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We investigate air entrainment and bubble statistics in three-dimensional breaking waves
through novel direct numerical simulations of the two-phase air-water flow, resolving the
length scales relevant for the bubble formation problem, the capillary length and the
Hinze scale. The dissipation due to breaking is found to be in good agreement with
previous experimental observations and inertial-scaling arguments. The air-entrainment
properties and bubble-size statistics are investigated for various initial characteristic
wave slopes. For radii larger than the Hinze scale, the bubble size distribution, can be

described by N(r, t) = B(V0/2π)(ε(t − ∆τ)/Wg)r−10/3r
−2/3
m during the active break-

ing stages, where ε(t − ∆τ) is the time dependent turbulent dissipation rate, with
∆τ the collapse time of the initial air pocket entrained by the breaking wave, W a
weighted vertical velocity of the bubble plume, rm the maximum bubble radius, g grav-
ity, V0 the initial volume of air entrained, r the bubble radius and B a dimensionless
constant. The active breaking time-averaged bubble size distribution is described by

N̄(r) = B(1/2π)(εlLc/Wgρ)r−10/3r
−2/3
m , where εl is the wave dissipation rate per unit

length of breaking crest, ρ the water density and Lc the length of breaking crest. Finally,
the averaged total volume of entrained air, V̄ , per breaking event can be simply related
to εl by V̄ = B(εlLc/Wgρ), which leads to a relationship to a characteristic slope, S, of
V̄ ∝ S5/2. We propose a phenomenological turbulent bubble break-up model, based on
earlier models and the balance between mechanical dissipation and work done against
buoyancy forces. The model is consistent with the numerical results and existing exper-
imental results.

1. Introduction

1.1. The broader context

Surface wave breaking plays an important role in the coupling between the atmosphere
and the ocean from local weather to global-climate scales. In the absence of wave breaking,
the direct transport between the atmosphere and the ocean is through slow molecular
diffusion and conduction processes. In contrast, when a wave breaks, the surface may
experience dramatic changes, with a jet forming and plunging back to the surface, ejecting
spray and entraining air into the ocean. For weaker breaking the surface may roll over
itself down the front of the wave, while still entraining bubbles.

Breaking is a transitional flow process from the laminar fluid dynamics of classical
surface waves to a two-phase turbulent flow. Thus wave breaking limits the height of
surface waves, transfers momentum from waves to currents and significantly enhances the
transfer of heat, water vapour, marine aerosols and gases between the atmosphere and
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the ocean (Memery & Merlivat 1985; Farmer et al. 1993; Melville 1996). Approximately
30% of the CO2 released into the atmosphere is taken up by the ocean (Rhein et al. 2013),
much from the entrainment and dissolution of bubbles by breaking and the associated
mixing (Monahan & Dam 2001). Once in solution, CO2 forms carbonic acid, the source
of ocean acidification, which has such an adverse effect on shell-forming marine animals.
Breaking impact forms spray and aerosols, while small bubbles may be dissolved into
the water column, larger bubbles entrained by breaking rise back to the surface and
collapse. This generates spray, which is transported into the atmosphere and ultimately
evaporates leaving water vapour, important for the thermodynamics of the atmosphere,
and salt crystals that affect the radiative balance of the atmosphere and form cloud
condensation nuclei (Andreas et al. 1995; de Leeuw et al. 2011; Veron 2015).

For all these reasons, improvements in our understanding of the ocean, atmosphere and
climate systems requires a detailed understanding of the physics of air entrainment and
subsequent bubble generation. Due to the complex nature of the breaking process, a cou-
pled two-phase turbulent flow, a detailed understanding of the dynamical and statistical
properties of the generated bubbles has been elusive.

1.2. Bubble size distribution, models and observations

The bubble size distribution is the most important characteristic of the bubble formation
process since one can retrieve the bubble cloud properties, volume, energy, and penetra-
tion depth from its moments. Garrett et al. (2000) introduced the most widely used model
for the bubble size distribution. It relies on a steady model of a turbulent break-up cas-
cade, assuming the size distribution per unit volume N (r), with r the bubble radius, to
depend only on the local (time-averaged) turbulent dissipation rate ε̄, the bubble radius
r and the source of bubbles, i.e. the constant air flow rate per unit volume of water Q.
The steady assumption requires N (r) ∝ Q, then dimensional analysis leads to:

N (r) ∝ Qε̄−1/3r−10/3. (1.1)

Note that Garrett et al. (2000) consider the bubble size distribution per unit volume
N (r), which is physically equivalent to N(r) the bubble size distribution (N (r)dr and
N(r)dr are respectively the per unit volume, and absolute number of bubbles of radii
between r and r+ dr). If one considers N(r), Eq. 1.1 is unchanged, except Q is now the
absolute air flow rate.

The related turbulent break-up model assumes an inertial subrange and a direct cascade
process: air is injected at large scales (large bubbles) by the entrainment process and
turbulent fluctuations break them into smaller bubbles. The cascade process ends at the
scale where surface tension prevents further bubble break-up, the Hinze scale (Hinze
1955):

rH = C(γ/ρ)3/5ε̄−2/5, (1.2)

where γ is the surface tension, ρ the water density and C is a dimensionless constant
which has a value of approximately 0.5 (Martinez-Bazan et al. 1999; Garrett et al. 2000;
Deane & Stokes 2002).

Several experimental studies (Loewen et al. 1996; Terrill et al. 2001; Deane & Stokes
2002; Leifer & de Leeuw 2006; Rojas & Loewen 2007; Blenkinsopp & Chaplin 2010)
have identified a bubble size distribution following a power law of the bubble radius
N(r) ∝ r−m with m ∈ [2.5 : 3.5], roughly compatible with Eq. (1.1) when considering
the difficulty of the experiments. Figure 1 shows the bubble size distribution from various
laboratory studies, using different measurement methods: cameras and bubble interface
detection technique (Deane & Stokes 2002), fiber optical probes (Rojas & Loewen 2007;
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Figure 1: Bubble size distributions N(r), measured during various breaking waves labo-
ratory experiment, in the existing literature. Dashed line is N(r) ∝ r−10/3 and solid line
is N(r) ∝ r−3. Size distributions are given in arbitrary units due to various normaliza-
tions in the original papers. (�) BC2010 stands for Blenkinsopp & Chaplin (2010), (×)
L1996 for Loewen et al. (1996), (�) RL2007 for Rojas & Loewen (2007) and (◦) DS2002
for Deane & Stokes (2002). (Inset) Experimental bubble size distributions N(r, t) from
Deane & Stokes (2002), during the active breaking stage (+) and later during the decay
(◦). Solid line is N(r, t) ∝ r−3. N(r, t) is much steeper once the active breaking stage is
finished.

Blenkinsopp & Chaplin 2010) or acoustic instruments (Loewen et al. 1996). From Figure
1 it is hard to make a clear statement on the exact value of the power law exponent m.
Data from Deane & Stokes (2002) and Loewen et al. (1996) are closer to the m = 10/3
value while data from more recent experiments shows values closer to m = 3 (Rojas
& Loewen 2007; Blenkinsopp & Chaplin 2010). Moreover, the experiments by Deane &
Stokes (2002) and Blenkinsopp & Chaplin (2010) give very different shapes for N(r)
below the Hinze scale.

One of the difficulties in properly identifying the exponent m is the rapid time varia-
tions of the bubble size distribution. As discussed by Deane & Stokes (2002) and shown
in Figure 1 (inset), the scaling N(r) ∝ r−m, with m ∈ [2.5 : 3.5], is only valid during the
active breaking time, which is around one wave period. Later on, the bubble size distri-
bution is found to be much steeper. Therefore, it is possible that the different values for
m found in the literature are related to the time of observation and the time of averaging
used to calculate N(r). Therefore a more complete description of the time evolution of
the bubble size distribution during the breaking event and during the rise of the bubbles
is needed.

Indeed, the model from Garrett et al. (2000) (Eq. (1.1)), while undoubtelly correct for
constant Q, does not describe the temporal evolution in which the bubble size distribu-
tion experiences very rapid change (Terrill et al. 2001; Deane & Stokes 2002). Moreover,
measurements of the volume of entrained air have shown that Q is not a constant param-
eter in this problem (Lamarre & Melville 1991; Blenkinsopp & Chaplin 2007). Finally
the dependence on ε̄ and Q in Eq. 1 has never been validated and raises a concern. In
breaking waves, even if there were a constant Q for some time, it would almost certainly
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depend on ε̄, in which case we might expect that Qε̄−1/3 ∝ ε̄n, with n > 0. Thus, under-
standing the link between these two variables is crucial and will clarify the relationship
between the kinematics and dynamics of the flow (e.g. dissipation, air entrainment rate)
and the integral quantities, through the moments of the size distribution.

Baldy (1993) proposed another model for bubble generation by breaking waves, also
based on a turbulent break-up scenario and describes s(r, t) the bubble size distribution
per unit time, per unit mass per unit ocean surface area, assuming adiabatic evolution, i.e.
the time scale of bubble fragmentation is much faster than the other processes at play.
Considering that s(r, t) is given by the balance of the local time dependent turbulent
dissipation rate ε(t) and characteristic surface tension energy of a single bubble es ∝
γr2/ρ, Baldy (1993) found by dimensional analysis:

s(r, t) ∝ ε(t)

(γ/ρ)r2
∝ ε(t)

(
γ

ρ

)−1
r−2. (1.3)

This model is appealing because it considers only the bubble energy and the turbulent
break-up dissipation rate while Garrett et al. (2000) had to introduce the constant air
flow rate Q to close their dimensional argument. Since this model is adiabatic in time,
the measurable time-averaged bubble size distribution N(r) is going to be N(r) ∝ r−2.
However, as discussed before, experimental results suggest that N(r) ∝ r−m, with m ∈
[2.5 : 3.5], which is quite different from the above result (Eq. 1.3). Note also that this
model is based on an inertial subrange hypothesis without indications of the scale of the
smallest bubble, so the role of the Hinze scale in this description is therefore not clear.

On the other hand, the Garrett et al. (2000) model predicts m = 10/3, which, within
the scatter, is in agreement with experimental data. An important difference between the
models from Baldy (1993) and Garrett et al. (2000) concerns the treatment of surface
tension. Baldy (1993) considers surface tension energy as the key parameter to balance the
turbulent break-up of the bubbles within the turbulent inertial subrange, while Garrett
et al. (2000) neglect surface tension for bubbles of radius larger than the Hinze scale,
assuming that surface tension is the process that stops the turbulent break-up at small
scale.

