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Introduction



The STochastic OPTimization library (StOpt)
https://gitlab.com/stochastic-control/StOpt
aims at providing tools for solving some stochastic optimization problems encountered in
finance or in the industry.
In a continuous setting, the controlled state is given by a stochastic differential equation

AXT' = ba(t, XP')ds + 0 (s, X' dW,
Xt o=

where

e W, is a d-dimensional Brownian motion on a probability space (£2, F,P) endowed with
the natural (completed and right-continuous) filtration F = (F;):<r generated by W
up to some fixed time horizon T > 0,

e 0, is a Lipschitz continuous function of (¢, z,a) defined on [0, 7] x R? x R" and taking
values in the set of d-dimensional square matrices,

e b, is a Lipschitz continuous function of (¢, ,a) defined on [0,7] x R? x R and taking
values in R?,

e a a control adapted to the filtration taking values in R".

Suppose we want to minimize a cost function J(t,z,a) = E[ftT fals, X21)elt calu X )dugg 4
eli ca(u X g(X7:"] with respect to the control a. It is well known [I] that the optimal value

A

J(t,x) =inf, J(T —t,x,a) is a viscosity solution of the equation

E(t’@ — ;Ielg <%t7’(0a(t,$)O'a(t,I>TD2U(t,Z‘))+ba(t,£€)DU(t,l‘)

+eo(t, x)v(t, x) + falt, x)) =0 in R?
v(0,7) = g(z)in R (1)

Under some classical assumptions on the coefficients [|, the previous equation known as the
Hamilton Jacobi Bellman equation admits an unique viscosity solution ([2]).

The resolution of the previous equation is quite hard especially in dimension greater than 3
or 4.

The library provides tools to solve this equation and simplified versions of it.

e a first method supposes that X> = (X7, X3) where X{", is not controlled

1,s»

dXP = b(t, X7 ds + os, XT0)dW,
Xx,t’ . k) k) (2)
@t - T

t . .
and X3, has no diffusion term

{ dx3, ba(t, X570)ds

x,t o
X2’t = x


https://gitlab.com/stochastic-control/StOpt

In this case we can use Monte Carlo methods based on regression to solve the problem.
The method is based on the Dynamic Programming principle and can be used even if
the non controlled SDE is driven by a general Levy process. This method can be used
even if the controlled state takes only some discrete values.

e The second case is a special case of the previous one when the problem to solve is linear
and when the controlled state takes some values in some continuous intervals. The
value function has to be convex or concave with respect to the controlled variables.
This method, the SDDP method, is used when the dimension of the controlled state
is high, preventing the use of the Dynamic Programming method.

Remark 1 The use of this method requires other assumptions that will be described
the devoted chapter.

e A third method permits to solve the problem with Monte Carlo when a process is
controlled but by the mean of an uncontrolled process. This typically the case of the
optimization of a portfolio :

— The portfolio value is controlled and determistically discretized on a grid,

— The portfolio evolution is driven by an exogenous process not controlled : the
market prices.

e In the last method, we will suppose that the state takes continuous values, we will
solve equation (|1)) using Semi Lagrangian methods discretizing the Brownian motion
with two values and using some interpolations on grids.

In the sequel, we suppose that a time discretization is given for the resolution of the opti-
mization problem. We suppose the step discretization is constant and equal to h such that
t; = th. First, we describe some useful tools developed in the library for stochastic control.
Then, we explain how to solve some optimization problems using these developed tools.

Remark 2 In the library, we heavily relies on the |Eigen library: “ArrayXd” stands for a
vector of double, “ArrayXXd” for a matriz of double and “ArrayXi” a vector of integer.


http://eigen.tuxfamily.org
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Chapter 1

The grids and their interpolators

In this chapter we develop the tools used to interpolate a function discretized on a given
grid. A grid is a set of point in R¢ defining some meshes that can be used to interpolate
a function on an open set in R?. These tools are used to interpolate a function given for
example at some stock points, when dealing with storages. There are also useful for Semi
Lagrangian methods, which need effective interpolation methods. In StOpt currently four
kinds of grids are available :

e the first and second one are grids used to interpolate a function linearly on a grid,

e the third kind of grid, starting from a regular grid, permits to interpolate on a grid at
the Gauss Lobatto points on each mesh.

e the last grid permits to interpolate a function in high dimension using the sparse grid
method. The approximation is either linear, quadratic or cubic in each direction.

To each kind of grids are associated some iterators. An iterator on a grid permits to iterate
on all points of the grids. All iterators derive from the abstract class|“Gridlterator”|

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

1+ #ifndef GRIDITERATORH

5 #define GRIDITERATORH

6 #include <Eigen/Dense>

7

s /xx \file GridIterator.h

9 x \brief Defines an iterator on the points of a grid
10k \author Xavier Warin

11 %/

12 namespace StOpt

13 {

14

15 /// \class Gridlterator GridIlterator.h

16 /// Iterator on a given grid

17 class Gridlterator

18 {

19



20 public

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48

49

50

51

52

53

54

55

56

57

58

59 };
60 }

/// \brief Constructor
GridIterator () {}

/// \brief Destructor
virtual ~“GridIterator () {}

/// \brief get current coordinates
virtual Eigen:: ArrayXd getCoordinate () const = 0 ;

/// \brief Check if the iterator is valid
virtual bool isValid (void) const = 0;

/// \brief iterate on point
virtual void next() = 0;

/// \brief iterate jumping some point

/// \param p_incr increment in the jump

virtual void nextInc(const int &p_-incr) = 0;
/// \brief get counter : the integer associated the current point
virtual int getCount() const = 0;

/// \brief Permits to jump to a given place given the number of
processors (permits to use MPI and openmp)

/// \param p_rank processor rank

/// \param p_nbProc number of processor

/// \param p_jump increment jump for iterator

virtual void jumpToAndInc(const int &p_rank, const int &p_nbProc , const

int &p_jump) = 0;

/// \brief return relative position
virtual int getRelativePosition() const = 0 ;

/// \brief return number of points treated
virtual int getNbPointRelative () const = 0 ;

/// \brief Reset the interpolator
virtual void reset() = 0 ;

61 #endif /x GRIDITERATORH x/

All the iterators share some common features :

e the “getCount” method permits to get the number associated to the current grid point,

e the “next” method permits to go to the next point, while the “nextInc” method permits

to jump forward to the “p_incr”the point,

e the “isValid” method permits to check that we are still on a grid point,

10



e the “getNbPointRelative” method permits to get the number of points that a given
iterator can iterate on,

e the “getRelativePosition” get the number of points already iterated by the iterator.

Besides, we can directly jump to a given point : this feature is useful for “mpi” when a
treatment on the grid is split between some processor and threads. This possibility is given
by the “jumpToAndInc” method.

Using a grid “regGrid” the following source code permits to iterate on the points of the grids
and get coordinates. For each coordinate, a function f is used to fill in an array of values.
As pointed out before, each type of grid has its own grid iterator that can be obtained by
the “getGridlterator” method.

1 ArrayXd data(regGrid.getNbPoints()); // create an array to store the
values of the function f

2 shared_ptr<GridIterator> iterRegGrid = regGrid.getGridlterator ();

3 while (iterRegGrid—isValid ())

i

5 ArrayXd pointCoord = iterRegGrid—>getCoordinate(); // store the

coordinates of the point

6 data(iterRegGrid —>getCount ()) = f(pointCoord); // the value is stored
in data at place iterRegGrid—>getCount ()

7 iterRegGrid—next(); // go to next point

8 }

()]

It is also possible to “jump” some points and iterate to “p” points after. This possibility is
useful for multithreaded tasks on points.

To each kind of grids, an interpolator is provided to interpolate a function given on a grid.
Notice that the interpolator is created for a given point where we want to interpolate. All
interpolators (not being spectral interpolators) derive from “Interpolator.h” whose source
code is given below

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef INTERPOLATORH

5 #define INTERPOLATORH

6 #include <vector>

7 #include <Eigen/Dense>

s /*x \file Interpolator.h

o * \brief Defines a interpolator on a full grid

10 % \author Xavier Warin

1 x/

12 namespace StOpt

13 {

14

15 /// \class Interpolator Interpolator.h
16 /// Interpolation base class

17 class Interpolator

18 {

19 public

20

11



21 /// \brief Default constructor

22 Interpolator () {}

23

24 /// \brief Default Destructor

25 virtual “Interpolator () {}

26

27 /*% \brief interpolate

28 x \param p_dataValues Values of the data on the grid

29 % \return interpolated value

30 * /

31 virtual double apply(const Eigen:: ArrayXd &p_dataValues) const = 0;

32

33 /*x \brief interpolate and use vectorization

34 x \param p_dataValues Values of the data on the grid. Interpolation
is achieved for all values in the first dimension

35 x \return interpolated value

36 * /

37 virtual Eigen:: ArrayXd applyVec(const Eigen ::ArrayXXd &p_dataValues)
const = 0;

8 )3

39 }

40 #endif

All interpolators provide a constructor specifying the point where the interpolation is achieved
and the two functions “apply” and “applyVec” interpolating either a function (and sending
back a value) or an array of functions sending back an array of interpolated values.

All the grid classes derive from an abstract class “SpaceGrids.h” below permitting to get
back an iterator associated to the points of the grid (with possible jumps) and to create an
interpolator associated to the grid.

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef SPACEGRIDH

5 #define SPACEGRID_H

6 #include <array>

7 #include <memory>

s #include <Eigen/Dense>

o #include ”StOpt/core/grids/GridIterator.h”

10 #include ”StOpt/core/grids/Interpolator .h”

11 #include 7StOpt/core/grids/InterpolatorSpectral .h”

13 /%% \file SpaceGrid.h

14 % \brief Defines a base class for all the grids
15 * \author Xavier Warin

16 x/

17 namespace StOpt

18 {
20 /// \class SpaceGrid SpaceGrid.h

21 /// Defines a base class for grids
22 class SpaceGrid

12



2

24 public

25 /// \brief Default constructor

26 SpaceGrid () {}

27

28 /// \brief Default destructor

29 virtual ~SpaceGrid () {}

30

31 /// \brief Number of points of the grid

32 virtual size_t getNbPoints() const = 0;

33

34 /// \brief get back iterator associated to the grid

35 virtual std::shared_ptr< GridIterator> getGridIlterator () const = 0;

36

37 /// \brief get back iterator associated to the grid (multi thread)

38 virtual std::shared_ptr< Gridlterator> getGridlteratorInc (const int &
p-iThread) const = 0;

39

40 /// \brief Get back interpolator at a point Interpolate on the grid

a1 /// \param p_coord coordinate of the point for interpolation

42 /// \return interpolator at the point coordinates on the grid

43 virtual std::shared_ptr<Interpolator> createlnterpolator (const Eigen::
ArrayXd &p_coord) const = 0;

44

45 /// \brief Get back a spectral operator associated to a whole function

46 /// \param p_values Function value at the grids points

a7 /// \return the whole interpolated value function

48 virtual std::shared_ptr<InterpolatorSpectral> createlnterpolatorSpectral(
const Eigen :: ArrayXd &p_values) const = 0;

49

50 /// \brief Dimension of the grid

51 virtual int getDimension() const = 0 ;

52

53 /// \brief get back bounds associated to the grid

54 /// \return in each dimension give the extreme values (min, max) of the
domain

55 virtual std::vector <std::array< double, 2> > getExtremeValues() const =
0;

56

57 /// \brief test if the point is strictly inside the domain

58 /// \param p-point point to test

59 /// \return true if the point is strictly inside the open domain

60 virtual bool isStrictlyInside (const Eigen :: ArrayXd &p_point) const = 0 ;

61

62 /// \brief test if a point is inside the grid (boundary include)

63 /// \param p_point point to test

64 /// \return true if the point is inside the open domain

65 virtual bool isInside (const Eigen:: ArrayXd &p_point) const = 0 ;

66

67 /// \brief truncate a point that it stays inside the domain

68 /// \param p_point point to truncate

69 virtual void truncatePoint (Eigen:: ArrayXd &p_point) const = 0 ;

70

13



72 }
7s #tendif /+ SPACEGRID.H */

All the grids objects, interpolators and iterators on grids point are in
StOpt/core/grids

The grids objects are mapped with python, giving the possibility to get back the iterators
and the interpolators associated to a grid. Python examples can be found in

test /python/unit/grids

1.1 Linear grids

1.1.1 Definition and C++ API
Two kinds of grids are developed:

e the first one is the |“GeneralSpaceGrid.h”| with constructor

1 GeneralSpaceGrid (const std::vector<shared ptr<Eigen:: ArrayXd> > &
p-meshPerDimension )

where std :: vector < shared_ptr < Eigen :: ArrayXd >> is a vector of (pointer of)
arrays defining the grids points in each dimension. In this case the grid is not regular
and the mesh size varies in space (see figure .

Figure 1.1: 2D general grid

e the second one is the |“RegularSpaceGrid”| with constructor

1 RegularSpaceGrid (const Eigen :: ArrayXd &p_lowValues, const Eigen:: ArrayXd
&p_step , const Eigen:: ArrayXi &p_nbStep)

The p_lowV alues correspond to the bottom of the grid, p_step the size of each mesh,
p-nbStep the number of steps in each direction (see figure

14
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p_nbBtep(1)=3

p_step(1)=2

p_lowValue(l))=

p_step(0)=2 p_nbStep(0)=4

p_lowValue(@®)=1

Figure 1.2: 2D regular grid

For each grid, a linear interpolator can be generated by call to the createlnterpolator
method or by creating directly the interpolator:

/#% \brief Constructor

* \param p_grid is the grid used to interpolate
* \param p_point is the coordinates of the points used for interpolation
*/

LinearInterpolator ( const FullGrid =x p-grid , const Eigen::ArrayXd &
p-point):

[ts construction from a grid (regLin) and an array data containing the values of the function
at the grids points is given below (taking an example above to fill in the array data)

ArrayXd data(regGrid.getNbPoints()); // create an array to store the
values of the function f

shared_ptr<GridIterator> iterRegGrid = regGrid.getGridlterator ();
while (iterRegGrid—isValid ())
{

ArrayXd pointCoord = iterRegGrid—>getCoordinate(); // store the
coordinate of the point
data (iterRegGrid —>getCount () ) = f(pointCoord); // the value is stored
in data at place iterRegGrid—>getCount ()
iterRegGrid—>next(); // go to mnext point
}
// point where to interpolate
ArrayXd point = ArrayXd:: Constant (nDim, 1. / 3.);
// create the interpolator
LinearInterpolator regLin(&regGrid, point);
// get back the interpolated value
double interpReg = regLin.apply(data);

Let I; ax denote the linear interpolator where the mesh size is Az = (Az!, ..., Az?). We get
for a function f in C*¥(RY) with k < 1

d ak+1f
1f = Loaefllo <Y Azf sup |7 (1.1)
=1

vel-11d Oxi T
In particular if f is only Lipschitz
||f - Il,Afooo < KSup AZ‘Z

15
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3

1.1.2 The python API

The python API makes it possible to use the grids with a similar syntax to the C++ API.
We give here an example with a regular grid

# Copyright (C) 2016 EDF

# All Rights Reserved

# This code is published under the GNU Lesser General Public License (GNU
LGPL)

import numpy as np

import unittest

import random

import math

import StOptGrids

# unit test for regular grids

43
44
45

class testGrids (unittest.TestCase):

# 3 dimensional test for linear interpolation on regular grids
def testRegularGrids(self):

# low value for the meshes

lowValues =np.array ([1.,2.,3.],dtype=np. float)

# size of the meshes

step = np.array ([0.7,2.3,1.9],dtype=np. float)

# number of steps

nbStep = np.array ([4,5,6], dtype=np.int32)

# create the regular grid

grid = StOptGrids. RegularSpaceGrid (lowValues ,step ,nbStep)

iterGrid = grid.getGridIterator ()

# array to store

data = np.empty(grid.getNbPoints())

# iterates on points and store values

while ( iterGrid.isValid()):
#get coordinates of the point
pointCoord = iterGrid.getCoordinate ()
data[iterGrid .getCount ()] = math.log (1. + pointCoord.sum())
iterGrid . next ()

# get back an interpolator

ptInterp = np.array ([2.3,3.2,5.9],dtype=np. float)

interpol = grid.createlnterpolator (ptInterp)

# calculate interpolated value

interpValue = interpol.apply (data)

print ((”Interpolated value” , interpValue))

# test grids function

iDim = grid.getDimension ()

pt = grid.getExtremeValues ()

if __name__ = ’'__main__":

unittest . main ()

16



1.2 Legendre grids

With linear interpolation, in order to get an accurate solution, it is needed to refine the mesh
so that Ax go to zero. Another approach consists in trying to fit on each mesh a polynomial
by using a high degree interpolator.

1.2.1 Approximation of a function in 1 dimension.

From now, by re-scaling we suppose that we want to interpolate a function f on [—1,1]. All
the following results can be extended by tensorization in dimension greater than 1. Py is
the set of the polynomials of total degree below or equal to N. The minmax approximation
of f of degree N is the polynomial Py (f) such that:

1 = PA() e = min 111~ pll

We call I interpolator from f on a grid of N + 1 points of [—1,1] X = (xq,..,zx), the
unique polynomial of degree N such that

IS(f)(x) = f(x:),0<i <N

This polynomial can be expressed in terms of the Lagrange polynomial [X,0 < i < N

associated to the grid (I is the unique polynomial of degree N taking value equal to 1 at

point ¢ and 0 at the other interpolation points).

N

IN(A@) =D fla)l* (x)

i=0
The interpolation error can be expressed in terms of the interpolation points:
IR (F) (@) = Flloo < A+ AN = Pi(H)]o

where Ay (X) is the Lebesgue constant associated to Lagrange quadrature on the grid:

N
AN(X) = mazgei—1,1) Z |15* ()]
=0

We have the following bound

115 () (@)oo < Av(X)sups,ex] f(2:)] < Av(X)|1f]]s0

and the Erdos theorem states that
2
An(X) > ﬁlog(N +1)-C

It is well-known that the use of a uniform grid X, is not optimal, because as N — oo, the
Lebesgue constant satisfies
2N +1

An(Xu) =~ eNInN
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and the quadrature error in L., increases a lot with N. Its use brings some oscillations

giving the Runge effect. On figure , , we plot the Runge function mﬁ against
its interpolation with polynomial with equidistant interpolation.
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So we are interested in having quadrature with an “optimal” Lebesgue constant. For
example Gauss-Chebyshev interpolation points (corresponding to the 0 of the polynomial
Tni1(z) = cos((N + 1)arcos(z)) give a Lebesgue constant Ay (Xge) equal to

2
Av(Xeo) =~ ﬁln(N +1)

For our problem, we want to interpolate a function on meshes with high accuracy on the
mesh while respecting the continuity of the function between the meshes. In order to ensure
this continuity we want the extreme points on the re-scaled mesh [—1, —1] (so —1, 1) to be
on the interpolation grid. This leads to the Gauss Lobatto Chebyshev interpolation grid.
In the library we choose to use the Gauss Lobatto Legendre interpolation grids which is
as efficient as the Gauss Lobatto Chebyshev grids (in term of the Lebesgue constant) but
computationally less costly due to absence of trigonometric function. We recall that the
Legendre polynomial satisfies the recurrence

(N + 1)LN+1(ZL‘) = (2N + ]_)ILN(I') — NLN_l(l‘)

with Lo =1, Li(z) = x.
These polynomials are orthogonal with the scalar product (f,g) = fjl f(z)g(x)dx. We are
interested in the derivatives of these polynomials LIN that satisfy the recurrence

NLIN+1<x> = (2N + 1)ILIN@) — (N + 1)[/,1\/—1@)
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these polynomials are orthogonal with the scalar product (f,g) = f_ll f(x)g(x)(1 — z*)dx.
The Gauss Lobatto Legendre grids points for a grids with N+1 points aren; = —1, 9y = 1
and the ; (i = 2,..., N) zeros of Ly. The n; (i = 2, ..., N) are eigenvalues of the matrix P

P = | .. .. . . :
0 0 .. 0 YN—-2
0 0 -ee YN-—2 0

1 2
= - "(?+ )3 1<n<N-2
2 (n+§)(n+§)

The interpolation I (f) is expressed in term of the Legendre polynomials by

In(f) = ) fulnlx),
k=0

|
fe = —Zpif(m)Lk(m),
Tk

N

Ve = Z Li(m:)?pi,

=0
and the weights satisfies

2.
(M + 1) M L3, (n:)

More details can be found in [4]. In figure [1.4 we give the interpolation obtained with the
Gauss Lobatto Legendre quadrature with two degrees of approximation.

1 1
Gal Lohatto Legendre degree 6

LULA25%%) ——

Gaus: atto Legendre degree 10

LAL+25%0%) ——
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0.4
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-1 -0.5 0 05 1 -1 -05 0 05 1

Figure 1.4: Interpolation with Gauss Legendre Lobatto grids

e When the function is not regular we introduce a notion weaker than the notion of
derivatives. We note w(f,d) the modulus of continuity on [—1, 1] of a function f as

w(f,0) = Sup | f(z1) = f(z2)]
T1,T9 € [—1, 1]
|.I’1 — (L’Q| )
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The modulus of continuity permits to express the best approximation of a function by
a polynomial with the Jackson theorem:

Theorem 1 For a continuous function f on [—1,1]
) 1
I1F = Pa(ll < Kulf. )

and we deduce that for a grid of interpolation X

175 () (@) = flls < M(N)

M(N) =~ Kw(f,%

a function is Dini-Lispchitz continuous if w( f, §)log(§) — 0as § — 0. It is clear that
Lipschitz functions are Dini—Lipschitz continuous because w(f, §)log(d) < Klog(d)é.

JAN(X)

e When the solution is more regular we can express the interpolation error as a function
of its derivatives and we get the following Cauchy theorem for an interpolation grid X

(see [3])

Theorem 2 If f is ON*Y, and X an interpolation grid with N + 1 points, then the
interpolation error verifies

= W) (1.2

where n € [—1,1] and Wi, (z) is the nodal polynomial of degree N +1 (the polynomial
with the monomial of the highest degree with coefficient 1 being null at all the N + 1
points of X)

If we partition a domain I = [a,b] in some meshes of size h and we use a Lagrange
interpolator for the function f € C**! | k < N we obtain

If - [])\g,Afooo < CthHf(kH)Hoo

1.2.2 Extension in dimension d

In dimension d, we note Py, the best multivariate polynomial approximation of f of total
degree lesser than N on [—1,1]%. On a d multidimensional grid X = X%, we define the
multivariate interpolator as the composition of one dimensional interpolator Ix (f)(z) =
ISVt s InN2 o IV ) () where TaN" stands for the interpolator in dimension i. We
get the following interpolation error

IR (f) = Flloo < (14 An(XN) I = Pr(F)lloos

The error associated to the min max approximation is given by Feinerman and Newman [5],

Soardi [6]

1

I =Pl < (14 T Vdulf 575
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We deduce that if f is only Lipschitz

X S(L+ Ay (X))
N (f)(@) = flloo < C\/_N——{—Q

If the function is regular (in C**([—1,1]%), k < N) we get

. ak—i-lf
If =Pyl < NF 2 SUPJw

If we partition the domain I = [aq, b] X .. X [ag, bg] in meshes of size Ax = (Axy, Axsy.., Axy)
such such we use a Lagrange interpolation on each mesh we obtain

+)\ Oy
1F = I anfllo < L) ZM“ sp |20

z€[—1,1]d aiE

On figure we give the Gauss Legendre Lobatto points in 2D for 2 x 2 meshes and a
polynomial of degree 8 in each direction

35 T T T T
2 by 2 meshes, polynomial degree 8

3r S e A
i i PR

25
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2 | S S S N L
L T4 F T

15 ¢
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05 1 15 2 25 3 35

Figure 1.5: Gauss Legendre Lobatto points on 2 x 2 meshes.

1.2.3 Troncature

In order to avoid oscillations while interpolating, a troncature is used on each mesh such
that the modified interpolator I3 A, satisfies :

IN aof (@) = min f(z;) A I o, f(2) V max f(z;) (1.3)

T, EM x,EM

where the x; are the interpolation points on the mesh M containing the point x. For all
caracteristics of theis modified operator, one can see [24].
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1.2.4 The C++ API

The grid using Gauss Legendre Lobatto points can be created by the use of this constructor:

RegularLegendreGrid (const Eigen:: ArrayXd &p-lowValues, const Eigen::
ArrayXd &p_step, const Eigen:: ArrayXi &p_nbStep, const Eigen:: ArrayXi

& p-_poly);

The p_lowV alues correspond to the bottom of the grid, p_step the size of each mesh, p nbStep
the number of steps in each direction (see figure . On each mesh the polynomial approx-
imation in each dimension is specified by the p_poly array.

Remark 3 If we take a polynomial of degree 1 in each direction this interpolator is equiva-
lent to the linear interpolator. It is somehow slightly less efficient than the linear interpolator
on a Regular grid described in the above section.

We illustrate the use of the grid, its iterator and its interpolator used in order to draw

the figures

ArrayXd lowValues = ArrayXd:: Constant(1,—1.); // corner point

ArrayXd step= ArrayXd:: Constant(1,2.); // size of the meshes

ArrayXi nbStep = ArrayXi:: Constant(1,1); // number of mesh in each
direction

ArrayXi nPol = ArrayXi:: Constant (1,p.-nPol); // polynomial approximation

// regular Legendre

RegularLegendreGrid regGrid (lowValues, step, nbStep, nPol);

// Data array to store values on the grid points
ArrayXd data(regGrid.getNbPoints());

shared _ptr<GridIterator> iterRegGrid = regGrid.getGridlterator ();
while (iterRegGrid—isValid())
{

ArrayXd pointCoord = iterRegGrid—>getCoordinate () ;
data (iterRegGrid —>getCount ()) = 1./(1.4+25xpointCoord (0)*pointCoord (0) ) ;
// store runge function
iterRegGrid —>next () ;
¥
// point
ArrayXd point (1) ;
int nbp = 1000;
double dx = 2./nbp;
for (int ip =0; ip<= nbp; ++ip)

point (0)= —1+ ipx* dx;

// create interpolator
shared _ptr<Interpolator> interp = regGrid.createlnterpolator ( point);
double interpReg = interp—>apply(data); // interpolated value

}

The previously defined operator is more effective when we interpolate many function at the
same point. Its is the case for example for the valorization of a storage with regression where
you want to interpolate all the simulations at the same stock level.
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In some case it is more convenient to construct an interpolator acting on a global function.
It is the case when you have a single function and you want to interpolate at many points for
this function. In this specific case an interpolator deriving from the class InterpolatorSpectral
can be constructed:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef INTERPOLATORSPECTRAL H

5 #define INTERPOLATORSPECTRAL H

6 #include <Eigen/Dense>

7 //#include ”StOpt/core/grids/SpaceGrid.h”

8

9 /*x \file InterpolatorSpectral.h

10 * \brief Defines an interpolator for a grid : here is a global interpolator
, storing the representation of the function

11 % to interpolate : this interpolation is effective when
interpolating the same function many times at different points

12 % Here it is an abstract class

13 % \author Xavier Warin

14 x/

15 namespace StOpt

16 {

17
18 /// forward declaration

19 class SpaceGrid ;

20

21 /// \class InterpolatorSpectral InterpolatorSpectral.h
22 /// Abstract class for spectral operator

23 class InterpolatorSpectral

24{

25

26 public

27 virtual “InterpolatorSpectral () {}

28

29 /*x \brief interpolate

30 x \param p_point coordinates of the point for interpolation
31 % \return interpolated value

32 */

33 virtual double apply(const Eigen:: ArrayXd &p_point) const = 0;
34

35

36 /*x \brief Affect the grid

37 x \param p_grid the grid to affect

38 * /

39 virtual void setGrid(const StOpt::SpaceGrid xp_grid) = 0 ;

10 };

a1}

12 #endif

Its constructor is given by :

1 /*% \brief Constructor taking in values on the grid
2 * \param p-_grid is the grid used to interpolate
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3 x \param p_values Function value at the grids points

4 * /

5 LegendrelnterpolatorSpectral (const shared_ptr< RegularLegendreGrid> &
p-grid , const Eigen:: ArrayXd &p_values) ;

This class has a member permitting to interpolate at a given point:

/*x \brief interpolate

* \param p_point coordinates of the point for interpolation
x \return interpolated value

*/

inline double apply(const Eigen::ArrayXd &p_point) const

L

We give an example of the use of this class, interpolating a function f in dimension 2.

1 ArrayXd lowValues = ArrayXd:: Constant (2,1.); // bottom of the domain

2 ArrayXd step = ArrayXd::Constant(2,1.); // size of the mesh

3 ArrayXi nbStep = ArrayXi:: Constant(2,5); // number of meshes in each
direction

4 ArrayXi nPol = ArrayXi:: Constant(2,2) ; // polynomial of degree 2 in
each direction

5 // regular

6 shared_ptr<RegularLegendreGrid> regGrid (new RegularLegendreGrid (lowValues
, step, nbStep, nPol));

7 ArrayXd data(regGrid—>getNbPoints()); // Data array

8 shared_ptr<GridIterator> iterRegGrid = regGrid—>getGridlterator(); //
iterator on the grid points

9 while (iterRegGrid—isValid())

10

{

11 ArrayXd pointCoord = iterRegGrid—>getCoordinate () ;

12 data(iterRegGrid—>getCount()) = f(pointCoord);

13 iterRegGrid —>next () ;

14 }

15

16 // spectral interpolator

17 LegendrelnterpolatorSpectral interpolator (regGrid,data);

18 // interpolation point

19 ArrayXd pointCoord (2, 5.2);

20 // interpolated value

21 double vInterp = interpolator.apply (pointCoord);

1.2.5 The python API

Here is an example using Legendre grids:

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

# This code is published under the GNU Lesser General Public License (GNU
LGPL)

import numpy as np

import unittest

import random

import math

import StOptGrids

w

0 N o o A
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9
10 # unit test for Legendre grids

13 class testGrids(unittest.TestCase):

16 # test Legendre grids

17 def testLegendreGrids(self):

18 # low value for the mesh

19 lowValues =np.array ([1.,2.,3.],dtype=np. float)

20 # size of the mesh

21 step = np.array ([0.7,2.3,1.9],dtype=np. float)

22 # number of step

23 nbStep = np.array ([4,5,6], dtype=np.int32)

24 # degree of the polynomial in each direction

25 degree = np.array ([2,1,3], dtype=np.int32)

26 # create the Legendre grid

27 grid = StOptGrids. RegularLegendreGrid (lowValues , step ,nbStep , degree )
28 iterGrid = grid.getGridIterator ()

29 # array to store

30 data = np.empty(grid.getNbPoints())

31 # iterates on point

32 while ( iterGrid.isValid () ):

33 #get coordinates of the point

34 pointCoord = iterGrid.getCoordinate ()

35 data[iterGrid.getCount ()] = math.log (1. + pointCoord.sum())
36 iterGrid . next ()

37 # get back an interpolator

38 ptInterp = np.array ([2.3,3.2,5.9],dtype=np. float)
39 interpol = grid.createlnterpolator (ptlnterp)

40 # calculate interpolated wvalue

41 interpValue = interpol.apply(data)

42 print ((”Interpolated value Legendre” , interpValue))
43 # test grids function

44 iDim = grid.getDimension ()

45 pt = grid.getExtremeValues ()

46

a7

48 if __name__ =— ’__main__":

49 unittest . main ()

1.3 Sparse grids

A representation of a function in dimension d for d small (less than 4) is achieved by ten-
sorization in the previous interpolation methods. When the function is smooth and when its
cross derivatives are bounded, one can represent the function using the sparse grid methods.
This methods permits to represent the function with far less points than classical without
losing too much while interpolating. The sparse grid method was first used supposing that
the function f to represent is null at the boundary I' of the domain. This assumption is
important because it permits to limit the explosion of the number of points with the dimen-
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sion of the problem. In many application this assumption is not realistic or it is impossible
to work on f — fir. In this library we will suppose that the function is not null at the
boundary and provide grid object, iterators and interpolators to interpolate some functions
represented on the sparse grid. Nevertheless, for the sake of clarity of the presentation, we
will begin with the case of a function vanishing on the boundary.

1.3.1 The linear sparse grid method

We recall some classical results on sparse grids that can be found in [9]. We first assume
that the function we interpolate is null at the boundary. By a change of coordinate an
hyper-cube domain can be changed to a domain w = [0, 1]¢. Introducing the hat function
#F)(x) = max(1 — |x],0) (where (L) stands for linear), we obtain the following local one
dimensional hat function by translation and dilatation

B (2) = oD (22 — i)

depending on the level [ and the index i, 0 < i < 2!. The grid points used for interpolation
are noted z;; = 27Y. In dimension d, we introduce the basis functions

d
L L
D) =T o) (@)

Jj=1

via a tensor approach for a point z = (z1,....z4), a multi-level [ := (I3, ..,l;) and a multi-
index i := (41, ..,44). The grid points used for interpolation are noted z;; := (2, 4,, .-, Tiy.i,)-
We next introduce the index set

Bi={i:1<i;<2%—1,i;0dd,1<j<d}
and the space of hierarchical basis

WL(L) = span {@(? (x):1€ BL}

A representation of the space WL(L) is given in dimension 1 on figure . The sparse grid
space is defined as:

|1 <n4d—1 =

Remark 4 The conventional full grid space is defined as V' = @ I/Vl(L)

[Hoo<n =

At a space of hierarchical increments WL(L) corresponds a space of nodal function WL(L’N)

such that

VVI(L’N) = span {gzﬁl(f) (x):i¢€ BLN}
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Wy

Figure 1.6: One dimensional W) spaces : Wl(L), W;L), WéL), W4(L) and the nodal repre-

sentation W4(L’N)

with
BY i ={i:1<i;<2v-1,1<j<d}.

On figure m the one dimensional nodal base W4(L’N) is spawned by W4(L) and the dotted
basis function. The space V,, can be represented as the space spawn by the VVZ(L’N) such that
’Ul =n+d-—1: ;

Vo = span{qﬁl(i)(g) i€ B, ]L|1:n+d—1} (1.5)

A function f is interpolated on the hierarchical basis as
My = 3 ol

|ll1<n+d—1,€B;

where ozl(f) are called the surplus (we give on figure|l.7|a representation of these coefficients).

These surplus associated to a function f are calculated in the one dimension case for a node

Figure 1.7: Example of hierarchical coefficients

m = x;; as the difference of the value of the function at the node and the linear representation
of the function calculated with neighboring nodes. For example on figure[1.8] the hierarchical
value is given by the relation:

aP(m) = o) = f(m) — 0.5(f(e(m)) + f(w(m)))

where e(m) is the east neighbor of m and w(m) the west one. The procedure is generalized
in d dimension by successive hierarchization in all the directions. On figure 1.9, we give a
representation of the W subspace for [ < 3 in dimension 2.

In order to deal with functions not null at the boundary, two more basis are added to the
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Figure 1.8: Node involved in linear, quadratic and cubic representation of a function at node
m and n
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Figure 1.9: The two dimensional subspace WL(L) up to [ = 3 in each dimension. The
additional hierarchical functions corresponding to an approximation on the full grid are
given in dashed lines.

first level as shown on figure [1.10, This approach results in many more points than the one
without the boundary. As noted in [9] for n =5, in dimension 8 you have nearly 2.8 millions
points in this approximation but only 6401 inside the domain. On figure [L.11] we give the
grids points with boundary points in dimension 2 and 3 for a level 5 of the sparse grid.
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Figure 1.11: Sparse grid in dimension 2 and 3 with boundary points

If the boundary conditions are not important (infinite domain truncated in finance for
example) the hat functions near the boundaries are modified by extrapolation (see figure
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Figure 1.10: One dimensional W) spaces with linear functions with “exact ” boundary
(left) and “modified ” boundary (right): Wl(L), WQ(L), W3(L), W4(L)

as explained in [9]. On level 1, we only have one degree of freedom assuming the
function is constant on the domain. On all other levels, we extrapolate linearly towards the
boundary the left and right basis functions, other functions remaining unchanged. So the
new functions basis in 1D qg becomes

p 1 fl=1landi=1
ol . —I+1
(L)
L (l’) — I _ . _ o9—l+1
{2(93 O1)+2 1fx€[1else2 71]} ifl>1andi=2'—1
x ¢l(€) (x) otherwise

On figure we give the grids points eliminating boundary points in dimension 2 and 3
for a level 5 of the sparse grid.

