one file generated

51 if (! p_bOneFile)

52 toDump += "_" + boost:: lexical_cast <std::string >( world.rank());

53 gs:: BinaryFileArchive ar(toDump.c_str(), "r");

54 // name for continuation object in archive

55 std:: string nameAr = "Continuation";

56 // cost function

57 Eigen:: ArrayXXd costFunction = Eigen:: ArrayXXd ::Zero(p_optimize ->getSimuFuncSize (),

simulator ->getNbSimul ());
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58 for (int istep = 0; istep < nbStep; ++istep)

59 {

60 StOpt:: SimulateStepRegressionCutDist(ar, nbStep - 1 - istep , nameAr , p_grid ,

p_optimize , p_bOneFile).oneStep(states , costFunction);

61

62 // new stochastic state

63 Eigen:: ArrayXXd particles = simulator ->stepForwardAndGetParticles ();

64 for (int is = 0; is < simulator ->getNbSimul (); ++is)

65 states[is]. setStochasticRealization(particles.col(is));

66

67 }

68 // final : accept to exercise if not already done entirely (here suppose one function

to follow)

69 for (int is = 0; is < simulator ->getNbSimul (); ++is)

70 costFunction (0, is) += p_funcFinalValue(states[is]. getRegime (), states[is].

getPtStock (), states[is]. getStochasticRealization ())(0);

71

72 return costFunction.mean();

73 }

74

75 #endif /* SIMULATEREGRESSIONCUTDIST_H */

The version of the previous example using a single archive storing the control/solution is
given in the SimulateRegressionCut.h file.

9.3 Solving the problem for Xx,t
2 stochastic

In this part we suppose that Xx,t
2 is controlled but is stochastic.

9.3.1 Requirement to use the framework

In order to use the framework, a business object describing the business on one time step
from one state is derived from OptimizerNoRegressionDPBase itself derived from Opti

mizerBase.

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef OPTIMIZERNOREGRESSIONDPBASE_H

5 #define OPTIMIZERNOREGRESSIONDPBASE_H

6 #include <Eigen/Dense >

7 #include "StOpt/core/utils/StateWithStocks.h"

8 #include "StOpt/core/grids/SpaceGrid.h"

9 #include "StOpt/regression/BaseRegression.h"

10 #include "StOpt/regression/GridAndRegressedValue.h"

11 #include "StOpt/dp/SimulatorDPBase.h"

12 #include "StOpt/dp/OptimizerBaseInterp.h"

13

14 /** \file OptimizerNoRegressionDPBase.h

15 * \brief Define an abstract class for Dynamic Programming problems solve by Monte Carlo

but without regression method

16 * to compute conditional expectation.

17 * \author Xavier Warin

18 */

19

20 namespace StOpt

21 {

22

23 /// \class OptimizerNoRegressionDPBase OptimizerNoRegressionDPBase.h

24 /// Base class for optimizer for Dynamic Programming solved without regression method to

compute conditional expectation.

25 class OptimizerNoRegressionDPBase : public OptimizerBaseInterp
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26 {

27

28

29 public :

30

31 OptimizerNoRegressionDPBase () {}

32

33 virtual ~OptimizerNoRegressionDPBase () {}

34

35 /// \brief defines the diffusion cone for parallelism

36 /// \param p_regionByProcessor region (min max) treated by the processor for

the different regimes treated

37 /// \return returns in each dimension the min max values in the stock that can be

reached from the grid p_gridByProcessor for each regime

38 virtual std::vector < std::array < double , 2> > getCone(const std::vector < std::array <

double , 2> > &p_regionByProcessor) const = 0;

39

40 /// \brief defines the dimension to split for MPI parallelism

41 /// For each dimension return true is the direction can be split

42 virtual Eigen::Array < bool , Eigen ::Dynamic , 1> getDimensionToSplit () const = 0 ;

43

44 /// \brief defines a step in optimization

45 /// \param p_stock coordinates of the stock point to treat

46 /// \param p_valNext Optimized values at next time step for each regime

47 /// \param p_regressorCur Regressor at the current date

48 /// \return a pair :

49 /// - for each regimes (column) gives the solution for each particle (row)

50 /// - for each control (column) gives the optimal control for each

particle (rows)

51 /// .

52 virtual std::pair < Eigen ::ArrayXXd , Eigen ::ArrayXXd > stepOptimize(const Eigen::

ArrayXd &p_stock ,

53 const std::vector < GridAndRegressedValue > &p_valNext ,

54 std::shared_ptr < BaseRegression > p_regressorCur) const = 0;

55

56

57

58 /// \brief Defines a step in simulation using interpolation in controls

59 /// \param p_grid grid at arrival step after command

60 /// \param p_control defines the controls

61 /// \param p_state defines the state value (modified)

62 /// \param p_phiInOut defines the value function (modified): size number of

functions to follow

63 virtual void stepSimulateControl(const std::shared_ptr < StOpt::SpaceGrid > &p_grid ,

const std::vector < StOpt:: GridAndRegressedValue > &p_control ,

64 StOpt:: StateWithStocks &p_state ,

65 Eigen::Ref <Eigen ::ArrayXd > p_phiInOut) const = 0 ;

66

67

68

69 /// \brief Get the number of regimes allowed for the asset to be reached at the

current time step

70 /// If \f$ t \f$ is the current time , and $\f$ dt \f$ the resolution step , this is

the number of regime allowed on \f$[ t- dt, t[\f$

71 virtual int getNbRegime () const = 0 ;

72

73 /// \brief get the simulator back

74 virtual std:: shared_ptr < StOpt:: SimulatorDPBase > getSimulator () const = 0;

75

76 /// \brief get back the dimension of the control

77 virtual int getNbControl () const = 0 ;

78

79 /// \brief get size of the function to follow in simulation

80 virtual int getSimuFuncSize () const = 0;

81

82 };

83 }

84 #endif /* OPTIMIZERDPBASE_H */
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In addition to the methods of OptimizerBase the following method is needed:

• the stepOptimize method is used in optimization. We want to calculate the optimal
value regressed at current ti at a grid point p stock using a grid p grid at the next
date ti+1,

From a grid point p stock it calculates the function values regressed and the optimal
controls regressed. It returns a pair where the

– first element is a matrix (first dimension is the number of functions in the regres-
sion, second dimension the number of regimes) giving the function value regressed,

– second element is a matrix (first dimension is the number of functions in the
regression, second dimension the number of controls) giving the optimal control
regressed.

In this case of the optimization of an actualized portfolio with dynamic:

dXx,t
2 = Xx,t

2

dXx,t
1

Xx,t
1

where Xx,t
1 is the risky asset value, the Optimize object is given in the OptimizePortfolio.h

file.

9.3.2 The framework in optimization

Once an Optimizer is derived for the project, and supposing that a full grid is used for the
stock discretization, the framework provides a TransitionStepDPDist object in MPI that
permits to solve the optimization problem with distribution of the data on one time step
with the following constructor:

1 TransitionStepDPDist(const shared_ptr <FullGrid > &p_pGridCurrent ,

2 const shared_ptr <FullGrid > &p_pGridPrevious ,

3 const std::shared_ptr <BaseRegression > &p_regressorCurrent ,

4 const std::shared_ptr <BaseRegression > &p_regressorPrevious ,

5 const shared_ptr <OptimizerNoRegressionDPBase > &p_pOptimize):

with

• p pGridCurrent is the grid at the current time step (ti),

• p pGridPrevious is the grid at the previously treated time step (ti+1),

• p regressorCurrent is a regressor at the current date (to evaluate the function at
the current date)

• p regressorPrevious is a regressor at the previously treated time step (ti+1) permit-
ting to evaluate a function at date ti+1,

• p pOptimize the optimizer object

Remark 14 A similar object is available without the MPI distribution framework Transi

tionStepDP with still enabling parallelization with threads and MPI on the calculations on
the full grid points.
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Remark 15 The case of sparse grids in currently not treated in the framework.

The main method is

1 std::pair < std:: shared_ptr < std::vector < Eigen:: ArrayXXd > > , std:: shared_ptr < std::

vector < Eigen:: ArrayXXd > > > oneStep(const std::vector < Eigen:: ArrayXXd > &

p_phiIn)

with

• p phiIn the vector (its size corresponds to the number of regimes) of matrix of optimal
values calculated regressed at the previous time iteration for each regime. Each matrix
is a number of function regressor at the previous date by number of stock points matrix.

returning a pair:

• first element is a vector of matrix with new optimal values regressed at the current time
step (each element of the vector corresponds to a regime and each matrix is a number
of regressed functions at the current date by the number of stock points matrix).

• second element is a vector of matrix with new optimal regressed controls at the current
time step (each element of the vector corresponds to a control and each matrix is a
number of regressed controls by the number of stock points matrix).

Remark 16 All TransitionStepDP derive from a TransitionStepBase object having a
pure virtual OneStep method.

A second method is provided permitting to dump the the optimal control at each time step:

1 void dumpValues(std::shared_ptr <gs:: BinaryFileArchive > p_ar ,

2 const std:: string &p_name , const int &p_iStep ,

3 const std::vector < Eigen:: ArrayXXd > &p_control , const bool &

p_bOneFile) const

with:

• p ar is the archive where controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p control stores the optimal controls calculated at the current time step,

• p bOneFile is set to one if the optimal controls calculated by each processor are
dumped on a single file. Otherwise the optimal controls calculated by each processor
are dumped on different files (one by processor). If the problem gives optimal control
values on the global grid that can be stored in the memory of the computation node,
it can be more interesting to dump the control values in one file for the simulation of
the optimal policy.

Remark 17 As for the TransitionStepDP, its dumpValues does not need a p bOneFile

argument: obviously optimal controls are stored in a single file.

We give here a simple example of a time resolution using this method when the MPI distri-
bution of data is used
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1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifdef USE_MPI

5 #include <fstream >

6 #include <boost/mpi.hpp >

7 #include <memory >

8 #include <functional >

9 #include <boost/lexical_cast.hpp >

10 #include <Eigen/Dense >

11 #include "geners/BinaryFileArchive.hh"

12 #include "StOpt/core/grids/FullGrid.h"

13 #include "StOpt/regression/LocalConstRegression.h"

14 #include "StOpt/regression/GridAndRegressedValue.h"

15 #include "StOpt/dp/FinalStepDPDist.h"

16 #include "StOpt/dp/TransitionStepDPDist.h"

17 #include "StOpt/core/parallelism/reconstructProc0Mpi.h"

18 #include "test/c++/ tools/dp/OptimizePortfolioDP.h"

19

20 using namespace std;

21 using namespace Eigen;

22

23 double DynamicProgrammingPortfolioDist(const shared_ptr <StOpt::FullGrid > &p_grid ,

24 const shared_ptr <OptimizePortfolioDP > &p_optimize ,

25 const ArrayXi &p_nbMesh ,

26 const function <double(const int &, const ArrayXd &,

const ArrayXd &)> &p_funcFinalValue ,

27 const ArrayXd &p_initialPortfolio ,

28 const string &p_fileToDump ,

29 const bool &p_bOneFile

30 )

31 {

32 // initialize simulation

33 p_optimize ->initializeSimulation ();

34 // store regressor

35 shared_ptr <StOpt :: LocalConstRegression > regressorPrevious;

36

37 // store final regressed values in object valuesStored

38 shared_ptr < vector < ArrayXXd > > valuesStored = make_shared < vector <ArrayXXd > >(

p_optimize ->getNbRegime ());

39 {

40 vector < shared_ptr < ArrayXXd > > valuesPrevious = StOpt :: FinalStepDPDist(p_grid ,

p_optimize ->getNbRegime (), p_optimize ->getDimensionToSplit ())(p_funcFinalValue ,

*p_optimize ->getCurrentSim ());

41 // regressor operator

42 regressorPrevious = make_shared <StOpt:: LocalConstRegression >(false , *p_optimize ->

getCurrentSim (), p_nbMesh);

43 for (int iReg = 0; iReg < p_optimize ->getNbRegime (); ++iReg)

44 (* valuesStored)[iReg] = regressorPrevious ->getCoordBasisFunctionMultiple(

valuesPrevious[iReg]->transpose ()).transpose ();

45 }

46 boost::mpi:: communicator world;

47 string toDump = p_fileToDump ;

48 // test if one file generated

49 if (! p_bOneFile)

50 toDump += "_" + boost:: lexical_cast <string >( world.rank());

51 shared_ptr <gs:: BinaryFileArchive > ar;

52 if ((! p_bOneFile) || (world.rank() == 0))

53 ar = make_shared <gs:: BinaryFileArchive >( toDump.c_str (), "w");

54 // name for object in archive

55 string nameAr = "OptimizePort";

56 // iterate on time steps

57 for (int iStep = 0; iStep < p_optimize ->getNbStep (); ++iStep)

58 {

59 // step backward for simulations

60 p_optimize ->oneStepBackward ();

61 // create regressor at the given date

62 bool bZeroDate = (iStep == p_optimize ->getNbStep () - 1);
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63 shared_ptr <StOpt :: LocalConstRegression > regressorCur = make_shared <StOpt ::

LocalConstRegression >(bZeroDate , *p_optimize ->getCurrentSim (), p_nbMesh);

64 // transition object

65 StOpt:: TransitionStepDPDist transStep(p_grid , p_grid , regressorCur ,

regressorPrevious , p_optimize);

66 pair < shared_ptr < vector < ArrayXXd > >, shared_ptr < vector < ArrayXXd > > >

valuesAndControl = transStep.oneStep (* valuesStored);

67 // dump control values

68 transStep.dumpValues(ar, nameAr , iStep , *valuesAndControl.second , p_bOneFile);

69 valuesStored = valuesAndControl.first;

70 // shift regressor

71 regressorPrevious = regressorCur;

72 }

73 // interpolate at the initial stock point and initial regime( 0 here) (take first

particle)

74 shared_ptr <ArrayXXd > topRows = make_shared <ArrayXXd >((* valuesStored)[0]. topRows (1));

75 return StOpt :: reconstructProc0Mpi(p_initialPortfolio , p_grid , topRows , p_optimize ->

getDimensionToSplit ()).mean();

76 }

77 #endif

An example without distribution of the data can be found in the DynamicProgrammingPort

folio.cpp file.

9.3.3 The framework in simulation

Not special framework is available in simulation. Use the function SimulateStepRegres

sionControl or SimulateStepRegressionControlDist described in the section 9.2.2.

9.4 Solving stock problems with trees

In this section we detail how to solve problems

• Either by discretizing the control,

• Either by solving a Linear Program problem approximating the Bellman values by
cuts.

9.4.1 Solving dynamic programming problems with control dis-
cretization

Requirement to use the framework

The OptimizerDPTreeBase is the based object from which each business object should be
derived.

1 // Copyright (C) 2019 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef OPTIMIZERDPTREEBASE_H

5 #define OPTIMIZERDPTREEBASE_H

6 #include <Eigen/Dense >

7 #include "StOpt/core/grids/SpaceGrid.h"

8 #include "StOpt/tree/Tree.h"

9 #include "StOpt/tree/StateTreeStocks.h"

10 #include "StOpt/tree/ContinuationValueTree.h"

11 #include "StOpt/tree/GridTreeValue.h"
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12 #include "StOpt/dp/SimulatorDPBaseTree.h"

13 #include "StOpt/dp/OptimizerBase.h"

14

15 /** \file OptimizerDPTreeBase.h

16 * \brief Define an abstract class for Dynamic Programming problems solved by tree

methods

17 * \author Xavier Warin

18 */

19

20 namespace StOpt

21 {

22

23 /// \class OptimizerDPTreeBase OptimizerDPTreeBase.h

24 /// Base class for optimizer for Dynamic Programming with tree methods

25 class OptimizerDPTreeBase : public OptimizerBase

26 {

27

28

29 public :

30

31 OptimizerDPTreeBase () {}

32

33 virtual ~OptimizerDPTreeBase () {}

34

35 /// \brief defines the diffusion cone for parallelism

36 /// \param p_regionByProcessor region (min max) treated by the processor for

the different regimes treated

37 /// \return returns in each dimension the min max values in the stock that can be

reached from the grid p_gridByProcessor for each regime

38 virtual std::vector < std::array < double , 2> > getCone(const std::vector < std::array <

double , 2> > &p_regionByProcessor) const = 0;

39

40 /// \brief defines the dimension to split for MPI parallelism

41 /// For each dimension return true is the direction can be split

42 virtual Eigen::Array < bool , Eigen ::Dynamic , 1> getDimensionToSplit () const = 0 ;

43

44 /// \brief defines a step in optimization

45 /// \param p_grid grid at arrival step after command

46 /// \param p_stock coordinates of the stock point to treat

47 /// \param p_condEsp continuation values for each regime

48 /// \return a pair :

49 /// - for each regimes (column) gives the solution for each node in the

tree (row)

50 /// - for each control (column) gives the optimal control for each node in

the tree (rows)

51 /// .

52 virtual std::pair < Eigen ::ArrayXXd , Eigen ::ArrayXXd > stepOptimize(const std::

shared_ptr < StOpt::SpaceGrid > &p_grid , const Eigen:: ArrayXd &p_stock ,

53 const std::vector < StOpt:: ContinuationValueTree > &p_condEsp) const = 0;

54

55

56 /// \brief defines a step in simulation

57 /// Notice that this implementation is not optimal but is convenient if the control is

discrete.

58 /// By avoiding interpolation in control we avoid non admissible control

59 /// Control are recalculated during simulation.

60 /// \param p_grid grid at arrival step after command

61 /// \param p_continuation defines the continuation operator for each regime

62 /// \param p_state defines the state value (modified)

63 /// \param p_phiInOut defines the value functions (modified) : size number of

functions to follow

64 virtual void stepSimulate(const std::shared_ptr < StOpt ::SpaceGrid > &p_grid , const std

::vector < StOpt:: GridTreeValue > &p_continuation ,

65 StOpt:: StateTreeStocks &p_state ,

66 Eigen::Ref <Eigen ::ArrayXd > p_phiInOut) const = 0 ;

67

68

69 /// \brief Defines a step in simulation using interpolation in controls

70 /// \param p_grid grid at arrival step after command
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71 /// \param p_control defines the controls

72 /// \param p_state defines the state value (modified)

73 /// \param p_phiInOut defines the value function (modified): size number of

functions to follow

74 virtual void stepSimulateControl(const std::shared_ptr < StOpt::SpaceGrid > &p_grid ,

const std::vector < StOpt:: GridTreeValue > &p_control ,

75 StOpt:: StateTreeStocks &p_state ,

76 Eigen::Ref <Eigen ::ArrayXd > p_phiInOut) const = 0 ;

77

78

79

80 /// \brief Get the number of regimes allowed for the asset to be reached at the

current time step

81 /// If \f$ t \f$ is the current time , and $\f$ dt \f$ the resolution step , this is

the number of regime allowed on \f$[ t- dt, t[\f$

82 virtual int getNbRegime () const = 0 ;

83

84 /// \brief get the simulator back

85 virtual std:: shared_ptr < StOpt:: SimulatorDPBaseTree > getSimulator () const = 0;

86

87 /// \brief get back the dimension of the control

88 virtual int getNbControl () const = 0 ;

89

90 /// \brief get size of the function to follow in simulation

91 virtual int getSimuFuncSize () const = 0;

92

93 };

94 }

95 #endif /* OPTIMIZERDPTREEBASE_H */

As the OptimizerDPTreeBase class is derived from OptimizerBase, we detail the addi-
tional methods required:

• the stepOptimize method is used in optimization. We want to calculate the optimal
value at current ti at a grid point p stock using a grid p grid at the next date ti+1,
the continuation values for all regimes p condEsp permitting to calculate conditional
expectation of the optimal value function calculated at the previously treated time
step ti+1. From a grid point p stock it calculates the function values and the optimal
controls. It returns a pair where the

– first element is a matrix (first dimension is the number of nodes, second dimension
the number of regimes) giving the function value,

– second element is a matrix (first dimension is the number of nodes, second di-
mension the number of controls) giving the optimal control.

• the stepSimulate method is used after optimization using the continuation values cal-
culated in the optimization part: this continuation values are stored in a GridTreeValue
object for interpolation. From a state p state (storing the Xx,t), the continuation val-
ues calculated in optimization p continuation, the optimal functions values stored in
p phiInOut.

• the stepSimulateControl simulate the strategy by direct interpolation of the control
for a given node in the tree (sampled) and a position in the stock.
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The framework

Most object use with regression have their equivalent with tree methods.
In optimization:

TransitionStepTreeDPDist permits to solve the transition at one date for all the grid
point and the nodes of the tree using distribution (MPI).

1 TransitionStepTreeDPDist(const std::shared_ptr <FullGrid > &p_pGridCurrent ,

2 const std::shared_ptr <FullGrid > &p_pridPrevious ,

3 const std::shared_ptr <OptimizerDPTreeBase > &p_pOptimize

with

• p pGridCurrent is the grid at the current time step (ti),

• p pGridPrevious is the grid at the previously treated time step (ti+1),

• p pOptimize the optimizer object

A similar object is available without the MPI distribution framework TransitionStep

TreeDP with still enabling parallelization with threads and MPI on the calculations on
the full grid points.
The main method is

1 std::pair < std::vector < std:: shared_ptr < Eigen:: ArrayXXd > >, std::vector < std::

shared_ptr < Eigen :: ArrayXXd > > > oneStep(const std::vector < std::shared_ptr <

Eigen:: ArrayXXd > > &p_phiIn ,

2 const std:: shared_ptr < Tree > &p_condExp) const

with

• p phiIn the vector (its size corresponds to the number of regimes) of matrix of optimal
values calculated at the previous time iteration for each regime. Each matrix is a
number of nodes at the following date by number of stock points matrix.

• p condExp the conditional expectation operator,

returning a pair:

• first element is a vector of matrix with new optimal values at the current time step
(each element of the vector corresponds to a regime and each matrix is a number of
nodes at current date by number of stock points matrix).

• second element is a vector of matrix with new optimal controls at the current time
step (each element of the vector corresponds to a control and each matrix is a number
of nodes at the current date by number of stock points matrix).

A second method is provided permitting to dump the continuation values of the problem
and the optimal control at each time step:

1 void dumpContinuationValues(std::shared_ptr <gs:: BinaryFileArchive > p_ar ,

2 const std:: string &p_name , const int &p_iStep ,

3 const std::vector < std:: shared_ptr < Eigen:: ArrayXXd > > &

p_phiIn ,

4 const std::vector < std:: shared_ptr < Eigen:: ArrayXXd > > &

p_control ,

5 const std:: shared_ptr < Tree > &p_tree ,

6 const bool &p_bOneFile) const;
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with:

• p ar is the archive where controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the solution at the previous time step used to calculate the continuation
values that are stored,

• p control stores the optimal controls calculated at the current time step,

• p tree is the conditional expectation object permitting to calculate conditional ex-
pectation of functions defined at the previous time step treated p phiInPrev and
permitting to store a representation of the optimal control.

• p bOneFile is set to one if the continuation and optimal controls calculated by each
processor are dumped on a single file. Otherwise the continuation and optimal controls
calculated by each processor are dumped on different files (one by processor).

Remark 18 The p bOneFile is not present for TransitionStepTreeDP objects.

In simulation (see detail in section for regressions)

• A first object permitting the recalculation of the optimal control in simulation.

1 SimulateStepTreeDist(gs:: BinaryFileArchive &p_ar , const int &p_iStep , const std::

string &p_nameCont ,

2 const std:: shared_ptr <FullGrid > &p_pGridFollowing , const

std::shared_ptr <OptimizerDPTreeBase > &p_pOptimize ,

3 const bool &p_bOneFile)

where

– p ar is the binary archive where the continuation values are stored,

– p iStep is the number associated to the current time step (0 at the beginning
date of simulation, the number is increased by one at each time step simulated),

– p nameCont is the base name for continuation values,

– p GridFollowing is the grid at the next time step (p iStep+1),

– p Optimize the Optimizer describing the transition from one time step to the
following one,

– p OneFile equal to true if a single archive is used to store continuation values.

This object implements the method oneStep

1 void oneStep(std::vector <StateTreeStocks > &p_statevector , Eigen :: ArrayXXd &

p_phiInOut) const

where:

– p statevector store the states for the all the simulations: this state is updated
by application of the optimal command,
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– p phiInOut stores the gain/cost functions for all the simulations: it is updated
by the function call. The size of the array is (nb, nbSimul) where nb is given
by the getSimuFuncSize method of the optimizer and nbSimul the number of
Monte Carlo simulations.

Remark 19 The version without distribution of the Bellman values is available in
SimulateStepTree object.

• A second object directly interpolating the control

1 SimulateStepTreeControlDist(gs:: BinaryFileArchive &p_ar , const int &p_iStep , const

std:: string &p_nameCont ,

2 const std:: shared_ptr <FullGrid > &p_pGridCurrent ,

3 const std:: shared_ptr <FullGrid > &p_pGridFollowing ,

4 const std::shared_ptr <OptimizerDPTreeBase > &

p_pOptimize ,

5 const bool &p_bOneFile);

where

– p ar is the binary archive where the continuation values are stored,

– p iStep is the number associated to the current time step (0 at the beginning
date of simulation, the number is increased by one at each time step simulated),

– p nameCont is the base name for control values,

– p GridCurrent is the grid at the current time step (p iStep),

– p GridFollowing is the grid at the next time step (p iStep+1),

– p Optimize is the Optimizer describing the transition from one time step to the
following one,

– p OneFile equals true if a single archive is used to store continuation values.

This object implements the method oneStep

1 void oneStep(std::vector <StateTreeStocks > &p_statevector , Eigen :: ArrayXXd &

p_phiInOut) const;

where:

– p statevector stores for all the simulations the state: this state is updated by
application of the optimal commands,

– p phiInOut stores the gain/cost functions for all the simulations: it is updated
by the function call. The size of the array is (nb, nbSimul) where nb is given
by the getSimuFuncSize method of the optimizer and nbSimul the number of
Monte Carlo simulations.

Remark 20 The non distributed version is given by the SimulateStepTreeControl

object.
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9.4.2 Solving Dynamic Programming by solving LP problems

This approach can only be used for continuous problems with convex or concave Bellman
values. See section 9.2.3 for some explanation of the cut approximation.

Requirement to use the framework

The business object developed should derive from the OptimizerDPCutBase object derived
from the OptimizerBase object.

1 // Copyright (C) 2019 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef OPTIMIZERDPCUTTREEBASE_H

5 #define OPTIMIZERDPCUTTREEBASE_H

6 #include <Eigen/Dense >

7 #include "StOpt/core/utils/StateWithStocks.h"

8 #include "StOpt/core/grids/SpaceGrid.h"

9 #include "StOpt/tree/Tree.h"

10 #include "StOpt/tree/StateTreeStocks.h"

11 #include "StOpt/tree/ContinuationCutsTree.h"

12 #include "StOpt/dp/SimulatorDPBaseTree.h"

13 #include "StOpt/dp/OptimizerBase.h"

14

15 /** \file OptimizerDPCutBase.h

16 * \brief Define an abstract class for Dynamic Programming problems solved by tree

methods using cust to approximate

17 * Bellman values

18 * \author Xavier Warin

19 */

20

21 namespace StOpt

22 {

23

24 /// \class OptimizerDPCutTreeBase OptimizerDPCutTreeBase.h

25 /// Base class for optimizer for Dynamic Programming with tree methods and cuts , so using

LP to solve transitional problems

26 class OptimizerDPCutTreeBase : public OptimizerBase

27 {

28

29

30 public :

31

32 OptimizerDPCutTreeBase () {}

33

34 virtual ~OptimizerDPCutTreeBase () {}

35

36 /// \brief defines the diffusion cone for parallelism

37 /// \param p_regionByProcessor region (min max) treated by the processor for

the different regimes treated

38 /// \return returns in each dimension the min max values in the stock that can be

reached from the grid p_gridByProcessor for each regime

39 virtual std::vector < std::array < double , 2> > getCone(const std::vector < std::array <

double , 2> > &p_regionByProcessor) const = 0;

40

41 /// \brief defines the dimension to split for MPI parallelism

42 /// For each dimension return true is the direction can be split

43 virtual Eigen::Array < bool , Eigen ::Dynamic , 1> getDimensionToSplit () const = 0 ;

44

45 /// \brief defines a step in optimization

46 /// \param p_grid grid at arrival step after command

47 /// \param p_stock coordinates of the stock point to treat

48 /// \param p_condEsp continuation values for each regime

49 /// \return For each regimes (column) gives the solution for each particle , and cut

(row)
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50 /// For a given simulation , cuts components (C) at a point stock \$ \bar S

\f$ are given such that the cut is given by

51 /// \f$ C[0] + \sum_{i=1}^d C[i] (S_i - \bat S_i) \f$

52 virtual Eigen:: ArrayXXd stepOptimize(const std:: shared_ptr < StOpt::SpaceGrid > &

p_grid , const Eigen:: ArrayXd &p_stock ,

53 const std::vector < StOpt:: ContinuationCutsTree

> &p_condEsp) const = 0;

54

55

56 /// \brief defines a step in simulation

57 /// Control are recalculated during simulation using a local optimzation using the LP

58 /// \param p_grid grid at arrival step after command

59 /// \param p_continuation defines the continuation operator for each regime

60 /// \param p_state defines the state value (modified)

61 /// \param p_phiInOut defines the value functions (modified) : size number of

functions to follow

62 virtual void stepSimulate(const std::shared_ptr < StOpt ::SpaceGrid > &p_grid , const std

::vector < StOpt:: ContinuationCutsTree > &p_continuation ,

63 StOpt:: StateTreeStocks &p_state ,

64 Eigen::Ref <Eigen ::ArrayXd > p_phiInOut) const = 0 ;

65

66

67 /// \brief Get the number of regimes allowed for the asset to be reached at the

current time step

68 /// If \f$ t \f$ is the current time , and $\f$ dt \f$ the resolution step , this is

the number of regime allowed on \f$[ t- dt, t[\f$

69 virtual int getNbRegime () const = 0 ;

70

71 /// \brief get the simulator back

72 virtual std:: shared_ptr < StOpt:: SimulatorDPBaseTree > getSimulator () const = 0;

73

74 /// \brief get back the dimension of the control

75 virtual int getNbControl () const = 0 ;

76

77 /// \brief get size of the function to follow in simulation

78 virtual int getSimuFuncSize () const = 0;

79

80 };

81 }

82 #endif /* OPTIMIZERDPCUTTREEBASE_H */

We detail the different methods to implement in addition to the methods of OptimizerBase:

• the stepOptimize method is used in optimization. We want to calculate the optimal
value and the corresponding sensibilities with respect to the stocks at current ti at a
grid point p stock using a grid p grid at the next date ti+1, the continuation cuts
values for all regimes p condEsp permitting to calculate an upper estimation (when
maximizing) of conditional expectation of the optimal values using some optimization
calculated at the previously treated time step ti+1. From a grid point p stock it
calculates the function values and the corresponding sensibilities. It returns a matrix
(first dimension is the number of nodes at the current cate by the number of cuts
components (number of storage +1), second dimension the number of regimes) giving
the function value and sensibilities.