1.3. Numerical Simulations

Besides laboratory and field work, numerical simulations of the two-phase breaking wave
flow have recently become available through improvements in numerical schemes and in-
creases in computational capacity, but they still remain very challenging. Two approaches
exist: large eddy simulations (LES), with subgrid-scale turbulent and bubbly-flow mod-
els and direct numerical simulations (DNS). While LES solves the large scales directly,
strong asumptions are needed for the subgrid-scale turbulent bubbly flow closures, e.g.
assuming a bubble size distribution (Shi et al. 2010; Liang et al. 2011, 2012; Derakhti &
Kirby 2014). In contrast, DNS is an appealing tool since no parametrizations are used to
solve the multi-phase flow. The DNS has been limited to two-dimensional evolution of
periodic unstable waves with relatively small wavelengths, providing numerical data on
wave dissipation and the splashing processes (Chen et al. 1999; Song & Sirviente 2004;
Iafrati 2011; Deike et al. 2015). Three dimensional simulations of breaking waves have
recently become available, both DNS (Fuster et al. 2009) and LES (Derakhti & Kirby
2014; Lubin & Glockner 2015). They are indeed necessary to investigate bubble and
spray formation, which are fundamentally three-dimensional processes. We present here
a DNS study of air entrainment and the bubble statistics in three-dimensional breaking
waves, for various breaking intensities. The focus is on air entrainment while predictions
of spray formation will be considered in future work.
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1.4. Outline

We present novel DNS of the two-phase air-water flow permitting solutions for fully
three-dimensional breaking waves including the air entrainment and subsequent bubble
formation. We investigate both the time evolution of the air entrainment, through the
total volume of entrained air, the void fraction and the evolution of the bubble size
distribution together with the dependence of these quantities on the turbulent dissipation
rate and the initial wave slope. The results are based on ensemble-averaged simulations,
allowing a better resolution of the statistical properties of the bubbly flow.

The paper is organized as follows. Section 2 presents the numerical experiment and
Section 3 the numerical results for both the time dependent and the time averaged
variables of the problem. Section 4 presents an alternative phenomenological model,
based on the idea that during the breaking and air entrainment process the mechanical
dissipation scales with the work done against buoyancy forces. Our model is compatible
with existing experimental results and the DNS results, both for the time-dependent
and time-averaged bubble size distribution. Finally, this model is tested against available
laboratory data and our numerical data and applied to scale the integral quantities of
the flow in §5. Conclusions are presented in §6.

2. Numerical experiments

2.1. The Gerris flow solver

We solve the three-dimensional two-phase incompressible Navier Stokes equations ac-
counting for surface tension and viscous effects using the open source solver Gerris
(Popinet 2003, 2009), based on a quad/octree adaptive spatial discretization, multilevel
Poisson solver. The interface between the high density liquid (water) and the low density
gas (air) is reconstructed by a geometric Volume Of Fluid (VOF) method. The multifluid
interface is traced by a function T (x, t), defined as the volume fraction of a given fluid
in each cell of the computational mesh. The density and viscosity can thus be written as
ρ(T ) = Tρw + (1− T )ρa, µ(T ) = T µw + (1− T )µa, with ρw, ρa and µw, µa the density
and viscosity of the two fluids (water and air), respectively. The incompressible, variable
density, Navier–Stokes equations with surface tension can be written as

ρ(∂tu + (u · ∇)u) = −∇p+∇ · (2µD) + γκδsn

∂tρ+∇ · (ρu) = 0

∇ · u = 0

(2.1)

with u = (u, v, w) the fluid velocity, ρ ≡ ρ(x, t) the fluid density, µ ≡ µ(x, t) the dynamic
viscosity and D the deformation tensor defined as Dij ≡ (∂iuj+∂jui)/2. The Dirac delta,
δs, expresses the fact that the surface tension term is concentrated on the interface, where
γ is the surface tension coefficient, κ and n the curvature and normal to the interface.

This solver has been successfully used in multiphase problems like atomization (Fuster
et al. 2009; Agbaglah et al. 2011; Chen et al. 2013), the growth of instabilities at the
interface (Fuster et al. 2013), wave breaking in two (Deike et al. 2015) and three dimen-
sions (Fuster et al. 2009), capillary wave turbulence (Deike et al. 2014) and splashing
(Thoraval et al. 2012).

2.2. Interface reconstruction and bubble counting

In Gerris, the interface between volumes of water (tracer T = 1) and air (tracer T = 0) is
reconstructed by a discrete geometric VOF method (Scardovelli & Zaleski 1999). In the
geometric Volume of Fluid formulation, the volume fraction field is the exact integral of
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Set S Resolution Ensemble
size

Figure

A: Various slopes 0.36 5123 1 Fig. 5b; 14
- 0.40 5123 1 Fig. 5b; 14
- 0.42 5123 1 Fig. 5b; 6; 14
- 0.45 5123 1 Fig. 5b; 14
- 0.47 5123 1 Fig. 5b; 14
- 0.49 5123 1 Fig. 5b; 14
- 0.51 5123 1 Fig. 5b; 14
- 0.53 5123 1 Fig. 5b; 14
- 0.55 5123 1 Fig. 2; 5a,b; 6; 14
- 0.57 5123 1 Fig. 5b; 14
- 0.6 5123 1 Fig. 5b; 14
- 0.63 5123 1 Fig. 5b; 14

B: Mesh convergence study 0.55 2563 1 Fig. 15; 16
- 0.55 5123 1 Fig. 15; 16
- 0.55 10243 1 Fig. 3; 4; 15; 16

C: Ensemble average 0.42 5123 10 Fig. 9; 11d; 12; 13 14
- 0.47 5123 6 Fig. 9; 11d; 12; 13; 14
- 0.51 5123 6 Fig. 8b; 9; 11d; 12;13; 14
- 0.55 5123 6 Fig. 7; 8; 9; 11; 12; 13; 14
- 0.6 5123 6 Fig. 8b; 9; 11d; 12;13; 14; 17

Table 1: Parameters of the three sets of DNS of three-dimensional breaking waves, Bo =
200, Re = 40000. The last column indicates in which figures of the paper the data are
used.

Figure 2: Left: example of the VOF interface after wave breaking, with numerous visible
bubbles in water and droplets in the air. Right: Zoom and cut in the y = 0 plane of
the left figure, showing the principle of the bubble (and droplet) counting method and
volume measure. Each closed surface of air in the plane is shown in red, corresponding
to T = 0 with 4 bubbles and the main ambient gas area on top of the water. The area
in blue corresponds to the water, with T = 1.
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the volume fraction in each discretisation element. It is not ”smeared” or ”diffused”, i.e.
the volume fraction is one or zero in cells which do not contain an interface and between
zero and one in cells which contain an interface. The interface can then be reconstructed
unambiguously in each cell with second-order accuracy (using piecewise-linear elements).
These reconstructed piecewise-linear elements are displayed graphically in Figures 2, 3
and 4. These images are thus directly representative of the accuracy of the interface
representation by the VOF method.

The volume of individual bubbles and droplets can then be determined without am-
biguity by considering connected regions, separated by interfacial cells. This is done in
practice by using an implementation of the classical ”painter’s algorithm” which is typi-
cally used in bitmap graphics editors to ”fill” connected regions of an image with a given
color. This principle is illustrated in Figure 2, showing a full 3D image of bubbles under
a breaking wave together with a 2D cut in the transverse y plane.

The volume of air (water) is then defined by the sum over all closed surfaces corre-
sponding to T = 0 of volume vai (T = 1, of volume vwi ). Denoting the main volume of air
above the water va0 (initially half of the numerical domain), the volume of air in the wa-
ter, i.e. the volume of air entrained by a breaking wave in our case, is then V =

∑
i>1 v

a
i .

Symmetrically, the volume of ejected water is Vw =
∑
i>1 v

w
i . This method is exact at the

order of the resolution of the Navier Stokes equations and the associated VOF method;
each closed surface being detected and counted without ambiguity.

Volume and mass conservation during the breaking process can be investigated by
computing the total amount of air (water) in the simulation, V totala =

∑
i>0 v

a
i (V totalw =∑

i>0 vw). As shown in Appendix A, errors in mass (or volume) conservation are very
small in the present numerical methods (Popinet 2003, 2009). We have checked here that,
mass is conserved to better than 0.01% for both air and water for all resolutions tested
and better than 0.001% in the highest resolution case (equivalent to 10243, see Appendix
A).

2.3. Initial conditions and physical parameters

We study a single breaking wave as was done in a previous 2D study (Deike et al. 2015),
but now extending it to three-dimensions.

A third-order Stokes wave solution for the interface η(x, y) and the velocity potential
φ(x, y, z) in the water are used as initial conditions in a square box of size λ on a side
(see Deike et al. (2015)). The wave propagates in the x direction. Boundary conditions
are periodic in x and y, and the top and bottom walls are free-slip (at z = ±H = λ/2).
The wave slope S = ak, with a the initial wave amplitude and k = 2π/λ the wave-
number, varies from 0.35 to 0.65, i.e. from incipient wave breaking to strongly plunging
waves (Deike et al. 2015). Note that since we are using only the third-order Stokes wave
solution, slopes higher than the limiting slope for the full Stokes wave solution can be
defined.

The density and viscosity ratios of the two phases are those of air and water. The Bond
number Bo = ∆ρg/(γk2), with ∆ρ the density difference between the two fluids, g the
gravity and γ the surface tension, gives the ratio between gravity and surface tension
forces. Due to computer limitations, related to the range of scales we are able to resolve,
we choose Bo = 200. That corresponds to λ = 24 cm in air-water conditions; large enough
to generate a plunging breaker while also including the surface tension effect, necessary
to correctly resolve bubbles and droplets. The Reynolds number in the liquid is defined
by Re = cλ/ν, with c =

√
g/k the linear deep-water gravity-wave phase speed and ν

the kinematic viscosity of the liquid (water). Again, due to computer limitations, related
to spatial resolution constraints, we use Re = 40000, to correctly resolve the viscous
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boundary layer and still be at a large Reynolds number. This value is smaller than the
one for a real 24 cm wave by about a factor of 3, but should not affect qualitatively the
results since we are at a sufficiently high Reynolds number (Deike et al. 2015).

Adaptive mesh refinement is used to accurately solve for the interface and the vortical
structures, with an equivalent grid resolution of 5123 for most of the runs, leading to a
mesh size λ/512 ≈ 0.4 mm on the interface. This configuration allows accurate solutions
for the dissipative scales, as shown by previous two-dimensional simulations (Deike et al.
2015) and all the relevant length scales of the bubble formation problem: the wave scale,
the capillary length (lgc =

√
γ/(∆ρg)) and the Hinze scale.

The energy components of the propagating wave can easily be obtained by integration
over the whole volume, V, of air and water and are respectively the kinetic energy,
Ek = 1

2

∫
V ρu

2dV, the gravitational potential energy: Eg =
∫
V ρgzdV +λ/8, the constant

λ/8 coming from the fact that the bottom of the box, z = −λ/2, is used as a vertical
datum (Chen et al. 1999), and the surface tension potential energy: Es = γ(L − λ2),
where L is the surface area of the interfaces including those of the bubbles. The total
energy is then E = Ek + Eg + Es. In the following, these quantities will be given per
unit length of breaking crest, i.e. divided by the width of the simulation box λ. Note also
that the length of breaking crest Lc is the width of the simulation box, Lc = λ.