Sparse grid level 5 +

Sparse grid level 5 +
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+++++++++++++++
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Figure 1.12: Sparse grid in dimension 2 and 3 without boundary points

The interpolation error associated to the linear operator I' := I¥) is linked to the
regularity of the cross derivatives of the function [10, 17, [I8]. If f is null at the boundary
and admits derivatives such that ||%Hoo < 00 then

1 d

1 = T ()l = O(N2log(N)*H), (1.6)

with N the number of points per dimension.
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1.4 High order sparse grid methods

Changing the interpolator enables us to get a higher rate of convergence mainly in region
where the solution is smooth. Following [I7] and [1§], it is possible to get higher order
interpolators. Using a quadratic interpolator, the reconstruction on the nodal basis gives a
quadratic function on the support of the previously defined hat function and a continuous
function of the whole domain. The polynomial quadratic basis is defined on [27¢(i—1), 27! (i+
1)] by

() = 0@ — )

i
with ¢@(2) = 1 — 22,
The hierarchical surplus (coefficient on the basis) in one dimension is the difference between
the value function at the node and the quadratic representation of the function using nodes
available at the preceding level. With the notation of figure

3 3 1
o(m)@ = f(m) — (2 flw(m)) + > fle(m) — & f(ee(m)
= a(m)®(m) ~ Ja(m) ™ (e(m))

= a(m)®(m) ~ Ja(m)® (df(m)

where df (m) is the direct father of the node m in the tree.

Once again the quadratic surplus in dimension d is obtained by successive hierarchization
in the different dimensions.

In order to take into account the boundary conditions, two linear functions 1 — x and x are
added at the first level (see figure [1.13).

A version with modified boundary conditions can be derived for example by using linear
interpolation at the boundary such that

59 () = o ifi=lori=2 -1,
b a ¢l(,?) (x) otherwise

In the case of the cubic representation, on figure [1.8 we need 4 points to define a function
basis. In order to keep the same data structure, we use a cubic function basis at node m
with value 1 at this node and 0 at the node e(m), w(m) and ee(m) and we only keep the
basis function between w(m) and e(m) [17].

Notice that there are two kinds of basis function depending of the position in the tree. The
basis functions are given on [27!1, 2715 + 1)] by

¢§§3+1(x) = ¢ (2w — (20 +1)), if i even
¢ 22 — (2 + 1)), if i odd

with ¢(C),1(x) _ (902—1?))(3?—3)’ ¢(C),2($) _ (1—%‘2(9@%—3).
The coefficient surplus can be defined as before as the difference between the value function
at the node and the cubic representation of the function at the father node. Because of the

two basis functions involved there are two kind of cubic coefficient.
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Figure 1.13: One dimensional W (%) spaces with quadratic with “exact” boundary (left) and
“modified” boundary (right): Wl(Q), WQ(Q), W:)SQ), WiQ)

e For a node m = ;41 Or m = Ty 8,47 , ' (m) = %Y (m), with
@ (1m) = @@ (m) — Za@(df (m)

e For a node m = xyg;43 or m = Ty8i45 , o9 (m) = (@2 (m), with
@l (1m) = a @ () + 20! (df (m)

Notice that a cubic representation is not available for [ = 1 so a quadratic approximation
is used. As before boundary conditions are treated by adding two linear functions basis at

the first level and a modified version is available. We choose the following basis functions
as defined on figure [1.14}

) &P ifie{1,3,2'-32 — 1},
b (x) = () .
¢ () otherwise

; 33
y
W, . ) .
Wy
D5 P32 LS g
Cubic
; ; ; \ / .

Figure 1.14: One dimensional W(®) spaces with cubic and “exact“ boundary (left) and
“modified” boundary (right): WI(C), WQ(C), Wg(c), W4(C)
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According to [10, 17, 18], if the function f is null at the boundary and admits deriva-
ay+..+a u
gxolq .0z id

generalized for 1?2 := [(@) 3 .= I(C) by:

tives such that sup,,cq i1y {H HOO} < oo then the interpolation error can be

1f = (f)lloe = O(N~®*Diog(N)*1),  p=2,3

with N the number of points per dimension.

1.5 Anisotropy

In many situations, it is useless to refine as much in each direction. For example, when
dealing with multidimensional storages we expect the mesh size to be of the same order
in each direction. When the different storages have very different sizes, we want to refine
more the storage with the highest capacity. In order to treat this anisotropy an extension
of Sparse grids can be achieved by defining weight w in each direction. The definition is
replaced by:

vV, = o W (1.7)

1.6 Adaptation

When the solution is not smooth, typically Lipschitz, there is no hope to get convergence
results for classical Sparse Grids (see above the interpolation error linked to the cross deriva-
tives of the function). So classical sparse grids have to be adapted such that the solution is
refined near singularities. In all adaptations methods hierarchical surplus «;; are used to get
an estimation of the local error. These coefficients give an estimation of the smoothness of
the function value at the discrete points by representing the discrete mix second derivative
of the function. There is mainly two kinds of adaptation used :

e the first one is performing local adaptation and only adds points locally [32], [8, 33| 12],

e the second one is performing adaptation at the level of the hierarchical space W}
(anisotropic sparse grid). This approach detects important dimensions that needs
refinement and refines all the points in this dimension [11]. This refinement is also
achieved in areas where the solution can be smooth. A more local version has been
developed in [34].

In the current version of the library only dimension adaptation is available. Details on the
algorithm can be bound in [11]. After a first initialization with a first initialization with a
space

S li<ntd-1

A set of active level A is created gathering all levels [ such that Zle li=n+d—1. Al
other levels are gathered in a set O. At each level [ in A an error is estimated e; and with all
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while E > 17 do
select [ with the highest local error ¢;

A=A\ {l}
O=0u{l}
for k=1toddo
m=1[+e
if m—e, €O for qgell,d then
A=AU{m}

Hierarchize all points belonging to m
calculate e,,
update F
end if
end for

end while
Algorithm 1: Dimension refinement for a given tolerance n

local error e; a global error E is calculated. Then the refinement algorithm (1| is used noting
e, the canonical basis in dimension k. Sometimes, using sparse grids during time iterations,
it can be interesting to coarsen the meshes. A similar algorithm [2| can be used to eliminate
levels with a very small local error.
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B all elements of A with a local error below 7
while B non nonempty do
select [ € B with the lowest local error ¢;
for k=1toddo
m=1—ey
if m; > 0 then
if m+e, € Bforqe(l,d| then
A=A\ {m+e,qell,d}
B=B\{m+e,qe][l,d}
A=AU{m}
Add m to B if local error below 7
O =0\ {m}
Break
end if
end if
end for
if [ € B then
B=B\{l}
end if

end while
Algorithm 2: Dimension coarsening for a given tolerance n

1.7 C++ APi

The construction of the Sparse Grid including boundary point is done by the following
constructor

1 SparseSpaceGridBound (const Eigen :: ArrayXd  &p_lowValues, const Eigen ::
ArrayXd &p_sizeDomain, const int &p_levelMax, const Eigen::ArrayXd &
p-weight ,

2 const size_t &p_degree)

with
e p_lowValues corresponds to the bottom of the grid,

e p_sizeDomain corresponds to the size of the resolution domain in each dimension,

p_level Maz is the level of the sparse grids, the n in equation

p-weight the weight for anisotropic sparse grids, the w in equation [I.7]

e p_degree is equal to 1 (linear interpolator), or 2 (quadratic interpolator) or 3 (for cubic
interpolator),

With the same notations the construction eliminating boundary points is done by the fol-
lowing constructor
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1

1

SparseSpaceGridNoBound (const Eigen :: ArrayXd  &p_lowValues, const Eigen::
ArrayXd &p_sizeDomain, const int &p_levelMax, const Eigen::ArrayXd &
p-weight ,

const size_t &p_degree)

The data structure of type SparseSet to store the sparse grid is defined by a map with keys
an array A storing a multi level and values a map with keys an array B storing the multi
index associated to a point (A,B) and values the number of point (A,B) :

#define SparseSet std::map< Eigen:: Array<char , Eigen :: Dynamic,1 >
1 map< Eigen :: Array<unsigned int ,Eigen ::Dynamic,1> , size_t ,
OrderTinyVector< unsigned int > > ,OrderTinyVector< char> >

, std

It is sometimes convenient to get back this data structure from the SparseGrid object : this
is achieved by the following method :

std :: shared_ptr<SparseSet> getDataSet () const ;

The previous two classes own two specific member functions to hierarchize (see section
above) the value function known at the grids points for the whole grid.

e the first work on a single function:

1 /// \brief Hierarchize a function defined on the grid
2 /// \param p_toHierachize function to hierarchize
3 void toHierarchize( Eigen:: ArrayXd & p_toHierachize );

e the second work on a matrix, permitting to hierarchize many functions in a single call
(each row corresponds to a function representation)

/// \brief Hierarchize a set of functions defined on the grid
/// \param p_toHierachize function to hierarchize
void toHierarchizeVec( Eigen:: ArrayXXd & p-toHierachize )

BwWw N =

The two classes own two specific member functions to hierarchize point by point a value
fonction at given points in the sparse grid :

e the first work on a single function:

1 /// \brief Hierarchize some points defined on the sparse grids

2 Yy Hierarchization is performed point by point

3 /// \param p_nodalValues function to hierarchize

4 /// \param p_sparsePoints vector of sparse points to
hierarchize (all points should belong to the dataset structure)

5 /// \param p_hierarchized array of all hierarchized values (it

is updated)
6 virtual void toHierarchizePByP (const Eigen :: ArrayXd &p_nodalValues

const std::vector<SparsePoint> &p_sparsePoints, Eigen:: ArrayXd
&p-hierarchized) const

e the second work on a matrix, permitting to hierarchize many functions in a single call
(each row corresponds to a function representation)
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1 /// \brief Hierarchize some points defined on the sparse grids for a
set of functions

2 //]/ Hierarchization is performed point by point

3 /// \param p_nodalValues functions to hierarchize (the row
corresponds to the function number)

4 /// \param p_sparsePoints vector of sparse points to
hierarchize (all points should belong to the dataset structure)

5 /// \param p_hierarchized array of all hierarchized values (it

is updated)
6 virtual void toHierarchizePByPVec(const Eigen ::ArrayXXd &

p-nodalValues, const std::vector<SparsePoint> &p_sparsePoints,
Eigen :: ArrayXXd &p_hierarchized) const

The SparsePoint object is only a type def :

1 #define SparsePoint std:: pair< Eigen:: Array<char, Eigen ::Dynamic, 1> , Eigen
:: Array<unsigned int, Eigen::Dynamic, 1> >

where the first array permits to store the multi level associated to the point and the second
the multi index associated.

At last it is possible to hierarchize all points associated to a multi level. As before two
methods are available :

e a first permits to hierarchize all the points associated to a given level. Hierarchized
values are updated with these new values.

/// \brief Hierarchize all points defined on a given level of the
sparse grids

[un

2 /// Hierarchization is performed point by point
3 /// \param p_nodalValues function to hierarchize
4 /// \param p_iterLevel iterator on the level of the point
to hierarchize
5 /// \param p_hierarchized array of all hierarchized values (it
is updated)
6 virtual void toHierarchizePByPLevel(const Eigen:: ArrayXd &

p-nodalValues, const SparseSet::const_iterator &p_iterLevel ,
Eigen :: ArrayXd &p_hierarchized) const

e the second permits to hierarchize differents functions together

1 /// \brief Hierarchize all points defined on a given level of the
sparse grids for a set of functions

2 iy Hierarchization is performed point by point

3 /// \param p_nodalValues function to hierarchize (the row
corresponds to the function number)

4 /// \param p_iterLevel iterator on the level of the point
to hierarchize

5 /// \param p_hierarchized array of all hierarchized values (it

is updated)
6 virtual void toHierarchizePByPLevelVec(const Eigen::ArrayXXd &

p-nodalValues, const SparseSet::const_iterator &p_iterLevel ,
Eigen :: ArrayXXd &p_hierarchized) const
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In the following example, the sparse grids with boundary points is constructed. The
values of a function f at each coordinates are stored in an array valuesFunction, storing 2
functions to interpolate. The 2 global functions are hierarchized (see section above) in the
array hierarValues, and then the interpolation can be achieved using these hierarchized
values.

ArrayXd lowValues = ArrayXd::Zero(5); // bottom of the grid
ArrayXd sizeDomain = ArrayXd:: Constant (5,1.); // size of the grid
ArrayXd weight = ArrayXd:: Counstant (5,1.); // weights

int degree =1 ; // linear interpolator

bool bPreplnterp = true; // precalculate neighbors of nodes

level = 4 ; // level of the sparse grid

// sparse grid generation
SparseSpaceGridBound sparseGrid (lowValues, sizeDomain, level , weight,
degree , bPreplnterp);

// grid iterators

shared _ptr<GridIterator > iterGrid = sparseGrid.getGridIterator () ;
ArrayXXd valuesFunction (1,sparseGrid.getNbPoints());

while (iterGrid—isValid())

{
ArrayXd pointCoord = iterGrid —>getCoordinate () ;
valuesFunction (0,iterGrid —>getCount ()) = f(pointCoord) ;
valuesFunction (1,iterGrid —>getCount ()) = f(pointCoord)+1 ;
iterGrid —next () ;

}

// Hierarchize
ArrayXXd hieraValues =valuesFunction ;
sparseGrid . toHierarchizeVec (hieraValues) ;

// interpolate
ArrayXd pointCoord = ArrayXd:: Constant (5,0.66) ;

shared _ptr<Interpolator > interpolator = sparseGrid.createlnterpolator (
pointCoord) ;
ArrayXd interVal = interpolator —>applyVec(hieraValues);

Remark 5 Point by point hierarchization on the global grid could have been calculated as
below

std ::vector<SparsePoint> sparsePoints (sparseGrid.getNbPoints());
std :: shared_ptr<SparseSet> dataSet = sparseGrid.getDataSet();
// iterate on points
for (typename SparseSet::const_iterator iterLevel = dataSet—>begin ();
iterLevel != dataSet—>end(); ++iterLevel)
for (typename SparseLevel::const_iterator iterPosition = iterLevel—>
second.begin (); iterPosition != iterLevel—>second.end(); ++
iterPosition )

sparsePoints [iterPosition—>second] = make_pair(iterLevel—>first,
iterPosition—>first);
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9 ArrayXXd hieraValues = sparseGrid.toHierarchizePByPVec(
valuesFunction , sparsePoints);

In some cases, it is more convenient to construct an interpolator acting on a global function.
It is the case when you have a single function and you want to interpolate at many points for
this function. In this specific case an interpolator deriving from the class InterpolatorSpectral
(similarly to Legendre grid interpolators) can be constructed :

1 /*% \brief Constructor taking in values on the grid

2 * \param p-_grid is the sparse grid used to interpolate

3 x \param p_values Function values on the sparse grid

4 * /

5 SparselnterpolatorSpectral (const shared_ptr< SparseSpaceGrid> &p_grid ,

const Eigen :: ArrayXd &p_values)

This class has a member to interpolate at a given point:

/*x \brief interpolate

x \param p_point coordinates of the point for interpolation
* \return interpolated value

*/

inline double apply(const Eigen::ArrayXd &p_point) const

gt W N =

See section for an example (similar but with Legendre grids) to use this object.
Sometimes, one wish to iterate on points on a givel level. In the example below , for each
level an iterator on all points belonging to a given level is got back and the values of a
function f at each point are calculated and stored.

1 // sparse grid generation
2 SparseSpaceGridNoBound sparseGrid (lowValues, sizeDomain, p_level,
p-weight , p_degree, bPreplnterp);

// test iterator on each level

ArrayXd valuesFunctionTest (sparseGrid.getNbPoints());

std :: shared_ptr<SparseSet> dataSet = sparseGrid.getDataSet();

for (SparseSet::const_iterator iterLevel = dataSet—>begin () ;
l= dataSet—>end(); ++iterLevel)

B > L B N ]

iterLevel

oo

// get back iterator on this level

10 shared_ptr<SparseGridIterator> iterGridLevel = sparseGrid.
getLevelGridIterator (iterLevel);

11 while (iterGridLevel —isValid ())

©

12
{
13 Eigen :: ArrayXd pointCoord = iterGridLevel —>getCoordinate () ;
14 valuesFunctionTest (iterGridLevel —>getCount () ) = f(pointCoord) ;
15 iterGridLevel —>next () ;
16 }
17 }

At last adaptation can be realized with two member functions :

e A first one permits to refine adding points where the error is important. Notice that a
function is provided to calculate from the hierarchical values the error at each level of
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the sparse grid and that a second one is provided to get a global error from the error
calculated at each level. This permits to specialize the refining depending for example
if the calculation is achieved for integration or interpolation purpose.

/// \brief Dimension adaptation nest

/// \param p_precision precision required for adaptation

/// \param p_fInterpol function to interpolate

/// \param p_phi function for the error on a given level
in the m_dataSet structure

/// \param p_phiMult from an error defined on different

levels , send back a global error on the different levels
/// \param p_valuesFunction an array storing the nodal values
/// \param p_hierarValues an array storing hierarchized values (
updated)
void refine (const double &p_precision, const std::function<double (
const Eigen :: ArrayXd &p_x)> &p_flnterpol ,
const std::function< double(const SparseSet::
const_iterator &, const Eigen::ArrayXd &)> &p_phi,
const std::function< double(const std::vector< double> &)
> &p_phiMult ,
Eigen :: ArrayXd &p_valuesFunction ,
Eigen :: ArrayXd &p_hierarValues);

— p_precision the 1 tolerance in the algorithm,
— p_fInterpol the function permitting to calculate the nodal values,
— p-phi function permitting to calculate e; the local error for a given [,

— p_phiMult a function taking as argument all the ¢; (local errors) and giving back

the global error F,

— pwvaluesFunction an array storing the nodal values (updated during refinement)

— p_hierarValues an array storing the hierarchized values (updated during refine-

ment)

e A second one permits to coarsen the mesh, eliminating point where the error is too

[un

small

/// \brief Dimension adaptation coarsening : modify data structure by

trying to remove all levels with local error

/// below a local precision

/// \param p_precision Precision under which coarsening will be

realized

/// \param p_phi function for the error on a given level
in the m_dataSet structure

/// \param p_valuesFunction an array storing the nodal values (
modified on the new structure)

/// \param p_hierarValues Hierarchical values on a data structure (
modified on the new structure)
void coarsen (const double &p_precision , const std::function< double(

const SparseSet::const_iterator &, const Eigen::ArrayXd &)> &
p-phi,
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8 Eigen :: ArrayXd &p_valuesFunction ,
9 Eigen :: ArrayXd &p_hierarValues);

with arguments similar to the previous function.

1.8 Python APi

Here is an example of the python API used for interpolation with Sparse grids with boundary
points and without boundary points. The adaptation and coarsening is available with an
error calculated for interpolation only.

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU
LGPL)

import numpy as np

import unittest

import random

import math

import StOptGrids

© 0w N O U

10 # function wused

11 def funcTolnterpolate( x):

12 return math.log (1. + x.sum())
13

14 # unit test for sparse grids

S ) ) ) )LL)
15 T eIy

16
17 class testGrids(unittest.TestCase):

18

19

20 # test sparse grids with boundaries

21 def testSparseGridsBounds(self):

22 # low values

23 lowValues =np.array ([1.,2.,3.])

24 # size of the domain

25 sizeDomValues = np.array ([3.,4.,3.])

26 # anisotropic weights

27 weights = np.array ([1.,1.,1.])

28 # level of the sparse grid

29 level =3

30 # create the sparse grid with linear interpolator

31 sparseGridLin = StOptGrids. SparseSpaceGridBound (lowValues ,

sizeDomValues, level , weights 1)

32 iterGrid = sparseGridLin. getGridIterator ()

33 # array to store

34 data = np.empty(sparseGridLin.getNbPoints())

35 # iterates on point

36 while ( iterGrid.isValid()):

37 data[iterGrid.getCount ()] = funcTolnterpolate (iterGrid.
getCoordinate ())

38 iterGrid . next ()

39 # Hierarchize the data
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hierarData = sparseGridLin.toHierarchize (data)

# get back an interpolator

ptInterp = np.array ([2.3,3.2,5.9],dtype=np. float)

interpol = sparseGridLin.createlnterpolator (ptlnterp)

# calculate interpolated wvalue

interpValue = interpol.apply(hierarData)

print ((”Interpolated value sparse linear” , interpValue))

# create the sparse grid with quadratic interpolator

sparseGridQuad = StOptGrids. SparseSpaceGridBound (lowValues
sizeDomValues, level , weights , 2)

# Hierarchize the data

hierarData = sparseGridQuad.toHierarchize (data)

# get back an interpolator

ptInterp = np.array ([2.3,3.2,5.9],dtype=np. float)

interpol = sparseGridQuad.createlnterpolator (ptlnterp)

# calculate interpolated wvalue

interpValue = interpol.apply(hierarData)

print ((”Interpolated value sparse quadratic ” , interpValue))

# now refine

precision = le—6

print ((”Size of hierarchical array ” , len(hierarData)))

valueAndHierar = sparseGridQuad.refine (precision ,funcTolnterpolate ,
data , hierarData)

print ((”Size of hierarchical array after refinement
valueAndHierar [0]) ))

# calculate interpolated value

interpoll = sparseGridQuad.createlnterpolator (ptInterp)

interpValue = interpoll.apply(valueAndHierar [1])

print (("Interpolated value sparse quadratic after refinement 7 |
interpValue))

# coarsen the grid

precision = le—4

valueAndHierarCoarsen = sparseGridQuad . coarsen (precision ,
valueAndHierar [0] , valueAndHierar [1])

print ((”Size of hierarchical array after coarsening
valueAndHierarCoarsen [0]) ))

# calculate interpolated value

interpol2 = sparseGridQuad. createlnterpolator (ptInterp)

interpValue = interpol2.apply(valueAndHierarCoarsen [1])

print ((”Interpolated value sparse quadratic after refinement 7 |
interpValue))

”

, len (

”

, len (

# test sparse grids eliminating boundaries
def testSparseGridsNoBounds(self):

# low values

lowValues =np.array ([1.,2.,3.],dtype=np. float)

# size of the domain

sizeDomValues = np.array ([3.,4.,3.],dtype=np. float)
# anisotropic weights

weights = np.array ([1.,1.,1.])

# level of the sparse grid

level =3

# create the sparse grid with linear interpolator
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sparseGridLin = StOptGrids. SparseSpaceGridNoBound (lowValues ,
sizeDomValues, level , weights 1)
iterGrid = sparseGridLin. getGridIterator ()
# array to store
data = np.empty(sparseGridLin.getNbPoints ())
# iterates on point
while ( iterGrid.isValid ()):
data[iterGrid.getCount ()] = funcTolnterpolate (iterGrid.
getCoordinate () )
iterGrid . next ()
# Hierarchize the data
hierarData = sparseGridLin.toHierarchize (data)
# get back an interpolator
ptInterp = np.array ([2.3,3.2,5.9],dtype=np. float)
interpol = sparseGridLin.createlnterpolator (ptlnterp)
# calculate interpolated wvalue
interpValue = interpol.apply(hierarData)
print ((”Interpolated value sparse linear” , interpValue))
# create the sparse grid with quadratic interpolator
sparseGridQuad = StOptGrids. SparseSpaceGridNoBound (lowValues ,
sizeDomValues, level , weights , 2)
# Hierarchize the data
hierarData = sparseGridQuad.toHierarchize (data)
# get back an interpolator
ptInterp = np.array ([2.3,3.2,5.9],dtype=np. float)
interpol = sparseGridQuad . createlnterpolator (ptInterp)
# calculate interpolated wvalue
interpValue = interpol.apply(hierarData)
print (("Interpolated value sparse quadratic ” , interpValue))
# test grids function
iDim = sparseGridQuad . getDimension ()
pt = sparseGridQuad . getExtremeValues ()
# now refine

precision = le—6
print ((”Size of hierarchical array ” , len(hierarData)))
valueAndHierar = sparseGridQuad.refine (precision ,funcTolnterpolate ,

data , hierarData)

print ((”Size of hierarchical array after refinement 7 , len(
valueAndHierar [0])))

# calculate interpolated value

interpoll = sparseGridQuad.createlnterpolator (ptlnterp)

interpValue = interpoll.apply(valueAndHierar [1])

print ((”Interpolated value sparse quadratic after coarsening
interpValue))

# coarsen the grid

precision = le—4

valueAndHierarCoarsen = sparseGridQuad . coarsen (precision ,
valueAndHierar [0] , valueAndHierar [1])

print ((”Size of hierarchical array after coarsening ” , len(

valueAndHierarCoarsen [0]) ))
# calculate interpolated value
interpol2 = sparseGridQuad . createlnterpolator (ptlnterp)
interpValue = interpol2.apply(valueAndHierarCoarsen [1])
print ((”Interpolated value sparse quadratic after coarsening
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interpValue))

_-name__ = ’__main__":
unittest . main ()
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Chapter 2

Introducing the regression resolution

Suppose the the stochastic differential equation in the optimization problem is not controlled:
dX™' = b(t, X2 ds + o(s, X2 AW,

This case is for example encountered while valuing American options in finance, when an
arbitrage is realized between the pay off and the expected future gain if not exercising at the
current time. In order to estimate this conditional expectation (depending of the Markov
state), first suppose that a set of N Monte Carlo Simulation are available at dates ¢; for a
process X, := X*" where x is the initial state at date ¢ = 0 and that we want to estimate
f(z) :==Elg(t + h, Xy1n) | Xi = 2] for a given x and a given function g. This function f lies
the infinite dimensional space of the L, functions. In order to approximate it, we try to find
it in a finite dimensional space. Choosing a set of basis functions ¢ for £ = 1 to M, the
conditional expectation can be approximated by

flz) ~ Z%%(Xt) (2.1)

where (&)< minimizes

N M 2

Z 9(Xin) — Z%W(Xf) (2.2)
= k=1

/=1

over (ay)r<n € RM. We have to solve a quadratic optimization problem of the form

min ||Aa — B|? (2.3)

a€RM
Classically the previous equation is reduced to the normal equation
A'Aa=A'B , (2.4)
which is solved by a Cholesky like approach when the matrix A’A is definite otherwise the

solution with the minimum L, norm can be computed.
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2.1 C++ global API

All the regression classes derive from the BaseRegression abstract class, which stores a
pointer to the “particles” (a matrix storing the simulations of X**: the first dimension of
the matrix corresponds to the dimension of X% and the second dimension corresponds to
the particle number), and stores if the current date ¢ is 0 (then the conditional expectation
is only an expectation).

// Copyright (C) 2016 EDF

// All Rights Reserved

// This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef BASEREGRESSION_H

5 #define BASEREGRESSION_H

6 #include <memory>

7 #include <vector>

s #include <Eigen/Dense>

o #include ”StOpt/core/grids/InterpolatorSpectral .h”

10
11

25

27
28
29
30
31
32
33
34
35
36
37
38
39

40

/xx \file BaseRegression.h
x \brief Base class to define regressor for stochastic optimization by
Monte Carlo
* \author Xavier Warin
*
/

namespace StOpt

/// \class BaseRegression BaseRegression.h
/// Base class for regression
class BaseRegression

{

protected

bool m_bZeroDate ; ///< Is the regression date zero ?

std :: shared _ptr<Eigen :: ArrayXXd> m_particles; ///< Particles used to
regress: first dimension : dimension of the problem , second
dimension : the number of particles

public

/// \brief Default constructor
BaseRegression () {}

/// \brief Default destructor
virtual ~“BaseRegression() {}

/// \brief Constructor storing the particles

/// \param p_bZeroDate first date is 07

/// \param p_particles particles used for the meshes.

/// First dimension : dimension of the problem,
vy second dimension : the number of particles

BaseRegression (const bool &p-bZeroDate, const std::shared_ptr< Eigen::
ArrayXXd> &p_particles) : m_bZeroDate(p_bZeroDate), m_particles(

p_particles) {}
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/// \brief Last constructor used in simulation
/// \param p_bZeroDate first date is 07
BaseRegression (const bool &p_bZeroDate) : m_bZeroDate(p-bZeroDate) {}

/// \brief Copy constructor

/// \param p_object object to copy

BaseRegression (const BaseRegression &p_object): m_bZeroDate(p_object .
getBZeroDate ()), m_particles(p-object.getParticles()) {}

/// \brief update the particles used in regression and construct the

matrices
/// \param p_bZeroDate first date is 07
/// \param p_particles particles used for the meshes.
/// First dimension : dimension of the problem,
/// second dimension : the number of particles

void updateSimulationsBase (const bool &p_bZeroDate, const std::shared_ptr

< Eigen :: ArrayXXd> &p_particles)

{

m_bZeroDate = p_bZeroDate;
m_particles = p_particles;

}

/// \brief Get some local accessors

///9{

inline std::shared_ptr< Eigen:: ArrayXXd > getParticles () const

{
}

/// \brief Get the object by reference
inline const Eigen :: ArrayXXd &getParticlesRef () const

{
}

/// \brief Get dimension of the problem
inline int getDimension () const

{
}

/// \brief Get the number of simulations
inline int getNbSimul()const

{
}

/// \brief get the number of basis functions
virtual int getNumberOfFunction() const = 0 ;

///9}

/// \brief Constructor storing the particles

return m_particles ;

return *m_particles;

return m_particles —>rows () ;

return m_particles—>cols () ;
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/// \brief update the particles used in regression and construct the

matrices
/// \param p_bZeroDate first date is 07
/// \param p_particles particles used for the meshes.
/// First dimension : dimension of the problem ,
/// second dimension : the number of particles

virtual void updateSimulations(const bool &p_bZeroDate, const std::
shared _ptr< Eigen :: ArrayXXd> &p _particles) = 0 ;

/// \brief conditional expectation basis function coefficient calculation

/// \param p_fToRegress function to regress associated to each
simulation used in optimization

/// \return regression coordinates on the basis (size : number of meshes
multiplied by the dimension plus one)

//] of

virtual Eigen:: ArrayXd getCoordBasisFunction (const Eigen:: ArrayXd &
p-fToRegress) const = 0;

virtual Eigen :: ArrayXXd getCoordBasisFunctionMultiple (const Eigen ::
ArrayXXd &p_fToRegress) const = 0 ;

///a}

/// \brief conditional expectation calculation

/// \param p_fToRegress simulations to regress used in optimization

/// \return regressed value function

/1] of

virtual Eigen:: ArrayXd getAllSimulations (const Eigen :: ArrayXd &
p-fToRegress) const = 0;

virtual Eigen::ArrayXXd getAllSimulationsMultiple (const Eigen :: ArrayXXd &
p-fToRegress) const = 0;

///a}

/// \brief Use basis functions to reconstruct the solution
/// \param p_basisCoefficients basis coefficients

/179

virtual Eigen:: ArrayXd reconstruction (const Eigen::ArrayXd &

p-basisCoefficients) const = 0 ;
virtual Eigen :: ArrayXXd reconstructionMultiple (const Eigen ::ArrayXXd &
p_basisCoefficients) const = 0;

/1] @}

/// \brief use basis function to reconstruct a given simulation

/// \param p_isim simulation number

/// \param p_basisCoefficients basis coefficients to reconstruct a given
conditional expectation

virtual double reconstructionASim (const int &p_isim , const Eigen::
ArrayXd &p_basisCoefficients) const = 0 ;

/// \brief conditional expectation reconstruction

/// \param p_coordinates coordinates to interpolate (uncertainty
sample)

/// \param p_coordBasisFunction regression coordinates on the basis (
size: number of meshes multiplied by the dimension plus one)

/// \return regressed value function reconstructed for each simulation

virtual double getValue(const Eigen::ArrayXd &p_coordinates
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const Eigen::ArrayXd &p_coordBasisFunction)
const = 0;

/// \brief permits to reconstruct a function with basis functions
coefficients values given on a grid

/// \param p_coordinates coordinates (uncertainty sample)
/// \param p_ptOfStock grid point
/// \param p_interpFuncBasis spectral interpolator to interpolate

the basis functions coefficients used in regression on the grid (
given for each basis function)
virtual double getAValue(const Eigen:: ArrayXd &p_coordinates, const
Eigen :: ArrayXd &p_ptOfStock ,
const std::vector< std::shared_ptr<
InterpolatorSpectral> > &p_interpFuncBasis)
const = 0;

/// \brief is the regression date zero
inline bool getBZeroDate() const

143 {

144 return m_bZeroDate;

145 }

146

147 /// \brief Clone the regressor
148 virtual std::shared_ptr<BaseRegression> clone () const = 0 ;
149

150 };

151

152 }

153

154 #endif

All regression classes share the same constructors:

e a first constructor stores the members of the class and computes the matrices for the
regression: it is used for example to build a regression object at each time step of a

resolution method,

e the second constructor is used to prepare some data which will be shared by all future
regressions. It has to be used with the 'updateSimulation’” method to update the
effective matrix construction. In a resolution method with many time steps, the object
will be constructed only once and at each time step the Markov state will be updated

by the 'updateSimulation’ method.

All regression classes share the common methods:

e “updateSimulationBase’ (see above),

e “getCoordBasisFunction” takes the values g(t+h, X;,5) for all simulations and returns

the coefficients oy, of the basis functions,

o “getCoordBasisFunctionMultiple” is used if we want to do the previous calculation on
multiple g functions in one call. In the matrix given as argument, the first dimension
has a size equal to the number of Monte Carlo simulations, while the second dimension
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has a size equal to the number of functions to regress. As output, the first dimension
has a size equal to the number of function to regress and the second equal to the
number of basis functions.

e “getAllSimulations” takes the values g(t + h, X;,5) for all simulations and returns the
regressed values for all simulations f(X})

o “getAllSimulationMultiple” is used if we want to do the previous calculation on mul-
tiple g functions in one call. In the matrix given as argument, the first dimension has
a size equal to the number of Monte Carlo simulations, while the second dimension
has a size equal to the number of functions to regress. The regressed values are given
back in the same format.

e ‘“reconstruction” takes the a4 coefficient of the basis functions as input and returns all
the f(X;) for the simulations stored by applying equation ({2.1)).

e “reconstructionMultiple” is used if we want to do the previous calculation on multiple
g functions in one call. As input the «4 coefficients of the basis functions are given
(number of function to regress for first dimension, number of basis functions for second
dimension). As a result the f(X;) for all simulations and allf functions are sent back
( number of Monte Carlo simulations in first dimension, number of function to regress
en second dimension).

e ‘“reconstructionASim” takes a simulation number isim (optimization part) and oy
coefficient of the basis functions as input and returns f(X*"") by applying equation

(2.1)),

o “getValue” takes as first argument a sample of X, the basis function oy and reconstruct
the regressed solution of equation ([2.1J).

2.2 Adapted local polynomial basis

The description of the method and its properties can be found in [16]. We just recall the
methodology

2.2.1 Description of the method

The method essentially consists in applying a non-conform finite element approach rather
than a spectral like method as presented above.

The idea is to use, at each time step ¢;, a set of functions v, ¢ € [0, M| having local hy-
per cube support D;, 4, ;, wherei; = 1to I;, My, = szl’d Iy and {D;, i, }ir,ig)elt ] < x[1,14]
(k) )

]

. .- . 1,(k 1, . d,(k d,(k
is a partition of [ming_; y th,( ), maxg—1,n X; X --+ X[ming_yy Xti( , MaXj—1 N th.( )].