• the stepSimulate method is used after optimization using the continuation cuts values
calculated in the optimization part. From a state p state (storing the Xx,t), the
continuation cuts values calculated in optimization p continuation, the optimal cash
flows are stored in p phiInOut.

In the case of a gas storage the Optimize object is given in the OptimizeGasStorageTree

Cut.h file.
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The framework in optimization using some cuts methods

We process exactly as in section 9.2.3. The framework provides a TransitionStepTreeDP

CutDist object in MPI that permits to solve the optimization problem with distribution of
the data on one time step with the following constructor:

1 TransitionStepTreeDPCutDist(const std::shared_ptr <FullGrid > &p_pGridCurrent ,

2 const std::shared_ptr <FullGrid > &p_pGridPrevious ,

3 const std::shared_ptr <OptimizerDPCutTreeBase > &

p_pOptimize);

with

• p pGridCurrent is the grid at the current time step (ti),

• p pGridPrevious is the grid at the previously treated time step (ti+1),

• p pOptimize the optimizer object

The construction is very similar to classical regression methods only using command dis-
cretization.

Remark 21 A similar object is available without the MPI distribution framework Transi

tionStepTreeDPCut with still enabling parallelization with threads and MPI on the calcu-
lations on the full grid points.

The main method is

1 std::vector < std:: shared_ptr < Eigen :: ArrayXXd > > oneStep(const std::vector < std::

shared_ptr < Eigen:: ArrayXXd > > &p_phiIn ,

2 const std:: shared_ptr < Tree > &p_condExp) const

with

• p phiIn the vector (its size corresponds to the number of regimes) of matrix of optimal
values and sensibilities calculated at the previous time iteration for each regime. Each
matrix has a number of rows equal to the number of nodes at next date by the number
of stock plus one. The number of columns is equal to the number of stock points on
the grid. In the row, the number of simulations by the number of stock plus one value
are stored as follows:

– The first values (number of nodes at next date : NS) corresponds to the optimal
Bellman values at a given stock point,

– The NS values following corresponds to sensibilities ∂V
∂S1

to first storage

– The NS values following corresponds to sensibilities to the second storage...

– . . .

• p condExp the conditional expectation operator,

returning a vector of matrix with new optimal values and sensibilities at the current time
step (each element of the vector corresponds to a regime and each matrix has a size equal
to the (number of nodes at the current date by (the number of storage plus one)) by the
number of stock points). The structure of the output is then similar to the input p phiIn.
A second method is provided permitting to dump the continuation values and cuts of the
problem and the optimal control at each time step:
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1 void dumpContinuationCutsValues(std:: shared_ptr <gs:: BinaryFileArchive > p_ar , const std

:: string &p_name , const int &p_iStep ,

2 const std::vector < std:: shared_ptr < Eigen:: ArrayXXd > >

&p_phiInPrev , const std::shared_ptr < Tree > &

p_condExp ,

3 const bool &p_bOneFile) const

with:

• p ar is the archive where controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the solution at the previous time step used to calculate the continuation
cuts values that are stored,

• p condExp is the conditional expectation object permitting to calculate conditional
expectation of functions defined at the previous time step treated p phiInPrev.

• p bOneFile is set to one if the continuation cuts values calculated by each processor
are dumped on a single file. Otherwise the continuation cuts values calculated by each
processor are dumped on different files (one by processor).

We give here a simple example of a time resolution using this method when the MPI distri-
bution of data is used

1 // Copyright (C) 2019 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifdef USE_MPI

5 #include <fstream >

6 #include <memory >

7 #include <functional >

8 #include <boost/lexical_cast.hpp >

9 #include <boost/mpi.hpp >

10 #include <Eigen/Dense >

11 #include "geners/BinaryFileArchive.hh"

12 #include "StOpt/core/grids/FullGrid.h"

13 #include "StOpt/tree/Tree.h"

14 #include "StOpt/dp/FinalStepDPCutDist.h"

15 #include "StOpt/dp/TransitionStepTreeDPCutDist.h"

16 #include "StOpt/core/parallelism/reconstructProc0Mpi.h"

17 #include "StOpt/dp/OptimizerDPCutTreeBase.h"

18 #include "StOpt/dp/SimulatorDPBaseTree.h"

19

20

21 using namespace std;

22 using namespace Eigen;

23

24 double DynamicProgrammingByTreeCutDist(const shared_ptr <StOpt::FullGrid > &p_grid ,

25 const shared_ptr <StOpt:: OptimizerDPCutTreeBase > &

p_optimize ,

26 const function < ArrayXd(const int &, const ArrayXd

&, const ArrayXd &)> &p_funcFinalValue ,

27 const ArrayXd &p_pointStock ,

28 const int &p_initialRegime ,

29 const string &p_fileToDump ,

30 const bool &p_bOneFile)

31 {

32 // from the optimizer get back the simulator

33 shared_ptr < StOpt:: SimulatorDPBaseTree > simulator = p_optimize ->getSimulator ();

34 // final values
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35 vector < shared_ptr < ArrayXXd > > valueCutsNext = StOpt:: FinalStepDPCutDist(p_grid ,

p_optimize ->getNbRegime (), p_optimize ->getDimensionToSplit ())(p_funcFinalValue ,

simulator ->getNodes ());

36 // dump

37 boost::mpi:: communicator world;

38 string toDump = p_fileToDump ;

39 // test if one file generated

40 if (! p_bOneFile)

41 toDump += "_" + boost:: lexical_cast <string >( world.rank());

42 shared_ptr <gs:: BinaryFileArchive > ar;

43 if ((! p_bOneFile) || (world.rank() == 0))

44 ar = make_shared <gs:: BinaryFileArchive >( toDump.c_str (), "w");

45 // name for object in archive

46 string nameAr = "ContinuationTree";

47 for (int iStep = 0; iStep < simulator ->getNbStep (); ++ iStep)

48 {

49 simulator ->stepBackward ();

50 // probabilities

51 std::vector <double > proba = simulator ->getProba ();

52 // get connection between nodes

53 std::vector < std::vector <std::array <int , 2> > > connected = simulator ->

getConnected ();

54 // conditional expectation operator

55 shared_ptr <StOpt ::Tree > tree = std:: make_shared <StOpt ::Tree >(proba , connected);

56 // transition object

57 StOpt:: TransitionStepTreeDPCutDist transStep(p_grid , p_grid , p_optimize);

58 vector < shared_ptr < ArrayXXd > > valueCuts = transStep.oneStep(valueCutsNext , tree

);

59 transStep.dumpContinuationCutsValues(ar, nameAr , iStep , valueCutsNext , tree ,

p_bOneFile);

60 valueCutsNext = valueCuts;

61 }

62 // reconstruct a small grid for interpolation

63 ArrayXd valSim = StOpt:: reconstructProc0Mpi(p_pointStock , p_grid , valueCutsNext[

p_initialRegime], p_optimize ->getDimensionToSplit ());

64 return (( world.rank() == 0) ? valSim (0) : 0.);

65

66 }

67 #endif

An example without distribution of the data can be found in the DynamicProgramming

ByTreeCut.cpp file.

Using the framework in simulation

Similarly to section 9.2.3, we can use the cuts calculated in optimization to test the optimal
strategy found. In order to simulate one step of the optimal policy, an object SimulateStep
TreeCutDist is provided with constructor

1 SimulateStepTreeCutDist(gs:: BinaryFileArchive &p_ar , const int &p_iStep , const std::

string &p_nameCont ,

2 const std::shared_ptr <FullGrid > &p_pGridFollowing ,

3 const std::shared_ptr <OptimizerDPCutTreeBase > &p_pOptimize ,

4 const bool &p_bOneFile);

where

• p ar is the binary archive where the continuation values are stored,

• p iStep is the number associated to the current time step (0 at the beginning date of
simulation, the number is increased by one at each time step simulated),

• p nameCont is the base name for continuation values,
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• p GridFollowing is the grid at the next time step (p iStep+1),

• p Optimize the Optimizer describing the transition problem solved using a LP pro-
gram.

• p OneFile equal to true if a single archive is used to store continuation values.

Remark 22 A version without distribution of data but with multithreaded and with MPI
possible on calculations is available with the object SimulateStepTreeCut. The p OneFile

argument is omitted during construction.

This object implements the method oneStep

1 void oneStep(std::vector <StateTreeStocks > &p_statevector , Eigen :: ArrayXXd &p_phiInOut)

const

where:

• p statevector store the states for the all the simulations: this state is updated by
application of the optimal command,

• p phiInOut stores the gain/cost functions for all the simulations: it is updated by
the function call. The size of the array is (nb, nbSimul) where nb is given by the
getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo
simulations.

An example of the use of this method to simulate an optimal policy with distribution is
given below:

1 // Copyright (C) 2019 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef SIMULATEREGTREECUTDIST_H

5 #define SIMULATEREGTREECUTDIST_H

6 #include <functional >

7 #include <memory >

8 #include <Eigen/Dense >

9 #include <boost/mpi.hpp >

10 #include "geners/BinaryFileArchive.hh"

11 #include "StOpt/core/grids/FullGrid.h"

12 #include "StOpt/tree/StateTreeStocks.h"

13 #include "StOpt/dp/SimulateStepTreeCutDist.h"

14 #include "StOpt/dp/OptimizerDPCutBase.h"

15 #include "StOpt/dp/SimulatorDPBase.h"

16

17

18 /** \file SimulateTreeCutDist.h

19 * \brief Defines a simple program showing how to use simulations when optimizaton achived

with transition problems solved with cuts and uncertainties on a tree

20 * A simple grid is used

21 * \author Xavier Warin

22 */

23

24

25 /// \brief Simulate the optimal strategy , mpi version , Bellman cuts used to allow LP

resolution of transition problems when uncertainties are defined on a tree

26 /// \param p_grid grid used for deterministic state (stocks for example)

27 /// \param p_optimize optimizer defining the optimization between two time

steps

28 /// \param p_funcFinalValue function defining the final value cuts
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29 /// \param p_pointStock initial point stock

30 /// \param p_initialRegime regime at initial date

31 /// \param p_fileToDump name associated to dumped bellman values

32 /// \param p_bOneFile do we store continuation values in only one file

33 double SimulateTreeCutDist(const std::shared_ptr <StOpt::FullGrid > &p_grid ,

34 const std:: shared_ptr <StOpt:: OptimizerDPCutTreeBase > &

p_optimize ,

35 const std::function < Eigen:: ArrayXd(const int &, const Eigen::

ArrayXd &, const Eigen:: ArrayXd &)> &p_funcFinalValue ,

36 const Eigen:: ArrayXd &p_pointStock ,

37 const int &p_initialRegime ,

38 const std:: string &p_fileToDump ,

39 const bool &p_bOneFile)

40 {

41 boost::mpi:: communicator world;

42 // from the optimizer get back the simulator

43 std::shared_ptr < StOpt:: SimulatorDPBaseTree > simulator = p_optimize ->getSimulator ();

44 int nbStep = simulator ->getNbStep ();

45 std::vector < StOpt:: StateTreeStocks > states;

46 states.reserve(simulator ->getNbSimul ());

47 for (int is = 0; is < simulator ->getNbSimul (); ++is)

48 states.push_back(StOpt:: StateTreeStocks(p_initialRegime , p_pointStock , 0));

49 std:: string toDump = p_fileToDump ;

50 // test if one file generated

51 if (! p_bOneFile)

52 toDump += "_" + boost:: lexical_cast <std::string >( world.rank());

53 gs:: BinaryFileArchive ar(toDump.c_str(), "r");

54 // name for continuation object in archive

55 std:: string nameAr = "ContinuationTree";

56 // cost function

57 Eigen:: ArrayXXd costFunction = Eigen:: ArrayXXd ::Zero(p_optimize ->getSimuFuncSize (),

simulator ->getNbSimul ());

58 for (int istep = 0; istep < nbStep; ++istep)

59 {

60 StOpt:: SimulateStepTreeCutDist(ar , nbStep - 1 - istep , nameAr , p_grid , p_optimize ,

p_bOneFile).oneStep(states , costFunction);

61

62 // new date

63 simulator ->stepForward ();

64 for (int is = 0; is < simulator ->getNbSimul (); ++is)

65 states[is]. setStochasticRealization(simulator ->getNodeAssociatedToSim(is));

66 }

67 // final : accept to exercise if not already done entirely (here suppose one function

to follow)

68 for (int is = 0; is < simulator ->getNbSimul (); ++is)

69 costFunction (0, is) += p_funcFinalValue(states[is]. getRegime (), states[is].

getPtStock (), simulator ->getValueAssociatedToNode(states[is].

getStochasticRealization ()))(0);

70

71 return costFunction.mean();

72 }

73

74 #endif /* SIMULATETREECUTDIST_H */

The version of the previous example using a single archive storing the control/solution is
given in the SimulateTreeCut.h file.

139



Chapter 10

The Python API

10.1 Mapping to the framework

In order to use the Python API, it is possible to use only the mapping of the grids, continu-
ation values, and regression object and to program an equivalent of TransitionStepRegres
sionDP and of SimulateStepRegression, SimulateStepRegressionControl in python.
No mapping is currently available for TransitionStepDP. An example using python is given
by

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import StOptReg as reg

6

7 class TransitionStepRegressionDP:

8

9 def __init__(self , p_pGridCurrent , p_pGridPrevious , p_pOptimize):

10

11 self.m_pGridCurrent = p_pGridCurrent

12 self.m_pGridPrevious = p_pGridPrevious

13 self.m_pOptimize = p_pOptimize

14

15 def oneStep(self , p_phiIn , p_condExp):

16

17 nbRegimes = self.m_pOptimize.getNbRegime ()

18 phiOut = list(range(nbRegimes))

19 nbControl = self.m_pOptimize.getNbControl ()

20 controlOut = list(range(nbControl))

21

22 # only if the processor is working

23 if self.m_pGridCurrent.getNbPoints () > 0:

24

25 # allocate for solution

26 for iReg in range(nbRegimes):

27 phiOut[iReg] = np.zeros(( p_condExp.getNbSimul (), self.m_pGridCurrent.

getNbPoints ()))

28

29 for iCont in range(nbControl):

30 controlOut[iCont] = np.zeros(( p_condExp.getNbSimul (), self.m_pGridCurrent.

getNbPoints ()))

31

32 # number of threads

33 nbThreads = 1

34

35 contVal = []

36
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37 for iReg in range(len(p_phiIn)):

38 contVal.append(reg.ContinuationValue(self.m_pGridPrevious , p_condExp ,

p_phiIn[iReg]))

39

40 # create iterator on current grid treated for processor

41 iterGridPoint = self.m_pGridCurrent.getGridIteratorInc (0)

42

43 # iterates on points of the grid

44 for iIter in range(self.m_pGridCurrent.getNbPoints ()):

45

46 if iterGridPoint.isValid ():

47 pointCoord = iterGridPoint.getCoordinate ()

48 # optimize the current point and the set of regimes

49 solutionAndControl = self.m_pOptimize.stepOptimize(self.m_pGridPrevious

, pointCoord , contVal , p_phiIn)

50

51 # copy solution

52 for iReg in range(self.m_pOptimize.getNbRegime ()):

53 phiOut[iReg][:, iterGridPoint.getCount ()] = solutionAndControl [0][:,

iReg]

54

55 for iCont in range(nbControl):

56 controlOut[iCont ][:, iterGridPoint.getCount ()] = solutionAndControl

[1][:, iCont]

57

58 iterGridPoint.nextInc(nbThreads)

59

60 res = []

61 res.append(phiOut)

62 res.append(controlOut)

63 return res

This object can be used as in a time step optimization as follows

1 # Copyright (C) 2016, 2018 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import StOptReg

5 import StOptGeners

6 import dp.TransitionStepRegressionDP as trans

7 import dp.FinalStepDP as final

8

9

10 def DynamicProgrammingByRegression(p_grid , p_optimize , p_regressor , p_funcFinalValue ,

p_pointStock , p_initialRegime , p_fileToDump , key1="Continuation" , key2 = "Control"):

11

12 # from the optimizer get back the simulation

13 simulator = p_optimize.getSimulator ()

14 # final values

15 valuesNext = final.FinalStepDP(p_grid , p_optimize.getNbRegime ()).operator(

p_funcFinalValue , simulator.getParticles ())

16

17 archiveToWrite = StOptGeners.BinaryFileArchive(p_fileToDump , "w")

18 nsteps = simulator.getNbStep ()

19 # iterate on time steps

20 for iStep in range(nsteps):

21 asset = simulator.stepBackwardAndGetParticles ()

22

23 # conditional expectation operator

24 if iStep == (simulator.getNbStep () - 1):

25 p_regressor.updateSimulations(True , asset)

26 else:

27 p_regressor.updateSimulations(False , asset)

28

29 # transition object

30 transStep = trans.TransitionStepRegressionDP(p_grid , p_grid , p_optimize)

31 valuesAndControl = transStep.oneStep(valuesNext , p_regressor)

32 valuesNext = valuesAndControl [0]

33 control = valuesAndControl [1]
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34 # Dump the continuation values in the archive:

35 archiveToWrite.dumpGridAndRegressedValue(key1 , nsteps - 1 - iStep , valuesNext ,

p_regressor , p_grid)

36 archiveToWrite.dumpGridAndRegressedValue(key2 , nsteps - 1 - iStep , control ,

p_regressor , p_grid)

37

38 # interpolate at the initial stock point and initial regime

39 return (p_grid.createInterpolator(p_pointStock).applyVec(valuesNext[p_initialRegime ])).

mean()

Some examples are available in the test directory (for example for swing options).
Another approach more effective in term of computational cost consists in mapping the simu-
lator object derived from the SimulatorDPBase object and optimizer object derived from the
OptimizerDPBase object and to use the high level python mapping of TransitionStepRe
gressionDP and SimulateStepRegression. In the test part of the library some Black-
Scholes simulator and some Mean reverting simulator for a future curve deformation are
developed and some examples of the mapping are achieved in the Pybind11Simulators.cpp
file. Similarly the optimizer class for swings options, optimizer for a fictitious swing in di-
mension 2, optimizer for a gas storage, optimizer for a gas storage with switching cost are
mapped to python in the Pybind11Optimizers.cpp file.
In the example below we describe the use of this high level interface for the swing options
with a Black Scholes simulator: we give in this example the mapping of the mostly used
objects:

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import math

5 import imp

6 import numpy as np

7 import unittest

8 import StOptGrids

9 import StOptReg

10 import StOptGlobal

11 import StOptGeners

12 import Utils

13 import Simulators as sim

14 import Optimizers as opt

15

16 # unit test for global shape

17 ############################

18

19 class OptimizerConstruction(unittest.TestCase):

20

21 def test(self):

22 try:

23 imp.find_module(’mpi4py ’)

24 found =True

25 except:

26 print("Not parallel module found ")

27 found = False

28

29 if found :

30 from mpi4py import MPI

31 comm = MPI.COMM_WORLD

32 initialValues = np.zeros(1,dtype=np.float) + 1.

33 sigma = np.zeros (1) + 0.2

34 mu = np.zeros (1) + 0.05

35 corr = np.ones ((1,1),dtype=np.float)

36 # number of step

37 nStep = 30

38 # exercise dates
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39 dates = np.linspace (0., 1., nStep + 1)

40 T= dates[len(dates) - 1]

41 nbSimul = 10 # simulation number (optimization and simulation)

42 # simulator

43 ##########

44 bsSim = sim.BlackScholesSimulator(initialValues , sigma , mu, corr , T, len(dates)

- 1, nbSimul , False)

45 strike = 1.

46 # Pay off

47 payOff= Utils.BasketCall(strike)

48 # optimizer

49 ##########

50 N = 3 # number of exercise dates

51 swiOpt = opt.OptimizerSwingBlackScholes(payOff ,N)

52 # link simulator to optimizer

53 swiOpt.setSimulator(bsSim)

54 # archive

55 ########

56 ar = StOptGeners.BinaryFileArchive("Archive","w")

57 # regressor

58 ##########

59 nMesh = np.array ([1])

60 regressor = StOptReg.LocalLinearRegression(nMesh)

61 # Grid

62 ######

63 # low value for the meshes

64 lowValues =np.array ([0.], dtype=np.float)

65 # size of the meshes

66 step = np.array ([1.], dtype=np.float)

67 # number of steps

68 nbStep = np.array([N], dtype=np.int32)

69 gridArrival = StOptGrids.RegularSpaceGrid(lowValues ,step ,nbStep)

70 gridStart = StOptGrids.RegularSpaceGrid(lowValues ,step ,nbStep -1)

71 # pay off function for swing

72 ############################

73 payOffBasket = Utils.BasketCall(strike);

74 payoff = Utils.PayOffSwing(payOffBasket ,N)

75 dir(payoff)

76 # final step

77 ############

78 asset =bsSim.getParticles ()

79 fin = StOptGlobal.FinalStepDP(gridArrival ,1)

80 values = fin.set( payoff ,asset)

81 # transition time step

82 #####################

83 # on step backward and get asset

84 asset = bsSim.stepBackwardAndGetParticles ()

85 # update regressor

86 regressor.updateSimulations (0,asset)

87 transStep = StOptGlobal.TransitionStepRegressionDP(gridStart ,gridArrival ,swiOpt

)

88 valuesNextAndControl=transStep.oneStep(values ,regressor)

89 transStep.dumpContinuationValues(ar,"Continuation",1,valuesNextAndControl [0],

valuesNextAndControl [1], regressor)

90 # simulate time step

91 ####################

92 nbSimul= 10

93 vecOfStates =[] # state of each simulation

94 for i in np.arange(nbSimul):

95 # one regime , all with same stock level (dimension 2), same realization of

simulation (dimension 3)

96 vecOfStates.append(StOptGlobal.StateWithStocks (1, np.array ([0.]) , np.zeros

(1)))

97 arRead = StOptGeners.BinaryFileArchive("Archive","r")

98 simStep = StOptGlobal.SimulateStepRegression(arRead ,1,"Continuation",

gridArrival ,swiOpt)

99 phi = np.zeros ((1, nbSimul))

100 VecOfStateNext = simStep.oneStep(vecOfStates , phi)

101
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102 if __name__ == ’__main__ ’:

103 unittest.main()

Its declination in term of a time nest for optimization is given below (please notice that
the TransitionStepRegressionDP object is the result of the mapping between python and
c++ and given in the StOptGlobal module)

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import StOptGrids

5 import StOptReg

6 import StOptGlobal

7 import StOptGeners

8

9

10 def DynamicProgrammingByRegressionHighLevel(p_grid , p_optimize , p_regressor ,

p_funcFinalValue , p_pointStock , p_initialRegime , p_fileToDump) :

11

12 # from the optimizer get back the simulation

13 simulator = p_optimize.getSimulator ()

14 # final values

15 fin = StOptGlobal.FinalStepDP(p_grid , p_optimize.getNbRegime ())

16 valuesNext = fin.set(p_funcFinalValue , simulator.getParticles ())

17 ar = StOptGeners.BinaryFileArchive(p_fileToDump , "w")

18 nameAr = "Continuation"

19 nsteps =simulator.getNbStep ()

20 # iterate on time steps

21 for iStep in range(nsteps) :

22 asset = simulator.stepBackwardAndGetParticles ()

23 # conditional expectation operator

24 if iStep == (simulator.getNbStep () - 1):

25 p_regressor.updateSimulations(True , asset)

26 else:

27 p_regressor.updateSimulations(False , asset)

28

29 # transition object

30 transStep = StOptGlobal.TransitionStepRegressionDP(p_grid , p_grid , p_optimize)

31 valuesAndControl = transStep.oneStep(valuesNext , p_regressor)

32 transStep.dumpContinuationValues(ar, nameAr , nsteps - 1 -iStep , valuesNext ,

valuesAndControl [1], p_regressor)

33 valuesNext = valuesAndControl [0]

34

35 # interpolate at the initial stock point and initial regime

36 return (p_grid.createInterpolator(p_pointStock).applyVec(valuesNext[p_initialRegime ])).

mean()

Similarly a python time nest in simulation using the control previously calculated in opti-
mization can be given as an example by:

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import StOptReg as reg

6 import StOptGrids

7 import StOptGeners

8 import StOptGlobal

9

10

11 # Simulate the optimal strategy , threaded version

12 # p_grid grid used for deterministic state (stocks for example)

13 # p_optimize optimizer defining the optimization between two time steps

14 # p_funcFinalValue function defining the final value

15 # p_pointStock initial point stock

16 # p_initialRegime regime at initial date
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17 # p_fileToDump name of the file used to dump continuation values in

optimization

18 def SimulateRegressionControl(p_grid , p_optimize , p_funcFinalValue , p_pointStock ,

p_initialRegime , p_fileToDump) :

19

20 simulator = p_optimize.getSimulator ()

21 nbStep = simulator.getNbStep ()

22 states = []

23 particle0 = simulator.getParticles ()[:,0]

24

25 for i in range(simulator.getNbSimul ()) :

26 states.append(StOptGlobal.StateWithStocks(p_initialRegime , p_pointStock , particle0)

)

27

28 ar = StOptGeners.BinaryFileArchive(p_fileToDump , "r")

29 # name for continuation object in archive

30 nameAr = "Continuation"

31 # cost function

32 costFunction = np.zeros(( p_optimize.getSimuFuncSize (), simulator.getNbSimul ()))

33

34 # iterate on time steps

35 for istep in range(nbStep) :

36 NewState = StOptGlobal.SimulateStepRegressionControl(ar, istep , nameAr , p_grid ,

p_optimize).oneStep(states , costFunction)

37 # different from C++

38 states = NewState [0]

39 costFunction = NewState [1]

40 # new stochastic state

41 particles = simulator.stepForwardAndGetParticles ()

42

43 for i in range(simulator.getNbSimul ()) :

44 states[i]. setStochasticRealization(particles[:,i])

45

46 # final : accept to exercise if not already done entirely

47 for i in range(simulator.getNbSimul ()) :

48 costFunction [0,i] += p_funcFinalValue.set(states[i]. getRegime (), states[i].

getPtStock (), states[i]. getStochasticRealization ()) * simulator.getActu ()

49

50 # average gain/cost

51 return costFunction.mean()

Equivalent using MPI and the distribution of calculations and data can be used using the
mpi4py package. An example of its use can be found in the MPI version of a swing opti-
mization and valorization.

10.2 Special python binding

Some specific features have been added to the python interface to increase the flexibility
of the library. A special mapping of the geners library has been achieved for some specific
needs.

10.2.1 A first binding to use the framework

The BinaryFileArchive in the python module StOptGeners permits for:

• a grid on point,

• a list of numpy array (dimension 2) of size the number of simulations used by the
number of points on the grid (the size of the list corresponds to the number of regimes
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used in case of a regime switching problem: if one regime, this list contains only one
item which is a two dimensional array)

• a regressor

to create a set of regressed values of the numpy arrays values and store them in the archive.
This functionality permits to store the continuation values associated to a problem.
The dump method dumpGridAndRegressedValue in the BinaryFileArchive class permits
this dump.
It is also possible to get back the continuation values obtained using the readGridAn

dRegressedValue method.

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import unittest

6 import random

7 import StOptGrids

8 import StOptReg

9 import StOptGeners

10

11

12 # unit test for dumping binary archive of regressed value and Read then

13 ######################################################################

14

15 class testBinaryArchiveStOpt(unittest.TestCase):

16

17

18 def testSimpleStorageAndLectureRecGrid(self):

19

20 # low value for the mesh

21 lowValues =np.array ([1. ,2.,3.] , dtype=np.float)

22 # size of the mesh

23 step = np.array ([0.7 ,2.3 ,1.9] , dtype=np.float)

24 # number of step

25 nbStep = np.array ([4,5,6], dtype=np.int32)

26 # degree of the polynomial in each direction

27 degree = np.array ([2,1,3], dtype=np.int32)

28 # create the Legendre grid

29 grid = StOptGrids.RegularLegendreGrid(lowValues ,step ,nbStep ,degree )

30

31

32 # simulate the perburbed values

33 ################################

34 nbSimul =40000

35 np.random.seed (1000)

36 x = np.random.uniform (-1.,1.,size=(1, nbSimul));

37 # mesh

38 nbMesh = np.array ([16] , dtype=np.int32)

39 # Create the regressor

40 #####################

41 regressor = StOptReg.LocalLinearRegression(False ,x,nbMesh)

42

43 # regressed values same values for each point of the grid

44 #########################################################

45 toReal = (2+x[0 ,:]+(1+x[0,:]) *(1+x[0,:]))

46 # function to regress

47 toRegress = toReal + 4*np.random.normal (0.,1, nbSimul)

48 # create a matrix (number of stock points by number of simulations)

49 toRegressMult = np.zeros(shape=(len(toRegress),grid.getNbPoints ()))

50 for i in range(toRegressMult.shape [1]):

51 toRegressMult [:,i] = toRegress

52 # into a list : two times to test 2 regimes

53 listToReg = []
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54 listToReg.append(toRegressMult)

55 listToReg.append(toRegressMult)

56

57

58 # Create the binary archive to dump

59 ###################################

60 archiveToWrite = StOptGeners.BinaryFileArchive("MyArchive","w")

61 # step 1

62 archiveToWrite.dumpGridAndRegressedValue("toStore", 1,listToReg , regressor ,grid)

63 # step 3

64 archiveToWrite.dumpGridAndRegressedValue("toStore", 3,listToReg , regressor ,grid)

65

66

67 # Read the regressed values

68 ###########################

69 archiveToRead = StOptGeners.BinaryFileArchive("MyArchive","r")

70 contValues = archiveToRead.readGridAndRegressedValue (3,"toStore")

71

72

73 # list of 2 continuation values

74 ##############################

75 stockPoint = np.array ([1.5 ,3. ,5.])

