Hugo Gevret
email: hugo.gevret@edf.fr

Nicolas Langrené
email: nicolas.langrene@csiro.au

Jerome Lelong

Rafael D Lobato
email: rafael.lobato@di.unipi.itedfr&d

Thomas Ouillon
email: thomas.ouillon@edf.fr

Xavier Warin
email: xavier.warin@edf.fr

Aditya Maheshwari
email: adityamaheshwari@umail.ucsb.edu

STochastic OPTimization library in C++ : V5 documentation

Keywords: ArrayXXd & p_dataValues) const = 0, / SpaceGrid * getGrid () = 0, }, } # endif ArrayXd & p_point) const

Eigen :: ArrayXd > & p_dataValues) const = 0; /* * \ brief interpolate and use vectorization * \ param p_dataValues Values of the data on the grid . Interpolation is achieved for all values in the first dimension * \ return interpolated value */ virtual Eigen :: ArrayXd applyVec (const Eigen ::

General context

Optimizing while dealing with uncertainties is a shared goal by many sectors in the industry. For example in the banking system:

• Some options such as American options need, in order to be valuated, to find an optimal exercise strategy to maximize the gain on average.

• When dealing with assets management, a fund manager may want to find a strategy to optimize his gains by investing in different assets while trying to satisfy some risk constraints.

• When dealing with credit risk in the case of option selling, some CVA modelization necessitates to solve some high dimensional problem in order to evaluate the option value.

In the energy financial sector, many problems involve stochastic optimization:

• some options, known as swing options, permit the owner to get some energy at some chosen dates with constraints on volumes. The price paid is either deterministic such as in the electricity market or can be an index which is an average of some commodity prices such as in the gas market.

• When some batteries are installed on a network, the battery has to be filled in or discharged optimally in order to avoid the use of some expensive thermal units.

• The optimal management of certain gas storage or certain thermal assets taking into account the prices of raw materials is a goal shared by all asset owners in the sector.

• Even in regulated energy market, when water is used to generate electricity, a common target consists in finding an optimal water management in order to maximize the profit on average.

A goal shared by many industries is the problem of risk management: which financial assets to buy to guarantee a given gain by immunizing a financial portfolio against certain uncertainties. All these problems and many more require:

• either to resolve certain PDEs when the control must be evaluated continuously,

• or to calculate a certain conditional expectation in the event that control must be taken on certain discrete dates. The problem is then solved by a dynamic programming method.

The STochastic OPTimization library (StOpt) https://gitlab.com/stochastic-control/StOpt aims to provide tools to solve certain stochastic optimization problems encountered in finance or in industry. This library is a toolbox used to facilitate the work of developers whishing to solve certain stochastic optimization problems by providing a general framework and some objects commonly used in stochastic programming. Many effective methods are implemented and the toolkit must be flexible enough to use the library at different levels being either an expert or only whishing to use the general framework. The Python interface allows you to use the library at a low level. The test cases are either in C++ , or in Python or in the both language. The user is invited to consult the different test cases proposed in order to have global view of the resolution methods. All the test cases are described in the last section of the documentation and deal with problems encountered in the banking system or the energy sector.

• The American options are solved by a part of dynamic programming III in Python or C++ using regression (section 4) or using a scenario tree 5. Regression are achieved:

1. either by local polynomials or with base support of the same size (subsection 4. [START_REF] Bender | A forward scheme for backward sdes[END_REF] or with an adapted size of the support (subsection 4.2) , 2. either by global polynomials (section 4.6)

3. either by sparse grid regression (section 4.5) useful in high dimension 4. or by kernel regression (section4.7)

In the test, a trinomial tree is developed as an example and the valorisation of an American option for the Black-Scholes model is given using this tree.

• Gas storage problems are solved either by dynamic programming (part III) in Python or C++ using regression (section 4) or tree (section 5) and stock interpolation (chapter 3). Regression are achieved:

1. either by Local polynomials with an adapted size of the support (subsection 4.2) , 2. either by global polynomials (section 4.6) 3. or kernel regression (section 4.7)

As before the trinomial tree developed in tests is used in the tree methods. The interpolation between stock points is either linear or quadratic.

either by the SDDP method (chapter 17) in C++ using both regression and tree methods.

• The swing options are solved by dynamic programming (part III) in Python or C++ using regression with local polynomials with a suitable size of the support (subsection 4.2)

• The optimal management of a lake with stochastic inflows is solved by dynamic programming (part III) in Python or C++ using local polynomials with an adapted support size (subsection 4.2)

• The optimal hedging of an option using a average variance criterion of the hedged portfolio is resolved in C++ by dynamic programming (part III) using the methodology in chapter 14.

• A certain management of the reservoirs is solved by the SDDP method (chapter 17) in C++ trying to minimize the cost of the energy supply to satisfy a given demand with the possibility of buying energy at a price that can be stochastic.

• The continuous optimization of a portfolio made up of a few assets following a Heston model is achieved by solving C++ the corresponding PDE with the Monte Carlo nesting method (part VII).

• Some microgrid problems in the energy sector are solved using the Python interface by dynamic programming methods (part III) using grids with linear interpolation (subsection 3.1.1) to discretize the energy level in the battery and the different regressors using:

1. either local polynomials with an suitable support size (subsection 4.2) , 2. either global polynomials (section 4.6)

3. or kernel regression (section 4.7)

Chapter 2

General mathematical setting

In a continuous frame, the controlled state is given by a stochastic differential equation dX x,t s = b a (t, X x,t s)ds + σ a (s, X x,t s)dW s X x,t t = x where • W t is a d-dimensional Brownian motion on a probability space (Ω, F, P) endowed with the natural (complete and continuous line) filtration F = (F t) t≤T generated by W up to a fixed time horizon T > 0,

• σ a is a Lipschitz continuous function of (t, x, a) defined on [0, T] × R d × R n and taking values in the set of d-dimensional square matrices,

• b a is a Lipschitz continuous function of (t, x, a) defined on [0, T] × R d × R n and taking values in R d ,

• a a control adapted to the filtration taking values in R n .

Suppose we want to minimize a cost function J(t, x, a) = E[T t f a (s, X x,t s)e s t ca(u,X x,t u)du ds + e T t ca(u,X x,t u) g(X x,t T)] compared to the a control. It is well known [START_REF] Wendell | Controlled Markov processes and viscosity solutions[END_REF] that the optimal value Ĵ(t, x) = inf a J(T -t, x, a) is a viscosity solution of the equation

∂v ∂t (t, x) -inf a∈A 1 2 tr(σ a (t, x)σ a (t, x) T D 2 v(t, x)) + b a (t, x)Dv(t, x) +c a (t, x)v(t, x) + f a (t, x) = 0 in R d v(0, x) = g(x) in R d (2.1)
According to certain classical hypotheses on the coefficients [START_REF] Wendell | Controlled Markov processes and viscosity solutions[END_REF], the previous equation known as the Hamilton Jacobi Bellman equation admits a solution of unique viscosity ([START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF]). Solving the previous equation is quite difficult, especially in dimensions larger than 3 or 4.

The library provides tools to solve this equation and simplified versions of it.

• a first method supposes that X x,t s = (X x,t 1,s , X x,t 2,s) where X x,t 1,s is not controlled dX x,t 1,s = b(t, X x,t 1,s)ds + σ (s, X x,t 1,s)dW s X x,t

1,t = x (2.2)
and X x,t 2,s has no diffusion term dX x,t 2,s = b a (t, X x,t 2,s)ds X x,t 2,t

= x

In this case, we can use Monte Carlo methods based on regression to solve the problem. The method is based on the principle of dynamic programming and can be used even if the uncontrolled SDE is controlled by a general Levy process. This method can be used even if the controlled state takes only a few discrete values. A second approach based on dynamic programming uses scenario trees: in this case, the uncertainties evolve on a tree taking only discrete values.

• The second case is a special case of the previous one when the problem to be solved is linear and the controlled state takes values at continuous intervals. The value function must be convex or concave with respect to the controlled variables. This method, the SDDP method, is used when the dimension of the controlled state is large, which prevents the use of the dynamic programming method. As before, the uncertainties can be described either by scenarios or by a scenario tree.

Remark 1 The use of this method requires other assumptions which will be described in the dedicated chapter.

• A third method solves the Monte Carlo problem when a process is controlled but by an uncontrolled process. this is generally the optimization of a portfolio:

-The value of the portfolio is deterministically controlled and discretized on a network, -The evolution of the portfolio is driven by an uncontrolled exogenous process: market prices.

• In the fourth method, we will assume that the state takes continuous values, we will solve equation (2.1) using semi-Lagrangian methods discretizing the Brownian motion with two values and using some interpolations on grids.

• Finally, we present a general pure Monte Carlo method based on automatic differentiation and randomization of the time step to solve general non-linear equations and which can be used to solve certain control problems.

In what follows, we assume that a temporal discretization is given for the resolution of the optimization problem. We assume that the step discretization is constant and equal to h such that t i = ih. First, we describe some useful tools developed in the library for stochastic control. Then, we explain how to solve certain optimization problems using these developed tools.

Part II

Useful tools for stochastic control Chapter 3

The grids and their interpolators

In this chapter we develop the tools used to interpolate a discretized function on a given grid. A grid is a set of points in R d defining meshes which can be used to interpolate a function on an open set in R d . These tools are used to interpolate a given function, for example at certain stock points, when it comes to storage. They are also useful for semi-Lagrangian methods, which require efficient interpolation methods. In StOpt four types of grids are currently available:

• the first and second are grids used to interpolate a function linearly on a grid;

• the third type of grid, starting from a regular grid, makes it possible to interpolate on a grid at Gauss -Lobatto points on each mesh;

• the last grid allows to interpolate a function in high dimension using the sparse gridmethod. The approximation is linear, quadratic, or cubic in each direction.

Each type of grid is associated with iterators. An iterator on a grid makes it possible to iterate on all the points of the grids. All iterators derive from abstract class GridIterator All iterators share some common characteristics:

• the getCount method provides the number associated with the current grid point,

• the next method allows you to go to the next point, while the nextInc method allows you to go to the point p incr,

• the isValid method checks that we are still on a grid point,

• the getNbPointRelative allows to get the number of points on which a given iterator can iterate,

• the getRelativePosition retrieves the number of points already iterated by the iterator.

In addition, we can go directly to a given point: this functionality is useful for "mpi" when some calculations on the grid are distributed on some processors and threads. This possibility is given by the method jumpToAndInc.

Using a grid regGrid the following source code makes it possible to iterate over the points of the grids and obtain coordinates. For each coordinate, a function f is used to fill an array of values. As mentioned earlier, each type of grid has its own grid iterator which can be obtained by the getGridIterator method.

ArrayXd data (regGrid . getNbPoints ()) ; // create an array to store the values of the function f shared_ptr < GridIterator > iterRegGrid = regGrid . g et Gr id I te ra to r () ; while (iterRegGrid -> isValid ())

{ ArrayXd pointCoord = iterRegGrid -> getCoordinate () ; // store the coordinates of the point data (iterRegGrid -> getCount ()) = f (pointCoord) ; // the value is stored in data at place iterRegGrid -> getCount () iterRegGrid -> next () ; // go to next point } It is also possible to "skip" certain points and repeat for the "p" points afterwards. This possibility is useful for multithreaded tasks on points.

For each type of grid, an interpolator is provided to interpolate a given function on a grid. Note that the interpolator is created for a given point where we want to interpolate. All interpolators (which are not spectral interpolators) derive from Interpolator whose source code is given below. All interpolators provide a constructor specifying the point where the interpolation is carried out and the two functions apply and applyVec interpolating either a function (and returning a value) or an array of functions returning an array of interpolated values.

All grid classes derive from an abstract class SpaceGrid below allowing to retrieve an iterator associated with the points of the grid (with possible jumps) and to create an interpolator associated with the grid.

// Copyright (C) 2016 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef SPACEGRID_H # define SPACEGRID_H # include < array > # include < memory > # include < Eigen / Dense > # include " StOpt / core / grids / GridIterator . h " # include " StOpt / core / grids / Interpolator . h " # include " StOpt / core / grids / I n t e r p o l a t o r S p e c t r a l . • the first one is the GeneralSpaceGrid with Constructor where std::vector<shared ptr<Eigen::ArrayXd>> is a vector of (pointer to) arrays defining the grid points in each dimension. In this case the grid is not regular and the mesh varies in space (see figure 3.1).

• the second one is the RegularSpaceGrid with Constructor The p lowValues corresponds to the bottom of the grid, p step the size of each mesh, p nbStep the number of steps in each direction (see figure 3.2) For each grid, a linear interpolator can be generated by calling the createInterpolator method or by directly creating the interpolator:

Its construction from a grid (regLin) and from an array data containing the values of the function at the points of the grid is given below (taking an example above for fill in the table data)

ArrayXd data (regGrid . getNbPoints ()) ; // create an array to store the values of the function f shared_ptr < GridIterator > iterRegGrid = regGrid . g et Gr id I te ra to r () ; while (iterRegGrid -> isValid ()) Let I 1,∆X be the linear interpolator where the mesh is ∆x = (∆x 1 , . . . , ∆x d). We obtain for a function

f in C k+1 (R d) with k ≤ 1 ||f -I 1,∆x f || ∞ ≤ c d i=1 ∆x k+1 i sup x∈[-1,1] d | ∂ k+1 f ∂x k+1 i | (3.1)
In particular if f is only Lipschitz

||f -I 1,∆x f || ∞ ≤ K sup i ∆x i .

The Python API

The Python API allows you to use grids with a syntax similar to the C++ API. Here, we give an example with a regular grid unittest . main ()

Legendre grids

With linear interpolation, to obtain a precise solution, it is necessary to refine the mesh so that ∆x goes to zero. Another approach consists in trying to fit a polynomial on each mesh using a high degree interpolator.

Approximation of a function in 1 dimension

From now on, by resizing we assume that we want to interpolate a function f on [-1, 1]. All the following results can be extended by tensorization in dimension greater than 1. P N is the set of polynomials of total degree less than or equal to N . The minmax approximation of f of degree N is the polynomial P * N (f) such that:

||f -P * N (f)|| ∞ = min p∈P N ||f -p|| ∞
We call I X N interpolator from f on a grid of N + 1 points of [-1, 1] X = (x 0 , . . . , x N), the unique polynomial of degree N such that

I X N (f)(x i) = f (x i), 0 ≤ i ≤ N
This polynomial can be expressed in terms of the Lagrange polynomial l X i , 0 ≤ i ≤ N associated with the grid (l X i is the unique polynomial of degree N taking a value equal to 1 at the point i and 0 at the other interpolation points).

I X N (f)(x) = N i=0 f (x i)l X i (x)
The interpolation error can be expressed in terms of interpolation points:

||I X N (f)(x) -f || ∞ ≤ (1 + λ N (X))||f -P * N (f)|| ∞
where λ N (X) is the Lebesgue constant associated with the Lagrange quadrature on the grid:

λ N (X) = max x∈[-1,1] N i=0 |l X i (x)|.
We have the following bound

||I X N (f)(x)|| ∞ ≤ λ N (X)sup x i ∈X |f (x i)| ≤ λ N (X)||f || ∞
and the Erdös theorem states that

λ N (X) > 2 π log(N + 1) -C
It is well-known that the use of a uniform grid X u is not optimal, because like N -→ ∞, the Lebesgue constant satisfies λ N (X u) 2 N +1 eN ln N and the quadrature error in L ∞ increases a lot with N . Its use brings some oscillations giving the Runge effect. On Figures 3.3a, 3.3b, 3.3c, 3.3d, we trace the function Runge 1 1+25x 2 against its interpolation with polynomials with equidistant interpolation. We therefore wish to have a quadrature with a "optimal" Lebesgue constant. For ex- ample Gauss-Chebyshev interpolation points (corresponding to the 0 of the polynomial T N +1 (x) = cos((N + 1) arccos(x)) give a Lebesgue constant λ N (X GC) equal to λ N (X GC) 2 π ln(N + 1)

For our problem, we want to interpolate a function on meshes with great precision on the mesh while respecting the continuity of the function between the meshes. In order to ensure this continuity we want the extreme points of the resized mesh [-1, -1] (therefore -1, 1) to be on the interpolation grid. This leads to the Gauss-Lobatto-Chebyshev interpolation grid.

In the library we choose to use the Gauss-Lobatto-Legendre interpolation grids which are as efficient as the Gauss-Lobatto-Chebyshev grids (in term of Lebesgue constant) but less costly in calculation due to the absence of trigonometric functions. We recall that the Legendre polynomial satisfies the recurrence

(N + 1)L N +1 (x) = (2N + 1)xL N (x) -N L N -1 (x)
with L 0 = 1, L 1 (x) = x. These polynomials are orthogonal with the scalar product (f, g) = 1 -1 f (x)g(x)dx. We are interested in the derivatives of these polynomials L N which satisfy the recurrence

N L N +1 (x) = (2N + 1)xL N (x) -(N + 1)L N -1 (x)
These polynomials are orthogonal with the scalar product (f, g) = 1 -1 f (x)g(x)(1 -x 2)dx. The Gauss-Lobatto-Legendre grids points for a grid with N +1 points are η 1 = -1, η N +1 = 1 and the η i (i = 2, . . . , N) zeros of L N . The η i (i = 2, . . . , N) are eigenvalues of the matrix P n(n + 2) (n + 1 2)(n + 3 2)

, 1 ≤ n ≤ N -2,
The interpolation I N (f) is expressed in terms of Legendre polynomials by

I N (f) = N k=0 fk L k (x), fk = 1 γ k N i=0 ρ i f (η i)L k (η i), γ k = N i=0 L k (η i) 2 ρ i ,
and the weights satisfy

ρ i = 2. (M + 1)M L 2 M (η i) , 1 ≤ i ≤ N + 1.
More details can be found in [START_REF] Azaïez | Méthodes spectrales et des éléments spectraux[END_REF]. In the figure 3.4, we give the interpolation obtained with the Gauss-Lobatto-Legendre quadrature with two degrees of approximation. • When the function is not regular we introduce a weaker notion than the notion of derivative. We denote w(f, δ) The modulus of continuityon [-1, 1] of a function f as

w(f, δ) = sup x 1 , x 2 ∈ [-1, 1] |x 1 -x 2 | < δ |f (x 1) -f (x 2)|
The modulus of continuity makes it possible to express the best approximation of a function by a polynomial with the Jackson theorem:

Theorem 1 For a continuous function f on [-1, 1]

||f -P * N (f)|| ∞ ≤ Kw(f, 1 N)
and we deduce that for an interpolation gridX

||I X N (f)(x) -f || ∞ ≤ M (N) M (N) Kw(f, 1 N)λ N (X)
a function is Dini-Lipschitz continues if w(f, δ)log(δ) -→ 0 as δ -→ 0. It is clear that the functions of Lipschitz are Dini-Lipschitz continuously because w(f, δ)log(δ) ≤ Klog(δ)δ.

• When the solution is more regular, we can express the interpolation error as a function of its derivatives and we obtain the following Cauchy theorem for an interpolation grid X (see [START_REF] Alfio | Méthodes numériques pour le calcul scientifique: programmes en MATLAB[END_REF])

Theorem 2 If f is C N +1
, and X an interpolation grid with N + 1 points, the interpolation error checks

E(x) = f (x) -I X N (f)(x) = f N +1 (η) (N + 1)! W X N +1 (x) (3.2)
where η ∈ [-1, 1] and W X N +1 (x) is the nodal polynomial of degree N +1 (the polynomial with the monomial of the highest degree with coefficient 1 being zero at all points N + 1 of X)

If we partition a domain I = [a, b] into a few meshes of size h and we use a Lagrange interpolator for the function f ∈ C k+1 , k ≤ N we obtain

||f -I X N,∆x f || ∞ ≤ ch k+1 ||f (k+1) || ∞

Extension in dimension d

In the dimension d, we denote P * N the best multivariate polynomial approximation of f of total degree less than N on [-1, 1] d . On a d multidimensional grid X = X d N , we define the multivariate interpolator as the composition of one-dimensional interpolator

I X N (f)(x) = I X N ,1 N × I X N ,2 N • • • × I X N ,d N (f)(x)
where I X N ,i N represents for the interpolator in dimension i. We get the following interpolation error

||I X N (f) -f || ∞ ≤ (1 + λ N (X N)) d ||f -P * N (f)|| ∞ ,
The error associated with the min max approximation is given by Feinerman and Newman [START_REF] Robert | Polynomial approximation[END_REF], Soardi [START_REF] Soardi | Serie di Fourier in piu variabili[END_REF] ||f -

P * N (f)|| ∞ ≤ (1 + π 2 4 √ d)w(f, 1 N + 2)
We deduce that if f is only Lipschitz

||I X N (f)(x) -f || ∞ ≤ C √ d (1 + λ N (X)) d N + 2
If the function is regular (in

C k+1 ([-1, 1] d), k < N) we get ||f -P * N (f)|| ∞ ≤ C k N k d i=1 sup x∈[-1,1] d | ∂ k+1 f ∂x k+1 i | If

Truncature

In order to avoid oscillations during the interpolation, a truncation is used on each mesh so that the modified interpolator ÎX N,∆x checks: ÎX N,∆x f (x) = min

x i ∈M f (x i) ∧ I X N,∆x f (x) ∨ max x i ∈M f (x i) (3.3)
where the x i are the interpolation points on the mesh M containing the point x. For all the characteristics of this modified operator, we can see [START_REF] Warin | Some non-monotone schemes for time dependent hamilton-jacobibellman equations in stochastic control[END_REF].

The C++ API

The grid using Gauss-Legendre-Lobatto points can be created using this constructor: The p lowValues corresponds to the bottom of the grid, p step the size of each mesh, p nbStep the number of steps in each direction (see figure 3.2). On each mesh the polynomial approximation in each dimension is specified by the table p poly.

Remark 3 If we take a polynomial of degree 1 in each direction this interpolator is equivalent to the linear interpolator. It's sort of less efficient than the linear interpolator on a Regular grid described in the section above.

We illustrate the use of the grid, its iterator and its interpolator used to draw the figures 3.4. The operator defined above is more efficient when we interpolate several functions at the same point. Its is the case for example for the valuation of a storage with regression where one wishes to interpolate all the simulations at the same level of stock.

In some cases it is more practical to build an interpolator acting on a global function. This is the case when you have only one function and you want to interpolate at several points for this function. In this specific case an interpolator deriving from the class Inter polatorSpectral can be constructed:

The Python API

Here is an example using Legendre grids: unittest . main ()

Sparse grids

A representation of a function of dimension d for d small (less than 4) is obtained by tensorization in the preceding methods of interpolation. When the function is smooth and its cross derivatives are bounded, the function can be represented using the sparse grid methods. This method makes it possible to represent the function with much less points than the traditional one without losing too much by interpolating. The sparse grid method was used for the first time by assuming that the function f to be represented is zero at the boundary Γ of the domain. This assumption is important because it makes it possible to limit the explosion of the number of points to the dimension of the problem. In many application this assumption is not realistic or it is impossible to work on f -f |Γ . In this library we will assume that the function is not zero at the borderand provide grid object, iterators and interpolators to interpolate certain functions depicted on the sparse grid. However, for the sake of clarity of presentation, we will start with the case of a function disappearing on the border.

The sparse linear grid method

We recall some classic results on sparse grids which can be found in [START_REF] Michael | Spatially adaptive sparse grids for high-dimensional problems[END_REF]. We first assume that the function we are interpolating is zero at the border. By a change of coordinates a hyper-cube domain can be changed to a domain ω = [0, 1] d . By Introducing the hat function φ (L) (x) = max(1 -|x|, 0) (where (L) means linear), we obtain the followingl one-dimensional local hat function by translation and dilation

φ (L) l,i (x) = φ (L) (2 l x -i)
according to the level l and the index i, 0 < i < 2 l . The grid points used for the interpolation are noted x l,i = 2 -l i. In the dimension d, we introduce the basis functions

φ (L) l,i (x) = d j=1 φ (L)
l j ,i j (x j) via a tensorial approach for a point x = (x 1 , . . . , x d), a multi-level l := (l 1 , . . . , l d) and a multi-index i := (i 1 , . . . , i d). The grid points used for interpolation are noted x l,i := (x l 1 ,i 1 , . . . , x l d ,i d).

We then present the index set and the nodal representation W (L,N) 4 mesh space is defined as follows:

B l := i : 1 ≤ i j ≤ 2 l j -1, i j odd , 1 ≤ j ≤ d
V n = ⊕ |l| 1 ≤n+d-1 W (L) l (3.4)
Remark [START_REF] Bender | A forward scheme for backward sdes[END_REF] The conventional full grid space is defined as

V F n = ⊕ |l|∞≤n W (L) l .
At hierarchical increment space W and the dotted base function. The space V n can be represented as the space spawn by the W (L,N) l such that |l| 1 = n + d -1:

V n = span φ (L) l,i (x) : i ∈ B N l , |l| 1 = n + d -1 (3.5)
A function f is interpolated on the hierarchical basis like

I (L) (f) = |l| 1 ≤n+d-1,i∈B l α (L) l,i φ (L) l,i
where α

(L)
l,i are called the surplus (we give on the figure 3.7 a representation of these coefficients). These surpluses associated with a function f are calculated in the one-dimensional where e(m) is the east neighbor of m and w(m) the west one. The procedure is generalized in dimension d by successive hierarchy in all directions. On figure 3.9, we give a representation first level as shown on figure 3.10. This approach leads to many more points than the one without the border. As indicated in [START_REF] Michael | Spatially adaptive sparse grids for high-dimensional problems[END_REF] for n =5, in dimension 8 have almost 2.8 million points in this approximation but only 6401 inside the domain. On the figure 3.11 we give the points of the grids including boundary points in dimension 2 and 3 for a level 5 of the sparse grid. If the boundary conditions are not important (infinite truncated domain in finance for example) the hat functions near the borders are modified by extrapolation (see figure 3.10) as explained in [START_REF] Michael | Spatially adaptive sparse grids for high-dimensional problems[END_REF]. At level 1, we have only one degree of freedom assuming that the function is constant on the domain. At all the other levels, we extrapolate linearly towards the boundary the basis functions left and right, the other functions remaining unchanged. So the new function base in 1D φ becomes φ(L)

l,i (x) =                1 if l = 1 and i = 1 2 -2 l x if x ∈ [0, 2 -l+1] 0 else if l > 1 and i = 1 2 l (x -1) + 2 if x ∈ [1 -2 -l+1 , 1] 0 else if l > 1 and i = 2 l -1 φ (L)
l,i (x) otherwise

On the figure 3.12 we give the grid points by eliminating the boundary points in dimension 2 and 3 for a level 5 of the sparse grid. The interpolation error associated with the linear operator I 1 := I (L) is related to the regularity of the crossed derivatives of the function [START_REF] Bungartz | Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung[END_REF][START_REF] Bungartz | Concepts for higher order finite elements on sparse grids[END_REF][START_REF] Bungartz | A multigrid algorithm for higher order finite elements on sparse grids[END_REF]. If f is zero at the boundary and admits derivatives such as

|| ∂ 2d u ∂x 2 1 ...∂x 2 d || ∞ < ∞ then ||f -I 1 (f)|| ∞ = O(N -2 log(N) d-1), (3.6)
with N the number of points per dimension.

High order sparse grid methods

Changing the interpolator allows us to obtain a higher convergence rate mainly in the region where the solution is smooth. By following [START_REF] Bungartz | Concepts for higher order finite elements on sparse grids[END_REF] and [START_REF] Bungartz | A multigrid algorithm for higher order finite elements on sparse grids[END_REF], it is possible to obtain higher order interpolators. Using a quadratic interpolator, the reconstruction on the nodal base gives a quadratic function on the support of the hat function previously defined and a continuous function of the whole domain. The polynomial quadratic base is defined on [2 -l (i -1), 2 -l (i + 1)] by φ

(Q) l,i (x) = φ (Q) (2 l x -i) with φ (Q) (x) = 1 -x 2 .
The hierarchical surplus (coefficient on the basis) in a dimension is the difference between the value function at the node and the quadratic representation of the function using nodes available at the previous level. With the notation of figure 3.8

α(m) (Q) = f (m) -(3 8 f (w(m)) + 3 4 f (e(m)) - 1 8 f (ee(m))) = α(m) (L) (m) - 1 4 α(m) (L) (e(m)) = α(m) (L) (m) - 1 4 α(m) (L) (df (m))
where df (m) is the direct father of the node m in the tree structure. Once again, the quadratic surplus of dimension d is obtained by successive hierarchization in the different dimensions.

In order to take into account the boundary conditions, two linear functions 1 -x and x are added at the first level (see figure 3.

13).

A version with modified boundary conditions can be derived for example by using linear interpolation at the boundary so that

φ(Q) l,i (x) = φ(L) l,i if i = 1 or i = 2 l -1, φ (Q) l,i (x) otherwise
In the case of the cubic representation, on figure 3.8 we need 4 points to define a function Figure 3.13: One dimensional W (Q) spaces with quadratic with "exact" boundary (left) and "modified" boundary (right):

W (Q) 1 , W (Q) 2 , W (Q) 3 , W (Q) 4
basis. In order to keep the same data structure, we use a cubic function base at node m with value 1 at this node and 0 at the node e(m), w(m) and ee(m) and we keep only the basic function between w(m) and e(m) [START_REF] Bungartz | Concepts for higher order finite elements on sparse grids[END_REF].

Note that there are two basic types of function depending on the position in the tree. The basic functions are given on [2 -l+1 i, 2 -l+1 (i + 1)] by

φ (C) l,2i+1 (x) = φ (C),1 (2 l x -(2i + 1)), if i even = φ (C),2 (2 l x -(2i + 1)), if i odd with φ (C),1 (x) = (x 2 -1)(x-3) 3 , φ (C),2 (x) = (1-x 2)(x+3)

3

. The surplus coefficient can be defined as above as the difference between the value function at the node and the cubic representation of the function at the parent node. Due to the two basis functions involved there are two types of cubic coefficient.

• For a node m = x l,8i+1 or m = x l,8i+7 , α (C) (m) = α (C,1) (m), with α (C,1) (m) = α (Q) (m) - 1 8 α (Q) (df (m)) • For a node m = x l,8i+3 or m = x l,8i+5 , α (C) (m) = α (C,2) (m), with α (C,2) (m) = α (Q) (m) + 1 8 α (Q) (df (m))
Note that a cubic representation is not available for l = 1 so a quadratic approximation is used. As before, the boundary conditions are treated by adding two linear basis functions at the first level and a modified version is available. We choose the following basis functions as defined in figure 3.14:

φ(C) l,i (x) = φ(Q) l,i if i ∈ {1, 3, 2 l -3, 2 l -1}, φ (C) l,i (x) otherwise
W (C) 1 , W (C) 2 , W (C) 3 , W (C) 4
According to [START_REF] Bungartz | Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung[END_REF][START_REF] Bungartz | Concepts for higher order finite elements on sparse grids[END_REF][START_REF] Bungartz | A multigrid algorithm for higher order finite elements on sparse grids[END_REF], if the function f is zero at the boundary and admits derivatives such as sup α i ∈{2,...,p+1} || ∂

||f -I p (f)|| ∞ = O(N -(p+1) log(N) d-1), p = 2, 3
with N the number of points per dimension.

Anisotropy

In many situations, there is no point in refining as much in each direction. For example, when we process multidimensional storage, we expect the mesh to be the same order in each direction. When the different storages have very different sizes, we want to further refine the storage with the largest capacity. In order to treat this anisotropy, an extension of the sparse grids can be obtained by defining the weight w in each direction. The definition 3.4 is replaced by:

V n = ⊕ d i=1 l i w(i)≤n+d-1 W (L) l (3.7)

Adaptation

When the solution is not smooth, typically Lipschitz, there is no hope of obtaining convergence results for the classical rare grids (see above the interpolation error linked to crossed derivatives of the function). The classic sparse grids must therefore be adapted so that the solution is refined near the singularities. In all adaptation methods, the hierarchical surplus α l,i is used to obtain an estimate of the local error. These coefficients give an estimate of the regularity of the value of the function at the discrete points by representing the second derivative of the discrete mixture of the function. There are mainly two types of adaptation used:

• the first performs a local adaptation and only adds points locally [START_REF] Bungartz | Sparse grids[END_REF][START_REF] Griebel | Adaptive sparse grid multilevel methods for elliptic pdes based on finite differences[END_REF][START_REF] Griebel | Sparse grids and related approximation schemes for higher dimensional problems[END_REF][START_REF] Ma | An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations[END_REF],

• the second performs the adaptation at the level of the hierarchical space W l (anisotropic sparse grid). This approach detects the important dimensions that need to be refined and refines all the points of that dimension [17]. This refinement is also achieved in areas where the solution can be smooth. A more local version has been developed in [START_REF] John | Local and dimension adaptive sparse grid interpolation and quadrature[END_REF].

In the current version of the library, only the dimension adaptation is available. Details of the algorithm can be found in [17]. After a first initialization with a space

V n = ⊕ d i=1 l i ≤n+d-1 W (L) l (3.8)
An active level set A is created grouping all the levels l so that d i=1 l i = n + d -1. All the other levels are grouped into a set O. At each level l in A an error is estimated e l and with any local error e l a global error E is calculated. Then the refinement algorithm 1 is used by noting e k the canonical basis in the dimension k. Sometimes, using sparse grids during time Algorithm 1 Dimension refinement for a given tolerance η

1: while E > η do 2:
select l with the highest local error e l 3: end for 14: end while iterations, it can be interesting to enlarge the meshes. A similar algorithm 2 can be used to eliminate the levels with a very small local error.

A = A\ {l} 4: O = O ∪ {l} 5: for k = 1 to d do 6: m = l + e k 7: if m -e q ∈ O for q ∈ [1, d]
for k = 1 to d do m = l -e k if m k > 0 then if m + e q ∈ B for q ∈ [1, d] then A = A \ {m + e q , q ∈ [1, d]} B = B \ {m + e q , q ∈ [1, d]} A = A ∪ {m} Add m to B if local error below η O = O \ {m} Break end if end if end for if l ∈ B then B = B \ {l} end if end while

C++ API

The construction of the sparse grid, including the boundary points is carried out by the following constructor The data structure of type SparseSet to store the sparse grid is defined by a map with keys an array A storing a multiple level and values a map with keys an array B storing the multi index associated with a point (A,B) and values the number of points (A,B):

1

define

SparseSet std :: map < Eigen :: Array < char , Eigen :: Dynamic ,1 > , std :: map < Eigen :: Array < unsigned int , Eigen :: Dynamic ,1 > , size_t , OrderTinyVector < unsigned int > > , OrderTinyVector < char > > It is sometimes convenient to retrieve this data structure from the SparseGrid object: this is done by the following method: The two preceding classes have two specific member functions for hierarchizing (see the section above) the known value function at the points of the grid for the entire grid.

• the first work on a single function: The two classes have two specific member functions to hierarchize point by point a value function at given points in the sparse grid:

• the first work on a single function: The SparsePoint object is only a "typedef":

define SparsePoint std :: pair < Eigen :: Array < char , Eigen :: Dynamic , 1 > , Eigen :: Array < unsigned int , Eigen :: Dynamic , 1 > >

where the first array allows to store the multi-level associated with the point and the second the associated multi-index .

It is finally possible to hierarchize all the points associated with a multi level. As before, two methods are available:

• a first makes it possible to hierarchize all the points associated with a given level. The hierarchical values are updated with these new values. In the following example, sparse grids with boundary points is constructed. The values of a function f at each coordinates are stored in an array valuesFunction, storing the functions 2 to be interpolated. The 2 global functions are hierarchized (see the section above) in the array hierarValues, and then the interpolation can be performed using these hierarchized values. In some cases, it is more convenient to build an interpolator acting on a global function. This is the case when you have only one function and you want to interpolate at several points for this function. In this specific case an interpolator deriving from the class InterpolatorSpectral (similarly to Legendre grid interpolators) can be constructed: See the 3.2 section for an example (similar but with Legendre grids) to use this object. Sometimes, we want to iterate on points on a given level. In the example below, for each level an iterator over all points belonging to a given level is retrieved and the values of a function f at each point are calculated and stored. Finally, adaptation can be realized with two member functions:

• A first one permits to refine adding points where the error is important. Note that a function is provided to calculate from hierarchical values the error at each level of the sparse grid and that a second one is provided to get a global error from the error calculated at each level. This makes it possible to specialize the refining depending, for example, whether the calculation is achieved for integration or interpolation purpose. p hierarValues an array storing the hierarchized values (updated during refinement)

• A second one enlarges the mesh, eliminating the point where the error is too small with arguments similar to the previous function.

Python API

Here is an example of the Python API used for interpolation with Sparse grids with boundary points and without boundary points. Adaptation and coarsening is available with an error calculated for interpolation only.

#

Introducing regression resolution

Suppose that the stochastic differential equation in the optimization problem is not controlled: dX x,t s = b(s, X x,t s)ds + σ(s, X x,t s)dW s This case is for example encountered during the valuation of American options in finance, when an arbitration is carried out between the pay-off and the expected future gain if it is not exercised right now. In order to estimate this conditional expectation (according of Markov state), first suppose that a set of N Monte Carlo Simulation is available at dates t i for a process X t := X 0,x t where x is the initial state at date t = 0 and that we want to estimate

f (x) := E[g(t + h, X t+h) | X t = x]
for a given x and a given function g. This function f is located in the infinite dimensional space of the functions L 2 . In order to approximate it, we try to find it in a finite dimensional space. By choosing a set of basis functions ψ k for k = 1 to M , the conditional expectation can be approximated by

f (x) M k=1 α k ψ k (X t) (4.1)
where (α

t i ,N k) k≤M minimizes N =1 g(X l t+h) - M k=1 α k ψ k (X l t) 2 (4.2) over (α k) k≤M ∈ R M .
We have to solve a quadratic optimization problem of the form

min α∈R M Aα -B 2 (4.3)
Classically the previous equation is reduced to the normal equation

A Aα = A B , (4.4)
which is solved by a Cholesky-type approach when the matrix A A is defined otherwise the solution with the standard L 2 minimum can be calculated using the pseudo-inverse of A A.

When the different components of X x,t are strongly correlated it can be convenient to rotate the dataset on its main components using the PCA method. Rotating the dataset before performing a regression has been recommended in [START_REF] Mp Wand | Fast computation of multivariate kernel estimators[END_REF] and [START_REF] Scott | Multivariate density estimation: theory, practice, and visualization[END_REF] for example. The right-hand side of Figure 4.1 illustrates the new evaluation grid obtained on the same dataset. We can observe better coverage and fewer empty areas when using local regression that we will detail in this section.

C++ global API

All regression classes are derived from the BaseRegression abstract class, which stores a pointer to the "particles" (a matrix storing the simulations of X x,t : the first dimension of the matrix corresponds to the dimension of X x,t , and the second dimension corresponds to the number of particle), and stores if the current date t is 0 (then the conditional expectation is only an expectation). All regression classes share the same constructors:

ifndef B A S E R E G R E S S IO N _ H # define B A S E R E G R E S S IO N _ H # include < memory > # include < vector > # include < iostream > # include < Eigen / Dense > # include < Eigen / SVD > # include " StOpt / core /
• a first constructor stores the members of the class and calculates the matrices for the regression: it is used for example to build a regression object at each time step of a resolution method,

• the second constructor is used to prepare data which will be shared by all future regressions. It must be used with the updateSimulation method to update the actual matrix construction. In a resolution method with many time steps, the object will be constructed only once and at each time step, the Markov state will be updated by the method updateSimulation.

All regression classes share the common methods:

• updateSimulationBase (see above),

• getCoordBasisFunction takes the values g(t+h, X t+h) for all simulations and returns the coefficients α k of the basis functions,

• getCoordBasisFunctionMultiple is used if we want to do the previous calculation on several g functions in a single call. In the matrix given as an argument, the first dimension has a size equal to the number of Monte Carlo simulations, while the second dimension has a size equal to the number of functions to regress. At output, the first dimension has a size equal to the number of functions to regress and the second equal to the number of basis functions.

• getAllSimulations takes the values g(t + h, X t+h) for all simulations and returns the regressed values for all simulations f (X t)

• getAllSimulationsMultiple is used if we want to do the previous calculation on several g functions in a single call. In the matrix given as an argument, the first dimension has a size equal to the number of Monte Carlo simulations, while the second dimension has a size equal to the number of functions to regress. The regressed values are rendered in the same format.

• reconstruction takes as input the coefficient α k of the basis functions and returns all f (X t) for the stored simulations by applying the equation (4.1).

• reconstructionMultiple is used if we want to do the previous calculation on several g functions in a single call. As input the coefficients α k of the basis functions are given (number of function to regress for the first dimension, number of basis functions for second dimension). Consequently, the f (X t) for all the simulations and all the functions f are returned (number of Monte Carlo simulations in the first dimension, number of functions to regress in the second dimension).

• reconstructionASim takes a number of simulations isim (optimization part) and α k coefficient of the basis functions as input and returns f (X isim t

) by applying the equation (4.1),

• getValue takes as its first argument samples of X t , the basis function α k and reconstructs the regressed solution of the equation (4.1).

• getValues takes as its first argument samples of X t (dimension of uncertainty by number of samples), the basis function α k and reconstructs the regressed solution of the equation (4.1) (an array).

Adapted local polynomial basis with same probability

The description of the method and its properties can be found in [START_REF] Bouchard | Monte-carlo valuation of american options: facts and new algorithms to improve existing methods[END_REF]. We simply recall the methodology. These adapted local methods can benefit from a rotation in its main axis through the PCA method. Rotation is activated by a flag in the objects builder.

Description of the method

The method essentially consists in applying a non-conforming finite element approach rather than a spectral type method as presented above.

The idea is to use, at each time step t i , a set of functions

ψ q , q ∈ [0, M M] with local hyper cube support D i 1 ,i 2 ,...,i d where i j = 1 to I j , M M = k=1,d I k , and {D i 1 ,...,i d } (i 1 ,...,i d)∈[1,I 1]ו••×[1,I d] is a partition of [min k=1,N X 1,(k) t i , max k=1,N X 1,(k) t i]× • • • ×[min k=1,N X d,(k) t i , max k=1,N X d,(k) t i].
On each D l , l = (i 1 , . . . , i d), depending on the selected method, ψ l is

• either a constant function, so the global number of degrees of freedom is equal to M M ,

• or a linear function with 1 + d degrees of freedom, so the global number of degrees of freedom is equal to

M M * (1 + d).
This approximation is "non conform" in the sense that we do not ensure the continuity of the approximation. However, it has the advantage of being able to adapt to any function, even discontinuous. In order to avoid oscillations and to allow classical regression by the Cholesky method, the supports are chosen so as to contain roughly the same number of particles.

On the figure 4.2, we have drawn an example of supports in the case of 16 = 4 × 4 local base cells, in the dimension 2. Sometimes we can further leverage knowledge about the value of continuation. In the case Figure 4.2: Support of 2D function basis of an American basket option for example, we have a convexity of this continuation value as a function of the underlying price. It is possible to modify the previous algorithm to try to impose that the numerical method repeats this convexity. The algorithm in [START_REF] Magnani | Convex piecewise-linear fitting[END_REF] has been optionally implemented. This algorithm may not converge when used in multi-dimensional but it allows to improve the convexity of the solution by iterating several times.

C++ API The constant per cell approximation

The constructor of the local constant regression object is obtained by where:

• p nbMesh is an array giving the number of meshes used in each direction ([START_REF] Bender | A forward scheme for backward sdes[END_REF][START_REF] Bender | A forward scheme for backward sdes[END_REF] for the figure 4.2 for example).

• p bRotationAndRecale is an optional argument defined as false by default which means that no data rotation in its axis of main components is performed. In the case of rotation, the directions are sorted with their decreasing singular values and the number of meshes in p nbMesh is defined for these sorted directions: p nbMesh(0) is associated with first direction with the highest singular value, p nbMesh(1) with the direction associated with the second highest singular value etc.

The second constructor allows to build the regression matrix, where

• p bZeroDate is true if the regression date is 0,

• p particles the particles X t for all simulations (dimension of X t for first dimension, number of Monte Carlo simulations in second dimension),

• p nbMesh is an array giving the number of meshes used in each direction [START_REF] Bender | A forward scheme for backward sdes[END_REF][START_REF] Bender | A forward scheme for backward sdes[END_REF] for the figure 4.2,

• p bRotationAndRecale is an optional argument defined as false by default which means that no data rotation in its axis of main components is performed. In the case of rotation, the directions are sorted with their decreasing singular values and the number of meshes in p nbMesh is defined for these sorted directions: p nbMesh(0) is associated with first direction with the highest singular value, p nbMesh(1) with the direction associated with the second highest singular value etc.

Linear approximation per cell

The constructor of the local linear regression object is obtained by • p bRotationAndRecale is an optional argument defined as false by default which means that no data is rotated in its main components axis. In the case of rotation, the directions are sorted with their decreasing singular values and the number of meshes in p nbMesh is defined for these sorted directions: p nbMesh(0) is associated with the first direction with the highest singular value, p nbMesh(1) with the direction associated with the second highest singular value, etc.

The second constructor allows to build the regression matrix, where

• p bZeroDate is true if the regression date is 0,

• p particles the particles X t for all simulations (dimension of X t for the first dimension, number of Monte Carlo simulations in the second dimension),

• p nbMesh is an array giving the number of meshes used in each direction [START_REF] Bender | A forward scheme for backward sdes[END_REF][START_REF] Bender | A forward scheme for backward sdes[END_REF] for the figure 4.2

• p bRotationAndRecale is an optional argument defined as false by default which means that no data is rotated in its main components axis. In the case of rotation, the directions are sorted with their decreasing singular values and the number of meshes in p nbMesh are defined for these sorted directions: p nbMesh(0) is associated with first direction with the highest singular value, p nbMesh(1) with the direction associated with the second highest singular value etc.

This class can benefit from the methodology in [START_REF] Magnani | Convex piecewise-linear fitting[END_REF] implementing a generalization of the member function getAllSimulations: where

• p fToRegress is the set of points that we want to regress while preserving the convexity of the regressed function value

• p nbIterMax is the maximum number of iterations of the method.

It returns the regressed values for all the simulations of the uncertainties.

An example in the linear case

Below, we give a small example where toRegress corresponds to g(t + h, X t+h) for all simulations and x store X t for all simulations. Of cours,e the constant per cell case in Python is similar. As in C++, the linear case allows us to try to regress while preserving the convexity using the getAllSimulationsConvex method.

Adapted local basis by K-Means clustering methods

This method can be interesting when a small number of particles is available to calculate the regressions and we propose a K-Means clustering method to cluster simulations together. The classical K-Means clustering method is as follows: N points X k with k = 1 to N are given. A partition of the domain S = (S m) m≤p with p ≤ N domains is obtained by minimizing arg min

S p k=1 X j ∈S k ||X j -µ k || 2 ,
where µ k is the barycenter of all points X j ∈ S k . The classic Lloyd algorithm is used to calculated the cluster:

Algorithm 3 Lloyd algorithm 1: Choose p points as initialization for µ 1 k , k = 1, p 2: while Not converged do 3:

affect each particle to its Voronoi cell:

S l k = {X i : ||X i -µ l k || ≤ ||X i -µ l m ||, m = 1, p} 4:
Update

µ l+1 k = 1 |S l k | X i ∈S l k X i

5: end while

This algorithm is effective in 1D by sorting the coordinates of the particles. Its extension in the general case is costly due the calculation of the Voronoi cells and the distance between all points. We suppose that, as in the adaptive case with same probability, we want to have a partition such that the number of meshes in each direction is

I k for k = 1, d.
We propose a recursive algorithm to calculate the meshes. This algorithm is given by 4 and 5, Algorithm 4 Recursive 1D Lloyd algorithm 1: procedure RecurKMeans(id,X i 1 ,...,i id-1 , S i 1 ,...,i id-1)

2:

Sort the particle in dimension id and use Lloyd algorithm to partition S i 1 ,...,i id-1 in the dimension id and get S i 1 ,...,i id , i id = 1, I id .

3:

for i id = 1, I id do 4:

X i 1 ,...,i id = {X ∈ X i 1 ,...,i id-1 /X ∈ S i 1 ,...,i id } 5: if id < d then 6:
RecurKMeans(id + 1, X i 1 ,...,i id , S i 1 ,...,i id)

7: end if 8:
end for 9: end procedure Algorithm 5 Modified Lloyd algorithm

1: S = R d , X = {X i /i = 1, N } 2: RecurKMeans(1, X, S)
and an example of a resulting partition is given on figure 4.3 in 2D for I 1 = 3, I 2 = 4. Once the partition has been performed, a regression is performed with a constant representation per mesh: We note (S i k) k=1,p , a partition with the above method at the date t i using Monte Carlo particles X (k) t i , k = 1, N . To calculate the conditional expectation of a function g of X t i+1 , we use the constant representation by mesh and we then have:

E[g(X t i+1)/X t i = X k t i] 1 |S i p | j/X j t i ∈S i p g(X j t i+1)
where

X k t i+1 ∈ |S i p |.

C++ API

The constructor of the local K-Means regression object is similar to that of the LocalCon-stRegression object inthe 4.2.2 section. We do not then recall the signification of all the arguments. A first constructor is:

Python api

Since the C++ API is the same as that of the LocalConstRegression object, we have the same Python binding as in the 4.2.3 section.

Local polynomial basis with meshes of same size

In certain cases, instead of using adapted meshes, one can prefer to fix the mesh with a constant step in each direction with I k meshes in each direction so that the total number of cells is M M = k=1,d I k . On each cell as in section 4.2, one can have two approximations:

• either a linear per mesh representation, so the global number of degrees of freedom is equal to M M ,

• or a linear function with 1 + d degrees of freedom, so the global number of degrees of freedom is equal to

M M * (1 + d).
Because we define in each direction, the domain for the local basis, we do not use any data rotation.

C++ API

The constant per cell approximation

The constructor of the local constant regression object is achieved by • p lowValues is an array giving the first point of the grid in each direction,

• p step is an array giving the size of the meshes in each direction,

• p nbStep is an array giving the number of meshes used in each direction.

The second constructor allows to build the regression matrix, where • p bZeroDate is true if the regression date is 0,

• p particles the particles X t for all simulations (dimension of X t for first dimension, number of Monte Carlo simulations in second dimension),

• p lowValues is an array giving the first point of the grid in each direction,

• p step is an array giving the size of the meshes in each direction,

• p nbStep is an array giving the number of meshes used in each direction.

The linear per cell approximation

The constructor of the local linear regression object is achieved by where • p lowValues is an array giving the first point of the grid in each direction,

• p step is an array giving the size of the meshes in each direction,

• p nbStep is an array giving the number of meshes used in each direction.

The second constructor allows to build the regression matrix, where

• p bZeroDate is true if the regression date is 0,

• p particles the particles X t for all simulations (dimension of X t for first dimension, number of Monte Carlo simulations in second dimension),

• p lowValues is an array giving the first point of the grid in each direction,

• p step is an array giving the size of the meshes in each direction,

• p nbStep is an array giving the number of meshes used in each direction.

An example in the linear case

Below we give a small example where toRegress is the array to regress as a function of x an array "x" in dimension p nDim: Of course, the constant per cell in Python is similar.

Sparse grid regressor

In the case of a sparse regressor, the grid is an object SparseSpaceGridNoBound (extrapolation for the boundary conditions). The basis functions are given by the section 3.3 for a linear, quadratic or cubic function base. No data rotation is available.

C++ API

Two specific constructor are available:

• The first one to be used with the updateSimulations methods

H n+1 (x) = xH n (x) -H n (x)
assuming H n (x) = n k=0 a n,k x k , we get the recurrence

a n+1,k = a n,k-1 -na n-1,k , k > 0 (4.5) a n+1,0 = -na n-1,0 (4.6)
• Chebyshev polynomials are T N +1 (x) = cos((N + 1) arccos(x)). They are orthogonal to the weight w

(x) = 1 √ 1-x 2 and 1 -1 T N (x)T M (x)w(x)dx =    0, if M = N π, if M = N = 0 π 2 , if M = N = 0
They satisfy the following recurrence:

T N +2 (x) = 2xT N +1 (x) -T N (x)
Optionally, data rotation is possible even if the advantage of rotation seems limited for global polynomials.

C++ API

The class GlobalRegression is templated by the type of the polynomial (Canonical, Tchebychev or Hermite) The first constructor: where p degree is the total degree of the polynomial approximation, p dim is the dimension of the problem, p bRotationAndRecale is an optional flag set to true if data rotation must be performed (by default, no rotation). A second constructor is provided: where

• p bZeroDate is true if the regression date is 0,

• p particles the particles X t for all simulations (dimension of X t for first dimension, number of Monte Carlo simulations in second dimension),

• p degree is the total degree of the polynomial approximation,

• p bRotationAndRecale is an optional flag set to true if data rotation is to be performed (default, no rotation)

Below, we give a small example where toRegress corresponds to g(t + h, X t+h) for all simulations and x store X t for all simulations. In the example above, the Hermite regression can be replaced by the canonical regression:

GlobalRegression < Canonical > local Regress or (degree , x . rows ()) ;

or by a Chebyshev:

GlobalRegression < Tchebychev > loc alRegres sor (degree , x . rows ()) ;

Python API

Here is a similar example using the second constructor The available regressors are GlobalHermiteRegression as in the example above , Global CanonicalRegression and GlobalTchebychevRegression with obvious correspondence.

Kernel regression with Epanechnikov kernel

Let (x 1 , y 1), (x 2 , y 2), . . . , (x N , y N) be a sample of N input points x i and output points y i drawn from a joint distribution (X, Y). The kernel density estimator (aka Parzen-Rosenblatt estimator) of the density of X at the evaluation point z is given by:

fKDE (z) := 1 N N i=1 K h (x i -z) (4.7)
where K h (u) := 1 h K u h with kernel K and bandwidth h. The Nadaraya-Watson kernel regression estimator of E [Y |X = z] is given by: fNW (z) :

= N i=1 K h (x i -z)y i N i=1 K h (x i -z) (4.8)
The estimator fNW (z) performs a kernel-weighted local average of the response points y i that are such that their corresponding inputs x i are close to the evaluation point z. It can be described as a locally constant regression. More generally, locally linear regressions can be performed:

fL (z) := min α(z),β(z) N i=1 K h (x i -z) [y i -α(z) -β(z)x i] 2 (4.9)
The well known computational problem with the implementation of the kernel smoothers (4.7)-(4.8)-(4.9) is that their direct evaluation on a set of M evaluation points would require O(M × N) operations. In particular, when the evaluation points coincide with the input points x 1 , x 2 , . . . , x N , a direct evaluation requires a quadratic O(N 2) number of operations. StOpt implements the methodology described in [START_REF] Langrené | Fast and stable multivariate kernel density estimation by fast sum updating[END_REF] to bring the computational cost down to O(N log N).