2.4. Summary of the runs

Three sets of numerical experiments are presented and summarized in table 1. The set
A of experiments consists of 12 runs for waves with various initial slopes (from S = 0.35
to S = 0.65), with no initial perturbation in the transverse y direction. The set B of
experiments is a mesh size dependence study and is described in Appendix A. Three runs
are performed with increasing resolutions (and same initial slope, S = 0.55, corresponding
to a plunging breaker) and show that the result are not changed for resolution finer than
the grid equivalent to 5123. Finally, the third set of experiments consists of ensemble
averages for 5 different initial slopes S in the same range as before. For each slope S,
between 6 and 10 runs are performed with some initial perturbation in the transverse
direction y. An example of the obtained data set and the ensemble-averaged results is
given in Appendix B. It shows good statistical convergence and that small perturbation do
not significantly change the wave dissipation and bubble dynamics; however the ensemble
averaging improves the statistical convergence of the bubble size distribution. Table 1
also shows in which figure the various runs are used.

3. Wave breaking dynamics, air entrainment and energy dissipation

3.1. Wave breaking

Figure 3 shows the interface η(x, y, t) evolution with time for a plunging breaker of ini-
tial slope S = 0.55. The dynamics of a plunging breaker have been described by several
authors. A jet forms in front of the wave (a,b), strikes the surface (c), and falls back to
the surface due to gravity. Before the jet reconnects, the wave dynamics remain mostly
two-dimensional. Air entrainment then occurs through different mechanisms, recently
summarized in the review by Kiger & Duncan (2012): the entrapment of an air pocket
when the jet reconnects the water, entraining a large cavity and large bubbles; entrain-
ment around the jet impact site entraining smaller bubbles; entrapment by the subsequent
splashes events; entrainment by the turbulent breakdown of the forward face of the wave.
Indeed, numerous bubbles and droplets are visible (c,d,e) while the flow has become fully
three-dimensional. Entrainment of air also occurs when the jet impacts the surface (c),
during the subsequent splashing (d,e), and when high velocity droplets fall back into the
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Figure 3: Snapshots of 3D Gerris DNS solutions for the interface, at different times, for a
plunging breaker, S = 0.55 and a 10243 equivalent resolution. (a, b) formation of the jet;
(c) impact and entrainment of the initial air pocket; (d, e) splashing and fragmentation of
the air pocket; (f, g) splashing and bursting of large bubbles; (h to j) large dense bubble
plume with numerous bubbles of various sizes in the water, together with droplets in the
air.
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water (f,g). As discussed by Deane & Stokes (2002); Kiger & Duncan (2012), there are
two main steps in bubble formation, first when the jet impact the water surface, creating
relatively small bubbles and second when the air cavity collapses, creating larger bub-
bles that are then fragmented by turbulent fluctuations. Up to a thousand bubbles are
counted in this simulation (f,g). The bubble cloud is very dense just after impact (f,g,h),
and then bubbles rise to the surface and burst, with the larger bubbles rising faster (i to
l). The waves then continue to propagate leaving the bubble cloud behind.

Figure 4 shows a view from bottom of the same simulation, revealing insights on the
entrainment and bubble break-up process. After the wave impact, we can see the large
air cavity entrained in the water, together with some satelite bubbles of small size (a).
Just after the initial entrainment of the cavity, it is connected to the main ambient gas
phase by thin filaments of air (b). These filaments of air are commonly observed under
breaking waves in surf movies and were recently discussed in detail by Lubin & Glockner
(2015). Later on, the cavity starts to collapse, creating both large and small bubbles
(c,d). Once the cavity is completely destroyed, we observe a dense bubble plume, with
bubble radii varying over more than one order of magnitude.

The evolution of the wave is similar for the various plunging breakers S & 0.42, with
increasing slopes leading to an increase of the entrained air. For smaller slopes, a spilling
process is observed (0.35 . S . 0.42), with a dynamic similar to the one described
experimentally by Rojas & Loewen (2010).

3.2. Energy dissipation

The first step is to verify that we correctly capture the wave dissipation properties in
the present three-dimensional work. Wave energy dissipation due to breaking can be
written as Ediss =

∫
εlΛ(c)dc, with εl the dissipation per unit length of breaking crest

and Λ(c)dc the mean length of breaking wave fronts moving at phase velocities in the
range (c, c + dc) (Phillips 1985). The breaking distribution Λ(c) can be measured in the
field (Melville & Matusov 2002; Gemmrich et al. 2008; Thomson et al. 2009; Kleiss &
Melville 2010; Sutherland & Melville 2013), while the dissipation εl is related to the fluid
properties and the breaking kinematics (Duncan 1981; Phillips 1985),

εl = bρc5/g (3.1)

where g is gravity, ρ the water density, c the characteristic phase speed of the breaking
front, and b the non-dimensional breaking parameter.

The local time-averaged dissipation rate ε̄ is related to the dissipation rate per unit
breaking crest length, εl, by (Drazen et al. 2008)

εl = ρAε̄, (3.2)

with A = πh2/4 representing the cross-sectional area of the entrained cylinder of air.
This assumes that the turbulence is homogenous is the cylinder of cross-sectional area A
created by the breaking event (Drazen et al. 2008). The relationship between ε̄ and the
wave height at breaking h is given by the inertial scaling for breaking waves (Drazen et al.
2008): ε̄ = Ξh1/2(2g)3/2, with Ξ an O(1) constant. This leads to εl = Ξρg3/2h5/2π/

√
2,

which combined with Eq. 3.1 gives

b = Ξ
π√
2

(hk)5/2, (3.3)

where hk is a measure of the wave slope at breaking. Drazen et al. (2008) have shown
that the slope at breaking hk is approximatively proportional to the linearly predicted
maximum slope, S, of a focusing packet. Romero et al. (2012) derived the following



Air entrainment and bubble statistics in three-dimensional breaking waves 11

Figure 4: Bottom view of the simulation, showing the entrainment and collapse of the
air cavity during the breaking event. (a) Just after impact, the tube of air is already
formed inside the water, with some small satelite bubbles nearby. (b) The air cavity has
started to collapse and is connected to the main surface by thin filaments of air. Bubbles
of various sizes start to be visible. In (c) and (d) the cavity continues to collapse, with
numerous bubbles of various sizes. In (e) and (f) the cavity has completely collapsed,
and a dense bubble plume is visible, with bubbles with radii varying over one order of
magnitude.

semi-empirical relation for the breaking parameter initially based on laboratory data,

b = 0.4(S − 0.08)5/2, (3.4)

where S0 = 0.08 is a measure of the threshold for breaking and 0.4 an evaluation of
the constant Ξπ/2. This inertial model, based on a simple physical argument for strong
plunging waves, has been confirmed through extensive experimental studies and model-
ing, well beyond the region of validity of the initial hypothesis (Romero et al. 2012; Grare
et al. 2013; Pizzo & Melville 2013; Melville & Fedorov 2015; Deike et al. 2015). Note that
proportionality between the initial slope and the slope at breaking is also true in our
DNS of steep Stokes waves, and following the definition of Drazen et al. (2008) where h
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Figure 5: (a) Wave energy as a function of time. (�): total energy, (◦): kinetic energy,
(O) gravitational potential energy, (�): surface tension potential energy. The solid line is
an exponential fit E = E0e

−ζt for 1 < t/T < 2, and the dashed line is the linear viscous

decay E = E0e
−2νk2t. (b) Breaking parameter b as a function of the initial wave slope

S. (H): DNS data. Solid line: semi-empirical formulation based on scaling argument, Eq.
3.4, b = 0.4(S − 0.08)5/2 Romero et al. (2012). Black and grey symbols are experimental
data; black and grey triangles and grey diamonds are from Drazen et al. (2008), cross
and circle are from Banner & Peirson (2007) and squares are from Grare et al. (2013).
The differences between experiments and DNS at lower values of S come from differences
in initiating wave breaking.

is the vertical distance the breaking wave toe travels before impact, hk = −0.05 + S for
both the 3D DNS presented here and the 2D results presented in Deike et al. (2015). In
the following we now consider S as our initial wave slope.

Figure 5a shows the evolution with time of the total wave energy E per unit length of
breaking crest, together with the kinetic and potential components. An abrupt decrease
of the total wave energy is observed when the wave breaks with most of the wave energy
lost during the first wave period. The energy decay can be fitted by an exponential during
this time period, E = E0 exp (−ζt), with ζ the observed decay rate and E0 the initial
wave energy per unit length of crest. The dissipation rate per unit breaking crest is then
simply given by εl = E0ζ (or by taking εl = −∆E/τb, where τb is the active breaking
time and ∆E the energy difference before and after breaking, both estimations being
equivalent). The breaking parameter is then b = εlg/(ρc

5), with c the linear phase speed
of the wave.

Figure 5b shows b as a function of the initial wave slope S in the DNS, and we observe
a very good agreement for strong plunging waves with the semi-empirical result given by
Eq. 3.4 initially derived from laboratory data (Drazen et al. 2008; Romero et al. 2012),
see also data from Grare et al. (2013) and two-dimensional numerical simulations from
Deike et al. (2015). This confirms that the present three-dimensional DNS captures the
dissipative scales of the breaking wave process. The total dissipation due to breaking in
the three-dimensional DNS is very similar to the one obtained in two-dimensional DNS
reported by Deike et al. (2015). The difference in the dissipation between experiments
and DNS for S between 0.35 and 0.4 is most likely related to the route to breaking, i.e.
how the initial data are set up. Indeed, as discussed in Deike et al. (2015), the critical
slope for wave breaking changes when a steep Stokes wave is used instead of wave focusing
packet or modulational instability in the laboratory. In the present case, a slope of 0.35
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corresponds to an incipient breaking wave, which has total dissipation less than a spilling
breaker of the same slope obtained by a wave focusing technique in the laboratory.

3.3. Air entrainment and void fraction

Experimentally, the local void fraction α(x, z, t) (volume of air per unit volume of water)
is measured using conductivity (Lamarre & Melville 1991) or optical probes (Blenkin-
sopp & Chaplin 2007; Rojas & Loewen 2007). A spatial map of the void fraction is then
obtained by repeating this measure at various locations. In order to compare our sim-
ulations with the experimental description of the two-phase air water flow during the
breaking event, we compute an equivalent of this experimentally measured void fraction,
by averaging the tracer T over the transverse direction y:

α(x, z, t) =
1

Lc

∫ Lc/2

−Lc/2

T (x, y, z, t)dy, (3.5)

where Lc = λ is the size of the domain in the transverse y direction (and corresponds
to the length of breaking crest). This measure of the void fraction can then be inte-
grated in space in order to obtain another estimate the amount of air entrained by the
breaking wave. The main interface during the breaking process can then be defined by
the α(x, z, t) = 50% value, as proposed experimentally by several authors (Lamarre &
Melville 1991; Blenkinsopp & Chaplin 2007).