76 uncertainty = np.array ([0.])

77 value =contValues [0]. getValue(stockPoint ,uncertainty)

78

79

80 # non regular grid

81 def testSimpleStorageAndLectureNonRegular(self):

82

83 # create the Legendre grid

84 grid = StOptGrids.GeneralSpaceGrid ([[ 1., 1.7, 2.4, 3.1, 3.8 ],

85 [2., 4.3, 6.6, 8.9, 11.2, 15.],

86 [3., 4.9, 5.8, 7.7, 10. ,20.]])

87

88 # simulate the perburbed values

89 ################################

90 nbSimul =40000

91 np.random.seed (1000)

92 x = np.random.uniform (-1.,1.,size=(1, nbSimul));

93 # mesh

94 nbMesh = np.array ([16] , dtype=np.int32)

95 # Create the regressor

96 #####################

97 regressor = StOptReg.LocalLinearRegression(False ,x,nbMesh)

98

99 # regressed values same values for each point of the grid

100 #########################################################

101 toReal = (2+x[0 ,:]+(1+x[0,:]) *(1+x[0,:]))

102 # function to regress

103 toRegress = toReal + 4*np.random.normal (0.,1, nbSimul)

104 # create a matrix (number of stock points by number of simulations)

105 toRegressMult = np.zeros(shape=(len(toRegress),grid.getNbPoints ()))

106 for i in range(toRegressMult.shape [1]):

107 toRegressMult [:,i] = toRegress

108 # into a list : two times to test 2 regimes

109 listToReg = []

110 listToReg.append(toRegressMult)

111 listToReg.append(toRegressMult)

112

113

114 # Create the binary archive to dump

115 ###################################

116 archiveToWrite = StOptGeners.BinaryFileArchive("MyArchive","w")

117 # step 1

118 archiveToWrite.dumpGridAndRegressedValue("toStore", 1,listToReg , regressor ,grid)

119 # step 3

120 archiveToWrite.dumpGridAndRegressedValue("toStore", 3,listToReg , regressor ,grid)

121

122
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123 # Read the regressed values

124 ###########################

125 archiveToRead = StOptGeners.BinaryFileArchive("MyArchive","r")

126 contValues = archiveToRead.readGridAndRegressedValue (3,"toStore")

127

128

129 # list of 2 continuation values

130 ##############################

131 stockPoint = np.array ([1.5 ,3. ,5.])

132 uncertainty = np.array ([0.])

133 value =contValues [0]. getValue(stockPoint ,uncertainty)

134

135 if __name__ == ’__main__ ’:

136 unittest.main()

10.2.2 Binding to store/read a regressor and some two dimen-
sional array

Sometimes, users prefer to avoid the use of the framework provided and prefer to only use the
python binding associated to the regression methods. When some regressions are achieved
for different set of particles (meaning that one or more functions are regressed), it it possible
to dump the regressor used and some values associated to these regressions:

• the dumpSome2DArray, readSome2DArray permits to dump and read 2 dimensional
numpy arrays,

• the dumpSomeRegressor , readSomeRegressor permits to dump and read a regressor.

1 # Copyright (C) 2017 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import numpy as np

5 import StOptReg

6 import StOptGeners

7

8 # unit test to show how to store some regression object and basis function coefficients

associated

9 #

#################################################################################################

10

11 def createData ():

12

13 X1=np.arange (0.0 , 2.2 , 0.01 )

14 X2=np.arange (0.0 , 1.1 , 0.005 )

15 Y=np.zeros((len(X1),len(X2)))

16 for i in range(len(X1)):

17 for j in range(len(X2)):

18 if i < len(X1)//2:

19 if j < len(X2)//2:

20 Y[i,j]=X1[i]+X2[j]

21 else:

22 Y[i,j]=4*X1[i]+4*X2[j]

23 else:

24 if j < len(X2)//2:

25 Y[i,j]=2*X1[i]+X2[j]

26 else:

27 Y[i,j]=2*X1[i]+3*X2[j]

28

29 XX1 , XX2 = np.meshgrid(X1 ,X2)

30 Y=Y.T
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31

32 r,c = XX1.shape

33

34 X = np.reshape(XX1 ,(r*c,1))[:,0]

35 I = np.reshape(XX2 ,(r*c,1))[:,0]

36 Y = np.reshape(Y,(r*c,1))[:,0]

37

38 xMatrix = np.zeros((2,len(X)))

39 xMatrix [0,:] = X

40 xMatrix [1,:] = I

41

42 return xMatrix , Y

43

44

45

46

47 # main

48

49 xMatrix , y = createData ()

50

51 # 2 dimensional regression 2 by 2 meshes

52 nbMesh = np.array ([2,2], dtype=np.int32)

53 regressor = StOptReg.LocalLinearRegression(False ,xMatrix ,nbMesh)

54

55 # coefficients

56 coeff = regressor.getCoordBasisFunction(y)

57

58 print("Regressed coeff", coeff)

59

60

61 # store them in a matrix

62 coeffList = np.zeros(shape =(1 ,3*2*2))

63 coeffList [0,:]= coeff.transpose ()

64

65

66 # archive write for regressors

67 archiveWriteForRegressor =StOptGeners.BinaryFileArchive("archive","w")

68

69 # store

70 step =1

71 archiveWriteForRegressor.dumpSome2DArray("RegCoeff",step ,coeff)

72 archiveWriteForRegressor.dumpSomeRegressor("Regressor",step ,regressor)

73

74 # archive Read for regressors

75 archiveReadForRegressor =StOptGeners.BinaryFileArchive("archive","r")

76

77 # get back

78 values = archiveReadForRegressor.readSome2DArray("RegCoeff",step)

79 reg = archiveReadForRegressor.readSomeRegressor("Regressor",step)

80 print("Regressed coeff ", values)

81 print("Reg",reg)
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Chapter 11

Using the C++ framework to solve
some hedging problem

In this chapter we present an algorithm developed in StOpt to solve some hedging problem
supposing that a mean variance criterion is chosen. The methodology follows the article [48]
In this section we suppose that (Ω,F , (Ft)t∈[0,T ]) is a filtered probability space. We define a
set of trading dates T = {t0 = 0, t1, . . . , tN−1, tN = T} and we suppose that we are given an
asset used as an hedging product (St)t0.tN which is almost surely positive, square integrable
so that E[S2

t ] <∞ and adapted so that St is Ft-measurable for t = t0, . . . , tN .
At last we suppose that the risk free rate is zero so that a bond has always a value of 1.

11.1 The problem

We suppose that we are given a contingent claim H ∈ L2(P ) which is supposed to be a
FT -measurable random variable. In the case of a European call option on an asset St with
strike K and maturity T , H(ω) = (ST (ω)−K)+.
We are only interested in self financing strategies with limited orders, so with bounded
controls. Extending [33], [6] definition, we define:

Definition 1 A (m̄, l̄) self-financing strategy V = (Vti)i=0,...,N−1 is a pair of adapted process
(mti , lti)i=0,...,N−1 defined for (m̄, l̄) ∈ (0,∞)× (0,∞) such that:

• 0 ≤ mti ≤ m̄, 0 ≤ lti ≤ l̄ P.a.s. ∀i = 0, . . . , N − 1,

• mtilti = 0 P.a.s. ∀i = 0, . . . , N − 1.

In this definition mt corresponds to the number of shares sold at date t, and lt the number
of share bought at this date.

Remark 23 The strategies defined in [33] and [6] do not impose that mtlt = 0 so a buy and
sell control could happen at the same given date.

We note Θ(m̄,l̄) the set of (m̄, l̄) self-financing strategy and with obvious notations ν =
(m, l) for ν ∈ Θ(m̄,l̄).
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We consider a model of proportional cost, so that an investor buying a share at date t will
pay (1 + λ)St and an investor selling this share will only receive (1 − λ)St. Assuming no
transaction cost on the last date T , the terminal wealth of an investor with initial wealth x
is given by:

x−
N−1∑
i=0

(1 + λ)ltiSti +
N−1∑
i=0

(1− λ)mtiSti +
N−1∑
i=0

ltiStN −
N−1∑
i=0

mtiStN . (11.1)

Remark 24 The transaction costs on the last date T are related to the nature of the con-
tract. In the case of a pure financial contract, the investor will sell the asset and then some
transaction costs have to be paid to clear the final position. On energy market for example,
the contract is often associated to physical delivery and no special fees are to be paid. Be-
sides on these markets, even if the contract is purely financial, futures markets are rather
illiquid meaning large transaction costs whereas spot markets are much more liquid so that
neglecting final transaction costs is justified.

As in [33] [6], we define the risk minimal strategy minimizing the L2 risk of the hedge
portfolio:

Definition 2 A (m̄, l̄) self-financing strategy V̂ = (m̂, l̂) is global risk minimizing for the
contingent claim H and the initial capital x if:

V̂ =arg min
V=(m,l)∈Θ(m̄,l̄)

E[(H − x+
N−1∑
i=0

(1 + λ)ltiSti−

N−1∑
i=0

(1− λ)mtiSti −
N−1∑
i=0

ltiStN +
N−1∑
i=0

mtiStN )2]. (11.2)

11.2 Theoretical algorithm

we suppose that the process is Markov and that the payoff H is a function of the asset value
at maturity only to simplify the presentation for the Monte Carlo method proposed.
We introduce the global position ν = (νi)i=0,...,N−1 with:

νi =
i∑

j=0

(mtj − ltj),∀i = 0, . . . , N − 1.

Using the property that mtilti = 0, ∀i = 0, . . . , N − 1, we get |νi − νi−1| = lti + mti with
the convention that ν−1 = 0 and

GT (V) = ĜT (ν) = x−
N−1∑
i=0

λ|∆νi−1|Sti +
N−1∑
i=0

νi∆Si,

where ∆Si = Sti+1
− Sti , ∆νi = νi+1 − νi.

We then introduce Θ̂(m̄,l̄) the set of adapted random variable (νi)i=0,...,N−1 such that

−m̄ ≤ νi − νi−1 ≤ l̄,∀i = 1, . . . , N − 1.
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The problem (11.2) can be rewritten as done in [40] finding ν̂ = (ν̂i)i=0,...,N−1 satisfying:

ν̂ =arg min
ν∈Θ̂(m̄,l̄)

E[
(
H − x− ĜT (ν)

)2
]. (11.3)

We introduce the spaces κi, i = 0, . . . , N of the Fti-measurable and square integrable random
variables. We define for i ∈ 0, . . . , N , Vi ∈ κi as:

VN =H,

Vi =E[H −
N−1∑
j=i

νj∆Sj + λ

N−1∑
j=i

|∆νj−1|Stj |Fti ],∀i = 0, . . . , N − 1. (11.4)

then

E[(H − x− ĜT (ν))2] =E[
( (
VN − νN−1∆SN−1 + λ|∆νN−2|StN−1

− VN−1

)
+ (11.5)

N−1∑
i=2

(
Vi + λ|∆νi−2|Sti−1

− νi−1∆Si−1 − Vi−1

)
+ (11.6)

(V1 + λ|ν0|St0 − ν0∆S0 − x)
)2

] (11.7)

Due to the definition (11.4), we have that

E[Vi + λ|∆νi−2|Sti−1
− νi−1∆Si−1 − Vi−1|Fti−1

] = 0,∀i = 1, . . . , N, (11.8)

so that

E[(H − x− ĜT (ν))2] =E[E[
(
VN − νN−1∆SN−1 + λ|∆νN−2|StN−1

− VN−1

)2 |FtN−1
]+

E[
N−1∑
i=2

(
Vi + λ|∆νi−2|Sti−1

− νi−1∆Si−1 − Vi−1

)2
+

(V1 + λ|ν0|St0 − ν0∆S0 − x)2]

and iterating the process gives

E[(H − x− ĜT (ν))2] =E[
(
VN − νN−1∆SN−1 + λ|∆νN−2|StN−1

− VN−1

)2
]+

N−1∑
i=2

E[
(
Vi + λ|∆νi−2|Sti−1

− νi−1∆Si−1 − Vi−1

)2
]+

E[(V1 + λ|ν0|St0 − ν0∆S0 − x)2]

Then we can write the problem (11.3) as:

ν̂ =arg min
ν∈Θ̂(m̄,l̄)

E[
(
VN − νN−1∆SN−1 + λ|∆νN−2|StN−1

− VN−1

)2
]+

N−1∑
i=2

E[
(
Vi + λ|∆νi−2|Sti−1

− νi−1∆Si−1 − Vi−1

)2
]+

E[(V1 + λ|ν0|St0 − ν0∆S0 − x)2] (11.9)
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We introduce the space

ρm̄,l̄i (η) ={(V, ν)/V, ν are R valued Fti-adapted with − m̄ ≤ ν − η ≤ l̄},

and the space

ρ̂m̄,l̄i (η) ={(V, νi, . . . , νN−1)/V is R valued, Fti-adapted , the νj, j ≥ i are R valued

Ftj -adapted with m̄ ≤ νi − η ≤ l̄, m̄ ≤ νj+1 − νj ≤ l̄ for i ≤ j < N − 1},

Similarly to the scheme introduced in [4] to improve the methodology proposed in [18] to
solve Backward Stochastic Differential Equations, we can propose an algorithm where the
update for R̄ is taken ω by ω and stores the optimal trading gain function on each trajectory.
Then R̄ satisfies at date ti with an asset value Sti for an investment νi−1 chosen at date ti−1:

R̄(ti, Sti , νi−1) =H −
N−1∑
j=i

νj∆Sj + λ

N−1∑
j=i

|∆νj−1|Stj ,

= R(ti+1, Sti+1
, νi)− νi∆Si + λ|∆νi−1|Sti ,

and at the date ti according to equation (11.5) the optimal control is the control ν associated
to the minimization problem:

min
(V,ν)∈ρm̄,l̄i (νi−1)

E[(R̄(ti+1, Sti+1
, ν)− ν∆Si + λ|ν − νi−1|Sti − V )2|Fti ]

This leads to the Algorithm 8.

Algorithm 8 Backward resolution for L2 minimization problem avoiding conditional ex-
pectation iteration.

1: R̄(tN , StN−1
(ω), νN−1) = H(ω), ∀νN−1

2: for i = N, 2 do
3:

(Ṽ (ti−1, Sti−1
, νi−2), νi−1) = arg min

(V,ν)∈ρm̄,l̄i−1(νi−2)
E[(R̄(ti, Sti , ν)−

ν∆Si−1 + λ|ν − νi−2|Sti−1
− V )2|Fti−1

] (11.10)

4: R̄(ti−1, Sti−1
, νi−2) = R̄(ti, Sti , νi−1)− νi−1∆Si−1 + λ|∆νi−2|Sti−1

5: end for
6: ν0 = arg minν∈[−m̄,l̄] E[(R̄(t1, St1 , ν) + λ|ν|St0 − ν∆S0 − x)2]

Remark 25 In order to treat the case of mean variance hedging that consists in finding
the optimal strategy and the initial wealth to hedge the contingent claim the last line of
Algorithm 8 is replaced by

(Ṽ , ν0) =arg min
(V,ν)

E[(V (t1, St1 , ν) + λ|ν|St0 − ν∆S0 − V )2 +R(t1, St1 , ν)],

and last line of Algorithm 8 by

(Ṽ , ν0) = arg min
(V,ν)∈R×[−m̄,l̄]

E[(R̄(t1, St1 , ν) + λ|ν|St0 − ν∆S0 − V )2].
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Remark 26 In the two algorithm presented an argmin has to be achieved: a discretization
in νi−2 has to be achieved on a grid [νi−1 −m, νi−1 + l].

11.3 Practical algorithm based on Algorithm 8

Starting from the theoretical Algorithm 8, we aim at getting an effective implementation
based on a representation of the function Ṽ depending on time, St and the position νt in
the hedging assets.

• In order to represent the dependency in the hedging position we introduce a time
dependent grid

Qi := (ξk)
k=−(i+1)b m̄

ξ
c,...,(i+1)b l̄

ξ
c

where ξ is the mesh size associated to the set of grids (Qi)i=0,N and, if possible, chosen

such that l̄
ξ

= b l̄
ξ
c and m̄

ξ
= b m̄

ξ
c.

• To represent the dependency in St we will use a Monte Carlo method using simu-

lated path
(

(S
(j)
ti )i=0,...,N

)
j=1,...,M

and calculate the arg min in equation (11.10) using a

methodology close to the one described in [8]: suppose that we are given at each date

ti (Di
q)q=1,...,Q a partition of [minj=1,M S

(j)
ti ,maxj=1,M S

(j)
ti ] such that each cell contains

the same number of samples. We use the Q cells (Di
q)q=1,...,Q to represent the depen-

dency of Ṽ and ν in the Sti variable.
On each cell q we search for V̂ q a linear approximation of the function Ṽ at a given
date ti and for a position kξ so that V̂ q(ti, S, k) = aqi + bqiS is an approximation of
Ṽ (ti, S, kξ). On the cell q the optimal numerical hedging command ν̂q(k) for a position
kξ can be seen as a sensibility so it is natural to search for a constant control per cell
q when the value function is represented as a linear function.

Let us note (lqi (j))j=1,M
Q

the set of all samples belonging to the cell q at date ti. On each

mesh the optimal control ν̂q is obtained by discretizing the command ν on a grid η =
((k + r)ξ)

r=−b m̄
ξ
c,...,b l̄

ξ
c, and by testing the one giving a V̂ q value minimizing the L2 risk so

solving equation (11.10).

The Algorithm 9 permits to find the optimal ν
(j)
i (k) command using Algorithm 8 at date

ti, for a hedging position kξ and for all the Monte Carlo simulations j. For each command
tested on the cell q the corresponding V̂ q function is calculated by regression.

Remark 27 It is possible to use different discretization ξ to define the set η and the set Qi.
Then an interpolation is needed to get the R̄ values at a position not belonging to the grid.
An example of the use of such an interpolation for gas storage problem tracking the optimal
cash flow generated along the Monte Carlo strategies can be found in [45].

Remark 28 This algorithm permits to add some global constraint on the global liquidity of
the hedging asset. This is achieved by restricting the possible hedging positions to a subset
of Qi at each date ti.

Then the global discretized version of Algorithm 8 is given on Algorithm 10 where H(j)

correspond to the j the Monte Carlo realization of the payoff.
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Algorithm 9 Optimize minimal hedging position (ν̂
(l)
ti (k))l=1,...,M at date ti−1

1: procedure OptimalControl( R̄(ti+1, ., .), k, Sti , Sti+1
)

2: for q = 1, Q do
3: P =∞,
4: for k = −b m̄

ξ
c, . . . , b l̄

ξ
c do

5:

(aqi , b
q
i ) = arg min(a,b)∈R2

M
Q∑
j=1

(
R̄(ti+1, S

lqi (j)
ti+1

, (k + l)ξ)−

(k + l)ξ∆S
lqi (j)
i +

λ|lξ|Sl
q
i (j)
ti − (a+ bS

lqi (j)
ti )

)2

6:
P̃ =

M
Q∑
j=1

(
R̄(ti+1, S

lqi (j)
ti+1

, (k + l)ξ)− (k + l)ξ∆S
lqi (j)
i +

λ|lξ|Sl
q
i (j)
ti − (aqi + bqiS

lqi (j)
ti )

)2

7: if P̃ < P then
8: νq = kξ, P = P̃
9: end if

10: end for
11: for j = 1, M

Q
do

12: ν̂
(lqi (j))
i (k) = νq

13: end for
14: end forreturn (ν̂

(j)
ti (k))j=1,...,M

15: end procedure
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Algorithm 10 Global backward resolution algorithm, optimal control and optimal variance
calculation

1: for ν ∈ QN−1 do
2: for j ∈ [1,M ] do

3: R̄(tN , S
(j)
tN
, ν) = H(j)

4: end for
5: end for
6: for i = N, 2 do
7: for kξ ∈ Qi−2 do

8: (ν
(j)
i−1(k))j=1,M = OptimalControl(R̄(ti, ., .), k, Sti−1

, Sti),
9: for j ∈ [1,M ] do

10:
R̄(ti−1, S

(j)
ti−1

, kξ) = R̄(ti, S
(j)
ti , ν

(j)
i−1(k))−

ν
(j)
i−1(k)∆S

(j)
i−1 + λ|ν(j)

i−1(k)− kξ|S(j)
ti−1

11: end for
12: end for
13: end for
14: P =∞,
15: for k = −b m̄

ξ
c, . . . , b l̄

ξ
c do

16: P̃ =
M∑
j=1

(
R̄(t1, S

(j)
t1 , kξ)− kξ∆S

(j)
0 + λ|k|ξS0 − x)2

17: if P̃ < P then
18: ν0 = kξ, P = P̃
19: end if
20: end for
21: V ar = 1

M

∑M
j=1

(
R̄(t1, S

(j)
t1 , ν0)− ν0∆S

(j)
0 + λ|ν0|S0 − x

)2
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Part IV

Semi-Lagrangian methods
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For the semi-Lagrangian methods the C++ API is the only one available (no python
API is currently developed).
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Chapter 12

Theoretical background

In this part, we are back to the resolution of equation (2.1).

12.1 Notation and regularity results

We denote by ∧ the minimum and ∨ the maximum. We denote by | | the Euclidean norm
of a vector, Q := (0, T ]× Rd. For a bounded function w, we set

|w|0 = sup
(t,x)∈Q

|w(t, x)|, [w]1 = sup
(s,x)6=(t,y)

|w(s, x)− w(t, y)|
|x− y|+ |t− s| 12

and |w|1 = |w|0 + [w]1. C1(Q) will stand for the space of functions with a finite | |1 norm.
For t given, we denote

||w(t, .)||∞ = sup
x∈Rd
|w(t, x)|

We use the classical assumption on the data of (2.1) for a given K̂:

sup
a
|g|1 + |σa|1 + |ba|1 + |fa|1 + |ca|1 ≤ K̂ (12.1)

A classical result [24] gives us the existence and uniqueness of the solution in the space
of bounded Lipschitz functions:

Proposition 1 If the coefficients of the equation (2.1) satisfy (12.1), there exists a unique
viscosity solution of the equation (2.1) belonging to C1(Q). If u1 and u2 are respectively sub
and super solution of equation (2.1) satisfying u1(0, .) ≤ u2(0, .) then u1 ≤ u2.

A spatial discretization length of the problem ∆x being given, thereafter (i1∆x, . . . , id∆x)
with ī = (i1, . . . , id) ∈ Zd will correspond to the coordinates of a mesh Mī defining a hyper-
cube in dimension d. For an interpolation grid (ξi)i=0,...,N ∈ [−1, 1]N , and for a mesh ī,
the point yī,j̃ with j̃ = (j1, . . . , jd) ∈ [0, N ]d will have the coordinate (∆x(i1 + 0.5(1 +
ξj1)), . . . ,∆x(id+0.5(1+ ξjd)). We denote (yī,j̃)ī,j̃ the set of all the grids points on the whole
domain.
We notice that for regular mesh with constant volume ∆xd, we have the following relation
for all x ∈ Rd:

min
ī,j̃
|x− yī,j̃| ≤ ∆x. (12.2)
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12.2 Time discretization for HJB equation

The equation (2.1) is discretized in time by the scheme proposed by Camilli Falcone [13] for
a time discretization h.

vh(t+ h, x) = inf
a∈A

[
q∑
i=1

1

2q
(vh(t, φ

+
a,h,i(t, x)) + vh(t, φ

−
a,h,i(t, x)))

+fa(t, x)h+ ca(t, x)hvh(t, x)

]
:= vh(t, x) + inf

a∈A
La,h(vh)(t, x) (12.3)

with

La,h(vh)(t, x) =

q∑
i=1

1

2q
(vh(t, φ

+
a,h,i(t, x)) + vh(t, φ

−
a,h,i(t, x))− 2vh(t, x))

+hca(t, x)vh(t, x) + hfa(t, x)

φ+
a,h,i(t, x) = x+ ba(t, x)h+ (σa)i(t, x)

√
hq

φ−a,h,i(t, x) = x+ ba(t, x)h− (σa)i(t, x)
√
hq

where (σa)i is the i-th column of σa. We note that it is also possible to choose other types
of discretization in the same style as those defined in [34].
In order to define the solution at each date, a condition on the value chosen for vh between 0
and h is required. We choose a time linear interpolation once the solution has been calculated
at date h:

vh(t, x) = (1− t

h
)g(x) +

t

h
vh(h, x), ∀t ∈ [0, h]. (12.4)

We first recall the following result:

Proposition 2 Under the condition on the coefficients given by equation (12.1), the solution
vh of equations (12.3) and (12.4) is uniquely defined and belongs to C1(Q). We check that if
h ≤ (16 supa {|σa|21 + |ba|21 + 1} ∧ 2 supa |ca|0)−1, there exists C such that

|v − vh|0 ≤ Ch
1
4 . (12.5)

Moreover, there exists C independent of h such that

|vh|0 ≤ C, (12.6)

|vh(t, x)− vh(t, y)| ≤ C|x− y|,∀(x, y) ∈ Q2. (12.7)

12.3 Space interpolation

The space resolution of equation (12.3) is a achieved on a grid. The φ+ and φ− have to be
computed by the use of an interpolator I such that:

vh(t, φ
+
a,h,i(t, x)) ' I(vh(t, .))(φ

+
a,h,i(t, x)),

vh(t, φ
−
a,h,i(t, x)) ' I(vh(t, .))(φ

−
a,h,i(t, x)).
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In order to easily prove the convergence of the scheme to the viscosity solution of the problem,
the monotony of the scheme is generally required leading to some linear interpolator slowly
converging. An adaptation to high order interpolator where the function is smooth can be
achieved using Legendre grids and Sparse grids with some truncation (see [47], [46]).
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Chapter 13

C++ API

In order to achieve the interpolation and calculate the semi-Lagrangian value

q∑
i=1

1

2q
(vh(t, φ

+
a,h,i(t, x)) + vh(t, φ

−
a,h,i(t, x))

a first object SemiLagrangEspCond is available:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef SEMILAGRANGESPCOND_H

5 #define SEMILAGRANGESPCOND_H

6 #include <Eigen/Dense >

7 #include <map >

8 #include <array >

9 #include <vector >

10 #include "StOpt/core/utils/constant.h"

11 #include "StOpt/core/grids/InterpolatorSpectral.h"

12

13 /** \file SemiLagrangEspCond.h

14 * \brief Semi Lagrangian method for process \f$ d x_t = b dt + \sigma dW_t \f$

15 * where \f$ X_t , b \f$ with values in \f$ {\ mathbb R}^n \f$ , \f$ \sigma \f$ a \f$ \

mathbf{R}^n

16 * \times \mathbf{R}^m \f$ matrix and \f$ W_t \f$ with values in \f$ \mathbf{R}^m \f$

17 */

18

19 namespace StOpt

20 {

21

22 /// \class SemiLagrangEspCond SemiLagrangEspCond.h

23 /// calculate semi Lagrangian operator for previously defined process.

24 class SemiLagrangEspCond

25 {

26 ///\ brief interpolator

27 std::shared_ptr <InterpolatorSpectral > m_interpolator;

28

29 /// \brief store extremal values for the grid (min , max coordinates in each dimension)

30 std:: vector <std::array < double , 2> > m_extremalValues;

31

32 /// \brief Do we use modification of volatility to stay in the domain

33 bool m_bModifVol ;

34

35 public :

36

37 /// \brief Constructor

38 /// \param p_interpolator Interpolator storing the grid

39 /// \param p_extremalValues Extremal values of the grid
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40 /// \param p_bModifVol do we modify volatility to stay in the domain

41 SemiLagrangEspCond(const std:: shared_ptr <InterpolatorSpectral > &p_interpolator , const

std:: vector <std::array < double , 2> > &p_extremalValues , const bool &p_bModifVol);

42

43 /// \brief Calculate \f$ \frac {1}{2d} \sum_{i=1}^d \phi(x+ b dt + \sigma_i \sqrt{dt})+

\phi(x+ b dt - \sigma_i \sqrt{dt} \f$

44 /// where \f$ \sigma_i \f$ is column \f$ i\f$ of \f$ \sigma \f$

45 /// \param p_x beginning point

46 /// \param p_b trend

47 /// \param p_sig volatility matrix

48 /// \param p_dt Time step size

49 /// \return (the value calculated ,true) if point inside the domain , otherwise (0.,

false)

50 std::pair <double , bool > oneStep(const Eigen :: ArrayXd &p_x , const Eigen:: ArrayXd &p_b

, const Eigen:: ArrayXXd &p_sig , const double &p_dt) const;

51

52

53 };

54 }

55 #endif

Its constructor uses the following arguments:

• a first one p interpolator defines a “spectral” interpolator on a grid: this “spectral”
interpolator is constructed from a grid and a function to interpolate (see section 3).
In our case, it will be used to interpolate the solution from the previous time step,

• a second one p extremalValues defines for each dimension the minimal and maximal
coordinates of points belonging to the grid,

• a third one p bModifVol if set to true permits to achieve a special treatment when
points to interpolate are outside the grid: the volatility of the underlying process is
modified (keeping the same mean and variance) trying to keep points inside the domain
(see [47]).

This object has the method oneStep taking

• p x the foot of the characterize (for each dimension),

• p b the trend of the process (for each dimension),

• p sig the matrix volatility of the process,

such that the interpolation is achieved for a time step h at points p x+ p bh± p sig
√
h. It

returns a pair (a, b) where a contains the calculated value if the b value is true. When the
interpolation is impossible to achieve, the b value is set to false.

In order to use the API, an object deriving from the OptimizerSLBase object has to be
constructed. This object permits to define the PDE to solve (with it optimization problem
if any).