The univariate case

In one dimension, StOpt uses the one-dimensional Epanechnikov kernel

K(u) = 3 4 (1 -u 2)1{|u| ≤ 1}
and the fast summation algorithm is used: Let (x 1 , y 1), (x 2 , y 2), . . . , (x N , y N) be a sample of N input points (source) x i and output points y i , and let z 1 , z 2 , . . . , z M be a set of M evaluation (target) points. Without loss of generality, we assume that the input points and evaluation points are sorted:

x 1 ≤ x 2 ≤ . . . ≤ x N and z 1 ≤ z 2 ≤ . . . ≤ z M .
In order to compute the kernel density estimator (4.7), kernel regression (4.8) and locally linear regression (4.9) for every evaluation point z j , we need to compute sums of the type

S j = S p,q j := 1 N N i=1 K h (x i -z j)x p i y q i = 1 N h N i=1 K x i -z j h x p i y q i , p = 0, 1, q = 0, 1 (4.10)
for each j ∈ {1, 2, . . . , M }. Direct and independent evaluation of these sums would require O(N × M) operations (a sum of N terms for each j ∈ {1, 2, . . . , M }). The idea of fast sum updating consists in using the information in the sum S j to calculate the next sum S j+1 without going through all the N input points again. Using the Epanechnikov kernel (parabolic) K(u) = 3 4 (1 -u 2)1{|u| ≤ 1} we get:

S p,q j = 1 N h N i=1 3 4 1 - x i -z j h 2 x p i y q i 1{z j -h ≤ x i ≤ z j +h} = 1 N h 3 4 N i=1 1 - z 2 j h 2 + 2 z j h 2 x i - 1 h 2 x 2 i x p i y q i 1{z j -h ≤ x i ≤ z j +h} = 3 4N h 1- z 2 j h 2 S p,q ([z j -h, z j +h]) + 2 z j h 2 S p+1,q ([z j -h, z j +h]) - 1 h 2 S p+2,q ([z j -h, z j +h]) (4.11)
where

S p,q ([L, R]) := N i=1 x p i y q i 1{L ≤ x i ≤ R} (4.12)
These sums S p,q ([z j -h, z j + h]) can be evaluated quickly from j = 1 to j = M as long as the input points x i and the evaluation points z j are sorted in ascending order. Indeed,

S p,q ([z j+1 -h, z j+1 +h]) = N i=1 x p i y q i 1{z j+1 -h ≤ x i ≤ z j+1 +h} = N i=1 x p i y q i 1{z j -h ≤ x i ≤ z j +h} - N i=1 x p i y q i 1{z j -h ≤ x i < z j+1 -h} + N i=1 x p i y q i 1{z j +h < x i ≤ z j+1 +h} = S p,q ([z j -h, z j +h]) -S p,q ([z j -h, z j+1 -h[) + S p,q (]z j +h, z j+1 +h]) (4.13)
Therefore, we can simply update the sum S p,q ([z j -h, z j+1 + h]) for the evaluation point z j to obtain the next sum S p,q ([z j+1 -h, z j+1 + h]) for the next evaluation point z j+1 by subtracting the terms x p i y q i for which x i is between z j -h and z j+1 -h, and adding the terms x p i y q i for which x i is between z j + h and z j+1 + h. This can be achieved in a fast O(M + N) operations by going through the input points x i , stored in increasing order at a cost of O(N log N) operations, and through the evaluation points z j , stored in increasing order at a cost of O(M log M) operations.

The multivariate case

We now turn to the multivariate case. Let d be the dimension of the inputs. We consider again a sample (x 1 , y 1), (x 2 , y 2), . . . , (x N , y N) of N input points x i and output points y i , where the input points are now multivariate:

x i = (x 1,i , x 2,i , . . . , x d,i) , i ∈ {1, 2, . . . , N }
The StOpt library implements the additive Epanechnikov kernel in the multi-dimensional case ([START_REF] Langrené | Fast and stable multivariate kernel density estimation by fast sum updating[END_REF]).

K d (u 1 , . . . , u d) = 1 d2 d-1 d k=1 K(u k) d k 0 =1 1{|u k 0 | < 1} = 3 d2 d+1 d k=1 1 -u 2 k d k 0 =1 1{|u k 0 | < 1} (4.14)
We can show ([START_REF] Langrené | Fast and stable multivariate kernel density estimation by fast sum updating[END_REF]) that calculating the multivariate version of the smoothing kernels (4.7), (4.8) and (4.9) boils down to the calculation of the following sums:

S j = S p 1 ,p 2 ,q k 1 ,k 2 ,j := 1 N N i=1 K d,h (x i -z j)x p 1 k 1 ,i x p 2 k 2 ,i y q i = 1 N Π d k=1 h k N i=1 K d x 1,i -z 1,j h 1 , x 2,i -z 2,j h 2 , . . . , x d,i -z d,j h d x p 1 k 1 ,i x p 2 k 2 ,i y q i (4.15)
for each evaluation point z j = (z 1,j , z 2,j , . . . , z d,j) ∈ R d , j ∈ {1, 2, . . . , M }, for powers p 1 , p 2 , q = 0, 1 and for dimension indices k 1 , k 2 = 1, 2, . . . , d.

Kernel expansion

Using the multivariate kernel (4.14), we can expand the sum (4.15) as follows:

S j = 1 N d k=1 h k N i=1 K d x 1,i -z 1,j h 1 , x 2,i -z 2,j h 2 , . . . , x d,i -z d,j h d x p 1 k 1 ,i x p 2 k 2 ,i y q i = 3
d2 d+1 N d k=1 h k N i=1 d k=1 1 - (x k,i -z k,j) 2 h 2 k x p 1 k 1 ,i x p 2 k 2 ,i y q i d k 0 =1 1{|x k 0 ,i -z k 0 ,j | ≤ 1} = 3 d2 d+1 N d k=1 h k d k=1 N i=1 1 - z 2 k,j h 2 k + 2 z k,j h 2 k x k,i - 1 h 2 k x 2 k,i x p 1 k 1 ,i x p 2 k 2 ,i y q i d k 0 =1 1{|x k 0 ,i -z k 0 ,j | ≤ 1} = 3 d2 d+1 N d k=1 h k d k=1 1 - z 2 k,j h 2 k S [0,p 1 ,p 2],q [k,k 1 ,k 2] ([z j -h j , z j + h j])+ = 2 z k,j h 2 k S [1,p 1 ,p 2],q [k,k 1 ,k 2] ([z j -h j , z j + h j]) - 1 h 2 k S [2,p 1 ,p 2],q [k,k 1 ,k 2] ([z j -h j , z j + h j]) (4.16)
where 3 , and where [z j -h j , z j +h j] :=

S idx ([L, R]) := S p,q k ([L, R]) := N i=1 3 l=1 (x k l ,i) p l y q i d k 0 =1 1{L k 0 ≤ x k 0 ,i ≤ R k 0 } (4.17) for any hyperrectangle [L, R] := [L 1 , R 1] × [L 2 , R 2] × . . . × [L d , R d] ⊆ R d , powers p := (p 1 , p 2 , p 3) ∈ N 3 , q ∈ N, indices k := (k 1 , k 2 , k 3) ∈ {1, 2, . . . , d}
[z 1,j -h 1,j , z 1,j + h 1,j] × . . . × [z d,j -h d,j , z d,j + h d,j].
To simplify notations, we make use of the multi-index idx := (p, q, k).

To sum up what has been established so far, computing multivariate kernel smoothers (kernel density estimation, kernel regression, locally linear regression) boils down to computing sums of type (4.17) on hyperrectangles of the type [z j -h j , z j + h j] for every evaluation point j ∈ {1, 2, . . . , M }. In the univariate case, these sums could be computed efficiently by sorting the input points x i , i ∈ {1, 2, . . . , N } and updating the sums from one evaluation point to the next (equation (4.13)). We now describe a similar efficient fast sum updating algorithm for multivariate sums (4.17), first established in [START_REF] Langrené | Fast and stable multivariate kernel density estimation by fast sum updating[END_REF]. To do so, we first partition the input data into a multivariate rectilinear grid (subsection 4.7.2), taking advantage of the fact that the evaluation grid is rectilinear and that the supports of the kernels have a hyperrectangle shape. Then, we set up a fast sweeping algorithm using the sums on each hyperrectangle of the partition as the unit blocks to be added and removed (subsection 4.7.2), unlike the univariate case where the input points themselves were being added and removed iteratively.

Data partition

The first stage of the multivariate fast sum updating algorithm is to partition the sample of input points into boxes. To do so, define the sorted lists Gk = {g k,1 , gk,2 , . . . , gk,2M k

} := sort {z k,j k -h k,j k } j k ∈{1,2,...,M k } {z k,j k + h k,j k } j k ∈{1,2,...,M k } in each dimension k ∈ {1, 2, . . . , d},
and define the partition intervals Ĩk,l := [g k,l , gk,l+1] for l ∈ {1, 2, . . . , 2M k -1}. By definition of Gk , all the bandwidths edges z k,j k -h k,j k and z k,j k + h k,j k , j k ∈ {1, 2, . . . , M k }, belong to Gk . Therefore, there exists some indices Lk,j k and Rk,j

k such that [z k,j k -h k,j k , z k,j k + h k,j k] = [g k, Lk,j k
, gk, Rk,j k +1] = l k ∈{ Lk,j k ,..., Rk,j k } Ĩk,l k . From there, for any evaluation point

z j = (z 1,j 1 , z 2,j 2 , . . . , z d,j d) ∈ R d , the box [z j -h j , z j + h j] ⊂ R d can be decomposed into a union of smaller boxes: [z j -h j , z j + h j] = [z 1,j 1 -h 1,j 1 , z 1,j 1 + h 1,j 1] × . . . × [z d,j d -h d,j d , z d,j d + h d,j d] = g1, L1,
= (z 1,j 1 , z 2,j 2 , . . . , z d,j d) ∈ R d , j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . . . d} , there exists indices (L 1,j 1 , L 2,j 2 , . . . , L d,j d) and (R 1,j 1 , R 2,j 2 , . . . , R d,j d) where L k,j k and R k,j k ∈ {1, 2, . . . , m k -1} with L k,j k ≤ R k,j k such that S idx ([z j -h j , z j + h j]) = (l 1 ,...,l d)∈{L 1,j 1 ,...,R 1,j 1 }×...×{L d,j d ,...,R d,j d } S idx (I 1,l 1 × . . . × I d,l d) (4.20)
For later use, we introduce the compact notation S idx l 1 ,l 2 ,...,l d := S idx (I 1,l 1 ×. . .×I d,l d). Recalling equation (4.17), the sum S idx l 1 ,l 2 ,...,l d corresponds to the sum of the polynomials (3 l=1 (x k l ,i) p l)y q i over all the data points within the box I 1,l 1 × . . . × I d,l d .

Fast multivariate sweeping algorithm

So far, we have shown that computing multivariate kernel smoothers is based on the computation of the kernel sums (4.15), which can be decomposed into sums of the type (4.17), which can themselves be decomposed into the smaller sums (4.20) by decomposing every kernel support of every evaluation point onto the box partition described in the previous subsection 4.7.2. The final task is to define an efficient algorithm to traverse all the hyperrectangle unions (l 1 ,...,l d)∈{L 1,j 1 ,...,R 1,j 1 }×...×{L d,j d ,...,R d,j d } I 1,l 1 × . . . × I d,l d , so as to compute the right-hand side sums in equations (4.20) (Lemma 4.7.1) in an efficient fast sum updating way similar to the univariate (4.13). We precompute all the sums S idx l 1 ,l 2 ,...,l d with idx = (p, q, k) ∈ {0, 1, 2} × {0, 1} 3 × {1, 2, . . . , d} 3 , and use them as input material for fast multivariate sum updating.

We start with the bivariate case. We first provide an algorithm to compute the sums

T idx 1,l 2 := R 1,j 1 l 1 =L 1,j 1 S idx l 1 ,l 2 , for every l 2 ∈ {1, 2, . . . , m 2 -1} and every index interval [L 1,j 1 , R 1,j 1], j 1 ∈ {1, 2, . . . , M 1 }. Starting with j 1 = 1, we first compute T idx 1,l 2 = R 1,1 l 1 =L 1,1 S idx l 1
,l 2 for every l 2 ∈ {1, 2, . . . , m 2 -1}. Then we iteratively increment j 1 from j 1 = 1 to j 1 = M 1 . After each incrementation of j 1 , we update T idx 1,l 2 by fast sum updating

R 1,j 1 l 1 =L 1,j 1 S idx l 1 ,l 2 = R 1,j 1 -1 l 1 =L 1,j 1 -1 S idx l 1 ,l 2 + R 1,j 1 l 1 =R 1,j 1 -1 +1 S idx l 1 ,l 2 - L 1,j 1 -1 l 1 =L 1,j 1 -1 S idx l 1 ,l 2 (4.21)
The second stage is to perform a fast sum updating in the second dimension, with the sums

T idx 1,l 2 = R 1,j 1 l 1 =L 1,j 1
S idx l 1 ,l 2 as input material. Our goal is to compute the sums

T idx 2 := R 2,j 2 l 2 =L 2,j 2
T idx 1,l 2 for every index interval [L 2,j 2 , R 2,j 2], j 2 ∈ {1, 2, . . . , M 2 }. In a similar manner, we start from j 2 = 1 with the initial sum

T idx 2 = R 2,1 l 2 =L 2,1 T idx 1,l 2 .
We then increment j 2 from j 2 = 1 to j 2 = M 2 iteratively. After each incrementation of j 2 , we update T idx 2 by fast sum updating:

R 2,j 2 l 2 =L 2,j 2 T idx 1,l 2 = R 2,j 2 -1 l 2 =L 2,j 2 -1 T idx 1,l 2 + R 2,j 2 l 2 =R 2,j 2 -1 +1 T idx 1,l 2 - L 2,j 2 -1 l 2 =L 2,j 2 -1 T idx 1,l 2 (4.22)
Using Lemma 4.7.1, the resulting sum

R 2,j 2 l 2 =L 2,j 2 T idx 1,l 2 = R 1,j 1 l 1 =L 1,j 1 R 2,j 2 l 2 =L 2,j 2 S idx l 1 ,l 2 is equal to S idx ([z j -h j , z j + h j]
), which can be used to compute the kernel sums S j using equation (4.16), from which the bivariate kernel smoothers can be computed.

This ends the description of the fast sum updating algorithm in the bivariate case. Finally, the general multivariate case is a straightforward extension of the bivariate case (see [START_REF] Langrené | Fast and stable multivariate kernel density estimation by fast sum updating[END_REF]).

C++ API

The constructor allows to define the kernel regressor: where • p bZeroDate is true if the regression date is 0,

• p particles the particles X t for all simulations (dimension of X t for first dimension, number of Monte Carlo simulations in second dimension),

• p coeffBandWidth between 0 and 1 defines the percentage of points to use to define the bandwidth for each point.

• p coefNbGridPoint is a multiplying factor defining the number of points z used for the multi-grid approximation: a PCA is used to define a data rotation. The kernel regression is performed according the basis defined by the eigenvectors associated with the PCA. The number of points along the axes defined by the eigenvectors is given as a function of the singular value associated with the eigenvector. The total number of evaluation points along the axes of the new base is approximately the number of simulations (p particles.cols()) by p coefNbGridPoint.

• p bLinear when set to false indicates that the simple estimate of the density of the kernel (4.8) is used. When p bLinear is true, the linear regression of the kernel (4.9) is used.

Below we give a small example where toRegress corresponds to g(t + h, X t+h) for all simulations and x stores X t for all simulations.

Python API

As usual the Python constructors are similar to the C++ constructors. Here is a small example of the use of the kernel regression method.

Kernel regression with Laplacian kernels

This subsection is based on the work [START_REF] Langrené | Fast multivariate empirical cumulative distribution function with connection to kernel density estimation[END_REF]. Keeping in mind the notations of section 4.7, we focus on the Laplacian kernel, defined by

K(u) = 1 2 e -|u| (4.23)
The Laplacian kernel density estimator is defined by:

fKDE (z) = 1 N N i=1

Reducing the problem to empiral CDF calculations

This kernel density estimator can be decomposed as follows in one dimension:

fKDE (z) = 1 N N i=1 1 2h e -|x i -z| h = 1 2hN N i=1 e x i -z h 1{x i ≤ z} + N i=1 e z-x i h 1{x i > z} = 1 2hN e -z h N i=1 e x i h 1{x i ≤ z} + e z h N i=1 e -x i h 1{x i > z} = 1 2h e -z h F N (z; x, we x h) + e z h FN (z; x, we -x h) (4.25)
where the empirical CDF F N and the empirical complementary CDF FN are defined by equations

F N (z) = F N (z; x, y) 1 N N i=1 y i 1{x 1,i ≤ z 1 , . . . , x d,i ≤ z d } . (4.26) FN (z) = FN (z; x, y) 1 N N i=1 y i 1{x 1,i > z 1 , . . . , x d,i > z d } . (4.27)
Crucially, such a CDF decomposition of KDE also holds in the multivariate setting. The multivariate Laplacian kernel is defined by

K d (u) = 1 2 d e -|u| = 1 2 d e -d k=1 |u k | (4.28)
and the multivariate Laplacian kernel density estimator is given by

fKDE (z) = 1 2 d N Π d k=1 h k N i=1 e -| x i -z h | = 1 2 d N Π d k=1 h k N i=1 e -d k=1 | x k,i -z k | h k (4.29)
where h = (h 1 , h 2 , . . . , h d) ∈ R d is a multivariate bandwidth. We introduce :

F N (z, δ) = F N (z, δ; x, y) 1 N N i=1 y i 1{x 1,i ≤ δ 1 z 1 , . . . , x d,i ≤ δ d z d } (4.30)
where δ = {δ 1 , δ 2 , . . . , δ d } ∈ {-1, 1} d , and where the generalized inequality operator ≤ c corresponds to ≤ (lower or equal) if c ≥ 0, and to < (strictly lower) if c < 0. In particular F N (z) = F N (z, 1; x, y) and FN (z) = F N (-z, -1; -x, y) respectively. Using the same approach as equation (4.25), the sum (4.29) can be decomposed as follows:

fKDE (z) = 1 2 d N Π d k=1 h k N i=1 d k=1 e - z k h k e x k,i h k 1{x k,i ≤ z k } + e z k h k e - x k,i h k 1{-x k,i < -z k } = 1 2 d N Π d k=1 h k N i=1 δ∈{-1,1} d d k=1 e - δ k z k h k e δ k x k,i h k 1{δ k x k,i ≤ δ k δ k z k } = 1 2 d Π d k=1 h k δ∈{-1,1} d e -d k=1 δ k z k h k 1 N N i=1 e d k=1 δ k x k,i h k 1{δ 1 x 1,i ≤ δ 1 δ 1 z 1 , . . . , δ d x d,i ≤ δ d δ d z d } = 1 2 d Π d k=1 h k δ∈{-1,1} d e -d k=1 δ k z k h k F N (

Fast computation of ECDFs

We present two ways to compute efficiently an expression such as 4.31. The first is based on the use of a rectilinear grid as evaluation points and an interpolation is needed to get back the conditional expectation at the sample points. The second one, based on the divide and conquer approach, is exact but much more costly.

Fast sum updating in lexicographical order

Let z j = (z 1,j , z 2,j , . . . , z d,j) ∈ R d , j ∈ {1, 2, . . . , M }, be a set of M evaluation (target) points.

We require this evaluation grid to be rectilinear, i.e., the M evaluation points z 1 , z 2 , . . . , z M lie on a regular grid with possibly non-uniform mesh, of dimension M 1 ×M 2 ×. . .×M d = M :

z = (z 1,j 1 , z 2,j 2 , . . . , z d,j d) ∈ R d , j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . . . , d}
For convenience, we extend the definition of the grid with the notational conventions z k,0 -∞ and z k,M k +1 ∞.

In each dimension k ∈ {1, 2, . . . , d}, the vector (z k,1 , z k,2 , . . . , z k,M k) ∈ R M k is assumed to be sorted in increasing order:

z k,1 < z k,2 < . . . < z k,M k , k ∈ {1, 2, . . . , d}
We partition the input data x along this evaluation grid z. For each evaluation grid index (j 1 , j 2 , . . . , j d) ∈ {1, 2, . . . , M 1 + 1} × . . . × {1, 2, . . . , M d + 1} we define the following local sum Sort the set {x k,1 , . . . x k,N } in increasing order, using for example quicksort or mergesort (O(N log N)): define the permutation φ k : {1, 2, . . . , N } → {1, 2, . . . , N } such that

s j 1 ,j 2 ,...,j d := 1 N N i=1 y i 1{z 1,j 1 -1 < x 1,i ≤ z 1,j 1 , . . . , z d,j d -1 < x d,i ≤ z d,
x k,φ k (1) < x k,φ k (2) < • • • < x k,φ k (N) (4.33) 6:
x idx = 1 input index ∈ {1, 2, . . . , N } 7:

z idx = 1 evaluation grid index ∈ {1, 2, . . . , M k } 8:
while do(x idx ≤ N)

9: if then(x k,φ k (x idx) ≤ z k,z idx) 10: INDEX[k, φ k (x idx)] = z idx 11:
x idx += 1

= 1 N N i=1 y i 1{z 1,j 1 -1 < x 1,i ≤ z 1,j 1 , . . . , z d,j d -1 < x d,i ≤ z d,j d }
for every local sum index (j 1 ,j 2 ,...,j d)∈{1,2,...,M 1 +1}×...×{1,2,...,M d +1}

In particular, using equation (4.26), the following key equality holds:

F N (z) = j 1 l 1 =1 j 2 l 2 =1 • • • j d l d =1 s l 1 ,l 2 ,...,l d (4.34)
for any evaluation point z = (z 1,j 1 , z 2,j 2 , . . . , z d,j d) ∈ z.

We propose a simple fast summation algorithm, Algorithm 7, to compute the ECDFs F N (z) for every z ∈ z in lexicographical order based on the local sum decomposition (4.34). One can easily verify that the number of operations is proportional to

M 1 × M 2 × . . . × M d = M .
S d + = S d-1,j d 11:
Here end for 14: end for 15: return F N (z) for all z ∈ z 4.8.3 Divide-and-conquer approach Consider the case when the evaluation points z j are equal to the input points x i . The calculation of the ECDFs {F N (x i)} i=1,N (equation (4.26)) corresponds to a domination problem in dimension d. An algorithm based on a recursive divide-and-conquer sequence has first been proposed in [START_REF] Bentley | Multidimensional divide-and-conquer[END_REF] for this problem. An adaptation was proposed in [START_REF] Bouchard | Monte-carlo valuation of american options: facts and new algorithms to improve existing methods[END_REF] to solve this problem for the case of the calculation of conditional expectation using Malliavin weights. The computational complexity was shown to be O(c(d)N log(N) (d-1)∨1). We do not repeat the construction of this algorithm here, and the interested reader can refer to [START_REF] Langrené | Fast multivariate empirical cumulative distribution function with connection to kernel density estimation[END_REF].

S d = j 1 l 1 =1 j 2 l 2 =1 • • • j d l d =1 s l 1 ,l 2 ,...,l d = F N (z 1,j 1 , z

C++ API for fast summation method

The constructor allows to define the Laplacian kernel regressor with the fast summation method: where • p bZeroDate is true if the regression date is 0,

• p particles the particles X t for all simulations (dimension of X t for first dimension, number of Monte Carlo simulations in second dimension),

• p h bandwidth array per dimension.

• p coefNbGridPoint is a multiplying factor defining the number of points z used for the multi-grid approximation. The total number of points on the rectilinear grid is the number of samples by p coefNbGridPoint.

• p bLinear when set to false indicates that the simple estimate of the density of the kernel (4.8) is used. When p bLinear is true, the linear regression of the kernel (4.9) is used.

Below we give a small example where toRegress corresponds to g(t + h, X t+h) for all simulations and x store X t for all simulations. • p particles the particles X t for all simulations (dimension of X t for first dimension, number of Monte Carlo simulations in second dimension),

// t
• p h bandwidth array per dimension.

And the following one deals with the linear regression case. where • p bZeroDate is true if the regression date is 0,

• p particles the particles X t for all simulations (dimension of X t for first dimension, number of Monte Carlo simulations in second dimension),

• p h bandwidth array per dimension.

Python API for exact divide-and-conquer method

As usual, the Python constructor is similar to the C++ constructor. For example, using the linear regressor we get the following Python code:

Calculating conditional expectation by trees

A popular method for calculating conditional expectation is to use scenario trees.

In the financial community, binary and trinomial trees are generally used to evaluate options. When the asset is modeled by a Black-Scholes model, a binary model is used, while a trinomial model is used to model the average reversion using a Vaciseck model for interest rate, for example [START_REF] John | Options futures and other derivatives[END_REF]. An example of a trinomial tree is given in the figure 5.1 for an Ornstein-Uhlenbeck model (so in dimension 1). This tree models the possible evolution of Figure 5.1: Trinomial tree a state X t in dimension 1 and each node corresponds to a possible value of X t . These trees recombine. The nodes at each dates i are numbered from 0 to N i -1 with increasing values X i t of the state. From a node i on a date t, 3 nodes can be reached on the date t + 1. The probability transition from going to a node down f (i, t) -1 is p t,i d while the probability of going to a middle node f (i, t) is p t,i m and the probability of going to a node up to f (i, t) + 1 is p t,i u . The conditional expectation of a function with the values g t+1 j = g(X j t+1) at the node j on the date i + 1 is simply given by:

E[g(X t+1)/X t = X i t] p t,i d g t+1 f (t,i)-1 + p t,i m g t+1 f (t,i) + p t,i u g t+1 f (t,i)+1
(5.1)

In the literature, non-recombining scenario trees are used by the discrete stochastic optimization community. These non-recombining trees can be obtained by reducing certain recombining trees (see [START_REF] Heitsch | Scenario reduction algorithms in stochastic programming[END_REF] for example, or [START_REF] Koc | Optimal scenario tree reductions for the stochastic unit commitment problem[END_REF] for a more recent survey developing algorithm minimizing the Kantorovich or Wasserstein metric between the initial tree and a subtree of the initial tree). An example of non-recombining tree is given in the figure 5.2. On figure 5.2, assuming that X 2 has the possible values Y 2 , Y 3 at node 2 and 3, assuming

C++ API Calculation of conditional expectation

As explained, conditional expectations are easy to calculate with trees. The library provides an object Tree allowing to make such calculations.

1

Tree (const std :: vector < double > & p_proba , const std :: vector < std :: vector < std ::

array < int , 2 > > > & p_connected)
with

• p proba a probability vector at a given date defining the probability transition between the nodes at the current date and the nodes at the next date.

• p connected the connection between the nodes and the index in the probability vector.

p proba[p connected[i][j].second]
is the probability of going from the node i at the current date to the node p connected[i][j].first at the next date. So p connected [i].size() gives the number of nodes connected to the node i.

For regression objects, some methods are provided to calculate conditional expectations:

• expCond takes an Eigen array with the size equal to the number of nodes at the next date and calculates the conditional expectation of the node values of current date,

• expCondMultiple does the same so that several functions regress (size of the number of functions by number of nodes at the following date) and return a two-dimensional Eigen array (size of functions by number of nodes at the current date).

Python API

The Python interface for tree is obtained importing the StOptTree module. An example taking a trinomial simulator is given below Chapter 6

#

Continuation values objects and similar ones

In the first part, we develop the different continuation objects by using regression to calculate conditional expectations. Next, we explain the structure of the continuation object with tree to calculate the conditional expectations.

Continuation values objects with regression methods

In the first part we describe a way to store and use continuation values calculated when using regression methods to estimate conditional expectations. In a second part, we introduce an object used to interpolate a function both discretized on grids for its deterministic part and estimated by regressor for its stochastic part. The second object is similar to the first in spirit, but being dedicated to interpolation is more effective to use in simulations performed after the optimization part of a problem. A third object is the continuation cut object used to approximate the concave or convex Bellman values by cuts. It is used when the transition problem is solved using a LP.

Continuation values object

A special case is the case where the state X x,t in the equation (2.1) can be separated into two parts X x,t = (X x,t 1 , X x,t 2) where 1. the first part is given by the following equation

dX x,t s,1 = b(s, X x,t s,1)ds + σ(s, X x,t s,1)dW s (6.1)
and is not controlled: the stochastic process is exogenous, 2. the second part is given by the following equation

dX x,t s,2 = b a (t)ds (6.2) so that X x,t 2
is a degenerate version of 2.1 without distribution, a representing the control. This first case is encountered, for example, in the valuation of American options in finance. In this case, X x,t 1 contains the values of the assets involved in the option and X x,t 2 is for example an integer value process equal to one if the option is not exercised and to 0 if it has already been exercised. Another classical case that occurs when dealing with stocks for example is a gas storage valuation. In this simple case, the process X x,t 1 is the market value of the gas and X x,t 2 is the position (in volume) in the gas storage. The library proposes to store the conditional expectation for all states X x,t 2 .

• X x,t 2 will be stored at the points of the grid (see section 3)

• for each point i of the grid the conditional expectation of a function g i (X x,t 2) associated with the point i using a regressor (see chapter 4) can be calculated and stored so that the continuation value C is a function of (X x,t 1 , X x,t 2).

C++ API

Regarding regressions, two constructors are provided

• The first is the default construction: it is used in the simulation algorithm with the loadForSimulation method to store the basis coefficients α i k for the grid point i (see the equation (4.1)),

• The second This constructor builds for all points i all the α i k (see equation (4.1)).

The main methods provided are:

• a first method used in simulation allowing to load for the grid point i the coefficient α i k associated with the function g i , with p grid the grid associated with the controlled deterministic space, p condExp the conditional expectation operator, p values the α i k for all grid points i (size the number of basis function, the number of grid points)

1 void l o a d F o r S i m u l a t i o n (const shared_ptr < SpaceGrid > & p_grid ,
• a second method taking as input a point to be interpolated in the grid and returning the conditional expectation at the interpolated point for all simulations:

1 Eigen :: ArrayXd g e t A l l S i m u l a t i o n s (const Eigen :: ArrayXd & p_ptOfStock)

• a method taking as input an interpolator in the grid and returning the conditional expectation for all simulations at the interpolated point used to build the interpolator:

1

Eigen :: ArrayXd g e t A l l S i m u l a t i o n s (const Interpolator & p_interpol)

• a method taking as input a simulation number used in optimization and a point used to interpolate in the grid and returning the conditional expectation at the interpolated point for the given simulation used in optimization. • a method taking as input a simulation number used in optimization and an interpolator in the grid and returning the conditional expectation at the interpolated point used to construct the interpolator for the given simulation used in optimization:

1 double g etASimul ation (const int & p_isim , const Interpolator & p_interpol)
• a method which calculates the conditional expectation for a sample of X x,t 1 :

1 double getValue (const Eigen :: ArrayXd & p_ptOfStock , const Eigen :: ArrayXd & p_coordinates) const
where:

p ptOfStock the point where we interpolate the conditional expectation (a realization of X x,t 2) p coordinates the sample of X x,t 1 used to estimate the conditional expectation and the function returns C(X x,t 1 , X x,t 2).

Below we regress an identical function for all the points of the grid (here a grid of 4 points in dimension 1): Python API

Here is an example of the use of the mapping for i in range (toRegressMult . shape [START_REF] Alasseur | Regression monte carlo for microgrid management[END_REF]) : # test create of an interpoaltion object mixing grids for stocks and regression for uncertainties unittest . main ()

#
toRegressMult [: , i] = toRegress # Now create the continuation object # contOb = StOptReg . C o n t i n u a t i o n V
g r id A n d R
for i in range (nbSimul) : regressed = g r i d A n d R

The GridAndRegressedValue object

As explained above, when we want to interpolate a partially discretized function on a grid and by regression, a specific object can be used. As for the continuation object, it has a getValue to estimate the function at a state with both a deterministic and a stochastic part.

C++ API

The object has five constructors and we have only described the two most commonly used:

• The first one with p grid the grid associated with the deterministic control space, p reg the regressor object p values the functions at certain points of the deterministic and stochastic grid.

• A second constructor stores only the grid and the regressor: The main methods are the following ones:

1 G r i d A n d R
• the main method for calculating the function C(X x,t 1,s , X x,t 2,s) value for a point X x,t s = (X x,t 1,s , X x,t 2,s) where X x,t 2,s is on the grid and X x,t 1,s is the part treated by regression. where:

p ptOfStock X x,t 2,s part of X x,t s p coordinates X x,t 1,s part of X x,t s .

• the method getRegressedValues which allows to obtain all the regression coefficients for all points of the grid. The returned array has a size (number of basis functions, number of points on the grid)

1 Eigen :: ArrayXXd g e t R e g r e s s e d V a l u e s () const

• the method setRegressedValues allows to store all the values of the regressed coefficients on a grid of a function of X x,t s = (X x,t 1,s , X x,t 2,s). where p regValues has a size (number of function basis, number of points on the grid).

Python API

The Python API is similar to that of the ContinuationValue object (see Section 6.1.1).

The continuation cut object

Suppose that the control problem is continuous and that the state of the system has the dynamics given by (6.1) et (6.2). This is the case for certain modeled storage associated with the maximization of a certain objective function. The Bellman value associated with this problem is then concave. For a given value of a margin process X x,t s,1 , the Bellman curve can be approximated by cuts (see 6.1) By solving a PL for a given uncertainty and state in Figure 6.1: Bellman cuts the storage levels ŷi in dimension d, we obtain a cut

κ(X x,t s,1 , y) =a 0 (X x,t s,1) + g i=1 a i (X x,t s,1)(y i -ŷi)
For s ≤ s a conditional cut can be obtained by calculating

θ(X x,t s ,1 , y) = E a 0 (X x,t s,1)|X x,t s ,1 + d i=1 E a 0 (X x,t s,1)|X x,t s ,1 (y i -ŷi)
Using a regressor (see chapter 4) it is possible to represent each conditional cut on a basis for j = 0, . . . , d.

E a i (X x,t s,1)|X x,t s ,1 = N j=1 a i,j ψ j (X x,t s ,1) (6.3)
where ψ j corresponds to a basis function.

C++ API

The first is the default construction: it is used in the simulation algorithm with the load ForSimulation method to store the database Regarding regressions, two constructors are provided

• The first is the default construction: it is used in simulation algorithm with the load ForSimulation method to store the basis coefficients a k i,j for the grid point k,

• The second is This constructor builds for all stock points the coefficients a i,j of the cuts (6.3). Note that for a stock point k with the coordinates y k , the stored coefficients are âk 0,j = a k 0,j -d i=1 a k i,j y k i and the âk i,j = a k i,j , i = 1, . . . d. The conditional cut can then be written:

1 C o n t i n u a t i o n C u ts (const shared_ptr < SpaceGrid > & p_grid ,
θ(X x,t s ,1 , y) = N j=1 â0,j ψ j (X x,t s ,1) + d i=1 N j=1
âi,j ψ j (X x,t s ,1)y i

The main methods provided are:

• a first method used in simulation allowing to load for the grid point i the coefficient α i k associated with the function g i , with p grid the grid associated with the controlled deterministic space, p condExp the conditional expectation operator, p values the a i,j coefficients to reconstruct the cuts: its size corresponds to the number of cutting coefficients. The i element of p values then allows you to store the coefficients a i,j for j = 1, . . . , N and all stock points.

1 void l o a d F o r S i m u l a t i o n (const shared_ptr < SpaceGrid > & p_grid ,
• a second method taking as input the description of a hypercube (nb storages,2) described by its extreme coordinates:

-The coordinate (i,0) corresponds to the minimum coordinate value in dimension i -The coordinate (i,1) corresponds to the maximum coordinate value in dimension i 1

Eigen :: ArrayXXd g e t C u t s A l l S i m u l a t i o n s (const Eigen ::

ArrayXXd & p_hypStock) const
It return an array of cuts coefficients for all particles state stored in its BaseRegression member.

-The first dimension corresponds to the number of cut coefficients by the number of simulations.

-The second dimension corresponds to the number of points in the hypercube p hypStock.

• a method to obtain an array of cuts for a given uncertainty. where:

p hypStock corresponds to a hypercube used to select certain stock points as before,

p coordinates corresponds to the coordinates of the uncertainty to be considered.

It returns an array with in first dimension the cut coefficient number, the second dimension corresponds to the number of the cut (corresponding to a stock point in the hypercube).

• a method that permits to get the coefficients calculated. Python API

Here is an example of the use of the mapping # create the regular grid for i in range (toRegressCuts . shape [START_REF] Alasseur | Regression monte carlo for microgrid management[END_REF]) : [lowValues [START_REF] Alasseur | Regression monte carlo for microgrid management[END_REF] , lowValues [START_REF] Alasseur | Regression monte carlo for microgrid management[END_REF]+ step [START_REF] Alasseur | Regression monte carlo for microgrid management[END_REF]* nbStep [START_REF] Alasseur | Regression monte carlo for microgrid management[END_REF]] ,

#
grid = StOptGrids . R
toRegressCuts [: len (toRegress) ,i] = toRegress # Now create the continuation cut object # contOb =
[lowValues [START_REF] Azaïez | Méthodes spectrales et des éléments spectraux[END_REF] , lowValues [START_REF] Azaïez | Méthodes spectrales et des éléments spectraux[END_REF]+ step [START_REF] Azaïez | Méthodes spectrales et des éléments spectraux[END_REF]* nbStep [START_REF] Azaïez | Méthodes spectrales et des éléments spectraux[END_REF]]]) regressCuts = contOb . g e t C u t s A l l S i m u l a t i o n s (hyperCube)

if __name__ == ' __main__ ':

unittest . main ()

Continuation objects and associated with trees 6.2.1 Continuation object

Likewise, instead of using a regressor, a tree can be used to create a continuation object.

C++ API

As for the object ContinuationValue, two constructors are provided:

• A default constructor, allowing to load the grid coefficients at each node of the tree with the loadForSimulation method,

• And the second: p condExp the tree object used to calculate the conditional expectation: by taking a few values defined at the nodes of the following date, it calculates the expected values conditional on each node at the current date.

p valuesNext the value of the function at the following date (first dimension the number of nodes on the following date, second dimension the size of the grid)

The main methods provided are:

• a first method used in simulation allowing to load for the grid point i the expected value of the function g i (valuesNextDate) for all the nodes in the tree at the current date,

1 void l o a d F o r S i m u l a t i o n (const shared_ptr < SpaceGrid > & p_grid , const Eigen :: ArrayXXd & p_values)
with p grid the grid associated with the controlled deterministic space, p values the continuation values for all the nodes and stock points (size: the number of nodes by number of grid points at the current date)

• a second method taking as input a point to be interpolated in the grid and returning the conditional expectation at the interpolated point for all nodes:

1 Eigen :: ArrayXd ge tV al u eA tN od e s (const Eigen :: ArrayXd & p_ptOfStock)

• a method taking as input an interpolator in the grid and returning the conditional expectation for all the nodes at the interpolated point used to build the interpolator: • a method taking as input a node number used in optimization and a point used to interpolate in the grid and returning the conditional expectation at the interpolated point for the given node used in optimization.

• a method taking as input a simulation number used in optimization and an interpolator in the grid and returning the conditional expectation at the interpolated point used to build the interpolator for the given node used in optimization: • a method which makes it possible to recover all the conditional expectations for all the nodes:

1 double getValues () const

Python API

Used when importing the StOptTree module, the syntax is similar to that of c++. Follwing examples in the section 5.0.1; where:

continuation object continuation = StOptTree . C o n t i n u a t i o n V a l u e T
• p grid the grids associated with the deterministic control space,

• p values value to store at nodes and on grid (size : number of nodes at the current date by number of points in the grid)

The methods:

• The following is used to interpolate at a given stock point for a given node Importing the StOptTree, previous constructor and methods are available.

Continuation Cut with trees

As for the regressor (section 6.1.3), we can provide cuts during the approximation of a concave or convex function at each node of the tree.

C++ API

• The first is the default construction: it is used in the simulation algorithm with the loadForSimulation method to load the values at the grid points nodes,

• The second with p grid the grids associated with the controlled deterministic space, p condExp the conditional expectation operator for tree p values the coefficients of the cut from which we take the conditional expectation depending on the grid position (first dimension the number of nodes by the number of components of the cut (nb storage+1), second dimension the grid size)

This constructor constructs for all the stock points the coefficients of the cuts a i for i = 0, d. Note that for a stock point k with the coordinates y k , the stored coefficients are âk 0 = a k 0 -d i=1 a k i y k i and the âk i = a k i , i = 1, . . . d so that a cut has an affine representation at a point y:

âk 0 + d i=1 âk i y i .
The main methods provided are:

• a first method used in simulation allowing to load for the grid point i the values of cuts at the nodes. with p grid the grid associated with the deterministic controlled space, p condExp the conditional expectation operator by tree, p values the a i coefficients to reconstruct the cuts: its size corresponds to the number of cutting coefficients. Tthe element i of p values then allows you to store the coefficients a i for all the nodes and all the stock points.

• a second method taking as input the description of a hypercube (nb storages,2) described by its extreme coordinates:

-(i,0) coordinate corresponds to minimum coordinate value in dimension i It returns an array of cut coefficients for all nodes in the tree structure at the grid points inside the hypercube.

-(i,
-The first dimension corresponds to the number of cuts coefficients by the number of nodes.

-The second dimension corresponds to the number of points in the hypercube p hypStock.

• a method to obtain an array of cuts for a given node. where:

p hypStock corresponds to a hypercube used to select certain stock points as before,

p node corresponds to the node number in the tree structure.

It returns an array with in the first dimension the cut coefficient number, the second dimension corresponds to the number of the cutting (corresponding to a stock point in the hypercube).

• a method for calculating the coefficients.

1 const std :: vector < Eigen :: ArrayXXd > getValues () const

Python API

By importing the StOptTree module, the ContinuationCutsTree object is available in Python.

Part III

Solving optimization problems with dynamic programming methods Chapter 7

Creating simulators

In order to optimize the control problem, the user must develop simulators allowing to trace some trajectories of uncertainties. This trajectories are used during optimization or in a simulation part testing the optimal control.

Regression methods simulators

In the following, we assume that we have developed a Simulator generating Monte Carlo simulations at different optimizations dates. In order to use the different frameworks developed in the following, we assume that the simulator is derived from the abstract class SimulatorDPBase.

; } # endif /* SI M U L A T O R D P B A S E _ H */
Suppose that the Simulator is a Black-Scholes simulator for the assets P , simulating M the Monte Carlo simulations, on the dates N + 1 t 0 , . . . , t N , the Markov state for the particle j, the date t i , the Monte Carlo simulation k and the asset p is X k p,i and we give below the meaning of the different methods of SimulatorDPBase:

• the getParticle method gives at the current optimization/simulation date t i the Markov states

X k p,i in a matrix A such that A(p, k) = X k p,i ,
• the stepForward method is used while simulating the assets evolution in forward: a step forward is realized from t i to t i+1 and Brownian motions used for the assets are updated at the new time step,

• the stepBackward method is used for the simulation of the asset from the last date to time 0. This method is used during an asset optimization by Dynamic Programming,

• the method stepForwardAndGetParticles: second and first method in one call,

• the method stepBackwardAndGetParticles: third and first method in one call,

• the method getDimension returns the number of assets,

• the method getNbStep returns the number of steps (N),

• the methodgetStep retu+++ rns the number of steps t i+1 -t i at the current time t i ,

• the method getNbSimul returns M .

• the method getActuStep returns the actualization factor over a time step

• the methodgetActu returns a discount factor at date "0".

Simulators for trees

In order to develop solvers using tree-based methods, the user has to create a simulator derived from the SimulatorDPBaseTree class. This simulator reads at each date in a geners archive, the values of the uncertainties at the nodes and the probability transition. It is used deterministically in backward mode: the values of the nodes are all explored sequentially.

In forward mode, it allows to sample discrete values of the state through the tree.

// Copyright (C) 2019 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef S I M U L A T O R D P B A S E T R E E _ H # define S I M U L A T O R D P B A S E T R E E _ H # include < Eigen / Dense > # include " geners / B i n a r y F i l e A
}; } # endif /* S I M U L A T O R D P B A S E T R E E _ H */
When designing their tree, the user must call the based simulator constructor by providing a geners archive giving

• An Eigen ArrayXd of the set of dates (size N) associated with the tree.

• A vector of probabilities P at each of the first N -1 dates.

• A vector of vector of pair of int at each of the first N -1 dates. Such a vector v, at a given date, has the size equal to the number of nodes in the tree at this date. For a node i, v[i] is the vector of arrival nodes number and probability index in P. Then

v[i][j]
.first is the number of a node at next date connected to node i at current date. The transition probability is given by P

[v[i][j].second].
In the geners archive, storage is carried out as in the dump function in the file Trinomial TreeOUSimulator.cpp storing the connection matrix probabilities of a trinomial tree. for (int i = 0; i < p_index . size () ; ++ i) ddates (i) = m_dates (p_index (i)) ; binArxiv << gs :: Record (ddates , " dates " , " ") ; for (int i = 0 ; i < p_index . size () ; ++ i) { ArrayXXd points = getPoints (p_index (i)) ; binArxiv << gs :: Record (points , " points " , " ") ; } for (int i = 0 ; i < p_index . size () -1; ++ i) { ArrayXXd proba = getPro bability (p_index (i) , p_index (i + 1)) ; pair < vector < vector < array < int , 2 > > >, vector < double > > conAndProb = calConnected (proba) ; binArxiv << gs :: Record (conAndProb . second , " proba " , " ") ; binArxiv << gs :: Record (conAndProb . first , " connection " , " ") ; } binArxiv . flush () ;

The different methods that the user has to provide are

• the stepForward method is used when simulating the evolution of forward assets: a step forward is made from t i to t i+1 and samples are generated to give discrete uncertainties in the tree.

• the stepBackward method is used when optimizing an asset from the last date to time 0 by Dynamic Programming. The structure of the tree should be updated (probabilities, connection between nodes)

• the getNbSimul giving the number of samples used in forward mode,

• the getValueAssociatedToNode method taking the number of a node and giving back the state associated with this node,

• the getNodeAssociatedToSim method giving for a trajectory number in forward mode, the number of the node visited at current date.

An example of simulator for HJM model with trinomial tree for the OU process is MeanRevertingSimulatorTree.

Chapter 8

Using conditional expectation to solve simple problems

In this chapter, we give some examples for valuing an American option. This use of conditional expectation operators can be extended to many stochastic problems using these previously developed objects.

American option by regression 8.1.1 The American option valuing by Longstaff-Schwartz

Suppose in this example that the payoff of the American option is given by g and that the interest rate is 0. The value of the option is given by

P t = esssup τ ∈T [t,T] E(g(τ, X τ) | F t) for t ≤ T P -a.s. , (8.1)
where T [t,T] denotes the set of stopping times with values in [t, T].

We recall the classic Longstaff-Schwartz Algorithm 8 estimating the empirical conditional expectation using the regression estimation seen previously.

Algorithm 8 Algorithm with regression [optimal exercise time estimation]

Initialization: Set τ 1,π,(j) κ := T , j ≤ N Backward induction: for i = κ -1 to 0 do set τ 1,π i := t i 1 A 1 i + τ 1,π i+1 1 (A 1 i) c where A 1 i := {g(t i , X t i) ≥ Ê[g(τ 1,π i+1 , X τ 1,π i+1) | F t i]}. end for Price estimator at 0: P 1,π 0 := Ê[g(τ 1,π 0 , X τ 1,π 0)].

American option by regression with the C++ API

We value in the algorithm below an American option using a simulator p sim, a regressor p regressor, a payoff function p payoff:

American options by tree

Using trees, American options are solved calculating the Bellman values at each date instead of valuing them as expectation of payoff at optimal stopping time.

Algorithm 9 Algorithm with tree: Bellman value (0 interest rate)

Initialization: Set P j := g(X j T), j ≤ N (κ)
Number of node at last date Backward induction:

for i = κ -1 to 0 do set P j = max[E[P | X j t i], g(X j t i], j ≤ N (i) end for
Price estimator at 0: P 0 . Chapter 9

The American option by tree

Using the general framework to manage stock problems

In this chapter the state is separated into three parts X x,t = (X x,t 1 , X x,t 2 , I). (X x,t 1 , X x,t 2), which corresponds to the special case of chapter 6 where X x,t 1 is not controlled and X x,t 2 is controlled. Two cases can be tackled:

• the first case corresponds to the case where X x,t 2 is deterministic (think of storage management),

• the second case corresponds to the case where X x,t 2 is stochastic (think of portfolio optimization). I t takes integers values and is here to describe some finite discrete regimes (to deal with some switching problems). A general framework is available to solve this type of problem. First of all, the second part X x,t 2 is discretized on a grid as explained in chapter 6. • Either a full grid is used for X x,t 2 and two types of sequential or parallel resolutions be can considered:

a resolution can be obtained sequentially or a parallelization with MPI of the computations can be carried out (speed up but no size up). This approach can be used for small dimension problems.

a resolution can be obtained with a parallelization by the MPI framework by spreading the work to be done on the points of the grid, and by distributing the data between processors (speed up and size up). We will call this parallelization technique a "distribution" technique. This approach is necessary to tackle very large optimization problems where the overall solution cannot be stored in the memory of a single processor.

• or the grid for X x,t 2 is not full (therefore sparse) and only a parallelization by thread and MPI can be carried out on the calculations (acceleration and no increase in size). With sparse grids, only the deterministic X x,t 2 case is treated. In the case of the MPI parallelization technique distributing task and the data (full grids only), [START_REF] Makassikis | Large scale distribution of stochastic control algorithms for gas storage valuation[END_REF] and [START_REF] Vialle | Stochastic control optimization & simulation applied to energy management: From 1-d to nd problem distributions, on clusters, supercomputers and grids[END_REF] are used. Suppose that the grid is the same at each time step (only here to facilitate the case), and that we have 4 processors (figure 9.1) then:

• at the last time step, the final values at each point of each simulation are calculated (each processor calculates the values for its own grid points),

• in the previous time step, from a grid point, specific to a processor, we are able to locate the grid points reached in the next time step by all the commands,

• on figure 9.1, we give the points belonging to other processors wich can be reached from points belonging to processor 3,

• certain MPI communications are carried out by bringing back the data (values calculated at the previously processed time step) necessary for processor 3 to be able to update the calculated value by dynamic programming at the moment for all the points belonging to processor 3,

• all communications between all processors are done together. The global state of the problem is stored in the StateWithStocks object.

General requirement for the business object

In order to use the framework, the developer must describe the problem he wants to solve in one step from a state X x,t . This business object must offer common methods and it is derived from OptimizerBase. We detail all the methods to be implemented for all the resolution methods (with or without regressions).

• the getNbRegime makes it possible to obtain the number of regimes of the problem: for example, in switching problems, when there is a switching cost, the working regime has to be incorporated in the state. Another example is the case of the conditional delta to calculate for an asset: two regimes can be used: one to calculate the value of the asset and the second to calculate the ∆. This number of regimes can depend on time: in this case for a current resolution date t the getNbRegime method sends the number of regimes at the very beginning of the time step (in t -) such such that a switch to a new regime can take place in t + .

• the getSimulator method is used to retrieve the simulator giving the Monte Carlo simulations,

• the getSimuFuncSize method is used in simulation to define the number of functions to follow in the simulation part. For example in a stochastic target problem where the target is a given wealth with a given probability, one may want to follow the evolution of the probability at each time step and of the wealth obtained in trading. In this case the getSimuFuncSize returns 2.

• the getCone method is only relevant if the MPI framework with distribution is used.

As argument it takes a vector of size the dimension of the grid. Each component of the vector is an array containing the minimum and maximum coordinate values of the points of the current grid defining an hyper cube H1. It returns for each dimension, the min and max coordinates of the hyper cube H2 containing the points which can be reached by applying a command from a point of the grid in H1.

• the getDimensionToSplit method is used to define in the MPI framework with distribution the directions to be divided for the solution on the processors. For each dimension, it returns a Boolean where true means that the direction is a candidate for splitting.

• the stepSimulateControl method is used after the optimization using the optimal controls calculated in the optimization part. From a state p state (storing the X x,t), the calculated optimal control in optimization p control, the values of optimal functions along the current path are stored in p phiInOut. The state p state is updated at the end of the function call.

In the first part, we present the framework of the problems where the conditional expectation is calculated by regression (case where X t,x 2 is not controlled). Next, we develop the framework that does not use regression for the conditional expectation calculations. All conditional expectations are calculated using exogenous particles and interpolation. This will generally be the case for portfolio optimization.

Solving the problem using conditional expectation calculated by regressions

In this part, we assume that X x,t 2 is controlled and deterministic so that regression methods can be used.

Requirement to use the framework

The OptimizerBaseInterp is an optimizer class common to all regression methods used by dynamic programming for stocks problems. We detail the methods of OptimizerBaseInterp which is a derived from OptimizerBase. Only one method is added:

• the stepSimulateControl method is used after optimization using the optimal controls calculated in the optimization part. From a state p state (storing the X x,t), the calculated optimal control in the p control optimization, the values of the optimal functions along the current path are stored in p phiInOut. The state p state is updated at the end of the call function.

Classical regression

By classical regression, we mean regression problems with storages where the optimal command is calculated on one time step and estimated by testing all possible discretized commands.

In order to use the framework with regression for conditional expectation, a business object describing the business at a time step from a state is derived from OptimizerDPBase itself derived from OptimizerBaseInterp. We detail the different methods derived from OptimizerDPBase to implement in addition to the OptimizerBaseInterp methods:

• the stepOptimize method is used in optimization. We want to calculate the optimal value at the current t i at a grid point p stock using a p grid grid at the following date t i+1 , the continuation values for all the p condEsp regimes allowing to calculate the conditional expectation of the optimal value function calculated in the previous one treated time step t i+1 . From a grid point p stock it calculates the function values and the optimal controls. It returns a pair where the the first element is a matrix (first dimension is the number of simulations, the second dimension the number of regimes) giving the value of the function,

the second element is a matrix (the first dimension is the number of simulations, the second dimension the number of controls) giving the optimal control.

• the stepSimulate method is used after the optimization using the continuation values calculated in the optimization part. From a p state state (storing the X x,t), the calculated continuation values in optimization p continuation, the optimal functions values along the current path are stored in p phiInOut.

In the case of [START_REF] Warin | Gas storage hedging[END_REF] gas storage, the storage holder can inject gas from the grid into the storage (by paying the market price) or withdraw gas from the storage on the grid (by receiving the market price). In this case the Optimize object is given in the file OptimizeGasStorage.h. You can take a look at the implementation of the getCone method.

The framework in optimization with classical regressions

Once an Optimizer is derived for the project, and assuming a full grid is used for inventory discretization, the framework provides a TransitionStepRegressionDPDist object in MPI which allows to solve the optimization problem with data distribution over a time step with the following constructor:

with

• p pGridCurrent is the grid at the current time step (t i),

• p pGridPrevious is the grid at the previously processed time step (t i+1),

• p pOptimize the optimizer object

• p world The MPI communicator Remark 6 A similar object is available without the MPI distribution framework Transi tionStepRegressionDP with always the activation of parallelization with threads and MPI on calculations on the full points grid.

Remark 7 In the case of sparse grids with only parallelization on the calculations (threads and MPI) TransitionStepRegressionDPSparse object can be used.