On each Dy, | = (iy, .., 14), depending on the selected method, v is

e cither a constant function, so the global number of degrees of freedom is equal to M,

e or a linear function with 1 + d degrees of freedom, so the global number of degrees of
freedom is equal to My, * (1 + d).
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This approximation is “non-conform” in the sense that we do not assure the continuity of
the approximation. However, it has the advantage to be able to fit any, even discontinuous,
function. In order to avoid oscillations and to allow classical regression by the Choleski
method, the supports are chosen so that they contain roughly the same number of particles.

On Figure [2.1, we have plotted an example of supports in the case of 6 = 4 x 4 local
basis cells, in dimension 2.

T T
"3D uncertainty®
"Mesh®

-1.5 -1 -0.5 ) a.s5 1 1.5

Figure 2.1: Support of 2D function basis

2.3 CH+4 api

2.3.1 The constant per cell approximation

The constructor of the local constant regression object is achieved by

LocalConstRegression (const Eigen:: ArrayXi  &p_nbMesh) ;

where p_nbMesh is an array giving the number of meshes used in each direction ( (4,4) for
the figure [2.1] for example).
The second constructor permits the construct the regression matrix,

LocalConstRegression (const bool &p_bZeroDate,
const shared_ptr< ArrayXXd> &p_particles ,
const Eigen:: ArrayXi  &p_nbMesh)

where
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e p.bZeroDate is true if the regression date is 0,

e p particles the particles X; for all simulations (dimension of X, for first dimension,
number of Monte Carlo simulations in second dimension),

e pnbMesh is an array giving the number of meshes used in each directions (4,4) for

the figure 2.1}

2.3.2 The linear per cell approximation

The constructor of the local linear regression object is achieved by

LocalLinearRegression (const Eigen:: ArrayXi &p_nbMesh) ;

where p_nbMesh is an array giving the number of meshes used in each direction ( (4,4) for
the figure for example).
The second constructor permits the construct the regression matrix,

LocalLinearRegression (const bool &p_bZeroDate,
const shared_ptr< ArrayXXd> &p_particles ,
const Eigen:: ArrayXi  &p_nbMesh)

where
e p.bZeroDate is true if the regression date is 0,

e p_particles the particles X, for all simulations (dimension of X, for first dimension,
number of Monte Carlo simulations in second dimension),

e p.nbMesh is an array giving the number of meshes used in each directions (4, 4) for
the figure [2.1]

2.3.3 An example in the linear case

Below we give a small example where “toRegress” corresponds to g(t + h, X;.p) for all
simulations and x store X; for all simulations.

// create the mesh for a 2 dim problem, 4 meshes per direction
ArrayXi nbMesh = ArrayXi:: Constant (2, 4);
// t is mnot zero
bool bZeroDate = 0;
// constructor
LocalLinearRegression localRegressor (nbMesh) ;
// update particles values
localRegressor . updateSimulations (bZeroDate, x);
// regressed values
ArrayXd regressedValues = localRegressor.getAllSimulations (toRegress);

51



© 00 9 O U s W N =

e
w N = O

2.4 Python API

Here is a similar example using the second constructor of the linear case

import StOptReg

nbSimul = 5000000;

np.random. seed (000)

x = np.random. uniform (—.,1.,size=(1,nbSimul));

# real function

toReal = (24x[0,:]+(+x[0,:])*(14+x[0,:]))

# function to regress

toRegress = toReal + 4xnp.random.normal (0., ,nbSimul)

# mesh

nbMesh = np.array ([6] ,dtype=np.int32)

# Regressor

regressor = StOptReg.LocalLinearRegression (False ,x,nbMesh)
y = regressor.getAllSimulations (toRegress).transpose () [0]

Of course the constant per cell case in python is similar.

2.5 Local polynomial basis with meshes of same size

In some cases, instead of using adapted meshes, on can prefer to fix the mesh with a constant
step in each direction with I, meshes in each direction so that the total number of cells is
My = 11— 41k On each cell as in section , one can have two approximations :

e cither a constant function, so the global number of degrees of freedom is equal to M,

e or a linear function with 1 4+ d degrees of freedom, so the global number of degrees of
freedom is equal to My * (1 + d).

2.6 CH+4 api

2.6.1 The constant per cell approximation

The constructor of the local constant regression object is achieved by

LocalSameSizeConstRegression (const Eigen :: ArrayXd &p_lowValues, const
Eigen :: ArrayXd &p_step, const Eigen::ArrayXi &p_nbStep);

e p_lowValues is an array giving the first point of the grid in each direction,
e p_step is an array giving the size of the meshes in each direction,

e p_nbStep is an array giving the number of meshes used in each direction.

The second constructor permits the construct the regression matrix,
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LocalSameSizeConstRegression (const bool &p_bZeroDate
const std::shared_ptr< Eigen::ArrayXXd > &
p-particles ,
const Eigen :: ArrayXd &p_-lowValues ,
const Eigen :: ArrayXd &p_step ,
const Eigen:: ArrayXi &p_nbStep);

where

2.6.

p-bZeroDate is true if the regression date is 0,

p-particles the particles X; for all simulations (dimension of X, for first dimension,
number of Monte Carlo simulations in second dimension),

plowValues is an array giving the first point of the grid in each direction,
p_step is an array giving the size of the meshes in each direction,

p-nbStep is an array giving the number of meshes used in each direction.

2 The linear per cell approximation

The constructor of the local linear regression object is achieved by

LocalSameSizeLinearRegression (const Eigen :: ArrayXd &p_lowValues, const
Eigen :: ArrayXd &p_step, const Eigen::ArrayXi &p_nbStep);

where

p-lowValues is an array giving the first point of the grid in each direction,
p_step is an array giving the size of the meshes in each direction,

p-nbStep is an array giving the number of meshes used in each direction.

The second constructor permits the construct the regression matrix,

LocalSameSizeLinearRegression (const bool &p_bZeroDate
const std::shared_ptr< Eigen :: ArrayXXd > &
p-particles ,

const Eigen :: ArrayXd &p_lowValues ,

const Eigen :: ArrayXd &p_step ,

const Eigen:: ArrayXi &p_nbStep)
where

p-bZeroDate is true if the regression date is 0,

p-particles the particles X; for all simulations (dimension of X, for first dimension,
number of Monte Carlo simulations in second dimension),

p_lowValues is an array giving the first point of the grid in each direction,
p_step is an array giving the size of the meshes in each direction,

p-nbStep is an array giving the number of meshes used in each direction.
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2.6.3 An example in the linear case

Below we give a small example where “toRegress” is the array to regress with respect to an

[}

array “x” in dimension p-nDim :

1 // create a random ‘‘x’’ array

2 shared_ptr <ArrayXXd> x(new ArrayXXd(ArrayXXd::Random (p-nDim, p_nbSimul))
)

3 // create the mesh by getting min and max value on the samples

4 double xMin = x—>minCoeff() — tiny;

5 double xMax = x—>maxCoeff() + tiny;

6 ArrayXd lowValues = ArrayXd:: Constant (p-nDim, xMin) ;

7 ArrayXd step = ArrayXd:: Constant (p-nDim, (xMax — xMin) / p-nMesh);

8 ArrayXi nbStep = ArrayXi:: Constant (p-nDim, p-nMesh);

9 // constructor

10 LocalLinearRegression localRegressor (lowValues,step, nbStep);

11 // update particles values

12 localRegressor . updateSimulations (bZeroDate, x);

13 // regressed values

14 ArrayXd regressedValues = localRegressor.getAllSimulations (toRegress);

2.7 Python API

Here is a similar example using the second constructor of the linear case

1 import StOptReg

2 nbSimul = 5000000;

3 np .random. seed (000)

4 x = np.random. uniform (—.,1.,size=(1,nbSimul));

5 # real function

6 toReal = (24x[0,:]+(+x[0,:])*(1+x[0,:]))

7 # function to regress

8 toRegress = toReal + 4xnp.random.normal (0., ,nbSimul)

9 # mesh

10 nStep = 20

11 lowValue = np.array([—1.0001],dtype=np. float)

12 step = np.array ([2.0002/nStep]|,dtype=np. float)

13 nbMesh = np.array ([nStep],dtype=np.int32)

14 # Regressor

15 regressor = StOptReg. LocalSameSizeLinearRegression (False ,x,lowValue,
step ,nbMesh )

16 y = regressor.getAllSimulations (toRegress).transpose () [0]

Of course the constant per cell case in python is similar.

2.8 Sparse grid regressor

In the case of a sparse regressor, the grid is an object |“SparseSpaceGridNoBound”| (extrap-
olation for the boundary conditions). The basis functions are given by the section for
linear, quadratic or cubic function basis.
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2.8.1 C++ API

Two specific constructor are available:

e The first one to be used with the “updateSimulations” methods

1 SparseRegression (const int &p_levelMax, const Eigen::ArrayXd &
p-weight , const int &p_degree, bool p_bNoRescale = false);

where

— p_level M ax corresponds to n in the equation (|1.4]),
— p_weight the weight for anisotropic sparse grids (see equation (1.7)),

— p-degree is equal to (linear basis function ), or 2 (quadratic basis) or 3 (for cubic
basis functions),

— p-bNoRescale if true no re scaling of the particles is used. Otherwise a re scaling

of the mesh size is achieved (as for local basis functions, see section [2.2])

e The second one take the same arguments as the first constructor but adds a Boolean
to check if the regression date is 0 and the particles X; (here the re scaling is always

achieved):
1 SparseRegression (const bool &p_bZeroDate,
2 const shared_ptr< Eigen:: ArrayXXd > &p_particles ,
3 const int &p_levelMax , const Eigen::ArrayXd &
p-weight ,
4 const int &p_degree);

A simple example to express the regression of “toRegress”

// second member to regress

ArrayXd toRegress(p-nbSimul);

// for testing

toRegress.setConstant (.) ;

shared _ptr<ArrayXXd> x(new ArrayXXd(ArrayXXd::Random (p-nDim,
p-nbSimul)));

// constructor : the current date is not zero

bool bZeroDate = 0;

// constructor

SparseRegression sparseRegressor(p_level , weight, p_degree);

sparseRegressor . updateSimulations (bZeroDate, x); // update the state

// then just calculate function basis coefficient

ArrayXd regressedFuntionCoeff = sparseRegressor.getCoordBasisFunction
(toRegress) ;

// use the getValue method to get back the regressed values

for (int is = 0; is < p_nbSimul; 4++is)

{
Map<ArrayXd> xloc (x—>col(is).data(), p-nDim);
double reg = sparseRegressor.getValue(xloc, regressedFuntionCoeff
¥
}
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2.8.2 Python API

Here is a simple example of the python API:

import StOptReg

nbSimul = 2000000;

np.random. seed (000)

x = np.random. uniform (—.,1.,size=(1,nbSimul));

# real function

toReal = (24x[0,:]+(+x[0,:])*x(1+x[0,:]))

# function to regress

toRegress = toReal + 4xnp.random.normal (0., ,nbSimul)
# level for sparse grid

iLevel = 5;

# weight for anisotropic sparse grids

weight= np.array ([] ,dtype=np.int32)

# Regressor degree

regressor = StOptReg.SparseRegression (False ,x,iLevel , weight, )
y = regressor.getAllSimulations (toRegress)

2.9 Global polynomial basis

2.9.1 Description of the method

In this section, the v (X;) involved in equation [2.1] are some given polynomials. Available
polynomials are the canonical one, the Hermite and the Chebyshev ones.

:1;2 m .
e Hermite polynomials H,,(z) = (—1)"ez e~z are orthogonal with respect to the

22
weight w(z) = e~ 2 and we get

+oo
H,(x)H,(z)dx = pppV 210!

they satisfy the recurrence :
Hy1(2) = 2 Hy(x) — H, ()
assuming H,(z) = >_,_, an ", we get the recurrence
U1k = Apj—1 — Np_1 k>0 (2.5)
Ap+1,0 = —N0p—1,0
e Chebyshev polynomials are Ti41(z) = cos((N +1)arcs(x)). They are orthogonal with
respect to the weight w(z) = ﬁ and

1 0, if M #N
/ Tn(zx)Ty(zv)w(z)de =< m, it M =N=0
-1 T i M =N#£0

They satisfy the following recurrence :

T 2(x) = 20Ty 41 (x) — Tiv(2)
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2.9.2 C++ API

The “GlobalRegression” class is template by the type of the polynomial (“Canonical”,” Tchebychev”

or “Hermite”) The first constructor :

1 GlobalRegression (const int & p_degree, const int & p_dim);

where p_degree is the total degree of the polynomial approximation, p_dim is the dimension
of the problem.
A second constructor is provided:

1 GlobalRegression (const bool &p-bZeroDate,
2 const std::shared_ptr< Eigen:: ArrayXXd > &p_particles ,
3 const int & p_degree)

where
e p_bZeroDate is true if the regression date is 0,

e p_particles the particles X, for all simulations (dimension of X, for first dimension,
number of Monte Carlo simulations in second dimension),

e p_degree is the total degree of the polynomial approximation.

Below we give a small example where “toRegress” corresponds to g(t + h, X;15) for all
simulations and x store X; for all simulations.

// total degree equal to 2
int degree=2;
// t is not zero
bool bZeroDate = 0;
// constructor with Hermite polynomials
GlobalRegression<Hermite> localRegressor (degree ,x.rows());
// update particles values
localRegressor . updateSimulations (bZeroDate, x);
// regressed values
ArrayXd regressedValues = localRegressor.getAllSimulations (toRegress):;
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In the above example the Hermite regression can be replaced by the canonical one :

1 GlobalRegression<Canonical> localRegressor (degree ,x.rows () );

or by a Chebyshev one :

1 GlobalRegression<Tchebychev> localRegressor (degree ,x.rows());

2.9.3 Python API

Here is a similar example using the second constructor

import StOptReg

nbSimul = 5000000;

np .random . seed (000)

x = np.random. uniform ( —.,1.,size=(1,nbSimul));
# real function

ol W N e
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toReal = (24x[0,:]+(+x[0,:])*x(14+x[0,:]))

# function to regress

toRegress = toReal + 4xnp.random.normal (0., ,nbSimul)

# degree

degree =2

# Regressor

regressor = StOptReg. GlobalHermiteRegression (False ,x,degree)
y = regressor.getAllSimulations (toRegress).transpose () [0]

Available regressors are “GlobalHermiteRegression” as in the example above , “Global-
CanonicalRegression” and “GlobalTchebychevRegression” with an obvious correspondence.
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Chapter 3

Continuation values objects and
similar ones

In a first part we describe a way to store and use continuation values calculated during the use
of regression methods to estimate conditional expectations. In a second part, we introduce
an object used to interpolate a function both discretized on grids for its deterministic part
and estimated by regressor for its stochastic part. The second object is similar to the first
in spirit but being dedicated to interpolation is more effective to use in simulations realized
after the optimization part of a problem.

3.1 Continuation values object
A special case is the case where the state X*' in equation (1)) can be separated into two
parts X®! = (X' X5") where
1. the first part is given by the following equation
dX7" = b(t, X2 ds + os, X2 dW
and is not controlled: the stochastic process is exogenous,

2. the second part is given by the following equation
dX3" = b,(t)ds

such that the X3 " is a degenerated version of || without diffusion, a representing the
control.

This first case is for example encountered while valuing American options in finance. In this
case, X7 " holds the values of the stocks involved in the option and X5 " is for example an
integer valued process equal to one if the option is not exercised and 0 if it has already been
exercised.

Another classical case happening while dealing with stocks for example is a Gas Storage
valuation. In this simple case, the process X7y ' is the value of the gas on the market and
X3 is the position (in volume) in the gas storage. The library offers to store the conditional
expectation for all the states X3
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e X3 will be stored on a grid of points (see section

e for each point i of the grid the conditional expectation of a function g;(X3") associated
to the point ¢ using a regressor (see section |1) can be calculated and stored such that
the continuation value C' is a function of (X', X35,

3.1.1 C++ API

As for regressions two constructors are provided

e The first one is the default construction: it is used in simulation algorithm with the
“loadForSimulation” method to store the basis coefficients o, for the grid point i (see
equation (22.1))),

e The second one

1 ContinuationValue (const shared_ptr< SpaceGrid > & p-_grid ,
2 const shared_ptr< BaseRegression > & p_condExp,
3 const Eigen :: ArrayXXd &p_cash)

with

— p_grid the grids associated to the control deterministic space,
— p_condExp the conditional expectation operator

— p_cash the function to regress depending on the grid position (first dimension the
number of simulations, second dimension the grid size)

This constructor constructs for all point 7 all the o} (see equation (2.1])).

The main methods provided are:

e a first method used in simulation permitting to load for grid point i the coefficient o,
associated to the function g;,

-

void loadForSimulation (const shared_ptr< SpaceGrid > & p_grid

)

2 const shared_ptr< BaseRegression > &
p-condExp ,
3 const Eigen :: ArrayXXd &p_values)
with

— p_grid the grid associated to the controlled deterministic space,
— p_condFExp the conditional expectation operator,
— p-values the o, for all grid points i (size the number of function basis, the number

of grid points)

e a second method taking as input a point to be interpolated in the grid and returning
the conditional expectation at the interpolated point for all simulations:
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Eigen :: ArrayXd getAllSimulations (const Eigen:: ArrayXd &p_ptOfStock)

a method taking as input an interpolator in the grid and returning the conditional
expectation for all simulations at the interpolated point used to construct the inter-
polator :

Eigen :: ArrayXd getAllSimulations (const Interpolator &p_interpol)

a method taking as input a simulation number used in optimization and a point used
to interpolate in the grid and returning the conditional expectation at the interpolated
point for the given simulation used in optimization.

double getASimulation (const int &p_isim , const Eigen:: ArrayXd &
p-ptOfStock)

a method taking as input a simulation number used in optimization and an interpolator
in the grid and returning the conditional expectation at the interpolated point used
to construct the interpolator for the given simulation used in optimization :

double getASimulation (const int &p_isim , const Interpolator &
p_interpol)

a method that permits to calculate the conditional expectation for a sample of X7 o,

double getValue(const Eigen:: ArrayXd &p_ptOfStock, const Eigen::
ArrayXd &p-coordinates) const

where:

— p_ptO f Stock the point where we interpolate the conditional expectation (a real-
ization of X3
— p_coordinates the sample of X7 used to estimate the conditional expectation

— and the function returns C'(X7*, X3°).

Below we regress an identical function for all grid points (here a grid of 4 points in dimension

1):

int sizeForStock = 4;

// second member to regress with one stock

ArrayXXd toRegress = ArrayXXd:: Constant (p-nbSimul,sizeForStock , 1.);

// grid for stock

Eigen :: ArrayXd lowValues (1), step(1);

lowValues (0) = 0. ;

step (0) = 1;

Eigen :: ArrayXi nbStep(1);

nbStep (0) = sizeForStock — 1;

// grid

shared_ptr< RegularSpaceGrid > regular = MyMakeShared<
RegularSpaceGrid >(lowValues, step, nbStep);

// conditional espectation (local basis functions)
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23

ArrayXi nbMesh = ArrayXi:: Constant (p-nDim, p_nbMesh);

shared_ptr<LocalLinearRegression> localRegressor = MyMakeShared<
LocalLinearRegression >(false , x, nbMesh);

// creation continuation value object

ContinuationValue continuation(regular, localRegressor, toRegress);

// regress with continuation value object

ArrayXd ptStock (1) ;

ptStock (0) = sizeForStock / 2; // point where we regress

// calculation the regression values for the current point for all
the simulations

ArrayXd regressedByContinuation = continuation.getAllSimulations (
ptStock) ;

3.1.2 Python API

Here is an example of the use of the mapping

1 # Copyright (C) 2016 EDF
2 # All Rights Reserved

3

© 00 9 O U e

10
11

# This

code is published under the GNU Lesser General Public License (GNU

LGPL)

import
import
import
import
import
import

numpy as np
unittest
random

math
StOptGrids
StOptReg

12 # unit test for continuation values

NN NI RN NI NI In e
2 o B e e B B e B e B e e e
T T T

13
14
15
16

class testContValues(unittest.TestCase):

# test a regular grid for stocks and a local function basis for

regression

def testSimpleGridsAndRegressor(self):

# low value for the meshes

lowValues =np.array ([1.,2.,3.],dtype=np. float)
# size of the meshes

step = np.array ([0.7,2.3,1.9],dtype=np. float)
# number of steps

nbStep = np.array ([3,2,4], dtype=np.int32)

# create the regular grid

grid = StOptGrids. RegularSpaceGrid (lowValues ,step ,nbStep)
# simulation

nbSimul =10000

np.random. seed (1000)

x = np.random. uniform ( —1.,1.,size=(1,nbSimul));

# mesh

nbMesh = np.array ([16],dtype=np.int32)
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50
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54
55

# Create the regressor
THHEHFHARHRHAHAHARHRHE
regressor = StOptReg.LocalLinearRegression (False ,x,nbMesh)
# regressed values
toReal = (24+x[0,:]4+(14+x[0,:])*(1+x[0,:]))
# function to regress
toRegress = toReal + 4*np.random.normal (0.,1,nbSimul)
# create a matrix (number of stock points by number of simulations)
toRegressMult = np.zeros (shape=(len(toRegress) ,grid.getNbPoints()))
for i in range(toRegressMult.shape[l]) :
toRegressMult [: ,i] = toRegress
# Now create the continuation object

contOb = StOptReg.ContinuationValue (grid ,regressor ,toRegressMult)
# get back the regressed values at the point stock

ptStock= np.array ([1.2,3.1,5.9],dtype=np.float)

regressValues = contOb.getAllSimulations (ptStock)

if __name__. = ’'__main__":
unittest .main ()

3.2 The GridAndRegressedValue object

As explained above, when we want to interpolate a function discretized partly on a grid and
by regression a specific object can we used. As for the continuation it has a “getValue” to
estimate the function at a state with both a deterministic ,and a stochastic part.

3.2.1 C++ API
The object has five constructors and we only described the two more commonly used :

e The first one

1 GridAndRegressedValue (const std::shared_ptr< SpaceGrid > &p-_grid

b

2 const std::shared_ptr< BaseRegression > &
p-reg,
3 const Eigen :: ArrayXXd &p_values)
with

— p_grid the grid associated to the control deterministic space,
— p_reg the regressor object

— p_values the functions at some points on the deterministic and stochastic grid.

e A second constructor only stores the grid and regressor :

1 GridAndRegressedValue (const std::shared_ptr< SpaceGrid > &p_grid ,
2 const std::shared_ptr< BaseRegression > &
p-reg)
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The main methods are the following ones :

e the main method that permits to calculate the function C'(X f;, X5 ') value for a point

Xt = (X7t X57%) where X;; is on the grid and Xf; is the part treated by regression.

1,s°

1 double getValue(const Eigen :: ArrayXd &p_ptOfStock , const Eigen::
ArrayXd &p-coordinates) const

where:
— p_ptO fStock X;; part of X**
— p-coordinates stt part of X%,

e the method ‘getRegressedValues’ that permits to get all regression coefficients for all
points of the grid. The array returned has a size (number of function basis, number
of points on the grid)

1 Eigen :: ArrayXXd getRegressedValues () const

e the method ’setRegressedValues’ permits to store all the values regressed coefficients
on a grid of a function of X™* = (X771, X57).

1 void setRegressedValues (const Eigen:: ArrayXXd &p-regValues)

where p_regV alues has a size (number of function basis, number of points on the grid).

3.2.2 Python API
The python API is similar to the one of the ContinuationValue object (voir section |3.1.2]).
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Part 111

Solving optimization problems with
dynamic programming methods
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In the sequel, we suppose that we have developed a Simulator generating some Monte
Carlo simulations at the different optimization dates. In order to use the different frameworks
developed in the sequel we suppose that the Simulator is derived from the abstract class
SimulatorDPBase.h”

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef SIMULATORDPBASE H

5 #define SIMULATORDPBASE H

6 #include <Eigen/Dense>

7

s /% \file SimulatorDPBase.h

9 * \brief Abstract class for simulators for Dynamic Programming Programms

1o * \author Xavier Warin

1 x/

12

13 namespace StOpt

1 {

15 /// \class SimulatorDPBase SimulatorDPBase.h

16 /// Abstract class for simulator used in dynamic programming

17 class SimulatorDPBase

18 {

19

20

21 public

22 virtual ~SimulatorDPBase() {}

23 /// \brief get current markovian state : dimension of the problem for
the first dimension , second dimension the number of Monte Carlo
simulations

24 virtual Eigen :: MatrixXd getParticles () const = 0;

25 /// \brief a step forward for simulations

26 virtual void stepForward() = 0;

27 /// \brief a step backward for simulations

28 virtual void stepBackward() = 0;

29 /// \brief a step forward for simulations

30 /// \return current particles (markovian state as assets for example) (
dimension of the problem times simulation number)

31 virtual Eigen :: MatrixXd stepForwardAndGetParticles() = 0;

32 /// \brief a step backward for simulations

33 /// \return current particles (markovian state as assets for example) (
dimension of the problem times simulation number)

34 virtual Eigen :: MatrixXd stepBackwardAndGetParticles() = 0;

35 /// \brief get back dimension of the regression

36 virtual int getDimension () const = 0;

37 /// \brief get the number of steps

38 virtual int getNbStep() const = 0;

39 /// \brief Get the current step size

40 virtual double getStep () const = 0;

41 /// \brief Get current time

42 virtual double getCurrentStep() const = 0 ;

43 /// \brief Number of Monte Carlo simulations

44 virtual int getNbSimul() const = 0;
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45 /// \brief Permit to actualize for one time step (interest rate)

46 virtual double getActuStep () const = 0;

a7 /// \brief Permits to actualize at the initial date (interest rate)
48 virtual double getActu() const = 0 ;

49

50 };

51}

s2 #endif /x SIMULATORDPBASEH x/

Supposing that the Simulator is a Black Scholes simulator for P assets, simulating M
Monte Carlo simulations, at N + 1 dates o, ..., ty, the Markov state for particle j, date ¢;,
Monte Carlo simulation k£ and asset p is X;;i and we give below the meaning of the different
methods of “ SimulatorDPBase.h”:

e the “getParticle” method gives at the current optimization/simulation date ¢; the
Markov states X¥, in a matrix A such that A(p, k) = X}

j X%

e the “stepForward” method is used while simulating the assets evolution in forward: a
step forward is realized from t; to ¢;;; and Brownian motions used for the assets are
updated at the new time step,

e the “stepBackward” method is used for simulation of the asset from the last date to
time 0. This method is used during an asset optimization by Dynamic Programming,

o the “stepForward AndGetParticles” method: second and first method in one call,
e the “stepBackward AndGetParticles” method: third and first method in one call,
e the “getDimension” method returns the number of assets,

e the “getNbStep” method returns the number of step (IV),

e the “getStep” method returns the time step ;11 — ¢; at the current time ¢;,

e the “getNbSimul” method returns M.

e the “getActuStep” method return the actualization factor on one time step

e the “getActu” method returns an actualization factor at the “0” date.
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Chapter 4

Using conditional expectation
estimated by regressions to solve
simple problems

In this chapter we give some examples to value an American option. This use of the condi-
tional expectation operators can be extended to many stochastic problem using this previ-
ously developed objects.

4.1 The American option valuing by Longstaff Schwartz

Suppose in this example that the payoff of the American option is given by ¢g and that the
interest rate is 0. The value of the option is given by

Py, = esssuper,  E(g(T, X)) | F) for t<T P—as., (4.1)
where T ) denotes the set of stopping times with values in [¢, T7.

We recall the classical Longstaff Schwartz algorithm |3| estimating the empirical condi-
tional expectation using the regression estimation previously seen.

Initialization:
Set 70 =T, j < N
Backward induction:
for i=x—1to0do
set 7,7 := t; 1y + 7,13 1(ar)e where Al := {g(t;, X;,) > E[g(%iﬁq,xﬂ ) | Ful}-
end for
Price estimator at 0: Py := E[g(7,, X%&,ﬂ)].

Algorithm 3: Algorithm with regression [optimal exercise time estimation]
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4.1.1 American option with the C++ API

We value in the algorithm below an American option using a simulator p_sim, a regressor
p_regressor, a payoff function p_payof f:

1 double step = p_sim.getStep(); // time step increment
2 // asset simulated under the neutral risk probability: get the trend of
the first asset to get the interest rate

3 double expRate = exp(—step * p-sim.getMu() (0));
4 // Terminal pay off
5 VectorXd Cash(p_payOff(p_sim.getParticles()));
6 for (int iStep = 0; iStep < p-sim.getNbStep(); ++iStep)
7
{
8 shared _ptr<ArrayXXd> asset (new ArrayXXd(p_sim.
stepBackwardAndGetParticles())); // asset = Markov state
9 VectorXd payOffLoc = p_payOff(*xasset); // pay off
10 // update conditional expectation operator for current Markov state
11 p-regressor .updateSimulations (((iStep = (p-sim.getNbStep() — 1)) ?
true : false), asset);
12 // conditional expectation
13 VectorXd condEspec = p_regressor.getAllSimulations (Cash) * expRate;
14 // arbitrage between pay off and cash delivered after
15 Cash = (condEspec.array () < payOffLoc.array()).select (payOffLoc, Cash
* expRate) ;
16 }
17 return Cash.mean () ;

4.2 American option with the Python API

Using the python API the American resolution is given below :

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 import numpy as np

5 import math as maths

6

7

# american option by Longstaff—Schwartz
8 # p_sim Monte Carlo simulator
9 # p_payOff Option pay off
10 # p_regressor regressor object
11 def resolution (p_simulator, p_payOff, p_regressor)
12

13 step = p_simulator.getStep ()

14 # asset simulated under the neutral risk probability : get the trend of
first asset to get interest rate

15 expRate = np.exp(—step * p_simulator.getMu() [0])

16 # Terminal

17 particle = p_simulator.getParticles ()

18 Cash = p_payOff.operator(particle)

19

20 for iStep in range (0, p_simulator.getNbStep()):
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asset = p_simulator.stepBackwardAndGetParticles ()

payOffLoc = p_payOff.operator (asset )

isLastStep = False

if iStep =— p-simulator.getNbStep () — 1
isLastStep = True

p_regressor.updateSimulations (isLastStep , asset)

# conditional expectation

condEspec = p_regressor.getAllSimulations (Cash).squeeze () * expRate
# arbitrage

Cash = np.where(condEspec < payOffLoc, payOffLoc, Cash % expRate)

return maths.fsum (Cash) / len (Cash)
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Chapter 5

Using the general framework to
manage stock problems

In this chapter the state is separated into three parts X%t = (X7, X3 I,). (X7, X35,
which corresponds to the special case of chapter 3 where X" is not controlled and X3 is
controlled. T'wo cases can be tackled :

e the first case corresponds to the case where X3 is deterministic (think of storage
management),

e the second case corresponds to the case where X3 is stochastic (think of portfolio
optimization).

I; takes some integers values and is here to describe some finite discrete regimes (to treat
some switching problems). A general framework is available to solve this kind of problem.
First, the second part X ' is discretized on a grid as explained in chapter .

e Either a full grid is used for X3 and two types of resolutions either sequential or
parallel be can considered :

— a resolution can be achieved sequentially or a parallelization with MPI on the
calculations can be achieved (speed up but no size up). This approach can be
used for problems in small dimension.

— a resolution can be achieved with a parallelization by the MPI framework by
spreading the work to be achieved on the grid points, and spread the data be-
tween processors (speed up and size up). We will denote this parallelization tech-
nique a “distribution” technique. This approach is necessary to tackle very big
optimization problems where the global solution cannot be stored in the memory
of a single processor.

e or the grid for X3 is not full (so sparse) and only a parallelization by thread and MPI
can be achieved on the calculations (speed up and no size up). With sparse grids, only
the case X3 deterministic is treated.

In the case of the MPI parallelization technique distributing task and data (full grids only),
[19] and [20] are used. Suppose that the grid is the same at each time step (only here to
ease the case), and that we have 4 processors (figure then:
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e at the last time step, the final values at each point for each simulation are computed

(each processor computes the values for its own grid points),

e at the previous time step, from a grid point own by a processor, we are able to localize

the grids points attained at the next time step by all the commands,

e on figure [5.1, we give the points owned by other processors that can be reached from

points owned by processor 3,

e some MPI communications are achieved bringing back the data (values calculated at

the previous treated time step) needed by processor 3 to be able to update the value
calculated by dynamic programming at the current time for all the points owned by
processor 3,

e all the communications between all processors are achieved together.

Precegsor 1 Procegsor 2

e ==

™Mz

Procepsor 3 Procegsor 4

a 0 N2 N1 N

% Data needed by processor 3

Figure 5.1: Data to send to processor 3

The global state of the the problem is store in the [StateWithStocks| object.

5.1 General requirement about business object

In order to use the framework, the developer has to describe the problem he wants to solve
on one time step staring from a state X!, This business object has to offer some common
methods and it is derived from “OptimizerBase.h”

1 //
2 //
3 [/

Copyright (C) 2016 EDF
All Rights Reserved
This code is published under the GNU Lesser General Public License (GNU

LGPL)

4 #ifndef OPTIMIZERBASE H

5 #define OPTIMIZERBASE H

6 #include <Eigen/Dense>

7 #include ”StOpt/core/utils /StateWithStocks.h”
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s #include ”StOpt/core/grids/SpaceGrid.h”

o #include ”StOpt/regression/BaseRegression.h”

10 #include ”StOpt/regression/ContinuationValue.h”

11 #include 7StOpt/regression/GridAndRegressedValue.h”

12 #include ”StOpt/dp/SimulatorDPBase.h”

13

14 /#% \file OptimizerBase.h

15 % \brief Define an abstract class for Dynamic Programming problems solved
by Monte Carlo methods

16k \author Xavier Warin

17 %/

18

19 namespace StOpt

20 {

21

22 /// \class OptimizerBase OptimizerBase.h

23 /// DBase class for optimizer for Dynamic Programming with and without
regression methods

24 class OptimizerBase

25 {

26

27

28 public

29

30 OptimizerBase () {}

31

32 virtual ~“OptimizerBase() {}

33

34 /// \brief defines the dimension to split for MPI parallelism

35 /// For each dimension return true is the direction can be split

36 virtual Eigen:: Array< bool, Eigen ::Dynamic, 1> getDimensionToSplit ()
const = 0 ;

37

38 /// \brief defines the diffusion cone for parallelism

39 /// \param p_regionByProcessor region (min max) treated by the
processor for the different regimes treated

40 /// \return returns in each dimension the min max values in the stock
that can be reached from the grid p_gridByProcessor for each regime

41 virtual std::vector< std::array< double, 2> > getCone(const std::vector<

std ::array< double, 2> > &p_regionByProcessor) const = 0;

42

43 /// \brief Defines a step in simulation using interpolation in controls

44 /// \param p_grid grid at arrival step after command

15 /// \param p_control defines the controls

46 /// \param p_state defines the state value (modified)

47 /// \param p_philnOut defines the value function (modified): size
number of functions to follow

48 virtual void stepSimulateControl(const std::shared_ptr< StOpt:: SpaceGrid>

&p_grid , const std::vector< StOpt:: GridAndRegressedValue > &

p-control ,

49 StOpt :: StateWithStocks &p_state ,

50 Eigen :: Ref<Eigen :: ArrayXd> p_philnOut)

const = 0 ;
51
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59

60

61

62

63

64

65

66 };
67 }

/// \brief Get the number of regimes allowed for the asset to be reached
at the current time step
virtual int getNbRegime () const = 0 ;

/// \brief get the simulator back
virtual std::shared_ptr< StOpt::SimulatorDPBase > getSimulator () const =
0;

/// \brief get back the dimension of the control
virtual int getNbControl() const = 0 ;

/// \brief get size of the function to follow in simulation
virtual int getSimuFuncSize() const = 0;

68 #endif /+x OPTIMIZERBASE H x/

We detail all the methods that have to be implemented for all resolution methods (with or
without regressions).

the “getNbRegime” permits to get the number of regimes of the problem: for example,
in switching problems, when there is a cost of switching, the working regime has to be
incorporated in the state. Another example is the case of conditional delta to calculate
for an asset: two regimes can be used: one to calculate the asset value and the second
one to calculate the A. This number of regimes can be time dependent : in this case
for a current resolution date t the “getNbRegime” method send the number of regimes
at the very beginning of the time step (in ¢~) such that a switch to a new regime can
occurred in ¢+,

the “getSimulator” method is used to get back the simulator giving the Monte Carlo
simulations,

the “ getSimuFuncSize” method is used in simulation to define the number of functions
to follow in the simulation part. For example in a stochastic target problem where the
target is a given wealth with a given probability, one may want to follow the evolution
of the probability at each time step and the wealth obtained while trading. In this
case the “ getSimuFuncSize” returns 2.

the “getCone” method is only relevant if the MPI framework with distribution is used.
As argument it take a vector of size the dimension of the grid. Each component of the
vector is an array containing the minimal and maximal coordinates values of points
in the current grid defining an hyper cube H1 . It returns for each dimension, the
coordinates min and max of the hyper cube H2 containing the points that can be
reached by applying a command from a grid point in H1.

the “getDimensionToSplit” method permits to define in the MPI framework with dis-
tribution which directions to split for solution distribution on processors. For each
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3

dimension it returns a Boolean where “true” means that the direction is a candidate
for splitting.

e the “stepSimulateControl” method is used after optimization using the optimal con-
trols calculated in the optimization part. From a state p_state (storing the X™*7),
the optimal control calculated in optimization p_control, the optimal functions values
along the current trajectory are stored in p_phiInOut. The state p_state is updated
during at the end of the call function.

