Thierry Paul 
email: thierry.paul@upmc.fr
  
SYMBOLIC CALCULUS FOR SINGULAR CURVE OPERATORS

We define a generalization of the Töplitz quantization, suitable for operators whose Töplitz symbols are singular. We then show that singular curve operators in Topological Quantum Fields Theory (TQFT) are precisely generalized Töplitz operators of this kind and we compute for some of them, and conjecture for the others, their main symbol, determined by the associated classical trace function.

As we see, quantization is not unique. But all the different symbolic calculi presented above share, after inversion of the quantization formulae written above, the same two first asymptotic features: the symbol of a product is, modulo , the product of the symbols the symbol of the commutator divided by i is, modulo again, the Poison bracket of the symbols.

In other words, they all define a classical underlying space (an algebra of functions) endowed with a Poisson (of more generally symplectic) structure.

But it is very easy to show that this nice quantum/classical picture has its limits. And one can easily construct quantum operators whose classical limit will not follow the two items exprressed above.

Consider for example the well known creation and annihilation operators a Q iP, a ¡ Q ¡ iP . They act of the eigenvectors h j of the harmonic oscillator by a h j pj 1 2 q h j 1 , a ¡ h j pj ¡ 1 2 q h j¡1 .

Consider now the matrices 

M 1 ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ 0 
M 1 a pP 2 Q 2 q ¡1{2 , M ¡
1 pP 2 Q 2 q ¡1{2 a ¡ . therefore, their (naively)expected leading symbols are f pq, pq q ip q¡ip and f ¡ pq, pq q¡ip q ip or, in polar coordinates q ip ρe iθ , f ¨ e ¨iθ .

If symbolic calculus would work the leading symbol of M 1 M ¡ 1 should be equal to 1 and

M 1 M ¡
1 should be therefore close to the identity I as Ñ 0.

But The reason for this defect comes from the fact that the function e iθ z z is not a smooth function on the plane. In fact it is not even continuous at the origin: F pzq can tend to any value in te iθ , θ Ru when z tends to zero.

M 1 M ¡ 1 ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥
Note finally that the commutator (1.1) so that its symbol doesn't vanish at leading order, as expected by standard symbolic asymptotism.

rM 1 , M ¡ 1 s ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ ¡1 0 
One of the main goal of this paper is to define a quantization procedure which assigns a symbolic calculus to matrices presenting the pathologies analogues to the ones of M 1 , M ¡ 1 . We will state the results in the framework of quantum mechanics on the sphere S 2 as phase space. The reason of this is the fact that it is this quantum setting which correspond to the asymptotism in Topological Quantum Fields Theory (TQFT) studied, among others, in [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF]. This procedure will be a non trivial extension to the Töplitz (anti-Wick) quantization already mentioned, and we will derive a suitable notion of symbol. Indeed, another main goal of this article is to give a semiclassical settings to all curve-operators in TQFT in the case of the once punctured torus or the 4-times punctured sphere. In [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] was established that these curve-operators happen, for almost all colors associated to the marked points, to be Töplitz operators associated to the quantization of the two-sphere, in some asymptotics of large number of colors. It happens that this result applies for every curve whose classical trace function is a smooth function on the sphere. Since this trace function is shown to be the principal Töplitz-symbol of the curve operator, the lack of smoothness ruins the possibility of semiclassical properties for the curve operator in the paradigm of Töplitz quantization (see Section 4 below for a very short presentation of TQFT and the main results of [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF]). In fact these singular trace functions are not even continuous at the two poles of the sphere, which suggests a kind of blow-up on the two singularities of the classical phase-space. This is not surprising that such a regularization should be done in a more simple way at the quantum level.

In the present paper we will show how to "enlarge" the formalism of Töplitz operators to "a-Töplitz operators", in order to catch the asymptotics of the singular cases by semiclassical methods and compute the leading order symbols of some of them and conjecture them for the general singular curve operators. This principal symbol will be completely determined by the corresponding classical trace function, but will not be equal to it, for the reason that this enlarged a-Töplitz quantization procedure involves operator valued symbols. This construction will also be valid in the regular cases, where in this case the operator valued symbol is just a potential, hence it is defined by a function on the sphere whose leading behaviour is given by the trace function, as expected.