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef OPTIMIZERSLBASE_H

5 #define OPTIMIZERSLBASE_H

6 #include <vector >

7 #include <Eigen/Dense >
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8 #include "StOpt/core/grids/SpaceGrid.h"

9 #include "StOpt/core/grids/FullGrid.h"

10 #include "StOpt/core/grids/InterpolatorSpectral.h"

11 #include "StOpt/semilagrangien/SemiLagrangEspCond.h"

12

13 /** \file OptimizerSLBase.h

14 * \brief Define an abstract class for Dynamic Programming problems

15 * \author Xavier Warin

16 */

17

18 namespace StOpt

19 {

20

21 /// \class OptimizerSLBase OptimizerSLBase.h

22 /// Base class for optimizer for resolution by semi Lagrangian methods of HJB equations

23 class OptimizerSLBase

24 {

25

26

27 public :

28

29 OptimizerSLBase () {}

30

31 virtual ~OptimizerSLBase () {}

32

33

34 /// \brief define the diffusion cone for parallelism

35 /// \param p_regionByProcessor region (min max) treated by the processor for

the different regimes treated

36 /// \return returns in each dimension the min max values in the stock that can be

reached from the grid p_gridByProcessor for each regime

37 virtual std::vector < std::array < double , 2> > getCone(const std::vector < std::array <

double , 2> > &p_regionByProcessor) const = 0;

38

39 /// \brief defines the dimension to split for MPI parallelism

40 /// For each dimension return true is the direction can be split

41 virtual Eigen::Array < bool , Eigen ::Dynamic , 1> getDimensionToSplit () const = 0 ;

42

43 /// \brief defines a step in optimization

44 /// \param p_point coordinates of the point to treat

45 /// \param p_semiLag semi Lagrangian operator for each regime for solution at the

previous step

46 /// \param p_time current date

47 /// \param p_phiInPt value of the function at the previous time step at p_point for

each regime

48 /// \return a pair :

49 /// - first an array of the solution (for each regime)

50 /// - second an array of the optimal controls ( for each control)

51 virtual std::pair < Eigen ::ArrayXd , Eigen::ArrayXd > stepOptimize(const Eigen:: ArrayXd

&p_point ,

52 const std::vector < std:: shared_ptr <SemiLagrangEspCond > > &p_semiLag ,

53 const double &p_time ,

54 const Eigen:: ArrayXd &p_phiInPt) const = 0;

55

56

57 /// \brief defines a step in simulation

58 /// \param p_gridNext grid at the next step

59 /// \param p_semiLag semi Lagrangian operator at the current step in each regime

60 /// \param p_state state array (can be modified)

61 /// \param p_iReg regime number

62 /// \param p_gaussian unitary Gaussian realization

63 /// \param p_phiInPt value of the function at the next time step at p_point for

each regime

64 /// \param p_phiInOut defines the value functions (modified) to follow

65 virtual void stepSimulate(const SpaceGrid &p_gridNext ,

66 const std::vector < std::shared_ptr < StOpt ::

SemiLagrangEspCond > > &p_semiLag ,

67 Eigen::Ref <Eigen ::ArrayXd > p_state , int &p_iReg ,

68 const Eigen:: ArrayXd &p_gaussian ,
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69 const Eigen:: ArrayXd &p_phiInPt ,

70 Eigen::Ref <Eigen ::ArrayXd > p_phiInOut) const = 0 ;

71

72

73 /// \brief defines a step in simulation using the control calculated in optimization

74 /// \param p_gridNext grid at the next step

75 /// \param p_controlInterp the optimal controls interpolator

76 /// \param p_state state array (can be modified)

77 /// \param p_iReg regime number

78 /// \param p_gaussian unitary Gaussian realization

79 /// \param p_phiInOut defines the value functions (modified) to follow

80 virtual void stepSimulateControl(const SpaceGrid &p_gridNext ,

81 const std::vector < std::shared_ptr <

InterpolatorSpectral > > &p_controlInterp ,

82 Eigen::Ref <Eigen ::ArrayXd > p_state , int &p_iReg ,

83 const Eigen:: ArrayXd &p_gaussian ,

84 Eigen::Ref <Eigen ::ArrayXd > p_phiInOut) const = 0 ;

85

86 /// \brief get number of regimes

87 virtual int getNbRegime () const = 0 ;

88

89 /// \brief get back the dimension of the control

90 virtual int getNbControl () const = 0 ;

91

92 /// \brief do we modify the volatility to stay in the domain

93 virtual bool getBModifVol () const = 0 ;

94

95 /// \brief get the number of Brownians involved in semi Lagrangian for simulation

96 virtual int getBrownianNumber () const = 0 ;

97

98 /// \brief get size of the function to follow in simulation

99 virtual int getSimuFuncSize () const = 0;

100

101 /// \brief Permit to deal with some boundary points that do not need boundary

conditions

102 /// Return false if all points on the boundary need some boundary conditions

103 /// \param p_point potentially on the boundary

104 virtual bool isNotNeedingBC(const Eigen:: ArrayXd &p_point) const = 0;

105 };

106 }

107 #endif /* OPTIMIZERSLBASE_H */

The main methods associated to this object are:

• stepOptimize is use to calculate the solution of the PDE at one point.

– It takes a point of the grid used p point,

– and apply the semi-Lagrangian scheme p semiLag at this point,

– at a date given by p time.

It returns a pair containing:

– the function value calculated at p point for each regime,

– the optimal control calculated at p point for each control.

• stepSimulate is used when the PDE is associated to an optimization problem and
we want to simulate an optimal policy using the function values calculated in the
optimization part. The arguments are:

– p gridNext defining the grid used at the following time step,
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– p semiLag the semi-Lagrangian operator constructed with an interpolator using
the following time solution,

– p state the vector defining the current state for the current regime,

– p iReg the current regime number,

– p gaussian is the vector of gaussian random variables used to calculate the Brow-
nian involved in the underlying process for the current simulation,

– p phiInP at the value of the function calculated in optimization at next time step
for the given point,

– p phiInOut storing the cost functions: the size of the array is the number of
functions to follow in simulation.

• stepSimulateControl is used when the PDE is associated to an optimization problem
and we want to simulate an optimal policy using the optimal controls calculated in
the optimization part. The arguments are:

– p gridNext defining the grid used at the following time step,

– p controlInterp a vector (for each control) of interpolators in controls

– p state the vector defining the current state for the current regime,

– p iReg the current regime number,

– p gaussian is the vector of gaussian random variables used to calculate the Brow-
nian involved in the underlying process for the current simulation.

– p phiInOut storing the cost functions: the size of the array is the number of
functions to follow in simulation.

On return the p state vector is modified, the p iReg is modified and the cost function
p phiInOut is modified for the current trajectory.

• the getCone method is only relevant if the distribution for data (so MPI) is used.
As argument it take a vector of size the dimension of the grid. Each component
of the vector is an array containing the minimal and maximal coordinates values of
points of the current grid defining an hyper cube H1. It returns for each dimension,
the coordinates min and max of the hyper cube H2 containing the points that can
be reached by applying a command from a grid point in H1. If no optimization is
achieved, it returns the hyper cube H2 containing the points reached by the semi-
Lagrangian scheme. For explanation of the parallel formalism see chapter 9.

• the getDimensionToSplit method is only relevant if the distribution for data (so
MPI) is used. The method permits to define which directions to split for solution
distribution on processors. For each dimension it returns a Boolean where true means
that the direction is a candidate for splitting,

• the isNotNeedingBC permits to define for a point on the boundary of the grid if a
boundary condition is needed (true is returned) or if no boundary is needed (return
false).
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And example of the derivation of such an optimizer for a simple stochastic target problem
(described in paragraph 5.3.4 in [47]) is given below:

1 #include <iostream >

2 #include "StOpt/core/utils/constant.h"

3 #include "test/c++/ tools/semilagrangien/OptimizeSLCase3.h"

4

5 using namespace StOpt;

6 using namespace Eigen ;

7 using namespace std ;

8

9 OptimizerSLCase3 :: OptimizerSLCase3(const double &p_mu , const double &p_sig , const double &

p_dt , const double &p_alphaMax , const double &p_stepAlpha):

10 m_dt(p_dt), m_mu(p_mu), m_sig(p_sig), m_alphaMax(p_alphaMax), m_stepAlpha(p_stepAlpha)

{}

11

12 vector < array < double , 2> > OptimizerSLCase3 :: getCone(const vector < array < double , 2> >

&p_xInit) const

13 {

14 vector < array < double , 2> > xReached (1);

15 xReached [0][0] = p_xInit [0][0] - m_alphaMax * m_mu / m_sig * m_dt - m_alphaMax * sqrt

(m_dt);

16 xReached [0][1] = p_xInit [0][1] + m_alphaMax * sqrt(m_dt) ;

17 return xReached;

18 }

19

20 pair < ArrayXd , ArrayXd > OptimizerSLCase3 :: stepOptimize(const ArrayXd &p_point ,

21 const vector < shared_ptr <SemiLagrangEspCond > > &p_semiLag , const double &, const

Eigen:: ArrayXd &) const

22 {

23 pair < ArrayXd , ArrayXd > solutionAndControl;

24 solutionAndControl.first.resize (1);

25 solutionAndControl.second.resize (1);

26 ArrayXd b(1);

27 ArrayXXd sig(1, 1) ;

28 double vMin = StOpt :: infty;

29 for (int iAl = 0; iAl < m_alphaMax / m_stepAlpha; ++iAl)

30 {

31 double alpha = iAl * m_stepAlpha;

32 b(0) = -alpha * m_mu / m_sig; // trend

33 sig (0) = alpha; // volatility with one Brownian

34 pair <double , bool > lagrang = p_semiLag [0]-> oneStep(p_point , b, sig , m_dt); // test

the control

35 if (lagrang.second)

36 {

37 if (lagrang.first < vMin)

38 {

39 vMin = lagrang.first;

40 solutionAndControl.second (0) = alpha;

41 }

42 }

43 }

44

45 solutionAndControl.first (0) = vMin;

46 return solutionAndControl;

47 }

48

49 void OptimizerSLCase3 :: stepSimulate(const StOpt :: SpaceGrid &p_gridNext ,

50 const std::vector < shared_ptr < StOpt::

SemiLagrangEspCond > > &p_semiLag ,

51 Eigen::Ref <Eigen ::ArrayXd > p_state , int &,

52 const Eigen:: ArrayXd &p_gaussian , const Eigen:: ArrayXd

&,

53 Eigen::Ref <Eigen ::ArrayXd >) const

54 {

55 double vMin = StOpt :: infty;

56 double alphaOpt = -1;

57 ArrayXd b(1);
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58 ArrayXXd sig(1, 1) ;

59 ArrayXd proba = p_state ;

60 // recalculate the optimal alpha

61 for (int iAl = 0; iAl < m_alphaMax / m_stepAlpha; ++iAl)

62 {

63 double alpha = iAl * m_stepAlpha;

64 b(0) = -alpha * m_mu / m_sig;// trend

65 sig (0) = alpha;// volatility with one Brownian

66 pair <double , bool > lagrang = p_semiLag [0]-> oneStep(proba , b, sig , m_dt);// test the

control

67 if (lagrang.second)

68 {

69 if (lagrang.first < vMin)

70 {

71 vMin = lagrang.first;

72 alphaOpt = alpha;

73 }

74 }

75 }

76 proba (0) += alphaOpt * p_gaussian (0) * sqrt(m_dt);

77 // truncate if necessary

78 p_gridNext.truncatePoint(proba);

79 p_state = proba ;

80

81 }

82

83

84 void OptimizerSLCase3 :: stepSimulateControl(const SpaceGrid &p_gridNext ,

85 const vector < shared_ptr < InterpolatorSpectral > > &p_controlInterp ,

86 Eigen::Ref <Eigen ::ArrayXd > p_state , int &,

87 const ArrayXd &p_gaussian ,

88 Eigen::Ref <Eigen ::ArrayXd >) const

89 {

90 ArrayXd proba = p_state ;

91 double alphaOpt = p_controlInterp [0]->apply(p_state);

92 proba (0) += alphaOpt * p_gaussian (0) * sqrt(m_dt);

93 // truncate if necessary

94 p_gridNext.truncatePoint(proba);

95 p_state = proba ;

96 }

13.1 PDE resolution

Once the problem is described, a time recursion can be achieved using the Transition

StepSemilagrang object in a sequential resolution of the problem. This object permits to
solve the problem on one time step.

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef TRANSITIONSTEPSEMILAGRANG_H

5 #define TRANSITIONSTEPSEMILAGRANG_H

6 #ifdef OMP

7 #include <omp.h>

8 #endif

9 #include <functional >

10 #include <memory >

11 #include <Eigen/Dense >

12 #include "geners/BinaryFileArchive.hh"

13 #include "StOpt/semilagrangien/TransitionStepSemilagrangBase.h"

14 #include "StOpt/core/grids/SpaceGrid.h"

15 #include "StOpt/core/grids/InterpolatorSpectral.h"

16 #include "StOpt/semilagrangien/OptimizerSLBase.h"

17
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18 /** \file TransitionStepSemilagrang.h

19 * \brief Solve one step of explicit semi Lagrangian scheme

20 * \author Xavier Warin

21 */

22

23

24 namespace StOpt

25 {

26

27 /// \class TransitionStepSemilagrang TransitionStepSemilagrang.h

28 /// One step of semi Lagrangian scheme

29 class TransitionStepSemilagrang : public TransitionStepSemilagrangBase

30 {

31 private :

32

33 std::shared_ptr <SpaceGrid > m_gridCurrent ; ///< global grid at current time step

34 std::shared_ptr <SpaceGrid > m_gridPrevious ; ///< global grid at previous time step

35 std::shared_ptr <OptimizerSLBase > m_optimize ; ///< optimizer solving the problem for

one point and one step

36

37 public :

38

39 /// \brief Constructor

40 TransitionStepSemilagrang(const std::shared_ptr <SpaceGrid > &p_gridCurrent ,

41 const std::shared_ptr <SpaceGrid > &p_gridPrevious ,

42 const std::shared_ptr <OptimizerSLBase > &p_optimize);

43

44 /// \brief One time step for resolution

45 /// \param p_phiIn for each regime the function value ( on the grid)

46 /// \param p_time current date

47 /// \param p_boundaryFunc Function at the boundary to impose Dirichlet conditions (

depending on regime and position)

48 /// \return solution obtained after one step of dynamic programming and the optimal

control

49 std::pair < std::vector < std:: shared_ptr < Eigen:: ArrayXd > >, std::vector < std::

shared_ptr < Eigen:: ArrayXd > > > oneStep(const std::vector < std::shared_ptr <

Eigen:: ArrayXd > > &p_phiIn , const double &p_time , const std::function <double(

const int &, const Eigen :: ArrayXd &)> &p_boundaryFunc) const;

50

51 /// \brief Permits to dump continuation values on archive

52 /// \param p_ar archive to dump in

53 /// \param p_name name used for object

54 /// \param p_iStep Step number or identifier for time step

55 /// \param p_phiIn for each regime the function value

56 /// \param p_control for each control , the optimal value

57 void dumpValues(std::shared_ptr <gs:: BinaryFileArchive > p_ar , const std:: string &p_name ,

const int &p_iStep , const std::vector < std::shared_ptr < Eigen:: ArrayXd > > &

p_phiIn ,

58 const std::vector < std:: shared_ptr < Eigen:: ArrayXd > > &p_control)

const;

59 };

60 }

61 #endif /* TRANSITIONSTEPSEMILAGRANG_H */

It constructor takes the following arguments:

• p gridCurrent a grid describing the meshes at the current date,

• p gridPrevious a grid describing the meshes at the previously treated date,

• p optimize an object derived from the OptimizerSLBase and describing the problem
to solve at a given date and a given point of the current grid.

A first method oneStep take the following arguments:
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Table 13.1: Which TransitionStepSemilagrang object to use depending on the grid used
and the type of parallelization used.

Full grid Sparse grid
Sequential TransitionStepSemilagrang TransitionStepSemilagrang

Parallelization on calculations TransitionStepSemilagrang TransitionStepSemilagrang

threads and MPI
Distribution of calculations TransitionStepSemilagrangDist Not available

and data (MPI)

• p phiIn describes for each regime the solution previously calculated on the grid at the
previous time,

• p time is the current time step,

• p boundaryFunc is a function giving the Dirichlet solution of the problem depending
on the number of regimes and the position on the boundary.

It gives back an estimation of the solution at the current date on the current grid for all the
regimes and an estimation of the optimal control calculated for all the controls.
A last method dumpValues method permits to dump the solution calculated p phiIn at the
step p istep+1 and the optimal control at step p istep in an archive p ar.
A version using the distribution of the data and calculations can be found in the Transi

tionStepSemilagrangDist object. An example of a time recursion in sequential can be
found in the semiLagrangianTime function and an example with distribution can be found
in the semiLagrangianTimeDist function. In both functions developed in the test chapter
the analytic solution of the problem is known and compared to the numerical estimation
obtained with the semi-Lagrangian method.

13.2 Simulation framework

Once the optimal controls and the value functions are calculated, one can simulate the
optimal policy by using the function values (recalculating the optimal control for each sim-
ulation) or using directly the optimal controls calculated in optimization

• Calculate the optimal strategy in simulation
by using the function values calculated in optimization:

In order to simulate one step of the optimal policy, an object SimulateStepSemila

grangDist is provided with constructor

1 SimulateStepSemilagrangDist(gs:: BinaryFileArchive &p_ar , const int &p_iStep ,

const std:: string &p_name ,

2 const std:: shared_ptr <FullGrid > &p_gridNext , const std

::shared_ptr <OptimizerSLBase > &p_pOptimize ,

3 const bool &p_bOneFile);

where

– p ar is the binary archive where the continuation values are stored,
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– p iStep is the number associated to the current time step (0 at the beginning
date of simulation, the number is increased by one at each time step simulated),

– p name is the base name to search in the archive,

– p GridNext is the grid at the next time step (p iStep+1),

– p Optimize is the Optimizer describing the transition from one time step to the
following one,

– p OneFile equals true if a single archive is used to store continuation values.

Remark 29 A version without distribution of data but only multithreaded and paral-
lelized with MPI on data is available with the object SimulateStepSemilagrang.

This object implements the method oneStep

1 void oneStep(const Eigen :: ArrayXXd & p_gaussian ,Eigen:: ArrayXXd &p_statevector , Eigen

:: ArrayXi &p_iReg , Eigen :: ArrayXd &p_phiInOuts)

where:

– p gaussian is a two dimensional array (number of Brownian in the modelization
by the number of Monte Carlo simulations).

– p statevector store the continuous state (continuous state size by number of
simulations)

– p iReg for each simulation give the current regime number,

– p phiInOut stores the gain/cost functions for all the simulations: it is updated
by the function call. The size of the array is (nb, nbSimul) where nb is given
by the getSimuFuncSize method of the optimizer and nbSimul the number of
Monte Carlo simulations.

Remark 30 The previous object SimulateStepSemilagrangDist is used with MPI
for problems of quite high dimension. In the case of small dimension (below or equal
to three), the parallelization with MPI or the sequential calculations can be achieved by
the SimulateStepSemilagrang object.

An example of the use of this method to simulate an optimal policy with distribution
is given below:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifdef USE_MPI

5 #include <boost/random.hpp >

6 #include <memory >

7 #include <Eigen/Dense >

8 #include "geners/BinaryFileArchive.hh"

9 #include "StOpt/semilagrangien/OptimizerSLBase.h"

10 #include "StOpt/semilagrangien/SimulateStepSemilagrangDist.h"

11

12 using namespace std;

13
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14 double semiLagrangianSimuDist(const shared_ptr <StOpt ::FullGrid > &p_grid ,

15 const shared_ptr <StOpt:: OptimizerSLBase > &p_optimize ,

16 const function <double(const int &, const Eigen :: ArrayXd

&)> &p_funcFinalValue ,

17 const int &p_nbStep ,

18 const Eigen:: ArrayXd &p_stateInit ,

19 const int &p_initialRegime ,

20 const int &p_nbSimul ,

21 const string &p_fileToDump ,

22 const bool &p_bOneFile)

23 {

24 boost::mpi:: communicator world;

25 // store states in a regime

26 Eigen:: ArrayXXd states(p_stateInit.size(), p_nbSimul);

27 for (int is = 0; is < p_nbSimul; ++is)

28 states.col(is) = p_stateInit;

29 // sore the regime number

30 Eigen:: ArrayXi regime = Eigen:: ArrayXi :: Constant(p_nbSimul , p_initialRegime);

31 // test if one file generated

32 string toDump = p_fileToDump ;

33 if (! p_bOneFile)

34 toDump += "_" + boost:: lexical_cast <string >( world.rank());

35 gs:: BinaryFileArchive ar(toDump.c_str(), "r");

36 // name for continuation object in archive

37 string nameAr = "Continuation";

38 // cost function

39 Eigen:: ArrayXXd costFunction = Eigen:: ArrayXXd ::Zero(p_optimize ->getSimuFuncSize

(), p_nbSimul);

40 // random generator and Gaussian variables

41 boost:: mt19937 generator;

42 boost:: normal_distribution <double > normalDistrib;

43 boost:: variate_generator <boost :: mt19937 &, boost:: normal_distribution <double > >

normalRand(generator , normalDistrib);

44 Eigen:: ArrayXXd gaussian(p_optimize ->getBrownianNumber (), p_nbSimul);

45 // iterate on time steps

46 for (int istep = 0; istep < p_nbStep; ++ istep)

47 {

48 for (int is = 0; is < gaussian.cols(); ++is)

49 for (int id = 0; id < gaussian.rows(); ++id)

50 gaussian(id, is) = normalRand ();

51

52 StOpt:: SimulateStepSemilagrangDist(ar, p_nbStep - 1 - istep , nameAr , p_grid ,

p_optimize , p_bOneFile).oneStep(gaussian , states , regime , costFunction);

53 }

54 // final cost to add

55 for (int is = 0; is < p_nbSimul; ++is)

56 costFunction (0, is) += p_funcFinalValue(regime(is), states.col(is));

57 // average gain/cost

58 return costFunction.mean();

59 }

60 #endif

A sequential or parallelized on calculations version of the previous example is given in
the semiLagrangianSimuDist.cpp file.

• Calculate the optimal strategy in simulation
by interpolation of the optimal control calculated in optimization:

In order to simulate one step of the optimal policy, an object SimulateStepSemila

grangControlDist is provided with constructor

1 SimulateStepSemilagrangControlDist(gs:: BinaryFileArchive &p_ar , const int &

p_iStep , const std:: string &p_name ,

2 const std:: shared_ptr <FullGrid > &p_gridCur ,

3 const std:: shared_ptr <FullGrid > &p_gridNext ,

4 const std:: shared_ptr <OptimizerSLBase > &

p_pOptimize ,
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5 const bool &p_bOneFile)

where

– p ar is the binary archive where the continuation values are stored,

– p iStep is the number associated to the current time step (0 at the beginning
date of simulation, the number is increased by one at each time step simulated),

– p name is the base name to search in the archive,

– p GridCur is the grid at the current time step (p iStep),

– p GridNext is the grid at the next time step (p iStep+1),

– p Optimize is the Optimizer describing the transition from one time step to the
following one,

– p OneFile equals true if a single archive is used to store continuation values.

Remark 31 The previous object SimulateStepSemilagrangControlDist is used with
MPI distribution of data for problems of quite high dimension. In the case of small
dimension (below or equal to three), the parallelization with MPI or the sequential
calculations can be achieved by the SimulateStepSemilagrangControl object.

This object implements the method oneStep

1 void oneStep ((const Eigen :: ArrayXXd & p_gaussian , Eigen:: ArrayXXd &p_statevector ,

Eigen:: ArrayXi &p_iReg , Eigen:: ArrayXd &p_phiInOuts)

where:

– p gaussian is a two dimensional array (number of Brownian in the modelization
by the number of Monte Carlo simulations).

– p statevector stores the continuous state (continuous state size by number of
simulations)

– p iReg for each simulation gives the current regime number,

– p phiInOut stores the gain/cost functions for all the simulations: it is updated
by the function call. The size of the array is (nb, nbSimul) where nb is given
by the getSimuFuncSize method of the optimizer and nbSimul the number of
Monte Carlo simulations.

An example of the use of this method to simulate an optimal policy with distribution
is given below:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifdef USE_MPI

5 #include <memory >

6 #include <boost/random.hpp >

7 #include <Eigen/Dense >

8 #include "geners/BinaryFileArchive.hh"

9 #include "StOpt/semilagrangien/OptimizerSLBase.h"
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10 #include "StOpt/semilagrangien/SimulateStepSemilagrangControlDist.h"

11

12 using namespace std;

13

14 double semiLagrangianSimuControlDist(const shared_ptr <StOpt::FullGrid > &p_grid ,

15 const shared_ptr <StOpt:: OptimizerSLBase > &

p_optimize ,

16 const function <double(const int &, const Eigen ::

ArrayXd &)> &p_funcFinalValue ,

17 const int &p_nbStep ,

18 const Eigen:: ArrayXd &p_stateInit ,

19 const int &p_initialRegime ,

20 const int &p_nbSimul ,

21 const string &p_fileToDump ,

22 const bool &p_bOneFile)

23 {

24 boost::mpi:: communicator world;

25 // store states in a regime

26 Eigen:: ArrayXXd states(p_stateInit.size(), p_nbSimul);

27 for (int is = 0; is < p_nbSimul; ++is)

28 states.col(is) = p_stateInit;

29 // sore the regime number

30 Eigen:: ArrayXi regime = Eigen:: ArrayXi :: Constant(p_nbSimul , p_initialRegime);

31 // test if one file generated

32 string toDump = p_fileToDump ;

33 if (! p_bOneFile)

34 toDump += "_" + boost:: lexical_cast <string >( world.rank());

35 gs:: BinaryFileArchive ar(toDump.c_str(), "r");

36 // name for continuation object in archive

37 string nameAr = "Continuation";

38 // cost function

39 Eigen:: ArrayXXd costFunction = Eigen:: ArrayXXd ::Zero(p_optimize ->getSimuFuncSize

(), p_nbSimul);

40 // random generator and Gaussian variables

41 boost:: mt19937 generator;

42 boost:: normal_distribution <double > normalDistrib;

43 boost:: variate_generator <boost :: mt19937 &, boost:: normal_distribution <double > >

normalRand(generator , normalDistrib);

44 Eigen:: ArrayXXd gaussian(p_optimize ->getBrownianNumber (), p_nbSimul);

45 // iterate on time steps

46 for (int istep = 0; istep < p_nbStep; ++ istep)

47 {

48 for (int is = 0; is < gaussian.cols(); ++is)

49 for (int id = 0; id < gaussian.rows(); ++id)

50 gaussian(id, is) = normalRand ();

51

52 StOpt:: SimulateStepSemilagrangControlDist(ar, p_nbStep - 1 - istep , nameAr ,

p_grid , p_grid , p_optimize , p_bOneFile).oneStep(gaussian , states , regime ,

costFunction);

53 }

54 // final cost to add

55 for (int is = 0; is < p_nbSimul; ++is)

56 costFunction (0, is) += p_funcFinalValue(regime(is), states.col(is));

57 // average gain/cost

58 return costFunction.mean();

59 }

60 #endif

The sequential (or parallelized on calculations) version of the previous example is given
in the semiLagrangianSimuControl.cpp file.

Remark 32 In the previous example, we suppose that only one function is followed
in simulation, and that we send back an average for this value function as a result.
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Part V

An example with both dynamic
programming with regression and

PDE
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In this chapter we give an example where both dynamic programming with regressions
and PDE can be used. It permits to compare the resolution and the solution obtained by
both methods.
In this example we take the following notations:

• Dt is a demand process (in electricity) with an Ornstein–Uhlenbeck dynamic:

dDt = α(m−Dt)dt+ σdWt,

• Qt is the cumulative carbon emission due to electricity production to satisfy the de-
mand,

dQt = (Dt − Lt)+dt,

• Lt the total investment capacity in non emissive technology to produce electricity

Lt =

∫ t

0

lsds

where ls is an intensity of investment in non emissive technology at date s,

• Yt is the carbon price where

Yt = Et(λ1QT≥H),

with λ and H given.

We introduce the following functions:

• the electricity price function which is a function of demand and the global investment
of non emissive technology.

pt = (1 +Dt)
2 − Lt,

• the profit function by selling electricity is given by

Π(Dt, Lt) = ptDt − (Dt − Lt)+,

• c̃(lt, Lt) is the investment cost for new capacities of non emissive technology.

c̃(l, L) = β̄(c∞ + (c0 − c∞)eβL)(1 + l)l

The value of the firm selling electricity is given by V (t,Dt, Qt, Lt). It satisfies the coupling
equations: 

∂tv + α(m−D)∂Dv + 1
2
σ2∂2

DDv + (D − L)+∂Qv + Π(D,L)
+sL1−α − y(D − L)+ + supl{l∂Lv − c̃(l, L)} = 0
vT = 0

(13.1)
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and the carbon price y(t,Dt, Qt, Lt) is given by:{
∂ty + α(m−D)∂Dy + 1

2
σ2∂2

DDy + (D − L)+∂Qy + l∗∂Ly = 0
yT = λ1QT≥K

(13.2)

and l∗ is the optimal control in equation (13.1). The previous equation can be solved with
the semi-Lagrangian method.
After a time discretization with a step δt a dynamic programming equation can be given by

v(T − δt,D,Q, L) = sup
l

(Π(D,L) + sL1−α − yT−δt(D − L)+ − c̃(l, L))δt+

ET−δt(V (T,DT−δt,D
T , Q+ (D − L)+δt, L+ lδt)) (13.3)

Y (T − δt,D,Q, L) = ET−δt(Y (T,DT−δt,D
T , Q+ (D − L)+δt, L+ l∗δt)) (13.4)

The previous equations (13.3) and (13.4) can be solved with the regression methods.
In order to use the previously developed frameworks in parallel, we have to define for both
method some common variables.

• The number of regimes to use (obtained by the getNbRegime method) is 2: one to
store the v value, one for the y value,

• In the example we want to follow during simulations the functions values v and y so
we set the number of function obtained by the getSimuFuncSize method to 2.

• In order to test the controls in optimization and simulation we define a maximal
intensity of investment lMax and a discretization step to test the controls lStep.

In the sequel we store the optimal functions in optimization and recalculate the optimal
control in simulation.