In a first part we present the framework for problems where conditional expecta-
tion is calculated by regression (case where X5™ is not controlled). Then we develop the
framework not using regression for conditional expectation calculations. All conditional ex-
pectation are calculated using exogenous particles and interpolation. This will be typically
the case for portfolio optimization.

5.2 Solving the problem using conditional expectation
calculated by regressions

In this part we suppose that X " is controlled and deterministic so regression methods can
be used.

5.2.1 Requirement to use the framework

In order to use the framework with regression for conditional expectation, a business object
describing the business on one time step from one state is derived from “OptimizerDPBase.h”
itself derived from “OptimizerBase.h” .

// Copyright (C) 2016 EDF

// All Rights Reserved

// This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef OPTIMIZERDPBASE H
5 #define OPTIMIZERDPBASE H
6 #include <Eigen/Dense>

7 #include

"StOpt/core/utils /StateWithStocks.h”

s #include ”StOpt/core/grids/SpaceGrid.h”

9 #include 7StOpt/regression/BaseRegression.h”

10 #include ”StOpt/regression/ContinuationValue.h”

11 #include 7StOpt/regression /GridAndRegressedValue.h”
12 #include ”StOpt/dp/SimulatorDPBase.h”

13 #include ”StOpt/dp/OptimizerBase.h”

14

[

5
16

17
18
19

/*x \file OptimizerDPBase.h

* \brief Define an abstract class for Dynamic Programming problems solved
by regression methods

* \author Xavier Warin

*/

namespace StOpt

)



21{

23 /// \class OptimizerDPBase OptimizerDPBase.h

24 /// Base class for optimizer for Dynamic Programming with regression
methods

25 class OptimizerDPBase : public OptimizerBase

26 {

27

28

20 public

30

31 OptimizerDPBase () {}

32

33 virtual ~OptimizerDPBase() {}

34

35 /// \brief defines the diffusion cone for parallelism

36 /// \param p_regionByProcessor region (min max) treated by the
processor for the different regimes treated

37 /// \return returns in each dimension the min max values in the stock
that can be reached from the grid p_gridByProcessor for each regime

38 virtual std::vector< std::array< double, 2> > getCone(const std::vector<

std :: array< double, 2> > &p_regionByProcessor) const = 0;

39

40 /// \brief defines the dimension to split for MPI parallelism

a1 !/ For each dimension return true is the direction can be split

42 virtual Eigen:: Array< bool, Eigen ::Dynamic, 1> getDimensionToSplit ()
const = 0 ;

43

44 /// \brief defines a step in optimization

45 /// \param p_grid grid at arrival step after command

46 /// \param p_stock coordinates of the stock point to treat

47 /// \param p_condEsp continuation values for each regime

48 /// \param p_philn for each regime gives the solution calculated at
the previous step ( next time step by Dynamic Programming resolution)

structure of the 2D array ( nb simulation ,nb stocks )

49 /// \return a pair

50 /// — for each regimes (column) gives the solution for each
particle (row)

51 /// — for each control (column) gives the optimal control

for each particle (rows)

52 /1]

53 virtual std::pair< Eigen::ArrayXXd, Eigen ::ArrayXXd> stepOptimize (const
std :: shared_ptr< StOpt:: SpaceGrid> &p_grid , const Eigen :: ArrayXd

&p_stock ,

54 const std::vector< StOpt:: ContinuationValue > &p_condEsp,

55 const std::vector < std::shared_ptr< Eigen:: ArrayXXd > > &p_philn

) const = 0;

56

57

58 /// \brief defines a step in simulation

59 /// Notice that this implementation is not optimal but is convenient if
the control is discrete.

60 /// By avoiding interpolation in control we avoid non admissible control

61 /// Control are recalculated during simulation.
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62 /// \param p_grid grid at arrival step after command

63 /// \param p_continuation defines the continuation operator for each
regime

64 /// \param p_state defines the state value (modified)

65 /// \param p_philnOut defines the value functions (modified) : size
number of functions to follow

66 virtual void stepSimulate(const std::shared _ptr< StOpt::SpaceGrid> &

p_grid , const std::vector< StOpt:: GridAndRegressedValue > &
p-continuation ,

67 StOpt :: StateWithStocks &p_state ,
68 Eigen :: Ref<Eigen :: ArrayXd> p_philnOut) const =
0 ;
69
70
71 /// \brief Defines a step in simulation using interpolation in controls
72 /// \param p_grid grid at arrival step after command
73 /// \param p_control defines the controls
74 /// \param p_state defines the state value (modified)
75 /// \param p_philnOut defines the value function (modified): size
number of functions to follow
76 virtual void stepSimulateControl(const std::shared_ptr< StOpt:: SpaceGrid>
&p_grid , const std::vector< StOpt:: GridAndRegressedValue > &
p-control ,
77 StOpt :: StateWithStocks &p_state ,
78 Eigen :: Ref<Eigen :: ArrayXd> p_philnOut)
const = 0 ;
79
80
81
82 /// \brief Get the number of regimes allowed for the asset to be reached
at the current time step
83 /// If \f$ t \f$ is the current time, and $\f$ dt \f$ the resolution
step, this is the number of regime allowed on \f$[ t— dt, t[\{$
84 virtual int getNbRegime() const = 0 ;
85
86 /// \brief get the simulator back
87 virtual std::shared_ptr< StOpt:: SimulatorDPBase > getSimulator () const =
0;
88
89 /// \brief get back the dimension of the control
90 virtual int getNbControl() const = 0 ;
91
92 /// \brief get size of the function to follow in simulation
93 virtual int getSimuFuncSize() const = 0;
94

95 };
96 }
97 #endif / * OPTIMIZERDPBASE H x/

We detail the different methods to implement in addition to the methods of “Optimizer-
Base.h”:

e the “stepOptimize” methods is used in optimization. We want to calculate the optimal
value at current ¢; at a grid point p_stock using a grid p_grid at the next date t;,1,
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the continuation values for all regimes p_condEsp permitting to calculate conditional
expectation of the optimal value function calculated at the previously treated time
step t;11. From a grid point p_stock it calculates the function values and the optimal
controls. It returns a pair where the

— first element is a matrix (first dimension is the number of simulations, second
dimension the number of regimes) giving the function value,

— second element is a matrix (first dimension is the number of simulations, second
dimension the number of controls) giving the optimal control.

the “stepSimulate” method is used after optimization using the continuation values
calculated in the optimization part. From a state p_state (storing the X**), the contin-
uation values calculated in optimization p_continuation, the optimal functions values
along the current trajectory are stored in p_phiInOut.

In the case of a gas storage [21], the holder of the storage can inject gas from the network
in the storage (paying the market price) or withdraw gas from the storage on the network
(receiving the market price). In this case the Optimize object is given in . You can
have a look at the implementation of the “getCone” method.

5.2.2 The framework in optimization

Once an Optimizer is derived for the project, and supposing that a full grid is used for the
stock discretization, the framework provides a|[“TransitionStepRegressionDPDist”| object in
MPI that permits to solve the optimization problem with distribution of the data on one
time step with the following constructor:

TransitionStepRegressionDPDist (const shared_ptr<FullGrid> &

p-pGridCurrent ,
const shared_ptr<FullGrid> &
p-pGridPrevious ,
const shared_ptr<OptimizerDPBase > &
p-pOptimize) :

with

e p_pGridCurrent is the grid at the current time step (¢;),

e p_pGridPrevious is the grid at the previously treated time step (¢;41),

e p_pOptimize the optimizer object

Remark 6 A similar object is available without the MPI distribution framework [“Transid

[tzonStep RegressionDP”| with still enabling parallelization with threads and MPI on the cal-

culations on the full grid points.

Remark 7 In the case of sparse grids with only parallelization on the calculations (threads
and MPI) | “TransitionStepRegressionDPSparse”| object can be used

The main method is
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std :: vector< shared_ptr< Eigen :: ArrayXXd > > OneStep(const std::vector<
shared_ptr< Eigen :: ArrayXXd > > &p_philn ,
const shared_ptr< BaseRegression> &p_condExp)

with

e p_philn the vector (its size corresponds to the number of regimes) of matrix of optimal
values calculated at the previous time iteration for each regime . Each matrix is a
number of simulations by number of stock points matrix.

e p_condExp the conditional expectation operator,
returning a pair :

e first element is a vector of matrix with new optimal values at the current time step
(each element of the vector corresponds to a regime and each matrix is a number of
simulations by number of stock points matrix).

e second element is a vector of matrix with new optimal controls at the current time
step (each element of the vector corresponds to a control and each matrix is a number
of simulations by number of stock points matrix).

Remark 8 All “TransitionStepRegressionDP” derive from a “TransitionStepRegressionBase”
object having a pure virtual “OneStep” method.

A second method is provided permitting to dump the continuation values of the problem
and the optimal control at each time step :

void dumpContinuationValues (std:: shared _ptr<gs:: BinaryFileArchive> p_ar
const std::string &p_name, const int &p_iStep ,
const std::vector< std::shared_ptr< Eigen::
ArrayXXd > > &p_philnPrev ,
const std::vector< std::shared_ptr< Eigen::
ArrayXXd > > &p_control ,
const std::shared_ptr<BaseRegression> &
p-condExp ,
const bool &p_bOneFile) const

7

with :
e p_ar is the archive where controls and solutions are dumped,
e p_name is a base name used in the archive to store the solution and the control,

e p_philnPrev is the solution at the previous time step used to calculate the continuation
values that are stored,

e p_control stores the optimal controls calculated at the current time step,

e p_condExp is the conditional expectation object permitting to calculate conditional
expectation of functions defined at the previous time step treated p_philnPrev and
permitting to store a representation of the optimal control.
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e p_bOnekFile is set to one if the continuation and optimal controls calculated by each
processor are dumped on a single file. Otherwise the continuation and optimal controls
calculated by each processor are dumped on different files (one by processor). If the
problem gives continuation and optimal control values on the global grid that can be
stored in the memory of the computation node, it can be more interesting to dump
the continuation/control values in one file for the simulation of the optimal policy.

Remark 9 As for the “TransitionStepRegressionDP” and the “TransitionStepRegressionDPSparse”
object, their “dumpContinuationValues” doesn’t need a p_-bOneF'ile argument: obviously op-
timal controls and solutions are stored in a single file.

We give here a simple example of a time resolution using this method when the MPI distri-
bution of data is used

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifdef USE_MPI

5 #include <fstream>

6 #include <memory>

7 #include <functional>

s #include <boost/lexical_cast .hpp>

9 #include <boost/mpi.hpp>

10 #include <Eigen/Dense>

11 #include 7 geners/BinaryFileArchive.hh”

12 #include ”StOpt/core/grids/FullGrid .h”

13 #include 7StOpt/regression/BaseRegression.h”

14 #include ”StOpt/dp/FinalStepRegressionDPDist.h”

15 #include ”StOpt/dp/TransitionStepRegressionDPDist.h”

16 #include ”StOpt/core/parallelism /reconstructProcOMpi.h”

17 #include 7 StOpt/dp/OptimizerDPBase.h”

18 #include ”StOpt/dp/SimulatorDPBase.h”

19

20

21 using namespace std;

22

23 double DynamicProgrammingByRegressionDist (const shared _ptr<StOpt:: FullGrid>

&p_grid ,
24 const shared_ptr<StOpt:: OptimizerDPBase > &p_optimize ,
25 shared _ptr<StOpt:: BaseRegression> &p _regressor ,
26 const function<double(const int &, const Eigen::ArrayXd &, const
Eigen :: ArrayXd &)> &p_funcFinalValue ,
27 const Eigen :: ArrayXd &p_pointStock ,
28 const int &p_initialRegime |,
29 const string &p_fileToDump ,
30 const bool &p_bOneFile)
a1 {
32 // from the optimizer get back the simulator
33 shared_ptr< StOpt:: SimulatorDPBase> simulator = p_optimize—>getSimulator
0
34 // final values
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Table 5.1: Which “TransitionStepRegression” object to use depending on the grid used and
the type of parallelization used.

Full grid Sparse grid
Sequential “TransitionStepRegressionDP” “TransitionStepRegressionDPSparse”
Parallelization on calculations “TransitionStepRegressionDP” “TransitionStepRegressionDPSparse”
threads and MPI
Distribution of calculations | “TransitionStepRegressionDPDist” Not available
and data
35 vector< shared_ptr< Eigen:: ArrayXXd > > valuesNext = StOpt ::

FinalStepRegressionDPDist (p_grid , p_-optimize—>getNbRegime () ,
p-optimize —>getDimensionToSplit () ) (p-funcFinalValue, simulator—
getParticles ().array());

36 // dump

37 boost :: mpi:: communicator world;

38 string toDump = p_fileToDump ;

39 // test if one file generated

40 if (!p_bOneFile)

a1 toDump += 7.7 + boost::lexical_cast <string >(world.rank());

42 shared _ptr<gs:: BinaryFileArchive> ar;

43 if ((!p-bOneFile) || (world.rank() = 0))

44 ar = make_shared<gs:: BinaryFileArchive >(toDump. c_str (), "w”);

45 // mame for object in archive

46 string nameAr = ” Continuation”;

a7 for (int iStep = 0; iStep < simulator—>getNbStep (); ++iStep)

48

{

49 shared_ptr<Eigen :: ArrayXXd> asset (new Eigen :: ArrayXXd(simulator —
stepBackwardAndGetParticles () ));

50 // conditional expectation operator

51 p-regressor —>updateSimulations (((iStep = (simulator—>getNbStep () —
1)) ? true : false), asset);

52 // transition object

53 StOpt:: TransitionStepRegressionDPDist transStep (p-grid, p-grid,
p-optimize) ;

54 pair< vector< shared_ptr< Eigen::ArrayXXd > > , vector< shared_ptr<
Eigen :: ArrayXXd > > > valuesAndControl = transStep.oneStep (
valuesNext , p_regressor);

55 transStep .dumpContinuationValues (ar, nameAr, iStep , valuesNext ,
valuesAndControl.second, p_regressor, p_bOneFile);

56 valuesNext = valuesAndControl. first ;

57 }

58 // reconstruct a small grid for interpolation

59 return StOpt:: reconstructProcOMpi(p-pointStock , p_grid, valuesNext |

p-initialRegime], p_optimize—>getDimensionToSplit());

60

61 }

62 #endif

An example without distribution of the data can be found in [this file, We give at last a
table with the different “TransitionStepRegression” objects to use depending on the type of
parallelization used.
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5.2.3 The framework in simulation

Once the optimization has been achieved, continuation values are dumped in one file (or
some files) at each time step. In order to simulate the optimal policy, we can use the
continuation values previously calculated (see chapter [3) or we can use the optimal controls
calculated in optimization. In continuous optimization, using the control is more effective in
term of computational cost. When the control is discrete, interpolation of the controls can
lead to non admissible controls and simulation with the value function is more accurate.
While simulating the optimal control, two cases can occur :

e For most of the case (small dimensional case), the optimal control or the optimal
function value can be stored in the memory of the computing node and function values
and controls are stored in a single file. In this case a simulation of the optimal control
can easily be achieved by distributing the Monte Carlo simulations on the available
calculations nodes : this can be achieved by using the “SimulateStepRegression”or
“SimulateStepRegressionControl” objects at each time step of the simulation.

e When dealing with very large problems, optimization is achieved by distributing the
data on the processors and it is impossible to store the optimal command on one
node. In this case, optimal controls and optimal solutions are stored in the memory
of the node that has been used to calculate them in optimization. Simulations are
reorganized at each time step and gathered so that they occupy the same part of the
global grid. Each processor will then get from other processors a localized version
of the optimal control or solution that it needs. This methodology is used in the
“SimulateStepRegressionDist” and “SimulateStepRegressionControlDist” objects.

We detail the simulations objects using the optimal function value calculated in optimization
and the optimal control for the case of very big problems.

e Simulation step using the value function calculated in optimization :

In order to simulate one step of the optimal policy, an object |“SimulateStepRegres-|

is provided with constructor

1 SimulateStepRegressionDist (gs:: BinaryFileArchive &p_ar, const int &
p-iStep, const std::string &p_nameCont,
2 const shared_ptr<FullGrid> &

p-pGridFollowing , const shared_ptr<
OptimizerDPBase > &p_pOptimize ,
3 const bool &p_bOneFile)

where

— p_ar is the binary archive where the continuation values are stored,

— piStep is the number associated to the current time step (0 at the beginning
date of simulation, the number is increased by one at each time step simulated),

— p-nameCont is the base name for continuation values,

— p_GridFollowing is the grid at the next time step (p-iStep + 1),
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— p_Optimize the Optimizer describing the transition from one time step to the
following one,

— p_OneFile equal to true if a single archive is used to store continuation values.

Remark 10 A version without distribution of data but with multithreaded and with
MPI possible on calculations is available with the object| “SimulateStep Regression”. The,
p-OnelF'ile argument is omitted during construction.|

This object implements the method “oneStep”

1 void oneStep(std::vector<StateWithStocks > &p_statevector , Eigen::
ArrayXXd &p_philnOut)

where:

— p_statevector store the states for the all the simulations: this state is updated by
application of the optimal command,

— p_philnOut stores the gain/cost functions for all the simulations: it is updated
by the function call. The size of the array is (nb, nbSimul) where nb is given
by the “getSimuFuncSize” method of the optimizer and nbSimul the number of
Monte Carlo simulations.

An example of the use of this method to simulate an optimal policy with distribution
is given below:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (
GNU LGPL)

4 #ifndef SIMULATEREGREGRESSIONDIST H

5 #define SIMULATEREGREGRESSIONDIST H

6 #include <functional>

7 #include <memory>

s #include <Eigen/Dense>

9 #include <boost/mpi.hpp>

10 #include 7 geners/BinaryFileArchive.hh”

11 #include ”StOpt/core/grids/FullGrid .h”

12 #include 7StOpt/core/utils /StateWithStocks.h”

13 #include 7StOpt/dp/SimulateStepRegressionDist .h”

14 #include ”StOpt/dp/OptimizerDPBase.h”

15 #include ”StOpt/dp/SimulatorDPBase.h”

16

17
18 /#% \file SimulateRegressionDist.h
19 % \brief Defines a simple program showing how to use simulation

20 % A simple grid is used

21 % \author Xavier Warin

22 %/

23

24

25 /// \brief Simulate the optimal strategy , mpi version
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26 /// \param p_grid grid used for deterministic state (

stocks for example)

27 /// \param p_optimize optimizer defining the optimization
between two time steps

28 /// \param p_funcFinalValue function defining the final value

29 /// \param p_pointStock initial point stock

30 /// \param p_initialRegime regime at initial date

s1 /// \param p_fileToDump name associated to dumped bellman
values

s2 /// \param p_bOneFile do we store continuation values in

only one file

33 double SimulateRegressionDist (const std::shared_ptr<StOpt:: FullGrid> &

34

35

36
37
38
39
40
41
42
43

44
45
46
47
48

49
50
51
52
53
54
55
56
57

58
59
60

61
62
63

64

p-grid ,

const std::shared_ptr<StOpt::
OptimizerDPBase > &p_optimize ,

const std::function<double(const int &,
const Eigen :: ArrayXd &, const Eigen ::
ArrayXd &)> &p_funcFinalValue ,

const Eigen :: ArrayXd &p_pointStock ,

const int &p_initialRegime |,

const std::string &p_fileToDump ,

const bool &p_bOneFile)

boost :: mpi:: communicator world;

// from the optimizer get back the simulator

std :: shared_ptr< StOpt:: SimulatorDPBase> simulator = p_optimize—>
getSimulator () ;

int nbStep = simulator—>getNbStep () ;

std :: vector< StOpt:: StateWithStocks> states;

states.reserve (simulator —>getNbSimul() ) ;

for (int is = 0; is < simulator—>getNbSimul(); ++is)
states.push_back (StOpt:: StateWithStocks (p-initialRegime ,

p-pointStock , Eigen :: ArrayXd:: Zero (simulator —>getDimension () )
));

std :: string toDump = p_fileToDump ;

// test if one file generated

if (!p-bOneFile)
toDump += 7.7 + boost::lexical_cast <std::string >(world.rank());

gs:: BinaryFileArchive ar (toDump.c_str (), 7r”);

// name for continuation object in archive

std :: string nameAr = ” Continuation”;

// cost function

Eigen :: ArrayXXd costFunction = Eigen :: ArrayXXd:: Zero(p-optimize —>
getSimuFuncSize (), simulator—>getNbSimul());

for (int istep = 0; istep < nbStep; +tistep)

{
StOpt :: SimulateStepRegressionDist (ar, nbStep — 1 — istep , nameAr,

p-grid , p_optimize, p_bOneFile).oneStep(states, costFunction

);

// new stochastic state

Eigen :: ArrayXXd particles = simulator—>
stepForwardAndGetParticles () ;

for (int is = 0; is < simulator—>getNbSimul(); 4++is)
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65 states [is].setStochasticRealization (particles.col(is));
66

67
}
68 // final : accept to exercise if not already done entirely (here
suppose one function to follow)

69 for (int is = 0; is < simulator—>getNbSimul(); ++is)

70 costFunction (0, is) += p_funcFinalValue(states[is]. getRegime(),
states[is].getPtStock (), states[is].getStochasticRealization
()) * simulator—>getActu() ;

71

72 return costFunction .mean () ;

73

}

74

75 #endif /+ SIMULATEREGRESSIONDIST H x/

The version of the previous example using a single archive storing the control/solution

is given in [this filel

e Simulation step using the optimal controls calculated in optimization :

1 SimulateStepRegressionControlDist (gs:: BinaryFileArchive &p-ar, const
int &p-iStep, const std::string &p-nameCont,

2 const std :: shared _ptr<FullGrid> &
p-pGridCurrent ,

3 const std :: shared_ptr<FullGrid> &
p-pGridFollowing ,

4 const std::shared_ptr<
OptimizerDPBase > &p_pOptimize ,

5 const bool &p_bOneFile);

where

— p_ar is the binary archive where the continuation values are stored,

— p_iStep is the number associated to the current time step (0 at the beginning
date of simulation, the number is increased by one at each time step simulated),

— p_nameCont is the base name for control values,
— p_GridCurrent is the grid at the current time step (p-iStep),
— p_GridFollowing is the grid at the next time step (p-iStep + 1),

— p_Optimize is the Optimizer describing the transition from one time step to the
following one,

— p_OneF'ile equals to true if a single archive is used to store continuation values.

Remark 11 A version where a single archive storing the control/solution is used is
available with the object | “SvmulateStep RegressionControl”|

This object implements the method “oneStep”
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1 void omneStep(std::vector<StateWithStocks > &p_statevector , Eigen::
ArrayXd &p_philnOut)

where:

— p_statevector stores for all the simulations the state : this state is updated by
application of the optimal commands,

— p_philnOut stores the gain/cost functions for all the simulations: it is updated
by the function call. The size of the array is (nb, nbSimul) where nb is given
by the “getSimuFuncSize” method of the optimizer and nbSimul the number of
Monte Carlo simulations.

An example of the use of this method to simulate an optimal policy with distribution
is given below:

// Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (
GNU LGPL)

4 #ifdef USEMPI

5 #ifndef SIMULATEREGREGRESSIONCONTROLDIST H

6 #define SIMULATEREGREGRESSIONCONTROLDIST H

7 #include <functional>

s #include <memory>

9 #include <Eigen/Dense>

10 #include <boost/mpi.hpp>

11 #include 7 geners/BinaryFileArchive.hh”

12 #include ”StOpt/core/grids/FullGrid .h”

13 #include ”StOpt/core/utils/StateWithStocks.h”

14 #include ”StOpt/dp/SimulateStepRegressionControlDist .h”

15 #include ”StOpt/dp/OptimizerDPBase.h”

16 #include ”StOpt/dp/SimulatorDPBase.h”

17

[un

18
19 /%% \file SimulateRegressionControlDist.h
20 % \brief Defines a simple program showing how to use simulation

21 % A simple grid is wused
22 % \author Xavier Warin
23 %/

26 /// \brief Simulate the optimal strategy using optimal controls

calculated in optimization , mpi version

27 /// \param p_grid grid used for deterministic state (
stocks for example)

28 /// \param p_optimize optimizer defining the optimization
between two time steps

20 /// \param p_funcFinalValue function defining the final value

30 /// \param p_pointStock initial point stock

s1 /// \param p_initialRegime regime at initial date

s2 /// \param p_fileToDump name associated to dumped bellman
values
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33 /// \param p_bOneFile do we store continuation values in
only one file

32 double SimulateRegressionControlDist (const std::shared _ptr<StOpt::
FullGrid> &p_grid ,

35 const std::shared_ptr<StOpt::
OptimizerDPBase > &p_optimize ,
36 const std::function<double(const int

&, const Eigen:: ArrayXd &,
const Eigen:: ArrayXd &)> &
p-funcFinalValue ,

37 const Eigen :: ArrayXd &p_pointStock ,

38 const int &p_initialRegime ,

39 const std::string &p_fileToDump ,

40 const bool &p_bOneFile)

a1 {

42 boost :: mpi:: communicator world;

43 // from the optimizer get back the simulator

44 std :: shared_ptr< StOpt:: SimulatorDPBase> simulator = p_optimize—>
getSimulator () ;

45 int nbStep = simulator—>getNbStep () ;

46 std :: vector< StOpt:: StateWithStocks> states;

a7 states.reserve (simulator—>getNbSimul () ) ;

48 for (int is = 0; is < simulator—>getNbSimul(); ++is)

49 states .push_back (StOpt:: StateWithStocks (p_initialRegime ,

p-pointStock , Eigen :: ArrayXd:: Zero (simulator —>getDimension () )

)

)
50 std :: string toDump = p_fileToDump ;
51 // test if one file generated
52 if (!p_bOneFile)
53 toDump += 7.7 + boost::lexical_cast <std::string >(world.rank());
54 gs:: BinaryFileArchive ar(toDump.c_str (), "r”);
55 // name for continuation object in archive
56 std :: string nameAr = ” Continuation”;
57 // cost function
58 Eigen :: ArrayXXd costFunction = Eigen :: ArrayXXd:: Zero(p_optimize —>
getSimuFuncSize (), simulator—>getNbSimul());
59 for (int istep = 0; istep < nbStep; ++istep)
60
{
61 StOpt:: SimulateStepRegressionControlDist (ar, nbStep — 1 — istep ,

nameAr, p_grid, p_grid, p_optimize, p_bOneFile).oneStep (
states , costFunction);

62

63 // new stochastic state

64 Eigen :: ArrayXXd particules = simulator—

stepForwardAndGetParticles () ;

65 for (int is = 0; is < simulator —>getNbSimul(); ++is)

66 states [is].setStochasticRealization (particules.col(is));

67 }

68 // final : accept to exercise if not already done entirely (here
suppose one function to follow)

69 for (int is = 0; is < simulator—>getNbSimul(); ++is)

70 costFunction (0, is) += p_funcFinalValue(states[is].getRegime(),

states [is].getPtStock (), states[is].getStochasticRealization
()) = simulator—>getActu() ;
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71
72 return costFunction .mean() ;

73 }

74

75 #endif /x SIMULATEREGRESSIONCONTROLDIST H x/
76 #endif

The version of the previous example using a single archive storing the control/solution

is given in [this filel

In the table below we indicate which simulation object should be used at each time step
depending on the “TransitionStepRegressionD” object used in optimization.

5.3 Solving the problem for X; " stochastic

In this part we suppose that X3 is controlled but is stochastic.

5.3.1 Requirement to use the framework

In order to use the framework, a business object describing the business on one time step
from one state is derived from “OptimizerNoRegressionDPBase.h” itself derived from “Op-
timizerBase.h” .

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef OPTIMIZERNOREGRESSIONDPBASE H

5 #define OPTIMIZERNOREGRESSIONDPBASE H

6 #include <Eigen/Dense>

7 #include ”StOpt/core/utils /StateWithStocks.h”

s #include ”StOpt/core/grids/SpaceGrid.h”

o #include ”StOpt/regression/BaseRegression.h”

10 #include 7StOpt/regression/GridAndRegressedValue.h”

11 #include ”StOpt/dp/SimulatorDPBase.h”

12 #include ”StOpt/dp/OptimizerBase.h”

13

4 /*%x \file OptimizerNoRegressionDPBase.h

15 % \brief Define an abstract class for Dynamic Programming problems solve by

Monte Carlo but without regression method

=

16k to compute conditional expectation.
17 % \author Xavier Warin
18 %/

20 namespace StOpt

x|

23 /// \class OptimizerNoRegressionDPBase OptimizerNoRegressionDPBase.h

24 /// Base class for optimizer for Dynamic Programming solved without
regression method to compute conditional expectation.

25 class OptimizerNoRegressionDPBase : public OptimizerBase
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26

27
28
29 public
30
31 OptimizerNoRegressionDPBase () {}
32
33 virtual ~OptimizerNoRegressionDPBase() {}
34
35 /// \brief defines the diffusion cone for parallelism
36 /// \param p_regionByProcessor region (min max) treated by the
processor for the different regimes treated
37 /// \return returns in each dimension the min max values in the stock
that can be reached from the grid p_gridByProcessor for each regime
38 virtual std::vector< std::array< double, 2> > getCone(const std::vector<
std :: array< double, 2> > &p_regionByProcessor) const = 0;
39
40 /// \brief defines the dimension to split for MPI parallelism
a1 Yy For each dimension return true is the direction can be split
42 virtual Eigen:: Array< bool, Eigen ::Dynamic, 1> getDimensionToSplit ()
const = 0 ;
43
44 /// \brief defines a step in optimization
45 /// \param p_stock coordinates of the stock point to treat
46 /// \param p_valNext Optimized values at next time step for each
regime
a7 /// \param p_regressorCur Regressor at the current date
48 /// \return  a pair
49 /// — for each regimes (column) gives the solution for each
particle (row)
50 Yy — for each control (column) gives the optimal control
for each particle (rows)
s .
52 virtual std::pair< Eigen::ArrayXXd, Eigen :: ArrayXXd> stepOptimize (const
Eigen :: ArrayXd  &p_stock,
53 const std::vector< GridAndRegressedValue > &p_valNext ,
54 std :: shared_ptr< BaseRegression > p-regressorCur) const = 0;
55
56
57
58 /// \brief Defines a step in simulation using interpolation in controls
59 /// \param p_grid grid at arrival step after command
60 /// \param p_control defines the controls
61 /// \param p_state defines the state value (modified)
62 /// \param p_philnOut defines the value function (modified): size
number of functions to follow
63 virtual void stepSimulateControl(const std::shared_ptr< StOpt:: SpaceGrid>
&p_grid , const std::vector< StOpt:: GridAndRegressedValue > &
p-control ,
64 StOpt :: StateWithStocks &p_state ,
65 Eigen :: Ref<Eigen :: ArrayXd> p_philnOut)
const = 0 ;
66
67
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68
69 /// \brief Get the number of regimes allowed for the asset to be reached
at the current time step

70 /// If \f$ t \f$ is the current time, and $\f$ dt \f$ the resolution
step, this is the number of regime allowed on \f$[ t— dt, t[\f$

71 virtual int getNbRegime () const = 0 ;

72

73 /// \brief get the simulator back

74 virtual std::shared_ptr< StOpt:: SimulatorDPBase > getSimulator () const =
0;

75

76 /// \brief get back the dimension of the control

77 virtual int getNbControl() const = 0 ;

78

79 /// \brief get size of the function to follow in simulation

80 virtual int getSimuFuncSize() const = 0;

81

82 };

83 }

sa #endif /+x OPTIMIZERDPBASE H x/

In addition to the methods of “OptimizerBase.h” the following method is needed :

e the “stepOptimize” methods is used in optimization. We want to calculate the optimal
value regressed at current ¢; at a grid point p_stock using a grid p_grid at the next
date ti+1,

From a grid point p_stock it calculates the function values regressed and the optimal

controls regressed. It returns a pair where the
— first element is a matrix (first dimension is the number of functions in the regres-
sion, second dimension the number of regimes) giving the function value regressed,

— second element is a matrix (first dimension is the number of functions in the
regression, second dimension the number of controls) giving the optimal control
regressed.

In this case of the optimization of an actualized portfolio with dynamic:

x,t
x,t
Xl

dX5t = X3
where X7 is the risky asset value, the Optimize object is given in [this filel

5.3.2 The framework in optimization

Once an Optimizer is derived for the project, and supposing that a full grid is used for the
stock discretization, the framework provides a |“IransitionStepDPDist”| object in MPI that
permits to solve the optimization problem with distribution of the data on one time step
with the following constructor:
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gt W N =

1

TransitionStepDPDist (const shared_ptr<FullGrid> &p_pGridCurrent ,
const shared_ptr<FullGrid> &p_pGridPrevious ,

const std::shared_ptr<BaseRegression> &p_regressorCurrent ,

const std::shared_ptr<BaseRegression> &p_regressorPrevious ,
const shared_ptr<OptimizerNoRegressionDPBase > &p_pOptimize):

with

p-pGridCurrent is the grid at the current time step (¢;),
p_pGridPrevious is the grid at the previously treated time step (¢;11),

p-regressorCurrent is a regressor at the current date (to evaluate the function at the
current date)

p-regressor Previous is a regressor at the previously treated time step (¢;41) permitting
to evaluate a function at date t;,1,

p_pOptimize the optimizer object

Remark 12 A similar object is available without the MPI distribution framework|“Transid
with still enabling parallelization with threads and MPI on the calculations on
the full grid points.

Remark 13 The case of sparse grids in currently not treated in the framework.

The main method is

std :: pair< std::shared_ptr< std::vector< Eigen::ArrayXXd > > , std::
shared _ptr< std::vector< Eigen::ArrayXXd > > > oneStep (const std ::
vector< Eigen :: ArrayXXd > &p_philn)

with

p-philn the vector (its size corresponds to the number of regimes) of matrix of optimal
values calculated regressed at the previous time iteration for each regime . Each matrix
is a number of function regressor at the previous date by number of stock points matrix.

returning a pair :

first element is a vector of matrix with new optimal values regressed at the current time
step (each element of the vector corresponds to a regime and each matrix is a number
of regressed functions at the current date by the number of stock points matrix).

second element is a vector of matrix with new optimal regressed controls at the current
time step (each element of the vector corresponds to a control and each matrix is a
number of regressed controls by the number of stock points matrix).