The main method is std :: vector < shared_ptr < Eigen :: ArrayXXd > > OneStep (const std :: vector < shared_ptr < Eigen ::

ArrayXXd > > & p_phiIn , const shared_ptr < BaseRegression > & p_condExp)
with • p phiIn the vector (its size corresponds to the number of regimes) of the matrix of optimal values calculated at the previous time iteration for each regime. Each matrix is a number of simulations per matrix of number of stock points matrix.

• p condExp the conditional expectation operator, returning a pair:

• The first element is a vector of matrix with new optimal values at the current time step (each element of the vector corresponds to a regime and each matrix is a number of simulations per matrix of number of stock points).

• The second element is vector of matrix with new optimal controls at the current time step (each element of the vector corresponds to a control and each matrix is a number of simulations per number of stock points matrix).

Remark 8 All TransitionStepRegressionDP derive from a TransitionStepRegression Base object having a pure virtual OneStep method.

A second method is provided permitting to dump the continuation values of the problem and the optimal control at each time step: • p ar is the archive where the controls and solutions are dumped,

void d u m p C o n t i n u a t i o n V
• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the previous time step solution used to calculate the continuation values that are stored,

• p control stores the optimal controls calculated at the current time step,

• p condExp is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the previous time step processed p phiInPrev and allowing to store a representation of the optimal control.

• p bOneFile is set if the continuation and optimal controls calculated by each processor are flushed to a single file. Otherwise, the continuation and optimal controls calculated by each processor are flushed to different files (one by processor). If the problem results in optimal continuation and control values on the global grid that can be stored in the memory of the computate node, it may be more interesting to dump the continuation/control values to a file for policy simulation optimal.

Remark 9 As for the TransitionStepRegressionDP object and the TransitionStepRe gressionDPSparse object, their dumpContinuationValues does not need an argument p bOneFile: the optimal controls are obviously stored in a single file.

Here we give a simple example of temporal resolution using this method when MPI data distribution is used

The framework in simulation with classical regressions

Once the optimization is done, the continuation values are saved in a file (or in some files) at each time step. In order to simulate the optimal policy, we can use the previously calculated continuation values (see chapter 6) or we can use the optimal controls calculated in optimization. In continuous optimization, the use of control is more efficient in terms of computational cost. When the control is discrete, the interpolation of the controls can lead to inadmissible controls and the simulation with the value function is more precise. When simulating optimal control, two cases can occur:

• In most cases (small dimension case), the optimal control or optimal function value can be stored in the computer's node memory and the function values and controls are stored in a single file. In this case, an optimum control simulation can be easily performed by distributing the Monte Carlo simulations on the available compute nodes: this can be done using the SimulateStepRegression or SimulateStepRegres sionControl objects at each time step of the simulation.

• When it comes to very large problems, optimization is achieved by distributing the data across the processors and it is impossible to store the optimal command on a node. In this case, the optimal controls and the optimal solutions are stored in the memory of the node which was used to calculate them in optimization. The simulations are reorganized at each time step and gathered so as to occupy the same part of the global grid. Each processor will then get from the other processors a version of the optimal control or solution it needs. This methodology is used in the SimulateStepRegressionDist and SimulateStepRegressionControlDist objects.

We detail the simulations objects using the optimal function value calculated in optimization and the optimal control for the case of very large problems.

• Simulation step using the value function calculated in optimization:

In order to simulate one step of the optimal policy, an object SimulateStepRegres sionDist is provided with constructor where:

p statevector stores the states of all simulations: this state is updated by applying the optimal command, p phiInOut stores the gain/cost functions for all the simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

An example of using this method to simulate an optimal policy with distribution is given below:

ifndef S I M U L A T E R E G R E G R E S S I O N D I S T _ H # define S I M U L A T E R E G R E G R E S S I O N D I S T _ H # include < functional > # include < memory > # include < Eigen /
endif /* S I M U L A T E R E G R E S S I O N D I S T _ H */
The version of the previous example using a single archive storing the control/solution is given in the SimulateRegression.h file.

• Simulation step using the optimal controls calculated in optimization: - where:

p
p statevector stores the state for all simulations: this state is updated by applying optimal commands, p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

An example of using this method to simulate an optimal policy with distribution is given below:

// Copyright (C) 2016 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifdef USE_MPI # ifndef S I M U L A T E R E G R E G R E S S I O N C O N T R O L D I S T _ H # define S I M U L A T E R E G R E G R E S S I O N C O N T R O L D I S T _ H # include < functional > # include < memory > # include < Eigen / Dense > # include < boost / mpi .
endif /* S I M U L A T E R E G R E S S I O N C O N T R O L D I S T _ H */ # endif
The version of the previous example using a single archive storing the control/solution is given in the SimulateRegressionControl.h file.

In the table below, we indicate which simulation object should be used at each time step depending on the TransitionStepRegressionDP object used in optimization. We detail the different methods to implement in addition to the OptimizerBaseInterp methods:

• the stepOptimize method is used in optimization. We want to calculate the optimal value and the corresponding sensibilities with respect to the stocks at current t i at a grid point p stock using a grid p grid at the next date t i+1 , the continuation cuts values for all regimes p condEsp permitting to calculate an upper estimation (when maximizing) of conditional expectation of the optimal values using some optimization calculated at the previously treated time step t i+1 . From a grid point p stock it calculates the function values and the corresponding sensibilities. It returns a matrix (first dimension is the number of simulations by the number of cuts components (number of storage +1), second dimension the number of regimes) giving the function value and sensibilities.

• the stepSimulate method is used after optimization using the continuation cuts values calculated in the optimization part. From a state p state (storing the X x,t), the continuation cuts values calculated in optimization p continuation, the optimal cash flows along the current trajectory are stored in p phiInOut.

In the case of gas storage, the Optimize object is given in the OptimizeGasStorageCut.h file.

The framework in optimization using certain cutting methods

Once an Optimizer object describing the business problem to be solved with cuts is created for the project, and assuming that a full grid is used for the discretization of the stock, the framework provides a TransitionStepRegressionDPCutDist object in MPI which solves the optimization problem with data adistribution over a time step with the following constructor: with

• p pGridCurrent is the grid at the current time step (t i),

• p pGridPrevious is the grid at the previously processed time step (t i+1),

• p pOptimize the optimizer object

• p world The MPI communicator

The construction is very similar to the classical regression methods using only the discretization by command.

Remark 12 A similar object is available without the MPI distribution framework Transi tionStepRegressionDPCut with always the activation of parallelization with threads and MPI on calculations on the full grid points.

The main method is std :: vector < shared_ptr < Eigen :: ArrayXXd > > OneStep (const std :: vector < shared_ptr < Eigen ::

ArrayXXd > > & p_phiIn , const shared_ptr < BaseRegression > & p_condExp)
with

• p phiIn the vector (its size corresponds to the number of regimes) of the matrix of optimal values and sensitivities calculated at the previous time iteration for each regime. Each matrix has a number of rows equal to the number of simulations by the number of stock plus one. The number of columns is equal to the number of stock points on the grid. In the row, the number of simulations by the number of stock plus one value is stored as follows:

-The first values (number of simulations : N S) correspond to the optimal Bellman values at a given stock point, -The N S values following corresponds to sensitivities ∂V ∂S 1 at first storage -The N S values following corresponds to sensitivities at the second storage... -. . .

• p condExp the conditional expectation operator, returning a vector of matrix with new optimal values and sensitivities to the current time step (each element of the vector corresponds to a regime and each matrix has a size equal to (number of simulations by (the number of storage plus one)) by the number of stock points). The structure of the output is then similar to the p phiIn input. A second method is provided allowing to dump the continuation values, cuts of the problem and the optimal control at each time step: • p ar is the archive where controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the solution to the previous time step used to calculate the values of continuation cuts which are stored,

• p condExp is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the preceding time step processed p phiInPrev.

• p bOneFile is set if the continuation cut values calculated by each processor are dumped on a single file. Otherwise the continuation cut values calculated by each processor are dumped on different files (one per processor). If the problem results from the cuts of the values on the global grid that can be stored in the memory of the compute node, it may be more interesting to dump them in a single file for the simulation of the optimal policy.

Here we give a simple example of temporal resolution using this method when MPI data distribution is used An example without data distribution can be found in the file DynamicProgrammingByRe gressionCut.cpp.

The simulation framework using cuts to approximate the Bellman's values

Once the optimization carried out, the values of the continuation cuts are saved in a file (or in certain files) at each time step. In order to simulate the optimal policy, we use previously calculated continuation cut values.

• In most cases (small dimension case), the optimal values of the cut function can be stored in the compute node memory and the cut values are stored in a single file. In this case, a simulation of the optimal control can be easily performed by distributing the Monte Carlo simulations on the available compute nodes: this can be done by using the object SimulateStepRegressionCut at each time step of the simulation.

• When it comes with very large problems, optimization is achieved by distributing the data across the processors and it is impossible to store the optimal cuts values on a node. In this case, the optimal cuts values are stored in the memory of the node which was used to calculate them in optimization. The simulations are reorganized at each time step and gathered so as to occupy the same part of the global grid. Each processor will then get from the other processors a localized version of the optimal control or solution that it needs. This methodology is used in the SimulateStepRe gressionCutDist objects.

We detail the simulations objects using the optimal cut values calculated in optimization for the case of very large problems.

In order to simulate an optimal policy time step, a SimulateStepRegressionCutDist object is provided with constructor where

• p ar is the binary archive where the continuation values are stored,

• p iStep is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step),

• p nameCont is the base name for continuation values,

• p GridFollowing is the grid at the next time step (p iStep+1),

• p Optimize the Optimizer describing the transition problem solved using a LP program.

• p OneFile equal to true if only one archive is used to store continuation values.

• p world The MPI communicator

Remark 13 A version without data distribution but with multithreaded and with MPI possible on the calculations is available with the object SimulateStepRegressionCut. The p OneFile argument is omitted during construction.

This object implements the oneStep method void oneStep (std :: vector < S ta t eW it hS t oc ks > & p_statevector , Eigen :: ArrayXXd & p_phiInOut)

where:

• p statevector stores the states of all the simulations: this state is updated by applying the optimal command,

• p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the get SimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

An example of using this method to simulate an optimal policy with distribution is given below:

// Copyright (C) 2019 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef S I M U L A T E R E G R E G R E S S I O N C U T D I S T _ H # define S I M U L A T E R E G R E G R E S S I O N C U T D I S T _ H # include < functional > # include < memory > # include < Eigen / Dense > # include < boost / mpi .
endif /* S I M U L A T E R E G R E S S I O N C U T D I S T _ H */
The version of the previous example using a single archive storing the control/solution is given in SimulateRegressionCut.h file.

Solve the problem for X x,t 2 stochastic

In this part, we assume that X x,t 2 is controlled but is stochastic.

Requirement to use the framework

To use the framework, a business object describing the business at a time step from a state is derived from OptimizerNoRegressionDPBase itself derived from OptimizerBase. In addition to the OptimizerBase methods, the following method is required:

• the stepOptimize method is used in optimization. We want to calculate the optimal value regressed to t i current at a grid point p stock using a p grid grid at the following date t i+1 , From a p stock grid point, it calculates the regressed function values and the regressed optimal controls. It returns a pair where the the first element is a matrix (the first dimension is the number of functions in the regression, the second dimension the number of regimes) giving the value of the regressed function,

the second element is a matrix (the first dimension is the number of functions in the regression, the second dimension the number of controls) giving the optimal regressed control.

In this case of the optimization of an updated portfolio with dynamic:

dX x,t 2 = X x,t 2 dX x,t 1 X x,t 1 where X x,t 1
is the value of the risky asset, the Optimize object is given in the file Opti mizePortfolio.h.

The framework in optimization

Once an Optimizer is derived for the project, and assuming a full grid is used for stock discretization, the framework provides a TransitionStepDPDist object in MPI which solves the optimization problem with the distribution of data over a time step with the following constructor: • p pGridPrevious is the grid at the previously processed time step (t i+1),

• p regressorCurrent is a regressor at the current date (to evaluate the function at the current date)

• p regressorPrevious is a previously processed time step regressor (t i+1) allowing to evaluate a function at date t i+1 ,

• p pOptimize the optimizer object

• p world The MPI communicator Remark 14 A similar object is available without the MPI distribution framework Tran sitionStepDP with always the activation of parallelization with threads and MPI on the calculations on the full grid points.

Remark 15

The case of sparse grids is not currently dealt with in the framework.

The main method is std :: pair < std :: shared_ptr < std :: vector < Eigen :: ArrayXXd > > , std :: shared_ptr < std :: vector < Eigen :: ArrayXXd > > > oneStep (const std :: vector < Eigen :: ArrayXXd > & p_phiIn) with • p phiIn the vector (its size corresponds to the number of regimes) of the matrix of calculated optimal values regressed at the previous time iteration for each regime. Each matrix is a number of regressor function on the previous date by number of matrix stock points.

return a pair:

• the first element is a vector of matrix with new optimal values regressed at the current time step (each element of the vector corresponds to a regime and each matrix is a number of functions regressed at the current date by the number of stock points of the matrix).

• the second element is a vector of matrix with new optimal controls regressed at the current time step (each element of the vector corresponds to a control and each matrix is a number of controls regressed by the number of matrix stock points).

Remark 16 All TransitionStepDP derive from a TransitionStepBase object with a pure virtual OneStep method.

A second method is provided allowing to dump the optimal control at each time step: • p ar is the archive where controls and solutions are dumped,

• p bOneFile is set to one if the optimal controls calculated by each processor are dumped on a single file. Otherwise the optimal controls calculated by each processor are dumped on different files (one by processor). If the problem gives optimal control values on the global grid that can be stored in the memory of the computation node, it can be more interesting to dump the control values in one file for the simulation of the optimal policy.

Remark 17 As for the TransitionStepDP, its dumpValues does not need a p bOneFile argument: obviously optimal controls are stored in a single file.

Here we give a simple example of temporal resolution using this method when MPI data distribution is used An example without data distribution can be found in the file DynamicProgrammingPortfo lio.cpp.

The simulation framework

No special framework is available in simulation. Use the SimulateStepRegressionControl or SimulateStepRegressionControlDist function described in the 11.2.1 section.

Solving stock problems with trees

In this section we detail how to solve problems • Either by discretizing the control,

• Or by solving a Linear Program problem approaching Bellman values by cuts.

Resolution of dynamic programming problems with the discretization of commands Framework usage condition

The OptimizerDPTreeBase is the base object from which each business object is to be derived. Since the OptimizerDPTreeBase class is derived from OptimizerBase, we detail the additional methods required:

• the stepOptimize method is used in optimization. We want to calculate the optimal value at the current t i at a grid point p stock using a p grid grid at the following date t i+1 , the continuation values for all the p condEsp regimes making it possible to calculate the conditional expectation of the optimal value function calculated at the previously processed time step t i+1 . From a grid point p stock it calculates the function values and the optimal controls. It returns a pair where the the first element is a matrix (the first dimension is the number of nodes, the second dimension the number of regimes) giving the value of the function,

the second element is a matrix (the first dimension is the number of nodes, the second dimension the number of controls) giving the optimal control.

• the stepSimulate method is used after the optimization using the continuation values calculated in the optimization part: these continuation values are stored in a GridTreeValue object for interpolation. From a p state state (storing the X x,t), the continuation values calculated in the optimization p continuation, the optimal values of the stored functions in p phiInOut.

• the stepSimulateControl simulates the strategy by direct interpolation of the control for a given node in the tree (sampled) and a position in the stock.

The framework

Most of the objects used with regression have their counterparts with tree methods.

In optimization:

TransitionStepTreeDPDist resolves the transition to the date for all grid point and tree nodes using the distribution (MPI). • p phiIn the vector (its size corresponds to the number of regimes) of the matrix of optimal values calculated at the previous time iteration for each regime. Each matrix is a number of nodes the next date per number of stock points matrix.

• p condExp the conditional expectation operator, return a pair:

• first element is a vector of matrix with new optimal values at the current time step (each element of the vector corresponds to a regime and each matrix is a number of nodes at current date by number of points of stock matrix).

• The second element is a vector of matrix with new optimal controls at the current time step (each element of the vector corresponds to a control and each matrix is a number of nodes at the current date by number of points of stock matrix).

A second method is provided allowing to dump the continuation values of the problem and the optimal control at each time step: with:

• p ar is the archive where the controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the previous time step solution used to calculate the continuation values that are stored,

• p control stores the optimal controls calculated at the current time step,

• p tree is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the previous time step processed p phiInPrev and allowing to store a representation of the optimal control.

• p bOneFile is set to one if the continuation and optimal controls calculated by each processor are dumped on a single file. Otherwise the continuation and optimal controls calculated by each processor are dumped on different files (one per processor).

Remark 18

The p bOneFile is not present for TransitionStepTreeDP objects.

In simulation (see detail in section for regressions)

• A first object allowing the recalculation of the optimal control in simulation. where:

p statevector stores the states of all the simulations: this state is updated by applying the optimal command, p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

Remark 19

The version without distribution of Bellman values is available in the object SimulateStepTree.

• A second object directly interpolating the control where:

p statevector stores the state for all the simulations : this state is updated by applying optimal commands, p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

Remark 20

The undistributed version is given by the object SimulateStepTreeCon trol.

Solving Dynamic Programming by solving LP problems

This approach can only be used for continuous problems with convex or concave Bellman values. See section 11.2.2 for an explanation of the cut approximation.

Framework usage requirement

The expanded business object must derive from the OptimizerDPCutBase object derived from the OptimizerBase object. • the stepOptimize method is used in optimization. We want to calculate the optimal value and the corresponding sensitivities with respect to stocks at t i current at a grid point p stock using a grid p grid at the next date t i+1 , the continuation cuts the values for all the regimes p condEsp allowing to calculate a upper estimate (during the maximization) of the conditional expectation of the optimal values by using an optimization calculated at the previously treated time step t i+1 . From a p stock grid point, it calculates the function values and the corresponding sensitivities. It returns a matrix (the first dimension is the number of nodes at the current cate by the number of components cuts (number of storage +1), the second dimension the number of regimes) giving the value of the function and sensitivities.

• the stepSimulate method is used after the optimization using the continuation cuts the values calculated in the optimization part. From a p state state (storing the X x,t), the sequence cuts the calculated values in optimization p continuation, the optimal cash flows are stored in p phiInOut.

In the case of a gas storage the Optimize object is given in the file OptimizeGasStorage TreeCut.h.

The framework in optimization using certain cutting methods

We treat it exactly as in 11.

with

• p pGridCurrent is the grid at the current time step (t i),

• p pGridPrevious is the grid at the previously processed time step (t i+1),

• p pOptimize the optimizer object

• p world The MPI communicator

The construction is very similar to the classical regression methods using only the discretization by command.

Remark 21 A similar object is available without the MPI distribution framework Transi tionStepTreeDPCut with always the activation of parallelization with threads and MPI on calculations on the full points grid .

The main method is std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > oneStep (const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiIn , const std :: shared_ptr < Tree > & p_condExp) const with • p phiIn the vector (its size corresponds to the number of regimes) of the matrix of optimal values and sensitivities calculated at the previous time iteration for each regime. Each matrix has a number of rows equal to the number of nodes on the next date by the number of stock plus one. The number of columns is equal to the number of stock points on the grid. In the row, the number of simulations by the number of stock plus one value is stored as follows:

-The first values (number of nodes on the following date: N S) correspond to the optimal Bellman values at a given stock point, -The N S values following corresponds to sensitivities ∂V ∂S 1 to first storage -The N S values following corresponds to sensitivities to the second storage... -. . .

• p condExp the conditional expectation operator, returning a vector of matrix with new optimal values and sensitivities at the current time step (each element of the vector corresponds to a regime and each matrix has a size equal to (number of nodes at the current date by (the number of storage plus one)) by the number of stock points). The structure of the output is then similar to the p phiIn input. A second method is provided allowing to dump the continuation values and the cuts of the problem and the optimal control at each time step: • p ar is the archive where controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the solution to the previous time step used to calculate the values of continuation cuts which are stored,

• p condExp is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the preceding time step processed p phiInPrev. An example without data distribution can be found in the file DynamicProgrammingByTree Cut.cpp.

•

Using the framework in simulation

Similar to the 11.2.2 section, we can use the cuts calculated in optimization to test the optimal strategy found. In order to simulate an optimal policy step, a SimulateStepTree CutDist object is provided with the constructor • p iStep is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step),

• p nameCont is the base name for continuation values,

• p GridFollowing is the grid at the next time step (p iStep+1),

• p Optimize the Optimizer describing the transition problem solved using an LP program.

• p OneFile equal to true if only one archive is used to store continuation values.

• p world The MPI communicator

Remark 22 A version without data distribution but with multithreaded and with possible MPI on the calculations is available with the SimulateStepTreeCut object. The p OneFile argument is omitted during construction.

This object implements the method oneStep void oneStep (std :: vector < S ta t eT re eS t oc ks > & p_statevector , Eigen :: ArrayXXd & p_phiInOut) const where:

• p statevector stores the states of all the simulations: this state is updated by applying the optimal command,

• p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the get SimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

An example of using this method to simulate an optimal policy with distribution is given below:

// Copyright (C) 2019 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef S I M U L A T E R E G T R E E C U T D I S T _ H # define S I M U L A T E R E G T R E E C U T D I S T _ H

include < functional > # include < memory > # include < Eigen / Dense > # include < boost / mpi . hpp > # include " geners / B i n a r y F i l e A r c h i v e . hh " # include " StOpt / core / grids / FullGrid . h " # include " StOpt / tree / S ta t eT re eS t oc ks . h " # include " StOpt / dp / S i m u l a t e S t e p T r e e C u t D i s t . h " # include " StOpt / dp / O p t i m i z e r D P C u t B a s e .

endif /* S I M U L A T E T R E E C U T D I S T _ H */

The version of the previous example using a single archive storing the control/solution is given in SimulateTreeCut.h file.

Chapter 10

The Python API to manage stocks Some examples are available in the test directory (for example for swing options).

Another approach more effective in term of computational cost consists in mapping the simulator object derived from the SimulatorDPBase object and optimizer object derived from the OptimizerDPBase object and to use the high level Python mapping of TransitionStepRe gressionDP and SimulateStepRegression. In the test part of the library some Black-Scholes simulator and some Mean reverting simulator for a future curve deformation are developed and some examples of the mapping are achieved in the Pybind11Simulators.cpp file. Likewise, optimizer class for swings options, optimizer for a fictitious swing in dimension 2, optimizer for a gas storage, optimizer for a gas storage with switching cost are mapped to Python in the Pybind11Optimizers.cpp file.

In the example below, we describe the use of this high level interface for swing options with a Black-Scholes simulator: in this example we give the mapping of the most used objects: Likewise, a Python temporal loop in simulation using the control previously calculated in optimization can be given as an example by: The equivalent of using MPI and the distributing calculations and data can be used using the mpi4py package. An example of its use can be found in the MPI version of a swing optimization and valuation.

Copyright (C)
class O p t i m i z e

Special Python binding

Some specific features have been added to the Python interface to increase the flexibility of the library. A special mapping of the geners library was carried out for certain specific needs.

A first binding to use the framework

The BinaryFileArchive in the Python module StOptGeners permits for:

• a grid on point,

• a list of numpy array (dimension 2) of size the number of simulations used by the number of points on the grid (the size of the list corresponds to the number of regimes used in the event of a regime switching problem: if a regime, this list contains only one item which is a two-dimensional array)

• a regressor to create a regressed set of values from numpy arrays and store them in the archive. This feature allows you to store the continuation values associated with a problem. The dumpGridAndRegressedValue dump method in the BinaryFileArchive class permits this dump.

It is also possible to retrieve the continuation values obtained using the readGridAndRegressed Value method. unittest . main ()

class t
toReal = (2+
#
nbSimul =40000 np . random . seed (
toReal = (2+

Binding to store/read a regressor and a two-dimensional array

Sometimes users prefer to avoid using the provided framework and prefer to only use the Python binding associated with regression methods. When some regressions are performed for different sets of particles (meaning that one or more functions are regressed), it it possible to dump the regressor used and some values associated with these regressions:

• the dumpSome2DArray, readSome2DArray allows you to dump and read 2-dimensional numpy arrays,

• the dumpSomeRegressor , readSomeRegressor allows to dump and read a regressor. Chapter 11

#
Framework to solve some switching problems with integer state constraints by regressions

Switching problem with integer state are special case of the previous chapter where the state is separated in 3 parts as previously X x,t = (X x,t 1 , X x,t 2 , I t) where X x,t 1 is not controlled, I t is an integer giving the regime mode and X x,t 2 is a purely deterministic tensor taking some integer values. As the values taken by X x,t 2 are purely integer no interpolation is needed. Therefore, in each regime, X x,t 2 is discretized on a special grid taking some discrete integer values. The grid is a full grid, and as previously for stocks problems, some MPI parallelization can be carried out to calculate the asset values at the different dterministic cases.

Exemple of some switching problems We want to manage a thermal asset where prices of electricity and gas are given by a one factor model. Then X x,t 1 is two dimensional:

• X x,t 1,1 is the price for electricity

• X x,t 1,2 is the price of gas multiplied by some heat rate.

When the asset is on, the gain is X x,t 1,1 -X x,t 1,2 and the asset is off, the gain is null. The asset has therefore two regime (I t takes 2 values for exemple 0 (off) and 1 (on)). Some constraints are added :

• When the asset is "on", it has to be "on" during at least nM inOn time steps and the state X x,t 2 is one dimensional and can take some values from 0 to nM inoOn -1 storing the number of time step since it is on. The state value nM inoOn -1 corresponds to the case where the number of time steps it is on at least nM inoOn and the asset is allowed to switch off.

• When the asset is "off", it has to be of f during at least nM inOf f time steps and the state X x,t 2 is one dimensional and can take some values from 0 to nM inoOf f -1 storing the number of time step since it is off. Some cost can be added, for exemple when the asset switch from of f to on.

Business object for switching problems

As previously, in order to use the framework, the developer describes the problem he wants to solve in one step from a state X x,t . This business object must offer common methods and it is derived from OptimizerSwitchBase. • the getNbRegime makes it possible to obtain the number of regimes of the problem.

The number of regimes is fixed.

• the getSimulator method is used to retrieve the simulator giving the Monte Carlo simulations,

• the getSimuFuncSize method is used in simulation to define the number of functions to follow in the simulation part (see chapter 9).

• the getCone method is only relevant if the MPI framework with distribution is used. As argument it takes the regime and a vector of size the dimension of the grid for this regime. Each component of the vector is an array containing for the given regime, the minimum and maximum integer coordinate values of the deterministic state of the current grid defining an hyper cube H1. It returns for each dimension, the min and max integer coordinates of the hyper cube H2 containing the state which can be reached from a state of the grid in H1.

• the getDimensionToSplit method is used to define in the MPI framework with distribution the directions to be divided for the solution on the processors. For each regime, for each dimension, it returns a Boolean where true means that the direction is a candidate for splitting.

• the stepOptimize method is used in optimization. We want to calculate the optimal value at the current t i at a grid state p state, and for the regime p ireg using a vector p grid of grids of state (one for each regime) at the following date t i+1 , p condEsp is the object permitting to calculate conditional expectations of some functions calculated in the previous one treated time step t i+1 . At a grid point p state the function calculates the function values. It returns an array (its dimension is the number of simulations) giving the value of the function for the regime treated.

• the stepSimulate method is used after the optimization using the continuation values calculated at each (integer) point of the grid in the optimization part. From a p state state (storing the X x,t), the conditional expectation operator p condExp, and the basis functions p basisFunc for each point of the grid state for each regime, the values followed during simulation along the current path are stored in p phiInOut.

with

• p pGridCurrent is the vector of grids at the current date: one by regime (so it is a vector) containing the grids describing the discrete integer values taken by the deterministic state.

• p pGridPrevious is the vector of grids at the previous time step treated (so the next time step as the resolution is backward)

• p pOptimize is the business model describing the physical problem to optimize;

• p world The MPI communicator Remark 23 A similar object is available without the MPI distribution framework Transi tionStepRegressionDP with always the activation of parallelization with threads and MPI on calculations on the full points grid.

Remark 24 In the case of sparse grids with only parallelization on the calculations (threads and MPI) TransitionStepRegressionDPSparse object can be used.

The main method is with • p phiIn the vector (its size corresponds to the number of regimes) of the matrix of optimal values calculated at the previous time iteration for each regime. Each matrix is a number of simulations per matrix of number of stock points matrix.

• p condExp the conditional expectation operator, returning a pair:

• The first element is a vector of matrix with new optimal values at the current time step (each element of the vector corresponds to a regime and each matrix is a number of simulations per matrix of number of stock points).

• The second element is vector of matrix with new optimal controls at the current time step (each element of the vector corresponds to a control and each matrix is a number of simulations per number of stock points matrix).

Remark 25 All TransitionStepRegressionDP derive from a TransitionStepRegres sionBase object having a pure virtual OneStep method.

A second method is provided permitting to dump the continuation values of the problem and the optimal control at each time step: • p ar is the archive where the controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the previous time step solution used to calculate the continuation values that are stored,

• p control stores the optimal controls calculated at the current time step,

• p condExp is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the previous time step processed p phiInPrev and allowing to store a representation of the optimal control.

• p bOneFile is set if the continuation and optimal controls calculated by each processor are flushed to a single file. Otherwise, the continuation and optimal controls calculated by each processor are flushed to different files (one by processor). If the problem results in optimal continuation and control values on the global grid that can be stored in the memory of the computate node, it may be more interesting to dump the continuation/control values to a file for policy simulation optimal.

Remark 26 As for the TransitionStepRegressionDP object and the TransitionStepRe gressionDPSparse object, their dumpContinuationValues does not need an argument p bOneFile: the optimal controls are obviously stored in a single file.

Here we give a simple example of temporal resolution using this method when MPI data distribution is used

The framework in simulation with classical regressions

Once the optimization is done, the continuation values are saved in a file (or in some files) at each time step. In order to simulate the optimal policy, we can use the previously calculated continuation values (see chapter 6) or we can use the optimal controls calculated in optimization. In continuous optimization, the use of control is more efficient in terms of computational cost. When the control is discrete, the interpolation of the controls can lead to inadmissible controls and the simulation with the value function is more precise. When simulating optimal control, two cases can occur:

• In most cases (small dimension case), the optimal control or optimal function value can be stored in the compute node memory and the function values and controls are stored in a single file. In this case, an optimum control simulation can be easily performed by distributing the Monte Carlo simulations on the available compute nodes: this can be done using the SimulateStepRegression or SimulateStepRegressionControl objects at each time step of the simulation.

• When it comes to very large problems, optimization is achieved by distributing the data across the processors and it is impossible to store the optimal command on a node. In this case, the optimal controls and the optimal solutions are stored in the memory of the node which was used to calculate them in optimization. The simulations are reorganized at each time step and gathered so as to occupy the same part of the global grid. Each processor will then get from the other processors a version of the optimal control or solution it needs. This methodology is used in the SimulateStepRegressionDist and SimulateStepRegressionControlDist objects.

We detail the simulations objects using the optimal function value calculated in optimization and the optimal control for the case of very large problems.

• Simulation step using the value function calculated in optimization:

In order to simulate one step of the optimal policy, an object SimulateStepRegres sionDist is provided with constructor - where:

p statevector stores the states of all simulations: this state is updated by applying the optimal command, p phiInOut stores the gain/cost functions for all the simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

An example of using this method to simulate an optimal policy with distribution is given below:

// Copyright (C) 2016 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef S I M U L A T E R E G R E G R E S S I O N D I S T _ H # define S I M U L A T E R E G R E G R E S S I O N D I S T _ H # include < functional > # include < memory > # include < Eigen / Dense > # include < boost / mpi .

endif /* S I M U L A T E R E G R E S S I O N D I S T _ H */

The version of the previous example using a single archive storing the control/solution is given in the SimulateRegression.h file.

• Simulation step using the optimal controls calculated in optimization: - where:

p
p statevector stores the state for all simulations: this state is updated by applying optimal commands, p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

An example of using this method to simulate an optimal policy with distribution is given below:

// Copyright (C) 2016 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifdef USE_MPI # ifndef S I M U L A T E R E G R E G R E S S I O N C O N T R O L D I S T _ H # define S I M U L A T E R E G R E G R E S S I O N C O N T R O L D I S T _ H # include < functional > # include < memory > # include < Eigen /

endif /* S I M U L A T E R E G R E S S I O N C O N T R O L D I S T _ H */ # endif

The version of the previous example using a single archive storing the control/solution is given in the SimulateRegressionControl.h file.

In the table below, we indicate which simulation object should be used at each time step depending on the TransitionStepRegressionDP object used in optimization. We detail the different methods to implement in addition to the OptimizerBaseInterp methods:

• the stepOptimize method is used in optimization. We want to calculate the optimal value and the corresponding sensibilities with respect to the stocks at current t i at a grid point p stock using a grid p grid at the next date t i+1 , the continuation cuts values for all regimes p condEsp permitting to calculate an upper estimation (when maximizing) of conditional expectation of the optimal values using some optimization calculated at the previously treated time step t i+1 . From a grid point p stock it calculates the function values and the corresponding sensibilities. It returns a matrix (first dimension is the number of simulations by the number of cuts components (number of storage +1), second dimension the number of regimes) giving the function value and sensibilities.

• the stepSimulate method is used after optimization using the continuation cuts values calculated in the optimization part. From a state p state (storing the X x,t), the continuation cuts values calculated in optimization p continuation, the optimal cash flows along the current trajectory are stored in p phiInOut.

In the case of gas storage, the Optimize object is given in the OptimizeGasStorageCut.h file.

The framework in optimization using certain cutting methods

Once an Optimizer object describing the business problem to be solved with cuts is created for the project, and assuming that a full grid is used for the discretization of the stock, the framework provides a TransitionStepRegressionDPCutDist object in MPI which solves the optimization problem with data adistribution over a time step with the following constructor: with

• p pGridCurrent is the grid at the current time step (t i),

• p pGridPrevious is the grid at the previously processed time step (t i+1),

• p pOptimize the optimizer object

• p world The MPI communicator

The construction is very similar to the classical regression methods using only the discretization by command.

Remark 29 A similar object is available without the MPI distribution framework Transi tionStepRegressionDPCut with always the activation of parallelization with threads and MPI on calculations on the full grid points.

The main method is std :: vector < shared_ptr < Eigen :: ArrayXXd > > OneStep (const std :: vector < shared_ptr < Eigen :: ArrayXXd > > & p_phiIn , const shared_ptr < BaseRegression > & p_condExp) with • p phiIn the vector (its size corresponds to the number of regimes) of the matrix of optimal values and sensitivities calculated at the previous time iteration for each regime. Each matrix has a number of rows equal to the number of simulations by the number of stock plus one. The number of columns is equal to the number of stock points on the grid. In the row, the number of simulations by the number of stock plus one value is stored as follows:

-The first values (number of simulations : N S) correspond to the optimal Bellman values at a given stock point, -The N S values following corresponds to sensitivities ∂V ∂S 1 at first storage -The N S values following corresponds to sensitivities at the second storage... -. . .

• p condExp the conditional expectation operator, returning a vector of matrix with new optimal values and sensitivities to the current time step (each element of the vector corresponds to a regime and each matrix has a size equal to (number of simulations by (the number of storage plus one)) by the number of stock points). The structure of the output is then similar to the p phiIn input. A second method is provided allowing to dump the continuation values and cuts of the problem and the optimal control at each time step: • p ar is the archive where controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the solution to the previous time step used to calculate the values of continuation cuts which are stored,

• p condExp is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the preceding time step processed p phiInPrev.

• p bOneFile is set if the continuation cut values calculated by each processor are dumped on a single file. Otherwise the continuation cut values calculated by each processor are dumped on different files (one per processor). If the problem results from the cuts of the values on the global grid that can be stored in the memory of the compute node, it may be more interesting to dump them in a single file for the simulation of the optimal policy.

Here we give a simple example of temporal resolution using this method when MPI data distribution is used An example without data distribution can be found in the file DynamicProgrammingByRe gressionCut.cpp.

The simulation framework using cuts to approximate the Bellman's values

Once the optimization carried out, the values of the continuation cuts are saved in a file (or in certain files) at each time step. In order to simulate the optimal policy, we use previously calculated continuation cut values.

• In most cases (small dimension case), the optimal values of the cut function can be stored in the compute node memory and the cut values are stored in a single file. In this case, a simulation of the optimal control can be easily performed by distributing the Monte Carlo simulations on the available compute nodes: this can be done by using the object SimulateStepRegressionCut at each time step of the simulation.

• When it comes with very large problems, optimization is achieved by distributing the data across the processors and it is impossible to store the optimal cuts values on a node. In this case, the optimal cuts values are stored in the memory of the node which was used to calculate them in optimization. The simulations are reorganized at each time step and gathered so as to occupy the same part of the global grid. Each processor will then get from the other processors a localized version of the optimal control or solution that it needs. This methodology is used in the SimulateStepRe gressionCutDist objects.

We detail the simulations objects using the optimal cut values calculated in optimization for the case of very large problems.

In order to simulate an optimal policy time step, a SimulateStepRegressionCutDist object is provided with constructor • p iStep is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step),

• p nameCont is the base name for continuation values,

• p GridFollowing is the grid at the next time step (p iStep+1),

• p Optimize the Optimizer describing the transition problem solved using a LP program.

• p OneFile equal to true if only one archive is used to store continuation values.

• p world The MPI communicator

Remark 30 A version without data distribution but with multithreaded and with MPI possible on the calculations is available with the object SimulateStepRegressionCut. The p OneFile argument is omitted during construction.

This object implements the oneStep method void oneStep (std :: vector < S ta t eW it hS t oc ks > & p_statevector , Eigen :: ArrayXXd & p_phiInOut)

where:

• p statevector stores the states of all the simulations: this state is updated by applying the optimal command,

• p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the get SimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

An example of using this method to simulate an optimal policy with distribution is given below:

// Copyright (C) 2019 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef S I M U L A T E R E G R E G R E S S I O N C U T D I S T _ H # define S I M U L A T E R E G R E G R E S S I O N C U T D I S T _ H # include < functional > # include < memory > # include < Eigen / Dense > # include < boost / mpi .

endif /* S I M U L A T E R E G R E S S I O N C U T D I S T _ H */

The version of the previous example using a single archive storing the control/solution is given in SimulateRegressionCut.h file.

Solve the problem for X x,t 2 stochastic

In this part, we assume that X x,t 2 is controlled but is stochastic.

Requirement to use the framework

To use the framework, a business object describing the business at a time step from a state is derived from OptimizerNoRegressionDPBase itself derived from OptimizerBase. In addition to the OptimizerBase methods, the following method is required:

• the stepOptimize method is used in optimization. We want to calculate the optimal value regressed to t i current at a grid point p stock using a p grid grid at the following date t i+1 , From a p stock grid point, it calculates the regressed function values and the regressed optimal controls. It returns a pair where the the first element is a matrix (the first dimension is the number of functions in the regression, the second dimension the number of regimes) giving the value of the regressed function,

the second element is a matrix (the first dimension is the number of functions in the regression, the second dimension the number of controls) giving the optimal regressed control.

In this case of the optimization of an updated portfolio with dynamic:

dX x,t 2 = X x,t 2 dX x,t 1 X x,t 1 where X x,t 1
is the value of the risky asset, the Optimize object is given in the file Opti mizePortfolio.h.

The framework in optimization

Once an Optimizer is derived for the project, and assuming a full grid is used for stock discretization, the framework provides a TransitionStepDPDist object in MPI which solves the optimization problem with the distribution of data over a time step with the following constructor: with • p pGridCurrent is the grid at the current time step (t i),

• p pGridPrevious is the grid at the previously processed time step (t i+1),

• p regressorCurrent is a regressor at the current date (to evaluate the function at the current date)

• p regressorPrevious is a previously processed time step regressor (t i+1) allowing to evaluate a function at date t i+1 ,

• p pOptimize the optimizer object

• p world The MPI communicator

Remark 31 A similar object is available without the MPI distribution framework Tran sitionStepDP with always the activation of parallelization with threads and MPI on the calculations on the full grid points.

Remark 32

The case of sparse grids is not currently dealt with in the framework.

The main method is std :: pair < std :: shared_ptr < std :: vector < Eigen :: ArrayXXd > > , std :: shared_ptr < std :: vector < Eigen :: ArrayXXd > > > oneStep (const std :: vector < Eigen :: ArrayXXd > & p_phiIn) with • p phiIn the vector (its size corresponds to the number of regimes) of the matrix of calculated optimal values regressed at the previous time iteration for each regime. Each matrix is a number of regressor function on the previous date by number of matrix stock points.

return a pair:

• the first element is a vector of matrix with new optimal values regressed at the current time step (each element of the vector corresponds to a regime and each matrix is a number of functions regressed at the current date by the number of stock points of the matrix).

• the second element is a vector of matrix with new optimal controls regressed at the current time step (each element of the vector corresponds to a control and each matrix is a number of controls regressed by the number of matrix stock points).

Remark 33 All TransitionStepDP derive from a TransitionStepBase object with a pure virtual OneStep method.

A second method is provided allowing to dump the optimal control at each time step: • p ar is the archive where controls and solutions are dumped,

• p bOneFile is set to one if the optimal controls calculated by each processor are dumped on a single file. Otherwise the optimal controls calculated by each processor are dumped on different files (one by processor). If the problem gives optimal control values on the global grid that can be stored in the memory of the computation node, it can be more interesting to dump the control values in one file for the simulation of the optimal policy.

Remark 34 As for the TransitionStepDP, its dumpValues does not need a p bOneFile argument: obviously optimal controls are stored in a single file.

Here we give a simple example of temporal resolution using this method when MPI data distribution is used An example without data distribution can be found in the file DynamicProgrammingPortfo lio.cpp.

// Copyright (C) 2016 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifdef USE_MPI # include < fstream > # include < boost / mpi . hpp > # include < memory > # include < functional > # include < boost / lexical_cast . hpp > # include < Eigen / Dense > # include " geners / B i n a r y F i l e A

The simulation framework

No special framework is available in simulation. Use the SimulateStepRegressionControl or SimulateStepRegressionControlDist function described in the 11.2.1 section.

Solving stock problems with trees

In this section we detail how to solve problems • Either by discretizing the control,

• Or by solving a Linear Program problem approaching Bellman values by cuts.

Resolution of dynamic programming problems with the discretization of commands Framework usage condition

The OptimizerDPTreeBase is the base object from which each business object is to be derived. Since the OptimizerDPTreeBase class is derived from OptimizerBase, we detail the additional methods required:

• the stepOptimize method is used in optimization. We want to calculate the optimal value at the current t i at a grid point p stock using a p grid grid at the following date t i+1 , the continuation values for all the p condEsp regimes making it possible to calculate the conditional expectation of the optimal value function calculated at the previously processed time step t i+1 . From a grid point p stock it calculates the function values and the optimal controls. It returns a pair where the the first element is a matrix (the first dimension is the number of nodes, the second dimension the number of regimes) giving the value of the function,

the second element is a matrix (the first dimension is the number of nodes, the second dimension the number of controls) giving the optimal control.

• the stepSimulate method is used after the optimization using the continuation values calculated in the optimization part: these continuation values are stored in a GridTreeValue object for interpolation. From a p state state (storing the X x,t), the continuation values calculated in the optimization p continuation, the optimal values of the stored functions in p phiInOut.

• the stepSimulateControl simulates the strategy by direct interpolation of the control for a given node in the tree (sampled) and a position in the stock.

The framework

Most of the objects used with regression have their counterparts with tree methods.

In optimization:

TransitionStepTreeDPDist resolves the transition to the date for all grid point and tree nodes using the distribution (MPI). • p pGridPrevious is the grid at the previously processed time step (t i+1),

• p pOptimize the optimizer object

• p world The MPI communicator A similar object is available without the MPI distribution framework TransitionStep TreeDP with always the activation of parallelization with threads and MPI on calculations on the full grid points. The main method is std :: pair < std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > >, std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > > oneStep (const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiIn , const std :: shared_ptr < Tree > & p_condExp) const with • p phiIn the vector (its size corresponds to the number of regimes) of the matrix of optimal values calculated at the previous time iteration for each regime. Each matrix is a number of nodes the next date per number of stock points matrix.

• p condExp the conditional expectation operator, return a pair:

• first element is a vector of matrix with new optimal values at the current time step (each element of the vector corresponds to a regime and each matrix is a number of nodes at current date by number of points of stock matrix).

• The second element is a vector of matrix with new optimal controls at the current time step (each element of the vector corresponds to a control and each matrix is a number of nodes at the current date by number of points of stock matrix).

A second method is provided allowing to dump the continuation values of the problem and the optimal control at each time step: with:

void d u m p C o n t i n u a t i o n V
• p ar is the archive where the controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the previous time step solution used to calculate the continuation values that are stored,

• p control stores the optimal controls calculated at the current time step,

• p tree is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the previous time step processed p phiInPrev and allowing to store a representation of the optimal control.

• p bOneFile is set to one if the continuation and optimal controls calculated by each processor are dumped on a single file. Otherwise the continuation and optimal controls calculated by each processor are dumped on different files (one per processor).

Remark 35

The p bOneFile is not present for TransitionStepTreeDP objects.

In simulation (see detail in section for regressions)

• A first object allowing the recalculation of the optimal control in simulation. where:

p statevector stores the states of all the simulations: this state is updated by applying the optimal command, p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

Remark 36

The version without distribution of Bellman values is available in the object SimulateStepTree.

• A second object directly interpolating the control where:

p statevector stores the state for all the simulations : this state is updated by applying optimal commands, p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

Remark 37

The undistributed version is given by the object SimulateStepTreeCon trol.

Solving Dynamic Programming by solving LP problems

This approach can only be used for continuous problems with convex or concave Bellman values. See section 11.2.2 for an explanation of the cut approximation.

Framework usage requirement

The expanded business object must derive from the OptimizerDPCutBase object derived from the OptimizerBase object.

// Copyright (C) 2019 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) • the stepOptimize method is used in optimization. We want to calculate the optimal value and the corresponding sensitivities with respect to stocks at t i current at a grid point p stock using a grid p grid at the next date t i+1 , the continuation cuts the values for all the regimes p condEsp allowing to calculate a upper estimate (during the maximization) of the conditional expectation of the optimal values by using an optimization calculated at the previously treated time step t i+1 . From a p stock grid point, it calculates the function values and the corresponding sensitivities. It returns a matrix (the first dimension is the number of nodes at the current cate by the number of components cuts (number of storage +1), the second dimension the number of regimes) giving the value of the function and sensitivities.

ifndef O P T I M I Z E R D P C U T T R E E B A S E _ H # define O P T I M I Z E R D P C U T T R E E B A S E _ H # include < Eigen / Dense > # include " StOpt / core /
• the stepSimulate method is used after the optimization using the continuation cuts the values calculated in the optimization part. From a p state state (storing the X x,t), the sequence cuts the calculated values in optimization p continuation, the optimal cash flows are stored in p phiInOut.

In the case of a gas storage the Optimize object is given in the file OptimizeGasStorage TreeCut.h.

The framework in optimization using certain cutting methods

We treat it exactly as in 11.

with

• p pGridCurrent is the grid at the current time step (t i),

• p pGridPrevious is the grid at the previously processed time step (t i+1),

• p pOptimize the optimizer object

• p world The MPI communicator

The construction is very similar to the classical regression methods using only the discretization by command.

Remark 38 A similar object is available without the MPI distribution framework Transi tionStepTreeDPCut with always the activation of parallelization with threads and MPI on calculations on the full points grid .

The main method is std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > oneStep (const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiIn , const std :: shared_ptr < Tree > & p_condExp) const with • p phiIn the vector (its size corresponds to the number of regimes) of the matrix of optimal values and sensitivities calculated at the previous time iteration for each regime. Each matrix has a number of rows equal to the number of nodes on the next date by the number of stock plus one. The number of columns is equal to the number of stock points on the grid. In the row, the number of simulations by the number of stock plus one value is stored as follows:

-The first values (number of nodes on the following date: N S) correspond to the optimal Bellman values at a given stock point,

-
The N S values following corresponds to sensitivities ∂V ∂S 1 to first storage -The N S values following corresponds to sensitivities to the second storage...

-. . .

• p condExp the conditional expectation operator, returning a vector of matrix with new optimal values and sensitivities at the current time step (each element of the vector corresponds to a regime and each matrix has a size equal to (number of nodes at the current date by (the number of storage plus one)) by the number of stock points). The structure of the output is then similar to the p phiIn input. A second method is provided allowing to dump the continuation values and the cuts of the problem and the optimal control at each time step: • p ar is the archive where controls and solutions are dumped,

• p name is a base name used in the archive to store the solution and the control,

• p phiInPrev is the solution to the previous time step used to calculate the values of continuation cuts which are stored,

• p condExp is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the preceding time step processed p phiInPrev. An example without data distribution can be found in the file DynamicProgrammingByTree Cut.cpp.

•

Using the framework in simulation

Similar to the 11.2.2 section, we can use the cuts calculated in optimization to test the optimal strategy found. In order to simulate an optimal policy step, a SimulateStepTree CutDist object is provided with the constructor • p iStep is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step),

• p nameCont is the base name for continuation values,

• p GridFollowing is the grid at the next time step (p iStep+1),

• p Optimize the Optimizer describing the transition problem solved using an LP program.

• p OneFile equal to true if only one archive is used to store continuation values.

• p world The MPI communicator

Remark 39 A version without data distribution but with multithreaded and with possible MPI on the calculations is available with the SimulateStepTreeCut object. The p OneFile argument is omitted during construction.

This object implements the method oneStep void oneStep (std :: vector < S ta t eT re eS t oc ks > & p_statevector , Eigen :: ArrayXXd & p_phiInOut) const where:

• p statevector stores the states of all the simulations: this state is updated by applying the optimal command,

• p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the get SimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

An example of using this method to simulate an optimal policy with distribution is given below:

// Copyright (C) 2019 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef S I M U L A T E R E G T R E E C U T D I S T _ H # define S I M U L A T E R E G T R E E C U T D I S T _ H # include < functional > # include < memory > # include < Eigen / Dense > # include < boost / mpi . hpp > # include " geners / B i
n a r y F i l e A r c h i v e . hh " # include " StOpt / core / grids / FullGrid . h " # include " StOpt / tree / S ta t eT re eS t oc ks . h " # include " StOpt / dp / S i m u l a t e S t e p T r e e C u t D i s t . h " # include " StOpt / dp / O p t i m i z e r D P C u t B a s e .

endif /* S I M U L A T E T R E E C U T D I S T _ H */
The version of the previous example using a single archive storing the control/solution is given in SimulateTreeCut.h file.

Chapter 12

The Python API to manage stocks Some examples are available in the test directory (for example for swing options).

Another approach more effective in term of computational cost consists in mapping the simulator object derived from the SimulatorDPBase object and optimizer object derived from the OptimizerDPBase object and to use the high level Python mapping of TransitionStepRe gressionDP and SimulateStepRegression. In the test part of the library some Black-Scholes simulator and some Mean reverting simulator for a future curve deformation are developed and some examples of the mapping are achieved in the Pybind11Simulators.cpp file. Likewise, optimizer class for swings options, optimizer for a fictitious swing in dimension 2, optimizer for a gas storage, optimizer for a gas storage with switching cost are mapped to Python in the Pybind11Optimizers.cpp file.

In the example below, we describe the use of this high level interface for swing options with a Black-Scholes simulator: in this example we give the mapping of the most used objects: Likewise, a Python temporal loop in simulation using the control previously calculated in optimization can be given as an example by: The equivalent of using MPI and the distributing calculations and data can be used using the mpi4py package. An example of its use can be found in the MPI version of a swing optimization and valuation.

Copyright (C)
class O p t i m i z e
12.2 Special Python binding Some specific features have been added to the Python interface to increase the flexibility of the library. A special mapping of the geners library was carried out for certain specific needs.

A first binding to use the framework

The BinaryFileArchive in the Python module StOptGeners permits for:

• a grid on point,

• a list of numpy array (dimension 2) of size the number of simulations used by the number of points on the grid (the size of the list corresponds to the number of regimes used in the event of a regime switching problem: if a regime, this list contains only one item which is a two-dimensional array)

• a regressor to create a regressed set of values from numpy arrays and store them in the archive. This feature allows you to store the continuation values associated with a problem. The dumpGridAndRegressedValue dump method in the BinaryFileArchive class permits this dump.

It is also possible to retrieve the continuation values obtained using the readGridAndRegressed Value method. Sometimes users prefer to avoid using the provided framework and prefer to only use the Python binding associated with regression methods. When some regressions are performed for different sets of particles (meaning that one or more functions are regressed), it it possible to dump the regressor used and some values associated with these regressions:

class t
toReal = (2+
toReal = (2+
• the dumpSome2DArray, readSome2DArray allows you to dump and read 2-dimensional numpy arrays,

• the dumpSomeRegressor , readSomeRegressor allows to dump and read a regressor. Chapter 13

#
Framework to solve some switching problems with integer state constraints by regressions

Switching problem with integer state are special case of the previous chapter where the state is separated in 3 parts as previously X x,t = (X x,t 1 , X x,t 2 , I t) where X x,t 1 is not controlled, I t is an integer giving the regime mode and X x,t 2 is a purely deterministic tensor taking some integer values. As the values taken by X x,t 2 are purely integer no interpolation is needed. Therefore, in each regime, X x,t 2 is discretized on a special grid taking some discrete integer values. The grid is a full grid, and as previously for stocks problems, some MPI parallelization can be carried out to calculate the asset values at the different dterministic cases.

Exemple of some switching problems We want to manage a thermal asset where prices of electricity and gas are given by a one factor model. Then X x,t 1 is two dimensional:

• X x,t 1,1 is the price for electricity

• X x,t 1,2 is the price of gas multiplied by some heat rate.

When the asset is on, the gain is X x,t 1,1 -X x,t 1,2 and the asset is off, the gain is null. The asset has therefore two regime (I t takes 2 values for exemple 0 (off) and 1 (on)). Some constraints are added :

• When the asset is "on", it has to be "on" during at least nM inOn time steps and the state X x,t 2 is one dimensional and can take some values from 0 to nM inoOn -1 storing the number of time step since it is on. The state value nM inoOn -1 corresponds to the case where the number of time steps it is on at least nM inoOn and the asset is allowed to switch off.

• When the asset is "off", it has to be of f during at least nM inOf f time steps and the state X x,t 2 is one dimensional and can take some values from 0 to nM inoOf f -1 storing the number of time step since it is off. Some cost can be added, for exemple when the asset switch from of f to on. and max integer coordinates of the hyper cube H2 containing the state which can be reached from a state of the grid in H1.

• the getDimensionToSplit method is used to define in the MPI framework with distribution the directions to be divided for the solution on the processors. For each regime, for each dimension, it returns a Boolean where true means that the direction is a candidate for splitting.