13.3 The dynamic programming with regression ap-

proach

All we have to do is to specify an optimizer (OptimizeDPEmissive) defining the methods
used to optimize and simulate, and the getCone method for parallelization:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #include "StOpt/core/utils/constant.h"

5 #include "OptimizeDPEmissive.h"

6

7 using namespace std ;

8 using namespace StOpt;

9 using namespace Eigen;

10

11

12 // constructor

13 OptimizeDPEmissive :: OptimizeDPEmissive(const double &p_alpha ,

14 const std::function <double(double , double)> &p_PI ,

15 const std::function < double(double , double) > &

p_cBar , const double &p_s , const double &

p_lambda ,
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16 const double &p_dt ,

17 const double &p_maturity ,

18 const double &p_lMax , const double &p_lStep , const

std:: vector <std::array < double , 2> > &

p_extrem):

19 m_alpha(p_alpha), m_PI(p_PI),

20 m_cBar(p_cBar), m_s(p_s), m_lambda(p_lambda), m_dt(p_dt), m_maturity(p_maturity),

m_lMax(p_lMax), m_lStep(p_lStep),

21 m_extrem(p_extrem)

22 {}

23

24 Array < bool , Dynamic , 1> OptimizeDPEmissive :: getDimensionToSplit () const

25 {

26 Array < bool , Dynamic , 1> bDim = Array < bool , Dynamic , 1>:: Constant(2, true);

27 return bDim ;

28 }

29

30 // for parallelism

31 std::vector < std::array < double , 2> > OptimizeDPEmissive :: getCone(const vector < std::

array < double , 2> > &p_xInit) const

32 {

33 vector < array < double , 2> > xReached (2);

34 xReached [0][0] = p_xInit [0][0] ; // Q only increases

35 xReached [0][1] = m_extrem [0][1] ; // whole domain due to demand which is unbounded

36 xReached [1][0] = p_xInit [1][0] ; // L only increases

37 xReached [1][1] = p_xInit [1][1] + m_lMax * m_dt ; // maximal increase given by the

control

38 return xReached;

39 }

40

41 // one step in optimization from stock point for all simulations

42 std::pair < ArrayXXd , ArrayXXd > OptimizeDPEmissive :: stepOptimize(const std::shared_ptr <

StOpt::SpaceGrid > &p_grid , const ArrayXd &p_stock ,

43 const std::vector < ContinuationValue > &p_condEsp ,

44 const std:: vector < std::shared_ptr < ArrayXXd > > &) const

45 {

46 std::pair < ArrayXXd , ArrayXXd > solutionAndControl;

47 // to store final solution (here two regimes)

48 solutionAndControl.first = ArrayXXd :: Constant(m_simulator ->getNbSimul (), 2, -StOpt::

infty);

49 solutionAndControl.second = ArrayXXd :: Constant(m_simulator ->getNbSimul (), 1, -StOpt ::

infty);

50 // demand

51 ArrayXd demand = m_simulator ->getParticles ().array().row (0).transpose ();

52 // Gain (size number of simulations)

53 ArrayXd gain(m_simulator ->getNbSimul ());

54 double gainSubvention = m_s * pow(p_stock (1), 1. - m_alpha); // subvention for non

emissive energy

55 for (int is = 0 ; is < m_simulator ->getNbSimul (); ++is)

56 gain(is) = m_PI(demand(is), p_stock (1)) + gainSubvention ; // gain by production

and subvention

57 ArrayXd ptStockNext (2);

58 // time to maturity

59 double timeToMat = m_maturity - m_simulator ->getCurrentStep ();

60 // interpolator at the new step

61 for (int is = 0 ; is < m_simulator ->getNbSimul (); ++is)

62 {

63 for (int iAl = 0; iAl < m_lMax / m_lStep ; ++iAl) // test all command for

investment between 0 and lMax

64 {

65 double l = iAl * m_lStep;

66 // interpolator at the new step

67 ptStockNext (0) = p_stock (0) + std::max(demand(is) - p_stock (1), 0.) * m_dt;

68 ptStockNext (1) = p_stock (1) + l * m_dt ;

69 // first test we are inside the domain

70 if (p_grid ->isInside(ptStockNext))

71 {

72 // create an interpolator at the arrival point

73 std::shared_ptr <StOpt :: Interpolator > interpolator = p_grid ->
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createInterpolator(ptStockNext);

74 // calculate Y for this simulation with the optimal control

75 double yLoc = p_condEsp [1]. getASimulation(is, *interpolator);

76 // local gain

77 double gainLoc = (gain(is) - yLoc * std::max(demand(is) - p_stock (1), 0.) -

m_cBar(l, p_stock (1))) * m_dt;

78 // gain + conditional expectation of future gains

79 double condExp = gainLoc + p_condEsp [0]. getASimulation(is , *interpolator);

80 if (condExp > solutionAndControl.first(is , 0)) // test optimality of the

control

81 {

82 solutionAndControl.first(is, 0) = condExp;

83 solutionAndControl.first(is, 1) = yLoc;

84 solutionAndControl.second(is, 0) = l;

85 }

86 }

87 }

88 // test if solution acceptable

89 if (StOpt:: almostEqual(solutionAndControl.first(is, 0), - StOpt ::infty , 10))

90 {

91 // fix boundary condition

92 solutionAndControl.first(is, 0) = timeToMat * (m_PI(demand(is), p_stock (1)) +

m_s * pow(p_stock (1), 1. - m_alpha) - m_lambda * std::max(demand(is) -

p_stock (1), 0.));

93 solutionAndControl.first(is, 1) = m_lambda ; // Q est maximal !!

94 solutionAndControl.second(is, 0) = 0. ; // fix control to zero

95 }

96 }

97 return solutionAndControl;

98 }

99

100 // one step in simulation for current simulation

101 void OptimizeDPEmissive :: stepSimulate(const std:: shared_ptr < StOpt::SpaceGrid > &p_grid ,

const std::vector < StOpt:: GridAndRegressedValue > &p_continuation ,

102 StOpt:: StateWithStocks &p_state ,

103 Ref <ArrayXd > p_phiInOut) const

104 {

105 ArrayXd ptStock = p_state.getPtStock ();

106 ArrayXd ptStockNext(ptStock.size());

107 double vOpt = - StOpt:: infty;

108 double gainOpt = 0.;

109 double lOpt = 0. ;

110 double demand = p_state.getStochasticRealization ()(0); // demand for this simulation

111 ptStockNext (0) = ptStock (0) + std::max(demand - ptStock (1), 0.) * m_dt;

112 double gain = m_PI(demand , ptStock (1)) + m_s * pow(ptStock (1), 1. - m_alpha) ; //

gain from production and subvention

113 double yOpt = 0. ;

114 for (int iAl = 0; iAl < m_lMax / m_lStep ; ++iAl) // test all command for investment

between 0 and lMax

115 {

116 double l = iAl * m_lStep;

117 // interpolator at the new step

118 ptStockNext (1) = ptStock (1) + l * m_dt ;

119 // first test we are inside the domain

120 if (p_grid ->isInside(ptStockNext))

121 {

122 // calculate Y for this simulation with the control

123 double yLoc = p_continuation [1]. getValue(ptStockNext , p_state.

getStochasticRealization ());

124 // local gain

125 double gainLoc = (gain - yLoc * std::max(demand - ptStock (1), 0.) - m_cBar(l,

ptStock (1))) * m_dt;

126 // gain + conditional expectation of future gains

127 double condExp = gainLoc + p_continuation [0]. getValue(ptStockNext , p_state.

getStochasticRealization ());

128

129 if (condExp > vOpt) // test optimality of the control

130 {

131 vOpt = condExp;

180



132 gainOpt = gainLoc;

133 lOpt = l;

134 yOpt = yLoc;

135 }

136 }

137 }

138 p_phiInOut (0) += gainOpt; // follow v value

139 p_phiInOut (1) = yOpt ; // follow y value

140 ptStockNext (1) = ptStock (1) + lOpt * m_dt ; // update state due to control

141 p_state.setPtStock(ptStockNext);

142 }

This case in dimension 2 for the stocks can be treated with interpolation on the full 2
dimensional grid and on a 2 dimensional sparse grid. Both versions of the resolution are
given in a test case (testDPNonEmissive.cpp).

13.4 The PDE approach

We can do the same with the PDE approach using a simulator for the OU demand (AR1Simulator).
We then define an optimizer (OptimizeSLEmissive) and the methods used to optimize and
simulate, and the getCone method for parallelization:

1 #include <iostream >

2 #include "StOpt/core/utils/constant.h"

3 #include "OptimizeSLEmissive.h"

4

5 using namespace StOpt;

6 using namespace Eigen ;

7 using namespace std ;

8

9 // constructor

10 OptimizeSLEmissive :: OptimizeSLEmissive(const double &p_alpha , const double &p_m , const

double &p_sig , const std::function <double(double , double)> &p_PI ,

11 const std::function < double(double , double) > &

p_cBar , const double &p_s , const double &p_dt

,

12 const double &p_lMax , const double &p_lStep , const

std:: vector <std::array < double , 2> > &

p_extrem):

13 m_alpha(p_alpha), m_m(p_m), m_sig(p_sig), m_PI(p_PI), m_cBar(p_cBar), m_s(p_s), m_dt(

p_dt),

14 m_lMax(p_lMax), m_lStep(p_lStep), m_extrem(p_extrem) {}

15

16 Array < bool , Dynamic , 1> OptimizeSLEmissive :: getDimensionToSplit () const

17 {

18 Array < bool , Dynamic , 1> bDim = Array < bool , Dynamic , 1>:: Constant(3, true);

19 return bDim ;

20 }

21

22

23 // for parallelism

24 vector < array < double , 2> > OptimizeSLEmissive :: getCone(const vector < array < double , 2>

> &p_xInit) const

25 {

26 vector < array < double , 2> > xReached (3);

27 xReached [0][0] = p_xInit [0][0] + m_alpha * (m_m - m_extrem [0][1]) * m_dt - m_sig *

sqrt(m_dt); // demand "cone" driven by maximal value allowed for demand

28 xReached [0][1] = p_xInit [0][1] + m_alpha * m_m * m_dt + m_sig * sqrt(m_dt) ; // low

value for demand is taken equal to 0

29 xReached [1][0] = p_xInit [1][0] ;// Q only increases

30 xReached [1][1] = p_xInit [1][1] + m_extrem [0][1] * m_dt ; // Q increase bounded by

maximal demand

31 xReached [2][0] = p_xInit [2][0] ; // L only increases
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32 xReached [2][1] = p_xInit [2][1] + m_lMax * m_dt ;// maximal increase given by the

control

33 return xReached;

34 }

35

36

37 // one step in optimization from current point

38 std::pair < ArrayXd , ArrayXd > OptimizeSLEmissive :: stepOptimize(const ArrayXd &p_point ,

39 const vector < shared_ptr <SemiLagrangEspCond > > &p_semiLag ,

40 const double &, const ArrayXd &) const

41 {

42 pair < ArrayXd , ArrayXd > solutionAndControl;

43 solutionAndControl.first.resize (2);

44 solutionAndControl.second.resize (1);

45 ArrayXXd sig = ArrayXXd ::Zero(3, 1) ;

46 sig(0, 0) = m_sig;

47 double vOpt = - StOpt:: infty;

48 double yOpt = 0. ;

49 double lOpt = 0 ;

50 ArrayXd b(3);

51 b(0) = m_alpha * (m_m - p_point (0)) ; // trend

52 b(1) = max(p_point (0) - p_point (2), 0.);

53 // gain already possible to calculate (production and subvention)

54 double gainFirst = m_PI(p_point (0), p_point (2)) + m_s * pow(p_point (2), 1. - m_alpha)

;

55 for (int iAl = 0; iAl < m_lMax / m_lStep ; ++iAl) // test all command for investment

between 0 and lMax

56 {

57 double l = iAl * m_lStep;

58 b(2) = l ;

59 pair <double , bool > lagrangY = p_semiLag [1]-> oneStep(p_point , b, sig , m_dt); // for

the control calculate y

60 if (lagrangY.second) // is the control admissible

61 {

62 pair <double , bool > lagrang = p_semiLag [0]-> oneStep(p_point , b, sig , m_dt); //

one step for v

63 // gain function

64 double gain = m_dt * (gainFirst - lagrangY.first * b(1) - m_cBar(l, p_point (2)

));

65 double arbitrage = gain + lagrang.first;

66 if (arbitrage > vOpt) // optimality of the control

67 {

68 vOpt = arbitrage; // upgrade solution v

69 yOpt = lagrangY.first; // store y

70 lOpt = l; // upgrade optimal control

71 }

72 }

73 }

74

75 if (StOpt:: almostEqual(vOpt , - StOpt ::infty , 10))

76 {

77 std::cout << " Reduce time step " << std::endl ;

78 abort();

79 }

80 solutionAndControl.first (0) = vOpt; // send back v function

81 solutionAndControl.first (1) = yOpt; // send back y function

82 solutionAndControl.second (0) = lOpt; // send back optimal control

83 return solutionAndControl;

84 }

85

86 // one step in simulation for current simulation

87 void OptimizeSLEmissive :: stepSimulate(const SpaceGrid &p_gridNext ,

88 const std::vector < std::shared_ptr < StOpt::

SemiLagrangEspCond > > &p_semiLag ,

89 Ref <ArrayXd > p_state , int &,

90 const ArrayXd &p_gaussian ,

91 const ArrayXd &,

92 Ref <ArrayXd > p_phiInOut) const

93 {
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94 ArrayXd state = p_state;

95 ArrayXXd sig = ArrayXXd ::Zero(3, 1) ; // diffusion matrix for semi Lagrangian

96 sig(0, 0) = m_sig;

97 double vOpt = - StOpt:: infty;

98 double lOpt = 0 ;

99 double yOpt = 0;

100 ArrayXd b(3);

101 b(0) = m_alpha * (m_m - p_state (0)) ; // trend for D (independent of control)

102 b(1) = max(p_state (0) - p_state (2), 0.); // trend for Q (independent of control)

103 double gainFirst = m_PI(p_state (0), p_state (2)) + m_s * pow(p_state (2), 1. - m_alpha)

; // gain for production and subvention

104 for (int iAl = 0; iAl < m_lMax / m_lStep ; ++iAl) // recalculate the optimal control

105 {

106 double l = iAl * m_lStep;

107 b(2) = l ;

108 pair <double , bool > lagrangY = p_semiLag [1]-> oneStep(p_state , b, sig , m_dt); //

calculate y for this control

109 if (lagrangY.second)

110 {

111 pair <double , bool > lagrang = p_semiLag [0]-> oneStep(p_state , b, sig , m_dt); //

calculate the function value v

112 // gain function

113 double gain = m_dt * (gainFirst - lagrangY.first * b(1) - m_cBar(l, p_state (2)

));

114 double arbitrage = gain + lagrang.first;

115 if (arbitrage > vOpt) // arbitrage

116 {

117 vOpt = arbitrage; // upgrade solution

118 yOpt = lagrangY.first; // upgrade y value

119 lOpt = l; // upgrade optimal control

120 }

121 }

122 }

123 // gain function

124 p_phiInOut (0) += m_dt * (gainFirst - yOpt * b(1) - m_cBar(lOpt , state (2))); // store v

value

125 p_phiInOut (1) = yOpt; // store y value

126 // update state

127 state (0) += m_alpha * (m_m - p_state (0)) * m_dt + m_sig * p_gaussian (0) * sqrt(m_dt);

// demand (no control)

128 state (1) += b(1) * m_dt; //Q

129 state (2) += lOpt * m_dt; //L

130 // truncate if necessary to stay inside domain.

131 p_gridNext.truncatePoint(state);

132 p_state = state ;

133 }

The three dimensional grids used can be some full grids or some sparse grids. Both versions
of the resolution can be found in a test case (testSLNonEmissive.cpp).
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Part VI

Stochastic Dual Dynamic
Programming

184



Chapter 14

SDDP algorithm

14.1 Some general points about SDDP

Stochastic Dual Dynamic Programming (SDDP) is an approximate dynamic programming
algorithm developed by Pereira and Pinto in 1991 [36].

To describe how SDDP works, we will consider a class of linear programs that have T +1
stages denoted {0, 1, . . . , t, . . . , T}. We restrict our class of problems to linear programs
with relatively complete recourse: the feasible region of the linear program in each stage is
nonempty and bounded.

Let us formalize now the variables and constraints used in the SDDP problem.

Notations used
The notations described here are used in the general case.

• xt is the decision variable at time t. If the data process is stagewise independent, xt
also denotes the state at time t+ 1.

• ωt ∈ Ωt is the random data process at time t, where Ωt is the set of random data.

• ct is the cost vector at time t.

• At and Et denote constraints matrices.

• Qt(xt−1, ωt) is the expected value of the problem at time t, knowing the state xt−1 and
the random data ωt.

• Qt(xt−1) = E[Qt(xt−1, ωt)].

Decision process
The random data process ωt is discovered gradually. Thus from an initial state x0, the

state variables (xt)t∈{0,1,...,T} are determined in a non-anticipative way. The scheme is the
following:
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x0 → observation of ω1 → decision of x1 . . .
→ decision of xT−1 → observation of ωT → decision of xT

A rigorous formulation of the multistage stochastic linear program to solve is the follow-
ing:

V ∗ = min
A0x0=ω0
x0≥0

c>0 x0 + E

 min
E1x0+A1x1=ω1

x1≥0

c>1 x1 + E

· · ·+ E

 min
ET xT−1+AT xT=ωT

xT≥0

c>T xT

 (14.1)

The deterministic equivalent of this problem (14.1) is achieved by discretizing ωt (or by
using directly ωt if discrete). The number of variables of this problem increases exponentially
with the number of stages. It cannot be solved directly even if T or (Ωt)t∈{0,1,...,T} are of
reasonable size.

Dynamic programming principle
Dynamic programming involves splitting up the problem (14.1) in a series of sub-problem

bounded together by a state variable. The aim is to compute backwards the functions Qt

and Qt. They fulfill the following equations:

[LPt]


Qt(xt−1, ωt) = min c>t xt + Qt+1(xt)

s.c. Atxt = ωt − Etxt−1, [πt(ωt)]

xt > 0

(14.2)

Qt(xt−1) = E[Qt(xt−1, ωt)] (14.3)

The function Q(xt−1, ωt) stands for the expected value of a future cost knowing the state
xt−1 and the random data ωt. Qt(xt−1) is the expected value of the future cost knowing the
state xt−1. The dynamic programming principle ensures that V ∗ = Q1(x0).

Given QT (·), the successive computations are achieved backwards switching between the
resolution of the linear sub-problem (14.2) and the computation of (14.3).

The implementation of dynamic programming involves approximating successively the
two value functions with equations (14.2 - 14.3) by discretizing the state space and solving
the linear sub-problems. The number of discretization points increases exponentially with
the dimension of the state vector and becomes huge for our applications (“curse of dimen-
sionality”). Besides a linear approximation of Qt+1(xt) must be available in order to cast
the transition problem into a LP.

SDDP algorithm
SDDP is a method used to solve stochastic multi-stage problem described in [36]. SDDP

is based on Benders decomposition described in [5]. Please note that SDDP was developed
in order to solve hydro thermal scheduling problem.

SDDP limits the curse of dimensionality by avoiding a priori complete discretization of
the state space. Each SDDP iteration is a two-stage process. The first step involves gen-
erating a sequence of realistic states x∗t from which in the second step the value functions
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are estimated in their neighborhood. By repeating successively these two steps the approx-
imation of the value function becomes more and more accurate. SDDP is also made of two
passes computed alternatively:

• a backward pass: the aim is to improve the number of Benders cut in the neighborhood
of well-chosen candidate states. It provides also a lower bound of the optimal cost.

• a forward pass: the aim is to provide a set of new candidate states. An estimation of
the upper bound of the optimal cost is also computed.

On the other hand SDDP method stands on the shape of the future value function
Qt(xt−1). Indeed in the frame of a linear problem with complete recourse the value function
is convex and piecewise linear. It can therefore be approximated by taking the supremum
of a family of minoring affine functions. These affine functions are called optimality cuts or
Benders cuts.

14.2 A method, different algorithms

The method implemented in this library is based on the different situations shown in a
technical report of PSR program [35] where three different cases of the basic problem are
solved by SDDP. The three cases are implemented in the library. Other cases could be added
to those existing in the future.

Notations
These notations will be used to present the different algorithms of SDDP.

• z̄ denotes the optimal cost obtained in forward pass.

• z denotes the optimal cost obtained in backward pass.

• βjt denotes the slope of the jth Benders cut.

• αjt denotes the intercept of the jth Benders cut.

14.2.1 The basic case

To describe this case the notations shown above are used. We focus on stochastic multi-stage
problems with the following properties.

• Random quantities in different stages are independent.

• The random quantities at time t is summarized in ωt.

• At each stage, the linear sub-problem solution space is non-empty and bounded.

In this case the functions Qt(·) are convex. The primal and dual solutions of the linear
problem exist and define optimal cuts. We can now describe precisely how the implemented
algorithm is working.
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Initialization
The following values are fixed:

• {0, 1, . . . , T}, the set of stages, where T is the time horizon.

• n = 0, is the counter of the number of iterations (backward-forward). n is incremented
at the end of each iteration.

• p ∈ R, the precision to reach for the convergence test.

• nstep ∈ N, the number of iterations achieved between 2 convergence tests.

• niterMax ∈ N, the maximal number of iterations.

• x0 ∈ Rn
+, the initial vector state.

• L ∈ N, the number of scenarios used in the backward pass.

• G ∈ N, the number of scenarios used in the forward pass. It gives also the number
of new cuts computed at every iteration (backward-forward) and the number of states
near which the Benders cuts are computed.

Forward pass
The aim of this pass is to explore new feasible vector state and to get an estimation of the

upper bound of the optimal cost. To this end the current strategy is simulated for a set of G
scenarios. The set of scenarios could be historical chronicles or random draws. Algorithm 11
presents the forward pass at the n-th iteration of the SDDP method.

Backward pass
The aim of the backward pass is to add, at each stage, a set of new Benders cuts and to

provide a new estimation of the lower bound of the optimal operational cost. To this end
we have scenarios set of the random quantities (dimension of the set is L) recorded during
the initialization. At each time step G cuts are added using the G visited states (xgt )g=1,...,G

obtained during the forwards pass. Algorithm 12 presents the backward pass.

Stopping test
In the literature about SDDP lots of stopping criterion were used and their efficiency has

been proved. However a criterion is suitable for each particular problem. Thus it is tough
to bring out one which is generic. Due to genericity requirements, two classical criterion are
implemented in the library. These can be customized by the user. The first one defines a
maximal number of iterations niterMax (an iteration is made of the succession of backward-
forward passes) which shall not be exceeded. The second one is a test of convergence
towards each other between the forward and the backward cost. The convergence test uses
the following indicator:

ψnstepi =

∣∣∣∣ z̄nstepi − znstepiz̄nstepi

∣∣∣∣ , with i ∈ N (14.10)

This one is computed every nstep iterations. If it is lesser than a threshold p the process
stops, otherwise it goes on. The threshold is fixed by the user.
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Algorithm 11 Run of forward pass (nth iteration)

1: Simulate sets {(ωgt ) , t ∈ {1, . . . , T}} of equally distributed scenarios: for g ∈ ΩG =
{1, . . . , G}.

2: for g ∈ ΩG do
3: Solve the following linear sub-problem.

[AP n
0 ]


Q0 = min

x0,θ1
c>0 x0 + θ1

u.c. A0x0 = ω0, [π0(ω0)]

x0 > 0

θ1 + (βj1)>x0 > αj1, j ∈ {1, . . . , G, . . . , nG}

(14.4)

4: Store the primal solution (xg0) of the problem [AP n
0,g].

5: for t ∈ {1, . . . , T} do
6: Solve the following linear sub-problem.

[AP n
t,g]


Qg
t (x

g
t−1, ω

g
t ) = min

xt,θt+1

c>t xt + θt+1

s.c. Atxt = ωgt − Etx
g
t−1, [πt(ω

g
t )]

xt > 0

θt+1 + (βjt+1)>xt > αjt+1, j ∈ {1, . . . , G, . . . , nG}

(14.5)

7: Store the primal solution (xgt ) of the problem [AP n
t,g].

8: end for
9: Compute the cost for scenario g, at iteration n: z̄gn =

∑T
t=0 ctx

g
t .

10: end for
11: Compute the total cost in forward pass at iteration n: z̄n = 1

G

∑G
g=1 z̄

g
n.

14.2.2 Dependence of the random quantities

In the previous case we restrict our problem to independent random quantities in the different
stages. The resolution of the SDDP was achieved on the state vector xt in the basic case.

But sometimes in real life the random quantities can be temporarily correlated. In a
hydraulic problem for example there exists time-related dependency of the outcomes. Time-
related dependencies can also exist in the demand. Yet with time-related random quantities
the Bellman recurrence formula (14.2 - 14.3) does not hold and the classical SDDP can not
be applied.

However if the Bellman functions are convex with respect to the time-related random
quantities one has only to increase the dimension of the state vector by the dimension of
the time-related random quantities to be back in the configuration of the basic case. In this
case solving a linear program of reasonable size for each hazard draw is enough to compute
new Benders cuts computation in the neighborhood of a candidate state.

There exists a few options to represent the time-related dependency of the random quan-
tities. However in order to not increase too much the dimension of the problem, an ARMA
process of order 1 is often chosen. In the random data vector ωt two different parts has to
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Algorithm 12 Run of backward pass

1: for t = T, T − 1, . . . , 1 do
2: for xgt−1, g ∈ {1, . . . , G} do
3: for ωlt, l ∈ {1, . . . , L} do
4: Solve the following linear sub-problem.

[AP n,g
t,l ]


Ql
t(x

g
t−1, ω

l
t) = min

xt,θt+1

c>t xt + θt+1

s.c. Atxt = ωlt − Etx
g
t−1, [πt(ω

l
t)]

xt > 0

θt+1 + (βjt+1)>xt > αjt+1, j ∈ {1, . . . , G, . . . , (n+ 1)G}

(14.6)

5: Store the dual solution πt(ω
l
t) and the primal one Ql

t(x
g
t−1, ω

l
t) of the linear

sub-problem [AP n,g
t,l ].

6: Compute the cut that goes with the lth hazard draw:{
αgt,l = Ql

t(x
g
t−1, ω

l
t) + πt(ω

l
t)
>Etx

g
t−1

βgt,l = E>t πt(ω
l
t)

(14.7)

7: end for
8: Compute the gth new Benders cut at time t at iteration n. It is defined as the

mean value of the cuts obtained before:
αkt = 1

L

L∑
l=1

αgt,l

βkt = 1
L

L∑
l=1

βgt,l

where k = nG+ g (14.8)

9: end for
10: end for
11: Solve the following linear sub-problem:

[AP n
0 ]


Q0 = min

x0,θ1
c>0 x0 + θ1

s.c. A0x0 = ω0, [π0(ω0)]

x0 > 0

θ1 + (βj1)>x0 > αj1, j ∈ {1, . . . , G, . . . , (n+ 1)G}

(14.9)

12: Save the cost backward zn = Q0.

be distinguished from now on:

• ωind
t is the random data vector corresponding to the independent random quantities.
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• ωdep
t is the random data vector corresponding to the time-related random quantities.

And ωdep
t fulfills the following recurrence equation:

ωdep
t − µω,t
σω,t

= ψ1

ωdep
t−1 − µω,t−1

σω,t−1

+ ψ2εt (14.11)

To apply the Bellman recurrence formula the vector state should be made of the decision
variable xt and the time-related random quantities ωdep

t . Dimension of the vector state is
then increased. xdep

t = (xt, ω
dep
t )> denotes the new state vector. The Bellman function

satisfies from now on the following two-stages linear problem at time t:

[LP ′t ]


Qt(xt−1, ω

dep
t−1, ωt) = min c>t xt + Qt+1(xt, ω

dep
t )

u.c. Atxt = Pωdep
t − Etxt−1, [πt(ωt)]

xt > 0

(14.12)

with P the matrix such that ωt = Pωdep
t .

The variable ωdep
t is a random process. Thus the above problem is solved using specific

values ωlt of this variable. To get them we apply a Markov process that is we simulate
different values of the white noise εlt.

The new form of the state vector implies changes in the sensitivity of the Bellman func-
tion. Thus it is a function depending on the decision variable xt but also on the the time-
related random quantity vector ωdep

t . The computation of Benders cuts is then a bit different:

∂Qt(xt−1, ω
dep
t−1, ωt)

∂ωdep
t−1

=
∂Qt(xt−1, ω

dep
t−1, ωt)

∂ωdep
t

∂ωdep
t

∂ωdep
t−1

= πt(ωt)
>Pψ1

σω,t
σω,t−1

,

(14.13)

Backward pass has to be modified as presented in Algorithm 13. Some new computation
steps have to be taken into account.

14.2.3 Non-convexity and conditional cuts

Some random quantities may introduce non-convexity preventing us to apply the classical
algorithm of SDDP. Indeed when the random quantities appear on the left-hand side of
the linear constraints or in the cost function (typically At and/or ct become random) the
convexity property of the Bellman functions with respect to the random quantities is not
anymore observed.

In the frame of a management production problem the situation happened often. For
example sometimes the unit operation cost of plants are random. It is also observed when
we deal with spot price uncertainty for use in stochastic mid-term scheduling.

In a technical report, Pereira, Campodonico, and Kelman [35] suggested a new algorithm
in order to efficiently approximate the Bellman functions using explicitly the dependence
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Algorithm 13 Run of backward pass with time-related random quantities (AR1 process)

1: Pick up the set of the following pairs: {xgt , ω
dep,g
t } for g ∈ {1, . . . , G}, t ∈ {1, . . . , T}.

2: for t = T, T − 1, . . . , 1 do
3: for (xgt−1, ω

dep,g
t−1 ), g ∈ {1, . . . , G} do

4: for l ∈ {1, . . . , L} do
5: Produce a value for the white noise εlt.
6: Compute the element ω̂lt knowing the previous random quantity ωdep,g

t−1 :

ω̂lt = σω,t

(
ψ1

ωdep,g
t−1 − µω,t−1

σω,t−1

+ ψ2ε
l
t

)
+ µω,t (14.14)

7: Solve the following linear sub-problem.