Figure 6 shows the evolution of the void fraction (volume of air per unit volume)
α(x, z, t) during the breaking process, for a plunging breaker (S = 0.55) and a spilling
breaker (S = 0.43).

In the plunging case, the impact of the jet reveals again the various air entrainment
processes, the entrapment of a large air pocket (a-b), as well as the rebound (b-c) and
entrainment by the turbulent breakdown of the forward face. Spray generation is observed
during the splashing process (c-d). Bubble plumes are formed during these entrainement
processes and high void fraction areas are visible (c-f). The bubble plume appears very
dense and consists predominantly of large air cavities, that collapse into smaller bubbles
and are driven down into the water reaching a maximum penetration depth (d-f). Then
the bubble clouds spread horizontally and large bubbles and air cavities rise back to the
surface to burst, corresponding to the fast degassing stage (e-g). These events correspond
to the active breaking stage. Smaller void fraction features remain for longer times (g-h),
corresponding to the small bubbles with low rise velocities. Eventually, even the smaller
bubbles rise back to the surface. This stage corresponds to the decay of the breaking event.
The bubble cloud dynamics, as well as the void fraction observed during the breaking
are consistent with previous experimental observations (Lamarre & Melville 1991, 1994;
Blenkinsopp & Chaplin 2007): the air cavity is first entrained with α = 100%, collapses
and gives birth to a bubble cloud with α up to 30% during the active breaking stages.

In the spilling case, the breaking process is started by the appearance of a rough surface
or of a small jet at the wave crest (i), then a small region of turbulence forms at the crest
of the wave, and this region grows as water spills down the face of the wave (j,k). As the
wave spills, air is entrained and spray is ejected at the leading edge of the breaker (k,l)
and relatively shallow bubble clouds are formed beneath the surface (l-o). This general
scenario is in agreement with experimental observations from Rojas & Loewen (2010).
As for the plunging case, larger bubbles rise back to the surface and burst while smaller
ones remain longer in the water column (m-p).
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during the active breaking stage, from t/T = 1.2 to t/T = 2.4. ∆τ is the delay time
between the maximum entrained air and the maximum dissipation, corresponding to the
turbulent break-up time. Time is color coded as in (d).
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3.4. Time evolution of the bubble size distribution and integral quantities

Here we describe the time evolution of the bubble plume properties (volume and size
distribution) for the strong plunging wave, S = 0.55 shown in Figs. 3, 4, 5a and 6. The
data are obtained from ensemble averaging 6 runs with small initial perturbation in the
transverse wave direction y. As shown in Appendix B, the ensemble averaging improves
the bubble statistics.

Figure 7a shows the time evolution of the bubble size distribution N(r, t). When the jet
reconnects to the water surface (t/T ≈ 1), a large pocket of air is entrained in the water.
This pocket of air collapses and bubbles of various sizes are formed. Bubbles between 2
mm and the mesh size are first created at the impact (t/T ≈ 1), then a rapid growth
of the bubble size distribution is observed (1 . t/T . 1.6), with bubbles as large as 10
mm, corresponding to the collapse of the air cavity. Therefore, bubbles of various sizes
are created during the initial impact and entrapment of the air cavity (visible in Figure
4), due to entrainment by the jet, and at the edges of the air cavity, as discussed by
Deane & Stokes (2002) and Kiger & Duncan (2012). The maximum number of bubbles
in the system is reached at the end of this growing stage. A fast decay is then observed
(1.6 . t/T . 2.4). Large bubbles are the first to disappear, collapsing or rising back
to the surface and bursting. These two stages define the active breaking time. Finally
a slower decay of the size distribution is observed (t/T > 2.4, decay stage) where small
bubbles slowly rise to the surface.

Figure 7b shows the evolution with time of the entrained volume of air V (t)/V0, where
V0 = ALc = πh2Lc/4 is the reference maximum volume of air that can be entrained
during the active breaking process. The volume of air is defined by the sum over all
closed surfaces (bubbles of volume vai ), V =

∑
i>1 v

a
i , as described in §2. The first peak

observed at t/T ≈ 1 corresponds to the impact of the jet and the entrapment of a large
pocket of air, with a cross-sectional area that is almost (V = 0.9V0) the reference tube
of air of surface A, visible in Fig. 2, 4 and 5. The measured volume of air then decreases
because of the collapse of the initial tube and its topological reconnection to the water
surface during this highly turbulent event (as shown in Fig. 4b).

Then, bubbles are formed and a second maximum of the volume of air, which corre-
sponds to the moment where the largest number of bubbles is present in the system.
This second maximum is one order of magnitude smaller than the volume of the initial
tube. The fraction of air that remains trapped in the water corresponds to the rapid and
continuous increase of V (t) for 1 . t/T . 1.6. Then V (t) decreases, first quickly over
roughly one wave period 1.6 . t/T . 2.4. As described by Lamarre & Melville (1991),
the fast decay is exponential, with V = V0 exp (−κt/T ), with κ a numerical factor varying
from approximately 2.5 to 4 in our DNS depending on the initial wave slope. These values
appear in reasonable agreement with the experimental values, considering the difficulty
of the experiments of Lamarre & Melville (1991) and Blenkinsopp & Chaplin (2007), who
found κ = 3.9 and κ ≈ 5 respectively. This rapid decay corresponds to the fast degassing
of the plume caused by large bubbles rising back to the surface. The growing stage and
the fast decay correspond to the active breaking stages, lasting a time slightly larger than
one wave period. It is followed by a slower decay, that was also observed experimentally
by Lamarre & Melville (1994).

Note that the abrupt decrease of air is related to the fact that the tube of air collapses
and is partially reconnected to the air above the wave (as in Fig. 4b). If we follow the
definitions used in laboratory experiments and compute the volume of entrained air based
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on the void fraction, (Lamarre & Melville 1991; Blenkinsopp & Chaplin 2007):

Vα(t) = Lc

∫ L

−L
dx

∫ α=50%

−H
α(x, z, t)dz, (3.6)

with α(x, z, t) = 50% considered as the main wavy interface (and L = λ the size of the
numerical domain in the x direction), then we observe a monotonic decay after the initial
entrainment of the air cylinder at t/T = 1 (as in the experiments). The two measures of
the volume give the same result for the maximum volume of entrained air and for the
time evolution after t/T = 1.6.

Figure 7c shows the spatially averaged turbulent dissipation rate ε(t) (normalized by
εl/(ρA)) as a function of time t (normalized by the wave period T ). Its evolution follows
closely the volume of entrained air V (t), with a clear time delay ∆τ between the maxima
of ε(t) and V (t). The dissipation rate first increases during the air entrainment and
splashing processes and then decreases during the degassing process. Note that during
the active breaking stages, the instantaneous turbulent dissipation rate ρAε(t) is of the
same order of magnitude as the dissipation rate per unit length of breaking crest εl
obtained from the decay of the wave energy (see Figure 5). When averaging in time, we
obtain indeed ρAε̄ = εl. The time lag between that in the volume of entrained air and
the peak in the dissipation can be assigned to the fragmentation time of the initial air
pocket.

Figure 7d shows N(r, t) at given times t during the active breaking period and the
decay stage. The time is color-coded. During this active breaking time (1.2 6 t/T 6
2.4), the dependence on the radius is adiabatic in time, i.e the size distribution follows
N(r, t) ∝ r−m, with 3 6 m 6 3.5 constant with time, within the error bars.

The amplitude of the bubble size distribution first grows (from dark blue to light blue),
reaches a maximum (t/T ≈ 1.9, light blue), and then decays (from light green to red),
following, with a time delay, the time evolution of both ε(t) and V (t). During this stage,
the bubble cascade inertial subrange, i.e. the range of scales for which the power law is
observed starts close to the smallest scale resolved in the simulation and ends around 4
mm. The time evolution of N(r, t) is in agreement with the experimental results from
Blenkinsopp & Chaplin (2010), where the bubble size distribution is found to follow a
power law with m ≈ 3 roughly constant during the active breaking stage.

After the active breaking stage (t/T > 2.4, from yellow to red), the bubble size dis-
tribution rapidly decays, starting with the large bubbles and a much steeper bubble
size distribution is observed, in agreement with experimental results (Terrill et al. 2001;
Deane & Stokes 2002). While Deane & Stokes (2002) describe a steep power law (finding
mdecay = 6), the bubble size distribution can also be described by an empirical decay
function; combining the turbulent breakup law N(r, t) ∝ r−m and an exponential decay,
due to the scale-dependent rise of the bubbles that governs the decay of N(r, t). We
propose the following empirical function:

N(r, t) = N0r
−m exp

[
−K

(
r

rm(t)

)2
]
. (3.7)

Here rm(t) is the time-dependent variable, K = 2 a constant empirical parameter, and
m = 10/3. Here rm(t) corresponds physically to a cut-off radius that decreases with time,
and quantifies the fact that, due to the rise of the bubbles, the inertial subrange of the
bubble cascade is reduced once the active breaking stage is over. The exponent 2 inside
the exponential functional form has been chosen to match the one giving the rise velocity
of the bubbles (see below). For the times displayed in Fig. 7e, rm(t) decreases linearly



18 L. Deike, W.K. Melville and S. Popinet

from 4 mm (t/T = 2.5, light blue) to 1 mm (t/T = 3.5, red). Thus the cut-off radius
decreases until it reaches a value close to the Hinze scale. At this time, the turbulent
motion is too weak and no more bubble cascade process is observed. Note that the semi-
empirical formulation (Eq. 3.7) can be applied to the experimental data of Deane &
Stokes (2002) shown in the inset of Figure 1.

Figure 7e shows the time-averaged bubble size distribution N̄(r) over the active break-
ing time τb. N̄(r) is found to follow a power law, N̄(r) ∝ r−m, with 3 6 m 6 3.5 compat-
ible with various experimental results (Terrill et al. 2001; Deane & Stokes 2002; Rojas &
Loewen 2007; Blenkinsopp & Chaplin 2010). The bubble inertial subrange, i.e. the range
of bubble radii for which the power law is observed, starts close to the smallest resolved
scale (around 0.8 mm) and ends at the radius of the largest bubbles observed in the
simulations (between 4 and 6 mm). The scale of the beginning of the bubble cascade cor-
responds to the Hinze scale (rH ≈ 0.8 mm using eq. 1.2). However, the mesh resolution
is also close to this scale (0.4 mm) so the Hinze scale might not be fully resolved.