Therefore we are able in this paradigm to handle the large coloring asymptotism of all curve operators n the case of the once punctured torus or the 4-times punctured sphere (note that the method we use is able to give some partial results in higher genus cases).

We also study the natural underlying phase-space of our enlarged paradigm, the corresponding moduli space for TQFT, as a non-commutative space by identification with the non-commutative algebra of operator valued functions appearing at the classical limit for the symbol of the a-Töplitz operators, in the spirit of noncommutative geometry.

We will built the construction of the a-Töplitz quantization by showing its necessity on some toy matrices situations in Sections 3 after having defined in Section 2 the new Hilbert space on which these matrices will act, and before to show in Section 4 how general curve operators in TQFT enter this formalism.

The main results are Theorems 15 and 18, out of Definition 12 and Theorem 20 together with Section 4.4 below. The a-Töplitz operators are introduced in Definition 17.

Quantization of the sphere is briefly reviewed in Section 2.1, we won't repeat it here. Let us just say that it consists in considering the sphere S 2 as the compactification of the plane C. Hence one expect that the singular phenomenon which appeared above at the origin should now appear twice at the poles of the sphere. The quantum Hilbert space can be represented as the space of entire functions, square-integrable with respect to a measure dµ N given in (3.6).

Instead of trying to blow-up these two singularities at a "classical" (namely manifold) level, we will see that there is an easiest way of solving the problem by working directly at the "quantum" level. Namely, instead of considering the quantization process related to the so-called coherent state family ρ z defined in (2.3) and which are (micro)localized at the points z S 2 , we will consider families of states ψ a z :

³ R aptqe i τ pzqt ρ e it z dt c
2π where τ pzq |z| 2 1 |z| 2 and a SpRq (see Section2.2 for details). For z not at the poles, ψ a z is a Lagrangian (semiclassical) distribution (WKB state) localized on the parallel passing through z [PU], but for z close to the pole the states ψ a z catches a different information. The equality (2.13):

» C |ψ a z yxψ a z |dµ N pzq N ¡1 ņ0 |ψ N n yxψ N n |, (1.2)
where each ψ N n is proportional to the elements of the canonical basis tϕ N n , n 1, . . . , N ¡ 1u, provides a decomposition of the identity on H N endowed with a different Hilbert structure for which the ψ N n s are normalized (see Section2.3). the advantage of working with the left hand side of (1.2) instead of the usual decomposition of the identity using coherent states and leading to standard Töplitz quantization, is the fact that ψ a z possess an extra parameter: the density a. Therefore one can "act" on ψ a z not only by multiplication by a function f pzq but by letting an operator valued function of z acting on a. This leads to what is called in this paper a-Töplitz operators, namely operators of the form

» C |ψ Σpzqa z yxψ a z |dµ N pzq,
where now Σpzq is, for each z, an operator acting on SpRq. The precise definition is given in Section 3.6 Definition 17, and Theorem 18 shows that matrices like M 1 are a-Töplitz operators, together with their products whose symbols are, at leading order, the (noncommutative) product of their symbols.

Let us remark finally that, even at the limit π N 0, the symbol of M 1 is NOT e ¨iθ pz{zq ¨1 2 . Traces of the noncummutative part of the symbol persist at the classical limit, as in [TP]. Therefore the "classical underlying phase-space" is not the 2-sphere anymore, but rather a noncommutative space identified with a non commutative algebra of such symbols playing the role of the commutative algebra of continuous functions on a standard manifold. A quick description of this space, inspired of course by noncommutative geometry [AC], is given in Section 3.7.