[AP
′n,g
t,l ]


Ql
t(x

g
t−1, ω

dep,g
t−1 , ω̂lt) = min

xt,θt+1

c>t xt + θt+1

u.c. Atxt = Pω̂lt − Etx
g
t−1, [πt(ω̂

l
t)]

xt > 0

θt+1 + (βjt+1)>xt + (γjt+1)>ω̂lt > αjt+1, j ∈ {1, . . . , G, . . . , (n+ 1)G}

(14.15)

8: Store the dual solution πt(ω
l
t) and the primal one Ql

t(x
g
t−1, ω

dep,g
t−1 , ω̂lt) of the

primal problem [AP
′n,g
t,l ].

9: Compute the cut that goes with the lth hazard draw:
αgt,l = Ql

t(x
g
t−1, ω

dep,g
t−1 , ω̂lt) + πt(ω̂

l
t)
>
(
Etx

g
t−1 − ψ1

σω,t
σω,t−1

Pωdep,g
t−1

)
βgt,l = E>t πt(ω̂

l
t)

γgt,l = ψ1
σω,t
σω,t−1

P>πt(ω̂
l
t)

(14.16)

10: end for
11: Compute the gth new Benders cut at time t at iteration n defined as the mean

value of the cuts obtained before for k = nG+ g:

αkt =
1

L

L∑
l=1

αgt,l , βkt =
1

L

L∑
l=1

βgt,l , γkt =
1

L

L∑
l=1

γgt,l

12: end for
13: end for
14: Solve the following linear sub-problem.

[AP
′n
0 ]


Q0 = min

x0,θ1
c>0 x0 + θ1

u.c. A0x0 = ω0, [π0(ω0)]

x>0

θ1 + (βj1)>x0 + (γj1)>ωdep
0 > αj1, j ∈ {1, . . . , G, . . . , (n+ 1)G}

(14.17)

15: Save the backward cost zn = Q0.
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of the Bellman functions with respect to these random quantities. This new algorithm is
based on a combination of SDDP and ordinary stochastic dynamic programming. The SDP
part deals with the non-convex random quantities, whereas the other random quantities are
treated in the SDDP part. It is an extension of the classical SDDP algorithm. It is described
in detail in [35] and in [17].

In the library, we propose two approaches to deal with this non convexity:

A tree approach

In [17] spot price pt is regarded as a state. The set of feasible spot price is discretized into
a set of M points ζ1, . . . , ζM . The following Markov model is then used:

P (pt = ζj|pt−1 = ζi) = ρij(t),

This model makes easier the implementation of the SDP. But it implies discretization
mistakes that are hard to quantify. It is also tough to discretize with efficiency a random
process when only a small number of scenarios is available.

However when the dimension of the non convex uncertainties is low, it is an approach
to consider. The finite number of states , and the probabilities linking states between two
successive time step leads to a tree representation of the uncertainties. As the approach is
classical, we don’t detail this version of the algorithm. We only detail the second approach
which is in fact in spirit very similar.

A regression based approach

In that case the modelization used in the library is somewhat different from the one described
in both articles. In order to avoid tree discretization in this second approach, the evolution
of the non-convex random quantities is decided by Monte Carlo simulations. At each stage,
a fixed number of Monte-Carlo simulations is provided. Anyway in spite of this difference
the global view of this brand new algorithm is similar to that one described in both articles:

• The non-convex random quantities depend on the realization of the previous one ac-
cording to a mathematical model (Markov chain).

• At each stage, Bellman functions are approximated through the conditional realization
of these random quantities.

• We used conditional cuts to give an estimation of the Bellman functions. These con-
ditional cuts are computed using the methods in section 4: two methods are available
in the library. Both use adaptive support. The first uses a constant per cell approxi-
mation while the second uses a linear per cell approximation.

In our algorithm the features of the conditional cuts are revealed thanks to a conditional
expectation computation.

Yet conditional expectation computations are not easy when the exact distribution of
the random variable is not known. A few techniques exist but in the library a specific one
is used and described above in chapter 4: it is based on local linear regression.
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Regression, stochastic dynamic programming and SDDP
The run of the backward pass in the new algorithm combining SDDP and SDP using local

linear regression is described below.
Before describing in detail this algorithm, let us introduce a few notations:

• S is the space of the non-convex random quantities.

• d is the dimension of the space of the non-convex random quantities S

• At each stage, U Monte Carlo simulations in S are provided. Thus we get U scenarios
denoted sut at each stage t

• Ĩ is a partition of the space of the non-convex random quantities S.

Ĩ = {I = (i1, . . . , id) , i1 ∈ {1, . . . , I1}, . . . , id ∈ {1, . . . , Id}}

• {DI}I∈Ĩ is the set of meshes of the set of scenarios.

• MM =
d∏

k=1

Ik denotes the number of meshes at each stage.

The backward step with both time-related and non-convex random quantities is presented
in Algorithm 14.
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Algorithm 14 Run of the backward pass with time-related (AR1) and non-convex random
quantities

1: Pick up the set of the following pairs: {xgt , ω
dep,g
t } for g ∈ {1, . . . , G}, t ∈ {1, . . . , T}.

2: for t = T, T − 1, . . . , 1 do
3: Generate values for the non-convex random quantities at time t knowing the scenarios

at time t− 1: sut , u ∈ {1, . . . , U}.
4: for (xgt−1, ω

dep,g
t−1 ), g ∈ {1, . . . , G} do

5: for u ∈ {1, . . . , U} do
6: Consider a scenario sut in the mesh DI .
7: for l ∈ {1, . . . , L} do
8: Produce a value for the white noise εlt.
9: Compute the element ω̂lt knowing the previous random quantity ωdep,g

t−1 :

ω̂lt = σω,t

(
ψ1

ωdep,g
t−1 − µω,t−1

σω,t−1

+ ψ2ε
l
t

)
+ µω,t (14.18)

10: Pick up the cuts corresponding the mesh DI :
{
αI,jt+1(s), βI,jt+1(s), γI,jt+1(s)

}
,

j ∈ {1, . . . , (n+ 1)G}.
11: Solve the following linear sub-problem:

[AP
′n,g
t,l ]



Qlt(x
g
t−1, ω

dep,g
t−1 , ω̂lt, s

u
t ) = min

xt,θt+1

ct(s
u
t )>xt + θt+1(sut )

s.c. At(s
u
t )xt = Pω̂lt − Etx

g
t−1, [πt(ω̂

l
t, s

u
t )]

xt > 0

θt+1(sut ) + (β
I,j
t+1(sut ))>xt + (γ

I,j
t+1(sut ))>ω̂lt > α

I,j
t+1(sut ),

j ∈ {1, . . . , G, . . . , nG}

(14.19)

12: Store the dual solution πt(ω̂
l
t) and the primal solution

Ql
t(x

g
t−1, ω

dep,g
t−1 , ω̂lt, s

u
t ) of the problem [AP

′n,g
t,l ].

13: Calculate the corresponding cut at the lth draw of uncertainties:

α̂g,It,l (sut ) = Ql
t(x

g
t−1, ω

dep,g
t−1 , ω̂lt) + πt(ω̂

l
t)
>
(
Etx

g
t−1 − ψ1

σω,t
σω,t−1

Pωdep,g
t−1

)
β̂g,It,l (sut ) = E>t πt(ω̂

l
t)

γ̂g,It,l (sut ) = ψ1
σω,t
σω,t−1

P>πt(ω̂
l
t)

14: end for
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15: Compute the cut for a non-convex random quantity sut at time t at iteration
n: it is defined as the weighted average on the L Benders cut obtained before:

α̂g,It (sut ) =
1

L

L∑
l=1

α̂g,It,l (sut )

β̂g,It (sut ) =
1

L

L∑
l=1

β̂g,It,l (sut ), j = nG+ g

γ̂g,It (sut ) =
1

L

L∑
l=1

γ̂g,It,l (sut )

16: end for
17: for I i, i ∈ {1, . . . ,MM} do
18: Compute the gth new cut of the mesh DIi

at time t at iteration n defined as
the conditional expectation with respect to the scenario u at time t:

αj,It (sut−1) = E
[
α̂g,It (sut )|sut−1

]
,

βj,It (sut−1) = E
[
β̂g,It (sut )|sut−1

]
, j = nG+ g

γj,It (sut−1) = E
[
γ̂g,It (sut )|sut−1

] (14.20)

19: end for
20: end for
21: end for
22: Solve the initial linear sub problem [AP

′n
0 ].

23: Save the backward cost zn = Q0.
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14.3 C++ API

The SDDP part of the stochastic library is in C++ code. This unit is a classical black box:
specific inputs have to be provided in order to get the expected results. In the SDDP unit
backward and forward pass are achieved successively until the stopping criterion is reached.
In this unit the succession of passes is realized by

• the backwardForwardSDDPTree class for the tree method,

• the backwardForwardSDDP class for the regression based approach.

These classes takes as input three non-defined classes.

14.3.1 Inputs

The user has to implement three classes.

• One class where the transition problem is described which is denoted in the example
TransitionOptimizer. This class is at the core of the problem resolution. Therefore
much flexibility is let to the user to implement this class. The class is used both with
the tree approach and the regression based approach.
In some ways this class is the place where the technical aspects of the problem are
adjusted. This class describes backward and forward passes. Four methods should be
implemented:

– updateDates: establishes the new set of dates: (t, t+ dt).

– oneStepForward: solves the different transition linear problems during the for-
ward pass for a particle, a random vector and an initial state:

∗ the state (xt−dt, w
dep
t ) is given as input of the function.

∗ the st values are restored by the simulator.

∗ the LP is solved between dates t and t+dt for the given st and the constraints
due to wdep

t (demand, flow constraints) and permits to get the optimal xt.

∗ Using iid sampling, wdep
t+dt is estimated.

∗ return (xt, w
dep
t+dt) as the following state and (xt, w

dep
t ) that will be used as the

state to visit during next backward resolution.

– oneStepBackward: solves the different transition linear problems during the back-
ward pass for a particle, a random vector and an initial state.

∗ The vector (xt, w
dep
t ) is given as input if t ≥ 0; otherwise, the input is

(x−dt, w
dep
0 ).

∗ If t ≥ 0, sample to calculate wdep
t+dt in order to get the state (xt, w

dep
t+dt) at

the beginning of the period of resolution of the LP. If t < 0, the state is
(x−dt, w

dep
0 ).

∗ Solve the LP from date t to next date t + dt (if equally spaced periods) for
the variable xt+dt.
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∗ Return the function value and the dual that will be used for cuts estimations.

– oneAdmissibleState: returns an admissible state at time t (respect only the
constraints).

TransitionOptimizer should derive from the OptimizerSDDPBase class defined be-
low.

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef OPTIMIZERSDDPBASE_H

5 #define OPTIMIZERSDDPBASE_H

6 #include <Eigen/Dense >

7 #include "StOpt/sddp/SDDPCutOptBase.h"

8 #include "StOpt/core/grids/OneDimRegularSpaceGrid.h"

9 #include "StOpt/core/grids/OneDimData.h"

10 #include "StOpt/sddp/SimulatorSDDPBase.h"

11 #include "StOpt/sddp/SimulatorSDDPBaseTree.h"

12

13

14 /** \file OptimizerSDDPBase.h

15 * \brief Define an abstract class for Stochastic Dual Dynamic Programming problems

16 * \author Xavier Warin

17 */

18

19 namespace StOpt

20 {

21

22 /// \class OptimizerSDDPBase OptimizerSDDPBase.h

23 /// Base class for optimizer for Dynamic Programming

24 class OptimizerSDDPBase

25 {

26

27

28 public :

29

30 OptimizerSDDPBase () {}

31

32 virtual ~OptimizerSDDPBase () {}

33

34

35 /// \brief Optimize the LP during backward resolution

36 /// \param p_linCut cuts used for the PL (Benders for the Bellman value at the end of

the time step)

37 /// \param p_aState store the state , and 0.0 values

38 /// \param p_particle the particle n dimensional value associated to the regression

39 /// \param p_isample sample number for independant uncertainties

40 /// \return a vector with the optimal value and the derivatives if the function value

with respect to each state

41 virtual Eigen:: ArrayXd oneStepBackward(const StOpt:: SDDPCutOptBase &p_linCut , const std

::tuple < std::shared_ptr <Eigen ::ArrayXd >, int , int > &p_aState , const Eigen::

ArrayXd &p_particle , const int &p_isample) const = 0;

42

43 /// \brief Optimize the LP during forward resolution

44 /// \param p_aParticle a particule in simulation part to get back cuts

45 /// \param p_linCut cuts used for the PL (Benders for the Bellman value at the end of

the time step)

46 /// \param p_state store the state , the particle number used in optimization and mesh

number associated to the particle. As an input it constains the current state

47 /// \param p_stateToStore for backward resolution we need to store \f$ (S_t ,A_{t-1},D_{

t-1}) \f$ where p_state in output is \f$ (S_t ,A_{t},D_{t}) \f$

48 /// \param p_isimu number of teh simulation used

49 virtual double oneStepForward(const Eigen :: ArrayXd &p_aParticle , Eigen:: ArrayXd &

p_state , Eigen:: ArrayXd &p_stateToStore , const StOpt:: SDDPCutOptBase &p_linCut ,

50 const int &p_isimu) const = 0 ;
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51

52

53 /// \brief update the optimizer for new date

54 /// - In Backward mode , LP resolution achieved at date p_dateNext ,

55 /// starting with uncertainties given at date p_date and evolving to give

uncertainty at date p_dateNext ,

56 /// - In Forward mode , LP resolution achieved at date p_date ,

57 /// and uncertainties evolve till date p_dateNext

58 /// .

59 virtual void updateDates(const double &p_date , const double &p_dateNext) = 0 ;

60

61 /// \brief Get an admissible state for a given date

62 /// \param p_date current date

63 /// \return an admissible state

64 virtual Eigen:: ArrayXd oneAdmissibleState(const double &p_date) = 0 ;

65

66 /// \brief get back state size

67 virtual int getStateSize () const = 0;

68

69 /// \brief get the backward simulator back

70 virtual std:: shared_ptr < StOpt:: SimulatorSDDPBase > getSimulatorBackward () const = 0;

71

72 /// \brief get the forward simulator back

73 virtual std:: shared_ptr < StOpt:: SimulatorSDDPBase > getSimulatorForward () const = 0;

74

75 };

76 }

77 #endif /* OPTIMIZERSDDPBASE_H */

• A simulator for forward pass: SimulatorSim

• A simulator for backward pass: SimulatorOpt. This simulator can use an underlying
process to generate scenarios, a set of historical chronicles or a discrete set of scenarios.
Often in the realized test case a Boolean is enough to distinguish the forward and the
backward simulator.

At the opposite of the class where the transition is described, the simulator are of course
different for the tree approach and the regression based approach as the first gives only a
finite number of states.

An abstract class for simulators using the regression based methods is defined below:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef SIMULATORSDDPBASE_H

5 #define SIMULATORSDDPBASE_H

6 #include <Eigen/Dense >

7

8 /* \file SimulatorBase.h

9 * \brief Abstract class for simulators for SDDP method

10 * \author Xavier Warin

11 */

12 namespace StOpt

13 {

14 /// \class SimulatorSDDPBase SimulatorSDDPBase.h

15 /// Abstract class for simulators used for SDDP

16 class SimulatorSDDPBase

17 {

18 public :

19

20 /// \brief Constructor

21 SimulatorSDDPBase () {}

22
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23 /// \brief Destructor

24 virtual ~SimulatorSDDPBase () {}

25

26 /// \brief Get back the number of particles (used in regression part)

27 virtual int getNbSimul () const = 0;

28 /// \brief Get back the number of sample used (simulation at each time step , these

simulations are independent of the state)

29 virtual int getNbSample () const = 0;

30 /// \brief Update the simulator for the date :

31 /// \param p_idateCurr index in date array

32 virtual void updateDateIndex(const int &p_idateCur) = 0;

33 /// \brief get one simulation

34 /// \param p_isim simulation number

35 /// \return the particle associated to p_isim

36 /// \brief get current Markov state

37 virtual Eigen:: VectorXd getOneParticle(const int &p_isim) const = 0;

38 /// \brief get current Markov state

39 virtual Eigen:: MatrixXd getParticles () const = 0;

40 /// \brief Reset the simulator (to use it again for another SDDP sweep)

41 virtual void resetTime () = 0;

42 /// \brief in simulation part of SDDP reset time and reinitialize uncertainties

43 /// \param p_nbSimul Number of simulations to update

44 virtual void updateSimulationNumberAndResetTime(const int &p_nbSimul) = 0;

45 };

46 }

47 #endif /* SIMULATORSDDPBASE_H */

An abstract class derived from the previous class for simulators using tree methods is
defined below:

1 // Copyright (C) 2019 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #ifndef SIMULATORSDDPBASETREE_H

5 #define SIMULATORSDDPBASETREE_H

6 #include <memory >

7 #include <Eigen/Dense >

8 #include "geners/BinaryFileArchive.hh"

9 #include "StOpt/core/utils/comparisonUtils.h"

10 #include "StOpt/dp/SimulatorDPBaseTree.h"

11 #include "StOpt/sddp/SimulatorSDDPBase.h"

12

13 /* \file SimulatorBaseTree.h

14 * \brief Base class for simulators for SDDP method with uncertainties breaking concavity/

convexity in a tree

15 * \author Xavier Warin

16 */

17 namespace StOpt

18 {

19 /// \class SimulatorSDDPBaseTree SimulatorSDDPBaseTree.h

20 /// Base class for simulators used for SDDP with uncertainties breaking concavity/

convexity in a Tree

21 class SimulatorSDDPBaseTree : public SimulatorSDDPBase , public SimulatorDPBaseTree

22 {

23

24 public :

25

26 /// \brief Constructor

27 /// \param p_binforTree binary geners archive with structure

28 /// - dates -> eigen array of dates , size ndate

29 /// - nodes -> nDate array , each array containing nodes coordinates with

size (ndim , nbNodes)

30 /// - proba -> for a point i at a given date and a point j at next date ,

prob(i,j) gives the probability to go from node i to node j.

31 ///

32 SimulatorSDDPBaseTree(const std:: shared_ptr <gs:: BinaryFileArchive > &p_binForTree):

SimulatorDPBaseTree(p_binForTree) {}

33
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34

35 /// \brief Destructor

36 virtual ~SimulatorSDDPBaseTree () {}

37

38 /// \brief

39 /// \brief Get back the number of particles

40 virtual int getNbSimul () const

41 {

42 return 0;

43 }

44

45 /// \brief Get back the number of sample used (simulation at each time step , these

simulations are independent of the state)

46 virtual int getNbSample () const

47 {

48 return 0 ;

49 }

50

51

52 /// \brief get one simulation

53 /// \param p_isim simulation number

54 /// \return the particle associated to p_isim

55 virtual Eigen:: VectorXd getOneParticle(const int &p_isim) const

56 {

57 return m_nodesCurr.col(getNodeAssociatedToSim(p_isim));

58 }

59

60 /// \brief get current Markov state

61 virtual Eigen:: MatrixXd getParticles () const

62 {

63 return Eigen :: MatrixXd ();

64 }

65

66 /// \brief Reset the simulator (to use it again for another SDDP sweep)

67 virtual void resetTime () {}

68

69 /// \brief in simulation part of SDDP reset time and reinitialize uncertainties

70 /// \param p_nbSimul Number of simulations to update

71 virtual void updateSimulationNumberAndResetTime(const int &p_nbSimul) {}

72

73 /// \brief Update the simulator for the date :

74 /// \param p_idateCurr index in date array

75 virtual void updateDateIndex(const int &p_idateCur)

76 {

77 load(p_idateCur);

78 }

79

80

81 };

82 }

83

84 #endif /* SIMULATORSDDPBASETREE_H */
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14.3.2 Architecture

We only detail the SDDP architecture for the regression based approach as the tree approach
uses the same algorithm.
The SDDP handling part of the library is built following the scheme described below.

In the following pseudo-code you have to keep in mind that some small shortcuts have been
used in view of making the reading reader-friendly ( for example linear sub-problem in the
initial case (t = 0) should be a bit different than the the one in other time-steps, forwardS
DDP, backwardSDDP, backwardForwardSDDP inputs have been omitted for simplification). A
more rigorous theoretical explanation is available in the previous part.

Remark 33 In order to use the tree method,
forwardSDDP, backwardSDDP, backwardforwardSDDP can be replaced by some specialized
version for trees called
forwardSDDPTree, backwardSDDPTree, backwardforwardSDDPTree in the library.

Three colors have been used: blue parts correspond to the use of functions implemented
in the TransitionOptimizer class, red parts correspond to the use of Simulator (Sim
or Opt) functions while grey parts correspond to generic functions totally handled by the
library. To be more accurate, what you have to implement as an StOpt user is only the
TransitionOptimizer and the Simulator (blue and red parts), other functions and de-
scribed loops are already implemented and managed by the library.

Algorithm 15 Run of backwardforwardSDDP(),the main function)

1:
Init: xgt = TransitionOptimizer.oneAdmissibleState(t), for g ∈ {1, . . . , G} and
t ∈ {1, . . . , T − 1}, n = 0, ψ =∞.

2: while ψ > ε and n < nmax do
3: StOpt
4: Vb = backwardSDDP() Using the previously computed set (xgt )t,g and creating a set

of cuts.

5: Vf = forwardSDDP() Simulation using the cuts created in all the backward passes
and update the set (xgt )t,g.

6:

ψ =
Vf − Vb
Vf

7:

n = n+ 1

8: end while

14.3.3 Implement your problem

In the following section, some tips and explanations will be given in view of helping you
implementing your problem in the library. It is advised to have a look at the examples
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Algorithm 16 Run of forwardSDDP (nth iteration)

1: for g ∈ ΩG do
2: iStep = 0: index of the date stored in the simulator
3: for t ∈ {0, . . . , T} do

4:

TransitionOptimizer.updateDates(t, t + 1): update the required data fol-
lowing the current time step (iterator over current time step, average de-
mand,. . . )

5:
SimulatorSim.updateDateIndex(iStep): give the random quantities (ωgt )
for the scenario g at time t

6:
StOpt Read the previously computed files to gather αjt+1, β

j
t+1, for j ∈

{1, . . . , G, . . . , nG}

7:

TransitionOptimizer.oneStepForward():
Solve the following linear sub-problem.

[AP n
t,g]


Qg
t (x

g
t−1, ω

g
t ) = min

xt,θt+1

c>t xt + θt+1

s.c. Atxt = ωgt − Etx
g
t−1, [πt(ω

g
t )]

xt > 0

θt+1 + (βjt+1)>xt > αjt+1, j ∈ {1, . . . , G, . . . , nG}

(14.21)

Compute the cost for current time step c>t x
g
t

Return: the primal solution (xgt ) of the problem

8: StOpt Store the primal solution (xgt ) of the problem [AP n
t,g]

9: iStep = iStep+ 1
10: end for
11: StOpt Compute the cost for scenario g, at iteration n: z̄gn =

∑T
t=0 ctx

g
t

12: end for

13: StOpt Compute the total cost in forward pass at iteration n: z̄n = 1
G

∑G
g=1 z̄

g
n

provided by the library. It will give you a better understanding of what is needed to compute
the SDDP method through StOpt (folder test/c++/tools/sddp for the optimizer examples,
test/c++/tools/simulators for the simulators one, and test/c++/functional for the
main instances).

Implement your own TransitionOptimizer class

As described above, your TransitionOptimizer class should be specific to your problem
(it is given as an argument of the backwardForwardSDDP function). Hence, you have to
implement it by yourself following certain constraints in view of making it fitting the library
requirements.
First, make it sure that your TransitionOptimizer class inherits from the class Optimiz

erSDDPBase. You will then have to implement the following functions.
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Algorithm 17 Run of backwardSDDP

1: iStep = NbStep: update the simulator time index to give the uncertainty at T
2: for t = T, T − 1, . . . , 0 do

3: StOpt Read the previously computed files to gather xgt−1, for g ∈ {1, . . . , G, }

4:
TransitionOptimizer.updateDates(t−1, t): update the required data following
the current time step (iterator over current time step, average demand,. . . )

5:
SimulatorOpt.updateDateIndex(iStep): give the random quantities for the L
scenarios at time t

6:
StOpt Read the previously computed files to gather αjt+1, β

j
t+1, for j ∈

{1, . . . , G, . . . , nG}
7: for xgt−1, g ∈ {1, . . . , G} do
8: for ωlt, l ∈ {1, . . . , L} do

9:

TransitionOptimizer.oneStepBackward()
Solve the following linear sub-problem.

[AP n,g
t,l ]


Ql
t(x

g
t−1, ω

l
t) = min

xt,θt+1

c>t xt + θt+1

s.c. Atxt = ωlt − Etx
g
t−1, [πt(ω

l
t)]

xt > 0

θt+1 + (βjt+1)>xt > αjt+1, j ∈ {1, . . . , G, . . . , (n+ 1)G}

(14.22)

Return: the dual solution πt(ω
l
t) and the primal one Ql

t(x
g
t−1, ω

l
t) of the

linear sub-problem [AP n,g
t,l ]

10: iStep = iStep+ 1,
11: end for

12:
StOpt Compute the gth new Benders cut at time t at iteration n: αjt , β

j
t , for

j ∈ {(n− 1)G, (n− 1)G+ 1, . . . , nG}
13: end for
14: end for
15: StOpt Save the cost backward zn = Q0

• The updateDates function allows to update the data stored by the optimizer, fitting
the times indicated as argument.

1

2 /// \brief update the optimizer for new date

3 /// - In Backward mode , LP resolution achieved at date p_dateNext ,

4 /// starting with uncertainties given at date p_date and evolving to

give uncertainty at date p_dateNext ,

5 /// - In Forward mode , LP resolution achieved at date p_date ,

6 /// and uncertainties evolve till date p_dateNext

7 /// .

If your transition problem depends on the time, you should for instance store those
arguments value. Following your needs you could also update data such as the average
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demand at current and at next time step in a gas storage problem.
The p dateNext argument is used as the current time step in the backward pass.
Hence, you should store the values for both the arguments current and next time step.

• The oneAdmissibleState function give an admissible state (that means a state re-
specting all the constraints) for the time step given as an argument.

1 /// \param p_date current date

• The oneStepBackward function allows to compute one step of the backward pass.

1 /// \return a vector with the optimal value and the derivatives if the function

value with respect to each state

The first argument is the cuts already selected for the current time step. It is easy
to handle them, just use the getCutsAssociatedToAParticle function as described in
the examples that you can find in the test folder (OptimizeReservoirWithInflowsSDDP.h
without regression or OptimizeGasStorageSDDP.h with regression). You will then
have the needed cuts as an array cuts that you can link to the values described
in the theoretical part at the time step t by cuts(0, j) = αjt+1, cuts(i, j) = βji−1,t+1

j ∈ {1, . . . , G, . . . , (n+ 1)G} ,i ∈ {1, . . . , nbstate}.
You will have to add the cuts to your constraints by yourself, using this array and
your solver functionalities.
Moreover, as an argument you have the object containing the state at the beginning of
the time step p astate (have in mind that this argument is given as an Eigen
array), p particle contains the random quantities in which the regression over the
expectation of the value function will be based (the computational cost is high so have
a look at the theoretical part to know when you really need to use this), finally the
last argument is an integer giving in which scenario index the resolution will be done.
The function returns a 1-dimensional array of size nbstate+1 containing as a first argu-
ment the value of the objective function at the solution, and then for i ∈ {1, . . . , nbstate}
it contains the derivatives of the objective function compared to each of the i dimen-
sions of the state (you have to find a way to have it by using the dual solution for
instance).

• The oneStepForward function allows to compute one step of the forward pass.

1 /// \param p_isimu number of teh simulation used

As you can see, the oneStepForward is quite similar to the oneStepBackward. A
tip, used in the examples and that you should use, is to build a function generating
and solving the linear problem [AP n

t,g] (for a given scenario g and a given time step t)
which appears for both the forward and the backward pass. This function creating and
generating the linear problem will be called in both our functions oneStepForward

and oneStepBackward. Take care that in the forward pass the current time step
is given through the function updateDates(current date,next date) by the argument
current date while in the backward pass the current time is given through the argument
next date (this is a requirement needed to compute the regressions as exposed in the
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theoretical part). Finally note that the two previously described functions are const

functions and you have to consider that during your implementation.

• The other functions that you have to implement are simple functions (accessors) easy
to understand.

Implement your own Simulator class

This simulator should be the object that will allow you to build some random quantities
following a desired law. It should be given as an argument of your optimizer. You can
implement it by yourself, however a set of simulators (gaussian, AR1, MeanReverting,. . . )
are given in the test folder you could directly use it if it fits your problem requirements.

A simulator for the regression based method

An implemented Simulator deriving from the SimulatorSDDPBase class needs to implement
those functions:

• The getNbSimul function returns the number of simulations of random quantities used
in regression part. It is the U hinted in the theoretical part.

1 virtual int getNbSimul () const = 0;

• The getNbSample function returns the number of simulations of random quantities
that are not used in the regression part. It is the G hinted in the theoretical part. For
instance, in some instances we need a gaussian random quantity in view of computing
the noise when we are in the “dependence of the random quantities” part.

1 virtual int getNbSample () const = 0;

• The updateDateIndex function is really similar to the optimizer one. However you
just have one argument (the time step index) here. It is also here that you have to
generate new random quantities for the resolution.

1 /// \param p_idateCurr index in date array

• The getOneParticle and the getParticles functions should return the quantities
used in regression part.

1 /// \brief get current Markov state

1 /// \brief get current Markov state

• The two last functions resetTime and updateSimulationNumberAndResetTime are
quite explicit.
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A simulator for the tree approach

A simulator using tree should be derived from the class SimulatorSDDPBaseTree. As the
class SimulatorSDDPBaseTree is derived from the SimulatorSDDPBase class all previously
described methods have to be given.
Besides a geners archive is used to load:

• The dates used for the simulator to estimate the set of possible states,

• At each date, a set of d dimensional points defining the set of discrete values of the
state in the tree,

• At each date a two dimensional array giving the probability transition in the tree to
go from a node i at the current date to a node j at the following date.