Note that, experimentaly, various shapes for r < rH have been observed by Blenkinsopp
& Chaplin (2010) Deane & Stokes (2002) and Leifer & de Leeuw (2006). We should also
remark that it is clear from Figure 7d that the exact value of the exponent m depends
on the time chosen to average the bubble size distribution. Indeed, if one averaged over
the active breaking and decay stage, one would obtain a steeper size distribution and
a higher value for m. We believe that this sensitivity in the time of observation is at
least partially responsible for the relatively wide range of values observed for m in the
literature, due to the difficulty in properly identifying the active breaking time.

Finally, we discuss the scaling of N(r, t) with ε(t) during the active breaking stages.
Figure 7f shows the size distribution is indeed well described by N(r, t) ∝ ε(t−∆τ)r−m,
with 3 6 m 6 3.5 independent of time and ∆τ the time lag related to the fragmentation
of the initial air pocket. The time is color-coded as in Figure 7d. This description is
valid, within the scatter of the data, for the active breaking stages that last more than
one wave period (1.2 6 t/T 6 2.4).

The time evolution of the entrained air phase can be used to define the active breaking
stage; similarly to what was done experimentally using measurement of the noise gen-
erated by the bubbles (Drazen et al. 2008). The active breaking stage starts when the
jet impacts the water surface and ends when the adiabatic bubble size distribution is no
longer observed, so that its total duration here is τb ≈ 1.2T .

The overall patterns of evolution of the volume of air, the dissipation rate, and the
bubble size distribution, are similar for all plunging and spilling breakers we have inves-
tigated.

3.5. Decay time and rising velocities

The time evolution of the number of bubbles at a given scale r, is shown in Figure 8
normalized by its maximum N(r, t)/N0(r). Large bubbles are created first but the time
delay between the maximum number of bubbles for various radii is small, indicating fast
bubble break-up processes. Large bubbles are seen to disappear first and much faster
than the smaller bubbles. The decay rate τd(r) of bubbles of radius r can be measured
by fitting the decay of the bubble size distribution by N(r, t) = N0(r)e−t/τd(r). This
decay rate includes both the rise of the bubbles, and the collapse of the large bubbles
into smaller ones. However, since we consider the decay starting at the end of the active
breaking stage, the dominant process should be the rise of the bubble. From this decay
rate, we can estimate an average bubble velocity by assuming that the path of the bubbles
is given by the distance the bubble has to rise to reach the surface, which corresponds
to the average penetration depth of the bubble cloud, say h. Thus we define the scale
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Figure 8: (a) Time evolution of N(r, t) for S = 0.55 and various radii r. Dashed lines are
exponential fits, N(r, t)/N0(r) = e−t/τd(r). (b) Decay velocity wd(r) = h/τd(r) compared
to the rise velocity of bubbles wb (solid line) given by Eq. 3.8. Velocities are recaled by
wb(r0 = 1mm).

dependent decay velocity of the bubble size distribution by wd(r) = h/τd(r), with wd(r)
shown in Figure 8b for three plunging breakers.

The rise velocity of a bubble of radius r in clean water (for radius larger than 100µm)
is given by Woolf & Thorpe (1991) (see also Thorpe (1982) for a review of bubble rise
velocities),

wb =
gr2

νw

1

18[1− 2/(1 + 0.091χ)1/2]
, with χ =

gr3

ν2w
. (3.8)

Figure 8 shows that the decay velocity of the bubbles wd(r) = h/τd(r) is close to the rise
velocity of bubbles in clean water wb (Eq. 3.8). Thus the decay of the bubble plume (for
t/T > 2) is consistent with the bubbles rising back to the surface.

3.6. Time-averaged bubble size distribution

We now discuss the time-averaged (over the active breaking time τb) bubble size distri-
bution N̄(r) for various wave slopes S, and the relationship with the wave dissipation
rate per unit length of breaking crest εl.

Figure 9a shows the time-averaged bubble size distribution N̄(r), for increasing initial
wave slope. The bubble size distribution follows a power law, N̄(r) ∝ r−m with 3 6 m 6
3.5, from the Hinze scale to a cut-off radius rm, that increases with S. The amplitude of
N̄(r) as well as the range of bubble radii for which the power law is observed increase with
the wave slope, S. Both are related to the increase of total volume of air entrained, the
size of the initial air pocket trapped during the overturning and impact of the breaking
wave, and the increase of turbulence fluctuations, with the slope, S. For a large amplitude
plunging breaker, the bubble break-up cascade subrange goes from roughly 0.8 mm to
5mm while for smaller amplitude spilling breakers, the range of validity of the N̄(r) ∝
r−m relationship is smaller, the cut-off radius being around 3 mm, closer to the Hinze
scale, due to a smaller amount of entrained air and weaker turbulent fluctuations.

Figure 9b shows the bubble size distribution rescaled by the dissipation rate per unit
length of breaking crest εl, N̄(r)/εl. A significant collapse of the data is observed within
the bubble cascade subrange.

To summarize, we find that the dependence of the bubble size distribution on the
bubble radius is the same for both the time-averaged data and the time-dependent data
during the active breaking stage; both being proportional to ∝ r−m, 3 6 m 6 3.5 for a
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Figure 9: Ensemble-averaged data for 5 breaking waves with initial slopes from S = 0.42
to S = 0.6. Time-averaged bubble size distribution N̄(r) over the active breaking time τb.
(a) N̄(r), S (color scaled) increasing from bottom to top. The number of bubbles increases
with S. (b) Rescaled bubble size distribution N̄(r)/εl. The data collapse significantly
between (a) and (b); except for the smaller slope where the inertial breakup subrange is
of limited extent. In both plots, the dashed line is N̄(r) ∝ r−10/3 and the solid line is
N̄(r) ∝ r−3.

wide range of initial slopes and for roughly one decade in radii. Moreover the bubble size
distribution scales with the turbulent dissipation rate, both when considering the time
dependent bubble size distribution N(r, t) ∝ ε and the time averaged data N̄(r) ∝ εl,
where εl = ρAε̄. While the constant-Q model of Garrett et al. (2000) describes the r−m

scaling it does not quantify Q in terms of the other variables, and is independent of time.
In the next section §4, we discuss a new model that is consistent with the results of the
DNS data.

4. A model for bubble size distribution

Here, we propose a new model to describe both the time dependent bubble size distri-
bution during the active breaking stage and the time-averaged results, combining ideas
from the two models described in the Introduction and the results of the DNS.

4.1. Global balance between turbulent dissipation and work done against buoyancy forces

When a wave breaks, it entrains a tube of air of cross sectional area A ≈ πh2/4, displayed
in Figure 10, creating a turbulent bubble cloud over a similar area for short times after
the breaking onset. Here h is the vertical distance between the crest of the breaker and its
point of impact on the surface below and we assume geometrical similarity for the area
A across the range of wave slopes. We aim to describe the number of bubbles and their
size distribution within this area. The bubble size distribution per unit volume N (r, t)
is then related to the absolute bubble size distribution N(r, t) by

N(r, t) = V0N (r, t) = ALcN (r, t), (4.1)

with V0 = ALc = πh2Lc/4 the maximum volume of entrained air during breaking and
Lc the length of breaking crest.

The core of the model is to use the simple assumption based on empirical data (Lamarre
& Melville 1991; Blenkinsopp & Chaplin 2007; Lim et al. 2015) that globally (integrating
over space and time of the event) the work done against buoyancy forces in entraining
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Figure 10: Sketch of the cross sectional area of the air entrainment by a breaking wave:
a tube of air of section A ∝ h2 is entrained (left) and creates a turbulent bubble cloud
over a similar area (right).

the bubbles is proportional to the mechanical energy dissipated. This statement can be
represented by the following equation:

∫ ∫ ∫
ρgN (r,x, t)

4π

3
r3w(x, t)drdxdt = B

∫ ∫
ρ(1− α(x, t))ε(x, t)dxdt, (4.2)

where ε(x, t) is the local dissipation rate in the water, w(x, t) the local vertical velocity
of the bubble cloud and α(x, t) the void fraction (volume of air per unit volume), all
functions of space x and time t, and B is a dimensionless constant.

Recall that ε(x, t) is the local viscous dissipation rate, ε(x, t) = 2νDijDij , with Dij ≡
(∂iuj + ∂jui)/2 (Pope 2000). Therefore the total mechanical energy dissipated in the
water is the integral over the volume of water and time

∫ ∫
ρ(1 − α(x, t))ε(x, t)dxdt,

where the inclusion of the void fraction in the equation ensures the integration in the
water only.

We first assume, for simplicity, that α� 1, and that the density of water ρ is constant,
so that Eq. 4.2 becomes:∫ ∫ ∫

gN (r,x, t)
4π

3
r3w(x, t)drdxdt = B

∫ ∫
ε(x, t)dxdt. (4.3)

Now let us assume that locally, the bubble size distribution is proportional to the tur-
bulent dissipation rate, i.e. N ∝ ε, which is supported by the DNS data (Figure 7). The
time-lag between air entrainment and dissipation observed in the DNS results can be
incorporated at this stage by setting, N ∝ ε(t−∆τ); c.f. Figure 7.

With N ∝ ε(t−∆τ), we now assume separation of variables to give

N (r,x, t) = R(r, rm)ε(x, t−∆τ), (4.4)

where rm is the maximum bubble size, then Eq. 4.3 becomes:

∫ rm

gR(r, rm)
4π

3
r3dr

∫ ∫
ε(x, t−∆τ)w(x, t)dxdt = B

∫ ∫
ε(x, t)dxdt. (4.5)

Therefore:

∫ rm

gR(r, rm)
4π

3
r3dr = BW−1, with W =

∫ ∫
w(x, t)ε(x, t−∆τ)dxdt∫ ∫

ε(x, t)dxdt
, (4.6)

where W is the dissipation-weighted vertical mean velocity of the bubble plume over
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the active breaking period. For any breaking event, W and rm are constants, and play
parametric roles in further development of the model.

W is the weighted vertical velocity of the bubble cloud and corresponds to an average
rise velocity of the bubble plume, so that together with gravity, it can be interpreted as
the variable corresponding to the bubble buoyancy forces. Taking into account rm in the
dimensional analysis corresponds to considering the role of the maximum bubble size in
the fragmentation process.

Now, Eq. 4.6 dimensionaly constrains the scaling with respect to W and g, so that,

N (r,x, t) ∝ Bε(x, t−∆τ)

Wg
f(r, rm), (4.7)

where R(r, rm) ∝ Bf(r, rm)/(Wg). Seeking power law solutions, with f(r, rm) having
the dimensions of N , [L−4], we have,

N (r,x, t) = B
3(4−m)

4π

ε(x, t−∆τ)

Wg
r−mrm−4m , (4.8)

with m < 4 to avoid divergence of Eq. 4.6. The (4 − m) constant is introduced to be
consistent with the initial equation, Eq. 4.2 and cancel the numerical constant when
integrating over all bubble radii. Note also that available experimental data and our
numerical data suggest 3 < m < 4. At this point, we have a constraint on the prefactor
of the bubble size distribution, i.e. on the total volume of air, but we need information
on the statistics to determine m.