The construction dealing with M 1 can be in particular generalized to matrices of the form

M N γ ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ γ 0 p0q γ 1 p0q γ 2 p0q . . . . . . γ N ¡1 p0q γ ¡1 p0q γ 0 p1{Nq γ 1 p1{Nq . . . . . . γ N ¡2 p1{Nq . . . . . . . . . γ ¡pN¡2q p0q . . . . . . γ ¡1 ppN ¡ 2q{N q γ 0 ppN ¡ 2q{N q γ 1 ppN ¡ 2q{N q γ ¡pN¡1q p0q . . . . . . γ ¡2 ppN ¡ 3q{N q γ ¡1 ppN ¡ 2q{N q γ 0 ppN ¡ 1q{N q . (1.3)
It has been proven in [BGPU, AS] that such a family of matrices M N γ is a Töplitz operator of symbol γpτ, θq

N ¡1 °k1¡N γ k pτqe ikθ if and only if pτp1 ¡ τ qq |k| 2 γ k pτq C V pr0, 1sq, k 1 N , . . . , N ¡ 1.
(1.4)

Condition (1.4) expresses explicitly that γ C V pS 2 q.

In Section 3.6 theorem 18 we prove that (more general matrices than) the family M N γ are a-Töplitz operators, and we compute their symbols, when (1.4) is replaced by the condition 1

γ k pτq C V pr0, 1sq, k 1 ¡ N, . . . , N ¡ 1.
(1.5) Under (1.5) γ C V pS 2 q and one has to pass form the Töplitz to the a-Töplitz paradigme (note that M 1 indeed satisfy (1.5) and not (1.4)).

Let us finish this long introduction by giving the key ideas leading to the setting of our main result, Theorem 20. The reader can found in Section 4 a very short introduction to TQFT. Larger basics on TQFT can be found in [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] using the same vocabulary as the present paper together with a substantial bibliography.

Combinatorial curve operators are actions of the curves on a punctured surface Σ on a finite dimensional vector space V r pΣ, cq indexed by a level r and a coloring c of the marked points taken in a set of r colors.The dimension N N prq of V r pΣ, cq will diverge as r Ñ V and 1 r can be considered as a phenomenological Planck constant .

In [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] we provided the construction of an explicit orthogonal basis of V r pΣ, cq and we conjectured that any curve operator is expressed in this basis by a matrix essentially of the form M γ . More precisely we showed that the conjecture is true in the case where Σ is either the punctured 2-torus or the 4 times punctured sphere, Even more, we proved that (the matrix of) any curve operator belongs to the algebra generated by three matrices of the form

M N Γ r 0 , M N Γ r 1 , M N Γ r d 1
The construction works certainly also for conditions of the type, e.g.,

pτp1 ¡ τ qq α|k| 2 γ k pτq C V pr0, 1sq, k 1, . . . , N ¡ 1, 0 ¤ α ¤ 1
(or even more general ones), but since we don't see any applications of these situation, we concentrate in this paper to the condition (1.5).

defined in (1.3) where

6 8 7 Γ r 0 pτ, θq γ 0 pτ, rq Γ r 1 pτ, θq 2γ 1 pτ, rq cos θ Γ r d pτ, θq e I 2r γ 1 pτ, rq cos pθ τ q,
for two explicit families of functions γ 0 , γ 1 .

We showed in [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] that, for "most" values of the coloring of the marked points of Σ, the functions Γ r 0 , Γ r 1 , Γ r d are smooth functions on the sphere, and that, indeed, the corresponding curve operators are standard Töplitz operators. This proves also that any curve operator is Töplitz, by the stability result by composition of the Töplitz class. Moreover the leading symbols of any curve operator happen to be the classical trace function associated to the corresponding curve (see [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] for details).

Theorem 20 of the present article express the same result for any coloring of the marked points, at the expense of replacing Töplitz quantization by a-Töplitz one. The only difference, unavoidably for the reason of the change of Töplitz paradigm, is the fact that the a-Töplitz leading symbol of the curve operator is not (and cannot) the classical trace function of the curve, but we are able to compute or conjecture it out of the trace function.

2. Hilbert spaces associated to new quantizations of the sphere 2.1. The standard geometric quantization of the sphere. In this section we will consider the quantization of the sphere in a very down-to-earth way. See [START_REF] Folland | Harmonic analysis on phase space[END_REF][START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] for more details.