Remark 14 All “TransitionStepDP” derive from a “TransitionStepBase” object having a

pure

virtual “OneStep” method.
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A second method is provided permitting to dump the the optimal control at each time step:

1 void dumpValues(std ::shared_ptr<gs:: BinaryFileArchive> p_ar
const std::string &p_name,

9

const int &p_iStep ,

const std::vector< Eigen::ArrayXXd > &p_control, const

bool &p_bOneFile) const

with :

e p_ar is the archive where controls and solutions are dumped,

e p_name is a base name used in the archive to store the solution and the control,

e p_control stores the optimal controls calculated at the current time step,

e p bOneFile is set to one if the optimal controls calculated by each processor are
dumped on a single file. Otherwise the optimal controls calculated by each processor
are dumped on different files (one by processor). If the problem gives optimal control
values on the global grid that can be stored in the memory of the computation node,
it can be more interesting to dump the control values in one file for the simulation of

the

optimal policy.

Remark 15 As for the “TransitionStepDP”, its “dumpValues” doesn’t need a p_-bOneF'ile
argument: obviously optimal controls are stored in a single file.

We give here a simple example of a time resolution using this method when the MPI distri-
bution of data is used

-

// Copyright (C) 2016 EDF

2 // All Rights Reserved
3 // This code is published under the GNU Lesser General Public License (GNU

LGPL)

4 #ifdef USE_MPI

5 #include
6 #include
7 #include
s #include
9 #include
10 #include
11 #include
12 #include
13 #include
14 #include
15 #include
16 #include
17 #include
18 #include

19

<fstream>

<boost /mpi.hpp>

<memory>

<functional >
<boost/lexical_cast .hpp>
<Eigen/Dense>
"geners/BinaryFileArchive .hh”
”StOpt/core/grids/FullGrid .h”

"StOpt/regression /LocalConstRegression .h”
”StOpt/regression /GridAndRegressedValue . h”

"StOpt/dp/FinalStepRegressionDPDist . h”
7StOpt/dp/ TransitionStepDPDist . h”

7StOpt/core/parallelism /reconstructProcOMpi.h”
"test /c++/tools /dp/OptimizePortfolioDP .h”

20 using namespace std;
21 using namespace Eigen;

23 double

DynamicProgrammingPortfolioDist (const shared_ptr<StOpt:: FullGrid> &
p-grid ,
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24

25
26

27
28
29
30
31
32
33
34
35
36
37
38

39
40

41
42

43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65

const shared_ptr<OptimizePortfolioDP >
&p _optimize

const ArrayXi &p_nbMesh

const function<double(const int &,
const ArrayXd &, const ArrayXd &)>

&p_funcFinalValue ,

const ArrayXd &p_initialPortfolio ,

const string &p_fileToDump ,

const bool &p_bOneFile

)

// initialize simulation
p_optimize—>initializeSimulation () ;

// store regressor

shared _ptr<StOpt:: LocalConstRegression> regressorPrevious;

// store final regressed values in object valuesStored

shared _ptr< vector< ArrayXXd > > valuesStored = make_shared< vector<
ArrayXXd> >(p_optimize —>getNbRegime () ) ;

{

vector< shared_ptr< ArrayXXd > > valuesPrevious = StOpt::
FinalStepRegressionDPDist (p_grid , p_optimize—>getNbRegime (),
p-optimize —>getDimensionToSplit ()) (p-funcFinalValue, #p_optimize—>
getCurrentSim () ) ;

// regressor operator

regressorPrevious = make_shared<StOpt:: LocalConstRegression >(false ,
p-optimize —>getCurrentSim () , p-nbMesh) ;

for (int iReg = 0; iReg < p-optimize—>getNbRegime(); ++iReg)
(*valuesStored) [iReg] = regressorPrevious—>

getCoordBasisFunctionMultiple (valuesPrevious [iReg]—>transpose

()).transpose () ;

}

boost :: mpi:: communicator world;
string toDump = p_fileToDump ;
// test if one file generated
if (!'p-bOneFile)
toDump += 7 _7 + boost::lexical_cast <string >(world.rank());
shared_ptr<gs:: BinaryFileArchive> ar;
if ((!p-bOneFile) || (world.rank() = 0))
ar = make_shared<gs:: BinaryFileArchive >(toDump. c_str (), "w”’);
// name for object in archive
string nameAr = 7 OptimizePort” ;
// iterate on time steps
for (int iStep = 0; iStep < p-optimize—>getNbStep(); ++iStep)

{

// step backward for simulations

p-optimize—>oneStepBackward () ;

// create regressor at the given date

bool bZeroDate = (iStep — p_optimize—>getNbStep() — 1);

shared _ptr<StOpt:: LocalConstRegression> regressorCur = make_shared<
StOpt :: LocalConstRegression >(bZeroDate, p_optimize—>getCurrentSim
(), p-nbMesh);

// transition object

StOpt:: TransitionStepDPDist transStep (p_grid, p_grid, regressorCur |,
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66

67
68

69

70

71

72

73

74

75

76

regressorPrevious , p_optimize);

pair< shared_ptr< vector< ArrayXXd> >, shared_ptr< vector< ArrayXXd >
> > valuesAndControl = transStep.oneStep (xvaluesStored) ;

// dump control values

transStep .dumpValues(ar, nameAr, iStep, *valuesAndControl.second,
p-bOneFile) ;

valuesStored = valuesAndControl. first ;

// shift regressor

regressorPrevious = regressorCur ;

}

// interpolate at the initial stock point and initial regime( 0 here) (
take first particle)

shared_ptr <ArrayXXd> topRows = make_shared <ArrayXXd>((xvaluesStored) [0].
topRows (1) ) ;

return StOpt:: reconstructProcOMpi(p_initialPortfolio , p_grid, topRows,
p-optimize —>getDimensionToSplit () ) ;

}

77 #endif

An example without distribution of the data can be found in

5.3.3 The framework in simulation

Not special framework is available in simulation. Use the function “SimulateStepRegres-
sionControl” or “SimulateStepRegressionControlDist” described in the section [5.2.3]
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Chapter 6
The Python API

In order to use the Python API, it is possible to use only the mapping of the grids, continu-
ation values, and regression object and to program an equivalent of |“TransitionStepRegres-|
and of [ SimulateStepRegression”], [* SimulateStepRegressionControl”| in python.
No mapping is currently available for [“TransitionStepDP”| An example using python is
given by

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 import numpy as np

5 import StOptReg as reg

¢ import StOptGrids

7 import StOptGlobal

8

o class TransitionStepRegressionDP :

10

11 def __init__(self, p_pGridCurrent, p_pGridPrevious, p_pOptimize):
12

13 self . m_pGridCurrent = p_pGridCurrent

14 self . m_pGridPrevious = p_pGridPrevious

15 self .m_pOptimize = p_pOptimize

16

17 def oneStep(self, p_philn, p_condExp):

18

19 nbRegimes = self.m_pOptimize.getNbRegime ()

20 phiOut = list (range (nbRegimes))

21 nbControl = self.m_pOptimize.getNbControl ()

22 controlOut = list (range(nbControl))

23

24 # only if the processor is working

25 if self.m_pGridCurrent.getNbPoints() > 0:

26

27 # allocate for solution

28 for iReg in range(nbRegimes):

29 phiOut [iReg] = np.zeros ((p-condExp.getNbSimul (), self.

m_pGridCurrent . getNbPoints () ))
30
31 for iCont in range(nbControl):
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res
res
res

controlOut [iCont| = np.zeros ((p-condExp.getNbSimul(), self.
m_pGridCurrent . getNbPoints () ))

# number of threads
nbThreads = 1

contVal = []

for iReg in range(len(p-philn)):
contVal.append(reg.ContinuationValue (self.m_pGridPrevious,
p-condExp, p_philn[iReg]))

# create iterator on current grid treated for processor
iterGridPoint = self.m_pGridCurrent.getGridIteratorInc (0)

# iterates on points of the grid
for ilter in range(self.m_pGridCurrent.getNbPoints()):

if iterGridPoint.isValid ():
pointCoord = iterGridPoint.getCoordinate ()
# optimize the current point and the set of regimes

solutionAndControl = self.m_pOptimize.stepOptimize (self.

m_pGridPrevious, pointCoord, contVal, p_philn)

# copy solution
for iReg in range(self.m_pOptimize.getNbRegime()):
phiOut [iReg][: , iterGridPoint . getCount ()] =
solutionAndControl [0][: ,iReg]

for iCont in range(nbControl):
controlOut [iCont][: ,iterGridPoint.getCount ()] =
solutionAndControl [1][: ,iCont ]

iterGridPoint . nextInc (nbThreads)

= ]

.append (phiOut)
.append (controlOut)

return res

This object can be used as in a time step optimization as follows

1 # Copyright (C) 2016 EDF
2 # All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU

3

© 0w N O U

LGPL)

import StOptReg

import StOptGeners

import TransitionStepRegressionDP as trans
import FinalStepRegressionDP as final

def DynamicProgrammingByRegression(p_grid, p_optimize, p_regressor ,
p_-funcFinalValue , p_pointStock, p_initialRegime , p_fileToDump, key="
Continuation”):
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4
5

# from the optimizer get back the simulation

simulator = p_optimize.getSimulator ()

# final values

valuesNext = final.FinalStepRegressionDP (p_grid, p_optimize.getNbRegime ()
) .operator (p_funcFinalValue , simulator.getParticles ())

archiveToWrite = StOptGeners. BinaryFileArchive (p_fileToDump, "w”)
nsteps = simulator.getNbStep ()
# iterate on time steps
for iStep in range(nsteps):
asset = simulator.stepBackwardAndGetParticles ()

# conditional expectation operator
if iStep = (simulator.getNbStep() — 1):
p-regressor .updateSimulations (True, asset)
else:
p_regressor .updateSimulations (False, asset)

# transition object

transStep = trans.TransitionStepRegressionDP (p_grid, p-_grid,
p-optimize)

valuesAndControl = transStep.oneStep(valuesNext, p_regressor)

valuesNext = valuesAndControl [0]

# Dump the continuation values in the archive:
archiveToWrite.dumpGridAndRegressedValue (key, nsteps — 1 — iStep ,
valuesNext , p_regressor, p-_grid)

# interpolate at the initial stock point and initial regime
return (p-grid.createlnterpolator (p_pointStock).applyVec(valuesNext |
p-initialRegime]) ) .mean ()

Some examples are available in the test directory (for example [for swing options]).

Another approach more effective in term of computational cost consists in mapping the sim-

ulator object derived from fthe SimulatorDPBase object| and optimizer object derived from

fthe OptimizerDPBase object| and to use the high level python mapping of jand

leStepRegression”| In the test part of the library some [Black-Scholes simulator| and some

[Mean reverting simulator for a future curve deformation| are developed and some examples

of the mapping are achieved in the [BoostPythonSimulators.cpp filel Similarly the

lclass for swings options, | optimizer for a fictitious swing in dimension 2| loptimizer for aj

lzas storagel optimizer for a gas storage with switching cost| are mapped to python in the

[BoostPythonOptimizers.cpp filel

In the example below we describe the use of this high level interface for the swing options

with a Black Scholes simulator : we give in this example the mapping of the mostly used

objects:

# Copyright (C) 2016 EDF

# All Rights Reserved

# This code is published under the GNU Lesser General Public License (GNU
LGPL)

import math
import numpy as np
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6 import
7 import
s import
9 import

10 import

11 import

12 import

13

14 # unit

unittest
StOptGrids
StOptReg
StOptGlobal

Utils

Simulators as sim
Optimizers as opt

test

for global shape

S ) ) ) )LL)

15 FHA I i 111

16

17 class OptimizerConstruction (unittest . TestCase):

18

19 def test(self):

20 try:

21 imp. find _module ( "mpidpy ")

22 found =True

23 except:

24 print ("Not parallel module found 7)

25 found = False

26

27 if found

28 from mpidpy import MPI

29 comm = MPI.COMMWORLD

30 initialValues = np.zeros(l,dtype=np.float) + 1.

31 sigma = np.zeros (1.) + 0.2

32 mu = np.zeros(1l.) + 0.05

33 corr = np.ones ((1.,1.),dtype=np. float)

34 # number of step

35 nStep = 30

36 # exercise dates

37 dates = np.linspace (0., 1., nStep + 1)

38 T= dates[len(dates) — 1]

39 nbSimul = 10 # simulation number (optimization and simulation)

40 # simulator

a1 FHFHFHFHA

42 bsSim = sim.BlackScholesSimulator (initialValues , sigma, mu, corr,
T, len(dates) — 1, nbSimul, False)

43 strike = 1.

44 # Pay off

45 payOff= Utils.BasketCall (strike)

46 # optimizer

a7 FHAHHHAHAE

48 N=3 # number of exercise dates

49 swiOpt = opt.OptimizerSwingBlackScholes (payOff ,N)

50 # link simulator to optimizer

51 swiOpt.setSimulator (bsSim)

52 # archive

53 THHHHAHE

54 ar = StOptGlobal.BinaryFileArchive (” Archive” ,”w”)

55 # regressor

56 FHHFHFHAH

57 nMesh = 1

58 regressor = StOptReg. LocalLinearRegression (nMesh)
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# Grid

HHAHA

# low value for the meshes

lowValues =np.array ([0.] ,dtype=np. float)

# size of the meshes

step = np.array ([1.],dtype=np. float)

# number of steps

nbStep = np.array ([N—1], dtype=np.int32)

gridArrival = StOptGrids. RegularSpaceGrid (lowValues ,step ,nbStep)

gridStart = StOptGrids. RegularSpaceGrid (lowValues ,step ,nbStep
-1)

# pay off function for swing

payOffBasket = Utils.BasketCall(strike);

payoff = Utils.PayOffSwing (payOffBasket ,N)

dir (payoff)

print ("payoff” , payoff.set (0,np.array ([0.5],dtype=np. float), np.
array ([1.],dtype=np. float)))

# final step

FHHAFHAHAHTHE

asset =bsSim.getParticles ()

fin = StOptGlobal.FinalStepRegressionDP (gridArrival ,1)

values = fin.set( payoff, asset)

# transition time step

FHHHHFHAHARARHAHARAAAE

# on step backward and get asset

asset = bsSim.stepBackwardAndGetParticles ()

# update regressor

regressor . updateSimulations (0, asset)

transStep = StOptGlobal. TransitionStepRegressionDP (gridStart ,
gridArrival ,swiOpt)

valuesNextAndControl=transStep .oneStep (values ,regressor)

transStep . dumpContinuationValues (ar,” Continuation” ,1,
valuesNextAndControl [0] , valuesNextAndControl [1] ,regressor)

# simulate time step

FHHHHFHAHAHARHRHH A

nbSimul= 10

vecOfStates =[] # state of each simulation

for i in np.arange(nbSimul):
# one regime, all with same stock level (dimension 2), same

realization of simulation (dimension 3)
vecOfStates.append (StOptGlobal.StateWithStocks (1, np.array
([0.]) , np.zeros(1l)))

arRead = StOptGlobal.BinaryFileArchive (7 Archive” ,”r”)

simStep = StOptGlobal.SimulateStepRegression (arRead ,1,”
Continuation” ,grid ,swiOpt)

phi = np.zeros ((1,nbSimul))

NewState = VecOfStateNext = simStep.oneStep (vecOfStates, phi)

# print new state (different of C++)

print ("New vector of state”, NewState[0])

for i in np.arange(len(NewState[0])):

print(” i” , i , 7 Stock 7 , NewState[0][1].getPtStock (),
Regime 7 NewState [0][i].getRegime (), ” Stochastic
realization” |, NewState[0][i].getStochasticRealization ())
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print ("New cost function”, NewState[1])

if __name__ = ’'__main__":
unittest . main ()

Its declination in term of a time nest for optimization is given below (please notice that
the “TransitionStepRegressionDP” object is the result of the mapping between python and
c++ and given in the “StOptGlobal” module)

# Copyright (C) 2016 EDF

# All Rights Reserved

# This code is published under the GNU Lesser General Public License (GNU
LGPL)

import StOptGrids

import StOptReg

import StOptGlobal

import StOptGeners

def DynamicProgrammingByRegressionHighLevel (p_grid , p_optimize, p_regressor ,
p_funcFinalValue , p_pointStock , p_initialRegime , p_fileToDump)

# from the optimizer get back the simulation

simulator = p_optimize.getSimulator ()

# final values

fin = StOptGlobal.FinalStepRegressionDP (p_grid, p_optimize.getNbRegime () )

valuesNext = fin.set(p_funcFinalValue, simulator.getParticles())
ar = StOptGeners. BinaryFileArchive (p-fileToDump, "w”)
nameAr = ” Continuation”

# iterate on time steps
for iStep in range(simulator.getNbStep())
asset = simulator.stepBackwardAndGetParticles ()
# conditional expectation operator
if iStep = (simulator.getNbStep() — 1):
p-regressor.updateSimulations (True, asset)
else:
p-regressor .updateSimulations (False, asset)

# transition object
transStep = StOptGlobal. TransitionStepRegressionDP (p_grid , p-_grid,
p-optimize)

valuesAndControl = transStep.oneStep(valuesNext, p_regressor)

transStep . dumpContinuationValues (ar, nameAr, iStep , valuesNext ,
valuesAndControl [1], p-regressor)

valuesNext = valuesAndControl [0]

# interpolate at the initial stock point and initial regime
return (p-grid.createlnterpolator (p_pointStock).applyVec(valuesNext |
p-initialRegime]) ) .mean ()

Similarly a python time nest in simulation using the control previously calculated in opti-
mization can be given as an example by :

# Copyright (C) 2016 EDF
# All Rights Reserved
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3 # This code is published under the GNU Lesser General Public License (GNU

LGPL)

4 import numpy as np

5 import StOptReg as reg
6 import StOptGrids

7 import StOptGeners

s import StOptGlobal

9

10

11 # Simulate the optimal strategy ., threaded version

12 # p_grid grid used for deterministic state (stocks for
example)

13 # p_optimize optimizer defining the optimization between two
time steps

14 # p_funcFinalValue function defining the final value

15 # p_pointStock initial point stock

16 # p-initialRegime regime at initial date

17 # p_fileToDump name of the file used to dump continuation values

in optimization

13 def SimulateRegressionControl(p_grid, p-optimize, p_funcFinalValue,

19
20
21
22
23
24

25

26
27
28
29
30
31

32
33
34

36
37
38
39
40
41
42
43
44

46
47

p-pointStock , p_initialRegime , p_fileToDump)

simulator = p_optimize.getSimulator ()
nbStep = simulator.getNbStep ()
states = []

for i in range(simulator.getNbSimul())
states .append (StOptGlobal.StateWithStocks (p-initialRegime ,
p-pointStock , np.zeros (simulator.getDimension())))

ar = StOptGeners. BinaryFileArchive (p-fileToDump, "r”)

# name for continuation object in archive

nameAr = ” Continuation”

# cost function

costFunction = np.zeros ((p-optimize.getSimuFuncSize (), simulator.
getNbSimul ()))

# iterate on time steps
for istep in range(nbStep)
NewState = StOptGlobal.SimulateStepRegressionControl (ar, nbStep — 1 —
istep , nameAr, p_grid, p_-optimize).oneStep(states, costFunction)
# different from CH
states = NewState [0]
costFunction = NewState [1]
# new stochastic state
particles = simulator.stepForwardAndGetParticles ()

for i in range(simulator.getNbSimul())
states[i].setStochasticRealization (particles[:,1])

# final : accept to exercise if not already done entirely
for i in range(simulator.getNbSimul())
costFunction[0,i] += p-funcFinalValue.set(states[i].getRegime(),
states[i].getPtStock (), states[i].getStochasticRealization ()) x
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48

50

simulator . getActu ()

# average gain/cost
return costFunction .mean ()

Equivalent using MPI and the distribution of calculations and data can be used using the
“mpidpy” package. An example of its use can be found in [the MPT version of a swing]
loptimization and valorization.
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Part 1V

Semi Lagrangian methods
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For the Semi Lagrangian methods the C++ API is the only one available (no python
APT is currently developed).
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Chapter 7

Theoretical background

In this part, we are back to the resolution of equation .

7.1 Notation and regularity results

We denote by A the minimum and V the maximum. We denote by | | the Euclidean norm
of a vector, Q := (0,T] x R% For a bounded function w, we set

w(s, z) = w(t,y)|

lwlp = sup |w(t,z)|, [w]; = sup 5
()@ (sa)A(ty) |2 —yl+ ]t — 5|2
and |w|; = |w|p + [w];. C1(Q) will stand for the space of functions with a finite | |; norm.

For t given, we denote

lw(t, oo = sup [w(t, z)|
xCcRd

We use the classical assumption on the data of for a given K:
Sup|g|1+|aa|1+|ba|l+|fa|l+|ca|1 SK (71)

A classical result [2] gives us the existence and uniqueness of the solution in the space of
bounded Lipschitz functions:

Proposition 1 If the coefficients of the equation satisfy (7.1), there exists a unique
viscosity solution of the equation belonging to C1(Q). If uy and uy are respectively sub
and super solution of equation (1)) satisfying ui(0,.) < us(0,.) then u; < uy.

A spatial discretization length of the problem Az being given, thereafter (iyAx, .., i;Az) with
i = (i, ...,iq) € Z¢ will correspond to the coordinates of a mesh M; defining a hyper-cube
in dimension d. For an interpolation grid (&;)i—o..x € [—1,1]", and for a mesh i, the point
y;; with j = (j1, -, Ja) € [0, N]* will have the coordinate (Az(i; + 0.5(1 4 &;,)), .., Ax(iq +
0.5(1 +¢&j,)). We denote (y;5);; the set of all the grids points on the whole domain.

We notice that for regular mesh with constant volume Az? we have the following relation
for all z € R%:

min [r — y; 5| < Az. (7.2)

Z’]
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7.2 Time discretization for HJB equation

The equation is discretized in time by the scheme proposed by Camilli Falcone [22] for
a time discretization h.
q

on(t+hz) = inf Zgiqwh(w;h,i(t,x))+vh<t7¢;h,i<m>>>

acA

=1

+fa<t7 x)h‘ + Ca<t7 m)hvh(ta l’)
= wu(t,x) + ;Ielg Lo (o) (t, ) (7.3)
with
Lop(ua)(t,z) = Y %q(vh(ta Gani(t,2)) vty @y, (t,2)) — 20p(t, @)
Fhea(t, 2)on(t 7) + hfa(t )
Thit) = 2+ ba(t, )k + (04)ilt, 2) /g
Guni(t. ) = x+Dbu(t,2)h — (04)i(t, 2)\/hq

where (0,,); is the i-th column of o,. We note that it is also possible to choose other types
of discretization in the same style as those defined in [23].

In order to define the solution at each date, a condition on the value chosen for v, between 0
and h is required. We choose a time linear interpolation once the solution has been calculated
at date h:

on(t, ) = (1 — %)g(x) + %Uh(h, 2),Vt € [0, h]. (7.4)

We first recall the following result :

Proposition 2 Under the condition on the coefficients given by equation (7.1)), the solution
v, of equations (7.3) and (7.4]) is uniquely defined and belongs to C1(Q). We check that if
h < (16sup, {|oa|? + |ba|? + 1} A 2sup, |calo) ™, there exists C' such that

v —vplo < Chi. (7.5)
Moreover, there exists C independent of h such that
|'Uh‘0 S Ca
on(t,z) —on(t,y)l < Clo —yl.V(z.y) € Q*

7.3 Space interpolation

The space resolution of equation (7.3) is a achieved on a grid. The ¢* and ¢~ have to be
computed by the use of an interpolator I such that:

Uh(tv(b;r,h,i(tvx)) = [(Uh@?'))((b:,h,i(ux))?
Un(t; @qpi(t, ) =~ I(va(t,.))(dqp(t: T)).
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In order to easily prove the convergence of the scheme to the viscosity solution of the problem,
the monotony of the scheme is generally required leading to some linear interpolator slowly
converging. An adaptation to high order interpolator where the function is smooth can be
achieved using Legendre grids and Sparse grids with some truncation (see [24], [25]).
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Chapter 8

C++4+ API

In order to achieve the interpolation and calculate the semi Lagrangian value

Z%q<vh<t7¢;h,i<t,x>>  onlt, 6 st 7))
=1

a first object “SemiLagrangEspCond” is available:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef SEMILAGRANGESPCOND_H

5 #define SEMILAGRANGESPCOND_H

6 #include <Eigen/Dense>

7 #include <map>

s #include <array>

9 #include <vector>

10 #include ”StOpt/core/utils/constant.h”

11 #include ”StOpt/core/grids/InterpolatorSpectral.h”

12

3 /xx \file SemiLagrangEspCond.h

14 % \brief Semi Lagrangian method for process \f$ d x_t = b dt + \sigma dW_t
\£$

15 x where \f$ X t, b \f$ with values in \f$ {\mathbb R} " n \f$ , \f$ \sigma
\f$ a \f$ \mathbf{R} n

16 % \times \mathbf{R}'m \f$ matrix and \f$ Wt \f$ with values in \f$ \
mathbf{R} m \f{$

17 x/

Jun

19 namespace StOpt

20 {

22 /// \class SemiLagrangEspCond SemiLagrangEspCond.h
23 /// calculate semi Lagrangian operator for previously defined process.
24 class SemilLagrangEspCond

26 ///\brief interpolator
27 std :: shared _ptr<InterpolatorSpectral> m_interpolator;
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29

30
31
32
33
34
35
36
37
38
39
40

41

42
43

44
45
46
47
48
49

50

51
52
53
54

/// \brief store extremal values for the grid (min, max coordinates in
each dimension)
std :: vector <std::array< double, 2> > m_extremalValues;

/// \brief Do we use modification of volatility to stay in the domain
bool m_bModifVol ;

public

/// \brief Constructor

/// \param p_interpolator Interpolator storing the grid

/// \param p_extremalValues Extremal values of the grid

/// \param p_bModifVol do we modify volatility to stay in the
domain

SemiLagrangEspCond (const std::shared_ptr<InterpolatorSpectral> &
p-interpolator , const std::vector <std::array< double, 2> > &
p-extremalValues, const bool &p_bModifVol);

/// \brief Calculate \f$ \frac{l1}{2d} \sum_{i=1}"d \phi(x+ b dt + \
sigma_i \sqrt{dt})+ \phi(x+ b dt — \sigma_-i \sqrt{dt} \f$

//]/ where \f$ \sigma_i \f$ is column \f$ i\f$ of \f$ \sigma \f$

/// \param p_x beginning point

/// \param p_b trend

/// \param p_sig volatility matrix

/// \param p_dt Time step size

/// \return (the value calculated ,true) if point inside the domain,
otherwise (0., false)

std :: pair<double, bool> oneStep(const Eigen::ArrayXd &p_x, const Eigen
:: ArrayXd &p_b, const Eigen:: ArrayXXd &p_sig, const double &p_dt)
const ;

}s
}

55 #endif

Its constructor uses the following arguments :

e a first one “p_interpolator” defines a “spectral” interpolator on a grid : this “spectral”
interpolator is constructed from a grid and a function to interpolate (see section .
In our case, it will be used to interpolate the solution from the previous time step,

e a second one “p_extremalValues” defines for each dimension the minimal and maximal
coordinates of points belonging to the grid,

e a third one “p_bModifVol” if set to “true” permits to achieve a special treatment when
points to interpolate are outside the grid : the volatility of the underlying process is
modified (keeping the same mean and variance) trying to keep points inside the domain

(see [24]).

This object has the method “oneStep” taking

e p_z the foot of the characterize (for each dimension),

110



e p_b the trend of the process (for each dimension),
e p_sig the matrix volatility of the process,

such that the interpolation is achieved for a time step h at points p_z + p_bh £ p_sigv/h. It
returns a pair (a,b) where a contains the calculated value if the b value is true. When the
interpolation is impossible to achieve, the b value is set to false.

In order to use the API, an object deriving from the “OptimizerSLBase.h” object has
to be constructed. This object permits to define the PDE to solve (with it optimization
problem if any).

// Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef OPTIMIZERSLBASE H

5 #define OPTIMIZERSLBASE H

6 #include <vector>

7 #include <Eigen/Dense>

s #include ”StOpt/core/grids/SpaceGrid.h”

o #include ”StOpt/core/grids/FullGrid.h”

10 #include ”StOpt/core/grids/InterpolatorSpectral.h”

11 #include ”StOpt/semilagrangien/SemiLagrangEspCond.h”

-

13 /% \file OptimizerSLBase.h

14 % \brief Define an abstract class for Dynamic Programming problems
15 % \author Xavier Warin

16 */

namespace StOpt

19 {

21 /// \class OptimizerSLBase OptimizerSLBase.h

22 /// Base class for optimizer for resolution by semi Lagrangian methods of
HJB equations

23 class OptimizerSLBase

[
oo

21 {

25

26

27 public

28

29 OptimizerSLBase () {}

30

31 virtual ~“OptimizerSLBase() {}

32

33

34 /// \brief define the diffusion cone for parallelism

35 /// \param p_regionByProcessor region (min max) treated by the
processor for the different regimes treated

36 /// \return returns in each dimension the min max values in the stock
that can be reached from the grid p_gridByProcessor for each regime

37 virtual std::vector< std::array< double, 2> > getCone(const std::vector<

std ::array< double, 2> > &p_regionByProcessor) const = 0;

111



38
39
40
41

42
43
44
45

46
47

48
49
50

51

52

53
54
55
56
57
58
59

60
61
62
63

64

65
66

67

68
69
70

71
72
73

74
75
76
77
78

/// \brief defines the dimension to split for MPI parallelism

!/ For each dimension return true is the direction can be split
virtual Eigen:: Array< bool, Eigen ::Dynamic, 1> getDimensionToSplit ()
const = 0 ;

/// \brief defines a step in optimization

/// \param p_point coordinates of the point to treat

/// \param p_semilag semi Lagrangian operator for each regime for
solution at the previous step

/// \param p_time current date

/// \param p_philnPt value of the function at the previous time step at
p-point for each regime
/// \return a pair
/// — first an array of the solution (for each regime)
/// — second an array of the optimal controls ( for each control
)
virtual std::pair< Eigen:: ArrayXd, Eigen ::ArrayXd> stepOptimize (const
Eigen :: ArrayXd &p_point
const std::vector< std::shared_ptr<SemiLagrangEspCond> > &
p-semilag ,
const double &p_time ,
const Eigen :: ArrayXd &p_philnPt) const = 0;

/// \brief defines a step in simulation

/// \param p_gridNext grid at the next step

/// \param p_semiLag semi Lagrangian operator at the current step
in each regime

/// \param p_state state array (can be modified)

/// \param p_iReg regime number

/// \param p_gaussian unitary Gaussian realization

/// \param p_philnPt value of the function at the next time step at
p-point for each regime

/// \param p_philnOut defines the value functions (modified) to
follow

virtual void stepSimulate(const SpaceGrid &p_gridNext

const std::vector< std::shared_ptr< StOpt::
SemiLagrangEspCond> > &p_semilag ,

Eigen :: Ref<Eigen :: ArrayXd> p_state int &
p-iReg,

const Eigen :: ArrayXd &p_gaussian ,

const Eigen :: ArrayXd &p_philnPt

Eigen :: Ref<Eigen :: ArrayXd> p_philnOut) const =

0 ;

/// \brief defines a step in simulation using the control calculated in

optimization
/// \param p_gridNext grid at the next step
/// \param p_controllnterp the optimal controls interpolator
/// \param p_state state array (can be modified)
/// \param p_iReg regime number
/// \param p_gaussian unitary Gaussian realization
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79 /// \param p_philnOut defines the value functions (modified) to

follow
80 virtual void stepSimulateControl(const SpaceGrid &p_gridNext ,
81 const std::vector< std::shared_ptr<
InterpolatorSpectral> > &
p-controllnterp ,
82 Eigen :: Ref<Eigen :: ArrayXd> p_state,
int &p_iReg ,
83 const Eigen :: ArrayXd &p_gaussian ,
84 Eigen :: Ref<Eigen :: ArrayXd> p_philnOut)
const = 0 ;
85
86 /// \brief get number of regimes
87 virtual int getNbRegime() const = 0 ;
88
89 /// \brief get back the dimension of the control
90 virtual int getNbControl() const = 0 ;
91
92 /// \brief do we modify the volatility to stay in the domain
03 virtual bool getBModifVol() const = 0 ;
94
95 /// \brief get the number of Brownians involved in semi Lagrangian for
simulation
96 virtual int getBrownianNumber () const = 0 ;
97
08 /// \brief get size of the function to follow in simulation
99 virtual int getSimuFuncSize() const = 0;
100
101 /// \brief Permit to deal with some boundary points that do not need
boundary conditions
102 /// Return false if all points on the boundary need some boundary
conditions
103 /// \param p_point potentially on the boundary
104 virtual bool isNotNeedingBC(const Eigen ::ArrayXd &p_point) const = 0;
105 };
106 }

107 #endif /+x OPTIMIZERSLBASEH x/

The main methods associated to this object are :

e “stepOptimize” is use to calculate the solution of the PDE at one point.

— It takes a point of the grid used p_point,
— and apply the semi Lagrangian scheme p_semiLag at this point,

— at a date given by p_time.
It returns a pair containing:

— the function value calculated at p_point for each regime,

— the optimal control calculated at p_point for each control.

e “stepSimulate” is used when the PDE is associated to an optimization problem and
we want to simulate an optimal policy using the function values calculated in the
optimization part. The arguments are:
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— p_gridNext defining the grid used at the following time step,

— p_semilLag the semi Lagrangian operator constructed with an interpolator using
the following time solution,

— p_state the vector defining the current state for the current regime,
— p_iReg the current regime number,

— p_gaussian is the vector of gaussian random variables used to calculate the Brow-
nian involved in the underlying process for the current simulation,

— p_phiInP at the value of the function calculated in optimization at next time
step for the given point,

— p_philnOut storing the cost functions : the size of the array is the number of
functions to follow in simulation.

e “stepSimulateControl” is used when the PDE is associated to an optimization problem
and we want to simulate an optimal policy using the optimal controls calculated in
the optimization part. The arguments are:

— p_gridNext defining the grid used at the following time step,

— p_controlInterp a vector (for each control) of interpolators in controls
— p_state the vector defining the current state for the current regime,

— p_iReg the current regime number,

— p_gaussian is the vector of gaussian random variables used to calculate the Brow-
nian involved in the underlying process for the current simulation.

— p_philnOut storing the cost functions : the size of the array is the number of
functions to follow in simulation.