Equation 4.8 can be justified by a dimensional analysis. Say N depends on the bubble
scales, i.e. the radius r and the radius of the initial largest bubble rm; the buoyancy forces,
i.e. gravity g and the weighted bubble rise velocity W ; and the turbulent dissipation rate
ε that is responsible for the break-up. At this point we neglect the surface tension, since
we consider only bubbles that can be fragmented by turbulence and therefore are larger
than the Hinze scale (following Garrett et al. (2000) and Deane & Stokes (2002)).

Thus we have 6 variables and 2 dimensions, so a relationship can be written between
4 dimensionless variables:

N r4m = G

(
r

rm
,
ε

gW
,
W 2

grm

)
. (4.9)

Within the turbulent inertial subrange of the bubble cascade, experimental and numeri-
cal data show that 0.1 6 r/rm 6 1 (see §5). The ratio between turbulence and buoyancy
forces can be estimated using the numerical data and is typically 0.1 6 ε

gW 6 1 (see

§5). The last dimensionless number can be estimated as follow. As discussed in §5, W
is O(10) cm/s, and available experimental data suggest rm is O(1 − 10) cm, so that
W 2/(grm) is O(10−2 − 10−1). Therefore W 2/(grm)� 1, reaching the smallest values of
the dimensionless variables. Following the common assumption of asymptotic indepen-
dence, we neglect this variable in the subsequent analysis and ultimately test its neglect
in the comparison with the available data and our numerical results (see §5). Note that
other dimensionless numbers could have been proposed, but they all are combinations
of those in Eq. 4.9. For example, W 3/(εrm) = (ε/gW )−1 ×W 2/(grm) and we also find
W 3/(εrm) is O(10−2 − 10−1), and can be neglected in the same way.

Seeking power-law solutions, this leads to

N r4m ∝
(
r

rm

)−m(
ε

gW

)p
. (4.10)
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Now p = 1 is determined experimentally, equivalent to N ∼ ε. It leads to

N ∝ ε

gW

(
r

rm

)−m
r−4m , (4.11)

which is equivalent to Eq. 4.8.
Note that we can relax our assumption that α� 1, so that W becomes:

W =

∫ ∫
ε(x, t−∆τ)w(x, t)dxdt∫ ∫
(1− α(x, t))ε(x, t)dxdt

, (4.12)

which is a slightly more complicated dissipation-weighted vertical velocity, characterizing
the active breaking event. This does not change the dimensional analysis and the bubble
size distribution per unit volume is still given by Eq. 4.8.

4.2. Adapting the dimensional analysis from Garrett et al. (2000)

To determine the value of m, we recall the dimensional analyis from Garrett et al. (2000).
As discussed in the Introduction, it considers that air is initially injected into large
bubbles, and these are then broken up into smaller ones by turbulent velocity fluctuations.
Then, it assumes that the inflow of air has no back effect on the turbulence, so that the
bubble size distibution is proportional to the average air flow rate Q (per unit time and
per unit volume of water), and only depends on the bubble radius r and the turbulence
dissipation rate ε. Dimensional analysis leads to

N (r) ∝ Qε−1/3r−10/3. (4.13)

Note that the r−10/3 scaling can also be justified by a mechanistic sequential break-up
argument (Garrett et al. 2000).

We now need to connect the average air flow rate Q to the other variables of the
problem. The time of air injection can be estimated by the time to create the bubble
cascade, i.e. the time to fragment bubbles from the largest bubbles in the system rm
to bubbles close to the Hinze scale. The fragmentation time, or lifetime of a bubble of
radius r, τ(r) is given by the ratio of the size of the bubble r and the turbulent velocity
fluctuations at this scale ∆v ∼ (εr)1/3 (Martinez-Bazan et al. 1999; Garrett et al. 2000)

τ(r) ∼ r(εr)−1/3 ∼ r2/3ε−1/3. (4.14)

Say q successive fragmentations are needed, each bubble giving n bubbles (as in the
sequential mechanistic break-up argument used in Garrett et al. (2000)), then the total
time to create the cascade is

τc = τ1 + τ2 + ... = τ(rm) +

q∑
i=2

τi(ri)

= r2/3m ε−1/3 +

q∑
i=2

r
2/3
i ε−1/3

= r2/3m ε−1/3

1 +

q−1∑
j=1

(
n−1/3

)j−1 , where j = i− 1,

= r2/3m ε−1/3cq,n,with cq,n =

(
1 +

n−(q−1)/3 − 1

n−1/3 − 1

)
,

(4.15)

which scales as r
2/3
m ε−1/3, so that different values of q and n only change the numerical
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constant in Eq. (4.15), cq,n. Typically, for binary break-up (n = 2), starting with rm ≈ 10
mm, q ≈ 12 succesives break-ups are needed to reach the Hinze scale of ≈ 1 mm, leading
to a numerical prefactor of cq,n ≈ 6, whereas for a cubic cleavage of bubbles, q = 8 the
prefactor would be cq,n ≈ 4. Note that τc gives a reasonable estimation of the time-lag
∆τ observed between the time of the maximum air entrainment and the time of the
maximum observed dissipation rate.

This defines Q as

Q =
Va
Vw

1

τc
= cq,n

Va
Vw

r−2/3m ε1/3, (4.16)

where Va is the volume of air and Vw the volume of water, it leads to,

N (r) ∝ Va
Vw

r−2/3m r−10/3. (4.17)

This above argument provides information on the bubble statistics but it does not
constrain the volume of air injected by the breaking wave.

Now, we insert the m = 10/3 solution from Eq. 4.8, and we obtain

N (r,x, t) = B
1

2π

ε(x, t−∆τ)

Wg
r−10/3r−2/3m . (4.18)

Once integrated in space and time over the breaking event, Eq. 4.18 and Eq. 4.17
should be equivalent, and an encouraging point is that the scaling for rm is indeed the
same in both formulations, so finally we arrive at the following balance

Va
Vw
∝ ε

Wg
, (4.19)

which can be written as VaWg ∝ Vwε, meaning that the spatially averaged mechanical
turbulent dissipation scales with averaged buoyancy force, which was our initial assump-
tion.

4.3. Volume integrated bubble size distribution

Starting from Eq. 4.18, we can now consider the absolute bubble size distribution, N(r, t),
over the control volume of breaking, V0 = ALc, which leads to

N(r, t) = ALc〈N (r,x, t)〉 = B
ALc
2π

ε(t−∆τ)

Wg
r−10/3r−2/3m , (4.20)

where 〈.〉 denotes spatial averaging and ε(t) = 〈ε(x, t)〉 the time dependent but spatially
averaged dissipation rate.

The time (and space) averaged bubble size distribution N̄(r) is then:

N̄(r) = B
1

2π

LcAε̄

Wg
r−10/3r−2/3m = B

1

2π

Lcεl
ρWg

r−10/3r−2/3m , (4.21)

with ε̄ = ε̄(t) the space and time averaged dissipation rate over the active breaking event,
and we recall that εl = ρAε̄ is the dissipation rate per unit length of breaking crest.

The time and space-averaged bubble size distribution N̄(r) is equivalent to the bubble
size distribution considered by Garrett et al. (2000) and measured experimentally by
various authors (Loewen et al. 1996; Deane & Stokes 2002; Rojas & Loewen 2007; Blenk-
insopp & Chaplin 2010) if one assumes the bubble plume to be homogeneous over the
volume V0. Note that the adiabatic size distribution Eq. 4.20 is valid during the active
breaking stage, and interestingly is a way to experimentally quantify the active time of
breaking τb.
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Note that, following Garrett et al. (2000), we have assumed that the bubble break-
up process is independent of surface tension. Therefore, the model is valid until surface
tension prevents further bubble break-up, i.e. up to the Hinze scale (Eq. 1.2), and is valid
only during the active breaking stages. At later stages, once the turbulence becomes
weaker, we expect the bubble distribution to decay due to bubbles rising back to the
surface and bursting, and through bubble dissolution.

The model uses the dimensionally constrained power law N̄(r) ∝ r−10/3 which is
consistent with experimental observations, together with N(r, t) ∝ ε(t−∆τ) and N̄(r) ∝
εl which is consistent with our previous conjecture: when the breaking strength increases,
ε increases and so does the number of bubbles.

This formulation gives information on the time evolution of the bubble plume (growth
and decay) in the sense that it says that it follows the time evolution of the turbulent
dissipation rate. We believe that this should be of significant interest for field measure-
ments since it could be tested if the bubble size distribution and ε could be measured in
dense bubble clouds.

As shown in §3, DNS results are in good agreement with this model (based in part
on the DNS) for both the time-dependent and time-averaged formulations and justify
the assumption that the bubble size distribution is linearly proportional to the turbulent
dissipation rate ε.

4.4. Derivation of the volume

We will now use the model to scale the total volume of entrained air during the breaking
process as a function of the external parameters of the waves, the initial wave slope S
and the related dissipation. Indeed, the model can be used to predict such scaling, since
the volume of air entrained is related to the bubble size distribution by

V (t) =

∫ rm

0

4π

3
r3N(r, t)dr, (4.22)

for the time-dependent volume of entrained air and

V̄ =

∫ rm

0

4π

3
r3N̄(r)dr, (4.23)

for the time-averaged volume of air.
Using Eq. 4.20 and 4.22, the time-dependent volume of air entrained is then given by

V (t) =

∫ rm

0

4π

3
r3B

ALc
2π

ε(t−∆τ)

Wg
r−10/3r−2/3m dr = B

πh2Lc
4

ε(t−∆τ)

Wg
. (4.24)

The complete equations from our model for the time-averaged volume of entrained air
as a function of the slope or the dissipation rate per unit length of breaking crest is then
obtained from Eq. 4.23, and Eq. 4.21, so that

V̄ = B
εlLc
ρWg

. (4.25)

then using the inertial scaling from Drazen et al. (2008), εl = Ξρg3/2h5/2π/
√

2, with Ξ
an order one constant, and the linear phase speed for gravity waves, c =

√
g/k, we obtain

V̄ = B
πΞ√

2

Lcg
1/2h5/2

W
, (4.26)

The latter equation can also be written using the relationship for εl = bρc5/g, and leads
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to

V̄ = Bb
Lcc

5

Wg2
, (4.27)

and the breaking strength b is then given by the semi-empirical formulation from Romero
et al. (2012) (Eq. 3.4: b = 0.4(S − 0.08)5/2)

V̄ = 0.4(S − 0.08)5/2B
Lcc

5

Wg2
. (4.28)

We will now test our model against our numerical data and existing laboratory experi-
ments.

5. Discussion on the scaling of the volume and estimation of the
bubble cloud constant B

In this Section, we test our model against our DNS results and available laboratory
data. We have to take into account the other variables in Eq. 4.25, i.e. mainly the weighted
velocity since the gravity and the liquid density will remain constant in the breaking water
wave problem.