• the stepOptimize method is used in optimization. We want to calculate the optimal value at the current t i at a grid state p state, and for the regime p ireg using a vector p grid of grids of state (one for each regime) at the following date t i+1 , p condEsp is the object permitting to calculate conditional expectations of some functions calculated in the previous one treated time step t i+1 . At a grid point p state the function calculates the function values. It returns an array (its dimension is the number of simulations) giving the value of the function for the regime treated.

• the stepSimulate method is used after the optimization using the continuation values calculated at each (integer) point of the grid in the optimization part. From a p state state (storing the X x,t), the conditional expectation operator p condExp, and the basis functions p basisFunc for each point of the grid state for each regime, the values followed during simulation along the current path are stored in p phiInOut.

13.2 Using the framework to optimize or simulate on a time step

with

• p pGridCurrent is the vector of grids at the current date: one by regime (so it is a vector) containing the grids describing the discrete integer values taken by the deterministic state.

• p pGridPrevious is the vector of grids at the previous time step treated (so the next time step as the resolution is backward)

• p pOptimize is the business model describing the physical problem to optimize;

Remark 40 A similar object is available without the MPI distribution framework Transi tionStepRegressionSwitch with always the activation of parallelization with threads and MPI on calculations on the full points grid.

The main method associated to this class:

with

• p phiIn the vector (its size corresponds to the number of regimes) of the matrix of optimal values calculated at the previous time iteration for each regime. Each matrix is a number of simulations per the number of integer state points.

• p condExp the conditional expectation operator, returning a vector of matrix with new optimal values at the current time step (each element of the vector corresponds to a regime and each matrix of this regime is a number of simulations per the number of state points).

A second method is provided permitting to dump the continuation values of the problem at each time step: • p ar is the archive where the solution is dumped,

• p name is a base name used in the archive to store the solution,

• p phiInPrev is the previous time step solution used to calculate the continuation values that are stored,

• p condExp is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the previous time step processed p phiInPrev.

Remark 41

All continuation values are reconstructed on the whole grid associated to the problem and not only on the calculation grid associated a to given processor.

Here we give a simple example of temporal resolution using this method when MPI data distribution is used An example without data distribution can be found in the file DynamicProgrammingSwitch ingByRegression.cpp.

Simulate on one time step

Once the optimization is done, the function basis associated to continuation values are saved at each point of each grids in a file at each time step. The following simulation object SimulateStepSwitch permits to simulate the optimal management on one time step. • p iStep is the number associated with the current time step (0 at the start date of simulation, the number is increased by one at each simulated time step),

• p nameCont is the base name of the control values,

• p GridFollowing is the vector of grids for the deterministic state at the next time step (p iStep+1),

• p Optimize is the Optimizer describing the transition from one time step to the next, where:

• p statevector stores the states of all simulations: this state is updated by applying the optimal command,

• p phiInOut stores the gain/cost functions for all the simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

An example of using this method to simulate an optimal policy with distribution is given below for a classical termal asset dumping in spot prices and the optimal regime during simulation: # include < memory > # include < vector > # include < string > # ifdef USE_MPI # include < boost / mpi . hpp > # endif # include < Eigen / Dense > # include " geners / B i n a r y F i l e A r c h i v e . hh " # include " StOpt / core / utils / S t a t e W i t h I n t S t a t e . h " # include " StOpt / core / grids / R e g u l a r S p a c e I n t G r i d . h " # include " StOpt / regression / Bas eRegress ion . h " # include " StOpt / dp / S i m u l a t e S t e p S w i t c h . h " # include " StOpt / dp / O p t i m i z e r S w i t c h B a s e . and a simulation using a loop on the SimulateStepSwitch object can be used. We consider a proportional cost model, so that an investor buying a stock on date t will pay (1 + λ)S t and an investor selling that stock will only receive (1 -λ)S t . Assuming no transaction cost at the last date T , the final wealth of an investor with initial wealth x is given by:

x -

N -1 i=0 (1 + λ)l t i S t i + N -1 i=0 (1 -λ)m t i S t i + N -1 i=0 l t i S t N - N -1 i=0 m t i S t N . (14.1)

Remark 43

The transaction costs at the last date T are linked to the nature of the contract. In the case of a pure financial contract, the investor will sell the asset and then some transaction fees will need to be paid to offset the final position. In the energy market, for example, the contract is often associated with a physical delivery and no specific costs are payable. Furthermore in these markets, even if the contract is purely financial, the futures markets are rather illiquid, which means significant transaction costs while the spot markets are much more liquid, which justifies neglecting final transaction costs.

As in [START_REF] Motoczyński | Multidimensional variance-optimal hedging in discrete-time model -a general approach[END_REF] [7], we define the minimal risk strategy minimizing the L 2 risk of the hedging portfolio:

Definition 2 A self-financing strategy (m, l) V = (m, l) is the minimization of the overall risk for the contingent claim H and the initial capital x if:

V =arg min

V=(m,l)∈Θ (m, l) E[(H -x + N -1 i=0 (1 + λ)l t i S t i - N -1 i=0 (1 -λ)m t i S t i - N -1 i=0 l t i S t N + N -1 i=0 m t i S t N) 2]. (14.2)

Theoretical algorithm

it is assumed that the process is Markov and that the gain H is a function of the asset value at maturity only to simplify the presentation of the proposed the Monte Carlo method. We introduce the global position ν = (ν i) i=0,...,N -1 with:

ν i = i j=0 (m t j -l t j), ∀i = 0, . . . , N -1.
Using the property m t i l t i = 0, ∀i = 0, . . . , N -1, we get |ν i -ν i-1 | = l t i + m t i with the convention that ν -1 = 0 and

G T (V) = ĜT (ν) = x - N -1 i=0 λ|∆ν i-1 |S t i + N -1 i=0 ν i ∆S i ,
where ∆S i = S t i+1 -S t i , ∆ν i = ν i+1 -ν i .

We then introduce Θ(m, l) the set of adapted random variables (ν i) i=0,...,N -1 such that

-m ≤ ν i -ν i-1 ≤ l, ∀i = 1, . . . , N -1.
The problem (14.2) can be rewritten as it was done in [START_REF] Schweizer | Variance-optimal hedging in discrete time[END_REF] by finding ν = (ν i) i=0,...,N -1 satisfactory:

ν =arg min ν∈ Θ(m, l) E[H -x -ĜT (ν) 2]. (14.3)
We introduce the spaces κ i , i = 0, . . . , N of the F t i -measurable and square integrable random variables. We define for i ∈ 0, . . . , N , V i ∈ κ i as:

V N =H, V i =E[H - N -1 j=i ν j ∆S j + λ N -1 j=i |∆ν j-1 |S t j |F t i], ∀i = 0, . . . , N -1. (14.4) then E[(H -x -ĜT (ν)) 2] =E[V N -ν N -1 ∆S N -1 + λ|∆ν N -2 |S t N -1 -V N -1 + (14.5) N -1 i=2 V i + λ|∆ν i-2 |S t i-1 -ν i-1 ∆S i-1 -V i-1 + (14.6) (V 1 + λ|ν 0 |S t 0 -ν 0 ∆S 0 -x) 2] (14.7)
Due to the definition (14.4), we have that

E[V i + λ|∆ν i-2 |S t i-1 -ν i-1 ∆S i-1 -V i-1 |F t i-1] = 0, ∀i = 1, . . . , N, (14.8)
so that

E[(H -x -ĜT (ν)) 2] =E[E[V N -ν N -1 ∆S N -1 + λ|∆ν N -2 |S t N -1 -V N -1 2 |F t N -1]+ E[N -1 i=2 V i + λ|∆ν i-2 |S t i-1 -ν i-1 ∆S i-1 -V i-1 2 + (V 1 + λ|ν 0 |S t 0 -ν 0 ∆S 0 -x) 2]
and iterating the process gives

E[(H -x -ĜT (ν)) 2] =E[V N -ν N -1 ∆S N -1 + λ|∆ν N -2 |S t N -1 -V N -1 2]+ N -1 i=2 E[V i + λ|∆ν i-2 |S t i-1 -ν i-1 ∆S i-1 -V i-1 2]+ E[(V 1 + λ|ν 0 |S t 0 -ν 0 ∆S 0 -x) 2]
Then we can write the problem (14.3) as:

ν =arg min ν∈ Θ(m, l) E[V N -ν N -1 ∆S N -1 + λ|∆ν N -2 |S t N -1 -V N -1 2]+ N -1 i=2 E[V i + λ|∆ν i-2 |S t i-1 -ν i-1 ∆S i-1 -V i-1 2]+ E[(V 1 + λ|ν 0 |S t 0 -ν 0 ∆S 0 -x) 2] (14.9)
We introduce the space ρ m, l i (η) ={(V, ν)/V, ν are R valued F t i -adapted with -m ≤ ν -η ≤ l}, and the space ρ m, l i (η) ={(V, ν i , . . . , ν N -1)/V is R valued, F t i -adapted , the ν j , j ≥ i are R valued

F t j -adapted with m ≤ ν i -η ≤ l, m ≤ ν j+1 -ν j ≤ l for i ≤ j < N -1},
As in the scheme introduced in [START_REF] Bender | A forward scheme for backward sdes[END_REF] to improve the methodology proposed in [START_REF] Gobet | A regression-based monte carlo method to solve backward stochastic differential equations[END_REF] to solve Backward Stochastic Differential Equations, we can propose an algorithm where the update for R is taken ω by ω and stores the optimal trading payoff function on each trajectory. Then R satisfies the date t i with an asset value S t i for an investment ν i-1 chosen at the date t i-1 :

R(t i , S t i , ν i-1) =H - N -1 j=i ν j ∆S j + λ N -1 j=i |∆ν j-1 |S t j , = R(t i+1 , S t i+1 , ν i) -ν i ∆S i + λ|∆ν i-1 |S t i ,
and at the date t i according to the equation (14.5) the optimal control is the control ν associated with the minimization problem:

min (V,ν)∈ρ m, l i (ν i-1) E[(R(t i+1 , S t i+1 , ν) -ν∆S i + λ|ν -ν i-1 |S t i -V) 2 |F t i]
This leads to the 10 algorithm.

Algorithm 10 Backward resolution for L 2 minimization problem avoiding conditional expectation iteration.

1: R(t N , S t N -1 (ω), ν N -1) = H(ω), ∀ν N -1 2: for i = N, 2 do

(Ṽ (t i-1 , S t i-1 , ν i-2), ν i-1) = arg min (V,ν)∈ρ m, l i-1 (ν i-2) E[(R(t i , S t i , ν) - ν∆S i-1 + λ|ν -ν i-2 |S t i-1 -V) 2 |F t i-1] (14.10) 4: R(t i-1 , S t i-1 , ν i-2) = R(t i , S t i , ν i-1) -ν i-1 ∆S i-1 + λ|∆ν i-2 |S t i-1 5: end for 6: ν 0 = arg min ν∈[-m, l] E[(R(t 1 , S t 1 , ν) + λ|ν|S t 0 -ν∆S 0 -x) 2]
Remark 44 In order to deal with the case of the average variance coverage which consists in finding the optimal strategy and the initial wealth to hedge the contingent claim, the last line of the 10 algorithm is replaced by

(Ṽ , ν 0) =arg min (V,ν) E[(V (t 1 , S t 1 , ν) + λ|ν|S t 0 -ν∆S 0 -V) 2 + R(t 1 , S t 1 , ν)],
and last line of Algorithm 10 by

(Ṽ , ν 0) = arg min (V,ν)∈R×[-m, l] E[(R(t 1 , S t 1 , ν) + λ|ν|S t 0 -ν∆S 0 -V) 2].
Remark 45 In the two algorithms presented an argmin must be carried out: a discretization in ν i-2 must be carried out on a grid [ν i-1 -m, ν i-1 + l].

Practical algorithm based on Algorithm 10

From the theoretical Algorithm 10, we aim to obtain an efficient implementation based on a representation of the function Ṽ as a function of time, S t and the position ν t in plan assets.

• In order to represent the dependency in the hedging position, we introduce a time dependent grid

Q i := (ξk) k=-(i+1) m ξ ,...,(i+1) l ξ
where ξ is the mesh size associated with the set of grids (Q i) i=0,N and, if possible, chosen such that l ξ = l ξ and m ξ = m ξ . • To represent the dependency in S t we will use a Monte Carlo method using the simulated path (S (j)

t i) i=0,...,N j=1,...,M
and calculate the arg min in the equation (14.10) using a methodology similar so that described in [START_REF] Bouchard | Monte-carlo valuation of american options: facts and new algorithms to improve existing methods[END_REF]: suppose we are given at each date t i (D i q) q=1,...,Q a partition of [min j=1,M S (j)

t i , max j=1,M S (j)
t i] so that each cell contains the same number of samples. We use the cells Q (D i q) q=1,...,Q to represent the dependency of Ṽ and ν in the S t i variable. On each cell q we search V q a linear approximation of the function Ṽ at a given date t i and for a position kξ so that V q (t i , S, k) = a q i + b q i S is an approximation of Ṽ (t i , S, kξ). On cell q the optimal numeric hedging command νq (k) for a position kξ can be seen as a sensitivity, so it is natural to look for a constant control per cell q when the value function is represented as a linear function.

Let us denote (l q i (j)) j=1, M Q the set of all the samples belonging to the cell q at date t i . On each mesh the optimal control νq is obtained by discretizing the command ν on a grid η = ((k + r)ξ) r=-m ξ ,..., l ξ , and testing the one giving a value V q minimizing the risk L 2 to solve the equation (14.10). The 11 algorithm allows to find the optimal ν (j) i (k) command using the 10 algorithm at the date t i , for a position of hedging kξ and for all Monte Carlo simulations j. For each command tested on cell q the corresponding function V q is calculated by regression.

Remark 46 It is possible to use a different discretization ξ to define the set η and the set Q i . Then an interpolation is necessary to obtain the values R at a position not belonging to the grid. An example of using such an interpolation for a gas storage problem following the optimal cash flow generated along Monte Carlo strategies can be found in [START_REF] Warin | Gas storage hedging[END_REF].

Remark 47 This algorithm makes it possible to add a certain global constraint on the overall liquidity of the hedging asset. This is achieved by limiting the possible hedge positions to a subset of Q i at each date t i .

Algorithm 11 Optimize minimal hedging position (ν (l) t i (k)) l=1,...,M at date t i-1 1: procedure OptimalControl(R(t i+1 , ., .), k, S t i , S t i+1) 2:

for q = 1, Q do for k = -m ξ , . . . , l ξ do 5: end for 11:

(a q i , b q i) = arg min (a,b)∈R 2 M Q j=1 R(t i+1 , S l q i (j) t i+1 , (k + l)ξ)- (k + l)ξ∆S l q i (j) i + λ|lξ|S l q i (j) t i -(a + bS l q i (j) t i) 2 6: P = M Q j=1 R(t i+1 , S l q i (j) t i+1 , (k + l)ξ) -(k + l)ξ∆S l q i (j) i + λ|lξ|S l q i (j) t i -(a q i + b q i S l q i (j) t i
for j = 1, M Q do 12:
ν(l q i (j)) i (k) = ν q 13: end for

for j ∈ [1, M] do 3: R(t N , S (j)
t N , ν) = H (j)

4:

end for 5: end for 6: for i = N, 2 do 7:

for kξ ∈ Q i-2 do 8: (ν (j) i-1 (k)) j=1,M = OptimalControl(R(t i , ., .), k, S t i-1 , S t i), 9: for j ∈ [1, M]

R(t

i-1 , S (j) t i-1 , kξ) = R(t i , S (j) t i , ν (j) i-1 (k))- ν (j) i-1 (k)∆S (j) i-1 + λ|ν (j) i-1 (k) -kξ|S (j) t i
P = M j=1 R(t 1 , S (j)
t 1 , kξ) -kξ∆S

(j) 0 + λ|k|ξS 0 -x) 2
17:

if P < P then end if 20: end for

21: V ar = 1 M M j=1 R(t 1 , S (j) t 1 , ν 0) -ν 0 ∆S (j) 0 + λ|ν 0 |S 0 -x 2 Part IV Semi-Lagrangian methods Chapter 15

Theoretical background

In this part, we return to solving the equation (2.1).

Notation and regularity results

We denote by ∧ the minimum and ∨ the maximum. We denote by | | the Euclidean norm of a vector, Q := (0, T] × R d . For a bounded function w, we define

|w| 0 = sup (t,x)∈Q |w(t, x)|, [w] 1 = sup (s,x) =(t,y) |w(s, x) -w(t, y)| |x -y| + |t -s| 1 2
and We use the classical assumption on the data of (2.1) for a given K:

|w| 1 = |w| 0 + [w] 1 . C 1 (Q) will
sup a |g| 1 + |σ a | 1 + |b a | 1 + |f a | 1 + |c a | 1 ≤ K (15.1)
A classic result [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF] gives us the existence and uniqueness of the solution in space of bounded Lipschitz functions: Proposition 1 If the coefficients of the equation (2.1) satisfy (15.1), there is a unique viscosity solution of the equation (2.1) belonging to C 1 (Q). If u 1 and u 2 are respectively sub and super solution of the equation (2.1) satisfying u 1 (0, .) ≤ u 2 (0, .) then u 1 ≤ u 2 .

A spatial discretization length of the problem ∆x being given, thereafter (i 1 ∆x, . . . , i d ∆x) with ī = (i 1 , . . . , i d) ∈ Z d will correspond to the coordinates of a mesh Mī defining a hypercube in dimension d. For an interpolation grid (ξ i) i=0,...,N ∈ [-1, 1] N , and for a mesh ī, the point y ī, j with j = (j 1 , . . . , j d) ∈ [0, N] d will have the coordinate (∆x(i 1 + 0.5(1 + ξ j 1)), . . . , ∆x(i d + 0.5(1 + ξ j d)). We denote (y ī, j) ī, j the set of all the points of the grid over the whole domain. We notice that for a regular mesh with constant volume ∆x d , we have the following relation for all x ∈ R d : min ī, j |x -y ī, j | ≤ ∆x.

(15.2)

Temporal discretization for the HJB equation

The equation (2.1) is discretized in time by the scheme proposed by Camilli Falcone [START_REF] Camilli | An approximation scheme for the optimal control of diffusion processes[END_REF] for a discretization in time h.

v h (t + h, x) = inf a∈A q i=1 1 2q (v h (t, φ + a,h,i (t, x)) + v h (t, φ - a,h,i (t, x)))
+f a (t, x)h + c a (t, x)hv h (t, x)

:= v h (t, x) + inf a∈A L a,h (v h)(t, x) (15.3) with L a,h (v h)(t, x) = q i=1 1 2q (v h (t, φ + a,h,i (t, x)) + v h (t, φ - a,h,i (t, x)) -2 v h (t, x)) +hc a (t, x)v h (t, x) + hf a (t, x) φ + a,h,i (t, x) = x + b a (t, x)h + (σ a) i (t, x) hq φ - a,h,i (t, x) = x + b a (t, x)h -(σ a) i (t,
x) hq where (σ a) i is the i-th column of σ a . It is noted that it is also possible to choose other types of discretization in the same style as those defined in [START_REF] Munos | Consistency of a simple multidimensional scheme for hamilton-jacobi-bellman equations[END_REF]. In order to define the solution at each date, a condition on the value chosen for v h between 0 and h is required. We choose a temporal linear interpolation once the solution has been calculated at the date h:

v h (t, x) = (1 - t h)g(x) + t h v h (h, x), ∀t ∈ [0, h]. (15.4)
We first recall the following result:

Proposition 2 Under the condition on the coefficients given by the equation (15.1), the solution v h of the equations (15.3) and (15.4) is uniquely defined and belongs to

C 1 (Q). We check that if h ≤ (16 sup a {|σ a | 2 1 + |b a | 2 1 + 1} ∧ 2 sup a |c a | 0) -1 , there is C such that |v -v h | 0 ≤ Ch 1 4 .
(15.5)

Moreover, there exists C independent of h such that

|v h | 0 ≤ C, (15.6) |v h (t, x) -v h (t, y)| ≤ C|x -y|, ∀(x, y) ∈ Q 2 .
(15.7)

Space interpolation

The spacial resolution of the equation (15.3) is obtained on a grid. The φ + and φ -must be calculated using an interpolator I such that:

v h (t, φ + a,h,i (t, x)) I(v h (t, .))(φ + a,h,i (t, x)), v h (t, φ - a,h,i (t, x)) I(v h (t, .))(φ - a,h,i (t, x)).
In order to easily prove the convergence of the scheme to the viscosity solution of the problem, the monotony of the scheme is generally required leading to some linear interpolator slowly converging. An adaptation to high order interpolator where the function is smooth can be achieved using Legendre grids and Sparse grids with some truncation (see [START_REF] Warin | Some non-monotone schemes for time dependent hamilton-jacobibellman equations in stochastic control[END_REF], [START_REF] Warin | Adaptive sparse grids for time dependent hamilton-jacobi-bellman equations in stochastic control[END_REF]).

f$ \ frac {1}{2 d } \ sum_ { i =1}^d \ phi (x + b dt + \ sigma_i \ sqrt { dt }) + \ phi (x + b dt -\ sigma_i \ sqrt { dt } \ f$ // / where \ f$ \ sigma_i \ f$ is column \ f$ i \ f$ of \ f$ \ sigma \ f$ // / \

Its constructor uses the following arguments:

• a first p interpolator defines a "spectral" interpolator on a grid: this "spectral" interpolator is built from a grid and a function to be interpolated (see section 3). In our case, it will be used to interpolate the solution from the previous time step,

• a second p extremalValues defines for each dimension the minimum and maximum coordinates of the points belonging to the grid,

• a third one p bModifVol if set to true allows special processing when the points to be interpolated are outside the grid: the volatility of the underlying process is modified (keeping the same mean and the same variance) trying to keep points inside the domain (see [START_REF] Warin | Some non-monotone schemes for time dependent hamilton-jacobibellman equations in stochastic control[END_REF]).

This object has the oneStep method taking

• p x the foot of the characterize (for each dimension),

• p b the process trend (for each dimension),

• p sig the volatility of the process matrix, such that the interpolation is carried out for a time step h at the points p x+p bh±p sig √ h. It returns a pair (a, b) where a contains the calculated value if the value b is true. When interpolation is not possible, the value b is set to false.

In order to use the API, an object deriving from the OptimizerSLBase object must be constructed. This object is used to define the PDE to be solved (with its optimization problem if applicable). The main methods associated with this object are:

• stepOptimize is used to calculate the solution of the PDE at a point.

-It takes a point from the used grid p point, and applies the semi-Lagrangian scheme p semiLag at this point, on a date given by p time.

It returns a pair containing:

the value of the function calculated at p point for each regime, the optimal control calculated at p point for each control.

• stepSimulate is used when the PDE is associated with an optimization problem and we want to simulate an optimal policy using the function values calculated in the optimization part. The arguments are:

p gridNext defining the grid used at the next time step, p semiLag the semi-Lagrangian operator built with an interpolator using the following temporal solution, p state the vector defining the current state for the current regime, p iReg the current regime number, p gaussian is the vector of Gaussian random variables used to calculate the Brownian involved in the underlying process of the current simulation, p phiInP to the value of the function calculated in optimization at the next time step for the given point, p phiInOut storing the cost functions: the size of the array is the number of functions to follow in simulation.

• stepSimulateControl is used when the PDE is associated with an optimization problem and we want to simulate an optimal policy using the optimal controls calculated in the optimization part. The arguments are:

p gridNext defining the grid used at the next time step, p controlInterp a vector (for each control) of interpolators in controls p state the vector defining the current state for the current regime, p iReg the current regime number, p gaussian is the vector of Gaussian random variables used to calculate the Brownian involved in the underlying process of the current simulation.

p phiInOut storing the cost functions: the size of the array is the number of functions to follow in simulation.

On return, the vector p state is modified, the p iReg is modified and the cost function p phiInOut is modified for the current trajectory.

• the getCone method is only relevant if the data distribution (therefore MPI) is used.

As argument it takes a vector of size the dimension of the grid. Each component of the vector is an array containing the minimum and maximum coordinate values of the points of the current grid defining a hyper cube H1. It returns for each dimension, the min and max coordinates of the hyper cube H2 containing the points that can be reached by applying a command from a point of the grid in H1. If no optimization is carried out, it returns the hyper cube H2 containing the points that can be reached by the semi-Lagrangian diagram. For an explanation of the parallel formalism, see the 9 chapter.

• the getDimensionToSplit method is only relevant if the data distribution (therefore MPI) is used. The method makes it possible to define the directions to be divided for the distribution of solution on the processors. For each dimension, it returns a Boolean where true means that the direction is a candidate for splitting, • p gridCurrent a grid describing the meshes at the current date,

• p gridPrevious a grid describing the meshes at the previously processed date,

• p optimize an object derived from OptimizerSLBase and describing the problem to be solved at a given date and point in the current grid.

A first method oneStep takes the following arguments:

• p phiIn describes for each regime the solution previously calculated on the grid at the previous time,

• p time is the current time step,

• p boundaryFunc is a function giving the Dirichlet solution of the problem according to the number of regimes and the position on the boundary.

It returns an estimate of the solution at the current date on the current grid for all the regimes and an estimate of the optimal control calculated for all the controls. A last method dumpValues allows to dump calculated the solution p phiIn at step p istep+1 and optimal control at step p istep in a p ar archive. A version using the distribution of data and calculations can be found in the Transition StepSemilagrangDist object. An example of sequential temporal recursion can be found in the function semiLagrangianTime and an example with distribution can be found in the semiLagrangianTimeDist function. In the two functions developed in the test chapter, the analytical solution of the problem is known and compared to the numerical estimate obtained with the semi-Lagrangian method.

Simulation framework

Once the optimal controls and value functions have been calculated, the optimal policy can be simulated using the function values (recalculate the optimal control for each simulation) or by directly using the optimal controls calculated in optimization

• Calculate the optimal strategy in simulation using the function values calculated in optimization:

In order to simulate an optimal policy step, a SimulateStepSemilagrangDist object is provided with constructor where:

p gaussian is a two-dimensional array (number of Brownian in the modeling by the number of Monte Carlo simulations).

p statevector stores the continuous state (size of continuous state per number of simulations)

p iReg for each simulation, gives the current regime number, p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

Remark 49

The previous object SimulateStepSemilagrangDist is used with MPI for high dimensional problems. In the case of small dimension (less than or equal to three), parallelization with MPI or the sequential calculations can be carried out by the object SimulateStepSemilagrang.

An example of using this method to simulate an optimal policy with distribution is given below:

A sequential or parallel version on the calculations of the previous example is given in the file semiLagrangianSimuDist.cpp.

• Calculate the optimal strategy in simulation by interpolation of the optimal control calculated in optimization:

In order to simulate an optimal policy step, a SimulateStepSemilagrangControlDist object is provided with constructor p world The MPI communicator

Remark 50

The previous object SimulateStepSemilagrangControlDist is used with the MPI distribution of data for high dimensional problems. In the case of small dimension (less than or equal to three), the parallelization with MPI or the sequential calculations can be carried out by the object SimulateStepSemilagrangControl.

This object implements the method oneStep where:

p gaussian is a two dimensional array (number of Brownian in the modeling by the number of Monte Carlo simulations).

p statevector store continuous state (size of continuous state per number of simulations)

p iReg for each simulation gives the current regime number, p phiInOut stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is (nb, nbSimul) where nb is given by the getSimuFuncSize method of the optimizer and nbSimul the number of Monte Carlo simulations.

An example of using this method to simulate an optimal policy with distribution is given below: In this chapter we give an example where dynamic programming with regressions and PDE can be used. It allows to compare the resolution and the solution obtained by both methods.

In this example we take the following notations:

• D t is a demand process (in electricity) with an Ornstein-Uhlenbeck dynamic:

dD t = α(m -D t)dt + σdW t ,
• Q t is the cumulative carbon emission due to the production of electricity to meet demand,

dQ t = (D t -L t) + dt,
• L t the total investment capacity in non-emissive technology to produce electricity

L t = t 0 l s ds
where l s is an investment intensity in non-emissive technology at the date s,

• Y t is the carbon price where

Y t = E t (λ1 Q T ≥H),
with λ and H given.

We introduce the following functions:

• the function of the price of electricity which is a function of the demand and the global investment of non-emitting technology.

p t = (1 + D t) 2 -L t ,
• the profit function by selling electricity is given by

Π(D t , L t) = p t D t -(D t -L t) + , • c(l t , L t) is the investment cost for new non-emissive technology capabilities. c(l, L) = β(c ∞ + (c 0 -c ∞)e βL)(1 + l)l
The value of the company that sells electricity is given by V (t, D t , Q t , L t). It satisfies the coupling equations:

   ∂ t v + α(m -D)∂ D v + 1 2 σ 2 ∂ 2 DD v + (D -L) + ∂ Q v + Π(D, L) +sL 1-α -y(D -L) + + sup l {l∂ L v -c(l, L)} = 0 v T = 0 (16.1)
and the carbon price y(t, D t , Q t , L t) is given by:

∂ t y + α(m -D)∂ D y + 1 2 σ 2 ∂ 2 DD y + (D -L) + ∂ Q y + l * ∂ L y = 0 y T = λ1 Q T ≥K (16.2)
and l * is the optimal control in equation (16.1). The preceding equation can be solved with the semi-Lagrangian method. After a temporal discretization with a step δt a dynamic programming equation can be given by

v(T -δt, D, Q, L) = sup l (Π(D, L) + sL 1-α -y T -δt (D -L) + -c(l, L))δt + E T -δt (V (T, D T -δt,D T , Q + (D -L) + δt, L + lδt)) (16.3) Y (T -δt, D, Q, L) = E T -δt (Y (T, D T -δt,D T , Q + (D -L) + δt, L + l * δt)) (16.4)
The previous equations (16.3) and (16.4) can be solved with regression methods. In order to use the frameworks previously developed in parallel, we must define some common variables for both methods.

• The number of regimes to use (obtained by the getNbRegime method) is 2: one to store the value v, one for the value y,

• In the example we want to follow during the simulations the values of the functions v and y so we fix the number of functions obtained by the getSimuFuncSize method to 2.

• In order to test the controls in optimization and simulation we define a maximum investment intensity lMax and a discretization step to test the controls lStep.

In the following, we store the optimal functions in optimization and recalculate the optimal control in simulation.

Dynamic programming with the regression approach

All we have to do is specify an optimizer (OptimizeDPEmissive) defining the methods used to optimize and simulate, and the getCone method for parallelization: x 0 → observation of ω 1 → decision of x 1 . . .

→ decision of x T -1 → observation of ω T → decision of x T
A rigorous formulation of the multi-step stochastic linear program to solve is as follows:

V * = min A 0 x 0 =ω 0 x 0 ≥0 c 0 x 0 + E   min E 1 x 0 +A 1 x 1 =ω 1 x 1 ≥0 c 1 x 1 + E   • • • + E   min E T x T -1 +A T x T =ω T x T ≥0 c T x T       (17.1)
The deterministic equivalent of this problem (17.1) is obtained by discretizing ω t (or by directly using ω t if discrete). The number of variables in this problem increases exponentially with the number of steps. It cannot be solved directly even if T or (Ω t) t∈{0,1,...,T } are of reasonable size.

Dynamic programming principle

Dynamic programming consists of dividing the problem (17.1) into a series of subproblems delimited by a state variable. The goal is to calculate backwards the functions Q t and Q t . They fulfill the following equations:

[LP t]      Q t (x t-1 , ω t) = min c t x t + Q t+1 (x t) s.c. A t x t = ω t -E t x t-1 , [π t (ω t)] x t 0 (17.2) Q t (x t-1) = E[Q t (x t-1 , ω t)] (17.3)
The function Q(x t-1 , ω t) represents the expected value of a future cost knowing the state x t-1 and the random data ω t . Q t (x t-1) is the expected value of the future cost knowing the state x t-1 . The dynamic programming principle guarantees that V * = Q 1 (x 0).

Given Q T (•), the successive computations are achieved backwards switching between the resolution of the linear sub-problem (17.2) and the computation of (17.3).

The implementation of dynamic programming consists in successively approximating the two value functions by equations (17.2 -17.3) by discretizing the state space and by solving the linear subproblems. The number of discretization points increases exponentially with the dimension of the state vector and becomes enormous for our applications ("curse of dimensionality"). Additionally, a linear approximation of Q t+1 (x t) must be available to convert the transition problem to LP.

SDDP algorithm

SDDP is a method used to solve a multistep stochastic problems described in [START_REF] Mario | Multi-stage stochastic optimization applied to energy planning[END_REF]. SDDP is based on Benders decomposition described in [START_REF] Benders | Partitioning procedures for solving mixed-variables programming problems[END_REF]. Please note that SDDP was developed in order to solve hydro-thermal scheduling problem.

SDDP limits the curse of dimensionality by avoiding a priori a complete discretization of the state space. Each SDDP iteration is a two-step process. The first step consists in generating a sequence of realistic states x * t from which in the second step the value functions are estimated in their neighborhood. By repeating these two steps successively, the approximation of the value function becomes more and more precise. SDDP is also composed of two passes calculated alternately:

• one pass back: the objective is to improve the number of cut Benders in the vicinity of well-chosen candidate states. It alsoprovides a lower limit of the optimal cost.

• a forward pass: the goal is to provide a set of new candidate states. An estimate of the upper bound of the optimal cost is also calculated.

On the other hand, the SDDP method is based on the form of the future value function Q t (x t-1). Indeed within the framework of a linear problem with complete recourse, the function value is convex and linear by pieces. It can therefore be approached by taking the supremum of a family of minor affine functions. These affine functions are called optimality cuts or Benders cuts.

A method, different algorithms

The method implemented in this library is based on the different situations presented in a technical report of PSR program [START_REF] Pereira | Application of stochastic dual dp and extensions to hydrothermal scheduling[END_REF] where three different cases of the basic problem are solved by SDDP. All three cases are implemented in the library. Other cases could be added to those that exist in the future.

Notations

These notations will be used to present the different algorithms of SDDP.

• z designates the optimal cost obtained in forward pass.

• z denotes the optimal cost obtained in return.

• β j t denotes the slope of the j th Benders cut.

• α j t denotes the intercept of the j th Benders cut.

The basic case

To describe this case, the notations above are used. We focus on multistep stochastic problems with the following properties.

• Random quantities at different stages are independent.

• Random quantities at time t are summarized in ω t .

• At each step, the linear subproblem solution space is nonempty and bounded.

In this case, the functions Q t (•) are convex. The primal and dual solutions of the linear problem exist and define optimal cuts. We can now describe precisely how the implemented algorithm works.

Initialization

The following values are fixed:

• {0, 1, . . . , T }, the set of steps, where T is the time horizon.

• n = 0, is the counter of the number of iterations (backward-forward). n is incremented at the end of each iteration.

• p ∈ R, the precision to be reached for the convergence test.

• n step ∈ N, the number of iterations performed between 2 convergence tests.

• n iterM ax ∈ N, the maximum number of iterations.

• x 0 ∈ R n + , the initial state of the vector. • L ∈ N, the number of scenarios used in the backward pass.

• G ∈ N, the number of scenarios used in the forward pass. It also gives the number of new cuts calculated at each iteration (backward-forward) and the number of states near which the Benders cuts are calculated.

Forward pass

The purpose of this pass is to explore new feasible vector state and to obtain an estimate of the upper limit of the optimal cost. To this end, the current strategy is simulated for a set of G scenarios. The set of scenarios can be historical chronicles or raffles. The 13 algorithm presents the forward pass at the n-th iteration of the SDDP method.

Backward pass

The purpose of the backward pass is to add, at each stage, a set of new Benders cuts and to provide a new lower bound estimate of the optimal operational cost. For that, we have a set of scenarios of the random quantities (the dimension of the set is L) recorded during the initialization. At each time step cuts G are added using the states G visited (x g t) g=1,...,G obtained during the passage forward. The 14 algorithm presents the backward pass.

Stopping test

In the literature about SDDP lots of stopping criterions were used and their efficiency has been proved. However a criterion is suitable for each particular problem. Thus it is tough to bring out one which is generic. Due to genericity requirements, two classical criterions are implemented in the library. These can be customized by the user. The first one defines a maximal number of iterations n iterM ax (an iteration is made of the succession of backwardforward passes) which shall not be exceeded. The second one is a test of convergence towards each other between the forward and the backward cost. The convergence test uses the following indicator:

ψ nstepi = znstepi -z nstepi znstepi , with i ∈ N (17.10)
This is calculated every n step iterations. If it is less than a p threshold, the process stops, otherwise it continues. The threshold is set by the user.

Algorithm 13 Run of forward pass (n th iteration) 1: Simulate defines {(ω g t) , t ∈ {1, . . . , T }} ofscenarios also distributed: for g ∈ Ω G = {1, . . . , G}. 2: for g ∈ Ω G do 3:

Solve the following linear subproblem.

[AP n 0]            Q 0 = min x 0 ,θ 1 c 0 x 0 + θ 1 u.c. A 0 x 0 = ω 0 , [π 0 (ω 0)] x 0 0 θ 1 + (β j 1) x 0 α j 1 , j ∈ {1, . . . , G, . . . , nG} (17.4) 4:
Store the primal solution (x g 0) of the problem [AP n 0,g].

5:

for t ∈ {1, . . . , T } do 6:

Solve the following linear subproblem.

[AP n t,g]

           Q g t (x g t-1 , ω g t) = min xt,θ t+1 c t x t + θ t+1 s.c. A t x t = ω g t -E t x g t-1 , [π t (ω g t)] x t 0 θ t+1 + (β j t+1) x t α j t+1 , j ∈ {1, . . . , G, . . . , nG} (17.5) 7:
Store the primal solution (x g t) of the problem [AP n t,g].

8:

end for

9:

Calculate the cost of the scenario g, at iteration n: zg n = T t=0 c t x g t . 10: end for 11: Calculate the total cost of the forward pass at iteration n: zn = 1 G G g=1 zg n .

Dependence of random quantities

In the previous case, we limit our problem to independent random quantities in the different stages. The resolution of the SDDP was obtained on the state vector x t in the basic case.

But sometimes, in real life, the random quantities can be temporarily correlated. In a hydraulic problem, for example, there is a time dependence of the results. Time dependencies may also exist in the request. However, with time-bound random quantities, Bellman's recurrence formula (17.2 -17.3) does not hold and classical SDDP can not be applied.

However if the Bellman functions are convex with respect to the temporal random quantities, it suffices to increase the dimension of the state vector by the dimension of the temporal random quantities to find ourselves in the configuration of the base case. In this case, the resolution of a linear program of reasonable size for each random draw is sufficient to calculate new Benders cuts in the neighborhood of a candidate state.

There are a few options for representing the time dependence of random quantities. However, in order to not increase the size of the problem too much, an ARMA process of order 1 is often chosen. In the random data vector ω t two different parts must be distinguished from now on: for x g t-1 , g ∈ {1, . . . , G} do 3:

for ω l t , l ∈ {1, . . . , L} do 4:

Solve the following linear subproblem.

[AP n,g t,l]

           Q l t (x g t-1 , ω l t) = min xt,θ t+1 c t x t + θ t+1 s.c. A t x t = ω l t -E t x g t-1 , [π t (ω l t)] x t 0 θ t+1 + (β j t+1)
x t α j t+1 , j ∈ {1, . . . , G, . . . , (n + 1)G} (17.6)

5:

Store the dual solution π t (ω l t) and the primal solution Q l t (x g t-1 , ω l t) of the linear subproblem [AP n,g t,l].

6:

Calculate the cutoff that goes with the l th hazard draw:

α g t,l = Q l t (x g t-1 , ω l t) + π t (ω l t) E t x g t-1 β g t,l = E t π t (ω l t) (17.7) 7:
end for 8:

Calculate the g th new Benders cut at time t at iteration n. It is defined as the average value of the cuts obtained before:

           α k t = 1 L L l=1 α g t,l β k t = 1 L L l=1 β g t,l
where k = nG + g (17.8)

9:

end for 10: end for 11: Solve the following linear subproblem:

[AP n 0]            Q 0 = min x 0 ,θ 1 c 0 x 0 + θ 1 s.c. A 0 x 0 = ω 0 , [π 0 (ω 0)] x 0 0 θ 1 + (β j 1)
x 0 α j 1 , j ∈ {1, . . . , G, . . . , (n + 1)G} (17.9)

12: Save the cost backward z n = Q 0 .

• ω ind t is the vector of random data corresponding to independent random quantities.

• ω dep t is the vector of random data corresponding to the time-related random quantities.

And ω dep t fulfills the following recurrence equation:

ω dep t -µ ω,t σ ω,t = ψ 1 ω dep t-1 -µ ω,t-1 σ ω,t-1 + ψ 2 t (17.11)
To apply Bellman's recurrence formula, the state of the vector must consist of the decision variable x t and the time-bound random quantities ω dep t . The dimension of the vector state is then increased. x dep t = (x t , ω dep t) designates the new state vector. The Bellman function now satisfies the following two-step linear problem at time t:

[LP t]      Q t (x t-1 , ω dep t-1 , ω t) = min c t x t + Q t+1 (x t , ω dep t) u.c. A t x t = P ω dep t -E t x t-1 , [π t (ω t)] x t 0
(17.12) with P the matrix such that ω t = P ω dep t . The variable ω dep t is a random process. Thus, the above problem is solved by using specific ω l t values of this variable. To get them, we apply a Markov process, i.e. we simulate different values of white noise l t . The new shape of the state vector involves changes in the sensitivity of the Bellman function. It is therefore a function depending on the decision variable x t but also on the vector of random quantity linked to time ω dep t . The calculation of the Benders cuts is then a little different:

∂Q t (x t-1 , ω dep t-1 , ω t) ∂ω dep t-1 = ∂Q t (x t-1 , ω dep t-1 , ω t) ∂ω dep t ∂ω dep t ∂ω dep t-1 = π t (ω t) P ψ 1 σ ω,t σ ω,t-1 , (17.13)
The backward passage should be changed as shown in the 15 algorithm. Some new calculation steps must be taken into account.

Non-convexity and conditional cuts

Some random quantities can introduce non-convexity preventing us from applying the classical SDDP algorithm. Indeed when the random quantities appear on the left side of the linear constraints or in the cost function (typically A t and/or c t become random) the property of convexity of the Bellman functions with respect to the random quantities is not no longer observed.

In the context of a production management problems, the situation often arise. For example, sometimes the unit running cost of plants is random. It is also observed when we deal with the uncertainty of spot prices for use in stochastic mid-term scheduling.

In a technical report, Pereira, Campodonico, and Kelman [START_REF] Pereira | Application of stochastic dual dp and extensions to hydrothermal scheduling[END_REF] suggested a new algorithm to efficiently approximate Bellman functions by explicitly using the dependence of Bellman functions on these random quantities. This new algorithm is based on a combination of Algorithm 15 Execution of the backward pass with time-bound random quantities (AR1 process) for l ∈ {1, . . . , L} do 5:

Produce a value for white noise l t .

6:

calculate the element ωl t knowing the previous random quantity ω dep,g t-1 :

ωl t = σ ω,t ψ 1 ω dep,g t-1 -µ ω,t-1 σ ω,t-1 + ψ 2 l t + µ ω,t (17.14) 7:
Solve the following linear subproblem.

[AP n,g t,l] Store the dual solution π t (ω l t) and the primal solution

           Q l t (x g t-1 , ω dep,g t-1 , ωl t) = min xt,θ t+1 c t x t + θ t+1 u.c. A t x t = P ωl t -E t x g t-1 , [π t (ω l t)] x t 0 θ t+1 + (β j t+1) x t + (γ j t+1) ωl t α j t+1 , j ∈ {1, . . . ,
Q l t (x g t-1 , ω dep,g t-1 , ωl t) of the primal problem [AP n,g t,l
].

9:

Calculate the cutoff that goes with the draw l th : Calculate the g th new Benders cut at time t at iteration n defined as the average value of the cuts obtained before for k = nG + g:

       α g t,l = Q l t (x g t-1 , ω
α k t = 1 L L l=1 α g t,l , β k t = 1 L L l=1 β g t,l , γ k t = 1 L L l=1 γ g t,l
12:

end for 13: end for 14: Solve the following linear subproblem.

[AP

n 0]            Q 0 = min x 0 ,θ 1 c 0 x 0 + θ 1 u.c. A 0 x 0 = ω 0 , [π 0 (ω 0)] x 0 θ 1 + (β j 1) x 0 + (γ j 1) ω dep 0 α j 1 , j ∈ {1, .
. . , G, . . . , (n + 1)G} (17.17 SDDP and ordinary stochastic dynamic programming. The SDP part deals with the nonconvex random quantities, while the other random quantities are dealt with in the SDDP part. It is an extension of the classic SDDP algorithm. It is described in detail in [START_REF] Pereira | Application of stochastic dual dp and extensions to hydrothermal scheduling[END_REF] and in [18].

In the library, we propose two approaches to deal with this non convexity:

A tree approach

In [18], the spot price p t is considered a state. The set of achievable spot prices is discretized into a set of M points ζ 1 , . . . , ζ M . The following Markov model is then used:

P (p t = ζ j |p t-1 = ζ i) = ρ ij (t),
This model makes easier the implementation of the SDP. But it implies discretization mistakes that are hard to quantify. It is also tough to discretize with efficiency a random process when only a small number of scenarios is available.

However when the dimension of the non convex uncertainties is low, it is an approach to consider. The finite number of states , and the probabilities linking states between two successive time step leads to a tree representation of the uncertainties. As the approach is classical, we don't detail this version of the algorithm. We only detail the second approach which is in fact in spirit very similar.

A regression based approach

In this case the modeling used in the library is somewhat different from that described in the two articles. In order to avoid the discretization with trees in this second approach, the evolution of non-convex random quantities is decided by Monte Carlo simulations. At each stage, a fixed number of Monte-Carlo simulations is provided. Anyway, despite this difference, the overall view of this brand new algorithm is similar to that described in two articles:

• The non-convex random quantities depend on the realization of the previous one according to a mathematical model (Markov chain).

• At each step, the Bellman functions are approximated by the conditional realization of these random quantities.

• We have used conditional cuts to give an estimate of the Bellman functions. These conditional cuts are calculated using the methods of the 4 section: two methods are available in the library. Both use adaptive support. The first uses a constant approximation per cell while the second uses a linear approximation per cell.

In our algorithm the characteristics of the conditional cuts are revealed thanks to a conditional expectation calculation. However, conditional expectation calculations are not easy when the exact distribution of the random variable is not known. Some techniques exist but in the library a specific one is used and described above in chapter 4: it is based on local linear regression.

Regression, dynamic stochastic programming and SDDP

The execution of the backward pass in the new algorithm combining SDDP and SDP using local linear regression is described below.

Before describing this algorithm in detail , let's introduce some notations:

• S is the space of the non-convex random quantities.

• d is the dimension of the space of non-convex random quantities S

• At each step, U Monte Carlo simulations in S are provided. We thus obtain scenarios U denoted by s u t at each step t

• Ĩ is a partition of the space of non-convex random quantities S. Generate values for the non-convex random quantities at time t knowing the scenarios at time t -1: s u t , u ∈ {1, . . . , U }.

Ĩ = {I = (i 1 , . . . , i d) , i 1 ∈ {1, . . . ,

4:

for (x g t-1 , ω dep,g t-1), g ∈ {1, . . . , G} do 5:

for u ∈ {1, . . . , U } do 6:

Consider a scenario s u t in the mesh D I .

7:

for l ∈ {1, . . . , L} do 8:

Produce a value for the white noise l t .

9:

Compute the element ωl t knowing the previous random quantity ω dep,g t-1 :

ωl t = σ ω,t ψ 1 ω dep,g t-1 -µ ω,t-1 σ ω,t-1 + ψ 2 l t + µ ω,t (17.18) 10:
Pick up the cuts corresponding the mesh D I : α I,j t+1 (s), β I,j t+1 (s), γ I,j t+1 (s) , j ∈ {1, . . . , (n + 1)G}.

11:

Solve the following linear sub-problem: Calculate the corresponding cut at the l th draw of uncertainties:

[AP n,g t,l]                Q l t (x g t-1 , ω
αg,I t,l (s u t) = Q l t (x g t-1 , ω dep,g t-1 , ωl t) + π t (ω l t) E t x g t-1 -ψ 1 σ ω,t σ ω,t-1 P ω dep,g t-1 βg,I t,l (s u t) = E t π t (ω l t) γg,I t,l (s u t) = ψ 1 σ ω,t σ ω,t-1 P π t (ω l t) 14:
end for Compute the g th new cut of the mesh D I i at time t at iteration n defined as the conditional expectation with respect to the scenario u at time t:

         α j,I t (s u t-1) = E αg,I t (s u t)|s u t-1 , β j,I t (s u t-1) = E βg,I t (s u t)|s u t-1 , j = nG + g γ j,I t (s u t-1) = E γg,I t (s u t)|s u t-1 (17.20) 19:
end for

C++ API

The SDDP part of the stochastic library is in C++ code. This unit is a classic black box: specific inputs must be provided to obtain the expected results. In the SDDP unit, the backward and forward passes are performed successively until the stop criterion is reached. In this unit, the succession of passes is carried out by

• the backwardForwardSDDPTree class for the tree method,

• the backwardForwardSDDP class for the regression-based approach.

These classes takes three non-defined classes as input.

Inputs

The user must implement three classes.

• A class where the transition problem is described which is shown in the example TransitionOptimizer. This class is at the core of the problem resolution. Therefore, great flexibility is left to the user to implement this class. The class is used with both the tree approach and the regression-based approach.

In a way, this class is where the technical aspects of the problem are adjusted. This class describes backward and forward passes. Four methods must be implemented:

-updateDates: establish the new set of dates: (t, t + dt).

-oneStepForward: solves the various linear transition problems during the forward pass for a particle, a random vector and an initial state: * the state (x t-dt , w -oneStepBackward: solves different linear transition problems during the backward pass for a particle, a random vector and an initial state. * The vector (x t , w dep t) is given as input if t ≥ 0; otherwise, the input is (x -dt , w dep 0). * If t ≥ 0, sample to calculate w dep t+dt to obtain the state (x t , w dep t+dt) at the start of the LP resolution period. If t < 0, the state is (x -dt , w dep 0). * Solve the LP from date t to next date t + dt (if equally spaced periods) for the variable x t+dt . * Return the value of the function and the dual that will be used for the cut estimates.

-oneAdmissibleState: returns an admissible state at time t (respect only the constraints).

TransitionOptimizer must derive from the OptimizerSDDPBase class defined below.

Architecture

We only detail the SDDP architecture for the regression based approach because the tree approach uses the same algorithm.

The SDDP management part of the library is built following the scheme described below.

In the following pseudo-code, you have to keep in mind that some small shortcuts were used in order to make reading friendly (e.g. linear subproblem in the initial case (t = 0) should be a little different from that of the other time steps, the entries forwardSDDP, backwardSDDP, backwardForwardSDDP have been omitted for simplicity). A more rigorous theoretical explanation is available in the previous part.

Remark [START_REF] Warin | Monte carlo for high-dimensional degenerated semi linear and full non linear pdes[END_REF] To use the tree method, forwardSDDP, backwardSDDP, backwardforwardSDDP can be replaced with specialized version for trees called forwardSDDPTree, backwardSDDPTree, backwardforwardSDDPTree in the library.

Three colors have been used: the blue parts correspond to the use of the functions implemented in the TransitionOptimizer class,the red parts correspond to the use of the Simulator (Sim or Opt) functions while the grey parts correspond to generic functions totally handled by the library. To be more precise, what you need to implement as a StOpt user is only the TransitionOptimizer and the Simulator (blue and red parts), other functions and loops described are already implemented and managed by the library. V b = backwardSDDP() Using the previously computed set (x g t) t,g and create a set of cuts.

5:

V f = forwardSDDP() Simulation using the cuts created in all the backward passes and update the set (x g t) t,g .

6:

ψ = V f -V b V f 7:
n = n + 1 iStep = 0: index of the date stored in the simulator 3:

for t ∈ {0, . . . , T } do 4:

TransitionOptimizer.updateDates(t, t + 1): update the required data following the current time step (iterator over current time step, average demand,. . .)

5:

SimulatorSim.updateDateIndex(iStep): give the random quantities (ω g t) for the scenario g at time t

6:

StOpt Read the previously computed files to gather α j t+1 , β j t+1 , for j ∈ {1, . . . , G, . . . , nG}

Implement your own TransitionOptimizer class

As described above, your TransitionOptimizer class must be specific to your problem (it is given as an argument to the backwardForwardSDDP function). Therefore, you must implement it yourself under certain constraints in order to adapt it to the requirements of the library. First, make sure your TransitionOptimizer class inherits from the OptimizerSDDPBase class. You will then need to implement the following functions. StOpt Read the previously computed files to gather x g t-1 , for g ∈ {1, . . . , G, } 4:

TransitionOptimizer.updateDates(t -1, t): update the required data following the current time step (iterator over current time step, average demand,. . .)

5:

SimulatorOpt.updateDateIndex(iStep): give the random quantities for the L scenarios at time t

6:

StOpt Read the previously computed files to gather α j t+1 , β j t+1 , for j ∈ {1, . . . , G, . . . , nG} for ω l t , l ∈ {1, . . . , L} do 9:

TransitionOptimizer.oneStepBackward() Solve the following linear sub-problem.

[AP n,g t,l] StOpt Compute the g th new Benders cut at time t at iteration n: α j t , β j t , for j ∈ {(n -1)G, (n -1)G + 1, . . . , nG} • The oneStepBackward function is used to compute a step of the backward pass.

           Q l t (
// / \ return a vector with the optimal value and the derivatives if the function value with respect to each state

The first argument is the cuts already selected for the current time step. They are easy to manage, just use the getCutsAssociatedToAParticle function as described in the examples you can find in the test folder (OptimizeReservoirWithInflowsSDDP.h without regression or OptimizeGasStorageSDDP.h with regression). You will then have the necessary cuts in the form of an array cuts that you can link to the values described in the theoretical part at the time step t by cuts(0, j) = α j t+1 , cuts(i, j) = β j i-1,t+1 j ∈ {1, . . . , G, . . . , (n + 1)G} ,i ∈ {1, . . . , nb state }.

You will need to add the cuts to your constraints yourself, using this table and your solver features.

In addition, as an argument, you have the object containing the state at the start of the time step p astate (keep in mind that this argument is given as an Eigen array), p particle contains the random quantities on which the regression on the expectation of the value function will be based (the computational cost is high so take a look at the theoretical part to know when you really need to use), finally the last argument is an integer indicating in which scenario index the resolution will be performed.

The function returns a one-dimensional array of size nb state +1 containing as first argument the value of the objective function to the solution, then for i ∈ {1, . . . , nb state } it contains the derivatives of the objective function with respect to each of the dimensions i of the state (we must find a way to have it using the dual solution for example).

• The oneStepForward function allows you to compute a step of the forward pass.