Then the simulator implemented should call the based constructor loading the archive:

1 /// \brief Get back the number of particles

2 virtual int getNbSimul () const

3 {

4 return 0;

5 }

6

7 /// \brief Get back the number of sample used (simulation at each time step , these

simulations are independent of the state)

Then the user should have generated such an archive. An example using a trinomial tree
method for an AR1 class is given in the c++ test cases in the simulator directory by the
class MeanRevertingSimulatorTree.

The methods to implement necessary are the following one:

• The getNodeAssociatedToSim method give for a simulation identified by the particle
number the node in the tree visited

• The stepForward method updates the simulation date index by one, and samples the
nodes visited in forward resolution.

14.3.4 Set of parameters

Implementing some regression based method

The basic function backwardForwardSDDP should be called to use the SDDP part of the
library with conditional cuts calculated by regressions. This function is templated by the
regressor used:

• LocalConstRegressionForSDDP regressor permits to use a constant per mesh approx-
imation of the SDDP cuts,
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• LocalLinearRegressionForSDDP regressor permits to use a linear approximation per
mesh of the SDDP cuts.

1 /// \brief Achieve forward and backward sweep by SDDP

2 /// \param p_optimizer defines the optimiser necessary to optimize a step for

one simulation solving a LP

3 /// \param p_nbSimulCheckForSimu defines the number of simulations to check convergence

4 /// \param p_initialState initial state at the beginning of simulation

5 /// \param p_finalCut object of final cuts

6 /// \param p_dates vector of exercised dates , last date corresponds to the

final cut object

7 /// \param p_meshForReg number of mesh for regression in each direction

8 /// \param p_nameRegressor name of the archive to store regressors

9 /// \param p_nameCut name of the archive to store cuts

10 /// \param p_nameVisitedStates name of the archive to store visited states

11 /// \param p_iter maximum iteration of SDDP , on return the number of

iterations achieved

12 /// \param p_accuracy accuracy asked , on return estimation of accuracy

achieved (expressed in %)

13 /// \param p_nStepConv every p_nStepConv convergence is checked

14 /// \param p_stringStream dump all print messages

15 /// \param p_bPrintTime if true print time at each backward and forward step

16 /// \return backward and forward valorization

17 template < class LocalRegressionForSDDP >

18 std::pair <double , double > backwardForwardSDDP(std::shared_ptr <OptimizerSDDPBase > &

p_optimizer ,

19 const int &p_nbSimulCheckForSimu ,

20 const Eigen:: ArrayXd &p_initialState ,

21 const SDDPFinalCut &p_finalCut ,

22 const Eigen:: ArrayXd &p_dates ,

23 const Eigen:: ArrayXi &p_meshForReg ,

24 const std:: string &p_nameRegressor ,

25 const std:: string &p_nameCut ,

26 const std:: string &p_nameVisitedStates ,

Most of the arguments are pretty clear (You can see examples in test/c++/functional).
The strings correspond to names that will be given by the files which will store cuts, visited
states or regressor data. p nbSimulCheckForSimu corresponds to the number of simulations
(number of forward pass called) when we have to check the convergence by comparing the
outcome given by the forward pass and the one given by the backward pass. p nStepConv

indicates when the convergence is checked (each p nStepConv iteration). p finalCut cor-
responds to the cut used at the last time step: when the final value function is zero, the
last cut is given by an all zero array of size nbstate + 1. p dates is an array made up with
all the time steps of the study period given as doubles, p iter correspond to the maximum
number of iterations. Finally, p stringStream is an ostringstream in which the result of
the optimization will be stored.

Implementing a tree based method

The basic function backwardForwardSDDPTree should be called to use the SDDP part of
the library with conditional cuts calculated with trees.

1 /// \brief Achieve forward and backward sweep by SDDP with tree

2 /// \param p_optimizer defines the optimiser necessary to optimize a step for

one simulation solving a LP

3 /// \param p_nbSimulCheckForSimu defines the number of simulations to check convergence

4 /// \param p_initialState initial state at the beginning of simulation

5 /// \param p_finalCut object of final cuts

6 /// \param p_dates vector of exercised dates , last date corresponds to the

final cut object
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7 /// \param p_nameCut name of the archive to store cuts

8 /// \param p_nameVisitedStates name of the archive to store visited states

9 /// \param p_iter maximum iteration of SDDP , on return the number of

iterations achieved

10 /// \param p_accuracy accuracy asked , on return estimation of accuracy

achieved (expressed in %)

11 /// \param p_nStepConv every p_nStepConv convergence is checked

12 /// \param p_stringStream dump all print messages

13 /// \param p_bPrintTime if true print time at each backward and forward step

14 /// \return backward and forward valorization

15 std::pair <double , double > backwardForwardSDDPTree(std::shared_ptr <OptimizerSDDPBase > &

p_optimizer ,

16 const int &p_nbSimulCheckForSimu ,

17 const Eigen:: ArrayXd &p_initialState ,

18 const SDDPFinalCutTree &p_finalCut ,

19 const Eigen:: ArrayXd &p_dates ,

20 const std:: string &p_nameCut ,

21 const std:: string &p_nameVisitedStates ,

22 int &p_iter ,

23 double &p_accuracy ,

24 const int &p_nStepConv ,

25 std:: ostringstream &p_stringStream ,

26 bool p_bPrintTime = false)

14.3.5 The black box

The algorithms described above are applied. As said before the user controls the implemen-
tation of the business side of the problem (transition problem). But in the library a few
things are managed automatically and the user has to be aware of:

• The Parallelization during the problem resolution is managed automatically. During
compilation, if the compiler detects an MPI (Message Passing Interface)library problem
resolution will be achieved in a parallelized manner.

• The cut management. All the cuts added at each iteration are currently serialized
and stored in an archive initialized by the user. No cuts are pruned. In the future one
can consider to work on cuts management [37].

• A double stopping criterion is barely used by the library: a convergence test and
a maximal number of iterations. If one of the two criteria goes over the thresholds
defined by the user resolution stops automatically. Once again further work could be
considered on that topic.

14.3.6 Outputs

The outputs of the SDDP library are not currently defined. Thus during the resolution of
a SDDP problem only the number of iterations, the evolution of the backward and forward
costs and of the convergence criterion are logged.

Yet while iterating backward and forward pass the value of the Bellman functions and
the related Benders cuts , the different states visited during the forward pass and the costs
evolution are stored at each time of the time horizon. These information are helpful for the
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Figure 14.1: Current architecture of the generic SDDP unit

users and easy to catch.
Once the convergence is achieved, the user should rerun some simulations adding some flag
to store the results needed by the application (distribution cost etc.): these results will be
post-processed by the user.

14.4 Python API (only for regression based methods)

A high level Python mapping is also available in the SDDP part. The backward-forward
C++ function is exposed in Python by the SDDP module StOptSDDP. In this mapping only
the linear per mesh regressor is used.

1 import StOptSDDP

2 dir(StOptSDDP)

that should give

[
′
OptimizerSDDPBase

′
,
′
SDDPFinalCut

′
,
′
SimulatorSDDPBase

′
,
′
doc

′
,
′
file

′
,
′
name

′
,
′
package

′
,
′
backwardForwardSDDP

′
]

The backwardForwardSDDP realizes the forward backward SDDP sweep giving a SDDP
optimizer and a SDDP uncertainty simulator. The initial final cuts for the last time steps
are provided by the SDDPFinalCut object.
To realize the mapping of SDDP optimizers and simulators written in C++ it is necessary
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to create a Boost Python wrapper. In order to expose the C++ optimizer class OptimizeDe

mandSDDP used in the test case testDemandSDDP.cpp, the following wrapper can be found
in
StOpt/test/c++/python/Pybind11SDDPOptimizers.cpp

1 // Copyright (C) 2019 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU LGPL)

4 #include <pybind11/pybind11.h>

5 #include <pybind11/eigen.h>

6 #include <pybind11/stl_bind.h>

7 #include <pybind11/stl.h>

8 #include "StOpt/core/grids/OneDimRegularSpaceGrid.h"

9 #include "StOpt/core/grids/OneDimData.h"

10 #include "StOpt/sddp/OptimizerSDDPBase.h"

11 #include "test/c++/ tools/sddp/OptimizeDemandSDDP.h"

12 #include "test/c++/ tools/simulators/SimulatorGaussianSDDP.h"

13 #include "test/c++/ python/FutureCurveWrap.h"

14

15 /** \file Pybind11SDDPOptimizers.cpp

16 * \brief permits to map Optimizers for SDDP

17 * \author Xavier Warin

18 */

19

20

21 /// \wrapper for Optimizer for demand test case in SDDP

22 class OptimizeDemandSDDPWrap : public OptimizeDemandSDDP <SimulatorGaussianSDDP >

23 {

24 public :

25

26 /// \brief Constructor

27 /// \param p_sigD volatility for demand

28 /// \param p_kappaD AR coefficient for demand

29 /// \param p_timeDAverage average demand

30 /// \param p_spot Spot price

31 /// \param p_simulatorBackward backward simulator

32 /// \param p_simulatorForward Forward simulator

33 OptimizeDemandSDDPWrap(const double &p_sigD , const double &p_kappaD ,

34 const FutureCurve &p_timeDAverage ,

35 const double &p_spot ,

36 const std:: shared_ptr <SimulatorGaussianSDDP > &

p_simulatorBackward ,

37 const std:: shared_ptr <SimulatorGaussianSDDP > &p_simulatorForward

):

38 OptimizeDemandSDDP(p_sigD , p_kappaD ,

39 std:: make_shared < StOpt:: OneDimData < StOpt ::

OneDimRegularSpaceGrid , double > >(static_cast <StOpt::

OneDimData < StOpt:: OneDimRegularSpaceGrid , double > >(

p_timeDAverage)),

40 p_spot , p_simulatorBackward , p_simulatorForward) { }

41

42 };

43

44 namespace py = pybind11;

45

46 PYBIND11_MODULE(SDDPOptimizers , m)

47 {

48

49

50 py::class_ <OptimizeDemandSDDPWrap , std:: shared_ptr <OptimizeDemandSDDPWrap >, StOpt::

OptimizerSDDPBase >(m, "OptimizeDemandSDDP")

51 .def(py::init < const double &, const double &, const FutureCurve &,

52 const double &,

53 const std:: shared_ptr <SimulatorGaussianSDDP > &,

54 const std:: shared_ptr <SimulatorGaussianSDDP > &>())

55 .def("getSimulatorBackward", &OptimizeDemandSDDP <SimulatorGaussianSDDP >::
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getSimulatorBackward)

56 .def("getSimulatorForward", &OptimizeDemandSDDP <SimulatorGaussianSDDP >::

getSimulatorForward)

57 .def("oneAdmissibleState", &OptimizeDemandSDDP <SimulatorGaussianSDDP >::

oneAdmissibleState)

58 ;

59 }

The wrapper used to expose the SDDP simulator is given in
StOpt/test/c++/python/Pybind11Simulators.cpp

Then it is possible to use the mapping to write a Python version of testDemandSDDP.cpp

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU LGPL)

4 import StOptGrids

5 import StOptSDDP

6 import StOptGlobal

7 import Utils

8 import SDDPSimulators as sim

9 import SDDPOptimizers as opt

10 import numpy as NP

11 import unittest

12 import math

13 import imp

14 import sddp.backwardForwardSDDP as bfSDDP # import of the function written in python

15

16 # unitest equivalent of testDemandSDDP : here MPI version

17 # High level python interface : at level of the backwardForwardSDDP c++ file

18 ############################################################################

19 def demandSDDPFunc(p_sigD , p_sampleOptim ,p_sampleCheckSimul):

20

21 maturity = 40

22 nstep = 40;

23

24 # optimizer parameters

25 kappaD = 0.2; # mean reverting coef of demand

26 spot = 3 ; # spot price

27

28 # define a a time grid

29 timeGrid = StOptGrids.OneDimRegularSpaceGrid (0., maturity / nstep , nstep)

30

31 # periodicity factor

32 iPeriod = 52;

33 # average demande values

34 demValues = []

35

36 for i in list(range(nstep + 1)) :

37 demValues.append (2. + 0.4 * math.cos((math.pi * i * iPeriod) / nstep))

38

39 # define average demand

40 demGrid = Utils.FutureCurve(timeGrid , demValues)

41

42 initialState = demGrid.get (0.)*NP.ones (1)

43

44 finCut = StOptSDDP.SDDPFinalCut(NP.zeros ((2,1)))

45

46 # here cuts are not conditional to an uncertainty

47 nbMesh = NP.array([],NP.int32)

48 nbUncertainties = 1;

49

50 # backward simulator

51 backwardSimulator = sim.SimulatorGaussianSDDP(nbUncertainties ,p_sampleOptim)

52 # forward simulator

53 forwardSimulator = sim.SimulatorGaussianSDDP(nbUncertainties)

54

55 # Create the optimizer
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56 optimizer = opt.OptimizeDemandSDDP(p_sigD , kappaD , demGrid , spot ,

backwardSimulator , forwardSimulator)

57

58 # optimisation dates

59 dates = NP.linspace( 0., maturity ,nstep + 1);

60

61 # names for archive

62 nameRegressor = "RegressorDemand";

63 nameCut = "CutDemand";

64 nameVisitedStates = "VisitedStateDemand";

65

66 # precision parameter

67 nIterMax = 40

68 accuracyClose = 1.

69 accuracy = accuracyClose / 100.

70 nstepIterations = 4; # check for convergence between nstepIterations step

71

72 values = StOptSDDP.backwardForwardSDDP(optimizer , p_sampleCheckSimul , initialState

, finCut , dates , nbMesh , nameRegressor , nameCut , nameVisitedStates , nIterMax ,

73 accuracy , nstepIterations);

74

75 print("Values " , values)

76 return values

77

78

79 # unitest equivalent of testDemandSDDP : here low interface python version

80 # Low level python interface : use backwardForwardSDDP.py

81 ##########################################################################

82 def demandSDDPFuncLowLevel(p_sigD , p_sampleOptim ,p_sampleCheckSimul):

83

84 maturity = 40

85 nstep = 40;

86

87 # optimizer parameters

88 kappaD = 0.2; # mean reverting coef of demand

89 spot = 3 ; # spot price

90

91 # define a a time grid

92 timeGrid = StOptGrids.OneDimRegularSpaceGrid (0., maturity / nstep , nstep)

93

94

95 # periodicity factor

96 iPeriod = 52;

97 # average demande values

98 demValues = []

99

100 for i in list(range(nstep + 1)) :

101 demValues.append (2. + 0.4 * math.cos((math.pi * i * iPeriod) / nstep))

102

103 # define average demand

104 demGrid =Utils.FutureCurve(timeGrid , demValues)

105

106 initialState = demGrid.get (0.)*NP.ones (1)

107

108 finCut = StOptSDDP.SDDPFinalCut(NP.zeros ((2,1)))

109

110 # here cuts are not conditional to an uncertainty

111 nbMesh = NP.array([],NP.int32)

112 nbUncertainties = 1;

113

114 # backward simulator

115 backwardSimulator = sim.SimulatorGaussianSDDP(nbUncertainties ,p_sampleOptim)

116 # forward simulator

117 forwardSimulator = sim.SimulatorGaussianSDDP(nbUncertainties)

118

119 # Create the optimizer

120 optimizer = opt.OptimizeDemandSDDP(p_sigD , kappaD , demGrid , spot ,

backwardSimulator , forwardSimulator)

121
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122 # optimisation dates

123 dates = NP.linspace( 0., maturity ,nstep + 1);

124

125 # names for archive

126 nameRegressor = "RegressorDemand";

127 nameCut = "CutDemand";

128 nameVisitedStates = "VisitedStateDemand";

129

130 # precision parameter

131 nIterMax = 40

132 accuracyClose = 1.

133 accuracy = accuracyClose / 100.

134 nstepIterations = 4; # check for convergence between nstepIterations step

135

136 values = bfSDDP.backwardForwardSDDP(optimizer , p_sampleCheckSimul , initialState ,

finCut , dates , nbMesh , nameRegressor ,

137 nameCut , nameVisitedStates , nIterMax ,

138 accuracy , nstepIterations);

139

140 return values

141

142

143 class testDemandSDDP(unittest.TestCase):

144 def testDemandSDDP1D(self):

145 try:

146 imp.find_module(’mpi4py ’)

147 found = True

148 except:

149 print("Not parallel module found ")

150 found = False

151

152 if found :

153 from mpi4py import MPI

154 world = MPI.COMM_WORLD

155

156 sigD = 0.6 ;

157 sampleOptim = 500;

158 sampleCheckSimul = 500;

159

160 values = demandSDDPFunc(sigD , sampleOptim ,sampleCheckSimul)

161

162 if (world.rank ==0):

163 print("Values is ",values)

164

165 def testDemandSDDP1DLowLevel(self):

166 sigD = 0.6 ;

167 sampleOptim = 500;

168 sampleCheckSimul = 500;

169 demandSDDPFuncLowLevel(sigD , sampleOptim ,sampleCheckSimul)

170

171

172 if __name__ == ’__main__ ’:

173 unittest.main()
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Part VII

Nesting Monte Carlo for general non
linear PDEs
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The method described is has been studied in [51], [50] and is using some ideas in [22],
[49].
Our goal is to solve the general full non linear equation

(−∂tu− Lu)(t, x) = f(t, x, u(t, x), Du(t, x), D2u(t, x)),

uT = g, t < T, x ∈ Rd, (14.23)

with

Lu(t, x) := µDu(t, x) +
1

2
σσ> :D2u(t, x)

so that L is the generator associated to

Xt = x+ µt+ σdWt,

with µ ∈ Rd, and σ ∈Md is some constant matrix.
In the whole article, ρ is the density of a general random variable following a gamma law so
that

ρ(x) = λαxα−1 e
−λx

Γ(α)
, 1 ≥ α > 0. (14.24)

The associated cumulative distribution function is

F (x) =
γ(α, λx)

Γ(α)

where γ(s, x) =
∫ x

0
ts−1e−tdt is the incomplete gamma function and Γ(s) =

∫∞
0
ts−1e−tdt is

the gamma function.
The methodology follows the ideas of [51] and [49].
We suppose here that σ is non degenerated so that σ−1 exists.
Let set p ∈ N+. For (N0, . . . , Np−1) ∈ Np, we introduce the sets of i-tuple, Qi = {k =
(k1, . . . , ki)} for i ∈ {1, . . . , p} where all components kj ∈ [1, Nj−1]. Besides we define
Qp = ∪pi=1Qi.
We construct the sets Qo

i for i = 1, . . . , p, such that

Qo
1 = Q1

and the set Qo
i for i > 1 are defined by recurrence:

Qo
i+1 = {(k1, . . . , ki, ki+1)/(k1, . . . , ki) ∈ Qo

i , ki+1 ∈ {1, . . . , Ni+1, 11, . . . , (Ni+1)1, 12, . . . , (Ni+1)2}}

so that to a particle noted (k1, . . . , ki) ∈ Qo
i such that ki ∈ N, we associate two fictitious

particles noted k1 = (k1, . . . , ki−1, (ki)1) and k2 = (k1, . . . , ki−1, (ki)2).
To a particle k = (k1, . . . , ki) ∈ Qo

i we associate its original particle o(k) ∈ Qi such that
o(k) = (k̂1, . . . , k̂i) where k̂j = l if kj = l, l1 or l2.
For k = (k1, . . . , ki) ∈ Qo

i we introduce the set of its non fictitious sons

Q̃(k) = {l = (k1, . . . , ki,m)/m ∈ {1, . . . , Ni}} ⊂ Qo
i+1,
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and the set of all sons

Q̂(k) = {l = (k1, . . . , ki,m)/m ∈ {1, . . . , Ni, 11, . . . , (Ni)1, 12, . . . , (Ni)2}} ⊂ Qo
i+1.

By convention Q̃(∅) = {l = (m)/m ∈ {1, . . . , N0}} = Q1. Reciprocally the ancestor k of a
particle k̃ in Q̃(k) is noted k̃−.
We define the order of a particle k ∈ Qo

i , i ≥ 0, by the function κ:

κ(k) =0 for ki ∈ N,
κ(k) =1 for ki = l1, l ∈ N
κ(k) =2 for ki = l2, l ∈ N

We define the sequence τk of switching increments i.i.d. random variables with density ρ for
k ∈ Qp. The switching dates are defined as:{

T(j) = τ(j) ∧ T, j ∈ {1, ., N0}
Tk̃ = (Tk + τk̃) ∧ T, k = (k1, . . . , ki) ∈ Qi, k̃ ∈ Q̃(k)

(14.25)

By convention Tk = To(k) and τk = τo(k). For k = (k1, . . . , ki) ∈ Qo
i and k̃ = (k1, . . . , ki, ki+1) ∈

Q̂(k) we define the following trajectories:

W k̃
s := W k

Tk
+ 1κ(k̃)=0W̄

o(k̃)
s−Tk − 1κ(k̃)=1W̄

o(k̃)
s−Tk , and (14.26)

X k̃
s :=x+ µs+ σW k̃

s , ∀s ∈ [Tk, Tk̃], (14.27)

where the W̄ k for k in Qp are independent d-dimensional Brownian motions, independent
of the (τk)k∈Qp .
In order to understand what these different trajectories represent, suppose that d = 1, µ = 0,
σ = 1 and let us consider the original particle k = (1, 1, 1) such that T(1,1,1) = T .
Following equation (14.26),

X
(1,1,1)
T =W̄

(1)
T(1)

+ W̄
(1,1)
T(1,1)−T(1)

+ W̄
(1,1,1)
T−T(1,1)

X
(11,1,1)
T =− W̄ (1)

T(1)
+ W̄

(1,1)
T(1,1)−T(1)

+ W̄
(1,1,1)
T−T(1,1)

X(1,11,1) =W̄
(1)
T(1)
− W̄ (1,1)

T(1,1)−T(1)
+ W̄

(1,1,1)
T−T(1,1)

X
(12,11,1)
T =− W̄ (1,1)

T(1,1)−T(1)
+ W̄

(1,1,1)
T−T(1,1)

...

such that all particles are generated from the W̄ k used to define X
(1,1,1)
T .
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Using the previous definitions, we consider the estimator defined by:

ūp∅ =
1

N0

N0∑
j=1

φ
(
0, T(j), X

(j)
T(j)
, ūp(j), Dū

p
(j), D

2ūp(j)
)
,

ūpk =
1

Ni

∑
k̃∈Q̃(k)

1

2

(
φ
(
Tk, Tk̃, X

k̃
Tk̃
, ūp

k̃
, Dūp

k̃
, D2ūp

k̃

)
+

φ
(
Tk, Tk̃, X

k̃1

Tk̃
, ūp

k̃1Dū
p

k̃1 , D
2ūp

k̃1

))
, for k = (k1, . . . , ki) ∈ Qo

i , 0 < i < p,

Dūpk =
1

Ni

∑
k̃∈Q̃(k)

Vk̃ 1

2

(
φ
(
Tk, Tk̃, X

k̃
Tk̃
, ūp

k̃
, Dūp

k̃
, D2ūp

k̃

)
−

φ
(
Tk, Tk̃, X

k̃1

Tk̃
, ūp

k̃1Dū
p

k̃1 , D
2ūp

k̃1

))
, for k = (k1, . . . , ki) ∈ Qo

i , 0 < i < p,

D2ūpk =
1

Ni

∑
k̃∈Q̃(k)

Wk̃ 1

2

(
φ
(
Tk, Tk̃, X

k̃
Tk̃
, ūp

k̃
, Dūp

k̃
, D2ūp

k̃

)
+

φ
(
Tk, Tk̃, X

k̃1

Tk̃
, ūp

k̃1 , Dū
p

k̃1 , D
2ūp

k̃1

)
−

2φ
(
Tk, Tk̃, X

k̃2

Tk̃
, ūp

k̃2 , Dū
p

k̃2 , D
2ūp

k̃2

))
, for k = (k1, . . . , ki) ∈ Qo

i , 0 < i < p,

ūpk =g(Xk
Tk

), for k ∈ Qo
p,

Dūpk =Dg(Xk
Tk

), for k̃ ∈ Qo
p,

D2ūpk =D2g(Xk
Tk

), for k̃ ∈ Qo
p

(14.28)
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where φ is defined by:

φ(s, t, x, y, z, θ) :=
1{t≥T}

F (T − s)
g(x)+

1{t<T}
ρ(t− s)

f(t, x, y, z, θ). (14.29)

and

Vk = σ−>
W̄ k
Tk−Tk−

Tk − Tk−
,

Wk = (σ>)−1
W̄ k
Tk−Tk−

(W̄ k
Tk−Tk−

)> − (Tk − Tk−)Id

(Tk − Tk−)2
σ−1 (14.30)

As explained before, the u and Du term in f are treated as explained in [51] and only the
D2u treatment is the novelty of this scheme.

Remark 34 In practice, we just have the g value at the terminal date T and we want to
apply the scheme even if the derivatives of the final solution is not defined. We can close
the system for k in Qo

p replacing φ by g and taking some value for Np+1:

ūpk =
1

Np+1

∑
k̃∈Q̃(k)

1

2

(
g
(
X k̃
Tk̃

)
+ g
(
X k̃1

Tk̃

))
,

Dūpk =
1

Np+1

∑
k̃∈Q̃(k)

Vk̃ 1

2

(
g
(
X k̃
Tk̃

)
− g
(
X k̃1

Tk̃
,
))
,

D2ūpk =
1

Np+1

∑
k̃∈Q̃(k)

Wk̃ 1

2

(
g
(
X k̃
Tk̃
,
)

+ g
(
X k̃1

Tk̃

)
− 2g

(
X k̃2

Tk̃

))
Remark 35 In the case where the coefficient are not constant, some Euler scheme can be
added as explained in [51].

An effective algorithm for this scheme is given these two functions:

Algorithm 18 Outer Monte Carlo algorithm (V generates unit Gaussian RV, Ṽ generates
RV with gamma law density)

1: procedure PDEEval(µ, σ, g, f , T , p, x0, {N0, . . . , Np+1}, V , Ṽ )
2: uM = 0
3: x(0, :) = x0(:) . x is a matrix of size 1× n
4: for i = 1, N0 do
5: (u,Du,D2u) = EvalUDUD2U(x0, µ, σ, g, T, V, Ṽ , p, 1, 0, 0)
6: uM = uM + u(0)
7: end for
8: return UM

N0

9: end procedure
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Algorithm 19 Inner Monte Carlo algorithm where t is the current time, x the array of
particles positions of size m× d, and l the nesting level.

1: procedure EvalUDUD2U(x, µ, σ, g, T, V, Ṽ , p,m, t, l)
2: τ = min(Ṽ (), T − t), . Sample the time step
3: G = V () . Sample the n dimensional Gaussian vector
4: xS(1 : m, :) = x(:) + µτ + σG

√
τ

5: xS(m+ 1 : 2m, :) = x(:) + µτ
6: xS(2m+ 1 : 3m, :) = x(:) + µτ − σG

√
τ

7: tS = t+ τ . New date
8: if ts ≥ T or l = p then
9: g1 = g(xS(1 : m, :)); g2 = (xS(m+ 1 : 2m, :)); g3 = g(xS(2m+ 1 : 3m, :))

10: u(:) = 1
2
(g1 + g3)

11: Du(:, :) = 1
2
(g1 − g3) σ−>G

12: D2u(:, :, :) = 1
2
(g1 + g3 − 2g2)σ−>GG

>−Id
τ

σ−1

13: if l 6= p then
14: (u(:), Du(:, :), D2u(:, :, :))/ = 1

F̄ (τ)

15: end if
16: else
17: y(:) = 0; z(:, :) = 0; θ(:, :, :) = 0
18: for j = 1, Nl+1 do
19: (y, z, θ)+ =EvalUDUD2U(xS, µ, σ, g, T, V, Ṽ , p, 3m, tS, l + 1)
20: end for
21: (y, z, θ)/ = Nl+1

22: for q = 1,m do
23: f1 = f(ts, xS(q), y(q), z(q, :), θ(q, :, :))
24: f2 = f(ts, xS(m+ q), y(m+ q), z(m+ q, :), θ(m+ q, :, :))
25: f3 = f(ts, xS(2m+ q), y(2m+ q), z(2m+ q, :), θ(2m+ q, :, :))
26: u(i) = 1

2
(f1 + f3)

27: Du(i, :) = 1
2
(f1 − f3)σ−>G

28: D2u(i, :, :) = 1
2
(f1 + f3 − 2f2)σ−>GG

>−Id
τ

σ−1

29: end for
30: end if
31: return (u,Du,D2u)
32: end procedure
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Part VIII

Some test cases description
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Chapter 15

Some test cases description in C++

In this part, we describe the functional test cases of the library. The c++ version of these test
cases can be found in test/c++/functional while their python equivalent (when existing)
can be found in test/python/functional. We describe here in details the c++ test cases.

15.1 American option

The library gives some test cases for the Bermudean option problem ([7] for details on the
Bermudean option problem). All Bermudean test cases use a basket option payoff. The
reference for the converged methods can be found in [7].

15.1.1 testAmerican

The test case in this file permits to test during the Dynamic Programming resolution different
regressors:

• either using some local functions basis with support of same size:

– Either using a constant per mesh representation of the function (LocalSameSizeConstRegression
regressor)

– Either using a linear per mesh representation of the function (LocalSameSizeLinearRegression
regressor)

• either using some function basis with adaptive support ([7])

– Either using a constant per mesh representation of the function (LocalConstRegression
regressor)

– Either using a linear per mesh representation of the function (LocalLinearRegression
regressor)

• Either using global polynomial regressor:

– Either using Hermite polynomials,

– Either using Canonical polynomials (monomes),
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– Either using Tchebychev polynomials.