Given an integer N , we define the space H N of polynomials in the complex variable z of order strictly less than N and set xP, Qy i 2π

» C P pzqQpzq p1 |z| 2 q N 1 dzdz and ϕ N n pzq d N ! n!pN ¡ 1 ¡ nq! z n (2.1)
The vectors pϕ N n q n0...N ¡1 form an orthonormal basis of H N .

By the stereographic projection

S 2 pτ, θq r0, 1s ¢ S 1 Ñ z τ 1 ¡ τ e iθ C tVu,
The space H N can be seen as a space of functions on the sphere (with a specific behaviour at the north pole). Write

dµ N i 2π dzdz p1 |z| 2 q N 1 .
(2.2)

As a space of analytic functions in L 2 pC, dµ N q, the space H N is closed. For z 0 C, we define the coherent state ρ z 0 pzq N p1 z 0 zq N ¡1 .

(2.3)

These vectors satisfy xf, ρ z 0 y f pz 0 q for any f H N and the orthogonal projector π N : L 2 pC, dµ N q Ñ H N satisfies pπ N ψqpzq xψ, ρ z y.

For f C V pS 2 , Rq we define the (standard) Töplitz quantization of f as the operator

T N rfs : H N Ñ H N T N rfs : » C f pzq|ρ z yxρ z |dµ N pzq i.e. T N rfsψ : » C f pzqxρ z , ψy H N ρ z dµ N pzq π N pfψq for ψ H N .
(2.4)

A Toeplitz operator on S 2 is a sequence of operators pT N q EndpH N q such that there exists a sequence f k C V pS 2 , Rq such that for any integer M the operator R M N defined by the equation

T N M ķ0 N ¡k T f k R M N is a bounded operator whose norm satisfies ||R M || OpN ¡M¡1 q.
An easy use of the stationary phase Lemma shows that the (anti-)Wick symbol (also called Husimi function) of T f , namely xT f ρz,ρzy xρz,ρzy satisfies

xT f ρ z , ρ z y xρ z , ρ z y f 1 N ∆ S f OpN ¡2 q, (2.5) 
where ∆ S p1 |z| 2 q 2 f z f z is the Laplacian on the sphere. 2.2. The building vectors. Let a SpRq, ||a|| L 2 pRq 1 and z C. We define

ψ a z » R aptqe i τ pzqt ρ e it z dt c 2π (2.6)
where τ pzq |z| 2 1 |z| 2 and π N . Although we won't need it in this paper, let us note that, when z is far away form the origin and the point at infinity, ψ a z is a lagrangian semiclassical distribution (WKB state) (by a similar construction as in [PU]).

Since, by (2.3), ρ z N ¡1 °n1 N ! n!pN ¡1¡nq! z n ϕ N n , we get that ψ a z N ¡1 ņ0 a ¢ τ pzq ¡ n d N ! n!pN ¡ 1 ¡ nq! z n ϕ N n N ¡1 ņ0 a ¢ τ pzq ¡ n ϕ N n pzqϕ N n . (2.7)
where a is the Fourier transform of a apyq : 1

c 2π » R e ixy apxqdx.
Remark 1. Note that, by (2.7), ψ a z depends only on the values of ã on r0, N s. Therefore one can always restrict the choice of a to the functions whose Fourier transform is supported on r0, N s.

In the sequel of this article we will always do so.

Lemma 2. » C |ψ a z yxψ a z |dµ N pzq N ¡1 ņ0 C N n |ϕ N n yxϕ N n | (2.8) with C N n pN ¡ 1q! n!pN ¡ 1 ¡ nq! » 1 0 § § § § a ¢ τ ¡ n § § § § 2 ¢ τ 1 ¡ τ n p1 ¡ τ q N ¡1 dτ .
(2.9)

Moreover, as N ¡ 1 1 Ñ V C N n 1 Op 1 N q, 0 n 1.
(2.10)

C N n 1 n! » V 0 | apλ ¡ nq| 2 λ n e ¡λ c 2πλdλ, 0 n .
(2.11)

C N n C N N ¡1¡n , n 1.
(2.12)

Proof. Deriving (2.8) is a straightforward calculus after (2.7).