// / \ param p_isimu number of teh simulation used

As you can see, the oneStepForward is quite similar to the oneStepBackward. A trick, used in the examples and which you should use, is to build a function generating and solving the linear problem [AP n t,g] (for a given scenario g and a given time step t) which appears for both the forward and the backward pass. This function creating and generating the linear problem will be called in our two functions oneStepForward and oneStepBackward. Make sure that in the forward pass, the current time step is given via the function updateDates(current date,next date) by the current date argument while in the backward pass the current time is given via the next date argument (this is a necessary requirement to compute the regressions exposed in the theoretical part).

Finally note that the two functions previously described are const functions and that you must take them into account during your implementation.

• The other functions that you must implement are simple functions (accessors) that are easy to understand.

Implement your own Simulator class

This simulator must be the object that will allow you to build random quantities according to a desired law. It must be given as an argument of your optimizer. You can implement it yourself, but a set of simulators (gaussian, AR1, MeanReverting,. . .) is given in the test folder, you can use it directly if it meets your problem requirements.

A simulator for the regression based method

An implemented Simulator deriving from the SimulatorSDDPBase class must implement these functions:

• The getNbSimul function returns the number of simulations of random quantities used in the regression part. This is the U mentioned in the theoretical part.

1 virtual int getNbSimul () const = 0;

• The getNbSample function returns the number of simulations of random quantities that are not used in the regression part. This is the G mentioned in the theoretical part. For example, in some cases we need a Gaussian random quantity to calculate the noise when we are in the "dependence of random quantities" part.

1 virtual int getNbSample () const = 0;

• The updateDateIndex function is very similar to that of the optimizer. However you have one argument (the index of the time step) here. It is also where you need to generate new random amounts for solving. The strings correspond to the names which will be given by the files which will store cuts, visited states or regressor data. p nbSimulCheckForSimu corresponds to the number of simulations (number of forward passes called) when it is necessaary to check the convergence by comparing the result given by the forward pass and that given by the backward pass. p nStepConv indicates when the convergence is verified (each p nStepConv iteration). p finalCut corresponds to the cut used at the last time step: when the function of final value is zero, the last cut is given by an all zero array of size nb state + 1. p dates is an array made up with all the time steps of the study period given as doubles, p iter corresponds to the maximum number of iterations. Finally, p stringStream is a ostringstream in which the result of the optimization will be stored.

Implementing a tree based method

The base function backwardForwardSDDPTree must be called to use the SDDP part of the library with conditional cuts calculated with trees.

The black box

The algorithms described above are applied. As stated earlier, the user controls the implementation of the business side of the problem (transition problem). But in the library some things are handled automatically and the user should be aware of:

• The Parallelization When solving the problem is handled automatically. During compilation, if the compiler detects a problem with the MPI (Message Passing Interface) library, the resolution will be carried out in a parallelized manner.

• The cut management. All the cuts added with each iteration are currently serialized and stored in an archive initialized by the user. No cut is pruned. In the future, we can consider working on [START_REF] Pfeiffer | Two methods of pruning Benders' cuts and their application to the management of a gas portfolio[END_REF] cut management.

• A double stop criterion is hardly used by the library: a convergence test and a maximum number of iterations. If either of the two criteria exceeds the user-defined thresholds, the resolution stops automatically. Once again further work could be considered on this subject.

Outputs

SDDP library outputs are not currently defined. Thus during the resolution of an SDDP problem, only the number of iterations, the evolution of the backward and forward costs and of the convergence criterion are recorded. However, while iterating backwards and forwards the value of the Bellman functions and the associated Benders cuts, the different states visited during the forward pass and the evolution of costs are stored at each moment of the time horizon. This information is useful create a Boost Python wrapper. In order to expose the C++ optimization class OptimizeDe mandSDDP used in the test case testDemandSDDP.cpp, the following wrapper can be found in StOpt/test/c++/python/Pybind11SDDPOptimizers.cpp where φ is defined by: φ(s, t, x, y, z, θ) := 1 {t≥T } F (T -s) g(x)+ 1 {t<T } ρ(t -s) f (t, x, y, z, θ). (17.29) and

V k = σ - W k T k -T k - T k -T k - , W k = (σ) -1 W k T k -T k -(W k T k -T k -) -(T k -T k -)I d (T k -T k -) 2 σ -1 (17.30)
As explained previously, the terms u and Du in f are treated as explained in [START_REF] Warin | Nesting monte carlo for high-dimensional non linear pdes[END_REF] and only the D 2 u treatment is new to this scheme.

Remark 53

In practice, we just have the value g at the deadline T and we want to apply the scheme even if the derivatives of the final solution is not defined. We can close the system for k in Q o p by replacing φ with g and taking a value for N p+1 :

ūp k = 1 N p+1 k∈ Q(k) 1 2 g X k T k + g X k1 T k , Dū p k = 1 N p+1 k∈ Q(k) V k 1 2 g X k T k -g X k1 T k , , D 2 ūp k = 1 N p+1 k∈ Q(k) W k 1 2 g X k T k , + g X k1 T k -2g X k2 T k
Remark 54 In the case where the coefficient are not constant, some Euler scheme can be added as explained in [START_REF] Warin | Nesting monte carlo for high-dimensional non linear pdes[END_REF].

An efficient algorithm for this scheme has these two functions:

Algorithm 20 External Monte Carlo algorithm (V generates unit Gaussian RV, Ṽ generates an RV with gamma law density)

1: procedure PDEEval(µ, σ, g, f , T , p, x 0 , {N 0 , . . . , N p+1 }, V , Ṽ)

2:

u M = 0 3:

x(0, :) = x 0 (:)

x is a matrix of size 1 × n 4:

for i = 1, N 0 do 5:

(u, Du, D 2 u) = EvalUDUD2U(x 0 , µ, σ, g, T, V, Ṽ , p, 1, 0, 0) if ts ≥ T or l = p then if l = p then (y, z, θ)+ =EvalUDUD2U(xS, µ, σ, g, T, V, Ṽ , p, 3m, tS, l + 1)

20:

end for 21:

(y, z, θ)/ = N l+1

22:

for q = 1, m do 23:

f 1 = f (ts, xS(q), y(q), z(q, :), θ(q, :, :))

24:

f 2 = f (ts, xS(m + q), y(m + q), z(m + q, :), θ(m + q, :, :))

25:

f 3 = f (ts, xS(2m + q), y(2m + q), z(2m + q, :), θ(2m + q, :, :))

26:

u(i) = 1 2 (f 1 + f 3) 27:
Du(i, :) = 1 2 (f 1 -f 3)σ -G 28:

D 2 u(i, :, :

) = 1 2 (f 1 + f 3 -2f 2)σ -GG -I d τ σ -

testAmericanForSparse

This test case is there to test sparse grid regressors (see section 3.3). As described earlier, we can use linear, quadratic or cubic representation on each cell. The reference is the same as in the testAmerican subsection thus linked to a Bermudean basket option.

testAmericanSparseBasket1D

Use sparse 1D grids (thus equivalent to a full grid) for linear, quadratic or cubic representation. testSwingOptionInOptimization After having calculated the analytical solution of this problem,

• a first resolution is provided using the resolutionSwing function. For this simple problem, only a regressor is needed to decide wether to exercise on the current date of not.

• a second resolution is provided in the resolutionSwingContinuation function using the Continuation object (see chapter 6) allowing to store continuation values for a value of the underlying and for a stock level. This example is provided here to show how to use this object on a simple test case. This approach is not optimal here because obtaining the continuation value of an asset value and a stock level (only discrete here) means an unnecessary interpolation on the stock grids (here we choose a RegularSpaceGrid to describe the stock level and interpolate linearly between stock grids). In the case of the swing with varying amounts to exercise [START_REF] Jaillet | Valuation of commodity-based swing options[END_REF] or the gas storage problem, this object is very useful,

• A final resolution is provided using the general framework described and the Dynam icProgrammingByRegressionDist function described in the 9.2.2 subsection. Again, the framework is needed for this simple test case, but it shows that it can be used even for some very simple cases.

testSwingOption2D

Here we assume that we have two swing options similar to valuate and we solve the problem by ignoring that the stocks are independent: this means that we are solving the problem on a two-dimensional grid (for the stocks) instead of twice the same problem on a grid with a stock.

• we start with an evaluation of the solution for a single swing with the resolutionSwing function giving a value A.

• then we solve the two-dimensional problem (in stock) giving a value B with our framework with the function DynamicProgrammingByRegressionDist .

Next, we check that B = 2A.

testSwingOption3

We do the same as before, but the management of three similar swing options is achieved by solving as a three dimensional stock problem.

testSwingOptimSimu / testSwingOptimSimuMpi

This test case takes the problem described in the 17.6 section, resolves it using the framework 9.2.2. Once the optimization using the regression (LocalLinearRegression regressor) has been performed, a simulation part is used using the previously calculated Bellman values.

testGasStorageCut / testGasStorageCutMpi

We take the previous gas storage problem and solve the transition problem without discretizing the command using an LP solver (see section 11.2.

2) The test cases are composed of an optimization part followed by a simulation part comparing the results obtained.

testSimpleStorageCut Test case without MPI distribution of stocks points. A simple Regular grid object is used and conditional cuts are calculated using Local Linear Regressions.

testSimpleStorageCutDist Test using MPI distribution. In all cases a Local Linear Regressor is used. A file is used to store the conditional cuts.

• A first case uses a Regular grid,

• A second case uses a RegularLegendre grid.

testSimpleStorageMultipleFileCutDist Test using MPI distribution. A Local Linear Regressor is used for cuts and a Regular grid is used. Bender cuts are stored locally by each processor.

testGasStorageTree/testGasStorageTreeMpi

Optimizing storage for the price of gas modeled by a HJM model approximated by a tree. The grids are simple regular grids. In MPI, Bellman values are either stored in one file or in multiple files.

testGasStorageTreeCut/testGasStorageTreeCutMpi

Gas storage is optimized and simulated using cuts and trees for uncertainties. Gas price modeled by a HJM model approximated by a trinomial tree. The grids are simple regular grids. In MPI, Bellman values are either stored in one file or in multiple files.

testGasStorageKernel

The model used is a mean reverting model similar to the one described in [START_REF] Warin | Gas storage hedging[END_REF]. We keep only one factor in equation [START_REF] Bouchard | Numerical approximation of bsdes using local polynomial drivers and branching processes[END_REF] in [START_REF] Warin | Gas storage hedging[END_REF]. The problem consists in maximizing the gain of a gas storage by the methodology described in [START_REF] Warin | Gas storage hedging[END_REF]. The specificity here is that a kernel regression method is used.

testSimpleStorageKernel)

Use the linear kernel regression method to solve the Gas Storage problem using the Epanechnikov kernel.

testGasStorageLaplacianLinearKernel

The model used is a mean reverting model similar to the one described in [START_REF] Warin | Gas storage hedging[END_REF]. We keep only one factor in equation (8) in [START_REF] Warin | Gas storage hedging[END_REF].The problem consists in maximizing the gain of a gas storage by the methodology described in [START_REF] Warin | Gas storage hedging[END_REF]. The specificity here is that a Laplacian kernel regression method is used.

testSimpleStorageLaplacianLinearKernel Use the linear kernel regression method to solve the Gas Storage problem using the Laplacian kernel using the divide and conquer method.

testGasStorageLaplacianConstKernel

The model used is a mean reverting model similar to the one described in [START_REF] Warin | Gas storage hedging[END_REF]. We keep only one factor in equation (8) in [START_REF] Warin | Gas storage hedging[END_REF].The problem consists in maximizing the gain of a gas storage by the methodology described in [START_REF] Warin | Gas storage hedging[END_REF]. The specificity here is that a Laplacian kernel regression method is used.

testSimpleStorageLaplacianConstKernel Use the constant kernel regression method to solve the Gas Storage problem using the Laplacian kernel using the divide and conquer method.

testGasStorageLaplacianGridKernel

The model used is a mean reverting model similar to the one described in [START_REF] Warin | Gas storage hedging[END_REF]. We keep only one factor in equation [START_REF] Bouchard | Numerical approximation of bsdes using local polynomial drivers and branching processes[END_REF] in [START_REF] Warin | Gas storage hedging[END_REF].The problem consists in maximizing the gain of a gas storage by the methodology described in [START_REF] Warin | Gas storage hedging[END_REF]. The specificity here is that a Laplacian kernel regression method is used.

testSimpleStorageLaplacianGridKernel Use the constant kernel regression method to solve the Gas Storage problem using the Laplacian kernel using the fast summation method.

testGasStorageVaryingCavity

The stochastic model is the same as in the section 17.7.1. As before, all test cases are composed of three parts:

• an optimization is performed by regression (LocalLinearRegression regressor),

• a first simulation of the optimal control using the continuation values stored during the optimization part,

• a second simulation using directly the optimal controls stored during the optimization part.

testGasStorageSDDPTree testSimpleStorageDeterministicCutTree

The volatility is set to zero to obtain a deterministic problem.

• First by Dynamic Programming, the optimal control is calculated and tested in simulation.

• Then backward part of SDDP and forward part are tested using a point grid for storage testSimpleStorageCutTree

In stochastics, the backward and forward resolution of the SDDP solver with tree are tested using points defined on a grid. Convergence is checked by comparing results from a DP solver with regressions.

testSimpleStorageSDDPTree1D1Step

In stochastics, the global SDDP solver iterating forward and backward is used to value the gas storage. The comparison with dynamic programming methods with regressions is carried out.

testLake / testLakeMpi

This is the case of a reservoir with inflows following an AR1 model. We can withdraw water from the reservoir (maximum withdrawal rate given) to produce energy by selling it at a given price (taken equal to 1 per unit of volume). We wish to maximize the expected gains obtained by optimal management of the lake. The problem allows to show how some stochastic flows can be taken into account with dynamic programming with regression (LocalLinearRegression regressor used). The test case is composed of three parts:

• an optimization is performed by regression (LocalLinearRegression regressor),

• a first simulation of the optimal control from the contination values stored during the optimization part,

• a second simulation using directly the optimal controls stored during the optimization part.

We check that the three previously calculated values are close.

testOptionNIGL2

In this test case we assume that the log of an asset value follows a NIG process [START_REF] Barndorff-Nielsen | Processes of normal inverse gaussian type[END_REF]. We want to price a call option assuming that we use the mean variance criterion using the algorithm developed in chapter 14.

First, an optimization is carried out then in a simulation part, the optimal hedging strategy is tested.

testDemandSDDP

This test case is the simplest using the SDDP method. We assume that we have a demand according to an AR 1 model

D n+1 = k(D n -D) + σ d g + kD,
where D is the average demand, σ d the standard deviation of the demand on a time step, k the average reverting coefficient, D 0 = D, and g a centered Gaussian variable on the unit.

We have to meet demand by buying energy at a P price. We want to calculate the next expected value

V = P E N i=0 D i = (N + 1)D 0 P
This can be done (artificially) using SDDP.

testThermalAsset

Solve a switching problem estimating the value of a thermal asset described in paragraph 13. The two assets follow an HJM model with one factor each. The objective function consists in maximizing the gain in expectation managing the asset that can be switch on or off with some specific minimal time in each regime. A switching cost switching on the asset is also added.

17.12 Reservoir variations with SDDP 17.12.1 testReservoirWithInflowsSDDP

For this SDDP test case, we assume that we have N similar independent reservoirs with inflows given at all times by independent centered Gaussian variables with standard deviation σ i . We suppose that we must satisfy the dates M a demand given by independent Gaussian variables centered with a standard deviation σ d . In order to meet the demand, we can buy water in the amount q t at a deterministic price S t or withdraw water from the reservoir at a pace lower than a withdrawal rate. Under the demand constraint, we want to minimize:

E M i=0 q t S t
Each time we check that the forward and backward methods converge to the same value. Due to the independence of uncertainties, the dimension of the Markov state is equal to N .

testStorageWithInflowsSDDP

For this SDDP test case, we assume that we have similar independent reservoirs N with inflows following an AR1 model:

X n+1 = k(X n -X) + σg + X,
with X 0 = X, σ the associated standard deviation, g a Gaussian variable centered on the unit.

We suppose that we have to satisfy at M dates a demand following an AR1 process too. In order to satisfy the demand, we can buy some water with quantity q t at a deterministic price S t or withdraw water from the reservoir at a pace lower than a withdrawal rate. Under the demand constraint, we want to minimize: x i)

E M i=0 q t S t

Some Portfolio optimization

We assume that we dispose of d = 4 securities all of them being defined by a Heston model:

dS i t =µ i S i t dt + Y i t S i t dW (2i-1) t dY i t =k i (m i -Y i t)dt + c i Y i t dW (2i) t
, where W = (W (1) , . . . , W (2d)) is a Brownian motion in R 2d . The non-risky asset S 0 has a 0 return so dS 0 t = 0, t ∈ [0, 1]. The investor chooses an adapted process {κ t , t ∈ [0, T]} with values in R n , where κ i t is the amount he decides to invest into asset i. The portfolio dynamic is given by:

dX κ t = κ t • dS t S t + (X κ t -κ t • 1)
dS 0 t S 0 t = κ t • dS t S t .
Let A be the collection of all adapted processes κ with values in R d and which are integrable with respect to S. Given an absolute risk aversion coefficient η > 0, the portfolio optimization problem is defined by:

v 0 := sup κ∈A E [-exp (-ηX κ T)] . (17.34)
The problem doesn't depend on the s i . As in [START_REF] Zariphopoulou | A solution approach to valuation with unhedgeable risks[END_REF], we can guess that the solution can be expressed as v(t, x, y 1 , . . . , y d) = e -ηx u(y 1 , . . . , y d) and using Feyman Kac it is easy to see that a general solution can be written v(t, x, y) = -e -ηx E[where y i is the initial volatility value on the date 0 for the asset i. We assume, in our example, that all the assets have the same parameters which are equal to the parameters taken in the two-dimensional case. We also assume that the initial conditions are the same as before. By choosing σ > 0, we can write the problem as the equation (17.23) in dimension d + 1 where µ =(0, k 1 (m 1 -y 1), . . . , k d (m d -

y d)) , σ =         σ 0 • • • • • • 0 0 c √ m 1 0 • • • 0 0 • • • . . . • • • 0 0 • • • • • • . . . 0 0 • • • • • • 0 c √ m d        
always with the same terminal condition testPortfolioExact

The Ornstein-Uhlenbeck process used as a driving process is simulated exactly.

testPortfolioEuler

The Ornstein-Uhlenbeck process used as a driving process is simulated using an Euler scheme.

control is chosen in two steps: first the controller picks the regime: ON or OFF; if ON, she then decides the optimal, continuous level of the diesel output. Due to the additional flexibility available to the controller compared to the previous example, we expect to observe lower cost compared to Section 18.1.1. The user can switch between this and the previous setting by changing the parameter controlType in the parameters.py file.

18.2 Dynamic Emulation Algorithm (DEA)

testMicrogridDEA

In this section we discuss the implementation of the Dynamic Emulation Algorithm developed in [START_REF] Ludkovski | Simulation methods for stochastic storage problems: A statistical learning perspective[END_REF]. In that paper the authors reformulate the stochastic control problem as an "iterative sequence of machine learning tasks". The philosophy of DEA is to combine together Regression Monte Carlo (RMC) with Design of Experiments. The algorithm has the following properties:

• The learning for the continuation value function at each step in the backward-iteration of the Dynamic Programming Equation is completely modularized. As a result, the user can seamlessly switch between different regression schemes (for example: adaptive local polynomial basis in -2D or -1D, multivariate kernel regression, etc.) across different time-steps;

• The empirical approximation uses distinct designs D t at each t; thus the user can have design sites independently chosen for different t's, which also eliminates the requirement to store the full history of the simulated paths of (X t). One-step paths can now replace the full history. In Figure 18.1 we present examples of two possible designs we use in the implementation. The image in the left panel represents a space-filling design using a Sobol sequence in -2D. This design is appropriate for a bivariate regression over (X t , I t). On the right, we present another space-filling design in -1D with a regularly spaced grid in I t (y-axis) and a -1D Sobol sequence in X t (x-axis). In [START_REF] Ludkovski | Simulation methods for stochastic storage problems: A statistical learning perspective[END_REF] the authors discuss several further designs which can be easily implemented.

• Batched designs, i.e. a partially nested scheme that generates multiple X t -paths from the same unique design site, can be accommodated.

• Simulation budget (i.e. the size of D t) can vary through the time-steps and need not be fixed as in standard RMC.

Several different experiments have confirmed the significant effect of the design D t on the performance of the RMC algorithms. DEA allows us to test for this effect by allowing the user to easily specify D t . The structure of this library allows for easy implementation of such modular algorithms. As a proof of concept, we re-implement the microgrid example of Section 18.1.1 with the following specifications:

• The 10 time-steps (25% of the total of 40 time-steps) closest to maturity use adaptive local polynomial basis in -1D with gridded design similar to the Figure 18.1b. Moreover, for these t's we used |D t | = 22, 000 = N t unique design sites;

 h " /* * \ file SpaceGrid . h * \ brief Defines a base class for all the grids * \ author Xavier Warin */ namespace StOpt { // / \ class SpaceGrid SpaceGrid . h // / Defines a base class for grids class SpaceGrid { public : // / \ brief Default constructor SpaceGrid () {} // / \ brief Default destructor virtual ~SpaceGrid () {} // / \ brief Number of points of the grid virtual size_t getNbPoints () const = 0; // / \ brief get back iterator associated to the grid virtual std :: shared_ptr < GridIterator > g e tG ri dI t er at or () const = 0; // / \ brief get back iterator associated to the grid (multi thread) virtual std :: shared_ptr < GridIterator > g e t G r i d I t e r a t o r I n c (const int & p_iThread) const = 0; // / \ brief Get back interpolator at a point Interpolate on the grid // / \ param p_coord coordinate of the point for interpolation // / \ return interpolator at the point coordinates on the grid virtual std :: shared_ptr < Interpolator > c r e a t e I n t e r p o l a t o r (const Eigen :: ArrayXd & p_coord) const = 0; // / \ brief Get back a spectral operator associated to a whole function // / \ param p_values Function value at the grids points // / \ return the whole interpolated value function virtual std :: shared_ptr < InterpolatorSpectral > c r e a t e I n t e r p o l a t o r S p e c t r a l (const Eigen :: ArrayXd & p_values) const = 0; // / \

1

 G e n e r a l S p a c e G ri d (const std :: vector < shared_ptr < Eigen :: ArrayXd > > & p _ m e s h P e r D i m e n s i o n)

1

 R e g u l a r S p a c e G ri d (const Eigen :: ArrayXd & p_lowValues , const Eigen :: ArrayXd & p_step , const Eigen :: ArrayXi & p_nbStep)

Figure 3 . 1 :Figure 3 . 2 :

 3132 Figure 3.1: 2D general grid

 ArrayXd pointCoord = iterRegGrid -> getCoordinate () ; // store the coordinate of the point data (iterRegGrid -> getCount ()) = f (pointCoord) ; // the value is stored in the data at location iterRegGrid -> getCount () iterRegGrid -> next () ; // go to next point } // point where to interpolate ArrayXd point = ArrayXd :: Constant (nDim , 1. / 3.) ; // create the interpolator L i n e a r In t e r p o l a t o r regLin (& regGrid , point) ; // get back the interpolated value double interpReg = regLin . apply (data) ;

#

 Copyright (C) 2016 EDF # All Rights Reserved # This code is published under the GNU Lesser General Public License (GNU LGPL) import numpy as np import unittest import random import math import StOptGrids # unit test for regular grids # class testGrids (unittest . TestCase) : # 3 dimensional test for linear interpolation on regular grids def t e st R e g u l a r G r i d s (self) : # low value for the meshes lowValues = np . array ([1. ,2. ,3.] , dtype = float) # size of the meshes step = np . array ([0.7 ,2.3 ,1.9] , dtype = float) # number of steps nbStep = np . array ([4 ,5 ,6] , dtype = np . int32) # create the regular grid grid = StOptGrids . R e g u l a r S p a c e G r i d (lowValues , step , nbStep) iterGrid = grid . g et Gr i dI te ra t or () # array to store data = np . empty (grid . getNbPoints ()) # iterates on points and store values while (iterGrid . isValid ()) : # get coordinates of the point pointCoord = iterGrid . getCoordinate () data [iterGrid . getCount ()] = math . log (1. + pointCoord . sum ()) iterGrid . next () # get back an interpolator ptInterp = np . array ([2.3 ,3.2 ,5.9] , dtype = float) interpol = grid . c r e a t e I n t e r p o l a t o r (ptInterp) # calculate interpolated value interpValue = interpol . apply (data) print ((" Interpolated value " , interpValue)) # test grids function iDim = grid . getDimension () pt = grid . g e t E x t r e m e Va l u e s () if __name__ == ' __main__ ': unittest . main () A similar example can be given for a general grid with linear interpolation # Copyright (C) 2017 EDF # All Rights Reserved # This code is published under the GNU Lesser General Public License (GNU LGPL) import numpy as np import unittest import random import math import StOptGrids # unit test for general grids # class testGrids (unittest . TestCase) : # test general grids def t e st G e n e r a l G r i d s (self) : # low value for the mesh lowValues = np . array ([1. ,2. ,3.] , dtype = float) # size of the mesh step = np . array ([0.7 ,2.3 ,1.9] , dtype = float) # number of step nbStep = np . array ([4 ,5 ,6] , dtype = np . int32) # degree of the polynomial in each direction degree = np . array ([2 ,1 ,3] , dtype = np . int32) # list of mesh mesh1 = np . array ([1. + 0.7* i for i in np . arange (5)] , dtype = float) mesh2 = np . array ([2.+2.3* i for i in np . arange (6)] , dtype = float) mesh3 = np . array ([3.+1.9* i for i in np . arange (7)] , dtype = float) # create the general grid grid = StOptGrids . G e n e r a l S p a c e G r i d ([mesh1 , mesh2 , mesh3]) iterGrid = grid . g et Gr i dI te ra t or () # array to store data = np . empty (grid . getNbPoints ()) # iterates on point while (iterGrid . isValid ()) : # get coordinates of the point pointCoord = iterGrid . getCoordinate () data [iterGrid . getCount ()] = math . log (1. + pointCoord . sum ()) iterGrid . next () # get back an interpolator ptInterp = np . array ([2.3 ,3.2 ,5.9] , dtype = float) interpol = grid . c r e a t e I n t e r p o l a t o r (ptInterp) # calculate interpolated value interpValue = interpol . apply (data) # test grids function iDim = grid . getDimension () pt = grid . g e t E x t r e m e Va l u e s () if __name__ == ' __main__ ':

Figure 3 . 3 :

 33 Figure 3.3: Runge function 1 1+25x 2 and its polynomial interpolations at degrees 3, 4, 8, and 18.

Figure 3 . 4 :

 34 Figure 3.4: Interpolation with Gauss-Legendre-Lobatto grids

|Figure 3 . 5 :

 35 Figure 3.5: Gauss-Legendre-Lobatto points on 2 × 2 meshes.

R e g u

 l a r L e g e n d r e G r i d (const Eigen :: ArrayXd & p_lowValues , const Eigen :: ArrayXd & p_step , const Eigen :: ArrayXi & p_nbStep , const Eigen :: ArrayXi & p_poly) ;

 ArrayXd lowValues = ArrayXd :: Constant (1 , -1.) ; // corner point ArrayXd step = ArrayXd :: Constant (1 ,2.) ; // mesh size ArrayXi nbStep = ArrayXi :: Constant (1 ,1) ; // number of meshes in each direction ArrayXi nPol = ArrayXi :: Constant (1 , p_nPol) ; // polynomial approximation // regular Legendre R e g u l a r L e g e n d r e G r i d regGrid (lowValues , step , nbStep , nPol) ; // Data table to store values on the grid points ArrayXd data (regGrid . getNbPoints ()) ; shared_ptr < GridIterator > iterRegGrid = regGrid . g et Gr id I te ra to r () ; while (iterRegGrid -> isValid ()) { ArrayXd pointCoord = iterRegGrid -> getCoordinate () ; data (iterRegGrid -> getCount ()) = 1./(1.+25* pointCoord (0) * pointCoord (0)) ; dx = 2./ nbp ; for (int ip =0; ip <= nbp ; ++ ip) { point (0) = -1+ ip * dx ; // create interpolator shared_ptr < Interpolator > interp = regGrid . c r e a t e I n t e r p o l a t o r (point) ; double interpReg = interp -> apply (data) ; // interpolated value }

/*

 / Copyright (C) 2016 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef I N T E R P O L A T O R S P E C T R A L _ H # define I N T E R P O L A T O R S P E C T R A L _ H # include < Eigen / Dense > // # include " StOpt / core / grids / SpaceGrid . h " /* * \ file I n t e r p o l a t o r S p e c t r a l . h * \ brief Defines an interpolator for a grid : here is a global interpolator , storing the repr esentati on of the function * to interpolate : this interpolation is effective when interpolating the same function many times at different points * Here it is an abstract class \ class I n t e r p o l a t o r S p e c t r a l I n t e r p o l a t o r S p e c t r a l . h // / Abstract class for spectral operator class I n t e r p o l a t o r S p e c t r a l { public : virtual ~I n t e r p o l a t o r S p e c t r a l () {} /* * \ brief interpolate ArrayXi nPol = ArrayXi :: Constant (2 ,2) ; // polynomial of degree 2 in each direction // regular shared_ptr < RegularLegendreGrid > regGrid (new R e g u l a r L e g e n d r e G r i d (lowValues , step , nbStep , nPol)) ; ArrayXd data (regGrid -> getNbPoints ()) ; // Data table shared_ptr < GridIterator > iterRegGrid = regGrid -> g et G ri dI te r at or () ; // iterator on the grid points while (iterRegGrid -> isValid ()) { ArrayXd pointCoord = iterRegGrid -> getCoordinate () ; data (iterRegGrid -> getCount ()) = f (pointCoord) ; iterRegGrid -> next () ; } // spectral interpolator L e g e n d r e I n t e r p o l a t o r S p e c t r a l interpolator (regGrid , data) ; // interpolation point ArrayXd pointCoord (2 , 5.2) ; // interpolated value double vInterp = interpolator . apply (pointCoord) ;

#

 Copyright (C) 2016 EDF # All Rights Reserved # This code is published under the GNU Lesser General Public License (GNU LGPL) import numpy as np import unittest import random import math import StOptGrids # unit test for Legendre grids # class testGrids (unittest . TestCase) : # test Legendre grids def t e s t L e g e n d r e G r i d s (self) : # low value for the mesh lowValues = np . array ([1. ,2. ,3.] , dtype = float) # size of the mesh step = np . array ([0.7 ,2.3 ,1.9] , dtype = float) # number of step nbStep = np . array ([4 ,5 ,6] , dtype = np . int32) # degree of the polynomial in each direction degree = np . array ([2 ,1 ,3] , dtype = np . int32) # create the Legendre grid grid = StOptGrids . R e g u l a r L e g e n d r e G r i d (lowValues , step , nbStep , degree) iterGrid = grid . g et Gr i dI te ra t or () # array to store data = np . empty (grid . getNbPoints ()) # iterates on point while (iterGrid . isValid ()) : # get coordinates of the point pointCoord = iterGrid . getCoordinate () data [iterGrid . getCount ()] = math . log (1. + pointCoord . sum ()) iterGrid . next () # get back an interpolator ptInterp = np . array ([2.3 ,3.2 ,5.9] , dtype = float) interpol = grid . c r e a t e I n t e r p o l a t o r (ptInterp) # calculate interpolated value interpValue = interpol . apply (data) print ((" Interpolated value Legendre " , interpValue)) # test grids function iDim = grid . getDimension () pt = grid . g e t E x t r e m e Va l u e s () if __name__ == ' __main__ ':

Figure 3 . 6 :

 36 Figure 3.6: One dimensional W (L) spaces: W (L) 1 , W (L) 2 , W (L) 3 , W (L) 4

 l,i (x) : i ∈ B N l with B N l := i : 1 ≤ i j ≤ 2 l j -1, 1 ≤ j ≤ d .In the figure3.6 the one-dimensional nodal base W

Figure 3 . 7 :

 37 Figure 3.7: Example of hierarchical coefficients

Figure 3 . 8 :Figure 3 . 9 :

 3839 Figure 3.8: Node involved in the linear, quadratic and cubic representation of a function at the node m and n

Figure 3 . 10 :

 310 Figure 3.10: One dimensional W (L) spaces with linear functions with "exact" boundary (left) and "modified" boundary (right): W (L) 1 , W (L) 2 , W (L) 3 , W (L) 4

Figure 3 . 11 :

 311 Figure 3.11: Sparse grid in dimension 2 and 3 with boundary points

Figure 3 . 12 :

 312 Figure 3.12: Sparse grid in dimensions 2 and 3 without boundary points

Figure 3 . 14 :

 314 Figure 3.14: One dimensional W (C) spaces with cubic and "exact" boundary (left) and "modified" boundary (right): W

•+α d u ∂x α 1 1

 1 ...∂x α d d || ∞ < ∞ then the interpolation error can be generalized for I 2 := I (Q) , I 3 := I (C) by:

 then

 S p a r s e S p a c e G r i d B o u n d (const Eigen :: ArrayXd & p_lowValues , const Eigen :: ArrayXd & p_sizeDomain , const int & p_levelMax , const Eigen :: ArrayXd & p_weight , const size_t & p_degree) with • p lowValues corresponds to the bottom of the grid, • p sizeDomain corresponds to the size of the resolution domain in each dimension, • p levelMax is the level of the sparse grids, the n in the equation 3.7, • p weight the weight of anisotropic sparse grids, the equation w 3.7, • p degree is equal to 1 (linear interpolator), or 2 (quadratic interpolator) or 3 (for cubic interpolator), With the same notations the construction eliminating boundary points is carried out by the following constructor S p a r s e S p a c e G r i d N o B o u n d (const Eigen :: ArrayXd & p_lowValues , const Eigen :: ArrayXd & p_sizeDomain , const int & p_levelMax , const Eigen :: ArrayXd & p_weight , const size_t & p_degree)

1

 std :: shared_ptr < SparseSet > getDataSet () const ;

1 / 2 / 3 /

 123 / / \ brief Hierarchize a function defined on the grid 2 // / \ param p_ t oH ie ra r ch iz e function to hierarchize 3 void toHierarchize (Eigen :: ArrayXd & p_ t oH ie ra r ch iz e) ; • the second work on a matrix, allowing to hierarchize several functions in a single call (each row corresponds to a function representation) 1 / / \ brief Hierarchize a set of functions defined on the grid / / \ param p_ t oH ie ra r ch iz e function to hierarchize 4 void t o H i e r a r c h i z e V e c (Eigen :: ArrayXXd & p_ to H ie ra rc h iz e)

Remark 5

 5 ArrayXd lowValues = ArrayXd :: Zero (5) ; // bottom of the grid ArrayXd sizeDomain = ArrayXd :: Constant (5 ,1.) ; // size of the grid ArrayXd weight = ArrayXd :: Constant (5 ,1.) ; // weights int degree =1 ; // linear interpolator level = 4 ; // level of the sparse grid // sparse grid generation S p a r s e S p a c e G r i d B o u n d sparseGrid (lowValues , sizeDomain , level , weight , degree) ; // grid iterators shared_ptr < GridIterator > iterGrid = sparseGrid . ge tG ri d It er at o r () ; ArrayXXd value sFunctio n (2 , sparseGrid . getNbPoints ()) ; while (iterGrid -> isValid ()) { ArrayXd pointCoord = iterGrid -> getCoordinate () ; value sFuncti on (0 , iterGrid -> getCount ()) = f (pointCoord) ; value sFuncti on (1 , iterGrid -> getCount ()) = f (pointCoord) +1 ; iterGrid -> next () ; } // Hierarchize ArrayXXd hieraValues = valu esFuncti on ; sparseGrid . t o H i e r a rc h i z e V e c (hieraValues) ; // interpolate ArrayXd pointCoord = ArrayXd :: Constant (5 ,0.66) ; shared_ptr < Interpolator > interpolator = sparseGrid . c r e a t e I n t e r p o l a t o r (pointCoord) ; ArrayXd interVal = interpolator -> applyVec (hieraValues) ; The Point-by-point hierarchization on the global grid could have been calculated as below: std :: vector < SparsePoint > sparsePoints (sparseGrid . getNbPoints ()) ; std :: shared_ptr < SparseSet > dataSet = sparseGrid . getDataSet () ; // iterate on points for (typename SparseSet :: c onst_ite rator iterLevel = dataSet -> begin () ; iterLevel != dataSet -> end () ; ++ iterLevel) for (typename SparseLevel :: const _iterato r iterPosition = iterLevel -> second . begin () ; iterPosition != iterLevel -> second . end () ; ++ iterPosition) { sparsePoints [iterPosition -> second] = make_pair (iterLevel -> first , iterPosition -> first) ; } ArrayXXd hieraValues = sparseGrid . t o H i e r a r c h i z e P B y P V e c (valuesFunction , sparsePoints) ;

/ 42 while

 42 / sparse grid generation S p a r s e S p a c e G r i d N o B o u n d sparseGrid (lowValues , sizeDomain , p_level , p_weight , p_degree , bPrepInterp) ; // test iterator on each level ArrayXd v a l u e s F u n c t i o n T e s t (sparseGrid . getNbPoints ()) ; std :: shared_ptr < SparseSet > dataSet = sparseGrid . getDataSet () ; for (SparseSet :: con st_iter ator iterLevel = dataSet -> begin () ; iterLevel != dataSet -> end () ; ++ iterLevel) { // get back iterator on this level shared_ptr < SparseGridIterator > iterGridLevel = sparseGrid . g e t L e v e l G r i d I t e r a t o r (iterLevel) ; ArrayXd pointCoord = iterGridLevel -> getCoordinate () ; 14 v a l u e s F u n c t i o n T e s t (iterGridLevel -> getCount ()) = f (pointCoord) ;

/

 / / \ param p _ v a l u e s F u n c t i o n an array storing the nodal values // / \ param p_hie rarValue s an array storing hierarchized values (updated) void refine (const double & p_precision , const std :: function < double (const Eigen :: ArrayXd & p_x) > & p_fInterpol , const std :: function < double (const SparseSet :: con st_iter ator & , const Eigen :: ArrayXd &) > & p_phi , 10 const std :: function < double (const std :: vector < double > &) > & p_phiMult , 11 Eigen :: ArrayXd & p_valuesFunction , 12 Eigen :: ArrayXd & p _hierarV alues) ; with p precision the η tolerance in the algorithm, p fInterpol the function permitting to calculate the nodal values, p phi function permitting to calculate e l the local error for a given l, p phiMult a function taking as argument all the e l (local errors) and giving back the global error E, p valuesFunction an array storing the nodal values (updated during refinement)

 # # class testGrids (unittest . TestCase) : # test sparse grids with boundaries def t e s t S p a r s e G r i d s B o u n d s (self) : # low values lowValues = np . array ([1. ,2. ,3.]) # size of the domain sizeDomValues = np . array ([3. ,4. ,3.]) # anisotropic weights weights = np . array ([1. ,1. ,1.]) # level of the sparse grid level =3 # create the sparse grid with linear interpolator sparseGridLin = StOptGrids . S p a r s e S p a c e G r i d B o u n d (lowValues , sizeDomValues , level , weights ,1) iterGrid = sparseGridLin . g et Gr i dI te ra t or () # array to store data = np . empty (sparseGridLin . getNbPoints ()) # iterates on point while (iterGrid . isValid ()) : data [iterGrid . getCount ()] = f u n c T o I n t e r p o l a t e (iterGrid . getCoordinate ()) iterGrid . next () # Hierarchize the data hierarData = sparseGridLin . toHierarchize (data) # get back an interpolator ptInterp = np . array ([2.3 ,3.2 ,5.9] , dtype = float) interpol = sparseGridLin . c r e a t e I n t e r p o l a t o r (ptInterp) # calculate interpolated value interpValue = interpol . apply (hierarData) print ((" Interpolated value sparse linear " , interpValue)) # create the sparse grid with quadratic interpolator spars eGridQu ad = StOptGrids . S p a r s e S p a c e G r i d B o u n d (lowValues , sizeDomValues , level , weights ,2) # Hierarchize the data hierarData = spars eGridQu ad . toHierarchize (data) # get back an interpolator ptInterp = np . array ([2.3 ,3.2 ,5.9] , dtype = float) interpol = sparseG ridQuad . c r e a t e I n t e r p o l a t o r (ptInterp) # calculate interpolated value interpValue = interpol . apply (hierarData) print ((" Interpolated value sparse quadratic " , interpValue)) # now refine precision = 1e -6 print ((" Size of hierarchical array " , len (hierarData))) value AndHier ar = spa rseGridQ uad . refine (precision , funcToInterpolate , data , hierarData) print ((" Size of hierarchical array after refinement " , len (value AndHiera r [0]))) # calculate interpolated value interpol1 = sparse GridQuad . c r e a t e I n t e r p o l a t o r (ptInterp) interpValue = interpol1 . apply (value AndHiera r [1]) print ((" Interpolated value sparse quadratic after refinement " , interpValue)) # coarsen the grid precision = 1e -4 v a l u e A n d H i e r a r C o a r s e n = sparseGr idQuad . coarsen (precision , valueAn dHierar [0] , value AndHier ar [1]) print ((" Size of hierarchical array after coarsening " , len (v a l u e A n d H i e r a r C o a r s e n [0]))) # calculate interpolated value interpol2 = sparse GridQuad . c r e a t e I n t e r p o l a t o r (ptInterp) interpValue = interpol2 . apply (v a l u e A n d H i e r a r C o a r s e n [1]) print ((" Interpolated value sparse quadratic after refinement " , interpValue)) # test sparse grids eliminating boundaries def t e s t S p a r s e G r i d s N o B o u n d s (self) : # low values lowValues = np . array ([1. ,2. ,3.] , dtype = float) # size of the domain sizeDomValues = np . array ([3. ,4. ,3.] , dtype = float) # anisotropic weights weights = np . array ([1. ,1. ,1.]) # level of the sparse grid level =3 # create the sparse grid with linear interpolator sparseGridLin = StOptGrids . S p a r s e S p a c e G r i d N o B o u n d (lowValues , sizeDomValues , level , weights ,1) iterGrid = sparseGridLin . g et Gr i dI te ra t or () # array to store data = np . empty (sparseGridLin . getNbPoints ()) # iterates on point while (iterGrid . isValid ()) : data [iterGrid . getCount ()] = f u n c T o I n t e r p o l a t e (iterGrid . getCoordinate ()) iterGrid . next () # Hierarchize the data hierarData = sparseGridLin . toHierarchize (data) # get back an interpolator ptInterp = np . array ([2.3 ,3.2 ,5.9] , dtype = float) interpol = sparseGridLin . c r e a t e I n t e r p o l a t o r (ptInterp) # calculate interpolated value interpValue = interpol . apply (hierarData) print ((" Interpolated value sparse linear " , interpValue)) # create the sparse grid with quadratic interpolator spars eGridQu ad = StOptGrids . S p a r s e S p a c e G r i d N o B o u n d (lowValues , sizeDomValues , level , weights ,2) # Hierarchize the data hierarData = spars eGridQu ad . toHierarchize (data) # get back an interpolator ptInterp = np . array ([2.3 ,3.2 ,5.9] , dtype = float) interpol = sparseG ridQuad . c r e a t e I n t e r p o l a t o r (ptInterp) # calculate interpolated value interpValue = interpol . apply (hierarData) print ((" Interpolated value sparse quadratic " , interpValue)) # test grids function iDim = spa rseGrid Quad . getDimension () pt = spars eGridQu ad . g e t E x t r e m e V a l u e s () # now refine precision = 1e -6 print ((" Size of hierarchical array " , len (hierarData))) value AndHier ar = spa rseGridQ uad . refine (precision , funcToInterpolate , data , hierarData) print ((" Size of hierarchical array after refinement " , len (value AndHiera r [0]))) # calculate interpolated value interpol1 = sparse GridQuad . c r e a t e I n t e r p o l a t o r (ptInterp) interpValue = interpol1 . apply (value AndHiera r [1]) print ((" Interpolated value sparse quadratic after coarsening " , interpValue)) # coarsen the grid precision = 1e -4 v a l u e A n d H i e r a r C o a r s e n = sparseGr idQuad . coarsen (precision , valueAn dHierar [0] , value AndHier ar [1]) print ((" Size of hierarchical array after coarsening " , len (v a l u e A n d H i e r a r C o a r s e n [0]))) # calculate interpolated value interpol2 = sparse GridQuad . c r e a t e I n t e r p o l a t o r (ptInterp) interpValue = interpol2 . apply (v a l u e A n d H i e r a r C o a r s e n [1]) print ((" Interpolated value sparse quadratic after coarsening " , interpValue)) if __name__ == ' __main__ ': unittest . main () Chapter 4

Figure 4 . 1 :

 41 Figure 4.1: Evaluation grid: rotation

 virtual Eigen :: ArrayXXd r e c o n s t r u c t i o n M u l t i p l e (const Eigen :: ArrayXXd & p _ b a s i s C o e f f i c i e n t s) const = 0; // / @ } // / \ brief use basis function to reconstruct a given simulation // / \ param p_isim simulation number // / \ param p _ b a s i s C o e f f i c i e n t s basis coefficients to reconstruct a given conditional expectation virtual double r e c o n s t r u c t i o n A S i m (const int & p_isim , const Eigen :: ArrayXd & p _ b a s i s C o e f f i c i e n t s) const = 0 ; // / \ brief conditional expectation reco nstruct ion // / \ param p_coordinates coordinates to interpolate (uncertainty sample) // / \ param p _ c o o r d B a s i s F u n c t i o n regression coordinates on the basis (size : number of meshes multiplied by the dimension plus one) // / \ return regressed value function reconstructed for each simulation virtual double getValue (const Eigen :: ArrayXd & p_coordinates , const Eigen :: ArrayXd & p _ c o o r d B a s i s F u n c t i o n) const = 0; // / \ brief conditional expectation reco nstruct ion for a lot of simulations // / \ param p_coordinates coordinates to interpolate (uncertainty sample) size uncertainty dimension by number of samples // / \ param p _ c o o r d B a s i s F u n c t i o n regression coordinates on the basis (size : number of meshes multiplied by the dimension plus one) // / \ return regressed value function reconstructed for each simulation Eigen :: ArrayXd getValues (const Eigen :: ArrayXXd & p_coordinates , const Eigen :: ArrayXd & p _ c o o r d B a s i s F u n c t i o n) const { Eigen :: ArrayXd valRet (p_coordinates . cols ()) ; for (int is = 0; is < p_coordinates . cols () ; ++ is) valRet (is) = getValue (p_coordinates . col (is) , p _ c o o r d B a s i s F u n c t i o n) ; return valRet ; } // / \ brief permits to reconstruct a function with basis functions coefficients values given on a grid

1 L

 1 o c a l C o n s t R e g r e s s i o n (const Eigen :: ArrayXi & p_nbMesh , bool p _ b R o t a t i o n A n d R e c a l e = false) ;

L o c a

 l C o n s t R e g r e s s i o n (const bool & p_bZeroDate , const shared_ptr < ArrayXXd > & p_particles , const Eigen :: ArrayXi & p_nbMesh , bool p _ b R o t a t i o n A n d R e c a l e = false)

L o c a

 l L i n e a r R e g r e s s i o n (const Eigen :: ArrayXi & p_nbMesh , bool p _ b R o t a t i o n A n d R e c a l e = false) ; where • p nbMesh is an array giving the number of meshes used in each direction ((4, 4) for the figure 4.2 for example),

L o c a

 l L i n e a r R e g r e s s i o n (const bool & p_bZeroDate , const shared_ptr < ArrayXXd > & p_particles , const Eigen :: ArrayXi & p_nbMesh , bool p _ b R o t a t i o n A n d R e c a l e = false)

Eigen : :

 : ArrayXd g e t A l l S i m u l a t i o n s C o n v e x (const Eigen :: ArrayXd & p_fToRegress , const int & p_nbIterMax)

Figure 4 . 3 :

 43 Figure 4.3: Possible 2D partition due to modified K-Means algorithm

L o c a

 l K M e a n s R e g r e s s i o n (const Eigen :: ArrayXi & p_nbMesh , bool p _ b R o t a t i o n A n d R e c a l e = false) ; and the second constructor permits the build the regression matrix, L o c a l K M e a n s R e g r e s s i o n (const bool & p_bZeroDate , const shared_ptr < ArrayXXd > & p_particles , const Eigen :: ArrayXi & p_nbMesh , bool p _ b R o t a t i o n A n d R e c a l e = false)

L o c a

 l S a m e S i z e C o n s t R e g r e s s i o n (const Eigen :: ArrayXd & p_lowValues , const Eigen :: ArrayXd & p_step , const Eigen :: ArrayXi & p_nbStep) ;

L o c a

 l S a m e S i z e C o n s t R e g r e s s i o n (const bool & p_bZeroDate , const std :: shared_ptr < Eigen :: ArrayXXd > & p_particles , const Eigen :: ArrayXd & p_lowValues , const Eigen :: ArrayXd & p_step , const Eigen :: ArrayXi & p_nbStep) ;

L o c a

 l S a m e S i z e L i n e a r R e g r e s s i o n (const Eigen :: ArrayXd & p_lowValues , const Eigen :: ArrayXd & p_step , const Eigen :: ArrayXi & p_nbStep) ;

L o c a

 l S a m e S i z e L i n e a r R e g r e s s i o n (const bool & p_bZeroDate , const std :: shared_ptr < Eigen :: ArrayXXd > & p_particles , const Eigen :: ArrayXd & p_lowValues , const Eigen :: ArrayXd & p_step , const Eigen :: ArrayXi & p_nbStep)

G l o b

 a l Re g r e s s i on (const int & p_degree , const int & p_dim , bool p _ b R o t a t i o n A n d R e c a l e = false) ;

G l o b a

 l R eg r e s s i on (const bool & p_bZeroDate , const std :: shared_ptr < Eigen :: ArrayXXd > & p_particles , const int & p_degree , bool p _ b R o t a t i o n A n d R e c a l e = false)

 . random . uniform (-. ,1. , size =(1 , nbSimul)) ; # real function toReal = (2+ x [0 ,:]+(1+ x [0 ,:]) *(1+ x [0 ,:])) # function to regress toRegress = toReal + 4* np . random . normal (0. , , nbSimul) . G l o b a l H e r m i t e R e g r e s s i o n (False ,x , degree) y = regressor . g e t A l l S i m u l a t i o n s (toRegress) . transpose () [0]

L

 o c a l G r i d K e r n e l R e g r e s s i o n (const bool & p_bZeroDate , const std :: shared_ptr < Eigen :: ArrayXXd > & p_particles , const double & p_coeffBandWidth , const double & p_coefNbGridPoint , const bool & p_bLinear) ;

 . random . uniform (-. ,1. , size =(1 , nbSimul)) ; # real function toReal = (2+ x [0 ,:]+(+ x [0 ,:]) *(1+ x [0 ,:])) # function to regress toRegress = toReal + 4* np . random . normal (0. , , nbSimul) . L o c a l G r i d K e r n e l R e g r e s s i o n (False ,x , bandwidth , factPoint , True) # get regressed y = regressor . g e t A l l S i m u l a t i o n s (toRegress) . transpose () [0]

L a p l

 a c i a n G r i d K e r n e l R e g r e s s i o n (const bool & p_bZeroDate , const Eigen :: ArrayXXd & p_particles ,

L a p l

 a c i a n L i n e a r K e r n e l R e g r e s s i o n (const bool & p_bZeroDate , const std :: shared_ptr < Eigen :: ArrayXXd > & p_particles , const double & p_h) ;

 . random . uniform (-1. ,1. , size =(1 , nbSimul)) ; # real function toReal = (4+ x [0 ,:]+(3+ x [0 ,:]) *(2+ x [0 ,:])) # function to regress toRegress = toReal + 4* np . random . normal (0. ,1 , nbSimul) # bandwidth bandwidth = 0.05* np . ones (1) # Regressor regressor = StOptReg . L a p l a c i a n C o n s t K e r n e l R e g r e s s i o n (False ,x , bandwidth) # test particules y = regressor . g e t A l l S i m u l a t i o n s (toRegress) . transpose () Chapter 5

Figure 5 . 2 :

 52 Figure 5.2: Non-recombining tree

10 iLast = 14 #

 1014 . T r i n o m i a l T r e e O U S i m u l a t o r (mr , sig , dates) iFirst = nodes at dates 5 points = tree . getPoints (iFirst) # nodes at last date pointsNext = tree . getPoints (iLast) # probabilities proba = tree . getP robabili ty (iFirst , iLast) # connection matrix c onne ct A nd Pr ob a = tree . calConnected (proba) ; # to regress toTreeress = np . zeros ((nbStock , np . shape (pointsNext) [1])) for i in range (nbStock) : toTreeress [i ,:] = i + pointsNext [0 ,:] # grid for storage grid = StOptGrids . R e g u l a r S p a c e G r i d (np . array ([0.]) , np . array ([1.]) , np . array ([nbStock -1])) # conditional expectation object by trees tree = StOptTree . Tree (c o nn ec tA n dP ro ba [1] , c o nn ec tA n dP ro ba [0]) # conditional expectation taken valTree = tree . e x pC on d Mu lt ip l e (toTreeress)

1 C

 1 o n t i n u a t i o n V a l u e (const shared_ptr < SpaceGrid > & p_grid , 2 const shared_ptr < Base Regressi on > & p_condExp , 3 const Eigen :: ArrayXXd & p_cash) with p grid the grids associated with the deterministic control space, p condExp the conditional expectation operator p cash the function to regress as a function of the grid position (first dimension the number of simulations, second dimension the size of the grid)

2

 const shared_ptr < Base Regress ion > & p_condExp , 3 const Eigen :: ArrayXXd & p_values)