On return the p_state vector is modified, the p_i Reg is modified and the cost function
p-phiInOut is modified for the current trajectory.

e the “getCone” method is only relevant if the distribution for data (so MPI) is used.
As argument it take a vector of size the dimension of the grid. Each component
of the vector is an array containing the minimal and maximal coordinates values of
points of the current grid defining an hyper cube H1 . It returns for each dimension,
the coordinates min and max of the hyper cube H2 containing the points that can
be reached by applying a command from a grid point in H1. If no optimization is
achieved, it returns the hyper cube H2 containing the points reached by the semi
Lagrangian scheme. For explanation of the parallel formalism see chapter [5

e the “getDimensionToSplit” method is only relevant if the distribution for data (so
MPI) is used. The method permits to define which directions to split for solution
distribution on processors. For each dimension it returns a Boolean where “true”
means that the direction is a candidate for splitting,

e the “isNotNeedingBC” permits to define for a point on the boundary of the grid if a
boundary condition is needed (“True” is returned) or if no boundary is needed (return
“false”).
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And example of the derivation of such an optimizer for a simple stochastic target problem
(described in paragraph 5.3.4 in [24]) is given below :

1 #include <iostream>

2 #include 7StOpt/core/utils/constant.h”

3 #include ”test/c++/tools/semilagrangien/OptimizeSLCase3.h”

4

5 using namespace StOpt;

6 using namespace Eigen ;

7 using namespace std ;

8

9 OptimizerSLCase3 :: OptimizerSLCase3 (const double &p_mu, const double &p_sig ,
const double &p-dt, const double &p_alphaMax, const double &p_stepAlpha):

10 m_dt(p-dt), mmu(p-mu), m_sig(p-sig), m_alphaMax(p_alphaMax), m_stepAlpha

(p-stepAlpha) {}

11

12 vector< array< double, 2> > OptimizerSLCase3:: getCone(const vector< array<
double, 2> > &p_xInit) const

13
{
14 vector< array< double, 2> > xReached (1) ;
15 xReached [0][0] = p_xInit [0][0] — m_alphaMax % mmu / m_sig * m_dt —
m_alphaMax * sqrt(m_dt);
16 xReached [0][1] = p_xInit [0][1] + m_alphaMax * sqrt(m-dt) ;
17 return xReached;
18}
19
20 pair< ArrayXd, ArrayXd> OptimizerSLCase3::stepOptimize (const ArrayXd &
p-point ,
21 const vector< shared_ptr<SemiLagrangEspCond> > &p_semilLag , const
double &, const Eigen:: ArrayXd &) const

22

{
23 pair< ArrayXd, ArrayXd> solutionAndControl;
24 solutionAndControl. first .resize (1) ;
25 solutionAndControl.second . resize (1) ;
26 ArrayXd b(1);
27 ArrayXXd sig (1, 1) ;
28 double vMin = StOpt::infty;
29 for (int 1Al = 0; iAl < m_alphaMax / m_stepAlpha; ++iAl)
30

{
31 double alpha = iAl * m_stepAlpha;
32 b(0) = —alpha * mmu / m_sig; // trend
33 sig (0) = alpha; // volatility with one Brownian
34 pair<double, bool> lagrang = p_semiLag[0]—>oneStep (p-point, b, sig,
m_dt); // test the control

35 if (lagrang.second)
36 {
37 if (lagrang.first < vMin)
38
39 vMin = lagrang. first ;
40 solutionAndControl.second (0) = alpha;
41 }
42 1
43 }
44
45 solutionAndControl. first (0) = vMin;
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return solutionAndControl;

void OptimizerSLCase3:: stepSimulate (const StOpt:: SpaceGrid &p_gridNext

const std::vector< shared_ptr< StOpt::
SemiLagrangEspCond > > &p_semilLag ,
Eigen :: Ref<Eigen :: ArrayXd> p_state, int
&7
const Eigen :: ArrayXd &p_gaussian, const
Eigen :: ArrayXd &,
Eigen :: Ref<Eigen :: ArrayXd>) const

double vMin = StOpt::infty;
double alphaOpt = —1;
ArrayXd b(1);
ArrayXXd sig (1, 1) ;
ArrayXd proba = p_state ;
// recalculate the optimal alpha
for (int 1Al = 0; iAl < m_alphaMax / m_stepAlpha; ++iAl)
{
double alpha = iAl % m_stepAlpha;
b(0) = —alpha * mmu / m_sig;// trend
sig (0) = alpha;// volatility with one Brownian
pair<double, bool> lagrang = p_semiLag[0]—>oneStep (proba, b, sig,
m-dt);// test the control
if (lagrang.second)

if (lagrang.first < vMin)

vMin = lagrang. first ;
alphaOpt = alpha;

}

proba(0) += alphaOpt % p_gaussian(0) * sqrt(m_dt);
// truncate if necessary

p-gridNext . truncatePoint (proba) ;

p_state = proba ;

void OptimizerSLCase3:: stepSimulateControl(const SpaceGrid &p_gridNext ,

const vector< shared_ptr< InterpolatorSpectral> > &p_controllnterp

Eigen :: Ref<Eigen :: ArrayXd> p_state int &,
const ArrayXd &p_gaussian ,
Eigen :: Ref<Eigen :: ArrayXd>) const

ArrayXd proba = p_state ;

double alphaOpt = p_controllnterp[0]—>apply(p_state);
proba(0) += alphaOpt % p_gaussian(0) * sqrt(m-dt);
// truncate if necessary

p-gridNext .truncatePoint (proba) ;
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95 p_state = proba ;

9 }

8.1 PDE resolution

Once the problem is described, a time recursion can be achieved using the “Transition-
StepSemilagrang” object in a sequential resolution of the problem. This object permits to
solve the problem on one time step.

// Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef TRANSITIONSTEPSEMILAGRANG_H

5 #define TRANSITIONSTEPSEMILAGRANG H

6 #ifdef OMP

7 #include <omp.h>

s #endif

9 #include <functional>

10 #include <memory>

11 #include <Eigen/Dense>

12 #include 7 geners/BinaryFileArchive.hh”

13 #include 7”StOpt/semilagrangien/TransitionStepSemilagrangBase .h”

14 #include ”StOpt/core/grids/SpaceGrid.h”

15 #include ”StOpt/core/grids/InterpolatorSpectral.h”

16 #include ”StOpt/semilagrangien/OptimizerSLBase.h”

17

18 /xx \file TransitionStepSemilagrang.h

19 % \brief Solve one step of explicit semi Lagrangian scheme

20 * \author Xavier Warin

21 %/

=

24 namespace StOpt

25 {

27 /// \class TransitionStepSemilagrang TransitionStepSemilagrang.h
28 /// One step of semi Lagrangian scheme
29 class TransitionStepSemilagrang : public TransitionStepSemilagrangBase

30

31 private

33 std :: shared _ptr<SpaceGrid> m_gridCurrent ; ///< global grid at current
time step

34 std :: shared_ptr<SpaceGrid> m_gridPrevious ; ///< global grid at previous
time step

35 std :: shared_ptr<OptimizerSLBase > m_optimize ; ///< optimizer solving
the problem for one point and one step

36

37 public

38

39 /// \brief Constructor
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TransitionStepSemilagrang (const std::shared_ptr<SpaceGrid> &
p-gridCurrent ,
const std::shared_ptr<SpaceGrid> &
p-gridPrevious ,
const std::shared_ptr<OptimizerSLBase > &
p-optimize) ;

/// \brief One time step for resolution

/// \param p_philn for each regime the function value ( on the
grid)
/// \param p_time current date

/// \param p_boundaryFunc Function at the boundary to impose Dirichlet
conditions (depending on regime and position)

/// \return solution obtained after omne step of dynamic programming
and the optimal control

std :: pair< std::vector< std::shared_ptr< Eigen::ArrayXd > >, std::vector<
std :: shared_ptr< Eigen:: ArrayXd > > > oneStep(const std::vector<
std :: shared _ptr< Eigen :: ArrayXd > > &p_philn, const double &p_time ,
const std::function<double(const int &, const Eigen:: ArrayXd &)> &
p-boundaryFunc) const;

/// \brief Permits to dump continuation values on archive

/// \param p_ar archive to dump in

/// \param p_name name used for object

/// \param p_iStep Step number or identifier for time step
/// \param p_philn for each regime the function value

/// \param p_control for each control, the optimal value

void dumpValues(std::shared_ptr<gs:: BinaryFileArchive> p_ar , const std::
string &p_name, const int &p_iStep, const std::vector< std::shared_ptr
< Eigen :: ArrayXd > > &p_philn ,
const std::vector< std::shared_ptr< Eigen:: ArrayXd > > &
p-control) const;
}i
}

61 #endif /x TRANSITIONSTEPSEMILAGRANGH x/

It constructor takes the following arguments:
e p_gridCurrent a grid describing the meshes at the current date,
e p_gridPrevious a grid describing the meshes at the previously treated date,

e p_optimize an object derived from the “OptimizerSLBase” and describing the problem
to solve at a given date and a given point of the current grid.

A first method “oneStep” take the following arguments :

e p_philn describes for each regime the solution previously calculated on the grid at the
previous time,

e p_time is the current time step,

e p_boundaryFunc is a function giving the Dirichlet solution of the problem depending
on the number of regimes and the position on the boundary.
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Table 8.1: Which “TransitionStepSemilagrang” object to use depending on the grid used
and the type of parallelization used.

Full grid Sparse grid
Sequential “TransitionStepSemilagrang” “TransitionStepSemilagrang”
Parallelization on calculations “TransitionStepSemilagrang” “TransitionStepSemilagrang”
threads and MPI
Distribution of calculations | “TransitionStepSemilagrangDist” Not available
and data (MPT)

It gives back an estimation of the solution at the current date on the current grid for all the
regimes and an estimation of the optimal control calculated for all the controls.

A last method “dumpValues” method permits to dump the solution calculated p_philn at
the step p_tstep + 1 and the optimal control at step p_istep in an archive p_ar.

A version using the distribution of the data and calculations can be found in the
ftionStepSemilagrangDist| object. An example of a time recursion in sequential can be found
in the semilagrangianTime| function and an example with distribution can be found in the
isemiLagrangianTimeDist| function. In both functions developed in the test chapter the an-
alytic solution of the problem is known and compared to the numerical estimation obtained
with the semi Lagrangian method.

8.2 Simulation framework

Once the optimal controls and the value functions are calculated, one can simulate the
optimal policy by using the function values (recalculating the optimal control for each sim-
ulation) or using directly the optimal controls calculated in optimization

e (Calculate the optimal strategy in simulation
by using the function values calculated in optimization :
In order to simulate one step of the optimal policy, an object |“SimulateStepSemila-|

is provided with constructor

1 SimulateStepSemilagrangDist (gs:: BinaryFileArchive &p_ar, const int &
p_iStep, const std::string &p_name ,
2 const std::shared_ptr<FullGrid> &

p-gridNext , const std::shared_ptr<
OptimizerSLBase > &p_pOptimize ,
3 const bool &p_bOneFile) ;

where

— p-ar is the binary archive where the continuation values are stored,

— piStep is the number associated to the current time step (0 at the beginning
date of simulation, the number is increased by one at each time step simulated),

— p_name is the base name to search in the archive,

— p_GridNext is the grid at the next time step (p-iStep + 1),
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— p_Optimize is the Optimizer describing the transition from one time step to the
following one,

— p_OnekF'ile equals to true if a single archive is used to store continuation values.

Remark 16 A version without distribution of data but only multithreaded and paral-
lelized with MPI on data is available with the object| “SimulateStepSemilagrang”

This object implements the method “oneStep”

1 void oneStep (const Eigen:: ArrayXXd & p-gaussian ,Eigen :: ArrayXXd &
p-statevector , Eigen:: ArrayXi &p_iReg, Eigen:: ArrayXd &
p-phiInOuts)

where:

— p_gaussian is a two dimensional array (number of Brownian in the modelization
by the number of Monte Carlo simulations).

— p_statevector store the continuous state (continuous state size by number of sim-
ulations)

— p_iReg for each simulation give the current regime number,

— p_philnOut stores the gain/cost functions for all the simulations: it is updated
by the function call. The size of the array is (nb, nbSimul) where nb is given
by the “getSimuFuncSize” method of the optimizer and nbSimul the number of
Monte Carlo simulations.

Remark 17 The previous object “SimulateStepSemilagrangDist” is used with MPI for
problems of quite high dimension. In the case of small dimension (below or equal to
three), the parallelization with MPI or the sequential calculations can be achieved by
the “SimulateStepSemilagrang” object.

An example of the use of this method to simulate an optimal policy with distribution
is given below:

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (
GNU LGPL)

4 #ifdef USE_MPI

5 #include <boost/random.hpp>

6 #include <memory>

7 #include <Eigen/Dense>

s #include ”geners/BinaryFileArchive.hh”

9 #include ”StOpt/semilagrangien/OptimizerSLBase.h”

10 #include ”StOpt/semilagrangien/SimulateStepSemilagrangDist.h”

11

12 using namespace std;

13

14 double semilLagrangianSimuDist (const shared_ptr<StOpt:: FullGrid> &p_grid ,
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15
16

17
18
19
20
21
22

2 {

24

26
27
28
29
30

31
32
33
34
35
36
37
38
39

40
41
42
43

44
45
46
47
48
49
50
51
52

53
54
55
56

57
58

59 }

const shared_ptr<StOpt:: OptimizerSLBase > &
p-optimize ,

const function<double(const int &, const
Eigen :: ArrayXd &)> &p-funcFinalValue ,

const int &p_nbStep ,

const Eigen:: ArrayXd &p_statelnit ,

const int &p_initialRegime ,

const int &p_nbSimul,

const string &p-_fileToDump ,

const bool &p_bOneFile)

boost :: mpi:: communicator world;
// store states in a regime
Eigen :: ArrayXXd states(p_statelnit.size(), p.nbSimul);
for (int is = 0; is < p_nbSimul; ++is)
states.col(is) = p_statelnit;
// sore the regime number
Eigen :: ArrayXi regime = Eigen :: ArrayXi:: Constant (p_nbSimul ,
p_initialRegime) ;
// test if one file generated
string toDump = p_fileToDump ;
if (!p_bOneFile)
toDump += 7.7 + boost::lexical_cast <string >(world.rank());
gs:: BinaryFileArchive ar (toDump.c_str (), 7"r”);
// name for continuation object in archive

string nameAr = ” Continuation”;
// cost function
Eigen :: ArrayXXd costFunction = Eigen :: ArrayXXd:: Zero(p_optimize —>

getSimuFuncSize (), p.nbSimul);
// random generator and Gaussian variables
boost :: mt19937 generator;
boost :: normal_distribution <double> normalDistrib ;
boost :: variate_generator <boost :: mt19937 &, boost:: normal_distribution

<double> > normalRand (generator , normalDistrib) ;
Eigen :: ArrayXXd gaussian (p_optimize —>getBrownianNumber (), p_nbSimul);
// iterate on time steps
for (int istep = 0; istep < p_nbStep; ++istep)
{

for (int is = 0; is < gaussian.cols(); ++is)

for (int id = 0; id < gaussian.rows(); ++id)
gaussian (id, is) = normalRand () ;

StOpt:: SimulateStepSemilagrangDist (ar, p_nbStep — 1 — istep,
nameAr, p_grid, p_optimize, p_bOneFile).oneStep(gaussian ,
states , regime, costFunction):;

}
// final cost to add
for (int is = 0; is < p-nbSimul; ++is)

costFunction (0, is) += p_funcFinalValue (regime(is), states.col(is
));

// average gain/cost
return costFunction .mean () ;

60 #endif
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A sequential or parallelized on calculations version of the previous example is given in

fthis filel

e (Calculate the optimal strategy in simulation
by interpolation of the optimal control calculated in optimization :
In order to simulate one step of the optimal policy, an object |“SimulateStepSemila-|
lgrangControlDist”| is provided with constructor

1 SimulateStepSemilagrangControlDist (gs:: BinaryFileArchive &p-ar ,
const int &p_iStep, const std::string &p_name |,
2 const std::shared_ptr<FullGrid> &
p-gridCur ,
3 const std::shared_ptr<FullGrid> &
p_gridNext ,
4 const std::shared_ptr<

OptimizerSLBase > &p_pOptimize

5 const bool &p_bOneFile)

where

— p-ar is the binary archive where the continuation values are stored,

— piStep is the number associated to the current time step (0 at the beginning
date of simulation, the number is increased by one at each time step simulated),

— p_name is the base name to search in the archive,
— p_GridCur is the grid at the current time step (p_iStep),
— p_GridNext is the grid at the next time step (p-iStep + 1),

— p_Optimize is the Optimizer describing the transition from one time step to the
following one,

— p_OnekF'ile equals to true if a single archive is used to store continuation values.

Remark 18 The previous object “SimulateStepSemilagrangControlDist” is used with
MPI distribution of data for problems of quite high dimension. In the case of small
dimension (below or equal to three), the parallelization with MPI or the sequential
calculations can be achieved by the “SimulateStepSemilagrangControl” object.

This object implements the method “oneStep”

1 void oneStep ((const Eigen :: ArrayXXd & p_gaussian , Eigen :: ArrayXXd &
p_statevector , Eigen:: ArrayXi &p_iReg , Eigen:: ArrayXd &
p-philnOuts)

where:

— p_gaussian is a two dimensional array (number of Brownian in the modelization
by the number of Monte Carlo simulations).
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— p_statevector stores the continuous state (continuous state size by number of
simulations)

— p_iReg for each simulation gives the current regime number,

— p_philnOut stores the gain/cost functions for all the simulations: it is updated
by the function call. The size of the array is (nb, nbSimul) where nb is given
by the “getSimuFuncSize” method of the optimizer and nbSimul the number of
Monte Carlo simulations.

An example of the use of this method to simulate an optimal policy with distribution
is given below:

// Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (
GNU LGPL)

4 #ifdef USE_MPI

5 #include <memory>

6 #include <boost/random.hpp>

7 #include <Eigen/Dense>

s #include ”geners/BinaryFileArchive.hh”

9 #include ”StOpt/semilagrangien/OptimizerSLBase.h”

10 #include ”StOpt/semilagrangien/SimulateStepSemilagrangControlDist.h”

11

12 using namespace std;

13

14 double semiLagrangianSimuControlDist (const shared_ptr<StOpt:: FullGrid> &

-

p-grid,

15 const shared_ptr<StOpt::
OptimizerSLBase > &p_optimize ,

16 const function<double(const int &,
const Eigen::ArrayXd &)> &
p-funcFinalValue ,

17 const int &p_nbStep,

18 const Eigen::ArrayXd &p_statelnit ,

19 const int &p_initialRegime ,

20 const int &p_nbSimul,

21 const string &p_fileToDump ,

22 const bool &p_-bOneFile)

23 {

24 boost :: mpi:: communicator world;

25 // store states in a regime

26 Eigen :: ArrayXXd states(p-statelnit.size (), p-nbSimul);

27 for (int is = 0; is < p-nbSimul; ++is)

28 states.col(is) = p_statelnit;

29 // sore the regime number

30 Eigen :: ArrayXi regime = Eigen :: ArrayXi:: Constant (p_nbSimul ,

p-initialRegime) ;

31 // test if one file generated

32 string toDump = p_fileToDump ;

33 if (!p_bOneFile)

34 toDump += 7.7 + boost::lexical_cast <string >(world.rank());

35 gs :: BinaryFileArchive ar(toDump.c_str (), 7"r”);

36 // name for continuation object in archive
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37
38
39

40
41
42
43

44
45
46
47
48
49
50
51
52

53
54
55
56

57
58

59 }

string nameAr = ” Continuation”;
// cost function
Eigen :: ArrayXXd costFunction = Eigen:: ArrayXXd:: Zero(p_optimize—>
getSimuFuncSize (), p-nbSimul);
// random generator and Gaussian variables
boost :: mt19937 generator;
boost :: normal_distribution <double> normalDistrib ;
boost :: variate_generator <boost :: mt19937 &, boost:: normal_distribution
<double> > normalRand (generator , normalDistrib);
Eigen :: ArrayXXd gaussian (p_optimize —>getBrownianNumber (), p_-nbSimul);
// iterate on time steps
for (int istep = 0; istep < p_nbStep; ++istep)
{
for (int is = 0; is < gaussian.cols(); ++is)
for (int id = 0; id < gaussian.rows(); ++id)
gaussian (id , is) = normalRand () ;

StOpt :: SimulateStepSemilagrangControlDist (ar, p_nbStep — 1 —
istep , nameAr, p_grid, p_grid, p_optimize, p_bOneFile).
oneStep (gaussian , states, regime, costFunction);

// final cost to add
for (int is = 0; is < p_nbSimul; ++is)
costFunction (0, is) += p_funcFinalValue(regime(is), states.col(is
));
// average gain/cost
return costFunction .mean () ;

60 #endif

The sequential (or parallelized on calculations) version of the previous example is given

in [this filel

Remark 19 In the previous example, we suppose that only one function is followed
in stmulation, and that we send back an average for this value function as a result.
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Part V

An example with both dynamic

programming with regression and
PDE
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In this chapter we give an example where both dynamic programming with regressions
and PDE can be used. It permits to compare the resolution and the solution obtained by
both methods. All information about the modelization can be obtained by [26].

In this example we take the following notations :

e D, is a demand process (in electricity) with an Ornstein Uhlenbeck dynamic :

th = a(m — Dt>dt + O'th,

e (); is the cumulative carbon emission due to electricity production to satisfy the de-
mand,

th - (Dt - Lt)+dt,

e [, the total investment capacity in non emissive technology to produce electricity

t
Lt:/ lSdS
0

where [, is an intensity of investment in non emissive technology at date s,
e Y, is the carbon price where
Yy = Ei(Mo>n),
with A and H given.
We introduce the following functions :

e the electricity price function which is a function of demand and the global investment
of non emissive technology.

pe=(1+ Dt)2 — Ly,

e the profit function by selling electricity is given by

H(Dt, Lt) =pDy — (Dt - Lt>+;

e ¢(l;, Ly) is the investment cost for new capacities of non emissive technology.
&1, L) = B(coo + (co — coo)e™) (1 4+ 1)1

The value of the firm selling electricity is given by V (¢, Dy, Qt, Ly). It satisfies the coupling
equations :

9w + a(m — D)dpv + £0%0% v + (D — L) dgu + II(D, L)
+sL'7* —y(D — L)* + sup,{lov — ¢(l, L)} =0 (8.1)
Ur = 0
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and the carbon price y(t, Dy, Q¢, L) is given by :

{ Oy + a(m — D)dpy + 36203y + (D — L) 0y + "0y = 0 (8.2)

yr = Mg, >k

and [* is the optimal control in equation (8.1)). The previous equation can be solved with
the Semi Lagrangian method.
After a time discretization with a step dt a dynamic programming equation can be given by

o(T —6t,D,Q,L) = sup(I(D, L) +sL'™* —yr_s(D — L) —&(l, L))t +
l

Er s(V(T, D77, Q + (D — L)¥6t, L+ 16t)) (8:3)
Y(T —6t,D,Q,L) = Eqp_s(Y(T,DE"P Q+ (D — L)*6t, L+ I*6t)) (8.4)

The previous equations (8.3) and ({8.4)) can be solved with the regression methods.
In order to use the previously developed frameworks in parallel, we have to define for both
method some common variables.

e The number of regimes to use (obtained by the “getNbRegime’ method) is 2 : one to
store the v value, one for the y value,

e In the example we want to follow during simulations the functions values v and y so
we set the number of function obtained by the “getSimuFuncSize” method to 2.

e In order to test the controls in optimization and simulation we define a maximal
intensity of investment “IMax” and a discretization step to test the controls “IStep”.

In the sequel we store the optimal functions in optimization and recalculate the optimal
control in simulation.

8.3 The dynamic programming with regression approach

All we have to do is to specify defining the methods used to optimize and
simulate, and the “getCone” method for parallelization :

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #include ”StOpt/core/utils/constant.h”

#include ”OptimizeDPEmissive.h”

using namespace StOpt;
using namespace Eigen;
10

5
6
7 using namespace std ;
8
9

11

12 // constructor

13 OptimizeDPEmissive :: OptimizeDPEmissive (const double &p_alpha ,

14 const std::function<double(double,
double)> &p_PI,
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15 const std::function< double(double,

double) > &p_cBar, const
double &p_s, const double &
p-lambda ,

16 const double &p_dt,

17 const double &p_maturity ,

18 const double &p_IMax, const double &

p-1Step , const std::vector <std::
array< double, 2> >  &p-_extrem):

19 m_alpha(p-alpha), m_PI(p_PI),

20 m_cBar(p_-cBar), m-s(p-s), m_lambda(p_-lambda), m_dt(p-dt), m_maturity (
p-maturity), m_IMax(p_-1Max), m_lStep(p_lStep),

21 m_extrem (p_extrem )

w ()

23

24 Array< bool, Dynamic, 1> OptimizeDPEmissive:: getDimensionToSplit () const

2 q

26 Array< bool, Dynamic, 1> bDim = Array< bool, Dynamic, 1>::Constant (2,
true) ;

27 return bDim ;

28 }

29

s0 // for parallelism

31 std :: vector< std::array< double, 2> > OptimizeDPEmissive :: getCone (const
vector< std::array< double, 2> > &p_xInit) const

32 {

33 vector< array< double, 2> > xReached (2);

34 xReached [0][0] = p_xInit [0][0] ; // Q only increases

35 xReached [0][1] = m_extrem [0][1] ; // whole domain due to demand which is
unbounded

36 xReached [1][0] = p-xInit [1][0] ; // L only increases

37 xReached [1][1] = p_xInit [1][1] + mIMax * m.dt ; // maximal increase
given by the control

38 return xReached;

39 }

40

a1 // one step in optimization from stock point for all simulations
42 std :: pair< ArrayXXd, ArrayXXd> OptimizeDPEmissive:: stepOptimize (const std ::
shared_ptr< StOpt:: SpaceGrid> &p_grid , const ArrayXd &p_stock,

43 const std::vector< ContinuationValue> &p_condEsp,

44 const std::vector < std::shared_ptr< ArrayXXd > > &) const

45

{

46 std :: pair< ArrayXXd, ArrayXXd> solutionAndControl;

a7 // to store final solution (here two regimes)

48 solutionAndControl. first = ArrayXXd:: Constant (m_simulator —>getNbSimul () ,
2, —StOpt::infty);

49 solutionAndControl.second = ArrayXXd:: Constant (m-_simulator—>getNbSimul ()
, 1, =StOpt::infty);

50 // demand

51 ArrayXd demand = m_simulator—>getParticles () .array().row(0).transpose();

52 // Gain (size number of simulations)

53 ArrayXd gain(m_simulator—>getNbSimul());

54 double gainSubvention = m.s * pow(p_stock (1), 1. — m_alpha); //

subvention for non emissive energy
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55
56

57
58
59
60
61
62
63

64
65
66
67

68
69
70
71
72
73

74
75
76
77

78
79

80

81
82
83
84
85
86
87

89

90

91
92

for (int is = 0 ; is < m_simulator—>getNbSimul(); ++is)
gain (is) = m_PI(demand(is), p_stock(l)) + gainSubvention ; // gain by
production and subvention
ArrayXd ptStockNext (2);
// time to maturity
double timeToMat = m_maturity — m_simulator—>getCurrentStep () ;
// interpolator at the new step
for (int is = 0 ; is < m_simulator—>getNbSimul(); ++is)
{
for (int 1Al = 0; iAl < m.IMax / m_lIStep ; ++iAl) // test all

command for investment between 0 and 1Max

double 1 = iAl % m_lStep;
// interpolator at the new step

ptStockNext (0) = p-stock(0) + std::max(demand(is) — p-stock (1),
0.) * m_dt;
ptStockNext (1) = p_stock(l) + 1 % m_dt ;

// first test we are inside the domain
if (p_grid—islnside (ptStockNext))

// create an interpolator at the arrival point

std :: shared _ptr<StOpt:: Interpolator> interpolator = p_grid—
createlnterpolator (ptStockNext) ;

// calculate Y for this simulation with the optimal control

double yLoc = p_condEsp[1].getASimulation(is, *interpolator);

// local gain

double gainLoc = (gain(is) — yLoc * std::max(demand(is) —
p-stock (1), 0.) — m_cBar(l, p_stock(1l))) * m_dt;

// gain + conditional expectation of future gains

double condExp = gainLoc + p_condEsp[0].getASimulation (is, x*
interpolator);

if (condExp > solutionAndControl. first (is, 0)) // test
optimality of the control

{

solutionAndControl. first (is, 0) = condExp;
solutionAndControl. first (is, 1) = yLoc;
solutionAndControl.second (is, 0) = 1;

}

}

// test if solution acceptable

if (StOpt::almostEqual(solutionAndControl. first (is, 0), — StOpt::
infty , 10))

{

// fix boundary condition

solutionAndControl. first (is, 0) = timeToMat * (m_PI(demand(is),
p-stock (1)) + m-s % pow(p-stock(l), 1. — m_alpha) — m_lambda x
std ::max(demand(is) — p-stock(1l), 0.));

solutionAndControl. first (is, 1) = m_lambda ; // Q est maximal !!

solutionAndControl.second(is, 0) = 0. ; // fix control to zero

}
}

return solutionAndControl;
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99

w0 // one step in simulation for current simulation

101 void OptimizeDPEmissive:: stepSimulate (const std::shared_ptr< StOpt:: SpaceGrid
>  &p_grid, const std::vector< StOpt:: GridAndRegressedValue > &
p-continuation ,

102 StOpt :: StateWithStocks &p_state ,

103 Ref<ArrayXd> p_philnOut) const

104 {

105 ArrayXd ptStock = p_state.getPtStock () ;

106 ArrayXd ptStockNext (ptStock.size ());

107 double vOpt = — StOpt::infty;

108 double gainOpt = 0.;

109 double 10pt = 0. ;

110 double demand = p_state.getStochasticRealization () (0); // demand for this
simulation

111 ptStockNext (0) = ptStock(0) + std::max(demand — ptStock (1), 0.) * m-_dt;

112 double  gain = m_PI(demand, ptStock(1l)) + m.s * pow(ptStock(l), 1. —
m_alpha) ; // gain from production and subvention

113 double yOpt = 0. ;

114 for (int 1Al = 0; iAl < mIMax / m_1Step ; ++iAl) // test all command

for investment between 0 and 1Max

115 {

116 double 1 = 1Al * m_lStep;

117 // interpolator at the new step

118 ptStockNext (1) = ptStock(l) + 1 x m_dt ;

119 // first test we are inside the domain

120 if (p-grid—isInside (ptStockNext))

121

122 // calculate Y for this simulation with the control

123 double yLoc = p_continuation [1].getValue(ptStockNext, p_state.
getStochasticRealization ());

124 // local gain

125 double gainLoc = (gain — yLoc x std::max(demand — ptStock (1), 0.)
— m_cBar (1, ptStock(1l))) x m_dt;

126 // gain + conditional expectation of future gains

127 double condExp = gainLoc + p_continuation [0].getValue(
ptStockNext , p_state.getStochasticRealization ());

128

129 if (condExp > vOpt) // test optimality of the control

130

131 vOpt = condExp;

132 gainOpt = gainLoc;

133 10pt = 1;

134 yOpt = yLoc;

135 }
136 }
137 }

138 p-phiInOut (0) += gainOpt; // follow v value

139 p-phiInOut (1) = yOpt ; // follow y value

140 ptStockNext (1) = ptStock(l) + 10pt * m.dt ; // update state due to
control

141 p-state.setPtStock (ptStockNext) ;

142 }

This case in dimension 2 for the stocks can be treated with interpolation on the full 2
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dimensional grid and on a 2 dimensional sparse grid. Both versions of the resolution are

given in a [test case

8.4 The PDE approach

We can do the same with the PDE approach using a simulator for the OU demand. We then
define an and the methods used to optimize and simulate, and the “getCone”
method for parallelization :

1 #include <iostream>

2 #include ”StOpt/core/utils/constant.h”

3 #include " OptimizeSLEmissive.h”

4

5 using namespace StOpt;

6 using namespace Eigen ;

7 using namespace std ;

8

9 // constructor

10 OptimizeSLEmissive :: OptimizeSLEmissive (const double &p_alpha, const double &
p.m, const double &p_sig, const std::function<double(double, double)> &

p-PI,

11 const std::function< double(double,
double) > &p_cBar, const
double &p_s, const double &p_dt,

12 const double &p_1Max, const double &
p-1Step , const std::vector <std::
array< double, 2> >  &p-_extrem):

13 m_alpha(p-alpha), mm(p.m), m_sig(p-sig), m_PI(p-PI), m_cBar(p_cBar), m.s

(p-s), mdt(p-dt),

14 m_IMax (p_-1Max), m_lStep(p_1Step), m_extrem (p_extrem) {}

15

16 Array< bool, Dynamic, 1> OptimizeSLEmissive:: getDimensionToSplit () const

17

{

18 Array< bool, Dynamic, 1> bDim = Array< bool, Dynamic, 1>::Constant (3,

true) ;

19 return  bDim ;

20 }

23 // for parallelism
214 vector< array< double, 2> > OptimizeSLEmissive:: getCone(const vector<
array< double, 2> > &p_xInit) const

25

{

26 vector< array< double, 2> > xReached (3);

27 xReached [0][0] = p_xInit [0][0] <+ m_alpha % (mm — m_extrem [0][1]) =x
m.-dt — m_sig % sqrt(m.dt); // demand ”cone” driven by maximal value
allowed for demand

28 xReached [0][1] = p_xInit [0][1] + m_alpha * mm * m.dt + m_sig * sqrt(
m.dt) ; // low value for demand is taken equal to 0

29 xReached [1][0] = p-xInit [1][0] ;// Q only increases

30 xReached [1][1] = p_xInit [1][1] + m_extrem[0][1] * m.dt ; // Q increase
bounded by maximal demand

31 xReached [2][0] = p-xInit [2][0] ; // L only increases
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32 xReached [2][1] = p_xInit [2][1] + mIMax * m._dt ;// maximal increase
given by the control

33 return xReached;

34 }

35

36

37 // one step in optimization from current point

38 std :: pair< ArrayXd, ArrayXd> OptimizeSLEmissive::stepOptimize (const ArrayXd

&p_point ,
39 const vector< shared_ptr<SemiLagrangEspCond> > &p_semilag ,
40 const double &, const ArrayXd &) const
41
{
42 pair< ArrayXd, ArrayXd> solutionAndControl;
43 solutionAndControl. first .resize (2);
44 solutionAndControl.second . resize (1) ;
45 ArrayXXd sig = ArrayXXd::Zero(3, 1) ;
46 sig (0, 0) = m_sig;
a7 double vOpt = — StOpt::infty;
48 double yOpt = 0. ;
49 double 10pt = 0 ;
50 ArrayXd b(3);
51 b(0) = m_alpha * (mm — p_point(0)) ; // trend
52 b(1) = max(p-point (0) — p_point(2), 0.);
53 // gain already possible to calculate (production and subvention)
54 double gainFirst = m_PI(p-point (0), p-point(2)) + m-s x pow(p-point (2),
1. — m_alpha) ;
55 for (int 1Al = 0; iAl < mIMax / m_IStep ; ++iAl) // test all command for

investment between 0 and IMax

56 {

57 double 1 = iAl % m_lStep;
58 b(2) = 1 ;
59 pair<double, bool> lagrangY = p_semilLag[l]—>oneStep (p-point, b, sig,
m_dt); // for the control calculate y
60 if (lagrangY .second) // is the control admissible
61
{
62 pair<double, bool> lagrang = p_semiLag[0]—>oneStep (p_point, b,
sig, m_dt); // one step for v
63 // gain function
64 double gain = m_dt % (gainFirst — lagrangY.first * b(l) — m_cBar
(1, p-point(2)));
65 double arbitrage = gain + lagrang. first ;
66 if (arbitrage > vOpt) // optimality of the control
67
{
68 vOpt = arbitrage; // upgrade solution v
69 yOpt = lagrangY . first; // store y
70 10pt = 1; // upgrade optimal control

71 }
72 }
73 }

74
75 if (StOpt::almostEqual(vOpt, — StOpt::infty , 10))

76

77 std::cout << 7 Reduce time step 7 << std::endl ;
78 abort () ;
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104

105
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110
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114
115
116
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122

}

}

solutionAndControl. first (0) vOpt; // send back v function
solutionAndControl. first (1) = yOpt; // send back y function
solutionAndControl.second (0) = 10pt; // send back optimal control
return solutionAndControl;

// one step in simulation for current simulation
void OptimizeSLEmissive ::stepSimulate (const SpaceGrid &p_gridNext ,

const std::vector< std::shared_ptr<
StOpt :: SemiLagrangEspCond> > &
p-semilag ,

Ref<ArrayXd> p_state, int &,

const ArrayXd &p_gaussian ,

const ArrayXd &,

Ref<ArrayXd> p_philnOut) const

ArrayXd state = p_state;

ArrayXXd sig = ArrayXXd::Zero(3, 1) ; // diffusion matrix for semi
Lagrangian

sig (0, 0) = m_sig;

double vOpt = — StOpt::infty;

double 10pt = 0 ;

double yOpt = 0;

ArrayXd b(3);

b(0) = m_alpha * (mm — p_state(0)) ; // trend for D (independent of
control)
b(l) = max(p-state(0) — p_state(2), 0.); // trend for Q (independent of

control)

double gainFirst = m_PI(p_state(0), p_state(2)) + m.s * pow(p_state(2),
1. — m_alpha) ; // gain for production and subvention

for (int 1Al = 0; iAl < mIMax / m_l1Step ; ++iAl) // recalculate the
optimal control

{

double 1 = iAl % m_IStep;

b(2) = 1 ;

pair<double, bool> lagrangY = p_semilLag[l]—>oneStep(p-state, b, sig,
m_dt); // calculate y for this control

if (lagrangY .second)

pair<double, bool> lagrang = p_semiLag[0]—>oneStep (p-state, b,
sig, mdt); // calculate the function value v

// gain function

double gain = m_dt * (gainFirst — lagrangY.first * b(l) — m_cBar
(1, p_state(2)));

double arbitrage = gain + lagrang. first ;

if (arbitrage > vOpt) // arbitrage

{
vOpt = arbitrage; // upgrade solution
yOpt = lagrangY . first; // upgrade y value
10pt l; // upgrade optimal control
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// gain function

p-philnOut (0) 4= m_dt * (gainFirst — yOpt % b(1l) — m_cBar(lOpt, state(2))
); // store v value

p-phiInOut (1) = yOpt; // store y value

// update state

state (0) += m_alpha * (mm — p_state(0)) % m._dt + m_sig * p_gaussian (0) =x
sqrt (m-dt); // demand (no control)
state (1) 4= b(1l) * m.dt; //Q
state (2) += 10pt * m._dt; //L
// truncate if necessary to stay inside domain.
p-gridNext .truncatePoint (state ) ;
p-state = state ;
}

The three dimensional grids used can be some full grids or some sparse grids. Both versions
of the resolution can be found in a
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Part VI

Stochastic Dual Dynamic
Programming
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Chapter 9
SDDP algorithm

9.1 Some general points about SDDP

SDDP is an approximate dynamic programming algorithm developed by Pereira and Pinto
in 1991 [27].