By the asymptotic formula for the binomial we get that, as

N, n Ñ V, pN ¡ 1q! n!pN ¡ 1 ¡ nq! £ n N ¡1 1 ¡ n N ¡1 ¡n ¢ 1 ¡ n N ¡ 1 pN¡1q .
Moreover since 0 n 1 we get since a is fast decreasing at infinity,

» 1 0 § § § § a ¢ τ ¡ n § § § § 2 ¢ τ 1 ¡ τ n p1 ¡ τ q N ¡1 dτ » V ¡V § § § § a ¢ τ ¡ n § § § § 2 ¢ τ 1 ¡ τ n p1 ¡ τ q N ¡1 dτ
and 1 § § a τ ¡n ¨ § § 2 Ñ ||a|| L 2 pRq δpτ ¡ n q as 1 N ¡1 Ñ 0. Therefore we get (2.10).

Definition 3.

ψ N n :

C N n ϕ N n .
This definition is motivated by (2.8) which actually reads

» C |ψ a z yxψ a z |dµ N pzq N ¡1 ņ0 |ψ N n yxψ N n |.
(2.13)

This leads to the following equality: 

» C |ψ a z y a xψ a z |dµ N pzq 1 H a N , ( 
f N ¡1 0 xϕ N n , f yϕ N b 1 C N n xψ N n , f yψ N b ,
we get

xf, gy a :

N ¡1 ņ0 1 pC N n q 2 xf, ψ N n yxψ N n , gy N ¡1 ņ0 1 C N n xf, ϕ N n yxvp N n , gy.
Note that x, y a is not given by an integral kernel. Let us remark finally that

F pzq » R aptqe i τ pzqt f pe it zq dt c 2π and f » C F pzq|ψ a z ydz, namely f pz I q » C
F pzqψ a z pz I qdz.

Singular quantization

This section is the heart for the present paper. We will first show how operators on H a N defined as matrices on the basis tψ M n , u act on the building operators ψ a z by action on a (section 3.3). This will allow us, in section 3.4, to assign to each of these matrices symbols whose symbolic calculus is studied in section 3.5. This will lead us finally to section 3.6 where we define the a-Töplitz quantization.

A toy model case. Let us consider the

N ¢ N matrix ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ 0 1 0 0 . . . 0 1 0 1 0 . . . 0 . . . . . . . . . 0 . . . 0 1 0 1 0 . . . 0 0 1 0 ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ 0 0 0 0 . . . 0 1 0 0 0 . . . 0 . . . . . . . . . 0 . . . 0 1 0 0 0 . . . 0 0 1 0 ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ 0 1 0 0 . . . 0 0 0 1 0 . . . 0 . . . . . . . . . 0 . . . 0 0 0 1 0 . . . 0 0 0 0 : M 1 : M 1 M ¡ 1 and let us consider the operator M 1 M 1 M ¡
1 on H a N whose matrix on the orthonormal basis

tψ N n , n 0, . . . , N ¡ 1u is M . That is 6 8 7 M 1 ψ N 0 1¨1 2 ψ N 1 M 1 ψ N i ψ N i¨1 , 1 ¤ i ¤ N ¡ 2 M 1 ψ N N ¡1 1©1 2 ψ N N ¡2 Proposition 4. M 1 ψ a x ψ Σ 1 pzqa z
where the operator Σ 1 pzq is given by (3.5) below.

Proof. By (2.7) we get that, calling

D N n pC N n q ¡ 1 2 (once again 1 N ¡1 ), ψ a z N ¡2 ņ0 a ¢ τ pzq ¡ n c N d ¢ N ¡ 1 n z n D N n ψ N n .
Therefore