1

 double g etASimul ation (const int & p_isim , const Eigen :: ArrayXd & p_ptOfStock)

int sizeForStock = 4 ;/

 4 / second member to regress with a stock ArrayXXd toRegress = ArrayXXd :: Constant (p_nbSimul , sizeForStock , 1.e g u l a r S p a c e G r i d > regular = MyMakeShared < RegularSpaceGrid >(lowValues , step , nbStep) ; // conditional espectation (local basis functions) ArrayXi nbMesh = ArrayXi :: Constant (p_nDim , p_nbMesh) ; shared_ptr < LocalLinearRegression > loc alRegre ssor = MyMakeShared < LocalLinearRegression >(false , x , nbMesh) ; // create continuation value object C o nt i n u a t i o n V a l u e continuation (regular , localRegressor , toRegress) ; // regress with continuation value object ArrayXd ptStock (1) ; ptStock (0) = sizeForStock / 2; // point where we regress // compute regression values for the current point for all the simulations ArrayXd r e g r e s s e d B y C o n t i n u a t i o n = continuation . g e t A l l S i m u l a t i o n s (ptStock) ;

 class te stContVa lues (unittest . TestCase) : # test a regular grid for stocks and a local function basis for regression def t e s t S i m p l e G r i d s A n d R e g r e s s o r (self) : import StOptGrids import StOptReg # low value for the meshes lowValues = np . array ([1. ,2. ,3.] , dtype = float) # size of the meshes step = np . array ([0.7 ,2.3 ,1.9] , dtype = float) # number of steps nbStep = np . array ([3 ,2 ,4] , dtype = np . int32) # create the regular grid # grid = StOptGrids . R e g u l a r S p a c e G r i d (lowValues , step , nbStep) # simulation nbSimul =10000 np . random . seed (1000) x = np . random . uniform (-1. ,1. , size =(1 , nbSimul)) ; # mesh nbMesh = np . array ([16] , dtype = np . int32) # Create the regressor # regressor = StOptReg . L o c a l L i n e a r R e g r e s s i o n (False ,x , nbMesh) # regressed values toReal = (2+ x [0 ,:]+(1+ x [0 ,:]) *(1+ x [0 ,:])) # function to regress toRegress = toReal + 4* np . random . normal (0. ,1 , nbSimul) # create a matrix (number of stock points by number of simulations) toRegressMult = np . zeros (shape =(len (toRegress) , grid . getNbPoints ()))

 a l u e (grid , regressor , toRegressMult) # get back the regressed values at the point stock ptStock = np . array ([1.2 ,3.1 ,5.9] , dtype = float) regressValues = contOb . g e t A l l S i m u l a t i o n s (ptStock) # do the same with an interpolator interp = grid . c r e a t e I n t e r p o l a t o r (ptStock) r e g r e s s V a l u e s I n t e r p = contOb . g e t A l l S i m u l a t i o n s (interp)

 e g r e s s e d = StOptReg . G r i d A n d R e g r e s s e d V a l u e (grid , regressor , toRegressMult) # get back the regressed value for a point stock and an uncertainty valRegressed = g r i d A nd R e g r e s s e d . getValue (ptStock , x [: ,0]) # Now test simulations one by one

 e g r e s s e d . getValue (ptStock , x [: , i]) diff = regressed -regressValues [i] self . a s s e r t A l m o s t E q u a l (diff ,0. , 7 , " test regression simulation by simulation ") # test some mapping of G ne ra lS p ac eG ri d def t e s t G e n e r a l G r i d I n h e r i t a n c e (self) : from StOptGrids import GeneralSpaceGrid , R e g u l a r S p a c e Gr i d from StOptReg import LocalLinearRegression , C o n t i n u a t i o n V a l u e x = np . random . randn (5) regressor = L o c a l L i n e a r R e g r e s s i o n ([1]) regular = R e g u l a r S pa c e G r i d (np . array ([0.]) , np . array ([0.5]) , np . array ([3])) C o nt i n u a t i o n V a l u e (regular , regressor , x) general = G e n e r a l S pa c e G r i d ([[0. , 1. , 1.2 , 1.5]]) C o nt i n u a t i o n V a l u e (general , regressor , x) if __name__ == ' __main__ ':

1 G 3 const

 13 r i d A n d R e g r e s s e d V a l u e (const std :: shared_ptr < SpaceGrid > & p_grid , 2 const std :: shared_ptr < Bas eRegress ion > & p_reg , Eigen :: ArrayXXd & p_values)

 e g r e s s e d V a l u e (const std :: shared_ptr < SpaceGrid > & p_grid , 2 const std :: shared_ptr < Bas eRegress ion > & p_reg)

1

 double getValue (const Eigen :: ArrayXd & p_ptOfStock , const Eigen :: ArrayXd & p_coordinates) const

1

 void s e t R e g r e s s e d V a l u e s (const Eigen :: ArrayXXd & p_regValues)

2 3 const

 3 const shared_ptr < Base Regressi on > & p_condExp , Eigen :: ArrayXXd & p_values) with p grid the grids associated with the deterministic control space, p condExp the conditional expectation operator p values the coefficients of the cut to regress according to the position of the grid (first dimension the number of simulations by the number of components of the cut (nb storage+1), second dimension the size of the grid)

2 3 const

 3 const shared_ptr < Base Regress ion > & p_condExp , Eigen :: Array < Eigen :: ArrayXXd > & p_values)

1

 Eigen :: ArrayXXd getCutsASim (const Eigen :: ArrayXXd & p_hypStock , const Eigen ::ArrayXd & p_coordinates) const

1 const

 1 Eigen :: Array < Eigen :: ArrayXXd , Eigen :: Dynamic , 1 > & getValues () const

 class te stContVa lues (unittest . TestCase) : # unit test for continuation cuts def t e s t S i m p l e G r i d s A n d R e g r e s s o r (self) : # low value for the meshes lowValues = np . array ([1. ,2. ,3.] , dtype = float) # size of the meshes step = np . array ([0.7 ,2.3 ,1.9] , dtype = float) # number of steps nbStep = np . array ([3 ,2 ,4] , dtype = np . int32)

 e g u l a r S p a c e G r i d (lowValues , step , nbStep) # simulation nbSimul =10000 np . random . seed (1000) x = np . random . uniform (-1. ,1. , size =(1 , nbSimul)) ; # mesh nbMesh = np . array ([16] , dtype = np . int32) # Create the regressor # regressor = StOptReg . L o c a l L i n e a r R e g r e s s i o n (False ,x , nbMesh) # regressed values toReal = (2+ x [0 ,:]+(1+ x [0 ,:]) *(1+ x [0 ,:])) # function to regress toRegress = toReal + 4* np . random . normal (0. ,1 , nbSimul) # fictitous cuts with 0 sensibility (1 dimension) toRegressCuts = np . zeros (shape =(4* len (toRegress) , grid . getNbPoints ()))

 StOptReg . C on ti nu a ti on Cu t (grid , regressor , toRegressCuts) hyperCube = np . array ([[lowValues [0] , lowValues [0]+ step [0]* nbStep [0]] ,

1 C 3 const

 13 o n t i n u a t i o n V a l u e T r e e (const std :: shared_ptr < SpaceGrid > & p_grid , 2 const std :: shared_ptr < Tree > & p_condExp , Eigen :: ArrayXXd & p _ v a l u e s N e x t D at e) with p grid the grids associated with the deterministic control space,

1

 Eigen :: ArrayXd ge tV al u eA tN od e s (const Interpolator & p_interpol)

1

 double getValue (const Eigen :: ArrayXd & p_ptOfStock , const int & p_node) const p ptOfStock corresponds to a value of X x,t 2,s part of X x,t s p node node number in the tree describing X x,t 1,s • The second gives the interpolated values at all the nodes 1 Eigen :: ArrayXd getValues (const Eigen :: ArrayXd & p_ptOfStock) const 93 Python API

1

 void l o a d F o r S i m u l a t i o n (const shared_ptr < SpaceGrid > & p_grid , 2 const shared_ptr < Tree > & p_condExp , 3 const const std :: vector < Eigen :: ArrayXXd > & p_values)

1

 Eigen :: ArrayXXd getCutsANode (const Eigen :: ArrayXXd & p_hypStock , const int & p_node) const

 void T r i n o m i a l T r e e O U S i m u l a t o r :: dump (const std :: string & p_name , const Eigen :: ArrayXi & p_index) { gs :: B i na r y F i l e A r c h i v e binArxiv (p_name . c_str () , " w ") ; ArrayXd ddates (p_index . size ()) ;

 double step = p_sim . getStep () ; // time step increment // asset simulated under the neutral risk probability : get the trend of the first asset to get the interest rate double expRate = exp (-step * p_sim . getMu () (0)) ; // Terminal pay off VectorXd Cash (p_payOff (p_sim . getParticles ())) ; for (int iStep = 0; iStep < p_sim . getNbStep () ; ++ iStep) { shared_ptr < ArrayXXd > asset (new ArrayXXd (p_sim . s t e p B a c k w a r d A n d G e t P a r t i c l e s ())) ; // asset = Markov state VectorXd payOffLoc = p_payOff (* asset) ; // pay off // update conditional expectation operator for current Markov state p_regressor . u p d a t e S i m u l a t i o n s (((iStep == (p_sim . getNbStep () -1)) ? true : false) , asset) ; // conditional expectation VectorXd condEspec = p_regressor . g e t A l l S i m u l a t i o n s (Cash) * expRate ; // arbitrage between pay off and cash delivered after Cash = (condEspec . array () < payOffLoc . array ()) . select (payOffLoc , Cash * expRate) ; } return Cash . mean () ; American option with the Python API Using the Python API the American resolution is given below: # Copyright (C) 2016 EDF # All Rights Reserved # This code is published under the GNU Lesser General Public License (GNU LGPL) import numpy as np import math as maths # american option by Longstaff -Schwartz # p_sim Monte Carlo simulator # p_payOff Option pay off # p_regressor regressor object def resolution (p_simulator , p_payOff , p_regressor) :step = p_simulator . getStep () # asset simulated under the neutral risk probability : get the trend of first asset to get interest rate expRate = np . exp (-step * p_simulator . getMu () [0]) # Terminal particle = p_simulator . getParticles () Cash = p_payOff . operator (particle) for iStep in range (0 , p_simulator . getNbStep ()) : asset = p_simulator . s t e p B a c k w a r d A n d G e t P a r t i c l e s () payOffLoc = p_payOff . operator (asset) isLastStep = False if iStep == p_simulator . getNbStep () -1 : isLastStep = True p_regressor . u p d a t e S i m u l a t i o n s (isLastStep , asset) # conditional expectation condEspec = p_regressor . g e t A l l S i m u l a t i o n s (Cash) . squeeze () * expRate # arbitrage Cash = np . where (condEspec < payOffLoc , payOffLoc , Cash * expRate) return maths . fsum (Cash) / len (Cash)

 // a backward simulator MeanRevertingSimulatorTree < OneDimData < OneDimRegularSpaceGrid , double > > b ackSimul ator1 (binArxiv , futureGrid , sigma , mr) ; // strike of put double strike = 50.; // actualization double actu = exp (r * dates (dates . size () -1)) ; // spot provided by simulator ArrayXd spot = ba ckSimula tor1 . getSpotValues () * actu ; // actualized value for payoff ArrayXd val1 = (strike -spot) . cwiseMax (0.) / actu ; for (int istep = 0; istep < nbDtStep ; ++ istep) { // one step backward to update probabilities and connectons between nodes backS imulato r1 . stepBackward () ; // probabilities std :: vector < double > proba = backS imulator 1 . getProba () ; // get connection between nodes std :: vector < std :: vector < std :: array < int , 2 > > > connected = backSimu lator1 . getConnected () ; // conditional expectation operator StOpt :: Tree tree (proba , connected) ; // interest rates actu = exp (r * dates (dates . size () -1 -(istep + 1) * nInc)) ; // spot : add interest rate spot = bac kSimula tor1 . getSpotValues () * actu ; // pay off ArrayXd payOff = (strike -spot) . cwiseMax (0.) / actu ; // actualize value val1 = tree . expCond (val1) ; // arbitrage val1 = (val1 > payOff) . select (val1 , payOff) ; } double finalValue = val1 (0) ; 8.2.2 Python API # backward simulator backSimulator = Simulators . M e a n R e v e r t i n g S i m u l a t o r T r e e (archiveToRead , futureGrid , sigma , mr) # strike strike = 50. # actu actu = np . exp (r * dates [indexT [-1]]) # spot : add interest rate spot = backSimulator . getSpotValues () * actu # actualized payoff val1 = np . where (strike -spot >0 , strike -spot ,0) / actu for istep in np . arange (np . shape (indexT) [0] -1) : # backward in simulator backSimulator . stepBackward () # get back probability matrix proba = backSimulator . getProba () # and connection matrix connected = backSimulator . getConnected () # creta tree for conditional expectation tree = StOptTree . Tree (proba , connected) # interest rates actu = np . exp (r * dates [indexT [-2 -istep]]) # spot : add interest rate spot = backSimulator . getSpotValues () * actu # pay off payOff = np . where (strike -spot >0 , strike -spot ,0) / actu # actualize value val1 = tree . expCond (val1) # arbitrage val1 = np . where (val1 > payOff , val1 , payOff) final = val1 [0]

Figure 9 . 1 :

 91 Figure 9.1: Data to send to processor 3

 T r a n s i t i o n S t e p R e g r e s s i o n D P D i s t (const shared_ptr < FullGrid > & p_pGridCurrent , const shared_ptr < FullGrid > & p_pGridPrevious , const shared_ptr < Op ti mi z er DP Ba s e > & p_pOptimize , const boost :: mpi :: communicator & p_world)

 a l u e s (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiInPrev , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_control , const std :: shared_ptr < BaseRegression > & p_condExp , const bool & p_bOneFile) const with:

 S i m u l a t e S t e p R e g r e s s i o n C o n t r o l D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , const std :: shared_ptr < FullGrid > & p_pGridCurrent , const std :: shared_ptr < FullGrid > & p_pGridFollowing , const std :: shared_ptr < Op ti m iz er DP B as e > & p_pOptimize , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) ; where p ar is the binary archive where the continuation values are stored, p iStep is the number associated with the current time step (0 at the start date of simulation, the number is increased by one at each simulated time step), p nameCont is the base name of the control values, p GridCurrent is the grid at the current time step (p iStep), p GridFollowing is the grid at the next time step (p iStep+1), p Optimize is the Optimizer describing the passage from one time step to the next, p OneFile is equal to true if only one archive is used to store continuation values.

T r a n

 s i t i o n S t e p R e g r e s s i o n D P C u t D i s t (const shared_ptr < FullGrid > & p_pGridCurrent , const shared_ptr < FullGrid > & p_pGridPrevious , const shared_ptr < O p t i m i z e r D P C u t B a s e > & p_pOptimize , const boost :: mpi :: communicator & p_world) :

 void d u m p C o n t i n u a t i o n C u t s V a l u e s (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiInPrev , const std :: shared_ptr < BaseRegression > & p_condExp , const bool & p_bOneFile) constwith:

 double D y n a m i c P r o g r a m m i n g B y R e g r e s s i o n C u t D i s t (const shared_ptr < StOpt :: FullGrid > & p_grid , const shared_ptr < StOpt :: O p t i m i z e r D P C u t B a s e > & p_optimize , shared_ptr < StOpt :: BaseRegression > & p_regressor , const function < ArrayXd (const int & , const ArrayXd & , const ArrayXd &) : mpi :: communicator & p_world) { // from the optimizer get back the simulator shared_ptr < StOpt :: SimulatorDPBase > simulator = p_optimize -> getSimulator () ; // final values vector < shared_ptr < ArrayXXd > > valueCutsNext = StOpt :: F i n a l S t e p D P C u t D i s t (p_grid , p_optimize -> getNbRegime () , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) (p_funcFinalValue , simulator -> getParticles () . array ()) ; // dump string toDump = p_fileToDump ; // test if one file generated if (! p_bOneFile) toDump += " _ " + boost :: lexical_cast < string >(p_world . rank ()) ; shared_ptr < gs :: BinaryFileArchive > ar ; if ((! p_bOneFile) || (p_world . rank () == 0)) ar = make_shared < gs :: BinaryFileArchive >(toDump . c_str () , " w ") ; // name for object in archive string nameAr = " Continuation " ; for (int iStep = 0; iStep < simulator -> getNbStep () ; ++ iStep) { ArrayXXd asset = simulator -> s t e p B a c k w a r d A n d G e t P a r t i c l e s () ; // conditional expectation operator p_regressor -> u p d a t e S i m u l a t i o n s (((iStep == (simulator -> getNbStep () -1)) ? true : false) , asset) ; // transition object StOpt :: T r a n s i t i o n S t e p R e g r e s s i o n D P C u t D i s t transStep (p_grid , p_grid , p_optimize , p_world) ; vector < shared_ptr < ArrayXXd > > valueCuts = transStep . oneStep (valueCutsNext , p_regressor) ; transStep . d u m p C o n t i n u a t i o n C u t s V a l u e s (ar , nameAr , iStep , valueCutsNext , p_regressor , p_bOneFile) ; valueCutsNext = valueCuts ; } // reconstruct a small grid for interpolation ArrayXd valSim = StOpt :: r e c o n s t r u c t P r o c 0 M p i (p_pointStock , p_grid , valueCutsNext [p _i ni ti a lR eg im e] , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) ; return ((p_world . rank () == 0) ? valSim . head (simulator -> getNbSimul ()) . mean () : 0.) ; } # endif

S i m u

 l a t e S t e p R e g r e s s i o n C u t D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , const shared_ptr < FullGrid > & p_pGridFollowing , const shared_ptr < O p t i m i z e r D P C u t B a s e > & p_pOptimize , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world)

 hpp > # include " geners / B i n a r y F i l e A r c h i v e . hh " # include " StOpt / core / grids / FullGrid . h " # include " StOpt / core / utils / St at eW i th St oc k s . h " # include " StOpt / dp / S i m u l a t e S t e p R e g r e s s i o n C u t D i s t . h " # include " StOpt / dp / O p t i m i z e r D P C u t B a s e . h " # include " StOpt / dp / Si m ul at or D PB as e . h " /* * \ file S i m u l a t e R e g r e s s i o n C u t D i s t . h * \ brief Defines a simple program showing how to use simulations when optimizaton achived with transition problems solved with cuts . \ brief Simulate the optimal strategy , mpi version , Bellman cuts used to allow LP resolution of transition problems // / \ param p_grid grid used for deterministic state (stocks for example) // / \ param p_optimize optimizer defining the optimization between two time steps // / \ param p _ f u n c F i n a l V a l u e function defining the final value cuts // / \ param p_pointStock initial point stock // / \ param p_ in i ti al R eg im e regime at initial date // / \ param p_fileToDump name associated to dumped bellman values // / \ param p_bOneFile do we store continuation values in only one file // / \ param p_world MPI communicator double S i m u l a t e R e g r e s s i o n C u t D i s t (const std :: shared_ptr < StOpt :: FullGrid > & p_grid , const std :: shared_ptr < StOpt :: O p t i m i z e r D P C u t B a s e > & p_optimize , const std :: function < Eigen :: ArrayXd (const int & , const Eigen :: ArrayXd & , const Eigen :: ArrayXd &) > & p_funcFinalValue , const Eigen :: ArrayXd & p_pointStock , const int & p_initialRegime , const std :: string & p_fileToDump , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) { // from the optimizer get back the simulator std :: shared_ptr < StOpt :: SimulatorDPBase > simulator = p_optimize -> getSimulator () ; int nbStep = simulator -> getNbStep () ; std :: vector < StOpt :: StateWithStocks > states ; states . reserve (simulator -> getNbSimul ()) ; for (int is = 0; is < simulator -> getNbSimul () ; ++ is) states . push_back (StOpt :: St at e Wi th St o ck s (p_initialRegime , p_pointStock , Eigen :: ArrayXd :: Zero (simulator -> getDimension ()))) ; std :: string toDump = p_fileToDump ; // test if one file generated if (! p_bOneFile) toDump += " _ " + boost :: lexical_cast < std :: string >(p_world . rank ()) ; gs :: B i na r y F i l e A r c h i v e ar (toDump . c_str () , " r ") ; // name for continuation object in archive std :: string nameAr = " Continuation " ; // cost function Eigen :: ArrayXXd costFunction = Eigen :: ArrayXXd :: Zero (p_optimize -> ge t Si mu Fu n cS iz e () , simulator -> getNbSimul ()) ; for (int istep = 0; istep < nbStep ; ++ istep) { StOpt :: S i m u l a t

/

 / Copyright (C) 2016 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef O P T I M I Z E R N O R E G R E S S I O N D P B A S E _ H # define O P T I M I Z E R N O R E G R E S S I O N D P B A S E _ H # include < Eigen / Dense > # include " StOpt / core / utils / St at eW i th St oc k s . h " # include " StOpt / core / grids / SpaceGrid . h " # include " StOpt / regression / Bas eRegress ion . h " # include " StOpt / regression / G r i d A n d R e g r e s s e d V a l u e . h " # include " StOpt / dp / Si m ul at or D PB as e . h " # include " StOpt / dp / O p t i m i z e r B a s e I n t e r p . h " /* * \ file O p t i m i z e r N o R e g r e s s i o n D P B a s e . h * \ brief Define an abstract class for Dynamic Programming problems solve by Monte Carlo but without regression method * to compute conditional expectation . \ class O p t i m i z e r N o R e g r e s s i o n D P B a s e O p t i m i z e r N o R e g r e s s i o n D P B a s e . h // / Base class for optimizer for Dynamic Programming solved without regression method to compute conditional expectation . class O p t i m i z e r N o R e g r e s s i o n D P B a s e : public O p t i m i z e r B a s e I n t e r p { public : O p t i m i z e r N o R e g r e s s i o n D P B a s e () {} virtual ~O p t i m i z e r N o R e g r e s s i o n D P B a s e () {} // / \ brief defines the diffusion cone for parallelism // / \ param p _ r e g i o n B y P r o c e s s o r region (min max) treated by the processor for the different regimes treated // / \ return returns in each dimension the min max values in the stock that can be reached from the grid p _ g r i d B y P r o c e s s o r for each regime virtual std :: vector < std :: array < double , 2 > > getCone (const std :: vector < std :: array < double , 2 > > & p _ r e g i o n B y P r o c e s s o r) const = 0; // / \ brief defines the dimension to split for MPI parallelism // / For each dimension return true is the direction can be split virtual Eigen :: Array < bool , Eigen :: Dynamic , 1 > g e t D i m e n s i o n T o S p l i t () const = 0 ; // / \ brief defines a step in optimization // / \ param p_stock coordinates of the stock point to treat // / \ param p_valNext Optimized values at next time step for each regime // / \ param p_ regress orCur Regressor at the current date // / \ return a pair : // / -for each regimes (column) gives the solution for each particle (row) // / -for each control (column) gives the optimal control for each particle (rows) // / . virtual std :: pair < Eigen :: ArrayXXd , Eigen :: ArrayXXd > stepOptimize (const Eigen :: ArrayXd & p_stock , const std :: vector < G r i d A n d R e g r e s s e d V a l u e > & p_valNext , std :: shared_ptr < B aseRegr ession > p_ regresso rCur) const = 0; // / \ brief Defines a step in simulation using interpolation in controls // / \ param p_grid grid at arrival step after command // / \ param p_control defines the controls // / \ param p_state defines the state value (modified) // / \ param p_phiInOut defines the value function (modified) : size number of functions to follow virtual void s t e p S i m u l a t e C o n t r o l (const std :: shared_ptr < StOpt :: SpaceGrid > & p_grid , const std :: vector < StOpt :: G r i d A n d R e g r e s s e d V a l u e > & p_control , StOpt :: St at eW i th St oc k s & p_state , Eigen :: Ref < Eigen :: ArrayXd > p_phiInOut) const = 0 ; // / \ brief Get the number of regimes allowed for the asset to be reached at the current time step // / If \ f$ t \ f$ is the current time , and $ \ f$ dt \ f$ the resolution step , this is the number of regime allowed on \ f$ [t -dt , t [\ f$ virtual int getNbRegime () const = 0 ; // / \ brief get the simulator back virtual std :: shared_ptr < StOpt :: S im ul a to rD PB a se > getSimulator () const = 0; // / \ brief get back the dimension of the control virtual int getNbControl () const = 0 ; // / \ brief get size of the function to follow in simulation virtual int ge t Si mu Fu n cS iz e () const = 0; }; } # endif /* OP T I M I Z E R D P B A S E _ H */

T

 r a n s i t i o n S t e p D P D i s t (const shared_ptr < FullGrid > & p_pGridCurrent , const shared_ptr < FullGrid > & p_pGridPrevious , const std :: shared_ptr < BaseRegression > & p_regressorCurrent , const std :: shared_ptr < BaseRegression > & p_regressorPrevious , const shared_ptr < O p t i m i z e r N o R e g r e s s i o n D P B a s e > & p_pOptimize , const boost :: mpi :: communicator & p_world) : with • p pGridCurrent is the grid at the current time step (t i),

 void dumpValues (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < Eigen :: ArrayXXd > & p_control , const bool & p_bOneFile) const with:

 double D y n a m i c P r o g r a m m i n g P o r t f o l i o D i s t (const shared_ptr < StOpt :: FullGrid > & p_grid , const shared_ptr < OptimizePortfolioDP > & p_optimize , const ArrayXi & p_nbMesh , const function < double (const int & , const ArrayXd & , const ArrayXd &) > & p_funcFinalValue , i n i t i a l i z e S i m u l a t i o n () ; // store regressor shared_ptr < StOpt :: LocalConstRegression > r e g r e s s o r P r e v i o u s ; // store final regressed values in object valuesStored shared_ptr < vector < ArrayXXd > > valuesStored = make_shared < vector < ArrayXXd > >(p_optimize -> getNbRegime ()) ; { vector < shared_ptr < ArrayXXd > > valuesP revious = StOpt :: Fi n al St ep D PD is t (p_grid , p_optimize -> getNbRegime () , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) (p_funcFinalValue , * p_optimize -> getCurrentSim ()) ; // regressor operator r e gr e s s o r P r e v i o u s = make_shared < StOpt :: LocalConstRegression >(false , * p_optimize -> getCurrentSim () , p_nbMesh) ; for (int iReg = 0; iReg < p_optimize -> getNbRegime () ; ++ iReg) (* valuesStored) [iReg] = regressorPrevious -> g e t C o o r d B a s i s F u n c t i o n M u l t i p l e (valu esPrevio us [iReg] -> transpose ()) . transpose () ; } string toDump = p_fileToDump ; // test if one file generated if (! p_bOneFile) toDump += " _ " + boost :: lexical_cast < string >(p_world . rank ()) ; shared_ptr < gs :: BinaryFileArchive > ar ; if ((! p_bOneFile) || (p_world . rank () == 0)) ar = make_shared < gs :: BinaryFileArchive >(toDump . c_str () , " w ") ; // name for object in archive string nameAr = " OptimizePort " ; // iterate on time steps for (int iStep = 0; iStep < p_optimize -> getNbStep () ; ++ iStep) { // step backward for simulations p_optimize -> on eS te p Ba ck w ar d () ; // create regressor at the given date bool bZeroDate = (iStep == p_optimize -> getNbStep () -1) ; shared_ptr < StOpt :: LocalConstRegression > regressorCur = make_shared < StOpt :: LocalConstRegression >(bZeroDate , * p_optimize -> getCurrentSim () , p_nbMesh) ; // transition object StOpt :: T r a n s i t i o n S t e p D P D i s t transStep (p_grid , p_grid , regressorCur , regressorPrevious , p_optimize , p_world) ; pair < shared_ptr < vector < ArrayXXd > >, shared_ptr < vector < ArrayXXd > > > v a l u e s A n d C o n t r o l = transStep . oneStep (* valuesStored) ; // dump control values transStep . dumpValues (ar , nameAr , iStep , * v a l ue s A n d C o n t r o l . second , p_bOneFile) ; valuesStored = v a l u e sA n d C o n t r o l . first ; // shift regressor r e gr e s s o r P r e v i o u s = regressorCur ; } // interpolate at the initial stock point and initial regime (0 here) (take first particle) shared_ptr < ArrayXXd > topRows = make_shared < ArrayXXd >((* valuesStored) [0]. topRows (1)) ; return StOpt :: r e c o n s t r u c t P r o c 0 M p i (p_initialPortfolio , p_grid , topRows , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) . mean () ; } # endif

 i z e r D P T r e e B a s e . h * \ brief Define an abstract class for Dynamic Programming problems solved by tree methods \ class O p t i m i z e r D P T r e e B a s e O p t i m i z e r D P T r e e B a s e . h // / Base class for optimizer for Dynamic Programming with tree methods class O p t i m i z e r D P T r e e B a s e : public OptimizerBase { public : O p t i m i z e r D P T r e e B a s e () {} virtual ~O p t i m i z e r D P T r e e B a s e () {} // / \ brief defines the diffusion cone for parallelism // / \ param p _ r e g i o n B y P r o c e s s o r region (min max) treated by the processor for the different regimes treated // / \ return returns in each dimension the min max values in the stock that can be reached from the grid p _ g r i d B y P r o c e s s o r for each regime virtual std :: vector < std :: array < double , 2 > > getCone (const std :: vector < std :: array < double , 2 > > & p _ r e g i o n B y P r o c e s s o r) const = 0; // / \

 StOpt :: St at eT r ee St oc k s & p_state , Eigen :: Ref < Eigen :: ArrayXd > p_phiInOut) const = 0 ; // / \ brief Get the number of regimes allowed for the asset to be reached at the current time step // / If \ f$ t \ f$ is the current time , and $ \ f$ dt \ f$ the resolution step , this is the number of regime allowed on \ f$ [t -dt , t [\ f$ virtual int getNbRegime () const = 0 ; // / \ brief get the simulator back virtual std :: shared_ptr < StOpt :: S i m u l a t o r D P B a s e T r e e > getSimulator () const = 0; // / \ brief get back the dimension of the control virtual int getNbControl () const = 0 ; // / \ brief get size of the function to follow in simulation virtual int ge t Si mu Fu n cS iz e () const = 0; }; } # endif /* O P T I M I Z E R D P T R E E B A S E _ H */

 T r a n s i t i o n S t e p T r e e D P D i s t (const std :: shared_ptr < FullGrid > & p_pGridCurrent , const std :: shared_ptr < FullGrid > & p_pridPrevious , const std :: shared_ptr < O p t i m i z e r D P T r e e B a s e > & p_pOptimize , const boost :: mpi :: communicator & p_world) with • p pGridCurrent is the grid at the current time step (t i), • p pGridPrevious is the grid at the previously processed time step (t i+1), • p pOptimize the optimizer object • p world The MPI communicator A similar object is available without the MPI distribution framework TransitionStep TreeDP with always the activation of parallelization with threads and MPI on calculations on the full grid points. The main method is std :: pair < std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > >, std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > > oneStep (const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiIn , const std :: shared_ptr < Tree > & p_condExp) const with

void d u m

 p C o n t i n u a t i o n V a l u e s (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiIn , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_control , const std :: shared_ptr < Tree > & p_tree , const bool & p_bOneFile) const ;

1 S

 1 i m u l a t e S t e p T r e e D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , 2 const std :: shared_ptr < FullGrid > & p_pGridFollowing , const std :: shared_ptr < O p t i m i z e r D P T r e e B a s e > & p_pOptimize , 3 const bool & p_bOneFile , 4 const boost :: mpi :: communicator & p_world) where p ar is the binary archive where the continuation values are stored, p iStep is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step), p nameCont is the base name for continuation values, p GridFollowing is the grid at the next time step (p iStep+1), p Optimize the Optimizer describing the transition from one time step to the next, p OneFile equal to true if only one archive is used to store continuation values. p world The MPI communicator This object implements the method oneStep void oneStep (std :: vector < S ta t eT re eS t oc ks > & p_statevector , Eigen :: ArrayXXd & p_phiInOut) const

S i m u

 l a t e S t e p T r e e C o n t r o l D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , const std :: shared_ptr < FullGrid > & p_pGridCurrent , const std :: shared_ptr < FullGrid > & p_pGridFollowing , const std :: shared_ptr < O p t i m i z e r D P T r e e B a s e > & p_pOptimize , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) ; where p ar is the binary archive where the continuation values are stored, p iStep is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step), p nameCont is the base name of the control values, p GridCurrent is the grid at the current time step (p iStep), p GridFollowing is the grid at the next time step (p iStep+1), p Optimize is the Optimizer describing the transition from one time step to the next, p OneFile is equal to true if only one archive is used to store continuation values. p world The MPI communicator This object implements the method oneStep 1 void oneStep (std :: vector < S ta t eT re eS t oc ks > & p_statevector , Eigen :: ArrayXXd & p_phiInOut) const ;

 2.2 section. The framework provides an TransitionStepTreeD PCutDist object in MPI which solves the optimization problem with data distribution over a time step with the following constructor: T r a n s i t i o n S t e p T r e e D P C u t D i s t (const std :: shared_ptr < FullGrid > & p_pGridCurrent , const std :: shared_ptr < FullGrid > & p_pGridPrevious , const std :: shared_ptr < O p t i m i z e r D P C u t T r e e B a s e > & p_pOptimize , const boost :: mpi :: communicator & p_world) ;

 void d u m p C o n t i n u a t i o n C u t s V a l u e s (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiInPrev , const std :: shared_ptr < Tree > & p_condExp , const bool & p_bOneFile) const with:

S i m u

 l a t e S t e p T r e e C u t D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , const std :: shared_ptr < FullGrid > & p_pGridFollowing , const std :: shared_ptr < O p t i m i z e r D P C u t T r e e B a s e > & p_pOptimize , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) ; where • p ar is the binary archive where the continuation values are stored,

 h " # include " StOpt / dp / Si m ul at or D PB as e . h " /* * \ file S i m u l a t e T r e e C u t D i s t . h * \ brief Defines a simple program showing how to use simulations when optimizaton achived with transition problems solved with cuts and uncertainties on a \ brief Simulate the optimal strategy , mpi version , Bellman cuts used to allow LP resolution of transition problems when uncertainties are defined on a tree // / \ param p_grid grid used for deterministic state (stocks for example) // / \ param p_optimize optimizer defining the optimization between two time steps // / \ param p _ f u n c F i n a l V a l u e function defining the final value cuts // / \ param p_pointStock initial point stock // / \ param p_ in i ti al R eg im e regime at initial date // / \ param p_fileToDump name associated to dumped bellman values // / \ param p_bOneFile do we store continuation values in only one file // / \ param p_world MPI communicator double S i m u l a t e T r e e C u t D i s t (const std :: shared_ptr < StOpt :: FullGrid > & p_grid , const std :: shared_ptr < StOpt :: O p t i m i z e r D P C u t T r e e B a s e > & p_optimize , const std :: function < Eigen :: ArrayXd (const int & , const Eigen :: ArrayXd & , const Eigen :: ArrayXd &) > & p_funcFinalValue , const Eigen :: ArrayXd & p_pointStock , const int & p_initialRegime , const std :: string & p_fileToDump , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) { // from the optimizer get back the simulator std :: shared_ptr < StOpt :: SimulatorDPBaseTree > simulator = p_optimize -> getSimulator () ; int nbStep = simulator -> getNbStep () ; std :: vector < StOpt :: StateTreeStocks > states ; states . reserve (simulator -> getNbSimul ()) ; for (int is = 0; is < simulator -> getNbSimul () ; ++ is) states . push_back (StOpt :: St at e Tr ee St o ck s (p_initialRegime , p_pointStock , 0)) ; std :: string toDump = p_fileToDump ; // test if one file generated if (! p_bOneFile) toDump += " _ " + boost :: lexical_cast < std :: string >(p_world . rank ()) ; gs :: B i na r y F i l e A r c h i v e ar (toDump . c_str () , " r ") ; // name for continuation object in archive std :: string nameAr = " C o n t i n u a t i o n Tr e e " ; // cost function Eigen :: ArrayXXd costFunction = Eigen :: ArrayXXd :: Zero (p_optimize -> ge t Si mu Fu n cS iz e () , simulator -> getNbSimul ()) ; for (int istep = 0; istep < nbStep ; ++ istep) { StOpt :: S i m u l a t e S t e p T r e e C u t

10. 1

 1 Mapping to the framework To use the Python API, it is possible to use only the mapping of grids, continuation values, and regression object and program an equivalent of TransitionStepRegressionDP and of SimulateStepRegression, SimulateStepRegressionControl in Python. No mapping is currently available for TransitionStepDP. An example using Python is given by # Copyright (C) 2016 EDF # All Rights Reserved # This code is published under the GNU Lesser General Public License (GNU LGPL) import numpy as np import StOptReg as reg class T r a n s i t i o n S t e p R e g r e s s i o n D P : def __init__ (self , p_pGridCurrent , p_pGridPrevious , p_pOptimize) : self . m_p GridCur rent = p _pGridCu rrent self . m_ pG r id Pr ev i ou s = p _p Gr i dP re vi o us self . m_pOptimize = p_pOptimize def oneStep (self , p_phiIn , p_condExp) : nbRegimes = self . m_pOptimize . getNbRegime () phiOut = list (range (nbRegimes)) nbControl = self . m_pOptimize . getNbControl () controlOut = list (range (nbControl)) # only if the processor is working if self . m_ pGridCur rent . getNbPoints () > 0: # allocate for solution for iReg in range (nbRegimes) : phiOut [iReg] = np . zeros ((p_condExp . getNbSimul () , self . m_pGrid Current . getNbPoints ())) for iCont in range (nbControl) : controlOut [iCont] = np . zeros ((p_condExp . getNbSimul () , self . m_p GridCur rent . getNbPoints ())) # number of threads nbThreads = 1 contVal = [] for iReg in range (len (p_phiIn)) :

 r C o n s t r u c t i o n (unittest . TestCase) : def test (self) : # test MPI moduleMpi4Py = importlib . util . find_spec (' mpi4py ') if (moduleMpi4Py is not None) : from mpi4py import MPI initialValues = np . zeros (1 , dtype = float) + 1. sigma = np . zeros (1) + 0.2 mu = np . zeros (1) + 0.05 corr = np . ones ((1 ,1) , dtype = float) # number of step nStep = 30 # exercise dates dates = np . linspace (0. , 1. , nStep + 1) T = dates [len (dates) -1] nbSimul = 10 # simulation number (optimization and simulation) # simulator # ######### bsSim = sim . B l a c k S c h o l e s S i m u l a t o r (initialValues , sigma , mu , corr , T , len (dates) -1 , nbSimul , False) strike = 1. # Pay off payOff = Utils . BasketCall (strike) # optimizer # ######### N = 3 # number of exercise dates swiOpt = opt . O p t i m i z e r S w i n g B l a c k S c h o l e s (payOff , N) # link simulator to optimizer swiOpt . setSimulator (bsSim) # archive # ####### ar = StOptGeners . B i n a r y F i l e A r c h i v e (" Archive " ," w ") # regressor # ######### nMesh = np . array ([1]) regressor = StOptReg . L o c a l L i n e a r R e g r e s s i o n (nMesh) # Grid # ##### # low value for the meshes lowValues = np . array ([0.] , dtype = float) # size of the meshes step = np . array ([1.] , dtype = float) # number of steps nbStep = np . array ([N] , dtype = np . int32) gridArrival = StOptGrids . R e g u l a r S p a c e G r i d (lowValues , step , nbStep) gridStart = StOptGrids . R e g u l a r S p a c e G r i d (lowValues , step , nbStep -1)# pay off function for swing# payOffBasket =Utils . BasketCall (strike) ; payoff = Utils . PayOffSwing (payOffBasket , N) dir (payoff) # final step # ########### asset = bsSim . getParticles () fin = StOptGlobal . FinalStepDP (gridArrival ,1) values = fin . set (payoff , asset) # transition time step # on step backward and get asset asset = bsSim . s t e p B a c k w a r d A n d G e t P a r t i c l e s () # update regressor regressor . u p d a t e S i m u l a t i o n s (0 , asset) transStep = StOptGlobal . T r a n s i t i o n S t e p R e g r e s s i o n D P (gridStart , gridArrival , swiOpt) v a l u e s N e x t A n d C o n t r o l = transStep . oneStep (values , regressor) transStep . d u m p C o n t i n u a t i o n V a l u e s (ar , " Continuation " ,1 , v a l u e s N e x t A n d C o n t r o l [0] , v a l u e s N e x t A n d C o n t r o l [1] , regressor) # simulate time step # nbSimul = 10 vecOfStates =[] # state of each simulation for i in np . arange (nbSimul) : # one regime , all with same stock level (dimension 2) , same realization of simulation (dimension 3) vecOfStates . append (StOptGlobal . St a te Wi th S to ck s (1 , np . array ([0.]) , np . zeros (1))) arRead = StOptGeners . B i n a r y F i l e A r c h i v e (" Archive " ," r ") simStep = StOptGlobal . S i m u l a t e S t e p R e g r e s s i o n (arRead ,1 , " Continuation " , gridArrival , swiOpt) phi = np . zeros ((1 , nbSimul)) VecOf StateNe xt = simStep . oneStep (vecOfStates , phi) if __name__ == ' __main__ ': unittest . main () Its variation in terms of timing loop for optimization is given below (note that the object TransitionStepRegressionDP is the result of the mapping between Python and c++ and given in the module StOptGlobal) # Copyright (C) 2016 EDF # All Rights Reserved # This code is published under the GNU Lesser General Public License (GNU LGPL) import StOptGrids import StOptReg import StOptGlobal import StOptGeners def D y n a m i c P r o g r a m m i n g B y R e g r e s s i o n H i g h L e v e l (p_grid , p_optimize , p_regressor , p_funcFinalValue , p_pointStock , p_initialRegime , p_fileToDump) : # from the optimizer get back the simulation simulator = p_optimize . getSimulator () # final values fin = StOptGlobal . FinalStepDP (p_grid , p_optimize . getNbRegime ()) valuesNext = fin . set (p_funcFinalValue , simulator . getParticles ()) ar = StOptGeners . B i n a r y F i l e A r c h i v e (p_fileToDump , " w ") nameAr = " Continuation " nsteps = simulator . getNbStep () # iterate on time steps for iStep in range (nsteps) : asset = simulator . s t e p B a c k w a r d A n d G e t P a r t i c l e s () # conditional expectation operator if iStep == (simulator . getNbStep () -1) : p_regressor . u p d a t e S i m u l a t i o n s (True , asset) else : p_regressor . u p d a t e S i m u l a t i o n s (False , asset) # transition object transStep = StOptGlobal . T r a n s i t i o n S t e p R e g r e s s i o n D P (p_grid , p_grid , p_optimize) v a lu e s A n d C o n t r o l = transStep . oneStep (valuesNext , p_regressor) transStep . d u m p C o n t i n u a t i o n V a l u e s (ar , nameAr , nsteps -1 -iStep , valuesNext , v a l u e s A n d C o n t r o l [1] , p_regressor) valuesNext = v a l u e s A n dC o n t r o l [0] # interpolate at the initial stock point and initial regime return (p_grid . c r e a t e I n t e r p o l a t o r (p_pointStock) . applyVec (valuesNext [p _ in it ia l Re gi me])) . mean ()

 e s t B i n a r y A r c h i v e S t O p t (unittest . TestCase) : def t e s t S i m p l e S t o r a g e A n d L e c t u r e R e c G r i d (self) : # low value for the mesh lowValues = np . array ([1. ,2. ,3.] , dtype = np . float) # size of the mesh step = np . array ([0.7 ,2.3 ,1.9] , dtype = np . float) # number of step nbStep = np . array ([4 ,5 ,6] , dtype = np . int32) # degree of the polynomial in each direction degree = np . array ([2 ,1 ,3] , dtype = np . int32) # create the Legendre grid grid = StOptGrids . R e g u l a r L e g e n d r e G r i d (lowValues , step , nbStep , degree) # simulate the perburbed values# nbSimul =40000np . random . seed (1000) x = np . random . uniform (-1. ,1. , size =(1 , nbSimul)) ; # mesh nbMesh = np . array ([16] , dtype = np . int32) # Create the regressor # regressor = StOptReg . L o c a l L i n e a r R e g r e s s i o n (False ,x , nbMesh) # regressed values same values for each point of the grid

 # archi veToWri te = StOptGeners . B i n a r y F i l e A r c h i v e (" MyArchive " ," w ") # step 1 archi veToWri te . d u m p G r i d A n d R e g r e s s e d V a l u e (" toStore " , 1 , listToReg , regressor , grid) # step 3 archi veToWri te . d u m p G r i d A n d R e g r e s s e d V a l u e (" toStore " , 3 , listToReg , regressor , grid) # Read the regressed values # archiveToRead = StOptGeners . B i n a r y F i l e A r c h i v e (" MyArchive " ," r ") contValues = archiveToRead . r e a d G r i d A n d R e g r e s s e d V a l u e (3 , " toStore ") # list of 2 continuation values# stockPoint = np . array ([1.5 ,3. ,5.]) uncertainty = np . array ([0.]) value = contValues [0]. getValue (stockPoint , uncertainty) # non regular grid def t e s t S i m p l e S t o r a g e A n d L e c t u r e N o n R e g u l a r (self) : # create the Legendre grid grid = StOptGrids . G e n e r a l S p a c e G r i d ([[1.

 1000) x = np . random . uniform (-1. ,1. , size =(1 , nbSimul)) ; # mesh nbMesh = np . array ([16] , dtype = np . int32) # Create the regressor # regressor = StOptReg . L o c a l L i n e a r R e g r e s s i o n (False ,x , nbMesh) # regressed values same values for each point of the grid

 x [0 ,:]+(1+ x [0 ,:]) *(1+ x [0 ,:])) # function to regress toRegress = toReal + 4* np . random . normal (0. ,1 , nbSimul) # create a matrix (number of stock points by number of simulations) toRegressMult = np . zeros (shape =(len (toRegress) , grid . getNbPoints ())) for i in range (toRegressMult . shape [1]) : toRegressMult [: , i] = toRegress # into a list : two times to test 2 regimes listToReg = [] listToReg . append (toRegressMult) listToReg . append (toRegressMult) # Create the binary archive to dump# ## archi veToWri te = StOptGeners . B i n a r y F i l e A r c h i v e (" MyArchive " ," w ") # step 1 archi veToWri te . d u m p G r i d A n d R e g r e s s e d V a l u e (" toStore " , 1 , listToReg , regressor , grid) # step 3 archi veToWri te . d u m p G r i d A n d R e g r e s s e d V a l u e (" toStore " , 3 , listToReg , regressor , grid) # Read the regressed values # archiveToRead = StOptGeners . B i n a r y F i l e A r c h i v e (" MyArchive " ," r ") contValues = archiveToRead . r e a d G r i d A n d R e g r e s s e d V a l u e (3 , " toStore ") # list of 2 continuation values # stockPoint = np . array ([1.5 ,3. ,5.]) uncertainty = np . array ([0.]) value = contValues [0]. getValue (stockPoint , uncertainty) if __name__ == ' __main__ ':

 def createData () : X1 = np . arange (0.0 , 2.2 , 0.01) X2 = np . arange (0.0 , 1.1 , 0.005) Y = np . zeros ((len (X1) , len (X2))) for i in range (len (X1)) : for j in range (len (X2)) : if i < len (X1) //2: if j < len (X2) //2: Y [i , j]= X1 [i]+ X2 [j] . reshape (XX1 ,(r *c ,1)) [: ,0] I = np . reshape (XX2 ,(r *c ,1)) [: ,0] Y = np . reshape (Y ,(r *c ,1)) [: ,0] xMatrix = np . zeros ((2 , len (X) regression 2 by 2 meshes nbMesh = np . array ([2 ,2] , dtype = np . int32) regressor = StOptReg . L o c a l L i n e a r R e g r e s s i o n (False , xMatrix , nbMesh) # coefficients coeff = regressor . g e t C o o r d B a s i s F u n c t i o n (y) print (" Regressed coeff " , coeff) # store them in a matrix coeffList = np . zeros (shape =(1 ,3*2*2)) coeffList [0 ,:]= coeff . transpose () # archive write for regressors a r c h i v e W r i t e F o r R e g r e s s o r = StOptGeners . B i n a r y F i l e A r c h i v e (" archive " ," w ") # store step =1 a r c h i v e W r i t e F o r R e g r e s s o r . du m pS om e 2D Ar ra y (" RegCoeff " , step , coeff) a r c h i v e W r i t e F o r R e g r e s s o r . d u m p S o m e R e g r e s s o r (" Regressor " , step , regressor) # archive Read for regressors a r c h i v e R e a d F o r R e g r e s s o r = StOptGeners . B i n a r y F i l e A r c h i v e (" archive " ," r ") # get back values = a r c h i v e R e a d F o r R e g r e s s o r . r ea dS o me 2D Ar r ay (" RegCoeff " , step) reg = a r c h i v e R e a d F o r R e g r e s s o r . r e a d S o m e R e g r e s s o r (" Regressor " , step) print (" Regressed coeff " , values) print (" Reg " , reg)

/

 / Copyright (C) 2021 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef O P T I M I Z E R S W I T C H B A S E _ H # define O P T I M I Z E R S W I T C H B A S E _ H # include < Eigen / Dense >

 std :: vector < shared_ptr < Eigen :: ArrayXXd > > OneStep (const std :: vector < shared_ptr < Eigen :: ArrayXXd > > & p_phiIn , const shared_ptr < BaseRegression > & p_condExp)

void d u m

 p C o n t i n u a t i o n V a l u e s (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiInPrev , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_control , const std :: shared_ptr < BaseRegression > & p_condExp , const bool & p_bOneFile) const with:

 double D y n a m i c P r o g r a m m i n g B y R e g r e s s i o n D i s t (const shared_ptr < StOpt :: FullGrid > & p_grid , const shared_ptr < StOpt :: O p ti mi z er DP Ba s e > & p_optimize , shared_ptr < StOpt :: BaseRegression > & p_regressor , const function < double (const int & , const Eigen :: ArrayXd & , const Eigen :: ArrayXd &) > & p_funcFinalValue , const Eigen :: ArrayXd & p_pointStock , const int & p_initialRegime , const string & p_fileToDump , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) { // from the optimizer get back the simulator shared_ptr < StOpt :: SimulatorDPBase > simulator = p_optimize -> getSimulator () ; // final values vector < shared_ptr < Eigen :: ArrayXXd > > valuesNext = StOpt :: F i na lS te p DP Di st (p_grid , p_optimize -> getNbRegime () , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) (p_funcFinalValue , simulator -> getParticles () . array ()) ; // dump string toDump = p_fileToDump ; // test if one file generated if (! p_bOneFile) toDump += " _ " + boost :: lexical_cast < string >(p_world . rank ()) ; shared_ptr < gs :: BinaryFileArchive > ar ; if ((! p_bOneFile) || (p_world . rank () == 0)) ar = make_shared < gs :: BinaryFileArchive >(toDump . c_str () , " w ") ; // name for object in archive string nameAr = " Continuation " ; for (int iStep = 0; iStep < simulator -> getNbStep () ; ++ iStep) { Eigen :: ArrayXXd asset = simulator -> s t e p B a c k w a r d A n d G e t P a r t i c l e s () ; // conditional expectation operator p_regressor -> u p d a t e S i m u l a t i o n s (((iStep == (simulator -> getNbStep () -1)) ? true : false) , asset) ; // transition object StOpt :: T r a n s i t i o n S t e p R e g r e s s i o n D P D i s t transStep (p_grid , p_grid , p_optimize , p_world) ; pair < vector < shared_ptr < Eigen :: ArrayXXd > >, vector < shared_ptr < Eigen :: ArrayXXd > > > v a l u e s A n d C o n t r o l = transStep . oneStep (valuesNext , p_regressor) ; transStep . d u m p C o n t i n u a t i o n V a l u e s (ar , nameAr , iStep , valuesNext , v a l u e s A n d C o n t r o l . second , p_regressor , p_bOneFile) ; valuesNext = v a l u e s A n dC o n t r o l . first ; } // reconstruct a small grid for interpolation return StOpt :: r e c o n s t r u c t P r o c 0 M p i (p_pointStock , p_grid , valuesNext [p_ in i ti al Re g im e] , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) . mean () ; } # endif An example without data distribution can be found in the file DynamicProgrammingByRe gression.cpp. We finally give an array with the different TransitionStepRegression objects to use depending on the type of parallelization used.

1 S

 1 i m u l a t e S t e p R e g r e s s i o n D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , 2 const shared_ptr < FullGrid > & p_pGridFollowing , const shared_ptr < O p ti mi ze r DP Ba s e > & p_pOptimize , 3 const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) where p ar is the binary archive where the continuation values are stored, p iStep is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step), p nameCont is the base name for continuation values, p GridFollowing is the grid at the next time step (p iStep+1), p Optimize the Optimizer describing the passage from one time step to the next, p OneFile equal to true if only one archive is used to store continuation values.