To describe how SDDP works, we will consider a class of linear programs that have
T stages denoted {0,1,...,¢,...,T}. We restrict our class of problems to linear programs
with relatively complete recourse : the feasible region of the linear program in each stage is
nonempty and bounded.

Let us formalize now the variables and constraints used in the SDDP problem.

Notations used
The notations described here are used in the general case.

e 1; the state variable at time ¢,

e w; € (); the random data process at time ¢, where €2; is the set of random data.

¢; is the cost vector at time ¢,

A; and E; denote constraints matrices.

Qi(z;_1,w;) is the expected value of the problem at time ¢, knowing the state x; ; and
the random data w;.

o Qt(ajtfl) = E[Qt(xtflawt)}

Decision process

The random data process w; is discovered gradually. Thus from an initial state zq, the
state variables (It)te{0717__.7T} are determined in a non-anticipative way. The scheme is the
following :

o — observation of w; — decision of z; .....
— decision of z7_; — observation of wpr — decision of zp
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A rigorous formulation of the multistage stochastic linear program to solve is the follow-
ing:

V*= min cjzo+E min ¢z +E|...+E min crrr (9.1)
Aozo=wo Erxzo+Ai1z1=w1 Erzr 1+Arzr=wr
2120 120 z7>0

The deterministic equivalent of this problem is achieved by discretizing w; (or by
using directly w, if discrete). The number of variables of this problem increases exponentially
with the number of stages. It cannot be solved directly even if T or (Q¢)icfo1,.. 7} are of
reasonable size.

Dynamic programming principle

Dynamic programming involves splitting up the problem in a series of sub-problem
bounded together by a state variable. The aim is to compute backwards the functions @,
and 2;. They fulfill the following equations :

Qi1 wp) = mine/ x, + 2y (1)

[LP] | s.c. Ay =wy — Eyry oy, [m(wy)] (9.2)
e =0
Qt(l’tfl) = E[Qt(xtflpwtﬂ (9~3)

The function Q(x;_1,w;) stands for the expected value of a future cost knowing the state
241 the random data w;. Zy(x;_1) is the expected value of the future cost knowing the
state. The dynamic programming principle insures that V* = 2;(x).

Given 2r(+), the successive computations are achieved backwards switching between the
resolution of the linear sub-problem and the computation of ([9.3).

The implementation of dynamic programming involves approximating successively the
two value functions with equations - by discretizing the state space and solving the
linear sub-problems. The number of discretization points increases exponentially with the
dimension of the state vector and becomes huge for our applications (”curse of dimension-
ality”). Besides a linear approximation of 2;,;(x;) must be available in order to cast the
transition problem into a LP.

SDDP algorithm

SDDP is a method used to solve stochastic multi-stage problem described in [27]. SDDP
is based on Benders decomposition described in [28]. Please note that SDDP was developed
in order to solve hydro thermal scheduling problem.

SDDP limits the curse of dimensionality by avoiding a priori complete discretization of
the state space. Each SDDP iteration is a two-stage process. The first step involves gen-
erating a sequence of realistic states x; from which in the second step the value functions
are estimated in their neighborhood. By repeating successively these two steps the approx-
imation of the value function becomes more and more accurate. SDDP is also made of two
passes computed alternatively :
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e a backward pass : the aim is to improve the number of Benders cut in the neighborhood
of well-chosen candidate states. It provides also a lower bound of the optimal cost.

e a forward pass : the aim is to provide a set of new candidate states. An estimation of
the upper bound of the optimal cost is also computed.

On the other hand SDDP method stands on the shape of the future value function
2i(x¢—1). Indeed in the frame of a linear problem with complete recurse the value function
is convex and piecewise linear. It can therefore be approximated by taking the supremum
of a family of minoring affine functions. These affine functions are called optimality cuts or
Benders cuts.

9.2 A method, different algorithms

The method implemented in this library is based on the different situations shown in a
technical report of PSR program [29] where three different cases of the basic problem are
solved by SDDP. The three cases are implemented in the library. Other cases could be added
to those existing in the future.

Notations
These notations will be used to present the different algorithm of SDDP.

e Z denotes the optimal cost obtained in forward pass.
e 2 denotes the optimal cost obtained in backward pass.
° ﬁf denotes the slope of the j** Benders cut.

) a{ denotes the intercept of the j** Benders cut.

9.2.1 The basic case

To describe this case the notations shown above are used. We focus on stochastic multi-stage
problems with the following properties.

e Random quantities in different stages are independent.
e The random quantities at time ¢ is summarized in w; .

e At each stage, the linear sub-problem solution space is non-empty and bounded.

In this case the functions 2Z;(-) are convex. The primal and dual solutions of the linear
problem exist and define optimal cuts. We can now describe precisely how the implemented
algorithm is working.
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Initialization
The following values are fixed :

e {0,1,...,T}, the time horizon.

e n = 0, is the counter of the number of iterations (backward-forward). n is incremented
at the end of each iteration.

e p € R, the precision to reach for the convergence test.

® ngep, € N, the number of iterations achieved between 2 convergence tests.
® Nierviar € N, the maximal number of iterations.

e 7o € R7}, the initial vector state.

e [, € N, the number of scenarios used in the backward pass.

e G € N, the number of scenarios used in the forward pass. It gives also the number
of new cuts computed at every iteration (backward-forward) and the number of states
near which the Benders cuts are computed.

Forward pass

The aim of this pass is to explore new feasible vector state and to get an estimation of
the upper bound of the optimal cost. To this end the current strategy is simulated for a set
of GG scenarios. The set of scenarios could be historical chronicles or random draws.
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Algorithm 4: Run of forward pass (n'" iteration)

Simulate sets {(w),t € {1,..,T}} of equally distributed scenarios : for g € Q¥ = {1,...,G} ;
for g € Oy do

end

Solve the following linear sub-problem. ;

Qo = min ] zg + 61
zo,01

[AP(;;} u.c. AQIO = Wwo, [7‘(’0(&)0)]
i) 2 0
0+ (B)Txo>0) je{l,..,G,..,nG}

Store the primal solution (z{) of the problem [AFg'].

forte {1,..,T} do

Solve the following linear sub-problem. ;

9( 9 9\ — min el
QY (x}_1,w!) = min ¢, x4 + 0141
T, 0141

[Apr ] { s Ay =wi — By |, [m(wf)]
I Tt 2 0

Store the primal solution (z7) of the problem [AP}" ]
end

; ; ; .59 — 7T g.
Compute the cost for scenario g, at iteration n : 2§ =3, c;xf;

Compute the total cost in forward pass at iteration n : 2z, = é 25:1 zg

Ori1 + (Blo1) Toe = ol jef{l,...G,...nG}

(9.4)

(9.5)

Backward pass

The aim of the backward pass is to add at each stage a set of new Benders cut and to
provide a new estimation of the lower bound of the optimal operational cost. To this end
we have scenarios set of the random quantities (dimension of the set is L) recorded during
the initialization. At each time step G cuts are added using the G visited states (zf),—1. &

obtained during the forwards pass.
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Algorithm 5: Run of backward pass

fort=T7,T—-1,....,1do
for z{_, g€ {1,..,G} do

for wtl, le{l,..,L} do

Solve the following linear sub-problem. ;

L(,9 y — ; T
Qi(z{_y,wp) = min ¢z + 0
Ty, 0t 41

[APtnl,g] S.C. At.’L‘t = wé — Etl'f_l, [m(wé)] (96)
’ Tt 2 0
Orir+ (Bl) e 2ol jE{1,0 Gy (n+1)G)

Store the dual solution m;(w!) and the primal one Q! (x)_,,w!) of the linear sub-problem (AP
Compute the cut that goes with the {*" hazard draw :

O‘f,l = Qi (z]_,,w}) + m(w)) T Bya_, 0.7)
ﬁth = EtTWt(Wi)

end
Compute the g*" new Benders cut at time ¢ at iteration n : is defined as the mean value of the cuts

obtained before:

L (9.8)
Bt = % Z B
=1
k=nG+g
end
end
Solve the following linear sub-problem. ;
Q() = min C(—)rx() + 91
2170,91
[AP(;’L] S.C. AQLIL‘O = Wo, [7‘(‘0(&)0)] (99)

i) 2 0
00+ () 20> af  jE LGy (n+1)GY

Save the cost backward z, = Qo

Stopping test

In the literature about SDDP lots of stopping criterion were used and their efficiency has
been proved. However a criterion is suitable for each particular problem. Thus it is tough
to bring out one which is generic. Due to genericity requirements, two classical criterion are
implemented in the library. These can be customized by the user. The first one defines a
maximal number of iterations njie, a4 (an iteration is made of the succession of backward-
forward passes) which shall not be exceeded. The second one is a test of convergence
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towards each other between the forward and the backward cost. The convergence test uses
the following indicator :

Z”stepi - gnstepi

Ungrepi = , withieN (9.10)

Znstepi

This one is computed every ng., iterations. If it is lesser than a threshold p the process
stops, otherwise it goes on. The threshold is fixed by the user.

9.2.2 Dependence of the random quantities

In the previous case we restrict our problem to independent random quantities in the different
stages. The resolution of the SDDP was achieved on the state vector z; in the basic case.

But sometimes in real life the random quantities can be temporarily correlated. In a
hydraulic problem for example there exists time-related dependency of the outcomes. Time-
related dependencies can also exist in the demand. Yet with time-related random quantities
the Bellman recurrence formula - does not hold and the classical SDDP can not be
applied.

However if the Bellman functions are convex with respect to the time-related random
quantities one has only to increase the dimension of the state vector by the dimension of
the time-related random quantities to be back in the configuration of the basic case. In this
case solving a linear program of reasonable size for each hazard draw is enough to compute
new Benders cuts computation in the neighborhood of a candidate state.

There exists a few options to represent the time-related dependency of the random quan-
tities. However in order to not increase too much the dimension of the problem, a ARMA
process of order 1 is often chosen. In the random data vector w; two different parts has to
be distinguished from now on:

ind

e w;"" is the random data vector corresponding to the independent random quantities.

° wfep is the random data vector corresponding to the time-related random quantities.

And w{ fulfills the following recurrence equation :

dep dep
w. — Wy_1 — _
t uw7t — wl t—1 /’vat 1 +w2€t (911)
Ow,t Ow,t—1

To apply the Bellman recurrence formula the vector state should be made of the decision

variable z; and the time-related random quantities w,fl “?. Dimension of the vector state is

then increased. 2% = (z,,w!”)T denotes the new state vector. The Bellman function

satisfies from now on the following two-stages linear problem at time ¢ :

Qu(x—1, Wi wy) = min¢] 2, + Dy (x4, WIP)
[LP]] u.c. Ay = owe’) — By q, [ (wy)] (9.12)
T 2 0

with P the matrix such that w, = Pwi.
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The variable wf “? is a random process. Thus the above problem is solved using specific
values w! of this variable. To get them we apply a Markov process that is we simulate
different values of the white noise €.

The new form of the state vector implies changes in the sensitivity of the Bellman func-
tion. Thus it is a function depending on the decision variable z; but also on the the time-

related random quantity vector wf “?_ The computation of Benders cuts is then a bit different

a@t(ﬂft—bwﬁqawt) _ 8Qt($t_1,wffq,wt) aw;tiep
Dl Doy’ Busph (9.13)

g
= i) P,
w,t—

Backward pass has to be modified in the following manner. Some new computation steps
have to be taken into account.
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Algorithm 6: Run of backward pass with time-related random quantities (AR1 process)

Pick up the set of the following pairs: {If,wtg’de”} for g € {1,..,G}, t € {1,.., T}
for t=T,T~1,...1 do
for (z¢_,wih9), g €{l,...G} do

forl€{1,...,L} do
l

Produce a value for the white noise €; ;

Compute the element w! knowing the previous random quantity wff’i‘g :

~ w,‘fi‘{’g — Hw,t—1 I
Wi = Ow,t %071 +2eg | F ot (9.14)
w,t—

Solve the following linear sub-problem ;

d - .
Qi(x§717wtizi’gaw1lf) = Htlgln Ctht + 9t+1
t,0t41
.c. Agzy = Pwl — Exd [ (wh)]
"n,g u.c t + tLy_ 15 t (Wi
[AP” ] 2t >0 (9.15)

Or11 + (BiH)th + (’YﬁH)Twé = 0‘%+1’
j 6 {17 ey G7 AR (n + 1)G}

~ ’
Store the dual solution 7¢(w!) and the primal one Q! (xf_l,wffpl’g,wi) of the primal problem [AP,""Y]

Compute the cut that goes with the I** hazard draw :

N AT
9 _ Ol(n9 dep,g 1 l g Ow,t dep,g
oy = Qi(@y_q, w77, wy) + mi(wy) (Etxt—l — 1 gwtutfl Puw, Y )

BY = B m(w}) (9.16)
Ay = 1 P ()
end
Compute the gt new Benders cut at time ¢ at iteration n defined as the mean value of the cuts obtained before:
L
k__ 1 g
A =7 Z X
=1
L
k_ 1 g
/Bt L ;’Bt,l (9.17)
L
E_ 1 g
" =T Z%,l
=1
k=nG+g
end
end
Solve the following linear sub-problem. ;
Qo = min cgaco + 61
0,01
, u.c. Aozo = wo, [mo(wo)]
[APy"] x50 (9.18)

01+ (B) Tzo + (7)) Twi? > o,

Save the backward cost z,, = Qo
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9.2.3 Non-convexity and conditionnal cuts

Some random quantities may introduce non-convexity preventing us to apply the classical
algorithm of SDDP. Indeed when the random quantities appear on the left-hand side of
the linear constraints or in the cost function (typically A; and/or ¢; become random) the
property of non-convexity of the Bellman functions with respect to the random quantities
is not anymore observed.

In the frame of a management production problem the situation happened often. For
example sometimes the unit operation cost of plants are random. It is also observed when
we deal with spot price uncertainty for use in stochastic mid-term scheduling.

In a technical report [29] Pereira and Pinto suggested a new algorithm in order to effi-
ciently approximate the Bellman functions using explicitly the dependence of the Bellman
functions with respect to these random quantities. This new algorithm is based on a combi-
nation of SDDP and ordinary stochastic dynamic programming. The SDP part deals with
the non-convex random quantities, whereas the other random quantities are treated in the
SDDP part. It is an extension of the classical SDDP algorithm. It is described in detail in
[29] and in [30].

In that case the modelization used in the library is somewhat different from the one
described in both articles. Indeed in the articles it is based on a finite number of non-
convex random quantities. A discretization of the non-convex random quantity space is the
necessary.

In [30] spot price p; is regarded as a state. The set of feasible spot price is discretized
into in a set of M points (i, ..., (. The following Markov model is then used :

P (p: = Glpe—1 = G) = pij(t)

This model makes easier the implementation of the SDP. But it implies discretization
mistakes that are hard to quantify. It is also tough to discretize with efficiency a random
process.

In order to overcome these points in the library the evolution of the non-convex random
quantities is decided by Monte Carlo simulations. At each stage a fixed number of Monte-
Carlo simulations is provided. Anyway in spite of this difference the global view of this
brand new algorithm is similar to that one described in both articles :

e The non-convex random quantities depend on the realization of the previous one ac-
cording to a mathematical model (Markov chain).

e At each stage Bellman functions are approximated through the conditional realization
of these random quantities.

e We used conditional cuts to give an estimation of the Bellman functions.

In our algorithm the features of the conditional cuts are revealed thanks to a conditional
expectation computation.

Yet conditional expectation computations are not easy when the exact distribution of
the random variable is not known. A few techniques exist but in the library a specific one
is used and described above in chapter [2]: it is based on local linear regression.
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Regression, stochastic dynamic programming and SDDP
The run of the backward pass in the new algorithm combining SDDP and SDP using local
linear regression is described below.
Before describing in detail this algorithm, let us introduce a few notations :

e S is the space of the non-convex random quantities.

d is the dimension of the space of the non-convex random quantities S

At each stage U Monte Carlo simulations in S are provided. Thus we get U scenarios
denoted sj at each stage ¢

I is a partition of the space of the non-convex random quantities S.

T={I="(iy,....iq) i € {1,.., 1}, ....ig € {1,.... I;}}

® {Dr}c; is the set of meshes of the set of scenarios.
d
o My = H I}, denotes the number of meshes at each stage.
k=1
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Algorithm 7: Run of the backward pass with time-related (AR1) and non-convex random quantities

Pick up the set of the following pairs : {xf,wtg’dw} pour g € {1, ...,

G} te{l,..,T}

fort=T7T,T—1,...,.1do
i i i csy,ued{l,...,U}

for (

Generate values for the non-convex random quantities at time ¢ knowing the scenarios at time ¢t — 1 :
dep,
2  wih9), g€ {1,..,G} do

for v € {1,...,U} do

Consider a scenario s} in the mesh Dy;

forl € {1,...,L} do
: l

Produce a value for the white noise € ;

Compute the element wt knowing the previous random quantity wdeP 9.
dep,
A — Hw,t—
Wi = Ow,t <¢1t L4 ¢2Ei> + Hwt (9.19)
Tw,t—1

Pick up the cuts corresponding the mesh Dy : {afjrjl (s), Btlfl (s),yf’ﬁl (s)}7 jed{l;..5;(n+1)G}

Solve the following linear sub-problem ;

dep
QL(z)_y,wyh? w,lg, sy) = ztr%ltIL ct(s¥) Tws + Opp1(s)
[AP ,9] S.c. A (S;‘)ZBz = szlt - Etxt,p [ﬂ't(w,lgv Si")] (9'20)
xy =0
1,5 I, :
Oria(si) + (BL) (59) Tae + (v (1) Twh > oy (s1), 5 € {1,..,G, .oy (n + 1)GY
~ ~ ’
Store the dual solution m¢(w!) and the primal solution Qé(xfil,wffi 9, w, st) of the problem [APt’ylL’g]
Calculate the corresponding cut at the [t draw of uncertainties :
O (s1) = Qe g, <, ) + ()T (Buaf_y — n ;2 Pufiend)
A 71
s = Bl m(wh) (9.21)
29,1 w,t -
5PL(s) = g1 s7 P Ty ()
end
Compute the cut for a non-convex random quantity s} at time ¢ at iteration n : it is defined as the weighted average on
the L Benders cut obtained before :
L
A9, ~ 9,1
675l = 7 D4l (1)
=1
L
L 59,1 .
D) = £ Bl (st), i=nG+g (9-22)

end

for I,,i€{1,.. MM{do
new cut of the mesh D;. at time t at iteration n defined as the conditional expectation with respect to

Compute the gth
the scenario v at time ¢

1 ~g,1
i (si_1) =E g (st)lsi_q |
Bl (sy ) =E f’( Plsi_a|,  i=nG+yg

N ~g,1
%J (sf_1) =E g “(si)lsiy

(9.23)

end

end

end

Solve the initial linear sub problem [AP(;"] ;
Save the backward cost z,, = Qo
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9.3 CH++ API

The SDDP part of the stochastic library is in C++ code. This unit is a classical black box :
specific inputs have to be provided in order to get the expected results. In the SDDP unit
backward and forward pass are achieved successively until the stopping criterion is reached.
In this unit the succession of passes is realized by backwardForwardSDDP class. This class
takes as input three non-defined classes.

9.3.1 Inputs

The user has to implement three classes.

e One class where the transition problem is described which is denoted in the example

TransitionOptimizer. This class is at the core of the problem resolution. Therefore
much flexibility is let to the user to implement this class. In some ways this class is
the place where the technical aspects of the problem are adjusted. This class describes
backward and forward pass. Four methods should be implemented :

— updateDates : set new set of dates (“t”, “t+dt”)

— oneStepForward : solves the different transition linear problem during the forward
pass for a particle, a random vector and an initial state. :

*

*

*

the state (z;, wi®) is given as input of the function,
the s; values are restored by the simulator,

the LP is solved between dates t and t+dt for the given s; and the constraints
due to w® (demand, flow constraints) and permits to get the optimal ;4.
Using iid sampling, wflet is estimated

return (g, wfj’;t) as the following state and (x4 4, wiep ) that will be used
as the state to visit during next backward resolution.

— oneStepBackward : solves the different transition linear problem during the back-
ward pass for a particle, a random vector and an initial state.

*

*

*

The state (244, wi™) is given as input if ¢ > 0 otherwise input is (29, wi™)
If t > 0, sample to calculate wfj’c'lt in order to get the state (44, wszt) at
the beginning of the period of resolution of the LP.

Solve the LP from date ¢t + dt to next date ¢ 4 2dt (if equally spaced periods).

Return the function value and the dual that will be used for cuts estimations.

— oneAdmissibleState : returns an admissible state at time ¢ (respect only the
constraints)

TransitionOptimizer should derive from the OptimizerSDDPBase class defined be-

low.
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1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)

4 #ifndef OPTIMIZERSDDPBASE H

5 #define OPTIMIZERSDDPBASE H

6 #include <Eigen/Dense>

7 #include ”StOpt/sddp/SDDPCutBase.h”

s #include ”StOpt/core/grids/OneDimRegularSpaceGrid.h”

9 #include ”StOpt/core/grids/OneDimData.h”

10 #include ”StOpt/sddp/SimulatorSDDPBase.h”

11

12

13 /+% \file OptimizerSDDPBase.h

14 % \brief Define an abstract class for Stochastic Dual Dynamic Programming

problems
15 % \author Xavier Warin
16 */

18 namespace StOpt

19 {

21 /// \class OptimizerSDDPBase OptimizerSDDPBase.h
22 /// Base class for optimizer for Dynamic Programming
23 class OptimizerSDDPBase

2 {

26

27 public

28

29 OptimizerSDDPBase () {}

30

31 virtual ~“OptimizerSDDPBase() {}

32

33

34 /// \brief Optimize the LP during backward resolution

35 /// \param p_linCut cuts used for the PL (Benders for the Bellman value
at the end of the time step)

36 /// \param p_aState store the state, and 0.0 values

37 /// \param p_particle the particle n dimensional value associated to the
regression

38 /// \param p_isample sample number for independant uncertainties

39 /// \return a vector with the optimal value and the derivatives if the
function value with respect to each state

40 virtual Eigen :: ArrayXd oneStepBackward (const std::unique_ptr< StOpt::
SDDPCutBase > &p_linCut , const std::tuple< std::shared_ptr<Eigen::
ArrayXd>, int , int > &p_aState, const Eigen:: ArrayXd &p_particle ,
const int &p_isample) const = 0;

41

42 /// \brief Optimize the LP during forward resolution

43 /// \param p_aParticle a particule in simulation part to get back cuts

44 /// \param p_linCut cuts used for the PL (Benders for the Bellman value
at the end of the time step)

45 /// \param p_state store the state, the particle number used in
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46

47
48

49
50
51
52

53

54
55
56
57

58
59
60
61
62

63
64
65
66
67
68

69
70
71

72
73}
74 }

optimization and mesh number associated to the particle. As an input
it constains the current state

/// \param p_stateToStore for backward resolution we need to store \f$ (
St ,A{t—1},D_{t—1}) \f$ where p_state in output is \f$ (S_t ,A_{t},D_
{t}) \f$

/// \param p_isample sample number for independant uncertainties

virtual double oneStepForward (const Eigen::ArrayXd &p_aParticle , Eigen::
ArrayXd &p_state, FEigen::ArrayXd &p_stateToStore , const std::
unique_ptr< StOpt:: SDDPCutBase > &p_-linCut , const int &p_isample)
const = 0 ;

/// \brief update the optimizer for new date

Yy — In Backward mode, LP resolution achieved at date p_dateNext

/// starting with uncertainties given at date p_date and
evolving to give uncertainty at date p_dateNext,

vy — In Forward mode, LP resolution achieved at date p_date,

Yy and uncertainties evolve till date p_dateNext

/1]

virtual void updateDates(const double &p_date, const double &p_dateNext)

/// \brief Get an admissible state for a given date

/// \param p_date current date

/// \return an admissible state

virtual std::shared_ptr<Eigen:: ArrayXd> oneAdmissibleState (double p_date)

/// \brief get back state size
virtual int getStateSize() const = 0;

/// \brief get the backward simulator back
virtual std::shared_ptr< StOpt:: SimulatorSDDPBase > getSimulatorBackward
() comnst = 0;

/// \brief get the forward simulator back
virtual std::shared_ptr< StOpt::SimulatorSDDPBase > getSimulatorForward ()
const = 0;

75 #endif /+ OPTIMIZERSDDPBASE H x/

e A simulator for forward pass : SimulatorSim

e A simulator for backward pass : SimulatorOpt. This simulator can use an underlying

process to generate scenarios, a set of historical chronicles or a discrete set of scenarios.
Often in the realized test case a Boolean is enough to distinguish the forward and the
backward simulator.

An abstract class for simulators is defined below.
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1 // Copyright (C) 2016 EDF
2 // All Rights Reserved
3 // This code is published under the GNU Lesser General Public License (GNU

LGPL)

4 #ifndef SIMULATORSDDPBASE H
5 #define SIMULATORSDDPBASE_H
6 #include <Eigen/Dense>

s /+* \file SimulatorBase.h
9 % \brief Abstract class for simulators for SDDP method
10 % \author Xavier Warin

1 %/

12 namespace StOpt

13 {

14 /// \class SimulatorSDDPBase SimulatorSDDPBase.h
15 /// Abstract class for simulators used for SDDP

[

17 {

6 class SimulatorSDDPBase

18 public

19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44

45}
46 }

/// \brief Constructor
SimulatorSDDPBase () {}

/// \brief Destructor
virtual ~SimulatorSDDPBase() {}

/// \brief Get back the number of particles (used in regression part)

virtual int getNbSimul() const = 0;

/// \brief Get back the number of sample used (simulation at each time
step , these simulations are independent of the state)

virtual int getNbSample() const = 0;

/// \brief Update the simulator for the date

virtual void updateDates(const double &p_date) = 0;

/// \brief get one simulation

/// \param p_isim simulation number

/// \return the particle associated to p_isim

/// \brief get current Markov state

virtual Eigen:: VectorXd getOneParticle(const int &p_isim) const = 0;

/// \brief get current Markov state

virtual Eigen :: MatrixXd getParticles() const = 0;

/// \brief Reset the simulator (to use it again for another SDDP sweep)

virtual void resetTime () = 0;

/// \brief in simulation part of SDDP reset time and reinitialize
uncertainties

/// \param p_nbSimul Number of simulations to update

/// \param p_nbSample Number of sample to update

virtual void updateSimulationNumberAndResetTime (const int &p_nbSimul,
const int &p_-nbSample) = 0;

a7 #endif /x SIMULATORSDDPBASEH x/
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9.3.2 Architecture
The SDDP handling part of the library is built following the scheme described below.

In the following pseudo-code you have to keep in mind that some small shortcuts have
been used in view of making the reading reader-friendly ( for example linear sub-problem in
the initial case (t = 0) should be a bit different than the the one in other time-steps,
forwardSDDP () ,backwardSDDP () ,backwardforwardSDDP () inputs have been omitted for sim-
plification). A more rigorous theoretical explanation is available in the previous part.

Three colors have been used : blue parts correspond to the use of functions implemented
in the TransitionOptimizer class, red parts correspond to the use of Simulator(Sim or
Opt) functions while grey parts correspond to generic functions totally handled by the li-
brabry. To be more accurate, what you have to implement as a StOpt user is only the
TransitionOptimizer and the Simulator (blue and red part), other functions and de-
scribed loops are already implemented and managed by the library.
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Algorithm 8: Run of backwardforwardSDDP(),the main function)

Init: 2{=TransitionOptimizer.oneadmissiblestate(t), for g € {1,...,G} and t € {1,....T — 1}, n =0 ‘
while 1) > ¢ and n < ny,4. do

StOpt
Vo= backwardSDDP() Using the previously computed set (z{)¢,4 and creating a set of cuts
Vy = forwardSDDP() Simulation using the cuts created in all the backward passes and update the set (x])s 4

_Vi—W
Y= v;
n=n+1
end
Algorithm 9: Run of forwardSDDP() (n'" iteration)
for g € Oy do

for t € {0,...,T} do
TransitionOptimizer.updatedates(t,t+1): update the required data following the current time step
(iterator over current time step, average demand,...)

‘ SimulatorSim.updatedates(t): give the random quantities (wf) for the scenario g at time ¢

StOpt Read the previously computed files to gather agﬂ,ﬂgﬂ, for j e {1,...,G,...,nG}

TransitionOptimizer.onestepforward():
Solve the following linear sub-problem. ;

Qi (z!_1,wf) = min ¢z + 041
ZTt,0t+1
[apr ] sc Ay =wi = Eal,,  [m(w?)] (9.24)
’ Tt 2 0

9t+1+(ﬁg+1)—rﬂct >a{+1, jef{l,..,G,..,nG}

Compute the cost for current time step c;zf

Return: the primal solution () of the problem

StOpt Store the primal solution () of the problem [AP,]

end

StOpt Compute the cost for scenario g, at iteration n : 29 = ZtT=o (s

end

StOpt Compute the total cost in forward pass at iteration n : z, = % Z§=1 zg
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Algorithm 10: Run of backwardSDDP()

fort=T7,T—-1,...,0do
StOpt Read the previously computed files to gather 2 ,, for g € {1,...,G, }

TransitionOptimizer.updatedates(t-1,t): update the required data following the current time step
(iterator over current time step, average demand,...)

‘ SimulatorOpt.updatedates(t): give the random quantities for the L scenarios at time ¢

StOpt Read the previously computed files to gather 0‘{+1v ﬁg_H, for j € {1,...,G,...,nG}
for 2/ ., g€ {1,..,G} do

for wl, 1€ {1,..,L} do

TransitionOptimizer.onestepbackward()

Solve the following linear sub-problem. ;

Umd o) — min T
Qi(x{_1,wp) = min ¢,z + O
Tt,0t+1

[AP79]{ s:¢- Az = wl — Bzl |, [me(w))] (9.25)
' Tt 2 0
041+ (Bl1) T2 2 0l q, je{l,...,G, ..., (n+1)G}

Return: the dual solution 7;(w!) and the primal one QL(z¢_,,w!) of the linear sub-problem [AP[]

end

StOpt Compute the gt new Benders cut at time ¢ at iteration n : of, 37, for j € {(n —1)G, (n — 1)G +
1,...,nG}

end
end

‘ StOpt Save the cost backward z,, = Qo ‘

9.3.3 Implement your problem

In the following section, some tips and explanations will be given in view of helping you
implementing your problem in the library. It is advised to have a look at the examples
provided by the library. It will give you a better understanding of what is needed to compute
the SDDP method through StOpt (folder test/c++ /tools/sddp for the optimizer examples,
test/c++/tools/simulators for the simulators one, and test/c++ /functional for the main
instances).

Implement your own TransitionOptimizer class

As described above, your TransitionOptimizer class should be specific to your problem

(it’s given as an argument of the backwardforwardSDDP function). Hence, you have to im-

plement it by yourself following certain constraints in view of making it fitting the library
requirements.

First, make it sure that your TransitionOptimizer class heritates from the class OptimizerSDDPBase.
You will then have to implement the following functions.
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1

The updateDates function allows to update the data stored by the optimizer, fitting
the times indicated as argument.

virtual void updateDates(const double &p_date, const double &
p-dateNext) = 0 ;

If your transition problem depends on the time, you should for instance store those
arguments value. Following your needs you could also update data such as the average
demand at current and at next time step in a gas storage problem.

The pyateness argument is used as the current time step in the backward pass. Hence,
you should store the values for both the arguments current and next time step.

The oneAdmissibleState function give an admissible state (that means a state re-
specting all the constraints) for the time step given as an argument.

virtual std::shared_ptr<Eigen :: ArrayXd> oneAdmissibleState (double
p-date) = 0 ;

The oneStepBackward function allows to compute one step of the backward pass.

virtual Eigen:: ArrayXd oneStepBackward (const std::unique_ptr< StOpt::
SDDPCutBase > &p_linCut , const std::tuple< std::shared_ptr<Eigen
;i ArrayXd>, int , int > &p_aState, const Eigen::ArrayXd &
p_particle , const int &p_isample) const = 0;

The first argument is the cuts already selected for the current time step. It is easy
to handle them, just use the getCutsAssociatedToAParticle function as described
in the examples that you can find in the test folder (OptimizeReservoir WithInflowssS-
DDP.h without regression or OptimizeGasStorageSDDP.h with regression). You will
then have the needed cuts as an array cuts that you can link to the values described
in the theoretical part at the time step ¢ by cuts(0,7) = al,,, cuts(i,j) = zj—l,t+1
Je{l,...,G,....(n+ 1)G} i€ {1,...,nbsa}-

You will have to add the cuts to your constraints by yourself, using this array and
your solver functionnalities.

Moreover, as an argument you have the object containing the state at the beginning
of the time step pysiare (have in mind that this argument is given as an Eigen
array), Dpartice contains the random quantities in which the regression over the ex-
pectation of the value function will be based (the computational cost is high so have a
look at the theoretical part to know when you really need to use this), finally the last
argument is an integer giving in which scenario index the resolution will be done.
The function returns a 1-dimensional array of size nbgq.. + 1 containing as a first argu-
ment the objective function, and then for i € {1, ..., nbsyqye} it contains the derivatives
of the objective function compared to each of the i dimensions of the state (you have
to find a way to have it by using the dual solution for instance).

The oneStepForward function allows to compute one step of the foward pass.

virtual double oneStepForward (const Eigen :: ArrayXd &p_aParticle ,
Eigen :: ArrayXd &p_state, Eigen::ArrayXd &p_stateToStore , const
std :: unique_ptr< StOpt:: SDDPCutBase > &p_linCut , const int &
p-isample) const = 0 ;

156



As you can see, the oneStepForward is quite similar to the oneStepBackward. A
tip, used in the examples and that you should use, is to build a function generating
and solving the linear problem [AP}] (for a given scenario g and a given time step ¢)
which appears for both the forward and the backward pass. This function creating and
generating the linear problem will be called in both our functions oneStepForward
and oneStepBackward. Take care that in the forward pass the current time step
is given through the function updateDates(current date,next date) by the argument
current date while in the backward pass the current time is given through the argument
next date (this is a requirement needed to compute the regressions as exposed in the
theoretical part). Finally note that the two previously described functions are const
functions and you have to consider that during your implementation.

e The other functions that you have to implement are simple functions (accessors) easy
to understand.