M 1 ψ a z a ¢ τ pzq c N D N 0 ψ N 1 N ¡2 ņ1 a ¢ τ pzq ¡ n c N d ¢ N ¡ 1 n z n D N n pψ N n¡1 ψ N n 1 q a ¢ τ pzq ¡ 1 c N z N ¡1 D N N ¡1 ψ N N ¡2 a ¢ τ pzq c N D N 0 ψ N 1 a ¢ τ pzq ¡ 1 c N z N ¡1 D N N ¡1 ψ N N ¡2 N ¡3 ņ0 a ¢ τ pzq ¡ pn 1q c N d ¢ N ¡ 1 n 1 z n 1 D N n 1 ψ N n N ¡1 ņ2 a ¢ τ pzq ¡ pn ¡ 1q c N d ¢ N ¡ 1 n ¡ 1 z n¡1 D N n¡1 ψ N n N ¡2 ņ0 a ¢ τ pzq ¡ pn 1q c N d ¢ N ¡ 1 n 1 z n 1 D N n 1 ψ N n (3.1) N ¡1 ņ1 a ¢ τ pzq ¡ pn ¡ 1q c N d ¢ N ¡ 1 n ¡ 1 z n¡1 D N n¡1 ψ N n (3.2)
Let us consider the sum in (3.2). On can write it as

ψ sud N ¡1 ņ0 1 z µpnq a ¢ τ pzq ¡ pn ¡ 1q c N d ¢ N ¡ 1 n z n D N n ψ N n N ¡1 ņ0 1 z µpnq a ¢ τ pzq ¡ pn ¡ 1q ϕ n pzqϕ n with µpnq 5 n N ¡n , n ¡ 0 0, n 0 (3.3)
We get that

ψ sud ψ b sud z where b sud d C N ¤ C N ¤¡1 µ ¢ τ pzq ¡ if x e ix z a Σ ¡ 1 a.
Here we have denote by

C N ¤ C N

¤¡1

the function defined out of (2.9) by

C N ¤ C N ¤¡1 : ξ s0, N rÑ d ξ N ¡ ξ ³ 1 0 § § § a ¡ τ ¡ξ © § § § 2 ¡ τ 1¡τ © ξ p1 ¡ τ q N ¡1 dτ ³ 1 0 § § § a ¡ τ ¡pξ¡1q © § § § 2 ¡ τ 1¡τ © ξ p1 ¡ τ q N ¡1 dτ , (3.4) and C N ¤ C N

¤¡1

µ is meant as the product of the two functions, i.e.

C N ¤ C N ¤¡1 µpξq C N ¤ C N
¤¡1 pξqµpξq using (3.4). Note finally that, by the band limited hypothesis on a in Remark 1, b sud is well defined.

Similarly we get that the sum in (3.1) is

ψ nord N ¡1 ņ0 zνpnq a ¢ τ pzq ¡ pn 1q c N d ¢ N ¡ 1 n z n D N n ψ N n with νpnq 5 N ¡n¡1 n 1 , n N ¡ 1 0, n N ¡ 1 So ψ nord ψ b nord z where b nord d C N ¤ C N ¤ 1 ν N ¢ τ pzq ¡ if x ze ¡ix a Σ 1 a. We define Σ 1 pzq d C N ¤ C N ¤ 1 µ N ¢ τ pzq ¡ if x e ix z d C N ¤ C N ¤¡1 ν N ¢ τ pzq ¡ if x ze ¡ix . (3.5) d C N ¤ C N ¤ 1 Σ 1 pzq d C N ¤ C N ¤¡1 Σ ¡ 1 pzq where µ N χ r 1 2 ,N ¡ 1 2 s µ, ν N χ r¡ 1 2 ,N ¡ 3 2 s ν, (3.6) 
χ C V pRq satisfies χ ra,bs pξq 6 9 9 9 9 8 9 9 9 9 7

0 if ξ ¤ a χ I pξq ¡ 0 if a ξ a 1 2 1 if a 1 2 ¤ ξ ¤ b 1 2 χ I pξq 0 if b ¡ 1 2 ξ b 0 if b ¤ ξ (3.7) and µ N ¡ τ pzq ¡ if x © and ν N ¡ τ pzq ¡ if x ©
are defined by the spectral theorem applied to the operator ¡if x acting on L 2 pRq. Moreover ψ b sud z , ψ b nord z depend only on µ N p τ ¡ nq, ν N p τ ¡ nq, so that they depend only on the properties (3.7) of χ.

In order to make the notations a bit lighter, we will skip the over-script N in µ N and ν N in the sequel of the paper.