• Either using sparse regressor,

• Either using kernel regressors:

– either using constant kernel regressor,

– either using linear kernel regressor.

testAmericanLinearBasket1D

Test 1D problem with LocalLinearRegression regressor.

testAmericanConstBasket1D

Test 1D problem with LocalConstRegression regressor.

testAmericanSameSizeLinearBasket1D

Test 1D problem with LocalSameSizeLinearRegression regressor.

testAmericanSameSizeConstBasket1D

Test 1D problem with LocalSameSizeConstRegression regressor.

testAmericanGlobalBasket1D

Test 1D problem with global Hermite, Canonical and Tchebychev regressor.

testAmericanGridKernelConstBasket1D

Test 1D problem with classical kernel regression

testAmericanGridKernelLinearBasket1D

Test 1D problem with linear kernel regression

testAmericanLinearBasket2D

Test 2D problem with LocalLinearRegression regressor.

testAmericanConstBasket2D

Test 2D problem with LocalConstRegression regressor.

testAmericanSameSizeLinearBasket2D

Test 2D problem with LocalSameSizeLinearRegression regressor.
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testAmericanSameSizeConstBasket2D

Test 2D problem with LocalSameSizeConstRegression regressor.

testAmericanGlobalBasket2D

Test 2D problem with global Hermite, Canonical and Tchebychev regressor.

testAmericanGridKernelConstBasket2D

Test 2D problem with classical kernel regression

testAmericanGridKernelLinearBasket1D

Test 2D problem with linear kernel regression

testAmericanBasket3D

Test 3D problem with LocalLinearRegression regressor.

testAmericanGlobalBasket3D

Test 3D problem with global Hermite, Canonical and Tchebychev regressor.

testAmericanGridKernelLinearBasket3D

Test 3D problem with linear kernel regression.

testAmericanBasket4D

Test 4D problem with LocalLinearRegression regressor.

15.1.2 testAmericanConvex

Three test cases with basket American options are implemented trying to keep convexity of
the solution

testAmericanLinearConvexBasket1D

Linear adapted regression in 1D preserving the convexity at each time step.

testAmericanLinearConvexBasket2D

Linear adapted regression in 2D trying to preserve the convexity at each time step.

testAmericanLinearConvexBasket3D

Linear adapted regression in 3D trying to preserve the convexity at each time step.
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15.1.3 testAmericanForSparse

This test case is here to test sparse grid regressors (see section 3.3). As described before we
can use a linear, quadratic or cubic representation on each cell. The reference is the same
as in the testAmerican subsection so linked to a Bermudean basket option.

testAmericanSparseBasket1D

Use sparse grids in 1D (so equivalent to full grid) for linear, quadratic or cubic representation.

testAmericanSparseBasket2D

Use sparse grids in 2D for linear, quadratic or cubic representation.

testAmericanSparseBasket3D

Use sparse grids in 3D for linear, quadratic or cubic representation.

testAmericanSparseBasket4D

Use sparse grids in 4D for linear, quadratic or cubic representation.

15.1.4 testAmericanOptionCorrel

Same case as before but with correlations between assets. Permits to test that rotation due
to the PCA analysis works correctly.

testAmericCorrel

Check in 2D that

• Local Constant per mesh regression with and without rotation give the same result,

• Local Linear per mesh regression with and without rotation give the same result,

• Global regression with and without rotation give the same result.

15.1.5 testAmericanOptionTree

Simple test case in 1D, to test the tree method on American options. An Ornstein–Uhlenbeck
process using a near to zero mean reverting parameter is used to be near the BS model. The
OU model is approximated by a trinomial tree.
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15.2 testSwingOption

The swing option problem is the generalization of the American option using a Black Scholes
model for the underlying asset: out of a set of nStep dates (chosen equal to 20 here) we can
choose N dates (N equal to three) to exercise the option. At each exercise date t , we get
the pay-off (St − K)+ where St is the value of the underlying asset at date t. See [25] for
description of the swing problem and the backward resolution techniques. Due to classical
results on the Snell envelop for European payoff, the analytical value of this problem is the
sum of the N payoff at the N last dates where we can exercise (recall that the value of an
American call is the value of the European one). The Markov state of the problem at a
given date t is given by the value of the underlying (Markov) and the number of exercises
already achieved at date t. This test case can be run in parallel with MPI. In all test cases,
we use a LocalLinearRegression to evaluate the conditional expectations used during the
Dynamic Programming approach.

testSwingOptionInOptimization

After having calculated the analytical solution for this problem,

• a first resolution is provided using the resolutionSwing function. For this simple
problem, only a regressor is necessary to decide if we exercise at the current date of
not.

• a second resolution is provided in the resolutionSwingContinuation function using
the Continuation object (see chapter 6) permitting to store continuation values for
a value of the underlying and for a stock level. This example is provide here to
show how to use this object on a simple test case. This approach is here not optimal
because getting the continuation value for an asset value and a stock level (only discrete
here) means some unnecessary interpolation on the stock grids (here we choose a
RegularSpaceGrid to describe the stock level and interpolate linearly between the
stock grids). In the case of swing with varying quantities to exercise [25] or the gas
storage problem, this object is very useful,

• A last resolution is provided using the general framework described and the Dynam

icProgrammingByRegressionDist function described in subsection 9.2.2. Once again
the framework is necessary for this simple test case, but it shows that it can be used
even for some very simple cases.

15.2.1 testSwingOption2D

Here we suppose that we have two similar swing options to price and we solve the problem
ignoring that the stocks are independent: this means that we solve the problem on a two
dimensional grid (for the stocks) instead of two times the same problem on a grid with one
stock.

• we begin by an evaluation of the solution for a single swing with the resolutionSwing
function giving a value A.
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• then we solve the 2 dimensional (in stock) problem giving a value B with our framework
with the DynamicProgrammingByRegressionDist function.

Then we check that B = 2A.

15.2.2 testSwingOption3

We do the same as previously but the management of three similar swing options is realized
by solving as a three dimensional stock problem.

15.2.3 testSwingOptimSimu / testSwingOptimSimuMpi

This test case takes the problem described in section 15.2, solves it using the framework 9.2.2.
Once the optimization using regression (LocalLinearRegression regressor) is achieved,
a simulation part is used using the previously calculated Bellman values. We check the
the values obtained in optimization and simulation are close. The two test case files
(testSwingOptimSimu/testSwingOptimSimuMpi) use the two versions of MPI paralleliza-
tion distributing or not the data on the processors.

15.2.4 testSwingOptimSimuWithHedge

The test case takes the problem described in section 15.2, solves it using regression (LocalLinearRegression
regressor) while calculating the optimal hedge by the conditional tangent method as ex-
plained in [45]. After optimization, a simulation part implement the optimal control and
the optimal hedge associated. We check:

• That values in optimization and simulation are close

• That the hedge simulated has an average nearly equal to zero,

• That the hedged swing simulations give a standard deviation reduced compared to the
non hedged option value obtained by simulation without hedge.

This test case shows are that the multiple regimes introduced in the framework 9.2.2 can
be used to calculate and store the optimal hedge. This is achieved by the creation of a
dedicated optimizer OptimizeSwingWithHedge.

15.2.5 testSwingOptimSimuND / testSwingOptimSimuNDMpi

The test case takes the problem described in section 15.2, suppose that we have two similar
options to valuate and that we ignore that the options are independent giving a problem to
solve with two stocks managed jointly as in subsection 15.2.1. After optimizing the problem
using regression (LocalLinearRegression regressor) we simulate the optimal control for this
two dimensional problem and check that values in optimization and simulation are close.
In testSwingOptimSimuND Mpi parallelization, if activated, only parallelize the calculation,
while in testSwingOptimSimuNDMpi the data are also distributed on processors. In the
latter, two options are tested,
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• in testSwingOptionOptim2DSimuDistOneFile the Bellman values are distributed on
the different processors but before being dumped they are recombine to give a single
file for simulation.

• in testSwingOptionOptim2DSimuDistMultipleFile the Bellman values are distributed
on the different processors but each processor dumps its own Bellman Values. During
the simulation, each processor rereads its own Bellman values.

In the same problem in high dimension may be only feasible with the second approach.

15.3 Gas Storage

15.3.1 testGasStorage / testGasStorageMpi

The model used is a mean reverting model similar to the one described in [45]. We keep
only one factor in equation (8) in [45]. The problem consists in maximizing the gain from
a gas storage by the methodology described in [45]. All test cases are composed of three
parts:

• an optimization is realized by regression (LocalLinearRegression regressor),

• a first simulation of the optimal control using the continuation values stored during
the optimization part,

• a second simulation directly using the optimal controls stored during the optimization
part.

We check that the three previously calculated values are close.
Using dynamic programming method, we need to interpolate into the stock grid to get the
Bellman values at one stock point. Generally a simple linear interpolator is used (giving a
monotone scheme). As explicated in [47], it is possible to use higher order schemes still being
monotone. We test different interpolators. In all test case we use a LocalLinearRegression

to evaluate the conditional expectations. The MPI version permits to test the distribution
of the data when using parallelization.

testSimpleStorage

We use a classical regular grid with equally spaces points to discretize the stock of gas and
a linear interpolator to interpolate in the stock.

testSimpleStorageLegendreLinear

We use a Legendre grid with linear interpolation, so the result should be the same as above.

testSimpleStorageLegendreQuadratic

We use a quadratic interpolator for the stock level.
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testSimpleStorageLegendreCubic

We use a cubic interpolator for the stock level.

testSimpleStorageSparse

We use a sparse grid interpolator (equivalent to a full grid interpolator because it is a one
dimensional problem). We only test the sparse grid with a linear interpolator.

15.3.2 testGasStorageCut / testGasStorageCutMpi

We take the previous gas storage problem and solve the transition problem without dis-
cretizing the command by using a LP solver (see section 9.2.3) The test cases are composed
of an optimization part followed by a simulation part comparing the results obtained.

testSimpleStorageCut

Test case without mpi distribution of the stocks points. A simple Regular grid object is
used and conditional cuts are calculated using Local Linear Regressions.

testSimpleStorageCutDist

Test using MPI distribution. In all cases a Local Linear Regressor is used. One file is used
to store the conditional cuts.

• A first case uses a Regular grid,

• A second case used a RegularLegendre grid.

testSimpleStorageMultipleFileCutDist

Test using MPI distribution. A Local Linear Regressor is used for cuts and a Regular grid
is used. Bender cuts are locally stored by each processor.

15.3.3 testGasStorageTree/testGasStorageTreeMpi

Optimize a storage for gas price modeled by an HJM model approximated by a tree. The
grids are simple regular grids. In MPI, Bellman values are either stored in one file or multiple
files.

15.3.4 testGasStorageTreeCut/testGasStorageTreeCutMpi

Gas storage is optimized and simulated using cuts and tree for uncertainties. Gas price
modeled by an HJM model approximated by a trinomial tree The grids are simple regular
grids. In MPI, Bellman values are either stored in one file or multiple files.
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15.3.5 testGasStorageKernel

The model used is a mean reverting model similar to the one described in [45]. We keep only
one factor in equation (8) in [45].The problem consists in maximizing the gain from a gas
storage by the methodology described in [45]. The specificity here is that a kernel regression
method is used.

testSimpleStorageKernel

Use the linear kernel regression method to solve the Gas Storage problem.

15.3.6 testGasStorageVaryingCavity

The stochastic model is the same as in section 15.3.1. As previously, all test cases are
composed of three parts:

• an optimization is realized by regression (LocalLinearRegression regressor),

• a first simulation of the optimal control using the continuation values stored during
the optimization part,

• a second simulation directly using the optimal controls stored during the optimization
part.

We check that the three previously calculated values are close on this test case where the
grid describing the gas storage constraint is time varying. This permits to check the splitting
of the grids during parallelization.

15.3.7 testGasStorageSwitchingCostMpi

The test case is similar to the one in section 15.3.1 (so using regression methods): we added
some extra cost when switching from each regime to the other. The extra cost results in the
fact that the Markov state is composed of the asset price, the stock level and the current
regime we are (the latter is not present in other test case on gas storage). This test case
shows that our framework permits to solve regime switching problems. As previously all
test cases are composed of three parts:

• an optimization is realized by regression (LocalLinearRegression regressor),

• a first simulation of the optimal control using the continuation values stored during
the optimization part,

• a second simulation directly using the optimal controls stored during the optimization
part.

We check that the three previously calculated values are close.
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15.3.8 testGasStorageSDDP

The modelization of the asset is similar to the other test case. We suppose that we have N
similar independent storages. So solving the problem with N stocks should give N times
the value of one stock.

• First the value of the storage is calculated by dynamic programming giving value A,

• then the SDDP method (chapter 14) is used to valuate the problem giving the B value.
The Benders cuts have to be done conditionally to the price level.

We check that B is close to NA.

testSimpleStorageSDDP1D

Test the case N = 1.

testSimpleStorageSDDP2D

Test the case N = 2.

testSimpleStorageSDDP10D

Test the case N = 10.

15.3.9 testGasStorageSDDPTree

testSimpleStorageDeterministicCutTree

The volatility is set to zero to get a deterministic problem.

• First by Dynamic Programming, the optimal control is calculated and tested in simu-
lation.

• Then backward part of SDDP and forward part are tested using a grid of point for
the storage

testSimpleStorageCutTree

In stochastic, the backward and forward resolution of the SDDP solver with tree are tested
using points defined on a grid. Convergence is checked by comparing results coming from a
DP solver with regressions.

testSimpleStorageSDDPTree1D1Step

In stochastic, the global SDDP solver iterating forward and backward is used to valuate the
gas storage. Comparison with dynamic programming methods with regressions is achieved.
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15.4 testLake / testLakeMpi

This is the case of a reservoir with inflows following an AR1 model. We can withdraw water
from the reservoir (maximal withdrawal rate given) to produce energy by selling it at a
given price (taken equal to 1 by unit volume). We want to maximize the expected earnings
obtained by an optimal management of the lake. The problem permits to show how some
stochastic inflows can be taken into account with dynamic programming with regression
(LocalLinearRegression regressor used).
The test case is compose of three parts:

• an optimization is realized by regression (LocalLinearRegression regressor),

• a first simulation of the optimal control using the continuation values stored during
the optimization part,

• a second simulation directly using the optimal controls stored during the optimization
part.

We check that the three previously calculated values are close.

15.5 testOptionNIGL2

In this test case we suppose that the log of an asset value follows an NIG process [3]. We
want to price a call option supposing that we use the mean variance criterion using the
algorithm developed in chapter 11.
First an optimization is achieved then in a simulation part the optimal hedging strategy is
tested.

15.6 testDemandSDDP

This test case is the most simple using the SDDP method. We suppose that we have a
demand following an AR 1 model

Dn+1 = k(Dn −D) + σdg + kD,

where D is the average demand, σd the standard deviation of the demand on one time step,
k the mean reverting coefficient, D0 = D, and g a unit centered Gaussian variable. We have
to satisfy the demand by buying energy at a price P . We want to calculate the following
expected value

V = PE

[
N∑
i=0

Di

]
= (N + 1)D0P

This can be done (artificially) using SDDP.
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testDemandSDDP1DDeterministic

It takes σd = 0.

testDemandSDDP1D

It solves the stochastic problem.

15.7 Reservoir variations with SDDP

15.7.1 testReservoirWithInflowsSDDP

For this SDDP test case, we suppose that we dispose of N similar independent reservoirs with
inflows given at each time time by independent centered Gaussian variables with standard
deviation σi. We suppose that we have to satisfy at M dates a demand given by independent
centered Gaussian variables with standard deviation σd. In order to satisfy the demand, we
can buy some water with quantity qt at a deterministic price St or withdraw water from the
reservoir at a pace lower than a withdrawal rate. Under the demand constraint, we want to
minimize:

E

[
M∑
i=0

qtSt

]
Each time we check that forward and backward methods converge to the same value. Because
of the independence of uncertainties the dimension of the Markov state is equal to N .

testSimpleStorageWithInflowsSDDP1DDeterminist

σi = 0 for inflows and σd = 0. for demand. N taken equal to 1.

testSimpleStorageWithInflowsSDDP2DDeterminist

σi = 0 for inflows and σd = 0. for demand. N taken equal to 2.

testSimpleStorageWithInflowsSDDP5DDeterminist

σi = 0 for inflows and σd = 0. for demand. N taken equal to 5.

testSimpleStorageWithInflowsSDDP1D

σi = 0.6, σd = 0.8 for demand. N = 1

testSimpleStorageWithInflowsSDDP2D

σi = 0.6 for inflows, σd = 0.8 for demand. N = 2

testSimpleStorageWithInflowsSDDPD

σi = 0.6 for inflows, σd = 0.8 for demand. N = 5.
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15.7.2 testStorageWithInflowsSDDP

For this SDDP test case, we suppose that we dispose of N similar independent reservoirs
with inflows following an AR1 model:

Xn+1 = k(Xn −X) + σg +X,

with X0 = X, σ the standard deviation associated, g some unit centered Gaussian variable.
We suppose that we have to satisfy at M dates a demand following an AR1 process too.
In order to satisfy the demand, we can buy some water with quantity qt at a deterministic
price St or withdraw water from the reservoir at a pace lower than a withdrawal rate. Under
the demand constraint, we want to minimize:

E

[
M∑
i=0

qtSt

]
Each time we check that forward and backward methods converge to the same value. Because
of the structure of the uncertainties the dimension of the Markov state is equal to 2N + 1
(N storage, N inflows, and demand).

testSimpleStorageWithInflowsSDDP1DDeterministic

All parameters σ are set to 0. N = 1.

testSimpleStorageWithInflowsSDDP2DDeterministic

All parameters σ are set to 0. N = 2.

testSimpleStorageWithInflowsSDDP5DDeterministic

All parameters σ are set to 0. N = 5.

testSimpleStorageWithInflowsSDDP10DDeterministic

All parameters σ are set to 0. N = 10.

testSimpleStorageWithInflowsSDDP1D

σ = 0.3 for inflows, σ = 0.4 for demand. N = 1.

testSimpleStorageWithInflowsSDDP5D

σ = 0.3 for inflows, σ = 0.4 for demand. N = 5.

15.7.3 testStorageWithInflowsAndMarketSDDP

This is the same problem as 15.7.2, but the price St follow an AR 1 model. We use a SDDP
approach to solve this problem. Because of the price dependencies, the SDDP cut have to
be done conditionally to the price level.
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testSimpleStorageWithInflowsAndMarketSDDP1DDeterministic

All volatilities set to 0. N = 1.

testSimpleStorageWithInflowsAndMarketSDDP2DDeterministic

All volatilities set to 0. N = 2.

testSimpleStorageWithInflowsAndMarketSDDP5DDeterministic

All volatilities set to 0. N = 5.

testSimpleStorageWithInflowsAndMarketSDDP10DDeterministic

All volatilities set to 0. N = 10.

testSimpleStorageWithInflowsAndMarketSDDP1D

σ = 0.3 for inflows, σ = 0.4 for demand, σ = 0.6 for the spot price. N = 1.

testSimpleStorageWithInflowsAndMarketSDDP5D

σ = 0.3 for inflows, σ = 0.4 for demand, σ = 0.6 for the spot price. N = 5.

15.8 Semi-Lagrangian

15.8.1 testSemiLagrangCase1/testSemiLagrangCase1

Test Semi-Lagrangian deterministic methods for HJB equation. This corresponds to the
second test case without control in [47] (2 dimensional test case).

TestSemiLagrang1Lin

Test the Semi-Lagrangian method with the linear interpolator.

TestSemiLagrang1Quad

Test the Semi-Lagrangian method with the quadratic interpolator.

TestSemiLagrang1Cubic

Test the Semi-Lagrangian method with the cubic interpolator.

TestSemiLagrang1SparseQuad

Test the sparse grid interpolator with a quadratic interpolation.
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TestSemiLagrang1SparseQuadAdapt

Test the sparse grid interpolator with a quadratic interpolation and some adaptation in the
meshing.

15.8.2 testSemiLagrangCase2/testSemiLagrangCase2

Test Semi-Lagrangian deterministic methods for HJB equation. This corresponds to the
first case without control in [47] (2 dimensional test case).

TestSemiLagrang2Lin

Test the Semi-Lagrangian method with the linear interpolator.

TestSemiLagrang2Quad

Test the Semi-Lagrangian method with the quadratic interpolator.

TestSemiLagrang2Cubic

Test the Semi-Lagrangian method with the cubic interpolator.

TestSemiLagrang2SparseQuad

Test the sparse grid interpolator with a quadratic interpolation.

15.8.3 testSemiLagrangCase2/testSemiLagrangCase2

Test Semi-Lagrangian deterministic methods for HJB equation. This corresponds to the
stochastic target test case 5.3.4 in [47].

TestSemiLagrang3Lin

Test the Semi-Lagrangian method with the linear interpolator.

TestSemiLagrang3Quad

Test the Semi-Lagrangian method with the quadratic interpolator.

TestSemiLagrang3Cubic

Test the Semi-Lagrangian method with the cubic interpolator.
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15.9 Non emimissive test case

15.9.1 testDPNonEmissive

Solve the problem described in part V by dynamic programming and regression.

• first an optimization is realized,

• the an simulation part permit to test the controls obtained.

15.9.2 testSLNonEmissive

Solve the problem described in part V by the Semi-Lagrangian method.

• first an optimization is realized,

• the an simulation part permit to test the controls obtained.

15.10 Nesting for Non Linear PDE’s

15.10.1 Some HJB test

The control problem where A is the set of adapted integrable processes.

dX = 2
√
θαdt+

√
2dWt,

V = inf
α∈A

E[

∫ T

0

|αs|2dt+ g(XT )]

The HJB equation corresponding

(−∂tu− Lu)(t, x) = f(Du(t, x))

Lu(t, x) :=µDu(t, x) +
1

2
σσ> :D2u(t, x), (15.1)

f(z) =− θ||z||22 (15.2)

such that a solution is

u(t, x) = −1

θ
log
(
E[e−θg(x+

√
2WT−t)]

)
. (15.3)

We use the nesting method with µ = 0, σ =
√

2Id. These test case are located in the
test/c++/unit/branching directory.

testHJCConst

In this test case, we use a special resolution function supposing that the parameters of the
PDE are constant: this permits us to precalculate the inverse of some matrices.
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testHJCExact

We test here the special case where the SDE can be exactly simulated with a scheme

Xt+dt = A(t, dt)Xt +B(t, dt) + C(t, dt)g

with g Gaussian centered unit vector.

testHJBEuler

We use a resolution function supposing that the SDE is discretized by an Euler scheme.

15.10.2 Some Toy example: testUD2UTou

We want to solve:

(−∂tu− Lu)(t, x) = f(u,Du(t, x), D2u(t, x))

with

µ = µ0

d
1Id,

σ = σ0√
d
Id,

f(t, x, y, z, θ) = cos(
∑d

i=1 xi)(α + 1
2
σ2

0)eα(T−t) + sin(
∑d

i=1 xi)µ0e
α(T−t) + a

√
d cos(

∑d
i=1 xi)

2e2α(T−t)

+ a√
d
(−e2α(T−t)) ∨ (e2α(T−t) ∧ (y

∑d
i=1 θi,i)),

with a solution

u(t, x) = eα(T−t) cos(
d∑
i=1

xi)

15.10.3 Some Portfolio optimization

We assume that we dispose of d = 4 securities all of them being defined by a Heston model:

dSit =µiSitdt+
√
Y i
t S

i
tdW

(2i−1)
t

dY i
t =ki(mi − Y i

t )dt+ ci
√
Y i
t dW

(2i)
t ,

where W = (W (1), . . . ,W (2d)) is a Brownian motion in R2d.
The non-risky asset S0 has a 0 return so dS0

t = 0, t ∈ [0, 1].
The investor chooses an adapted process {κt, t ∈ [0, T ]} with values in Rn, where κit is the
amount he decides to invest into asset i.
The portfolio dynamic is given by:

dXκ
t = κt ·

dSt
St

+ (Xκ
t − κt · 1)

dS0
t

S0
t

= κt ·
dSt
St
.

Let A be the collection of all adapted processes κ with values in Rd and which are inte-
grable with respect to S. Given an absolute risk aversion coefficient η > 0, the portfolio
optimization problem is defined by:

v0 := sup
κ∈A

E [− exp (−ηXκ
T )] . (15.4)
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The problem doesn’t depend on the si. As in [52], we can guess that the solution can be
expressed as

v(t, x, y1, . . . , yd) = e−ηxu(y1, . . . , yd)

and using Feyman Kac it is easy to see that then a general solution can be written

v(t, x, y) = −e−ηxE[
d∏
i=1

exp

(
−1

2

∫ T

t

(µi)2

Ỹ i
s

ds

)
] (15.5)

with

Ỹ i
t = yi and dỸ i

t = ki(mi − Ỹ i
t )dt+ ci

√
Ỹ i
t dW

i
t ,

where yi corresponds to the initial value of the volatility at date 0 for asset i.
We suppose in our example that all assets have the same parameters that are equal to the
parameters taken in the two dimensional case. We also suppose that the initial conditions
are the same as before.
Choosing σ̄ > 0, we can write the problem as equation (14.23) in dimension d+ 1 where

µ =(0, k1(m1 − y1), . . . , kd(md − yd))>, σ =


σ̄ 0 · · · · · · 0

0 c
√
m1 0 · · · 0

0 · · · . . . · · · 0

0 · · · · · · . . . 0

0 · · · · · · 0 c
√
md


always with the same terminal condition

g(x) = −e−ηx

and

f(x, y, z, θ) =− 1

2
σ̄2θ11 +

1

2

d∑
i=1

(ci)2((yi)2 −mi)θi+1,i+1 −
d∑
i=1

µiz1

2yiθ11

. (15.6)

In order to have f Lipschitz, we truncate the control limiting the amount invested by taking

fM(y, z, θ) =− 1

2
σ̄2θ11 +

1

2

d∑
i=1

(ci)2((yi)2 −mi)θ2,2+

sup
η = (η1, . . . , ηd)

0 ≤ ηi ≤M, i = 1, d

d∑
i=1

(
1

2
(ηi)2yiθ11 + (ηi)µiz1

)
.

testPortfolioExact

The Ornstein–Uhlenbeck process used as a driving process is simulated exactly.

testPortfolioEuler

The Ornstein–Uhlenbeck process used as a driving process is simulated using an Euler
scheme.
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Chapter 16

Some python test cases description

This part is devoted to some test cases only available in python. These examples uses the
low level python interface.

16.1 Microgrid Management

16.1.1 testMicrogridBangBang

A microgrid is a collection of renewable energy sources, a diesel generator, and a battery
for energy storage. The objective is to match the residual demand (difference between the
demand of electricity and supply from renewables) while minimizing the total expected cost
of running the microgrid. In particular a penalty is assessed for insufficient supply that leads
to blackouts. The setup is similar to the one described in [[29], Section 7]. We take the
diesel generator as the only control dt; output/input from/into the battery is then a function
of the residual demand Xt (exogenous stochastic process), inventory level of the battery It,
and dt. The diesel generator operates under two regimes: OFF and ON. When it is OFF it
does not supply power dt = 0, however when it is ON the power output is a deterministic
function of the state dt = d(Xt, It). As a result, the problem is a standard stochastic control
model with switching-type bang-bang control.

We parameterize the algorithm to easily switch between multiple approximation schemes
for the conditional expectation at the core of the Dynamic Programming equation. Partic-
ularly the following schemes are implemented:

• Regularly spaced grid for It and local polynomial basis in Xt for each level of the grid.

• Adaptive piecewise-defined polynomial basis in -2D for (Xt, It).

• Global 2D polynomial basis on (Xt, It).

• Bivariate Kernel regression on (Xt, It).

16.1.2 testMicrogrid

We extend the previous example to include the recent work [1] where the action space for
the control is dt ∈ {0} ∪ [1, 10] kW, rather than being bang-bang. As a result, the optimal

240



control is chosen in two steps: first the controller picks the regime: ON or OFF; if ON,
she then decides the optimal, continuous level of the diesel output. Due to the additional
flexibility available to the controller compared to the previous example, we expect to observe
lower cost compared to Section 16.1.1. The user can switch between this and the previous
setting by changing the parameter controlType in the parameters.py file.

16.2 Dynamic Emulation Algorithm (DEA)

16.2.1 testMicrogridDEA

In this section we discuss the implementation of the Dynamic Emulation Algorithm devel-
oped in [29]. In that paper the authors reformulate the stochastic control problem as an
“iterative sequence of machine learning tasks”. The philosophy of DEA is to combine to-
gether Regression Monte Carlo (RMC) with Design of Experiments. The algorithm has the
following properties:

• The learning for the continuation value function at each step in the backward-iteration
of the Dynamic Programming Equation is completely modularized. As a result, the
user can seamlessly switch between different regression schemes (for example: adap-
tive local polynomial basis in -2D or -1D, multivariate kernel regression, etc.) across
different time-steps;

• The empirical approximation uses distinct designs Dt at each t; thus the user can have
design sites independently chosen for different t’s, which also eliminates the require-
ment to store the full history of the simulated paths of (Xt). One-step paths can now
replace the full history. In Figure 16.1 we present examples of two possible designs we
use in the implementation. The image in the left panel represents a space-filling design
using a Sobol sequence in -2D. This design is appropriate for a bivariate regression over
(Xt, It). On the right, we present another space-filling design in -1D with a regularly
spaced grid in It (y-axis) and a -1D Sobol sequence in Xt (x-axis). In [29] the authors
discuss several further designs which can be easily implemented.

• Batched designs, i.e. a partially nested scheme that generates multiple Xt-paths from
the same unique design site, can be accommodated.

• Simulation budget (i.e. the size of Dt) can vary through the time-steps and need not
be fixed as in standard RMC.

Several different experiments have confirmed the significant effect of the design Dt on
the performance of the RMC algorithms. DEA allows us to test for this effect by allowing
the user to easily specify Dt. The structure of this library allows for easy implementation of
such modular algorithms. As a proof of concept, we re-implement the microgrid example of
Section 16.1.1 with the following specifications:

• The 10 time-steps (25% of the total of 40 time-steps) closest to maturity use adap-
tive local polynomial basis in -1D with gridded design similar to the Figure 16.1b.
Moreover, for these t’s we used |Dt| = 22, 000 = Nt unique design sites;

241



(a) Sobol-2D QMC sequence (b) Gridded design

Figure 16.1: Illustration of two simulation designs. In both panels the Xt-coordinate is on
the x-axis and It on the y-axis.

• The other 30 steps (first 75%) use design sites allocated according to Sobol-2D as in
figure 16.1a with a global polynomial basis regression scheme. For these, we build a
batched design of 1000 unique sites, each replicated 10 times for a total simulation
budget of Nt = 1000× 10 = 104.
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[32] Constantinos Makassikis, Stéphane Vialle, and Xavier Warin. Large scale distribution
of stochastic control algorithms for gas storage valuation. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages 1–8. IEEE,
2008.
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