5.1. Weighted velocity of the bubble plume

Now, we estimate the last unknown in our model, the weighted velocity W : the weighted
velocity of the bubble plume that can be calculated explicitely in our DNS from Eq. 4.12.

Figure 11 shows an example at a given time of two-dimensional maps (data have been
averaged over y (i.e. for a field ψ(x, y, z, t), we obtain the transversally integrated field

ψ(x, z, t) = 1/Lc
∫ Lc/2

−Lc/2
ψ(x, y, z, t)dy), of the variables necessary to calculate W .

Figure 11a shows [1 − α(x, z, t)], Figure 11b shows ε(x, z, t) and Figure 11c shows
w(x, z, t)ε(x, z, t). It is clear that regions of high local dissipation ε correspond to regions
with high void fraction, which qualitatively corroborates our assumption of local propor-
tionality between the dissipation and the bubble population. Note that similar features
are described in a recent laboratory study, that measured both the void fraction and the
velocity fields under a breaking wave (Lim et al. 2015).

Figure 11d shows the weighted velocity, calculated from Eq. 4.12

W =

∫
w(x, z, t)ε(x, z, t−∆τ)(1− α(x, z, t))dtdxdz∫

ε(x, z, t))dtdxdz
(5.1)

as a function of the wave slope. Small variations in the value of W are observed for our
range of parameters.

Now, we want to compare W with the rise velocity of a bubble of typical size in the
bubble plume during the active breaking stage. The typical bubble radius r̄ in the bubble
plume is estimated by

r̄ =

∫
rN̄(r)dr∫
N̄(r)dr

, (5.2)

within the bubble inertial subrange.
The typical rise velocity is then obtained from Eq. 3.8, w̄b = wb(r̄) and is approxi-

matively the weighted velocity W obtained from Eq. 4.12 as shown by Figure 11d. Note
that we also find a linear relation between W and the typical velocity h/τb built from
the height of the breaker h and the active breaking time τb.

To summarize, the weighted velocity correponds to a spatially-integrated rise velocity
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Figure 11: Example of transversally-averaged maps (in the water) of (a) [1 −
α(x, z, t)], (b) ε(x, z, t), and (c) w(x, z, t)ε(x, z, t) at t/T = 1.76 as a function of
x and z, for S = 0.55. These are used to calculate the weighted velocity W =∫
w(x, z, t)ε(x, z, t)dtdxdz/(

∫
ε(x, z)(1 − α(x, z, t))dtdxdz) (Eq. 4.12). (d) Weighted ve-

locity as a function of the initial wave slope, normalized by wb(r0 = 1mm) the rise
velocity in clean water of a bubble of radius r0 = 1mm. (/): direct calculation of W from
Eq. 4.12. (◦): w̄b = wb(r̄), the rise velocity in clean water from Eq. 3.8 of a bubble with
a radius given by r̄ =

∫
rN̄(r)dr/

∫
N̄(r)dr.

of the bubble plume that can be successfully estimated from the rise velocity of a bubble
of mean size in the plume.

5.2. Time dependent volume of entrained air and the dissipation rate

We have seen in Figure 7f that N(r, t) ∝ ε(t − ∆τ) and used that result to build our
model in §4. Now, Figure 12 shows the rescaled volume of air entrained by the breaking
wave V (t)/V0, as a function of the rescaled time-dependent dissipation, ε(t−∆τ)/Wg, as
suggested by Eq. 4.24, during the active breaking time. Within the scatter of the data,
we observe the expected linear relation between the volume of air and the turbulent
dissipation rate, V/V0 = Bε(t − ∆τ)/Wg. It leads to a first estimate of the constant,
B ≈ 0.05.

5.3. Normalized bubble size distribution and bubble cloud constant

We can now test our model for the bubble size distribution, given by Eq. 4.21. Figure 13
shows the DNS data rescaled according to Eq. 4.21. The maximum bubble size rm for each
bubble size distribution is estimated by applying the semi empirrical formulation N̄(r) =
N0r

−10/3 exp(−2(r/rm)2) already used for the time dependent bubble size distribution
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Figure 13: Rescaled bubble size distribution, according to Eq. 4.21: N̄(r/rm)r4mgWρ/εl,
as a function of the rescaled bubble radius r/rm. Solid line shows B(r/rm)−10/3, with
B = 0.1 and dashed line is B(r/rm)−10/3, with B = 0.05; Color symbols are the ensemble-
averaged DNS data for various slopes, as in Figure 9, with the initial slope S color coded
as in Figure 9. Black diamonds are laboratory experiments from Deane & Stokes (2002).

(Figure 7 and Eq. 3.7). We find that rm increases with the strength of the breaking
wave S. We obtain a good collapse of the data, as already shown in Figure 9, which was
expected since the weighted velocity varies little for the range of parameters tested here
(as shown in Figure 11).

We now want to compare our model with the available data from Deane & Stokes
(2002). To rescale the data from Deane & Stokes (2002), we need to estimate the max-
imum bubble radius rm, the vertical weighted velocity W and the dissipation rate εl.
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rm = 10 mm is estimated directly from the data as the end of the bubble cascade. εl
can be estimated from the wave packet parameters used by Deane & Stokes (2002), the
wave slope S, the central wavenumber and frequency, and then using the semi-empirical
relationship from Romero et al. (2012), Eq. 3.4.

The remaining unknown variable is the weighted bubble plume velocity W . As shown
by Figure 11d, W can be estimated by the rise velocity of the mean bubble size of the
plume using the bubble size distribution of Deane & Stokes (2002) within the bubble
cascade and the definition of the typical bubble size defined by Eq. 5.2. We obtain a
typical bubble size r̄DS ≈ 1.5mm. Note that while we have compared W to the rise
velocity in clean water, we have here to consider the rise velocity in dirty water. The rise
velocity is then given by the formula from Thorpe (1982) and Woolf & Thorpe (1991)
for a bubble rising in dirty water

wdirtyb (r) =
2r2g

9νw
((υ2 + 2υ)1/2 − υ), with

υ = 10.82/χ, and χ =
gr3

ν2w

(5.3)

which leads to wdirtyb (rDS) ≈ 13 cm/s. The uncertainty in the velocity W in the lab-
oratory data is then estimated by considering the variation of r̄DS within the bubble
cascade, i.e. radii between 1 and 5 mm, leading to values of wdirtyb (r) between 10 and 20
cm/s.

The rescaled experimental data are then shown on Figure 13 together with the DNS
data. A reasonable collapse of all data is observed within the bubble inertial subrange
0.1 6 r/rm 6 1. The solid and dashed lines are B(r/rm)−10/3, with respectively B = 0.1
and B = 0.05, providing an estimation of the bubble cloud constant B.

5.4. Volume scaling of the DNS and available experimental data

Now we can test our model prediction for the entrained volume of air.
Figure 14 shows the DNS data for the total volume entrained during the breaking

event, where all the variables are measured, together with the available laboratory data.
As discussed in the review by Kiger & Duncan (2012), only few measurements of the
entrained air exist: Lamarre & Melville (1991) and Blenkinsopp & Chaplin (2007). The
measurements from Blenkinsopp & Chaplin (2007) can not be used here, since wave
breaking is obtained when the wave propagates over a shoal. Together with the data
from Lamarre & Melville (1991) and Deane & Stokes (2002), we also consider the data
from Duncan (1981), who studied breaking waves produced by a towed hydrofoil, and
measured the breaking volume, i.e. the volume of the bubble plume, which is not directly
the volume of air.

However, while all the variables are measured in the present numerical study, this is
not the case in the experiments from Duncan (1981), Lamarre & Melville (1991) and
Deane & Stokes (2002), and some assumptions are needed for the missing variables.
First, for all sets of laboratory data, we use the weighted velocity estimated using the
bubble size distribution from Deane & Stokes (2002) and discussed above. The volume
of air entrained in the case of Deane & Stokes (2002) is obtained by integration of the
bubble size distribution.

Lamarre & Melville (1991) measured the volume of entrained air together with the
properties of the wave packet. While the values of εl are not given in the original paper, it
can be retrieved from the given initial parameters of the waves (slope S, central frequency
and wavelength) and the semi-empirical formula from Romero et al. (2012) (Eq. 3.4).
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Figure 14: (a) Volume of entrained air V̄ as a function of εlLc(ρWg)−1. (b) Normalized
volume of air V̄ Wg2/(Lcc

5) as a function of the initial wave slope S. In (a) and (b): (H)
are V =

∫
V (t)dt/τb, the total volume of air during the active breaking process for the 12

single runs and (◦) for the 5 ensemble average runs. (�) are the experimental data from
Lamarre & Melville (1991), (�) are data from Duncan (1981), and (♦) is the data from
Deane & Stokes (2002). In (a), solid line is V = Bεlρ

−1Lc(Wg)−1, with B = 0.1, while
dashed lines indicate the range of confidence of the constant B, ranging from 0.04 to 0.2.
In (b) solid line describes the DNS data only and is VWg2/(Lcc

5) = 0.12(S − 0.36)5/2.
The dashed line is Eq. 4.28: VWg2/(Lcc

5) = 0.06× 0.4(S − 0.08)5/2.

In the case of Duncan (1981), εl is measured, together with the volume of active
breaking, i.e. the volume of the air-water bubble plume observed during the spilling
breaking events. To obtain the volume of air entrained, we have to multiply this measured
volume by the typical average void fraction in a spilling breaker, ᾱ = 0.23±0.06, according
to recent laboratory measurements from Rojas & Loewen (2010). Note that, in our DNS,
we find a similar average void fraction within the breaking area and during the active
breaking stage of a spilling breaker. The uncertainty in the mean void fraction is used
as error bar in the volume of air entrained. However, while the slope at breaking could
be evaluated (from the measured wave height at breaking and the wave phase speed), it
would be difficult to compare with the initial slope of our DNS or the slope of the packet
from Lamarre & Melville (1991) due to the differences in the route to breaking.

When comparing the DNS, the laboratory experiments and the model, we have to
keep in mind the various assumptions made to estimate the missing variables in the
experiments and the related (large) error bars associated with these estimations. In the
DNS, the error bars on the volume are estimated from the ensemble average data (see
Appendix B) and from the two ways to estimate the total volume (direct measure V and
estimation through the void fraction Vα).