S i m u

 l a t e S t e p R e g r e s s i o n C o n t r o l D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , const std :: shared_ptr < FullGrid > & p_pGridCurrent , const std :: shared_ptr < FullGrid > & p_pGridFollowing , const std :: shared_ptr < Op ti m iz er DP B as e > & p_pOptimize , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) ; where p ar is the binary archive where the continuation values are stored, p iStep is the number associated with the current time step (0 at the start date of simulation, the number is increased by one at each simulated time step), p nameCont is the base name of the control values, p GridCurrent is the grid at the current time step (p iStep), p GridFollowing is the grid at the next time step (p iStep+1), p Optimize is the Optimizer describing the passage from one time step to the next, p OneFile is equal to true if only one archive is used to store continuation values.

 void d u m p C o n t i n u a t i o n C u t s V a l u e s (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiInPrev , const std :: shared_ptr < BaseRegression > & p_condExp , const bool & p_bOneFile) constwith:

 shared_ptr < gs :: BinaryFileArchive > ar ; if ((! p_bOneFile) || (p_world . rank () == 0)) ar = make_shared < gs :: BinaryFileArchive >(toDump . c_str () , " w ") ; // name for object in archive string nameAr = " Continuation " ; for (int iStep = 0; iStep < simulator -> getNbStep () ; ++ iStep) { ArrayXXd asset = simulator -> s t e p B a c k w a r d A n d G e t P a r t i c l e s () ; // conditional expectation operator p_regressor -> u p d a t e S i m u l a t i o n s (((iStep == (simulator -> getNbStep () -1)) ? true : false) , asset) ; // transition object StOpt :: T r a n s i t i o n S t e p R e g r e s s i o n D P C u t D i s t transStep (p_grid , p_grid , p_optimize , p_world) ; vector < shared_ptr < ArrayXXd > > valueCuts = transStep . oneStep (valueCutsNext , p_regressor) ; transStep . d u m p C o n t i n u a t i o n C u t s V a l u e s (ar , nameAr , iStep , valueCutsNext , p_regressor , p_bOneFile) ; valueCutsNext = valueCuts ; } // reconstruct a small grid for interpolation ArrayXd valSim = StOpt :: r e c o n s t r u c t P r o c 0 M p i (p_pointStock , p_grid , valueCutsNext [p _i ni ti a lR eg im e] , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) ; return ((p_world . rank () == 0) ? valSim . head (simulator -> getNbSimul ()) . mean () : 0.) ; } # endif

S i m u

 l a t e S t e p R e g r e s s i o n C u t D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , const shared_ptr < FullGrid > & p_pGridFollowing , const shared_ptr < O p t i m i z e r D P C u t B a s e > & p_pOptimize , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) where • p ar is the binary archive where the continuation values are stored,

/

 / Copyright (C) 2016 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef O P T I M I Z E R N O R E G R E S S I O N D P B A S E _ H # define O P T I M I Z E R N O R E G R E S S I O N D P B A S E _ H # include < Eigen / Dense > # include " StOpt / core / utils / St at eW i th St oc k s . h " # include " StOpt / core / grids / SpaceGrid . h " # include " StOpt / regression / Bas eRegress ion . h " # include " StOpt / regression / G r i d A n d R e g r e s s e d V a l u e . h " # include " StOpt / dp / Si m ul at or D PB as e . h " # include " StOpt / dp / O p t i m i z e r B a s e I n t e r p . h " /* * \ file O p t i m i z e r N o R e g r e s s i o n D P B a s e . h * \ brief Define an abstract class for Dynamic Programming problems solve by Monte Carlo but without regression method // / \ brief get back the dimension of the control virtual int getNbControl () const = 0 ; // / \ brief get size of the function to follow in simulation virtual int ge t Si mu Fu n cS iz e () const = 0; }; } # endif /* OP T I M I Z E R D P B A S E _ H */

T

 r a n s i t i o n S t e p D P D i s t (const shared_ptr < FullGrid > & p_pGridCurrent , const shared_ptr < FullGrid > & p_pGridPrevious , const std :: shared_ptr < BaseRegression > & p_regressorCurrent , const std :: shared_ptr < BaseRegression > & p_regressorPrevious , const shared_ptr < O p t i m i z e r N o R e g r e s s i o n D P B a s e > & p_pOptimize , const boost :: mpi :: communicator & p_world) :

 void dumpValues (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < Eigen :: ArrayXXd > & p_control , const bool & p_bOneFile) const with:

 r c h i v e . hh " # include " StOpt / core / grids / FullGrid . h " # include " StOpt / regression / L o c a l C o n s t R e g r e s s i o n . h " # include " StOpt / regression / G r i d A n d R e g r e s s e d V a l u e . h " # include " StOpt / dp / Fi n al St ep D PD is t . h " # include " StOpt / dp / T r a n s i t i o n S t e p D P D i s t . h " # include " StOpt / core / parallelism / r e c o n s t r u c t P r o c 0 M p i . h " # include " test / c ++/ tools / dp / O p t i m i z e P o r t f o l i o D P . h " using namespace std ; using namespace Eigen ; double D y n a m i c P r o g r a m m i n g P o r t f o l i o D i s t (const shared_ptr < StOpt :: FullGrid > & p_grid , const shared_ptr < OptimizePortfolioDP > & p_optimize , const ArrayXi & p_nbMesh , const function < double (const int & , const ArrayXd & , const ArrayXd &) > & p_funcFinalValue , i n i t i a l i z e S i m u l a t i o n () ; // store regressor shared_ptr < StOpt :: LocalConstRegression > r e g r e s s o r P r e v i o u s ; // store final regressed values in object valuesStored shared_ptr < vector < ArrayXXd > > valuesStored = make_shared < vector < ArrayXXd > >(p_optimize -> getNbRegime ()) ; { vector < shared_ptr < ArrayXXd > > valuesP revious = StOpt :: Fi n al St ep D PD is t (p_grid , p_optimize -> getNbRegime () , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) (p_funcFinalValue , * p_optimize -> getCurrentSim ()) ; // regressor operator r e gr e s s o r P r e v i o u s = make_shared < StOpt :: LocalConstRegression >(false , * p_optimize -> getCurrentSim () , p_nbMesh) ; for (int iReg = 0; iReg < p_optimize -> getNbRegime () ; ++ iReg) (* valuesStored) [iReg] = regressorPrevious -> g e t C o o r d B a s i s F u n c t i o n M u l t i p l e (valu esPrevio us [iReg] -> transpose ()) . transpose () ; } string toDump = p_fileToDump ; // test if one file generated if (! p_bOneFile) toDump += " _ " + boost :: lexical_cast < string >(p_world . rank ()) ; shared_ptr < gs :: BinaryFileArchive > ar ; if ((! p_bOneFile) || (p_world . rank () == 0)) ar = make_shared < gs :: BinaryFileArchive >(toDump . c_str () , " w ") ; // name for object in archive string nameAr = " OptimizePort " ; // iterate on time steps for (int iStep = 0; iStep < p_optimize -> getNbStep () ; ++ iStep) { // step backward for simulations p_optimize -> on eS te p Ba ck w ar d () ; // create regressor at the given date bool bZeroDate = (iStep == p_optimize -> getNbStep () -1) ; shared_ptr < StOpt :: LocalConstRegression > regressorCur = make_shared < StOpt :: LocalConstRegression >(bZeroDate , * p_optimize -> getCurrentSim () , p_nbMesh) ; // transition object StOpt :: T r a n s i t i o n S t e p D P D i s t transStep (p_grid , p_grid , regressorCur , regressorPrevious , p_optimize , p_world) ; pair < shared_ptr < vector < ArrayXXd > >, shared_ptr < vector < ArrayXXd > > > v a l u e s A n d C o n t r o l = transStep . oneStep (* valuesStored) ; // dump control values transStep . dumpValues (ar , nameAr , iStep , * v a l ue s A n d C o n t r o l . second , p_bOneFile) ; valuesStored = v a l u e sA n d C o n t r o l . first ; // shift regressor r e gr e s s o r P r e v i o u s = regressorCur ; } // interpolate at the initial stock point and initial regime (0 here) (take first particle) shared_ptr < ArrayXXd > topRows = make_shared < ArrayXXd >((* valuesStored) [0]. topRows (1)) ; return StOpt :: r e c o n s t r u c t P r o c 0 M p i (p_initialPortfolio , p_grid , topRows , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) . mean () ; } # endif

/

 / Copyright (C) 2019 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef O P T I M I Z E R D P T R E E B A S E _ H # define O P T I M I Z E R D P T R E E B A S E _ H # include < Eigen / Dense > # include " StOpt / core / grids / SpaceGrid . h " # include " StOpt / tree / Tree . h " # include " StOpt / tree / S ta t eT re eS t oc ks . h " # include " StOpt / tree / C o n t i n u a t i o n V a l u e T r e e . h " # include " StOpt / tree / GridTreeValue . h " # include " StOpt / dp / S i m u l a t o r D P B a s e T r e e . h " # include " StOpt / dp / OptimizerBase . h " /* * \ file O p t i m i z e r D P T r e e B a s e . h * \ brief Define an abstract class for Dynamic Programming problems solved by tree methods \ class O p t i m i z e r D P T r e e B a s e O p t i m i z e r D P T r e e B a s e . h // / Base class for optimizer for Dynamic Programming with tree methods class O p t i m i z e r D P T r e e B a s e : public OptimizerBase { public : O p t i m i z e r D P T r e e B a s e () {} virtual ~O p t i m i z e r D P T r e e B a s e () {} // / \ brief defines the diffusion cone for parallelism // / \ param p _ r e g i o n B y P r o c e s s o r region (min max) treated by the processor for the different regimes treated // / \ return returns in each dimension the min max values in the stock that can be reached from the grid p _ g r i d B y P r o c e s s o r for each regime virtual std :: vector < std :: array < double , 2 > > getCone (const std :: vector < std :: array < double , 2 > > & p _ r e g i o n B y P r o c e s s o r) const = 0; // / \ brief defines the dimension to split for MPI parallelism // / For each dimension return true is the direction can be split virtual Eigen :: Array < bool , Eigen :: Dynamic , 1 > g e t D i m e n s i o n T o S p l i t () const = 0 ; // / \ brief defines a step in optimization // / \ param p_grid grid at arrival step after command // / \ param p_stock coordinates of the stock point to treat // / \ param p_condEsp continuation values for each regime // / \ return a pair : // / -for each regimes (column) gives the solution for each node in the tree (row) // / -for each control (column) gives the optimal control for each node in the tree (rows) // / . virtual std :: pair < Eigen :: ArrayXXd , Eigen :: ArrayXXd > stepOptimize (const std :: shared_ptr < StOpt :: SpaceGrid > & p_grid , const Eigen :: ArrayXd & p_stock , const std :: vector < StOpt :: C o n t i n u a t i o n V a l u e T r e e > & p_condEsp) const = 0; // / \ brief defines a step in simulation // / Notice that this impl ementat ion is not optimal but is convenient if the control is discrete . // / By avoiding interpolation in control we avoid non admissible control // / Control are recalculated during simulation . // / \ param p_grid grid at arrival step after command // / \ param p_ continu ation defines the continuation operator for each regime // / \ param p_state defines the state value (modified) // / \ param p_phiInOut defines the value functions (modified) : size number of functions to follow virtual void stepSimulate (const std :: shared_ptr < StOpt :: SpaceGrid > & p_grid , const std :: vector < StOpt :: GridTreeValue > & p_continuation , StOpt :: St at eT r ee St oc k s & p_state , Eigen :: Ref < Eigen :: ArrayXd > p_phiInOut) const = 0 ; // / \ brief Defines a step in simulation using interpolation in controls // / \ param p_grid grid at arrival step after command // / \ param p_control defines the controls // / \ param p_state defines the state value (modified) // / \ param p_phiInOut defines the value function (modified) : size number of functions to follow virtual void s t e p S i m u l a t e C o n t r o l (const std :: shared_ptr < StOpt :: SpaceGrid > & p_grid , const std :: vector < StOpt :: GridTreeValue > & p_control ,StOpt :: St at eT r ee St oc k s & p_state , Eigen :: Ref < Eigen :: ArrayXd > p_phiInOut) const = 0 ; // / \ brief Get the number of regimes allowed for the asset to be reached at the current time step // / If \ f$ t \ f$ is the current time , and $ \ f$ dt \ f$ the resolution step , this is the number of regime allowed on \ f$ [t -dt , t [\ f$ virtual int getNbRegime () const = 0 ; // / \ brief get the simulator back virtual std :: shared_ptr < StOpt :: S i m u l a t o r D P B a s e T r e e > getSimulator () const = 0; // / \ brief get back the dimension of the control virtual int getNbControl () const = 0 ; // / \ brief get size of the function to follow in simulation virtual int ge t Si mu Fu n cS iz e () const = 0; }; } # endif /* O P T I M I Z E R D P T R E E B A S E _ H */

 T r a n s i t i o n S t e p T r e e D P D i s t (const std :: shared_ptr < FullGrid > & p_pGridCurrent , const std :: shared_ptr < FullGrid > & p_pridPrevious , const std :: shared_ptr < O p t i m i z e r D P T r e e B a s e > & p_pOptimize , const boost :: mpi :: communicator & p_world) with • p pGridCurrent is the grid at the current time step (t i),

 a l u e s (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiIn , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_control , const std :: shared_ptr < Tree > & p_tree , const bool & p_bOneFile) const ;

1 S

 1 i m u l a t e S t e p T r e e D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , 2 const std :: shared_ptr < FullGrid > & p_pGridFollowing , const std :: shared_ptr < O p t i m i z e r D P T r e e B a s e > & p_pOptimize , 3 const bool & p_bOneFile , 4 const boost :: mpi :: communicator & p_world) where p ar is the binary archive where the continuation values are stored, p iStep is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step), p nameCont is the base name for continuation values, p GridFollowing is the grid at the next time step (p iStep+1), p Optimize the Optimizer describing the transition from one time step to the next, p OneFile equal to true if only one archive is used to store continuation values. p world The MPI communicator This object implements the method oneStep void oneStep (std :: vector < S ta t eT re eS t oc ks > & p_statevector , Eigen :: ArrayXXd & p_phiInOut) const

S i m u

 l a t e S t e p T r e e C o n t r o l D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , const std :: shared_ptr < FullGrid > & p_pGridCurrent , const std :: shared_ptr < FullGrid > & p_pGridFollowing , const std :: shared_ptr < O p t i m i z e r D P T r e e B a s e > & p_pOptimize , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) ; where p ar is the binary archive where the continuation values are stored, p iStep is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step), p nameCont is the base name of the control values, p GridCurrent is the grid at the current time step (p iStep), p GridFollowing is the grid at the next time step (p iStep+1), p Optimize is the Optimizer describing the transition from one time step to the next, p OneFile is equal to true if only one archive is used to store continuation values. p world The MPI communicator This object implements the method oneStep 1 void oneStep (std :: vector < S ta t eT re eS t oc ks > & p_statevector , Eigen :: ArrayXXd & p_phiInOut) const ;

 2.2 section. The framework provides an TransitionStepTreeD PCutDist object in MPI which solves the optimization problem with data distribution over a time step with the following constructor: T r a n s i t i o n S t e p T r e e D P C u t D i s t (const std :: shared_ptr < FullGrid > & p_pGridCurrent , const std :: shared_ptr < FullGrid > & p_pGridPrevious , const std :: shared_ptr < O p t i m i z e r D P C u t T r e e B a s e > & p_pOptimize , const boost :: mpi :: communicator & p_world) ;

 void d u m p C o n t i n u a t i o n C u t s V a l u e s (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiInPrev , const std :: shared_ptr < Tree > & p_condExp , const bool & p_bOneFile) const with:

 double D y n a m i c P r o g r a m m i n g B y T r e e C u t D i s t (const shared_ptr < StOpt :: FullGrid > & p_grid , const shared_ptr < StOpt :: O p t i m i z e r D P C u t T r e e B a s e > & p_optimize , const function < ArrayXd (const int & , const ArrayXd & , const ArrayXd &) > & p_funcFinalValue , const ArrayXd & p_pointStock , const int & p_initialRegime , const string & p_fileToDump , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) { // from the optimizer get back the simulator shared_ptr < StOpt :: SimulatorDPBaseTree > simulator = p_optimize -> getSimulator () ; // final values vector < shared_ptr < ArrayXXd > > valueCutsNext = StOpt :: F i n a l S t e p D P C u t D i s t (p_grid , p_optimize -> getNbRegime () , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) (p_funcFinalValue , simulator -> getNodes ()) ; // dump string toDump = p_fileToDump ; // test if one file generated if (! p_bOneFile) toDump += " _ " + boost :: lexical_cast < string >(p_world . rank ()) ; shared_ptr < gs :: BinaryFileArchive > ar ; if ((! p_bOneFile) || (p_world . rank () == 0)) ar = make_shared < gs :: BinaryFileArchive >(toDump . c_str () , " w ") ; // name for object in archive string nameAr = " C o n t i n u a t i o n T r e e " ; for (int iStep = 0; iStep < simulator -> getNbStep () ; ++ iStep) { simulator -> stepBackward () ; // probabilities std :: vector < double > proba = simulator -> getProba () ; // get connection between nodes std :: vector < std :: vector < std :: array < int , 2 > > > connected = simulator -> getConnected () ; // conditional expectation operator shared_ptr < StOpt :: Tree > tree = std :: make_shared < StOpt :: Tree >(proba , connected) ; // transition object StOpt :: T r a n s i t i o n S t e p T r e e D P C u t D i s t transStep (p_grid , p_grid , p_optimize , p_world) ; vector < shared_ptr < ArrayXXd > > valueCuts = transStep . oneStep (valueCutsNext , tree) ; transStep . d u m p C o n t i n u a t i o n C u t s V a l u e s (ar , nameAr , iStep , valueCutsNext , tree , a small grid for interpolation ArrayXd valSim = StOpt :: r e c o n s t r u c t P r o c 0 M p i (p_pointStock , p_grid , valueCutsNext [p _i ni ti a lR eg im e] , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) ; return ((p_world . rank () == 0) ? valSim (0) : 0.) ; } # endif

 S i m u l a t e S t e p T r e e C u t D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_nameCont , const std :: shared_ptr < FullGrid > & p_pGridFollowing , const std :: shared_ptr < O p t i m i z e r D P C u t T r e e B a s e > & p_pOptimize , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) ; where • p ar is the binary archive where the continuation values are stored,

 h " # include " StOpt / dp / Si m ul at or D PB as e . h " /* * \ file S i m u l a t e T r e e C u t D i s t . h * \ brief Defines a simple program showing how to use simulations when optimizaton achived with transition problems solved with cuts and uncertainties on a tree * A simple grid is used * \ author Xavier Warin */ // / \ brief Simulate the optimal strategy , mpi version , Bellman cuts used to allow LP resolution of transition problems when uncertainties are defined on a tree // / \ param p_grid grid used for deterministic state (stocks for example) // / \ param p_optimize optimizer defining the optimization between two time steps // / \ param p _ f u n c F i n a l V a l u e function defining the final value cuts // / \ param p_pointStock initial point stock // / \ param p_ in i ti al R eg im e regime at initial date // / \ param p_fileToDump name associated to dumped bellman values // / \ param p_bOneFile do we store continuation values in only one file // / \ param p_world MPI communicator double S i m u l a t e T r e e C u t D i s t (const std :: shared_ptr < StOpt :: FullGrid > & p_grid , const std :: shared_ptr < StOpt :: O p t i m i z e r D P C u t T r e e B a s e > & p_optimize , const std :: function < Eigen :: ArrayXd (const int & , const Eigen :: ArrayXd & , const Eigen :: ArrayXd &) > & p_funcFinalValue , const Eigen :: ArrayXd & p_pointStock , const int & p_initialRegime , const std :: string & p_fileToDump , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) { // from the optimizer get back the simulator std :: shared_ptr < StOpt :: SimulatorDPBaseTree > simulator = p_optimize -> getSimulator () ; int nbStep = simulator -> getNbStep () ; std :: vector < StOpt :: StateTreeStocks > states ; states . reserve (simulator -> getNbSimul ()) ; for (int is = 0; is < simulator -> getNbSimul () ; ++ is) states . push_back (StOpt :: St at e Tr ee St o ck s (p_initialRegime , p_pointStock , 0)) ; std :: string toDump = p_fileToDump ; // test if one file generated if (! p_bOneFile) toDump += " _ " + boost :: lexical_cast < std :: string >(p_world . rank ()) ; gs :: B i na r y F i l e A r c h i v e ar (toDump . c_str () , " r ") ; // name for continuation object in archive std :: string nameAr = " C o n t i n u a t i o n Tr e e " ; // cost function Eigen :: ArrayXXd costFunction = Eigen :: ArrayXXd :: Zero (p_optimize -> ge t Si mu Fu n cS iz e () , simulator -> getNbSimul ()) ; for (int istep = 0; istep < nbStep ; ++ istep) { StOpt :: S i m u l a t e S t e p T r e e C u t

12. 1

 1 Mapping to the framework To use the Python API, it is possible to use only the mapping of grids, continuation values, and regression object and program an equivalent of TransitionStepRegressionDP and of SimulateStepRegression, SimulateStepRegressionControl in Python. No mapping is currently available for TransitionStepDP. An example using Python is given by # Copyright (C) 2016 EDF # All Rights Reserved # This code is published under the GNU Lesser General Public License (GNU LGPL) import numpy as np import StOptReg as reg class T r a n s i t i o n S t e p R e g r e s s i o n D P : def __init__ (self , p_pGridCurrent , p_pGridPrevious , p_pOptimize) : self . m_p GridCur rent = p _pGridCu rrent self . m_ pG r id Pr ev i ou s = p _p Gr i dP re vi o us self . m_pOptimize = p_pOptimize def oneStep (self , p_phiIn , p_condExp) : nbRegimes = self . m_pOptimize . getNbRegime () phiOut = list (range (nbRegimes)) nbControl = self . m_pOptimize . getNbControl () controlOut = list (range (nbControl)) # only if the processor is working if self . m_ pGridCur rent . getNbPoints () > 0: # allocate for solution for iReg in range (nbRegimes) : phiOut [iReg] = np . zeros ((p_condExp . getNbSimul () , self . m_pGrid Current . getNbPoints ())) for iCont in range (nbControl) : controlOut [iCont] = np . zeros ((p_condExp . getNbSimul () , self . m_p GridCur rent . getNbPoints ())) # number of threads nbThreads = 1 contVal = [] for iReg in range (len (p_phiIn)) : contVal . append (reg . C o n t i n u a t i o n V a l u e (self . m_pGridPrevious , p_condExp , p_phiIn [iReg])) # create iterator on current grid treated for processor iterGridPoint = self . m_pGridC urrent . g e t G r i d I t e r a t o r I n c (0) # iterates on points of the grid for iIter in range (self . m_pGridC urrent . getNbPoints ()) : if iterGridPoint . isValid () : pointCoord = iterGridPoint . getCoordinate () # optimize the current point and the set of regimes s o l u t i o n A n d C o n t r o l = self . m_pOptimize . stepOptimize (self . m_pGridPrevious , pointCoord , contVal , p_phiIn) # copy solution for iReg in range (self . m_pOptimize . getNbRegime ()) : phiOut [iReg][: , iterGridPoint . getCount ()] = s o l u t i o n A n d C o n t r o l [0][: , iReg] for iCont in range (nbControl) : controlOut [iCont][: , iterGridPoint . getCount ()] = s o l u t i o n A n d C o n t r o l [1][: , iCont] iterGridPoint . nextInc (nbThreads) res = [] res . append (phiOut) res . append (controlOut) return res

 r C o n s t r u c t i o n (unittest . TestCase) : def test (self) : # test MPI moduleMpi4Py = importlib . util . find_spec (' mpi4py ') if (moduleMpi4Py is not None) : from mpi4py import MPI initialValues = np . zeros (1 , dtype = float) + 1. sigma = np . zeros (1) + 0.2 mu = np . zeros (1) + 0.05 corr = np . ones ((1 ,1) , dtype = float) # number of step nStep = 30 # exercise dates dates = np . linspace (0. , 1. , nStep + 1) T = dates [len (dates) -1] nbSimul = 10 # simulation number (optimization and simulation) # simulator # ######### bsSim = sim . B l a c k S c h o l e s S i m u l a t o r (initialValues , sigma , mu , corr , T , len (dates) -1 , nbSimul , False) strike = 1. # Pay off payOff = Utils . BasketCall (strike) # optimizer # ######### N = 3 # number of exercise dates swiOpt = opt . O p t i m i z e r S w i n g B l a c k S c h o l e s (payOff , N) # link simulator to optimizer swiOpt . setSimulator (bsSim) # archive # ####### ar = StOptGeners . B i n a r y F i l e A r c h i v e (" Archive " ," w ") # regressor # ######### nMesh = np . array ([1]) regressor = StOptReg . L o c a l L i n e a r R e g r e s s i o n (nMesh) # Grid # ##### # low value for the meshes lowValues = np . array ([0.] , dtype = float) # size of the meshes step = np . array ([1.] , dtype = float) # number of steps nbStep = np . array ([N] , dtype = np . int32) gridArrival = StOptGrids . R e g u l a r S p a c e G r i d (lowValues , step , nbStep) gridStart = StOptGrids . R e g u l a r S p a c e G r i d (lowValues , step , nbStep -1)# pay off function for swing# payOffBasket =Utils . BasketCall (strike) ; payoff = Utils . PayOffSwing (payOffBasket , N) dir (payoff) # final step # ########### asset = bsSim . getParticles () fin = StOptGlobal . FinalStepDP (gridArrival ,1) values = fin . set (payoff , asset) # transition time step # on step backward and get asset asset = bsSim . s t e p B a c k w a r d A n d G e t P a r t i c l e s () # update regressor regressor . u p d a t e S i m u l a t i o n s (0 , asset) transStep = StOptGlobal . T r a n s i t i o n S t e p R e g r e s s i o n D P (gridStart , gridArrival , swiOpt) v a l u e s N e x t A n d C o n t r o l = transStep . oneStep (values , regressor) transStep . d u m p C o n t i n u a t i o n V a l u e s (ar , " Continuation " ,1 , v a l u e s N e x t A n d C o n t r o l [0] , v a l u e s N e x t A n d C o n t r o l [1] , regressor) # simulate time step # nbSimul = 10 vecOfStates =[] # state of each simulation for i in np . arange (nbSimul) : # one regime , all with same stock level (dimension 2) , same realization of simulation (dimension 3) vecOfStates . append (StOptGlobal . St a te Wi th S to ck s (1 , np . array ([0.]) , np . zeros (1))) arRead = StOptGeners . B i n a r y F i l e A r c h i v e (" Archive " ," r ") simStep = StOptGlobal . S i m u l a t e S t e p R e g r e s s i o n (arRead ,1 , " Continuation " , gridArrival , swiOpt) phi = np . zeros ((1 , nbSimul)) VecOf StateNe xt = simStep . oneStep (vecOfStates , phi) if __name__ == ' __main__ ': unittest . main () Its variation in terms of timing loop for optimization is given below (note that the object TransitionStepRegressionDP is the result of the mapping between Python and c++ and given in the module StOptGlobal) # Copyright (C) 2016 EDF # All Rights Reserved # This code is published under the GNU Lesser General Public License (GNU LGPL) import StOptGrids import StOptReg import StOptGlobal import StOptGeners def D y n a m i c P r o g r a m m i n g B y R e g r e s s i o n H i g h L e v e l (p_grid , p_optimize , p_regressor , p_funcFinalValue , p_pointStock , p_initialRegime , p_fileToDump) : # from the optimizer get back the simulation simulator = p_optimize . getSimulator () # final values fin = StOptGlobal . FinalStepDP (p_grid , p_optimize . getNbRegime ()) valuesNext = fin . set (p_funcFinalValue , simulator . getParticles ()) ar = StOptGeners . B i n a r y F i l e A r c h i v e (p_fileToDump , " w ") nameAr = " Continuation " nsteps = simulator . getNbStep () # iterate on time steps for iStep in range (nsteps) : asset = simulator . s t e p B a c k w a r d A n d G e t P a r t i c l e s () # conditional expectation operator if iStep == (simulator . getNbStep () -1) : p_regressor . u p d a t e S i m u l a t i o n s (True , asset) else : p_regressor . u p d a t e S i m u l a t i o n s (False , asset) # transition object transStep = StOptGlobal . T r a n s i t i o n S t e p R e g r e s s i o n D P (p_grid , p_grid , p_optimize) v a lu e s A n d C o n t r o l = transStep . oneStep (valuesNext , p_regressor) transStep . d u m p C o n t i n u a t i o n V a l u e s (ar , nameAr , nsteps -1 -iStep , valuesNext , v a l u e s A n d C o n t r o l [1] , p_regressor) valuesNext = v a l u e s A n dC o n t r o l [0] # interpolate at the initial stock point and initial regime return (p_grid . c r e a t e I n t e r p o l a t o r (p_pointStock) . applyVec (valuesNext [p _ in it ia l Re gi me])) . mean ()

 e s t B i n a r y A r c h i v e S t O p t (unittest . TestCase) : def t e s t S i m p l e S t o r a g e A n d L e c t u r e R e c G r i d (self) : # low value for the mesh lowValues = np . array ([1. ,2. ,3.] , dtype = np . float) # size of the mesh step = np . array ([0.7 ,2.3 ,1.9] , dtype = np . float) # number of step nbStep = np . array ([4 ,5 ,6] , dtype = np . int32) # degree of the polynomial in each direction degree = np . array ([2 ,1 ,3] , dtype = np . int32) # create the Legendre grid grid = StOptGrids . R e g u l a r L e g e n d r e G r i d (lowValues , step , nbStep , degree) # simulate the perburbed values# nbSimul =40000np . random . seed (1000) x = np . random . uniform (-1. ,1. , size =(1 , nbSimul)) ; # mesh nbMesh = np . array ([16] , dtype = np . int32) # Create the regressor # regressor = StOptReg . L o c a l L i n e a r R e g r e s s i o n (False ,x , nbMesh) 203 # regressed values same values for each point of the grid

 x [0 ,:]+(1+ x [0 ,:]) *(1+ x [0 ,:])) # function to regress toRegress = toReal + 4* np . random . normal (0. ,1 , nbSimul) # create a matrix (number of stock points by number of simulations) toRegressMult = np . zeros (shape =(len (toRegress) , grid . getNbPoints ())) for i in range (toRegressMult . shape [1]) : toRegressMult [: , i] = toRegress # into a list : two times to test 2 regimes listToReg = [] listToReg . append (toRegressMult) listToReg . append (toRegressMult) # Create the binary archive to dump# archi veToWri te = StOptGeners . B i n a r y F i l e Ar c h i v e (" MyArchive " ," w ") # step 1 archi veToWri te . d u m p G r i d A n d R e g r e s s e d V a l u e (" toStore " , 1 , listToReg , regressor , grid) # step 3 archi veToWri te . d u m p G r i d A n d R e g r e s s e d V a l u e (" toStore " , 3 , listToReg , regressor , grid) # Read the regressed values # archiveToRead = StOptGeners . B i n a r y F i l e A r c h i v e (" MyArchive " ," r ") contValues = archiveToRead . r e a d G r i d A n d R e g r e s s e d V a l u e (3 , " toStore ") # list of 2 continuation values# stockPoint = np .array ([1.5 ,3. ,5.]) uncertainty = np . array ([0.]) value = contValues [0]. getValue (stockPoint , uncertainty) # non regular grid def t e s t S i m p l e S t o r a g e A n d L e c t u r e N o n R e g u l a r (self) : # create the Legendre grid grid = StOptGrids . G e n e r a l S p a c e G r i d ([[1. , 1.7 , 2.4 , 3.1 , 3.8] ,[2. , 4.3 , 6.6 , 8.9 , 11.2 , 15.] ,[3. , 4.9 , 5.8 , 7.7 , 10. ,20.]]) # simulate the perburbed values # nbSimul =40000np . random . seed (1000) x = np . random . uniform (-1. ,1. , size =(1 , nbSimul)) ; # mesh nbMesh = np . array ([16] , dtype = np . int32) # Create the regressor # regressor = StOptReg . L o c a l L i n e a r R e g r e s s i o n (False ,x , nbMesh) # regressed values same values for each point of the grid

 x [0 ,:]+(1+ x [0 ,:]) *(1+ x [0 ,:])) # function to regress toRegress = toReal + 4* np . random . normal (0. ,1 , nbSimul) # create a matrix (number of stock points by number of simulations) toRegressMult = np . zeros (shape =(len (toRegress) , grid . getNbPoints ())) for i in range (toRegressMult . shape [1]) : toRegressMult [: , i] = toRegress # into a list : two times to test 2 regimes listToReg = [] listToReg . append (toRegressMult) listToReg . append (toRegressMult) # Create the binary archive to dump# ## archi veToWri te = StOptGeners . B i n a r y F i l e A r c h i v e (" MyArchive " ," w ") # step 1 archi veToWri te . d u m p G r i d A n d R e g r e s s e d V a l u e (" toStore " , 1 , listToReg , regressor , grid) # step 3 archi veToWri te . d u m p G r i d A n d R e g r e s s e d V a l u e (" toStore " , 3 , listToReg , regressor , grid) # Read the regressed values # archiveToRead = StOptGeners . B i n a r y F i l e A r c h i v e (" MyArchive " ," r ") contValues = archiveToRead . r e a d G r i d A n d R e g r e s s e d V a l u e (3 , " toStore ") # list of 2 continuation values # stockPoint = np . array ([1.5 ,3. ,5.]) uncertainty = np . array ([0.]) value = contValues [0]. getValue (stockPoint , uncertainty) if __name__ == ' __main__ ': unittest . main () 12.2.2 Binding to store/read a regressor and a two-dimensional array

 def createData () : X1 = np . arange (0.0 , 2.2 , 0.01) X2 = np . arange (0.0 , 1.1 , 0.005) Y = np . zeros ((len (X1) , len (X2))) for i in range (len (X1)) : for j in range (len (X2)) :if i < len (X1) //2: if j < len (X2) //2: Y [i , j]= X1 [i]+ X2 [j] else : Y [i , j]=4* X1 [i]+4* X2 [j] else : if j < len (X2) //2: Y [i , j]=2* X1 [i]+ X2 [j] else : Y [i , j]=2* X1 [i]+3* X2 [j]XX1 , XX2 = np . meshgrid (X1 , X2) Y = Y . T r , c = XX1 . shape X = np . reshape (XX1 ,(r *c ,1)) [: ,0] I = np . reshape (XX2 ,(r *c ,1)) [: ,0] Y = np . reshape (Y ,(r *c ,1)) [: ,0] xMatrix = np . zeros ((2 , len (X) regression 2 by 2 meshes nbMesh = np . array ([2 ,2] , dtype = np . int32) regressor = StOptReg . L o c a l L i n e a r R e g r e s s i o n (False , xMatrix , nbMesh) # coefficients coeff = regressor . g e t C o o r d B a s i s F u n c t i o n (y) print (" Regressed coeff " , coeff) # store them in a matrix coeffList = np . zeros (shape =(1 ,3*2*2)) coeffList [0 ,:]= coeff . transpose () # archive write for regressors a r c h i v e W r i t e F o r R e g r e s s o r = StOptGeners . B i n a r y F i l e A r c h i v e (" archive " ," w ") # store step =1 a r c h i v e W r i t e F o r R e g r e s s o r . du m pS om e 2D Ar ra y (" RegCoeff " , step , coeff) a r c h i v e W r i t e F o r R e g r e s s o r . d u m p S o m e R e g r e s s o r (" Regressor " , step , regressor) # archive Read for regressors a r c h i v e R e a d F o r R e g r e s s o r = StOptGeners . B i n a r y F i l e A r c h i v e (" archive " ," r ") # get back values = a r c h i v e R e a d F o r R e g r e s s o r . r ea dS o me 2D Ar r ay (" RegCoeff " , step) reg = a r c h i v e R e a d F o r R e g r e s s o r . r e a d S o m e R e g r e s s o r (" Regressor " , step) print (" Regressed coeff " , values) print (" Reg " , reg)

void d u m

 p C o n t i n u a t i o n V a l u e s (std :: shared_ptr < gs :: BinaryFileArchive > p_ar , const std :: string & p_name , const int & p_iStep , const std :: vector < std :: shared_ptr < Eigen :: ArrayXXd > > & p_phiInPrev , const std :: shared_ptr < BaseRegression > & p_condExp) const with:

 const boost :: mpi :: communicator & p_world) { // from the optimizer get back the simulator shared_ptr < SimulatorDPBase > simulator = p_optimize -> getSimulator () ; // final values vector < shared_ptr < ArrayXXd > > valuesNext = FinalStepZeroDist < RegularSpaceIntGrid >(p_grid , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) (simulator -> getNbSimul ()) ; // dump // test if one file generated shared_ptr < gs :: BinaryFileArchive > ar ; if (p_world . rank () == 0) ar = make_shared < gs :: BinaryFileArchive >(p_fileToDump . c_str () , " w ") ; // name for object in archive string nameAr = " Continuation " ; for (int iStep = 0; iStep < simulator -> getNbStep () ; ++ iStep) { ArrayXXd asset = simulator -> s t e p B a c k w a r d A n d G e t P a r t i c l e s () ; // conditional expectation operator p_regressor -> u p d a t e S i m u l a t i o n s (((iStep == (simulator -> getNbStep () -1)) ? true : false) , asset) ; // transition object T r a n s i t i o n S t e p R e g r e s s i o n S w i t c h D i s t transStep (p_grid , p_grid , p_optimize , p_world) ; vector < shared_ptr < ArrayXXd > > values = transStep . oneStep (valuesNext , p_regressor) ; transStep . d u m p C o n t i n u a t i o n V a l u e s (ar , nameAr , iStep , valuesNext , p_regressor) ; valuesNext = values ; } // reconstruct a small grid for interpolation return r e c o n s t r u c t P r o c 0 F o r I n t M p i (p_pointState , p_grid [p_ in i ti al Re g im e] , valuesNext [p _i ni ti a lR eg im e] , p_optimize -> g e t D i m e n s i o n T o S p l i t () [p _ in it ia l Re gi me] , p_world) . mean (

S i m u

 l a te S t e p S w i t c h (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const string & p_nameCont , const vector < shared_ptr < RegularSpaceIntGrid > > & p_pGridFollowing , const shared_ptr < O p t i m i z e r S w i t c h B a s e > & p_pOptimize , const boost :: mpi :: communicator & p_world) where • p ar is the binary archive where the continuation values are stored,

/

 / Copyright (C) 2021 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL)# ifndef S I M U L A T E R E G R E S S I O N S W I T C H _ H # define S I M U L A T E R E G R E S S I O N S W I T C H _ H # include < fstream > # include < utility > # include < functional >

 h " /* * \ file S i m u l a t e R e g r e s s i o n S w i t c h . h * \ brief Defines a simple programming simulating the optimal control of a switching problem * with a pure integer deterministic state * \ author Xavier Warin */ // / \ brief Simulate the optimal strategy // / \ param p_grid grid used for deterministic integer state for each regime // / \ param p_optimize optimizer defining the optimization between two time steps // / \ param p _ f u n c F i n a l V a l u e function defining the final value // / \ param p_pointSate initial integer state // / \ param p_ in i ti al R eg im e regime at initial date // / \ param p_fileToDump name of the file used to dump continuation values in optimization // / \ param p_fileOutput base name of file to store prices and regime // / \ param p_nbSimulPlot number of simulations to plot // / \ param p_world MPI communicator // / \ return a pair containing the value of the asset and an array with min of number of consecutive time step in each regime template < class Optimizer , class Simulator> std :: pair < double , Eigen :: ArrayXi > S i m u l a t e R e g r e s s i o n S w i t c h (const std :: vector < std :: shared_ptr < StOpt :: RegularSpaceIntGrid > > & p_grid , const std :: shared_ptr < Optimizer > & p_optimize , const Eigen :: ArrayXi & p_pointState , const int & p_initialRegime , const std :: string & p_fileToDump , const std :: string & p_fileOutput , const int & p_nbSimulPlot # ifdef USE_MPI , const boost :: mpi :: communicator & p_world # endif) { // from the optimizer get back the simulator std :: shared_ptr < Simulator > simulator = p_optimize -> g e t S i m u l a t o r D e r i v e d () ; int nbStep = simulator -> getNbStep () ; std :: vector < StOpt :: StateWithIntState > states ; states . reserve (simulator -> getNbSimul ()) ; for (int is = 0; is < simulator -> getNbSimul () ; ++ is) states . push_back (StOpt :: S t a t e W i t h I n t S t a t e (p_initialRegime , p_pointState , Eigen :: ArrayXd :: Zero (simulator -> getDimension ()))) ; gs :: B i na r y F i l e A r c h i v e ar (p_fileToDump . c_str () , " r ") ; // name for continuation object in archive std :: string nameAr = " Continuation " ; // cost function Eigen :: ArrayXXd costFunction = Eigen :: ArrayXXd :: Zero (p_optimize -> ge t Si mu Fu n cS iz e () , simulator -> getNbSimul ()) ; // get back spot Eigen :: ArrayXXd spot = simulator -> getSpot () ; int nbSpot = spot . rows () ; std :: shared_ptr < std :: fstream > f i le F o r R e g i m e F i n ; std :: vector < std :: shared_ptr < std :: fstream > > fileForS potFin (nbSpot) ; # interpolate at the initial stock point and initial regime return valuesNext [p_ in i ti al Re g im e][: , p_grid [p _i n it ia lR e gi me]. g l o b C o o r d P e r D i m T o L o c a l (p_pointState)]. mean ()

 from mpi4py import MPI T = 100. # number of time step (step of 4 hours : 6 step per day) nStepPerday = 6 nbDays = int (T) nstep = nStepPerday * nbDays ; # define a a time grid timeGrid = StOptGrids . O n e D i m R e g u l a r S p a c e G r i d (0. , T / nstep , nstep) # to store the two assets futGrids = [] futValues = [30. + 5 * np . cos ((2 * math . pi * i) / nstep) + np . cos (2 * math . pi * i / (7.* nStepPerday)) for i in range (nstep +1)] futGrids . append (Utils . FutureCurve (timeGrid , futValues)) futValues = [30. + 5 * np . cos ((2 * math . pi * i) / nstep) + np . cos (2 * math . pi * i / (7.* nStepPerday)) + 5.* np . cos (2 * math . pi * i / nStepPerday) for i in range (nstep +1)] futGrids . append (Utils . FutureCurve (timeGrid , futValues)) sigma = [0.02 ,0.08] # volatility by product mr = [0.004 ,0.01] # mean reverting by product correl = np . identity (2) correl [0 , 1] = 0.8 correl [1 , 0] = 0.8 # Constraints nbMinOn = 6 # minimal number of time step the thermal asset is on nbMinOff = 4 # maximal number of time step the terhma asset is off # grids gridPerReg = [StOptGrids . R e g u l a r S p a c e I n t G r i d (np . zeros ([1]) , (nbMinOn -1) * np . ones ([1])) , StOptGrids . R e g u l a r S p a c e I n t G r i d (np . zeros ([1]) , (nbMinOff -1) * np . ones ([1]))] iRegInit = 0 # on at begininng pointState = np . zeros ([1]) # on since previous time step # create Thermal Asset object s w it c h O f f T o O n C o s t = 4 # optimizer thermalAsset = opt . O p t i m i z e T h e r m a l A s s e t M e a n R e v e r t i n g 1 D A s s e t s (s w i t c h O f f T o O n C o s t)

 t i (k)) j=1,...,M 15: end procedure Algorithm 12 Global backward resolution algorithm, optimal control and optimal variance calculation 1: for ν ∈ Q N -1 do 2:

 do

S i m u

 l a t e S t e p S e m i l a g r a n g C o n t r o l D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep , const std :: string & p_name , const std :: shared_ptr < FullGrid > & p_gridCur , const std :: shared_ptr < FullGrid > & p_gridNext , const std :: shared_ptr < O pt im iz e rS LB as e > & p_pOptimize , const bool & p_bOneFile , const boost :: mpi :: communicator & p_world) where p ar is the binary archive where the continuation values are stored, p iStep is the number associated with the current time step (0 at the start date of simulation, the number is increased by one at each simulated time step), p name is the base name to search for in the archive, p GridCur is the grid at the current time step (p iStep), p GridNext is the grid at the next time step (p iStep+1), p Optimize is the Optimizer describing the passage from one time step to the next, p OneFile is equal to true if only one archive is used to store continuation values.

 void oneStep ((const Eigen :: ArrayXXd & p_gaussian , Eigen :: ArrayXXd & p_statevector , Eigen :: ArrayXi & p_iReg , Eigen :: ArrayXd & p_phiInOuts)

 m_alpha (p_alpha) , m_PI (p_PI) , m_cBar (p_cBar) , m_s (p_s) , m_lambda (p_lambda) , m_dt (p_dt) , m_maturity (p_maturity) , m_lMax (p_lMax) , m_lStep (p_lStep) , m_extrem (p_extrem) {} Array < bool , Dynamic , 1 > O p t i m i z e D P E m i s s i v e :: g e t D i m e n s i o n T o S p l i t () const { Array < bool , Dynamic , 1 > bDim = Array < bool , Dynamic , 1 >:: Constant (2 , true) ; return bDim ; } // for parallelism std :: vector < std :: array < double , 2 > > O p t i m i z e D P E m i s s i v e :: getCone (const vector < std ::array < double , 2 > > & p_xInit) const { vector < array < double , 2 > > xReached (2) ; xReached [0][0] = p_xInit [0][0] ; // Q only increases xReached [0][1] = m_extrem [0][1] ; // whole domain due to demand which is unbounded xReached [1][0] = p_xInit [1][0] ; // L only increases xReached [1][1] = p_xInit [1][1] + m_lMax * m_dt ; //maximal increase given by the control return xReached ; } // one step in optimization from stock point for all simulations std :: pair < ArrayXXd , ArrayXXd > O p t i m i z e D P E m i s s i v e :: stepOptimize (const std :: shared_ptr < StOpt :: SpaceGrid > & p_grid , const ArrayXd & p_stock , const std :: vector < ContinuationValue > & p_condEsp , const std :: vector < std :: shared_ptr < ArrayXXd > > &) const { std :: pair < ArrayXXd , ArrayXXd > s o l u t i o n A n d C o n t r o l ; // to store final solution (here two regimes) s o l u t i on A n d C o n t r o l . first = ArrayXXd :: Constant (m_simulator -> getNbSimul () , 2 , -StOpt :: infty) ; s o l u t i on A n d C o n t r o l . second = ArrayXXd :: Constant (m_simulator -> getNbSimul () , 1 , -StOpt :: infty) ; // demand ArrayXd demand = m_simulator -> getParticles () . array () . row (0) . transpose () ; // Gain (size number of simulations) ArrayXd gain (m_simulator -> getNbSimul ()) ; double gainS ubventio n = m_s * pow (p_stock (1) , 1. -m_alpha) ; // subvention for non emissive energy for (int is = 0 ; is < m_simulator -> getNbSimul () ; ++ is) gain (is) = m_PI (demand (is) , p_stock (1)) + gainSub vention ; // gain by production and subvention ArrayXd ptStockNext (2) ; // time to maturity double timeToMat = m_maturity -m_simulator -> get Current Step () ; // interpolator at the new step for (int is = 0 ; is < m_simulator -> getNbSimul () ; ++ is) { for (int iAl = 0; iAl < m_lMax / m_lStep ; ++ iAl) // test all command for investment between 0 and lMax { double l = iAl * m_lStep ; // interpolator at the new step ptStockNext (0) = p_stock (0) + std :: max (demand (is) -p_stock (1) , 0.) * m_dt ; ptStockNext (1) = p_stock (1) + l * m_dt ; // first test we are inside the domain if (p_grid -> isInside (ptStockNext))

Algorithm 14

 14 Run of backward pass 1: for t = T, T -1, . . . , 1 do 2:

) 15 :

 15 Save the back cost z n = Q 0 .

22 :

 22 Solve the initial linear sub problem [AP n 0]. 23: Save the backward cost z n = Q 0 .

/

 / Copyright (C) 2016 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # ifndef O P T I M I Z E R S D D P B A S E _ H # define O P T I M I Z E R S D D P B A S E _ H # include < Eigen / Dense > # include " StOpt / sddp / SDDPC utOptBas e . h " # include " StOpt / core / grids / O n e D i m R e g u l a r S p a c e G r i d . h " # include " StOpt / core / grids / OneDimData . h " # include " StOpt / sddp / S i m u l a t o r S D D P B a s e . h " # include " StOpt / sddp / S i m u l a t o r S D D P B a s e T r e e . h " /* * \ file O p t i m i z e r S D D P B a s e . h * \ brief Define an abstract class for Stochastic Dual Dynamic Programming problems * \ class O p t i m i z e r S D D P B a s e O p t i m i z e r S D D P B a s e . h // / Base class for optimizer for Dynamic Programming class O p t i m i z e r S D D P B a s e { public : O p t i m i z e r S D D P B a s e () {} virtual ~O p t i m i z e r S D D P B a s e () {} // / \ brief Optimize the LP during backward resolution // / \ param p_linCut cuts used for the PL (Benders for the Bellman value at the end of the time step) // / \ param p_aState store the state , and 0.0 values // / \ param p_particle the particle n dimensional value associated to the regression // / \ param p_isample sample number for independant uncertainties // / \ return a vector with the optimal value and the derivatives if the function value with respect to each state virtual Eigen :: ArrayXd o ne St e pB ac kw a rd (const StOpt :: SD DPCutOpt Base & p_linCut , const std :: tuple < std :: shared_ptr < Eigen :: ArrayXd > , int , int > & p_aState , const Eigen :: ArrayXd & p_particle , const int & p_isample) const = 0; // / \ brief Optimize the LP during forward resolution // / \ param p_aParticle a particule in simulation part to get back cuts // / \ param p_linCut cuts used for the PL (Benders for the Bellman value at the end of the time step) // / \ param p_state store the state , the particle number used in optimization and mesh number associated to the particle . As an input it constains the current state // / \ param p_ stateTo Store for backward resolution we need to store \ f$ (S_t , A_ {t -1} , D_ { t -1}) \ f$ where p_state in output is \ f$ (S_t , A_ { t } , D_ { t }) \ f$ // / \ param p_isimu number of teh simulation used virtual double oneS tepForwa rd (const Eigen :: ArrayXd & p_aParticle , Eigen :: ArrayXd & p_state , Eigen :: ArrayXd & p_stateToStore , const StOpt :: SDDPCu tOptBas e & p_linCut , const int & p_isimu) const = 0 ;

Algorithm 17 1 :

 171 Run of backwardforwardSDDP(),the main function)Init: x g t = TransitionOptimizer.oneAdmissibleState(t), for g ∈ {1, . . . , G} and t ∈ {1, . . . , T -1}, n = 0, ψ = ∞. 2: while ψ > and n < n max do

Algorithm 19 Run of backwardSDDP 1 :

 1 iStep = N bStep: update the simulator time index to give the uncertainty at T 2: for t = T, T -1, . . . , 0 do 3:

7 :

 7 for x g t-1 , g ∈ {1, . . . , G} do 8:

15 :•

 15 StOpt Save the cost backward z n = Q 0 The updateDates function is used to update the data stored by the optimizer, by adjusting the times indicated in argument.

 > std :: pair < double , double > b a c k w a r d F o r w a r d S D D P (const std :: shared_ptr < OptimizerSDDPBase > & p_optimizer , const int & p_nbSimulCheckForSimu , const Eigen :: ArrayXd & p_initialState , const SDDPFinalCut & p_finalCut , const Eigen :: ArrayXd & p_dates , const Eigen :: ArrayXi & p_meshForReg , const std :: string & p_nameRegressor , const std :: string & p_nameCut , Most of the arguments are pretty straightforward (you can see examples in test/c++/functional).

/

 / / \ brief Achieve forward and backward sweep by SDDP with tree // / \ param p_optimizer defines the optimiser necessary to optimize a step for one simulation solving a LP // / \ param p _ n b S i m u l C h e c k F o r S i m u defines the number of simulations to check convergence // / \ param p_init ialStat e initial state at the beginning of simulation // / \ param p_finalCut object of final cuts // / \ param p_dates vector of exercised dates , last date corresponds to the final cut object // / \ param p_nameCut name of the archive to store cuts // / \ param p _ n a m e V i s i t e d S t a t e s name of the archive to store visited states // / \ param p_iter maximum iteration of SDDP , on return the number of iterations achieved // / \ param p_accuracy accuracy asked , on return estimation of accuracy achieved (expressed in %) // / \ param p_nStepConv every p_nStepConv convergence is checked // / \ param p_stri ngStrea m dump all print messages // / \ param p_world MPI communicator // / \ param p_bPrintTime if true print time at each backward and forward step // / \ return backward and forward valorizationstd :: pair < double , double > b a c k w a r d F o r w a r d S D D P T r e e (std :: shared_ptr < OptimizerSDDPBase > & p_optimizer , const int & p_nbSimulCheckForSimu , const Eigen :: ArrayXd & p_initialState , const S D D P F i n a l C u t T r e e & p_finalCut , const Eigen :: ArrayXd & p_dates , const std :: string & p_nameCut , const std :: string & p_nameVisitedStates , int & p_iter , double & p_accuracy , const int & p_nStepConv , std :: ostringstream & p_stringStream ,

/

 / Copyright (C) 2019 EDF // All Rights Reserved // This code is published under the GNU Lesser General Public License (GNU LGPL) # include < pybind11 / pybind11 .h > # include < pybind11 / eigen .h > # include < pybind11 / stl_bind .h > # include < pybind11 / stl .h > # include " StOpt / core / grids / O n e D i m R e g u l a r S p a c e G r i d . h " # include " StOpt / core / grids / OneDimData . h " # include " StOpt / sddp / O p t i m i z e r S D D P B a s e . h " # include " test / c ++/ tools / sddp / O p t i m i z e D e m a n d S D D P . h " # include " test / c ++/ tools / simulators / S i m u l a t o r G a u s s i a n S D D P . h " # include " test / c ++/ python / F u tu re Cu r ve Wr ap . h " /* * \ file P y b i n d 1 1 S D D P O p t i m i z e r s . cpp * \ brief permits to map Optimizers for SDDP * \ author Xavier Warin */ // / \ wrapper for Optimizer for demand test case in SDDP class O p t i m i z e D e m a n d S D D P W r a p : public OptimizeDemandSDDP < SimulatorGaussianSDDP > i m u l a t o r B a c k w a r d backward simulator // / \ param p _ s i m u l a t o r F o r w a r d Forward simulator O p t i m i z e D e m a n d S D D P W r a p (const double & p_sigD , const double & p_kappaD , const FutureCurve & p_timeDAverage , const double & p_spot , const std :: shared_ptr < SimulatorGaussianSDDP > & p_simulatorBackward , const std :: shared_ptr < SimulatorGaussianSDDP > & p _ s i m u l a t o r F o r w a r d) : O p t i m i z e D e m a n d S D D P (p_sigD , p_kappaD , std :: make_shared < StOpt :: OneDimData < StOpt :: OneDimRegularSpaceGrid , double > >(static_cast < StOpt :: OneDimData < StOpt :: OneDimRegularSpaceGrid , double > >(p_ti meDAvera ge)) , p_spot , p_simulatorBackward , p _ s i m u l a t o r F o r w a r d) { } }; namespace py = pybind11 ; P YB IN D1 1 _M OD UL E (SDDPOptimizers , m) { py :: class_ < OptimizeDemandSDDPWrap , std :: shared_ptr < OptimizeDemandSDDPWrap > , StOpt :: O p t i m i z e r S D D P B a s e >(m , " O p t i m i z e D e m a n d S D D P ") . def (py :: init < const double & , const double & , const FutureCurve & , const double & , const std :: shared_ptr < SimulatorGaussianSDDP > & , const std :: shared_ptr < SimulatorGaussianSDDP > & >()). def (" g e t S i m u l a t o r B a c k w a r d " , & OptimizeDemandSDDP < SimulatorGaussianSDDP >::

6 :u

 6 M = u M + u(0) 7: end for 8: return U M N 0 9: end procedure 290 Algorithm 21 Internal Monte Carlo algorithm where t is the current time, x the array of particles positions of size m × d, and l the nesting level.

1 : 5 : 7 :

 157 procedure EvalUDUD2U(x, µ, σ, g, T, V, Ṽ , p, m, t, l) 2: τ = min(Ṽ (), T -t), Sample the time step 3: G = V () Sample the n dimensional Gaussian vector 4: xS(1 : m, :) = x(:) + µτ + σG √ τ xS(m + 1 : 2m, :) = x(:) + µτ 6: xS(2m + 1 : 3m, :) = x(:) + µτ -σG √ τ tS = t + τ New date 8:

9 :g 1 11 :

 9111 = g(xS(1 : m, :)); g 2 = (xS(m + 1 : 2m, :)); g 3 = g(xS(2m + 1 : 3m, :)) 10:u(:) = 1 2 (g 1 + g 3) Du(:, :) = 1 2 (g 1 -g 3) σ -G 12: D 2 u(:, :, :) = 1 2 (g 1 + g 3 -2g 2)σ -GG -I d τ

14 : 1 F 18 :

 14118 (u(:), Du(:, :), D 2 u(:, :, :))/ =) = 0; z(:, :) = 0; θ(:, :, :) = 0 for j = 1, N l+1 do 19:

17. 5 . 2 testAmericanConvex

 52 Three test cases with basket American options are implemented trying to keep the convexity of the solution testAmericanLinearConvexBasket1D Linear regression adapted in1D preserving the convexity at each time step. testAmericanLinearConvexBasket2D Linear regression adapted in 2D trying to preserve the convexity at each time step.testAmericanLinearConvexBasket3DLinear regression adapted in 3D trying to preserve the convexity at each time step.

testDemandSDDP1DDeterministic

 It takes σ d = 0. testDemandSDDP1D It solves the stochastic problem.

testSimpleStorageWithInflowsSDDP1DDeterminist σ i = 0

 0 for inflows and σ d = 0. for demand. N taken equal to 1. testSimpleStorageWithInflowsSDDP2DDeterminist σ i = 0 for inflows and σ d = 0. for demand. N taken equal to 2. testSimpleStorageWithInflowsSDDP5DDeterminist σ i = 0 for inflows and σ d = 0. for demand. N taken equal to 5. testSimpleStorageWithInflowsSDDP1D σ i = 0.6, σ d = 0.8 for demand. N = 1 testSimpleStorageWithInflowsSDDP2D σ i = 0.6 for inflows, σ d = 0.8 for demand. N = 2 testSimpleStorageWithInflowsSDDPD σ i = 0.6 for inflows, σ d = 0.8 for demand. N = 5.

d

 I d , f (t, x, y, z, θ) = cos(d i=1 x i)(α + 1 2 σ 2 0)e α(T -t) + sin(d i=1 x i)µ 0 e α(T -t) + a √ d cos(d i=1 x i) 2 e 2α(T -t) + a √ d (-e 2α(T -t)) ∨ (e 2α(T -t) ∧ (y d i=1 θ i,i)),with a solution u(t, x) = e α(T -t) cos(d i=1

(c i) 2 (µ i z 1 2y i θ 11 . (17 . 36)(c i) 2 (

 21117362 g(x) = -e -ηx and f (x, y, z, θ) = -(y i) 2 -m i)θ i+1,i+1 -d i=1In order to have f Lipschitz, we truncate the control limiting the amount invested by takingf M (y, z, θ) = -(y i) 2 -m i)θ 2,2 + sup η = (η 1 , . . . , η d) 0 ≤ η i ≤ M, i = 1, d) 2 y i θ 11 + (η i)µ i z 1 .