(General

) trigonometric matrices. Let Σ 1 pzq Σ 1 µ N ¢ τ pzq ¡ if x e ix z , Σ ¡ 1 pzq Σ ¡ 1 ν N ¢ τ pzq ¡ if x ze ¡ix (3.8)
as defined by (3.5).

We get easily the following result.

Lemma 5.

Σ 1 Σ ¡ 1 χ r 1 2 ,N ¡ 1 2 s ¢ τ pzq ¡ if x (3.9) Σ ¡ 1 Σ 1 χ r¡ 1 2 ,N ¡ 3 2 s ¢ τ pzq ¡ if x (3.10) rΣ ¡ 1 , Σ 1 s χ ¢ τ pzq ¡ if x (3.11)
is χpξq 6 9 9 9 9 9 9 9 9 9 9 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 7

0 if ξ ¤ ¡ 1 2 0 χ I if ¡ 1 2 ξ 0 1 if 0 ¤ ξ ¤ 1 2 χ I 0 if 1 2 ξ 1 0 if 1 ¤ ξ ¤ N ¡ 2 χ I 0 if N ¡ 2 ξ N ¡ 3 2 ¡1 if N ¡ 3 2 ¤ ξ ¤ N ¡ 1 0 χ I if N ¡ 1 ¤ ξ ¤ N ¡ 1 2 0 if N ¡ 1 2 ¤ ξ Remark 6.
When z is far away from the origin or the infinity, the "symbol" Σ at z is just an operator of multiplication, therefore "commutative". And it is as expected equal to, basically, 2 cos θ. But 2 cos θ is not regular at the two poles, and the trace of this singularity is the fact that Σpzq becomes a non-local operator when z close to the poles, coming from the fact that the vector field expressed by the transport equation becomes infinite.

Remark 7. By (2.8) we have that

» C |ψ a z yxψ a z |dµ N pzq C N L
where Lϕ n nϕ n . Therefore we could also look at matrices acting on H N instead of H N a by conjugation by C N L . But this doesn't give anything interesting for symbols.

Let us generalize this to the situation where M has the form, for α C V ps0, 1rq L V pr0, 1sq2 ,

M 1,α ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ 0 αp q 0 0 . . . 0 αp q 0 αp2 q 0 . . . 0 . . . . . . . . . 0 . . . 0 αppN ¡ 3q q 0 αppN ¡ 2q q 0 . . . 0 0 αppN ¡ 2q q 0 The operator M 1,α on H a N whose matrix on the orthonormal basis tψ N n , n 0, . . . , N ¡1u is M 1,α becomes 6 8 7 M 1,α ψ N 0 αp qψ N 1 M 1,α ψ N i αppi ¡ 1q qψ N i¡1 αppi 1q qψ N i 1 , 1 ¤ i ¤ N ¡ 2 M 1,α ψ N N ¡1 αppN ¡ 2q qψ N N ¡2
The same type of computations contained in the proof of Proposition 4 provides, thanks to Lemma 5, the proofs of the next Propositions 8, 9 and 10 below.

Proposition 8.

M 1,α ψ a x ψ Σ 1,α pzqa z where Σ 1,α pzq e ix z pαp ¤qµq ¢ τ pzq 1 2 ¡ if x ze ¡ix pαp ¤qνq ¢ τ pzq ¡ 1 2 ¡ if x .
(3.12)

In particular if τ p1 ¡ τ qαpτq C V pr0, 1sq, so that αpτ qe iθ C V pS 2 q, then, for all z S 2 , Σ 1,α pzq 2αpτ pzqq cos 2px θpzqq as N Ñ V.

Otherwise, this last asymptotic equality is valid only for z away from the two poles.