Implement your own Simulator class

This simulator should be the object that will allow you to build some random quantities
following a desired law. It should be given as an argument of your optimizer. You can
implement it by yourselft, however a set of simulators (gaussian, AR1, MeanReverting,...)
are given in the test folder you could directly use it if it fits your problem requirements.
An implemented Simulator derivating from the SimulatorSDDPBase class needs to imple-
ment those functions:

e The getNbSimul function returns the number of simulations of random quantities used
in regression part. It is the U hinted in the theoretical part.

1 virtual int getNbSimul() const = 0;

e The getNbSample function returns the number of simulations of random quantities
that are not used in the regression part. It is the G hinted in the theoretical part. For
instance, in some instances we need a gaussian random quantity in view of computing
the noise when we are in the ”dependence of the random quantities” part.

1 virtual int getNbSample() const = 0;

e The updateDates function is really similar to the optimizer one. However you just
have one argument (the current time step) here. It is also here that you have to
generate new random quantities for the resolution.

1 virtual void updateDates(const double &p_date) = 0;

e The getOneParticle and the getParticles functions should return the quantities
used in regression part.

1 virtual Eigen:: VectorXd getOneParticle(const int &p_isim) const = 0;

1 virtual Eigen :: MatrixXd getParticles() const = 0;
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e The two last functions resetTime and updateSimulationNumberAndResetTime are
quite explicit.

9.3.4 Set of parameters

The basic function backwardForwardSDDP should be called to use the SDDP part of the
library.

/// \return backward and forward valorization
std :: pair<double, double> backwardForwardSDDP (std :: shared _ptr<
OptimizerSDDPBase> &p_optimizer ,
const int &p_nbSimulCheckForSimu ,
const Eigen :: ArrayXd &p_initialState ,
const SDDPFinalCut &p_finalCut ,
const Eigen:: ArrayXd &p_dates,
const Eigen:: ArrayXi &p_meshForReg,
const std::string &p_nameRegressor
const std::string &p_nameCut,
const std::string &p_nameVisitedStates ,
int &p_iter
double &p_accuracy ,
const int &p-_nStepConv ,
std :: ostringstream &p_stringStream ,
bool p_bPrintTime = false);

Most of the arguments are pretty clear (You can see examples in test/c++/functional).
The strings correspond to names that will be given by the files which will store cuts, vis-
ited states or regressor data. pppsimuiCheckForsimu cOrresponds to the number of simulations
(number of foward pass called) when we have to check the convergence by comparing the
outcome given by the forward pass and the one given by the backward pass. ppstepconw
indicates when the convergence is checked (each psiepcony iteration). pyinaicur corresponds
to the cut used at the last time step : when the final value function is zero, the last cut
is given by an all zero array of size nbgae + 1 . Paates 1 an array made up with all the
time steps of the study period given as doubles, p;s, correspond to the maximum number of
iterations. Finally, psringstream 1S an ostringstream in which the result of the optimization
will be stored.

9.3.5 The black box

The algorithms described above are applied. As said before the user controls the implemen-
tation of the business side of the problem (transition problem). But in the library a few
things are managed automatically and the user has to be aware of :

e The Parallelization during the problem resolution is managed automatically. During
compilation, if the compiler detects an MPI (Message Passing Interface)library problem
resolution will be achieved in a parallelized manner.
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e The cut management. All the cuts added at each iteration are currently serialized
and stored in an archive initialized by the user. No cuts are pruned. In the future one
can consider to work on cuts management [31].

e A double stopping criterion is barely used by the library : a convergence test and
a maximal number of iterations. If one of the two criteria goes over the thresholds
defined by the user resolution stops automatically. Once again further work could be
considered on that topic.

9.3.6 Outputs

The outputs of the SDDP library are not currently defined. Thus during the resolution of
a SDDP problem only the number of iterations, the evolution of the backward and forward
costs and of the convergence criterion are logged.

Yet while iterating backward and forward pass the value of the Bellman functions and
the related Benders cuts , the different states visited during the forward pass and the costs
evolution are stored at each time of the time horizon. These information are helpful for the
users and easy to catch.

Once the convergence is achieved, the user should rerun some simulations adding some flag
to store the results needed by the application (distribution cost etc...) : these results will
be post-processed by the user.

9.4 Python API

A high level Python mapping is also available in the SDDP part. The backward-forward
C++ function is exposed in Python by the SDDP module “StOptSDDP”.

1 import StOptSDDP
2 dir (StOptSDDP)

that should give

[/OptimizerSDDPBase/,/ SDDPFinalCut/,/ SimulatorSDDPBase/,/ ,,doc,,/,/ ,,file,,/,/ ,,name,,/,/ ,,pack'age,,/,/ backwardF‘orwardSDDP/]

The “backwardForwardSDDP” realize the forward backard SDDP sweep giving a SDDP

optimizer and a SDDP uncertainty simulator. The initial final cuts for the last time steps
are provided by the ““SDDPFinalCut”’ object.
To realize the mapping of SDDP optimizers and simulators written in C++ it is necessary to
create a Boost Python wrapper. In order to expose the C++ optimizer class “OptimizeDe-
mandSDDP”used in the test case “testDemandSDDP.cpp”, the following wrapper can be
found in

“StOpt /test /c++ /python/BoostPythonSDDPOptimizers.cpp”

1 // Copyright (C) 2016 EDF

2 // All Rights Reserved

3 // This code is published under the GNU Lesser General Public License (GNU
LGPL)
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Transition problem :

Solve the transition problem at each pass, each time, each
scenario.

4 reguired methods

OneStepBackward - returns the dual solution and the
associated Bellman values.

OneStepForward : returns a new state vector and the
associated Bellman value.

updateDates

oneAdmissibleState : returns an admissible state at each
time t.

Backward simulator
Give the random guantity during the backward pass.
Called at each time t.

Forward simulator
Give the random guantity during the forward pass
Called at each time .

Class provided by the user

*Time hozizon

*Treshold of the convergence test

+*Number of iterations between two computations of the
convergence test

*Maximal number of iterations

+Initial vector state

+*Number of scenarii used in backward pass.

*Number of scenarii used in forward pass.

Figure 9.1:

Qelre_q.w) = miur',_.r, + 2y ()
[LP] 1 s.c. Aexe =wr — Errey,  [melwi)]
xy =0

main()

+Cuts management
+Parallelization
*Stopping test

Outputs

Backward and forward costs (approximation of the
future value functian)

Set of Benders cuts (conditional or not)

Optimal strategy for each scenarie

Some parameters
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4 #include <boost/version .hpp>

5 #include ”StOpt/core/grids/OneDimRegularSpaceGrid.h”
6 #include ”StOpt/core/grids/OneDimData.h”

7 #include ”StOpt/sddp/OptimizerSDDPBase.h”

s #include ”test/c++/tools/sddp/OptimizeDemandSDDP . h”
9 #include ”test/c++/tools/simulators/SimulatorGaussianSDDP .h”
10

11

12 #ifdef __linux__

13 #ifdef __clang__

14 #if BOOST_VERSION < 105600

15 // map std::shared ptr to boost python

6 namespace boost

17 {

18 template<class T> T xget_pointer (std::shared_ptr<T> p)
19 {

20 return p.get () ;

21 }

22 }

23 #endif

24 #endif

25 #endif

26

27 #include <boost/python.hpp>

28 #include ”StOpt/python/BoostToStdSharedPtr.h”

20 #include ”test /ct++/python/FutureCurveWrap.h”

=

31 /xx \file BoostPythonSDDPOptimizers.cpp

32 * \brief permits to map Optimizers for SDDP
33 x \author Xavier Warin

34 %/

36 #ifdef DEBUG
37 #undef DEBUG
38 #include <Python.h>
39 #define DEBUG
10 #else
41 #include <Python.h>
42 #endif
43 #include <numpy/arrayobject.h>
44 #include " StOpt/python/NumpyConverter.hpp”
45
46
a7
48
49 using namespace boost ::python;
50
51 /// \wrapper for Optimizer for demand test case in SDDP
52 class OptimizeDemandSDDPWrap : public OptimizeDemandSDDP<
SimulatorGaussianSDDP >
53
{

54 public

56 /// \brief Constructor
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57 /// \param p-sigD volatility for demand

58 /// \param p_kappaD AR coefficient for demand

59 /// \param  p_timeDAverage average demand

60 /// \param p_spot Spot price

61 /// \param p-simulatorBackward backward simulator

62 /// \param p-simulatorForward Forward simulator

63 OptimizeDemandSDDPWrap ( const  double  &p_sigD , const double &p_kappaD,

64 const FutureCurve &p_timeDAverage

65 const double &p_spot ,

66 const boost::shared_ptr<SimulatorGaussianSDDP> &
p_simulatorBackward ,

67 const boost ::shared_ptr<SimulatorGaussianSDDP> &
p-simulatorForward) :

68 OptimizeDemandSDDP (p_sigD , p_kappaD,

69 std :: make_shared< StOpt :: OneDimData< StOpt ::

OneDimRegularSpaceGrid, double> >(static_cast <
StOpt : : OneDimData< StOpt ::
OneDimRegularSpaceGrid, double> >(
p_-timeDAverage) ) ,

70 p-spot , make_shared_ptr<SimulatorGaussianSDDP >(
p-simulatorBackward), make_shared_ptr<
SimulatorGaussianSDDP >(p_simulatorForward)) { }

1}

7a // MSVC 2015 BUG

75 #if (MSC.VER = 1900)

76 namespace boost

7 {

78 template <>

79 OptimizeDemandSDDPWrap const volatile xget_pointer< class
OptimizeDemandSDDPWrap const volatile >(

80 class OptimizeDemandSDDPWrap const volatile xc)
s1 {
82 return c;

83 }

81 }

85 #endif
86

s7 BOOST PYTHON MODULE( SDDPOptimizers )
ss {

89
90

91 Register <Eigen :: ArrayXd>();

92 Register <Eigen :: ArrayXXd>() ;

93

94 // map optimizer for demand test case

95 class_ <OptimizeDemandSDDPWrap, std::shared_ptr<OptimizeDemandSDDPWrap>,
bases<StOpt :: OptimizerSDDPBase> >(” OptimizeDemandSDDP” |

96 init< const double &, const double &, const FutureCurve &,

97 const double &,

98 const boost ::shared_ptr<SimulatorGaussianSDDP> &,

99 const boost::shared_ptr<SimulatorGaussianSDDP> &>())

100 .def (7 getSimulatorBackward” , &OptimizeDemandSDDP<SimulatorGaussianSDDP >::
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getSimulatorBackward )

101 .def (7 getSimulatorForward” , &OptimizeDemandSDDP<SimulatorGaussianSDDP >::
getSimulatorForward )
102 .def(”oneAdmissibleState” , &OptimizeDemandSDDP<SimulatorGaussianSDDP >::

oneAdmissibleState)
103 ;

104 }

The wrapper used to expose the SDDP simulator is given in
“StOpt/test /c++/python/BoostPythonSimulators.cpp”
Then it is possible to use the mapping to write a Python version of “testDemandSDDP.cpp”

1 # Copyright (C) 2016 EDF

2 # All Rights Reserved

3 # This code is published under the GNU Lesser General Public License (GNU

LGPL)

import StOptGrids

import StOptSDDP

import StOptGlobal

import Utils

import SDDPSimulators as sim

import SDDPOptimizers as opt

10 import numpy as NP

11 import unittest

12 import math

13 import imp

14 import backwardForwardSDDP as bfSDDP # import of the function written in
python

© 0w N O Ut

15
16 # unitest equivalent of testDemandSDDP : here MPI version
17 # High level python interface : at level of the backwardForwardSDDP c++ file

19 def demandSDDPFunc(p-sigD , p-sampleOptim ,p_sampleCheckSimul):

20

21 maturity = 40

22 nstep = 40;

23

24 # optimizer parameters

25 kappaD = 0.2; # mean reverting coef of demand

26 spot = 3 ; # spot price

27

28 # define a a time grid

29 timeGrid = StOptGrids.OneDimRegularSpaceGrid (0., maturity / nstep,

nstep )

30

31 # periodicity factor

32 iPeriod = 52;

33 # average demande values

34 demValues = |[]

35

36 for i in list (range(nstep + 1))

37 demValues.append (2. + 0.4 * math.cos ((math.pi * i % iPeriod) /
nstep))

38

39 # define average demand
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40
41
42
43
44
45
46
47
48
49
50
51

53
54

55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73

74

demGrid = Utils.FutureCurve (timeGrid, demValues)
initialState = demGrid. get (0.)*NP. ones (1)
finCut = StOptSDDP.SDDPFinalCut (NP. zeros ((2,1)))

# here cuts are not conditional to an uncertainty
nbMesh = NP. array ([] ,NP.int32)

sampleSimul = 1

nbUncertainties = 1;

# backward simulator

backwardSimulator = sim.SimulatorGaussianSDDP (nbUncertainties ,
p-sampleOptim ,0)

# forward simulator

forwardSimulator = sim.SimulatorGaussianSDDP (nbUncertainties ,
sampleSimul ,1)

# Create the optimizer
optimizer = opt.OptimizeDemandSDDP (p_sigD , kappaD, demGrid, spot,
backwardSimulator , forwardSimulator)

# optimisation dates
dates = NP.linspace( 0., maturity ,nstep + 1);

# names for archive

nameRegressor = ”"RegressorDemand” ;
nameCut = ”CutDemand” ;

nameVisitedStates = ” VisitedStateDemand” ;

# precision parameter
nlterMax = 40

accuracyClose = 1.

accuracy = accuracyClose / 100.

nsteplterations = 4; # check for convergence between nsteplterations
step

values = StOptSDDP . backwardForwardSDDP (optimizer , p_sampleCheckSimul
, initialState , finCut, dates, mnbMesh, nameRegressor, nameCut,
nameVisitedStates , nlterMax ,
accuracy , nsteplterations

);

print (” Values 7 , values)
return values
# unitest equivalent of testDemandSDDP : here low interface python version

# Low level python interface : use backwardForwardSDDP .py

LU ) ) ) ) ) ) L

I/I/ // // // /I /I /I /I /I /I /I /I /I /I /I // // // I/ I/ I/ I/ I/ I/ I/ I/ I/ I/ // // // /I /I /I /I /I /I /I /I /I /I // // // I/ I/ I/ I/ I/ I/ I/ I/ I/ I/ // // // // /I /I /I /I /I /I /I /I /I // // // // I/ I/

def demandSDDPFuncLowLevel (p_sigD , p_sampleOptim ,p_sampleCheckSimul):

maturity = 40
nstep = 40;
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87
88
89
90
91
92
93

94
95
96
97
98
99
100
101
102

103
104
105
106

108
109
110
111
112
113
114
115
116
117

118
119

120
121
122

123
124
125
126
127
128
129
130
131
132
133
134
135

# optimizer parameters
kappaD = 0.2; # mean reverting coef of demand
spot = 3 ; # spot price

# define a a time grid
timeGrid = StOptGrids.OneDimRegularSpaceGrid (0., maturity / nstep,
nstep)

# periodicity factor
iPeriod = 52;

# average demande values
demValues = []

for i in list (range(nstep + 1))
demValues.append (2. + 0.4 % math.cos((math.pi * i % iPeriod) /
nstep))

# define average demand
demGrid =Utils.FutureCurve (timeGrid, demValues)

initialState = demGrid. get (0.)*NP. ones (1)
finCut = StOptSDDP . SDDPFinalCut (NP. zeros ((2,1)))

# here cuts are not conditional to an uncertainty
nbMesh = NP. array ([] ,NP.int32)

sampleSimul = 1

nbUncertainties = 1;

# backward simulator

backwardSimulator = sim.SimulatorGaussianSDDP (nbUncertainties ,
p-sampleOptim ,0)

# forward simulator

forwardSimulator = sim.SimulatorGaussianSDDP (nbUncertainties ,
sampleSimul ;1)

# Create the optimizer
optimizer = opt.OptimizeDemandSDDP (p_sigD , kappaD, demGrid, spot,
backwardSimulator , forwardSimulator)

# optimisation dates
dates = NP.linspace( 0., maturity ,nstep + 1);

# names for archive

nameRegressor = ”RegressorDemand” ;
nameCut = ”CutDemand” ;

nameVisitedStates = 7 VisitedStateDemand” ;

# precision parameter
nlterMax = 40

accuracyClose = 1.

accuracy = accuracyClose / 100.
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136

137
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159
160
161
162
163
164
165

167
168
169
170
171
172
173
174
175

nsteplterations = 4; # check for convergence between nsteplterations
step

values = bISDDP.backwardForwardSDDP (optimizer , p-sampleCheckSimul,
initialState , finCut, dates, nbMesh, nameRegressor,
nameCut, nameVisitedStates , nlterMax,
accuracy , nsteplterations);

return values

class testDemandSDDP (unittest . TestCase):

if

def testDemandSDDPID(self):

try:
imp. find _module ( "mpidpy ")
found = True
except:
print ("Not parallel module found 7)
found = False
if found

from mpidpy import MPI
world = MPI.COMMWORID

sigD = 0.6 ;
sampleOptim = 500;
sampleCheckSimul = 500;

values = demandSDDPFunc(sigD , sampleOptim ,sampleCheckSimul)

if (world.rank==0):
print (7 Values is 7 ,values)

def testDemandSDDPI1DLowLevel(self):
sigh = 0.6 ;
sampleOptim = 500;
sampleCheckSimul = 500;
demandSDDPFuncLowLevel (sigD , sampleOptim ,sampleCheckSimul)

__name__ = __main__ " :
unittest . main ()
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Part VI1I

Some test cases description

167



In this part, we describe the functional test cases of the library. The c++ version of
these test cases can be found in “test/c++/functional” while their python equivalent (when
existing) can be found in “test/python/functional”. We describe here in details the c++
test cases.

9.5 American option

The library gives some test cases for the Bermudean option problem ([I6] for details on the
bermudean option problem). All Bermudean test cases use a basket option payoff. The
reference for the converged methods can be found in [16].

9.5.1 testAmerican

The test case in this file permits to test during the Dynamic Programming resolution different
regressors :

e cither using some local functions basis with support of same size :

— Either using a constant per mesh representation of the function (“LocalSame-
SizeConstRegression” regressor)

— Either using a linear per mesh representation of the function (“LocalSameSize-
LinearRegression” regressor)

e cither using some function basis with adaptive support ([16])

— Either using a constant per mesh representation of the function (“LocalConstRe-
gression” regressor)

— Either using a linear per mesh representation of the function (“LocalLinearRegres-
sion” regressor)

e cither using global polynomial regressor :

— FEither using Hermite polynomials,
— Either using Canonical polynomials (monomes),

— FKither using Tchebychev polynomials.

test AmericanLinearBasket1D

Test 1D problem with “LocalLinearRegression” regressor.

test AmericanConstBasket1D

Test 1D problem with “LocalConstRegression” regressor.

test AmericanSameSizeLinearBasket1D

Test 1D problem with “LocalSameSizeLinearRegression” regressor.
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test AmericanSameSizeConstBasket1D

Test 1D problem with LocalSameSizeConstRegression regressor.

test AmericanGlobalBasket1D

Test 1D problem with global Hermite, Canonical and Tchebychev regressor.

test AmericanLinearBasket2D

Test 2D problem with “LocalLinearRegression” regressor.

test AmericanConstBasket2D

Test 2D problem with “LocalConstRegression” regressor.

test AmericanSameSizeLinearBasket2D

Test 2D problem with “LocalSameSizeLinearRegression” regressor.

test AmericanSameSizeConstBasket2D

Test 2D problem with LocalSameSizeConstRegression regressor.

test AmericanGlobalBasket2D

Test 2D problem with global Hermite, Canonical and Tchebychev regressor.

test AmericanBasket3D

Test 3D problem with “LocalLinearRegression” regressor.

test AmericanGlobalBasket3D

Test 3D problem with global Hermite, Canonical and Tchebychev regressor.

test AmericanBasket4D

Test 4D problem with “LocalLinearRegression” regressor.

9.5.2 testAmericanForSparse

This test case is here to test sparse grid regressors (see section [1.3). As described before we
can use a linear, quadratic or cubic representation on each cell. The reference is the same
as in the testAmerican subsection so linked to a Bermudean basket option.

test AmericanSparseBasket1D

Use sparse grids in 1D (so equivalent to full grid) for linear, quadratic or cubic representation.
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test AmericanSparseBasket2D

Use sparse grids in 2D for linear, quadratic or cubic representation.

test AmericanSparseBasket3D

Use sparse grids in 3D for linear, quadratic or cubic representation.

test AmericanSparseBasket4D

Use sparse grids in 4D for linear, quadratic or cubic representation.

9.6 testSwingOption

The swing option problem is the generalization of the American option using a Black Scholes
model for the underlying asset : out of a set of “nStep” dates (chosen equal to 20 here) we
can choose N dates (N equal to three) to exercise the option. At each exercise date t , we
get the pay-off (S; — K)T where S; is the value of the underlying asset at date ¢. See [35] for
description of the swing problem and the backward resolution techniques. Due to classical
results on the Snell envelop for European payoff, the analytical value of this problem is the
sum of the N payoff at the NV last dates where we can exercise (recall that the value of an
American call is the value of the European one). The Markov state of the problem at a
given date t is given by the value of the underlying (Markov) and the number of exercises
already achieved at date t. This test case can be run in parallel with MPI. In all test cases,
we use a “LocalLinearRegression” to evaluate the conditional expectations used during the
Dynamic Programming approach.

testSwingOptionInOptimization

After having calculated the analytical solution for this problem,

e a first resolution is provided using the “resolutionSwing” function. For this simple
problem, only a regressor is necessary to decide if we exercise at the current date of
not.

e a second resolution is provided in the “resolutionSwingContinuation” function using
the “Continuation” object (see chapter permitting to store continuation values
for a value of the underlying and for a stock level. This example is provide here
to show how to use this object on a simple test case. This approach is here not
optimal because getting the continuation value for an asset value and a stock level
(only discrete here) means some unnecessary interpolation on the stock grids (here
we choose a “RegularSpaceGrid” to describe the stock level and interpolate linearly
between the stock grids). In the case of swing with varying quantities to exercise [35]
or the gas storage problem, this object is very useful,

e A last resolution is provided using the general framework described and the “Dynam-
icProgrammingByRegressionDist” function described in subsection [5.2.2] Once again
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the framework is necessary for this simple test case, but it shows that it can be used
even for some very simple cases.

9.6.1 testSwingOption2D

Here we suppose that we have two similar swing options to price and we solve the problem
ignoring that the stocks are independent : this means that we solve the problem on a two
dimensional grid (for the stocks) instead of two times the same problem on a grid with one
stock.

e we begin by an evaluation of the solution for a single swing with the “resolutionSwing”
function giving a value A.

e then we solve the 2 dimensional (in stock) problem giving a value B with our framework
with the “DynamicProgrammingByRegressionDist” function.

Then we check that B = 2A.

9.6.2 testSwingOption3

We do the same as previously but the management of three similar swing options is realized
by solving as a three dimensional stock problem.

9.6.3 testSwingOptimSimu / testSwingOptimSimuMpi

This test case takes the problem described in section[9.6] solves it using the framework [5.2.2]
Once the optimization using regression (“LocalLinearRegression” regressor) is achieved, a
simulation part is used using the previously calculated Bellman values. We check the the val-
ues obtained in optimization and simulation are close. The two test case files (testSwingOp-
timSimu/testSwingOptimSimuMpi) use the two versions of MPI parallelization distributing
or not the data on the processors.

9.6.4 testSwingOptimSimuWithHedge

The test case takes the problem described in section , solves it using regression (“Locall-
inearRegression” regressor) while calculating the optimal hedge by the conditional tangent
method as explained in [21I]. After optimization, a simulation part implement the optimal
control and the optimal hedge associated. We check :

e That values in optimization and simulation are close
e That the hedge simulated has an average nearly equal to zero,

e That the hedged swing simulations give a standard deviation reduced compared to the
non hedged option value obtained by simulation without hedge.

This test case shows are that the multiple regimes introduced in the framework can
be used to calculate and store the optimal hedge. This is achieved by the creation of a
dedicated optimizer “OptimizeSwingWithHedge”.
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9.6.5 testSwingOptimSimulND / testSwingOptimSimulNDMpi

The test case takes the problem described in section suppose that we have two similar
options to valuate and that we ignore that the options are independent giving a problem to
solve with two stocks managed jointly as in subsection After optimizing the problem
using regression (“LocalLinearRegression” regressor) we simulate the optimal control for this
two dimensional problem and check that values in optimization and simulation are close. In
“testSwingOptimSimuND” Mpi parallelization, if activated, only parallelize the calculation,
while in “testSwingOptimSimuNDMpi” the data are also distributed on processors. In the
latter, two options are tested,

e in “testSwingOptionOptim2DSimuDistOneFile” the Bellman values are distributed on
the different processors but before being dumped they are recombine to give a single
file for simulation.

e in “testSwingOptionOptim2DSimuDistMultipleFile” the Bellman values are distributed
on the different processors but each processor dumps its own Bellman Values. During
the simulation, each processor rereads its own Bellman values.

In the same problem in high dimension may be only feasible with the second approach.

9.7 (Gas Storage

9.7.1 testGasStorage / testGasStorageMpi

The model used is a mean reverting model similar to the one described in [21I]. We keep
only one factor in equation (8) in [2I]. The problem consists in maximizing the gain from a
gas storage by the methodology described in [21]. All test cases are composed of three parts

e an optimization is realized by regression (“LocalLinearRegression” regressor),

e a first simulation of the optimal control using the continuation values stored during
the optimization part,

e a second simulation directly using the optimal controls stored during the optimization
part.

We check that the three previously calculated values are close.

Using dynamic programming method, we need to interpolate into the stock grid to get the
Bellman values at one stock point. Generally a simple linear interpolator is used (giving a
monotone scheme). As explicated in [24], it is possible to use higher order schemes still being
monotone. We test different interpolators. In all test case we use a “LocalLiinearRegression”
to evaluate the conditional expectations. The MPI version permits to test the distribution
of the data when using parallelization.

testSimpleStorage

We use a classical regular grid with equally spaces points to discretize the stock of gas and
a linear interpolator to interpolate in the stock.

172



testSimpleStoragelLegendreLinear

We use a Legendre grid with linear interpolation, so the result should be the same as above.

testSimpleStorageLegendreQuadratic

We use a quadratic interpolator for the stock level.

testSimpleStoragelLegendreCubic

We use a cubic interpolator for the stock level.

testSimpleStorageSparse

We use a sparse grid interpolator (equivalent to a full grid interpolator because it is a one
dimensional problem). We only test the sparse grid with a linear interpolator.

9.7.2 testGasStorageVaryingCavity
The stochastic model is the same as in section As previously, all test cases are
composed of three parts :

e an optimization is realized by regression (“LocalLinearRegression” regressor),

e a first simulation of the optimal control using the continuation values stored during
the optimization part,

e a second simulation directly using the optimal controls stored during the optimization
part.

We check that the three previously calculated values are close on this test case where the
grid describing the gas storage constraint is time varying. This permits to check the splitting
of the grids during parallelization.

9.7.3 testGasStorageSwitchingCostMpi

The test case is similar to the one in section [0.7.1] (so using regression methods) : we added
some extra cost when switching from each regime to the other. The extra cost results in the
fact that the Markov state is composed of the asset price, the stock level and the current
regime we are (the latter is not present in other test case on gas storage). This test case
shows that our framework permits to solve regime switching problems. As previously all
test cases are composed of three parts :

e an optimization is realized by regression (“LocalLinearRegression” regressor),

e a first simulation of the optimal control using the continuation values stored during
the optimization part,

e a second simulation directly using the optimal controls stored during the optimization
part.

We check that the three previously calculated values are close.
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9.7.4 testGasStorageSDDP

The modelization of the asset is similar to the other test case. We suppose that we have N
similar independent storages. So solving the problem with N stocks should give N times
the value of one stock.

e First the value of the storage is calculated by dynamic programming giving value A,

e then the SDDP method (chapter @ is used to valuate the problem giving the B value.
The Benders cuts have to be done conditionally to the price level.

We check that B is close to N A.

testSimpleStorageSDDP1D
Test the case N = 1.

testSimpleStorageSDDP2D
Test the case N = 2.

testSimpleStorageSDDP10D
Test the case N = 10.

9.8 testLake / testLakeMpi

This is the case of a reservoir with inflows following an AR1 model. We can withdraw water
from the reservoir (maximal withdrawal rate given) to produce energy by selling it at a
given price (taken equal to 1 by unit volume). We want to maximize the expected earnings
obtained by an optimal management of the lake. The problem permits to show how some
stochastic inflows can be taken into account with dynamic programming with regression (
“LocalLinearRegression” regressor used).

The test case is compose of three parts :

e an optimization is realized by regression (“LocalLinearRegression” regressor),

e a first simulation of the optimal control using the continuation values stored during
the optimization part,

e a second simulation directly using the optimal controls stored during the optimization
part.

We check that the three previously calculated values are close.
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9.9 testDemandSDDP

This test case is the most simple using the SDDP method. We suppose that we have a
demand following an AR 1 model

D"t = k(D" — D) + 049 + kD,

where D is the average demand, o, the standard deviation of the demand on one time step,
k the mean reverting coefficient, D° = D, and g a unit centered Gaussian variable. We have
to satisfy the demand by buying energy at a price P. We want to calculate the following
expected value

V = PE()_ D)
= (fo)DoP

This can be done (artificially) using SDDP.

testDemandSDDP1DDeterministic

It takes o4 = 0.

testDemandSDDP1D

It solves the stochastic problem.

9.10 Reservoir variations with SDDP

9.10.1 testReservoirWithInflowsSDDP

For this SDDP test case, we suppose that we dispose of N similar independent reservoirs with
inflows given at each time time by independent centered Gaussian variables with standard
deviation o;. We suppose that we have to satisfy at M dates a demand given by independent
centered Gaussian variables with standard deviation g,. In order to satisfy the demand, we
can buy some water with quantity ¢; at a deterministic price S; or withdraw water from the
reservoir at a pace lower than a withdrawal rate. Under the demand constraint, we want to
minimize :

E(thst)

Each time we check that forward and backward methods converge to the same value. Because
of the independence of uncertainties the dimension of the Markov state is equal to V.

testSimpleStorageWithInflowsSDDP1DDeterminist

o; = 0 for inflows and o4 = 0. for demand. N taken equal to 1.
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testSimpleStorageWithInflowsSDDP2DDeterminist

o; = 0 for inflows and o4 = 0. for demand. N taken equal to 2.

testSimpleStorageWithInflowsSDDP5DDeterminist

o; = 0 for inflows and o, = 0. for demand. N taken equal to 5.

testSimpleStorageWithInflowsSDDP1D
o; = 0.6, 04 = 0.8 for demand. N =1

testSimpleStorageWithInflowsSDDP2D

o; = 0.6 for inflows, 0, = 0.8 for demand. N = 2

testSimpleStorageWithInflowsSDDPD

o; = 0.6 for inflows, 04 = 0.8 for demand. N = 5.

9.10.2 testStorageWithInflowsSDDP

For this SDDP test case, we suppose that we dispose of N similar independent reservoirs
with inflows following an AR1 model :

X" = k(X" - X)+0g+ X,

with X? = X, ¢ the standard deviation associated, g some unit centered Gaussian variable.
We suppose that we have to satisfy at M dates a demand following an AR1 process too.
In order to satisfy the demand, we can buy some water with quantity ¢; at a deterministic
price S; or withdraw water from the reservoir at a pace lower than a withdrawal rate. Under
the demand constraint, we want to minimize :

E(thst)

Each time we check that forward and backward methods converge to the same value. Because
of the structure of the uncertainties the dimension of the Markov state is equal to 2N + 1
(N storage, N inflows, and demand).

testSimpleStorageWithInflowsSDDP1DDeterministic

All parameters o are set to 0. N = 1.

testSimpleStorageWithInflowsSDDP2DDeterministic

All parameters o are set to 0. N = 2.
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testSimpleStorageWithInflowsSDDP5DDeterministic

All parameters o are set to 0. N = 5.

testSimpleStorageWithInflowsSDDP10DDeterministic

All parameters o are set to 0. N = 10.

testSimpleStorageWithInflowsSDDP1D
o = 0.3 for inflows, 0 = 0.4 for demand. N = 1.

testSimpleStorageWithInflowsSDDP5D
o = 0.3 for inflows, 0 = 0.4 for demand. N = 5.

9.10.3 testStorageWithInflowsAndMarketSDDP

This is the same problem as|[9.10.2} but the price S; follow an AR 1 model. We use a SDDP
approach to solve this problem. Because of the price dependencies, the SDDP cut have to
be done conditionally to the price level.

testSimpleStorageWithInflowsAndMarketSDDP1DDeterministic
All volatilities set to 0. N = 1.

testSimpleStorageWithInflowsAndMarketSDDP2DDeterministic
All volatilities set to 0. N = 2.

testSimpleStorageWithInflowsAndMarketSDDP5DDeterministic
All volatilities set to 0. N = 5.

testSimpleStorageWithInflowsAndMarketSDDP10DDeterministic
All volatilities set to 0. N = 10.

testSimpleStorageWithInflowsAndMarketSDDP1D
o = 0.3 for inflows, 0 = 0.4 for demand, o = 0.6 for the spot price. N = 1.

testSimpleStorageWithInflowsAndMarketSDDP5D

o = 0.3 for inflows, 0 = 0.4 for demand, o = 0.6 for the spot price. N = 5.
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9.11 Semi-Lagrangian

9.11.1 testSemiLagrangCasel /testSemiLagrangCasel

Test Semi-Lagrangian deterministic methods for HJB equation. This corresponds to the
second test case without control in [24] (2 dimensional test case).

TestSemiLagranglLin

Test the Semi-Lagrangian method with the linear interpolator.

TestSemiLagranglQuad

Test the Semi-Lagrangian method with the quadratic interpolator.

TestSemiLagrang1Cubic

Test the Semi-Lagrangian method with the cubic interpolator.

TestSemiLagranglSparseQuad

Test the sparse grid interpolator with a quadratic interpolation.

TestSemiLagranglSparseQuadAdapt

Test the sparse grid interpolator with a quadratic interpolation and some adaptation in the
meshing.

9.11.2 testSemiLagrangCase2/testSemiLagrangCase2

Test Semi-Lagrangian deterministic methods for HJB equation. This corresponds to the
first case without control in [24] (2 dimensional test case).

TestSemiLagrang2Lin

Test the Semi-Lagrangian method with the linear interpolator.

TestSemiLagrang2Quad

Test the Semi-Lagrangian method with the quadratic interpolator.

TestSemiLagrang2Cubic

Test the Semi-Lagrangian method with the cubic interpolator.

TestSemiLagrang2SparseQuad

Test the sparse grid interpolator with a quadratic interpolation.
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9.11.3 testSemiLagrangCase2/testSemiLagrangCase2

Test Semi-Lagrangian deterministic methods for HJB equation. This corresponds to the
stochastic target test case 5.3.4 in [24].

TestSemiLagrang3Lin

Test the Semi-Lagrangian method with the linear interpolator.

TestSemiLagrang3Quad

Test the Semi-Lagrangian method with the quadratic interpolator.

TestSemiLagrang3Cubic

Test the Semi-Lagrangian method with the cubic interpolator.

9.12 Non emimissive test case

9.12.1 testDPNonEmissive

Solve the problem described in part [V| by dynamic programming and regression.
e first an optimization is realized,

e the an simulation part permit to test the controls obtained.

9.12.2 testSLNonEmissive
Solve the problem described in part [V] by the Semi-Lagrangian method.

e first an optimization is realized,

e the an simulation part permit to test the controls obtained.
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