 17.3.1 Inputs . 17.3.2 Architecture . 17.3.3 Implement your problem . 17.3.4 Set of parameters . 17.3.5 The black box . 17.3.6 Outputs . 17.4 Python API (only for regression-based methods)

	Chapter 1
	VII Nesting Monte Carlo for general nonlinear PDEs
	VIII Some test cases description Part I
	Introduction

 Algorithm 2 Dimension coarsening for a given tolerance η B all elements of A with a local error below η while B non nonempty do select l ∈ B with the lowest local error e l

 j 1 , g1, R1,j 1 +1 × . . . × gd, Ld,j d , gd, Rd,j d +1 = (l 1 ,...,l d)∈{ L1,j 1 ,..., R1,j 1 }×...×{ Ld,j d ,..., Rd,j d }In other words, the set of boxes Ĩ1,l 1 × Ĩ2,l 2 × . . . × Ĩd,l d s.t. l k ∈ { Lk,j k , Lk,j k + 1, . . . , Rk,j k } in each dimension k ∈ {1, 2, . . . , d} forms a partition of the box [z j -h j , z j + h j].Consequently, the sum (4.17) evaluated on the box [z j -h j , z j + h j] can be decomposed as follows:S idx ([z j -h j , z j + h j]) =

	Ĩ1,l 1 × . . . × Ĩd,l d	(4.18)
	S idx	Ĩ1,l 1 × . . . × Ĩd,l d	(4.19)
	(l 1 ,...,l d)∈{ L1,j 1 ,..., R1,j 1 }×...×{ Ld,j d ,..., Rd,j d }		
	where we assume without loss of generality that the bandwidth grid h j = (h 1,j 1 ,h 2,j 2 ,. . .,h d,j d), j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . . . d} is such that the list Gk does not contain any input
	x k,i , i ∈ {1, 2, . . . , N } (as such boundary points would be counted twice in the right-hand
	side of (4.19)). The sum decomposition (4.19) is the cornerstone of the fast multivariate
	sum updating algorithm, but before going further, one can simplify the partitions Gk while
	maintaining a sum decomposition of the type (4.19). Indeed, in general some intervals Ĩk,l
	might be empty (i.e. they might not contain any input point x k,i). To avoid keeping track of sums S idx on boxes known to be empty, one can trim the partitions Gk by replacing
	each succession of empty intervals by one new partition threshold. For example, if Ĩk,l =
	[g k,l , gk,l+1] is empty, one can remove the two points gk,l and gk,l+1 and replace them by,
	for example, (g k,l + gk,l+1)/2. Denote by G k = {g k,1 , g k,2 , . . . , g k,m k } the sorted simplified
	list, where 2 ≤ m k ≤ 2M k , k ∈ {1, 2, . . . , d}, and m := d k=1 m k ≤ 2 d M . Define the new partition intervals I k,l := [g k,l , g k,l+1], l ∈ {1, 2, . . . , m k -1}. Because the trimming from Gk
	to G k only affects the empty intervals, the following still holds:		
	Lemma 4.7.1 For any evaluation point z j		

 Fast computation of local sums by independent sorting in each dimension1: Input: sample x i = (x 1,i , . . . , x d,i), i = 1, 2, . . . , N 2: Input : evaluation grid (z 1,j 1 , z 2,j 2 , . . . , z d,j d), j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . . . , d}

	Algorithm 6 3: Define index matrix INDEX[k, i]	local sum index ∈ {1, 2, M k + 1} where
	k = 1, 2, . . . , d and i = 1, 2, . . . , N	
	4: for do(k = 1, 2, ..., d)	
	5:	
		j d }	(4.32)
	Together, the sums (4.32) form a generalized multivariate histogram (classical histogram in
	the case y ≡ 1). For completeness, the computation of the local sums (4.32) is detailed in
	algorithm 6.	

 s j 1 ,j 2 ,...,j d = 0, ∀(j 1 ,j 2 ,...,j d)∈{1,2,...,M 1 +1}×...×{1,2,...,M d +1} 18: for do(i = 1, 2, ..., N)

	12:	else
	13:	z idx += 1
	14:	end if
	15:	end while
	16: end for
	17: 19:	s INDEX[1,i], INDEX[2,i], ..., INDEX[d,i] += y i /N
	20: end for
	21: return s j 1 ,j 2 ,...,j d

:

 Input :precomputed sums s l 1 ,l 2 ,...,l d 2: S 1,l 2 ,l 3 ,...,l d = 0 3: for do(j 1 = 1, ..., M 1 + 1) ,l 3 ,...,l d + = s j 1 ,l 2 ,l 3 ,...,l d , ∀l k ∈{1,2,...,M k +1}, k∈{2,3,...,d} Here S 1,l 2 ,l 3 ,...,l d = j 1 l 1 =1 s l 1 ,l 2 ,...,l d , ∀l k ∈{1,2,...,M k +1}, k∈{2,3,...,d} =1 s l 1 ,l 2 ,...,l d , ∀l k ∈{1,...,M k +1}, k∈{3,...d}

	Algorithm 7 Fast joint empirical cumulative distribution function
	14: S 1,l 2 5: S 2,l 3 ,...,l d = 0
	6:	for do(j 2 = 1, ..., M 2 + 1)
	7: l 2 8: S 2,l 3 ,...,l d + = S 1,j 2 ,l 3 ,...,l d , ∀l k ∈{1,2,...,M k +1}, k∈{3,...,d} j 2 S 2,l 3 ,...,l d = j 1 l 1 =1 S d = 0	Here
	9:	for do(j d = 1, ..., M d + 1)
	10:	
		As the computation of the local sums (4.32) costs O(N logN) operations (or only O(N)
	if the grid is uniform or the data already sorted), the overall computational complexity of
	Algorithm 7 is O(M + N logN), or O(N logN) when M ≈N (respectively O(M + N) and
	O(N) when the grid is uniform or the data already sorted).

Table 9 .

 9 An example without data distribution can be found in the file DynamicProgrammingByRe gression.cpp. We finally give an array with the different TransitionStepRegression objects to use depending on the type of parallelization used. 1: Which object TransitionStepRegression to use depending on the grid used and the type of parallelization used.

	// Copyright (C) 2016 EDF
	// All Rights Reserved	
	// This code is published under the GNU Lesser General Public License (GNU LGPL)
	# ifdef USE_MPI	
	# include < fstream >	
	# include < memory >	
	# include < functional >	
	# include < boost / lexical_cast . hpp >
	# include < boost / mpi . hpp >
	# include < Eigen / Dense >	
	# include " geners / B i n a r y F i l e A r c h i v e . hh "
	& p_funcFinalValue ,
	const Eigen :: ArrayXd & p_pointStock ,
	const int & p_initialRegime ,
	const string	& p_fileToDump ,
	const bool & p_bOneFile ,
	const boost :: mpi :: communicator & p_world)
	{	
	// from the optimizer get back the simulator
	shared_ptr < StOpt :: SimulatorDPBase > simulator = p_optimize -> getSimulator () ;
	// final values	
	vector < shared_ptr < Eigen :: ArrayXXd > > valuesNext = StOpt :: F i na lS te p DP Di st (p_grid ,
	p_optimize -> getNbRegime () , p_optimize -> g e t D i m e n s i o n T o S p l i t () , p_world) (
	p_funcFinalValue , simulator -> getParticles () . array ()) ;
	// dump	
	string toDump = p_fileToDump ;
	// test if one file generated
	if (! p_bOneFile)	
	toDump += " _ " + boost :: lexical_cast < string >(p_world . rank ()) ;
	shared_ptr < gs :: BinaryFileArchive > ar ;
	if ((! p_bOneFile) || (p_world . rank () == 0))
	ar = make_shared < gs :: BinaryFileArchive >(toDump . c_str () , " w ") ;
	// name for object in archive
	string nameAr = " Continuation " ;
	for (int iStep = 0; iStep < simulator -> getNbStep () ; ++ iStep)
	{	
	Eigen :: ArrayXXd asset = simulator -> s t e p B a c k w a r d A n d G e t P a r t i c l e s () ;
	// conditional expectation operator

include " StOpt / core / grids / FullGrid . h " # include " StOpt / regression / Bas eRegress ion . h " # include " StOpt / dp / Fi n al St ep D PD is t . h " # include " StOpt / dp / T r a n s i t i o n S t e p R e g r e s s i o n D P D i s t . h " # include " StOpt / core / parallelism / r e c o n s t r u c t P r o c 0 M p i . h " # include " StOpt / dp / Op t im iz er D PB as e . h " # include " StOpt / dp / Si m ul at or D PB as e . h " using namespace std ;

double D y n a m i c P r o g r a m m i n g B y R e g r e s s i o n D i s t (const shared_ptr < StOpt :: FullGrid > & p_grid , const shared_ptr < StOpt :: O p ti mi z er DP Ba s e > & p_optimize , shared_ptr < StOpt :: BaseRegression > & p_regressor , const function < double (const int & , const Eigen :: ArrayXd & , const Eigen :: ArrayXd &) > p_regressor -> u p d a t e S i m u l a t i o n s (((iStep == (simulator -> getNbStep () -1)) ? true : false) , asset) ; // transition object StOpt :: T r a n s i t i o n S t e p R e g r e s s i o n D P D i s t transStep (p_grid , p_grid , p_optimize , p_world) ; pair < vector < shared_ptr < Eigen :: ArrayXXd > >, vector < shared_ptr < Eigen :: ArrayXXd > > > v a l u e s A n d C o n t r o l = transStep . oneStep (valuesNext , p_regressor) ;

 This code is published under the GNU Lesser General Public License (GNU LGPL)

	// Copyright (C) 2016 EDF
	// All Rights Reserved
	//

Table 9 .

 9 2: Which simulation object to use depending on the TransitionStepRegression object used. Regressions and cuts for continuous linear transition problems with certain characteristics of concavity and convexity During the optimization for example a storage, one can want to solve the transition problem on certain time steps by supposing that the uncertainties are known. The Bellman values for a given uncertainty are then concave compared to the storage when one tries to maximize certain gains for example. When the problem is continuous linear, we can use bender cuts to approximate the Bellman value with respect to the storage level as in the SDDP method 17. To use this cuts a business object using an LP solver must be created. This business object is derived from OptimizerDPCutBase itself derived from OptimizerBaseInterp.

	TransitionStepRegressionDP TransitionStepRegressionDPDist TransitionStepRegressionDPDist TransitionStepRegressionDPSparse	bOneFile = true bOneFile = false	Yes Yes No Yes	Yes Yes No Yes	No Yes Yes No	No Yes Yes No
			SimulateStepRegression	SimulateStepRegressionControl	SimulateStepRegressionDist	SimulateStepRegressionControlDist

include " StOpt / core / utils / St at eW i th St oc k s . h " # include " StOpt / core / grids / SpaceGrid . h " # include " StOpt / regression / Bas eRegress ion . h " # include " StOpt / regression / C o n t i n u a t i o n C u ts . h " # include " StOpt / dp / Si m ul at or D PB as e . h " # include " StOpt / dp / OptimizerBase . h " /* * \ file Op t i m i z e r D P C u t B a s e . h * \ brief Define an abstract class for Dynamic Programming problems solved by regression methods using cust to approximate // / \ class O p t i m i z e r D P C u t B a s e O p t i m i z e r D P C u t B a s e . h // / Base class for optimizer for Dynamic Programming with regression methods and cuts , // / \ brief get the simulator back virtual std :: shared_ptr < StOpt :: S im ul a to rD PB a se > getSimulator () const = 0; // / \ brief get back the dimension of the control virtual int getNbControl () const = 0 ; // / \ brief get size of the function to follow in simulation virtual int ge t Si mu Fu n cS iz e () const = 0; }; } # endif /* O P T I M I Z E R D P C U T B A S E _ H */

 brief defines the dimension to split for MPI parallelism

	const std :: vector < StOpt :: C o n t i n u a t i o n V a l u e T r e e > & p_condEsp) const = 0;
	// / \ brief defines a step in simulation
	// / Notice that this impl ementat ion is not optimal but is convenient if the control is
	discrete .	
	// / By avoiding interpolation in control we avoid non admissible control
	// / Control are recalculated during simulation .
	// / \ param p_grid	grid at arrival step after command
	// / \ param p_ continu ation defines the continuation operator for each regime
	// / \ param p_state	defines the state value (modified)
	// / \ param p_phiInOut	defines the value functions (modified) : size number of
	functions to follow
	virtual void stepSimulate (const std :: shared_ptr < StOpt :: SpaceGrid >	& p_grid , const std
	:: vector < StOpt :: GridTreeValue > & p_continuation ,
			StOpt :: St at eT r ee St oc k s & p_state ,
			Eigen :: Ref < Eigen :: ArrayXd > p_phiInOut) const = 0 ;
	// / \ brief Defines a step in simulation using interpolation in controls
	// / \ param p_grid	grid at arrival step after command
	// / \ param p_control	defines the controls
	// / \ param p_state	defines the state value (modified)
	// / \ param p_phiInOut	defines the value function (modified) : size number of
	functions to follow	
	virtual void s t e p S i m u l a t e C o n t r o l (const std :: shared_ptr < StOpt :: SpaceGrid >	& p_grid ,
	const std :: vector < StOpt :: GridTreeValue > & p_control ,
	// /	For each dimension return true is the direction can be split
	virtual Eigen :: Array < bool , Eigen :: Dynamic , 1 > g e t D i m e n s i o n T o S p l i t () const = 0 ;
	// / \ brief defines a step in optimization
	// / \ param p_grid	grid at arrival step after command
	// / \ param p_stock	coordinates of the stock point to treat
	// / \ param p_condEsp	continuation values for each regime
	// / \ return	a pair :	
	// /	-for each regimes (column) gives the solution for each node in the
	tree (row)	
	// /	-for each control (column) gives the optimal control for each node in
	the tree (rows)	
	// /	.	
	virtual std :: pair < Eigen :: ArrayXXd , Eigen :: ArrayXXd >	stepOptimize (const	std ::
	shared_ptr < StOpt :: SpaceGrid > & p_grid , const Eigen :: ArrayXd	& p_stock ,

Table 11 .

 11 1: Which object TransitionStepRegression to use depending on the grid used and the type of parallelization used.

		Full grid	Sparse grid
	Sequential	TransitionStepRegressionDP	TransitionStepRegressionDPSparse
	Parallelization on calculations	TransitionStepRegressionDP	TransitionStepRegressionDPSparse
	threads and MPI		
	Distribution of calculations	TransitionStepRegressionDPDist	Not available
	and data		

 p world The MPI communicatorRemark 27 A version without data distribution but with multithreaded and with possible MPI on calculations is available with the object SimulateStepRegression. The p OneFile argument is omitted during construction.

	void oneStep (std :: vector < S ta t eW it hS t oc ks > & p_statevector , Eigen :: ArrayXXd &
	p_phiInOut)
	This object implements the method oneStep

 world The MPI communicator Remark 28 A version in which a single archive storing the control/solution is used is available with the object SimulateStepRegressionControl This object implements the method oneStep

void oneStep (std :: vector < S ta t eW it hS t oc ks > & p_statevector , Eigen :: ArrayXd & p_phiInOut)

Table 11 .

 11 2: Which simulation object to use depending on the TransitionStepRegression object used. Regressions and cuts for continuous linear transition problems with certain characteristics of concavity and convexity During the optimization for example a storage, one can want to solve the transition problem on certain time steps by supposing that the uncertainties are known. The Bellman values for a given uncertainty are then concave compared to the storage when one tries to maximize certain gains for example. When the problem is continuous linear, we can use bender cuts to approximate the Bellman value with respect to the storage level as in the SDDP method 17. To use this cuts a business object using an LP solver must be created. This business object is derived from OptimizerDPCutBase itself derived from OptimizerBaseInterp.

	TransitionStepRegressionDP TransitionStepRegressionDPDist TransitionStepRegressionDPDist TransitionStepRegressionDPSparse	bOneFile = true bOneFile = false	Yes Yes No Yes	Yes Yes No Yes	No Yes Yes No	No Yes Yes No
			SimulateStepRegression	SimulateStepRegressionControl	SimulateStepRegressionDist	SimulateStepRegressionControlDist

/* * \ file Op t i m i z e r D P C u t B a s e . h * \ brief Define an abstract class for Dynamic Programming problems solved by // / \ brief get the simulator back virtual std :: shared_ptr < StOpt :: S im ul a to rD PB a se > getSimulator () const = 0; // / \ brief get back the dimension of the control virtual int getNbControl () const = 0 ; // / \ brief get size of the function to follow in simulation virtual int ge t Si mu Fu n cS iz e () const = 0; }; } # endif /* O P T I M I Z E R D P C U T B A S E _ H */

 hpp > # include " geners / B i n a r y F i l e A r c h i v e . hh " # include " StOpt / core / grids / FullGrid . h " # include " StOpt / core / utils / St at eW i th St oc k s . h " # include " StOpt / dp / S i m u l a t e S t e p R e g r e s s i o n C u t D i s t . h " # include " StOpt / dp / O p t i m i z e r D P C u t B a s e . h " # include " StOpt / dp / Si m ul at or D PB as e . h "

	states . push_back (StOpt :: St at e Wi th St o ck s (p_initialRegime , p_pointStock , Eigen ::
		ArrayXd :: Zero (simulator -> getDimension ()))) ;
	std :: string toDump = p_fileToDump ;
	// test if one file generated
	if (! p_bOneFile)
	toDump += " _ " + boost :: lexical_cast < std :: string >(p_world . rank ()) ;
	gs :: B i na r y F i l e A r c h i v e ar (toDump . c_str () , " r ") ;
	// name for continuation object in archive
	std :: string nameAr = " Continuation " ;
	// cost function
	Eigen :: ArrayXXd costFunction = Eigen :: ArrayXXd :: Zero (p_optimize -> ge t Si mu Fu n cS iz e () ,
	simulator -> getNbSimul ()) ;
	for (int istep = 0; istep < nbStep ; ++ istep)
	{	
	StOpt :: S i m u l a t e S t e p R e g r e s s i o n C u t D i s t (ar , nbStep -1 -istep , nameAr , p_grid ,
		p_optimize , p_bOneFile , p_world) . oneStep (states , costFunction) ;
	// new stochastic state
	Eigen :: ArrayXXd particles = simulator -> s t e p F o r w a r d A n d G e t P a r t i c l e s () ;
	for (int is = 0; is < simulator -> getNbSimul () ; ++ is)
		states [is]. s e t S t o c h a s t i c R e a l i z a t i o n (particles . col (is)) ;
	}	
	// final : accept to exercise if not already done entirely (here suppose one function
	to follow)
	for (int is = 0; is < simulator -> getNbSimul () ; ++ is)
	/* * \ file S i m u l a t e R e g r e s s i o n C u t D i s t . h
	* \ brief Defines a simple program showing how to use simulations when optimizaton achived
	with transition problems solved with cuts .
	*	A simple grid is used
	* \ author Xavier Warin
	*/	
	// / \ brief Simulate the optimal strategy , mpi version , Bellman cuts used to allow LP
	resolution of transition problems
	// / \ param p_grid	grid used for deterministic state (stocks for example)
	// / \ param p_optimize	optimizer defining the optimization between two time
	steps	
	// / \ param p _ f u n c F i n a l V a l u e	function defining the final value cuts
	// / \ param p_pointStock	initial point stock
	// / \ param p_ in i ti al R eg im e	regime at initial date
	// / \ param p_fileToDump	name associated to dumped bellman values
	// / \ param p_bOneFile	do we store continuation values in only one file
	// / \ param p_world	MPI communicator
	double S i m u l a t e R e g r e s s i o n C u t D i s t (const std :: shared_ptr < StOpt :: FullGrid > & p_grid ,
			const std :: shared_ptr < StOpt :: O p t i m i z e r D P C u t B a s e > &
			p_optimize ,
			const std :: function < Eigen :: ArrayXd (const int & , const
			Eigen :: ArrayXd & , const Eigen :: ArrayXd &) > &
			p_funcFinalValue ,
			const Eigen :: ArrayXd & p_pointStock ,
			const int & p_initialRegime ,
			const std :: string	& p_fileToDump ,
			const bool & p_bOneFile ,
			const boost :: mpi :: communicator & p_world)
	{	
	// from the optimizer get back the simulator
	std :: shared_ptr < StOpt :: SimulatorDPBase > simulator = p_optimize -> getSimulator () ;
	int nbStep = simulator -> getNbStep () ;
	std :: vector < StOpt :: StateWithStocks > states ;
	states . reserve (simulator -> getNbSimul ()) ;
	for (int is = 0; is < simulator -> getNbSimul () ; ++ is)

costFunction (0 , is) += p _ f u n c Fi n a l V a l u e (

states [is]. getRegime () , states [is]. getPtStock () , states [is]. g e t S t o c h a s t i c R e a l i z a t i o n ()) (0) ; return costFunction . mean () ; }

 stand for the space of functions with a finite | | 1 norm.

	For t given, we denote	
	||w(t, .)|| ∞ = sup	|w(t, x)|
	x∈R d	

Table 16 .

 16 1: Which object TransitionStepSemilagrang to use depending on the grid used and the type of parallelization used.

		Full grid	Sparse grid
	Sequential	TransitionStepSemilagrang	TransitionStepSemilagrang
	Parallelization on calculations	TransitionStepSemilagrang	TransitionStepSemilagrang
	threads and MPI		
	Distribution of calculations	TransitionStepSemilagrangDist	Not available
	and data (MPI)		

 p iStep is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step),-p name is the base name to search for in the archive, p GridNext is the grid at the next time step (p iStep+1), p Optimize is the Optimizer describing the passage from one time step to the next, p OneFile is equal to true if only one archive is used to store continuation values. p world The MPI communicator Remark 48 A version without data distribution but only multithreaded and parallel with MPI on data is available with the object SimulateStepSemilagrang.

	S i m u l a t e S t e p S e m i l a g r a n g D i s t (gs :: B i n a r y F i l e A r c h i v e & p_ar , const int & p_iStep ,
	const std :: string & p_name ,
		const std :: shared_ptr < FullGrid > & p_gridNext , const std
		:: shared_ptr < Op ti mi z er SL Ba s e > & p_pOptimize ,
		const bool & p_bOneFile ,
		const boost :: mpi :: communicator & p_world) ;
	where	
	-p ar is the binary archive where the continuation values are stored,
	This object implements the oneStep method
	void oneStep (const Eigen :: ArrayXXd & p_gaussian , Eigen :: ArrayXXd & p_statevector , Eigen
	:: ArrayXi	& p_iReg , Eigen :: ArrayXd & p_phiInOuts)

Table 16 .

 16 2: Which simulation object to use depending on the TransitionStepSemilagrang object used.

	TransitionStepSemilagrang TransitionStepSemilagrangDist TransitionStepSemilagrangDist	bOneFile = true bOneFile = false	Yes Yes No	Yes Yes No	No Yes Yes	No Yes Yes
			SimulateStepSemilagrang	SimulateStepSemilagrangControl	SimulateStepSemilagrangDist	SimulateStepSemilagrangControlDist

1 :

 1 Take the following set of pairs: {x g t , ω dep,g t } for g ∈ {1, . . . , G}, t ∈ {1, . . . , T }. 2: for t = T, T -1, . . . , 1 do

	3:	for (x g t-1 , ω dep,g t-1), g ∈ {1, . . . , G} do
	4:	

 I 1 }, . . . , i d ∈ {1, . . . , I d }} • {D I } I∈ Ĩ is the set of meshes of the set of scenarios. Algorithm 16 Run of the backward pass with time-related (AR1) and non-convex random quantities 1: Pick up the set of the following pairs: {x g t , ω dep,g t } for g ∈ {1, . . . , G}, t ∈ {1, . . . , T }. 2: for t = T, T -1, . . . , 1 do

	3:

• M M = d k=1 I k designate the number of meshes at each step.

The backward step with both random time-related and non-convex quantities is presented in the algorithm 16.

15 :

 15 Compute the cut for a non-convex random quantity s u t at time t at iteration n: it is defined as the weighted average on the L Benders cut obtained before:

		αg,I t (s u t) =	1 L	L l=1	αg,I t,l (s u t)
		βg,I t (s u t) =	1 L	L l=1	βg,I t,l (s u t),	j = nG + g
		γg,I t (s u t) =	1 L	L l=1	γg,I t,l (s u t)
	16:	end for			
	17:				

for I i , i ∈ {1, . . . , M M } do 18:

 dep t) is given as input to the function. * the s t values are restored by the simulator. * the LP is solved between the dates t and t + dt for the given s t and the constraints due to w dep t (demand, flow constraints) and allows to get the optimum x t . * Using iid sampling, w dep t+dt is estimated. * return (x t , w dep t+dt) as next state and (x t , w dep t) which to be used as a state to visit in the next backward resolution.

 In the next section, some tips and explanations will be given to help you implementing your problem in the library. It is advisable to consult the examples provided by the Algorithm 18 Run of forwardSDDP (n th iteration)1: for g ∈ Ω G do

	2:

8: end while 17.3.3 Implement your problem

 t x t + θ t+1 s.c. A t x t = ω g t -E t x g t-1 , [π t (ω g t)] x t 0 θ t+1 + (β j t+1) x t α j t+1 , j ∈ {1, . . . ,G, . . . , nG} (17.21) Compute the cost for current time step c t x g StOpt Compute the total cost in forward pass at iteration n: zn = 1 This will give you a better understanding of what is needed to calculate the SDDP method via StOpt (test/c++/tools/sddp folder for the optimization examples, test/c++/tools/simulators for the one simulators, and test/c++/functional for the main instances).

		TransitionOptimizer.oneStepForward():
		Solve the following linear sub-problem.
	7:	[AP n t,g]	     	Q g t (x g t-1 , ω g t) = min xt,θ t+1
			    	
		t t) of the problem Return: the primal solution (x g
	8:	StOpt Store the primal solution (x g t) of the problem [AP n t,g]
	9:	iStep = iStep + 1	
	10:	end for		
	11:			
				G	G g=1	zg

c StOpt Compute the cost for scenario g, at iteration n: zg n = T t=0 c t x g t 12: end for 13: n library.

 x g t-1 , ω l t) = min xt,θ t+1 c t x t + θ t+1 s.c. A t x t = ω l t -E t x g t-1 , [π t (ω l t)] x t 0 θ t+1 + (β j t+1)x t α j t+1 , j ∈ {1, . . . , G, . . . , (n + 1)G}

		(17.22)
		Return: the dual solution π t (ω l t) and the primal one Q l t (x g t-1 , ω l t) of the linear sub-problem [AP n,g t,l]
	10:	iStep = iStep + 1,
	11:	end for
	12:	

 If your transition problem is time dependant, for example, you should store the value of these arguments. Depending on your needs, you can also update data such as the average demand at the current stage and at next time step of a gas storage problem. The p dateNext argument is used as the current time step in the backward pass. Therefore, you should store the values of the current and next time step arguments.• The oneAdmissibleState function gives an admissible state (i.e. a state respecting all the constraints) for the time step given in argument.

		// / \ param p_date	current date
	1		
	2	// / \ brief update the optimizer for new date
	3	// /	-In Backward mode , LP resolution achieved at date p_dateNext ,
	4	// /	starting with uncertainties given at date p_date and evolving to
			give uncertainty at date p_dateNext ,

5 // / -In Forward mode , LP resolution achieved at date p_date , 6 // / and uncertainties evolve till date p_dateNext 7 // / .

 The getOneParticle and the getParticles functions should return the quantities used in regression part. LocalLinearRegressionForSDDP The regressor allows to use a linear approximation by mesh of SDDP cuts. // / \ brief Achieve forward and backward sweep by SDDP // / \ param p_optimizer defines the optimiser necessary to optimize a step for one simulation solving a LP // / \ param p _ n b S i m u l C h e c k F o r S i m u defines the number of simulations to check convergence // / \ param p_init ialStat e initial state at the beginning of simulation // / \ param p_finalCut object of final cuts // / \ param p_dates vector of exercised dates , last date corresponds to the final cut object // / \ param p_meshForReg number of mesh for regression in each direction // / \ param p _n a me Re gr e ss or name of the archive to store regressors // / \ param p_nameCut name of the archive to store cuts // / \ param p _ n a m e V i s i t e d S t a t e s name of the archive to store visited states // / \ param p_iter maximum iteration of SDDP , on return the number of iterations achieved // / \ param p_accuracy accuracy asked , on return estimation of accuracy achieved (expressed in %) // / \ param p_nStepConv every p_nStepConv convergence is checked // / \ param p_outp utStrea m dump all print messages // / \ param p_world MPI communicator // / \ param p_bPrintTime if true print time at each backward and forward step // / \ return backward and forward valorization template < class LocalRegressionForSDDP

	1	// / \ param p_idateCurr	index in date array
	• 1	// / \ brief get current Markov state
	1	// / \ brief get current Markov state

• The two last functions resetTime and updateSimulationNumberAndResetTime are quite explicit.

•

const int & p_degree) ;

double g et V al ue At A No de (const int & p_node , const Eigen :: ArrayXd & p_ptOfStock)

Copyright (C) 2016 EDF # All Rights Reserved # This code is published under the GNU Lesser General Public License (GNU LGPL) import numpy as np import StOptReg as reg

Copyright (C) 2021 EDF # All Rights Reserved # This code is published under the GNU Lesser General Public License (GNU LGPL) import numpy as np import math

Then, the global discretized version of the 10 algorithm is given on the 12 algorithm where H (j) correspond to j the Monte Carlo realization of the gain.

• the getNbRegime makes it possible to obtain the number of regimes of the problem.

The number of regimes is fixed.

• the getSimulator method is used to retrieve the simulator giving the Monte Carlo simulations,

• the getSimuFuncSize method is used in simulation to define the number of functions to follow in the simulation part (see chapter 9).

• the getCone method is only relevant if the MPI framework with distribution is used. As argument it takes the regime and a vector of size the dimension of the grid for this regime. Each component of the vector is an array containing for the given regime, the minimum and maximum integer coordinate values of the deterministic state of the current grid defining an hyper cube H1. It returns for each dimension, the min # ifdef USE_MPI if (p_world . rank () == 0) { # endif std :: string fileForRegime = p_fileOutput + " Regime " ; f i le F o r R e g i m e F i n = std :: make_shared < std :: fstream >(fileForRegime . c_str () , std :: fstream :: out) ; Using the C++ framework to solve some hedging problem

In this chapter we present an algorithm developed in StOpt to solve some hedging problem supposing that a mean variance criterion is chosen. The methodology follows the article [START_REF] Warin | Variance optimal hedging with application to electricity markets[END_REF] In this section we suppose that (Ω, F, (F t) t∈[0,T]) is a filtered probability space. We define a set of trading dates T = {t 0 = 0, t 1 , . . . , t N -1 , t N = T } and we suppose that we are given an asset used as an hedging product (S t) t 0 .t N which is almost surely positive, square integrable so that E[S 2 t] < ∞ and adapted so that S t is F t -measurable for t = t 0 , . . . , t N . At last we suppose that the risk free rate is zero so that a bond has always a value of 1.

The problem

Suppose we are given a contingent claim H ∈ L 2 (P) which is assumed to be a random variable F T -measurable. In the case of a European call option on an asset S t with strike K and maturity T , H(ω) = (S T (ω) -K) + . We are only interested in self-financing strategies with limited orders, therefore with limited controls. By extending the definition [START_REF] Motoczyński | Multidimensional variance-optimal hedging in discrete-time model -a general approach[END_REF], [START_REF] Beutner | Mean-variance hedging under transaction costs[END_REF], we define:

In this definition m t corresponds to the number of shares sold on the date t, and l t the number of shares purchased on this date.

Remark 42

The strategies defined in [START_REF] Motoczyński | Multidimensional variance-optimal hedging in discrete-time model -a general approach[END_REF] and [START_REF] Beutner | Mean-variance hedging under transaction costs[END_REF] do not require that m t l t = 0 therefore a buy and sell check could take place on the same given date.

We denote Θ (m, l) the set of (m, l) self-financing strategy and with obvious notations ν = (m, l) for ν ∈ Θ (m, l) .

Chapter 16 C++ API

To perform the interpolation and calculate the semi-Lagrangian value

a first object SemiLagrangEspCond is available:

include < array > # include < vector > # include " StOpt / core / utils / constant . h " # include " StOpt / core / grids / I n t e r p o l a t o r S p e c t r a l . h " • the isNotNeedingBC allows to define for a point on the limit of the grid if a boundary condition is necessary (true is returned) or if no limit is necessary (return false).

An example of a derived object of such an optimizer for a simple stochastic target problem (described in paragraph 5.3.4 in [START_REF] Warin | Some non-monotone schemes for time dependent hamilton-jacobibellman equations in stochastic control[END_REF]) is given below:

PDE resolution

Once the problem is described, temporal recursion can be achieved by using the Transition StepSemilagrang object in a sequential resolution of the problem. This object allows to solve the problem in one time step.

include " geners / B i n a r y F i l e A r c h i v e . hh " # include " StOpt / semila grangien / T r a n s i t i o n S t e p S e m i l a g r a n g B a s e . h " # include " StOpt / core / grids / SpaceGrid . h " # include " StOpt / core / grids / I n t e r p o l a t o r S p e c t r a l . h " # include " StOpt / semila grangien / O p ti mi ze r SL Ba se . h " /* * \ file T r a n s i t i o n S t e p S e m i l a g r a n g . h * \ brief Solve one step of explicit semi Lagrangian scheme * \ author Xavier Warin */ namespace StOpt { // / \ class T r a n s i t i o n S t e p S e m i l a g r a n g T r a n s i t i o n S t e p S e m i l a g r a n g . h // / One step of semi Lagrangian scheme class T r a n s i t i o n S t e p S e m i l a g r a n g : public T r a n s i t i o n S t e p S e m i l a g r a n g B a s e { private : The sequential version (or parallelized on calculations) of the preceding example is given in the file semiLagrangianSimuControl.cpp.

Remark 51 In the previous example, we assume that only one function is tracked in simulation, and that we return an average for that function value accordingly. This 2-dimensional case for inventories can be handled by interpolation on the full twodimensional grid and on a two-dimensional sparse grid. The two versions of the resolution are given in a test case (testDPNonEmissive.cpp).

The PDE approach

The same can be done with the PDE approach using a simulator for the OU demand (AR1Simulator). We then define an optimizer (OptimizeSLEmissive) and the methods used to optimize and simulate, and the method getCone for parallelization: # include < iostream > # include " StOpt / core / utils / constant . h " # include " O p t i m i z e S L E m i s s i v e . h " using namespace StOpt ; using namespace Eigen ; using namespace std ; The three dimensional grids used can be some full grids or some sparse grids. Both versions of the resolution can be found in a test case (testSLNonEmissive.cpp).

Part VI Stochastic Dual Dynamic Programming

Chapter 17

SDDP algorithm 17.1 Some general points about SDDP

Stochastic Dual Dynamic Programming (SDDP) is an approximate dynamic programming algorithm developed by Pereira and Pinto in 1991 [START_REF] Mario | Multi-stage stochastic optimization applied to energy planning[END_REF].

To describe the operation of SDDP, we will consider a class of linear programs which have steps T + 1 stages denoted {0, 1, . . . , t, . . . , T }. We limit our class of problems to linear programs with a relatively complete recourse: the feasible region of the linear program at each step is nonempty and bounded.

Let us formalize the variables and constraints used in the SDDP problem.

Notations used

The notations described here are used in the general case.

• x t is the decision variable at time t. If the data process is step-independent, x t also designates the state at time t + 1.

• ω t ∈ Ω t is the random data process at time t, where Ω t is the random data set.

• c t is the vector of cost at time t.

• A t and E t denote matrices of constraints.

is the expected value of the problem at time t, knowing the state x t-1 and the random data ω t .

Decision process

The random data process ω t is discovered gradually. Thus from an initial state x 0 , the state variables (x t) t∈{0,1,...,T } are determined in a non-anticipatory manner. The scheme is as follows: • A forward pass simulator: SimulatorSim

• A backward pass simulator: SimulatorOpt. This simulator can use an underlying process to generate scenarios, a set of historical chronicles, or a discrete set of scenarios. Often, in the case of a test carried out, a Boolean is enough to distinguish the forward and the backward simulator.

At the opposite of the class where the transition is described, the simulator is of course different for the tree approach and the regression approach because the first gives only a finite number of states.

An abstract class for simulators using the regression-based methods is defined below: A simulator for the tree approach A simulator using tree must be derived from the SimulatorSDDPBaseTree class. Since the SimulatorSDDPBaseTree class is derived from the SimulatorSDDPBase class, all of the previously described methods must be given. Besides a geners archive is used to load:

• The dates used by the simulator to estimate the set of possible states,

• At each date, a set of d dimensional points defining the set of discrete values of the state in the tree,

• At each date a two-dimensional array giving the probability of transition in the tree to go from a node i on the current date to a node j on the following date.

Then the implemented simulator must call the based constructor loading the archive: Then the user must have generated such an archive. An example of using a trinomial tree method for an AR1 class is given in the c++ test cases in the simulator directory by the MeanRevertingSimulatorTree class.

The necessary methods to be implemented are as follows:

• The getNodeAssociatedToSim method gives for a simulation identified by the particle number the node in the visited tree.

• The stepForward method updates the simulation date index by one, and samples visited nodes in forward resolution.

Set of parameters

Implementing some regression-based method

The base function backwardForwardSDDP must be called to use the SDDP part of the library with conditional cuts calculated by regressions. This function is modeled by the regressor used:

• LocalConstRegressionForSDDP The regressor allows to use a constant approximation by mesh of SDDP cuts, Once the convergence has been achieved, the user must restart certain simulations by adding a flag to store the results necessary for the application (distribution cost etc.): these results will be post-processed by the user.

Python API (only for regression-based methods)

A high level Python mapping is also available in the SDDP part. The backward-forward C++ function is exposed in Python by the SDDP StOptSDDP module. In this mapping, only the linear per mesh regressor is used.

that should give The backwardForwardSDDP performs the forward and backward SDDP sweep giving an SDDP optimizer and an SDDP uncertainty simulator. The initial final cuts for the last time steps are provided by the SDDPFinalCut object. Perform the mapping of SDDP optimizers and simulators written in C++ it is necessary to The described method has been studied in [START_REF] Warin | Nesting monte carlo for high-dimensional non linear pdes[END_REF], [START_REF] Warin | Monte carlo for high-dimensional degenerated semi linear and full non linear pdes[END_REF] and uses some ideas in [START_REF] Henry-Labordere | Branching diffusion representation of semilinear pdes and monte carlo approximation[END_REF], [START_REF] Warin | Variations on branching methods for non linear pdes[END_REF]. Our goal is to solve the complete nonlinear equation

with

so that L is the generator associated with

with µ ∈ R d , and σ ∈ M d is a constant matrix. Throughout the article, ρ is the density of a general random variable following a gamma law so that

The associated cumulative distribution function is

where γ(s, x) = x 0 t s-1 e -t dt is the incomplete gamma function and Γ(s) = ∞ 0 t s-1 e -t dt is the gamma function. The methodology follows the ideas of [START_REF] Warin | Nesting monte carlo for high-dimensional non linear pdes[END_REF] and [START_REF] Warin | Variations on branching methods for non linear pdes[END_REF]. It is assumed here that σ is not degenerate so that σ -1 exists. Let set p ∈ N + . For (N 0 , . . . , N p-1) ∈ N p , we introduce the sets of i-tuple, Q i = {k = (k 1 , . . . , k i)} for i ∈ {1, . . . , p} where all components k j ∈ [1, N j-1]. Besides we define Q p = ∪ p i=1 Q i . We construct the sets Q o i for i = 1, . . . , p, such that

and the set Q o i for i > 1 are defined by recurrence:

so that to a particle noted (k 1 , . . . , k i) ∈ Q o i such that k i ∈ N, we associate two fictitious particles noted k 1 = (k 1 , . . . , k i-1 , (k i) 1) and k 2 = (k 1 , . . . , k i-1 , (k i) 2). To a particle k = (k 1 , . . . , k i) ∈ Q o i we associate its original particle o(k) ∈ Q i such that o(k) = (k1 , . . . , ki) where kj = l if k j = l, l 1 or l 2 . For k = (k 1 , . . . , k i) ∈ Q o i we introduce the set of its non fictitious sons

and the set of all sons

We define the order of a particle k ∈ Q o i , i ≥ 0, by the function κ:

We define the sequence τ k of switching increments i.i.d. random density variables ρ for k ∈ Q p . The switching dates are defined as follows:

we define the following trajectories:

where the W k for k in Q p are independent d-dimensional Brownian motions, independent of the (τ k) k∈Q p .

To understand what these different trajectories represent, suppose that d = 1, µ = 0, σ = 1 and consider the original particle k = (1, 1, 1) such that T (1,1,1) = T . Following equation (17.26),

T -T (1,1)

T -T (1,1)

T -T (1,1)

... such that all particles are generated from the W k used to define X

(1,1,1) T

.

Using the previous definitions, we consider the estimator defined by:

T (j) , ūp (j) , Dū p (j) , D 2 ūp (j) ,

American option

The library gives some test cases for the Bermudean options problem ([START_REF] Bouchard | Numerical approximation of bsdes using local polynomial drivers and branching processes[END_REF] for more details on the Bermudean option problem). All Bermudean test cases use a basket option payoff. The reference for converged methods can be found in [START_REF] Bouchard | Numerical approximation of bsdes using local polynomial drivers and branching processes[END_REF].

testAmerican

The test case in this file makes it possible to test during the Dynamic Programming resolution different regressors:

• either by using some local functions with the same size support:

-Either by using a constant representation by mesh of the function (LocalSameSizeConstRegress regressor)

-Either by using a linear representation by mesh of the function (LocalSameSizeLinearRegressio regressor)

• either using some function basis with adaptive support ([START_REF] Bouchard | Numerical approximation of bsdes using local polynomial drivers and branching processes[END_REF])

-Either by using a constant representation per mesh of the function (LocalConstRegression regressor)

-Either by using a linear representation by mesh of the function (LocalLinearRegression regressor)

• Either using the global polynomial regressor:

-Either using Hermite polynomials, -Either using Canonical polynomials (monomes),

-Either using Tchebychev polynomials.

• Either using a sparse regressor,

• Either using kernel regressors:

either using a constant kernel regressor, either using linear kernel regressor.

testAmericanLinearBasket1D

Test 1D problem with LocalLinearRegression regressor.

testAmericanSparseBasket2D

Use sparse 2D grids for linear, quadratic or cubic representation.

testAmericanSparseBasket3D

Use sparse in 3D grids for linear, quadratic or cubic representation.

testAmericanSparseBasket4D

Use sparse 4D grids for linear, quadratic or cubic representation.

testAmericanOptionCorrel

Same case as before but with correlations between assets. Used to test that the rotation due to the PCA analysis is working correctly.

testAmericCorrel

Check in 2D that

• Local Constant by mesh regression with and without rotation gives the same result,

• Local Linear regression by mesh with and without rotation gives the same result,

• Global regression with and without rotation gives the same result.

testAmericanOptionTree

Simple 1D test case, to test the tree method on American options. An Ornstein-Uhlenbeck process using an average return parameter close to zero is used to be close to the BS model. The OU model is approximated by a trinomial tree.

testSwingOption

The swing option problem is the generalization of the American option using a Black-Scholes model for the underlying asset: on a set of dates nStep (chosen equal to 20 here), we can choose N dates (N equal to three) to exercise the option. At each exercise date t , we get the pay-off (S t -K) + where S t is the value of the underlying asset on the date t. See [START_REF] Jaillet | Valuation of commodity-based swing options[END_REF] for a description of the swing problem and backward solving techniques. Due to the classic results on the Snell envelop for the European payoff, the analytical value of this problem is the sum of the payoffs at the last dates N where we can exercise (remember that the value of an American call is the European value). The Markov state of the problem at a given date t is given by the value of the underlying (Markov) and the number of exercises already performed on the date t. This test case can be run in parallel with MPI. In all test cases, we use a LocalLinearRegression to evaluate the conditional expectations used during the Dynamic Programming approach.

We check that the values obtained in optimization and simulation are close. The two files of test cases (testSwingOptimSimu/testSwingOptimSimuMpi) use the two versions of MPI parallelization distributing or not the data on the processors.

testSwingOptimSimuWithHedge

The test case takes up the problem described in the section 17.6, solves it using the regression (LocalLinearRegression regressor) when calculating the optimal coverage by the conditional tangent method as explained in [START_REF] Warin | Gas storage hedging[END_REF]. After optimization, a simulation part implements the optimal control and the associated optimal hedging policy. We verify:

• That the optimization and simulation values are close

• That the simulated hedge has an average almost equal to zero,

• That the hedged swing simulations yield a reduced standard deviation from the value of the unhedged option obtained by the unhedged simulation.

This test case shows that the multiple regimes introduced in the 9.2.2 framework can be used to calculate and store the optimal hedging policy. This is achieved by creating a dedicated OptimizeSwingWithHedge optimizer.

testSwingOptimSimuND / testSwingOptimSimuNDMpi

The test case takes the problem described in the 17.6 section, suppose we have two similar options to value and we ignore that the options are independent giving a problem to solve with two stocks managed jointly as in subsection 17.6.1. After optimizing the problem using regression (LocalLinearRegression regressor) We simulate the optimal control for this two-dimensional problem and check that the optimization and simulation values are close.

In testSwingOptimSimuND MPI parallelization, if enabled, parallelize only the calculation, while in testSwingOptimSimuNDMpi the data is also distributed on processors. In the latter, two options are tested,

• in testSwingOptionOptim2DSimuDistOneFile the Bellman values are distributed on the different processors but before being dumped, they are recombined to give a single file for the simulation.

• in testSwingOptionOptim2DSimuDistMultipleFile Bellman values are distributed across different processors but each processor dumps its own Bellman Values. During simulation, each processor reads back its own Bellman values.

The same large-dimensional problem may only be achievable with the second approach. 17.7 Gas Storage

testGasStorage / testGasStorageMpi

The model used is a mean return model similar to the one described in [START_REF] Warin | Gas storage hedging[END_REF]. We keep only one factor in equation (8) in [START_REF] Warin | Gas storage hedging[END_REF]. The problem consists in maximizing the gain of a gas storage by the methodology described in [START_REF] Warin | Gas storage hedging[END_REF]. All test cases are composed of three parts:

• an optimization is performed by regression (LocalLinearRegression regressor),

• a first simulation of the optimal control using the continuation values stored during the optimization part,

• a second simulation using directly the optimal controls stored during the optimization part.

We check that the three previously calculated values are close. Using a dynamic programming method, we need to interpolate in the stock grid to get the Bellman values at a stock point. Usually, a simple linear interpolator is used (giving a monotone scheme). As explained in [START_REF] Warin | Some non-monotone schemes for time dependent hamilton-jacobibellman equations in stochastic control[END_REF], it is possible to use still monotonous higher order schemes. We are testing different interpolators. In all test cases, we use a LocalLinear Regression to evaluate conditional expectations. The MPI version makes it possible to test the distribution of data when using parallelization.

testSimpleStorage

We use a classic regular grid with equally spaced points to discretize the gas stock and a linear interpolator to interpolate in the stock.

testSimpleStorageLegendreLinear

We use a Legendre grid with linear interpolation, so the result should be the same as above.

testSimpleStorageLegendreQuadratic

We use a quadratic interpolator for the stock level.

testSimpleStorageLegendreCubic

We use a cubic interpolator for the stock level.

testSimpleStorageSparse

We use a sparse grid interpolator (equivalent to a full grid interpolator because it is a one dimensional problem). We only test the sparse grid with a linear interpolator.

We check that the three previously calculated values are close on this test case where the grid describing the gas storage constraint is variable in time. This makes it possible to check the splitting of the grids during the parallelization.

testGasStorageSwitchingCostMpi

The test case is similar to that of the 17.7.1 section (therefore using regression methods): we added an extra cost when switching from one regime to another. The additional cost results in the fact that the Markov state is composed of the asset price, the level of stock and the current regime in which we are (the latter is not present in another test case on the gas storage). This test case shows that our framework solves regime switching problems. As before, all test cases are composed of three parts:

• an optimization is performed by regression (LocalLinearRegression regressor),

• a first simulation of the optimal control from the sequence values stored during the optimization part,

• a second simulation using directly the optimal controls stored during the optimization part.

We check that the three previously calculated values are close.

testGasStorageSDDP

Modeling the asset is similar to the other test case. We assume that we have N similar independent storages. So solving the problem with N stocks should yield N times the value of a stock.

• First, the storage value is calculated by dynamic programming giving the value A,

• Then the SDDP method (chapter 17) is used to value the problem giving the B value. Benders cuts must be made subject to price level.

We check that B is close to N A.

testStorageWithInflowsAndMarketSDDP

This is the same problem as 17.12.2, but the price S t follow an AR 1 model. We use an SDDP approach to solve this problem. Due to price dependencies, the reduction of SDDP must be effected conditionally on the price level. Test Semi-Lagrangian deterministic methods for HJB equation. This corresponds to the second test case without control in [START_REF] Warin | Some non-monotone schemes for time dependent hamilton-jacobibellman equations in stochastic control[END_REF] (2 dimensional test case).

TestSemiLagrang1Lin

Test the Semi-Lagrangian method with the linear interpolator.

TestSemiLagrang1Quad

Test the Semi-Lagrangian method with the quadratic interpolator.

TestSemiLagrang1Cubic

Test the Semi-Lagrangian method with the cubic interpolator.

TestSemiLagrang1SparseQuad

Test the sparse grid interpolator with a quadratic interpolation.

TestSemiLagrang1SparseQuadAdapt

Test the sparse grid interpolator with a quadratic interpolation and some adaptation in the meshing.

testSemiLagrangCase2/testSemiLagrangCase2

Test Semi-Lagrangian deterministic methods for HJB equation. This corresponds to the first case without control in [START_REF] Warin | Some non-monotone schemes for time dependent hamilton-jacobibellman equations in stochastic control[END_REF] (2 dimensional test case).

TestSemiLagrang2Lin

Test the Semi-Lagrangian method with the linear interpolator.

TestSemiLagrang2Quad

Test the Semi-Lagrangian method with the quadratic interpolator.

TestSemiLagrang2Cubic

Test the Semi-Lagrangian method with the cubic interpolator.

TestSemiLagrang2SparseQuad

Test the sparse grid interpolator with a quadratic interpolation.

testSemiLagrangCase2/testSemiLagrangCase2

Test Semi-Lagrangian deterministic methods for HJB equation. This corresponds to the stochastic target test case 5.3.4 in [START_REF] Warin | Some non-monotone schemes for time dependent hamilton-jacobibellman equations in stochastic control[END_REF].

TestSemiLagrang3Lin

Test the Semi-Lagrangian method with the linear interpolator.

TestSemiLagrang3Quad

Test the Semi-Lagrangian method with the quadratic interpolator.

TestSemiLagrang3Cubic

Test the Semi-Lagrangian method with the cubic interpolator.

17.14 Non emissive test case 17.14.1 testDPNonEmissive

Solve the problem described in part V by dynamic programming and regression.

• first an optimization is realized,

• the an simulation part permit to test the controls obtained.

testSLNonEmissive

Solve the problem described in part V by the Semi-Lagrangian method.

• first an optimization is realized,

• the an simulation part permit to test the controls obtained. We use the nesting method with µ = 0, σ = √ 2I d . These test cases are in the test/c++/unit/branching directory.

testHJCConst

In this test case, we use a special resolution function assuming that the parameters of the PDE are constant: this allows us to precompute the inverse of some matrices.

testHJCExact

We test here the particular case where the SDE can be exactly simulated with a scheme X t+dt = A(t, dt)X t + B(t, dt) + C(t, dt)g with a g Gaussian-centered unit vector.

testHJBEuler

We use a resolution function assuming that the SDE is discretized by an Euler scheme.

Some Toy example: testUD2UTou

We want to solve: (-∂ t u -Lu)(t, x) = f (u, Du(t, x), D 2 u(t, x))

Chapter 18

Some Python test cases description

This part is devoted to some test cases only available in Python. These examples uses the low level Python interface.

Microgrid Management

testMicrogridBangBang

A microgrid is a collection of renewable energy sources, a diesel generator, and a battery for energy storage. The objective is to match the residual demand (difference between the demand of electricity and supply from renewables) while minimizing the total expected cost of running the microgrid. In particular a penalty is assessed for insufficient supply that leads to blackouts. The setup is similar to the one described in [[START_REF] Ludkovski | Simulation methods for stochastic storage problems: A statistical learning perspective[END_REF], Section 7]. We take the diesel generator as the only control d t ; output/input from/into the battery is then a function of the residual demand X t (exogenous stochastic process), inventory level of the battery I t , and d t . The diesel generator operates under two regimes: OFF and ON. When it is OFF it does not supply power d t = 0, however when it is ON the power output is a deterministic function of the state d t = d(X t , I t). As a result, the problem is a standard stochastic control model with switching-type bang-bang control.

We parameterize the algorithm to easily switch between multiple approximation schemes for the conditional expectation at the core of the Dynamic Programming equation. Particularly the following schemes are implemented:

• Regularly spaced grid for I t and local polynomial basis in X t for each level of the grid.

• Adaptive piecewise-defined polynomial basis in -2D for (X t , I t).

• Global 2D polynomial basis on (X t , I t).

• Bivariate Kernel regression on (X t , I t).

testMicrogrid

We extend the previous example to include the recent work [START_REF] Alasseur | Regression monte carlo for microgrid management[END_REF] where the action space for the control is d t ∈ {0} ∪ [START_REF] Alasseur | Regression monte carlo for microgrid management[END_REF][START_REF] Bungartz | Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung[END_REF] kW, rather than being bang-bang. As a result, the optimal • The other 30 steps (first 75%) use design sites allocated according to Sobol-2D as in figure 18.1a with a global polynomial basis regression scheme. For these, we build a batched design of 1000 unique sites, each replicated 10 times for a total simulation budget of N t = 1000 × 10 = 10 4 .