Figure 14a shows the total volume of air V̄ =
∫
V (t)dt/τb entrained during the breaking

process as a function of εlLc(ρWg)−1, as suggested by Eq. 4.25. As already discussed,
the volume of entrained air increases with the strength of the breaking wave, i.e. εl.
Reasonable agreement is found between the DNS data and the theoretical scaling derived
above (Eq. 4.25) and also with the available laboratory data from Lamarre & Melville
(1991), Duncan (1981) and Deane & Stokes (2002). The reasonable agreement with the
linear relationship predicted by our model spans several orders of magnitude, which
is very encouraging, especially regarding the remaining uncertainties in the estimation
of W in the laboratory data. We obtain an evaluation of the bubble cloud constant,
B ≈ 0.1± 0.05 .
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Figure 14b shows the total volume of air normalized according Eq. 4.27, as a function of
the wave slope S. A reasonable agreement is found between our model and the DNS data,
if one includes a different breaking threshold in Eq 4.28, V̄ Wg2/(Lcc

5) = B′(S−S0)5/2,
with B′ = 0.5 a constant related to B, the constant Ξ (related to b) and the breaking
threshold S0, where S0 = 0.36 in our breaking configuration. On the other hand, using
the semi-empirical relation for the breaking strength b = 0.4(S − 0.08)5/2, where 0.08 is
the experimental breaking threshold leads to V̄ Wg2/(Lcc

5) = 0.4B(S − 0.08)5/2, with
B = 0.1 describing reasonably well the lab data and the DNS data for high plunging
breakers only.

The differences in the entrained volume of air between the DNS data and the lab data
are related to two effects. First, the critical slope to trigger breaking depends on the
initial conditions and the route to breaking (e.g. wave focusing, modulation instability),
and the Stokes waves used here have a breaking threshold higher than the one observed
in laboratory experiments using focusing wave packet. Second, the low values of the
entrained air in the DNS for small slopes can also be related to the relatively short
wavelength of our breaking wave, λ = 0.24, and the influence of surface tension in the
shape of the breaking wave, which reduces the amount of entrained air, as discussed in
Song & Sirviente (2004); Liu & Duncan (2003, 2006); Kiger & Duncan (2012).

We obtain a value for B between 0.05 and 0.15, which corresponds to an estimation
of the ratio between the totally dissipated energy by breaking and the potential energy
in the bubbles being between 5 and 15 %. This covers the latest estimation from the
laboratory by Blenkinsopp & Chaplin (2007) who obtain values between 5 to 10 %, and
close to Lim et al. (2015) who reports a value of 18% for a strong plunging breaker; while
earlier measurements by Lamarre & Melville (1991) discussed values between 30 to 50
%.

6. Conclusions

We have performed novel DNS of the two-phase air-water flow in three-dimensional
breaking waves, to investigate the time evolution of the entrained air. The DNS results
regarding the energy budget of the breaking wave, the void fraction values during the
active breaking stages, the time-averaged bubble size distribution, and the time evolution
of the total volume of air, when compared with the available data support the use of the
DNS to reproduce accurately the physics of air entrainment by breaking waves.

Based on the DNS results, we propose a phenomenological model for the bubble size
distribution based on the assumption that the dissipated energy during breaking scales
with the work done against buoyancy forces to entrain air, as well as turbulent break-up
model from Garrett et al. (2000). This extended model describes the time evolution of
the bubble cloud during the active breaking stage in that it relates the bubble size dis-
tribution to the instantaneous turbulent dissipation rate. In the same spirit, it describes
the time-averaged bubble size distribution for one breaking event. From the bubble size
distribution, the total volume of air entrained can be physically scaled to the energy
dissipated due to breaking and to the characteristic wave slope at breaking. Within the
scatter of the data, the model is consistent with the DNS and the available experimental
data.

This numerical modeling study of entrainment by breaking waves has shown that the
prospects are strong for being able to follow the example of Romero et al. (2012) who
modeled the dynamics of breaking using the inertial scaling of dissipation due to breaking
(Drazen et al. 2008) along with field measurements of the kinematics to improve ocean
wave modeling. In this case, we foresee the possibility of using the results of this paper,
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Figure 15: Convergence study for three mesh sizes, 10243 (◦), 5123 (/) and 2563 (O),
for a plunging breaker (S = 0.55, Bo = 200, Re = 40000). (a) Normalized energy as a
function of time. The energy evolution converges with the resolution between the grid
size 5123 and 10243. (b) Time averaged bubble size distribution N̄(r). Vertical dashed
lines indicate the minimum grid size for each case. For bubbles larger than the grid scale,
N̄(r) is unchanged.

along with field measurements of breaking to improve the models of air entrainment, and
ultimately air-sea gas transfer (c.f. Liang et al. (2011, 2012)).

Extensive experimental investigations of the bubble size distribution for various initial
wave slopes, and therefore a broad range of turbulent dissipation rates are now required to
further test the model presented here and the semi-empirical formulation for the volume
of entrained air.

We are indebted to an anonymous reviewer for bringing to our attention an error
in our model in the first version of the paper. We thank Nicholas Statom for Figure
10 and Nicholas Pizzo for helpful discussions. Computations were partially performed
using allocation TG-OCE140023 to LD from the Extreme Science and Engineering Dis-
covery Environment (XSEDE), which is supported by NSF grant number ACI-1053575.
This research was supported by grants to WKM from NSF (OCE) and ONR (Physical
Oceanography).

Appendix A. Convergence of the numerical results with the mesh
size

In this section, we discuss the convergence of the numerical results with mesh size.
Three simulations are considered, with effective resolution equivalent to 2563, 5123 and
10243 on a regular grid. The physical parameters of the simulations are Re = 40000 and
Bo = 200, as in the rest of the paper and we consider a plunging breaker with an initial
slope of S = 0.55.

Figure 15a shows the evolution of the normalized energy E/E0 for the three grid sizes.
While significant differences are seen between the coarse grid 2563 and the two finer
grids, the 5123 and 10243 resolutions are almost identical except for the initial decrease
during breaking although the final values are almost identical. As a consequence, the
dissipation rate εl does not depend on the resolution for grid size larger than 5123. This
shows, together with the comparison of the breaking parameter in the simulations with
the available laboratory data on Figure 2, that we are correctly resolving the dissipative
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scales involved in the breaking process and that results such as the dissipation rate per
unit length of breaking crest are not changed when the grid resolution is increased and
finer scales are resolved.

Figure 15b shows the time averaged bubble size distribution N̄(r) for the three grid
sizes and shows that for bubbles larger than the mesh size, all three bubble size distri-
bution are very close, with only small differences in the large bubble statistics. Thus for
r > 1 mm, the observation that N(r) ∝ r−m with m ∈ [3 : 3.5] is independent of the
mesh resolution. This turbulent break-up cascade goes to r ≈ 5 mm. Moreover, working
with a finer grid gives access to smaller bubbles created by further break-up. This fact
is expected since experimentally, bubbles smaller than 0.1 mm can be observed (Deane
& Stokes 2002). The change of the shape of N̄(r) reported by Deane & Stokes (2002)
and Blenkinsopp & Chaplin (2010) is not clearly observed in our simulations since the
Hinze scale, given by Eq. 1.2, rH ≈ 0.8 mm is too close to the size of the mesh for the
two higher resolutions cases (and is not reached in the low resolution case). We also have
to keep in mind the expected shape below the Hinze scale is not completely known since
experimental results give different shapes (see Figure 1) and no theoretical framework
exists.

In summary, while the shape around and below the Hinze scale is difficult to confirm
in our simulations due to the resolution, the r−m power law for r > rH is not affected
by the grid resolution we used. Moreoever, variations of the total volume are within the
statistical errors found when investigating various runs with small perturbations, that
are discussed in Appendix B.

In conclusion, the observation of N(r) ∼ r−m with m ∈ [3 : 3.5] for r > 0.8 mm and
within a bubble cascade inertial subrange is independent of the simulation mesh for a
resolution of 5123 or better. Moreover, in the present DNS, using a 5123 mesh equivalent,
we are resolving the dissipation in this two-phase turbulent flow. This validates our choice
to work with a 5123 equivalent grid.

Finally, we have checked that the errors in mass (and therefore volume) conservation
in both the air and water are not significant. Mass conservation is usually very good
in Gerris simulations as discussed by Popinet (2009). In our simulations, errors in mass
conservation are below 0.01%, as shown in Fig. 16. Fig. 16 (left) shows the relative error of
the volume of air and water as a function of time for a simulation (S = 0.55) with the 5123

resolution. The error remains below 0.01% for mass conservation of both the air and the
water. Finally Fig. 16 (right) shows the maximum error for the three resolutions tested
(2563, 5123, 10243). As expected the error decreases when the resolution is increased,
and is always smaller than 0.01%, becoming as small as 0.001% in the 10243 cases.

Appendix B. Statistical noise and ensemble average

In this section we present the details of an ensemble average of 6 plunging breakers.
The physical parameters of the simulations are Re = 40000 and Bo = 200, as in the
rest of the paper, and the initial slope is S = 0.6. As discussed in §2, we introduce
tranverse perturbations in the initial conditions to obtain this ensemble of realisations
of the breaking wave. The perturbation of the interface is ηp = apcos(kpy), with ap � a
and kp ∈ [2 : 8]k with the corresponding perturbation on the velocity potential of the
initial third-order Stokes waves.

Figure 17a shows the evolution of the total wave energy as a function of time for
the 7 realisations. There are no visible differences between the runs, showing that small
transverse perturbation has no effect on the global energy budget. Figure 17b shows
the time evolution of the instantaneous dissipation rate (averaged over space) for the
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Figure 17: Ensemble average study of seven runs for a plunging breaker (S = 0.6, Bo =
200, Re = 40000). (a) Normalized energy as a function of time. There are no visible
differences is the global energy decay for the various pperturbations investigated here.
Black dashed lines indicate the ensemble averages in (a) and (b). (b) Normalized spatially
averaged dissipation rate ε(t)/(ρAεl) as a of function time. (c) Time-averaged bubble
size distribution N̄(r). Black symbols correspond to the ensemble average. Solid line is
N̄(r) ∝ r−3 and dashed line is N̄(r) ∝ r−10/3 (d) Time evolution of the entrained volume
of air. Black symbols correspond to the ensemble average.
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different runs. Differences of up to 20 % are observed in the amplitude of the maximum
dissipation, together with small time lags between the runs.

Figure 17c shows the time-averaged bubble size distribution for each runs and the
ensemble-averaged one. As expected, the scatter around the ensemble average increases
with increasing bubble size and decreasing bubble number density. Figure 17d shows the
time evolution of the entrained air. Again, differences appear between the runs, show-
ing that the transverse perturbations of the breaking wave influence the air entrainment
process. Typical variations of the maximum amount of air entrained and the total aver-
aged volume of entrained air during the breaking process can be up to 50%. Note that
the runs with higher values of the volume also correspond to the one with higher values
of the dissipation rate. Note that such variations between multiple runs in laboratory
experiments are also to be expected.

Thus, multiple realisations of the same breaking wave numerical experiment show that
the mean dynamical properties of the breaking wave are not too sensitive to the transverse
perturbations and display the accuracy of our simulations. However, as expected, the use
of ensemble-averaged data significantly reduces the statistical noise in the estimation of
the bubble size distribution.
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