Let now, again for

β C V ps0, 1rq L V pr0, 1sq, M 2,β ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ 0 0 βp q 0 0 . . . 0 0 0 0 βp2 q 0 . . . 0 βp2 q 0 0 0 βp3 q . . . 0 . . . . . . 0 βppN ¡ 4q q 0 0 0 βppN ¡ 3q q 0 . . . 0 βppN ¡ 3q q 0 0 0 0 . . . 0 0 αppN ¡ 2q q 0 0
The operator M 2,β on H a N whose matrix on the orthonormal basis tψ N n , n 0, . . . , N ¡1u is M 2,β becomes 6 9 9 9 9 8 9 9 9 9 7

M 2,β ψ N 0 αp qψ N 2 M 2,β ψ N 1 βp2 qψ N 3 M 2,β ψ N i βppi ¡ 2q qψ N i¡2 αppi 2q qψ N i 2 , 2 ¤ i ¤ N ¡ 3 M 2,β ψ N N ¡2 αppN ¡ 4q qψ N N ¡4 M 2,β ψ N N ¡1 αppN ¡ 3q qψ N N ¡3 Proposition 9. M 2,β ψ a x ψ Σ 2,β pzqa z where Σ 2,β pzq e 2ix z 2 pβp ¤qµ 2 q ¢ τ pzq 3 2 ¡ if x z 2 e ¡i2x pβp ¤qν 2 q ¢ τ pzq ¡ 3 2 ¡ if x . (3.13) with µ 2 pnq d pnqpn ¡ 1q pN 1 ¡ nqpN ¡ nq D N n 2 D N n and ν 2 pnq d pN ¡ 1 ¡ nqpN ¡ 2 ¡ nq pn 2qpn 1q D N n¡2 D N n
And again if τ p1 ¡ τ qβpτq C V pr0, 1sq, so that βpτ qe i2θ C V pS 2 q, then, for all z S 2 , Σ 2,β pzq 2βpτ pzqq cos 2px θpzqq as N Ñ V.

Otherwise, this last asymptotic equality is valid only for z away from the two poles.

Let us finally remark that when M 0γ is diagonal with diagonal matrix elements γpi q, then Σ 0γ γpτ pzqqId, where Id is the identity on L 2 pRq.

3.3. Action of a general matrix. For k ¡pN ¡ 1q, . . . , N ¡ 1, let us call N k;γ k the matrix with non zero coefficients lying only on the kth diagonal and being equal to

γ k pjq γ k pjq, k ¤ j ¤ N ¡ i ¡ k. That is to say: N k;γ k pM 1 q k M 0,γ k .
Let moreover

µ k pnq k¡1 ¹ j0 µpn ¡ jq d ¢ n k ¢ N ¡ n k ¡ 1 k ¡1 k¡1 ¹ j0 χ r 1 2 ,N ¡ 1 2 s pn ¡ jq k ¡ 0 µ 0 pnq 1 µ k pnq 0 ¹ jk¡1 νpn jq d ¢ N ¡ 1 ¡ n k ¢ n k k ¡1 0 ¹ jk¡1 χ r¡ 1 2 ,N ¡ 1 2 s pn jq k 0
The same arguments as in the proofs of Propositions 4, 8 and 9 leads easily to the following more general result.

Proposition 10.

M k,γ k ψ a x ψ Σ k,γ k pzqa z where Σ k,γ k pzq e ikx z k pγ k p ¤qµ k q ¢ τ pzq ¡ if x d C N ¡ifx k C N ¡ifx z k e ¡ikx pγ k p ¤qν k q ¢ τ pzq ¡ ¡if x g f f f e C N τ pzq ¡¡ifx¡k C N τ pzq ¡¡ifx . (3.14) 
And again if pτp1 ¡ τ qq |k| 2 γ k pτq C V pr0, 1sq, so that γ k pτqe i2θ C V pS 2 q, then, for all z S 2 , Σ k,γ k pzq 2γ k pτpzqq cos kpx θpzqq as N Ñ V.

Otherwise, this last asymptotic equality is valid only for z away from the two poles.

Symbol.

Let us first remark the following co-cycle property.

Lemma 11. d C N ¡ifx k I C N ¡ifx e ikx d C N ¡ifx k C N ¡ifx e ikx d C N ¡ifx k I k C N ¡ifx so that e ik I x z k I pγ k Ip ¤qµ k Iq ¢ τ pzq ¡ if x d C N ¡ifx k I C N ¡ifx e ikx z k pγ k p ¤qµ k q ¢ τ pzq ¡ if x d C N ¡ifx k C N ¡ifx e ik I x z k I pγ k Ip ¤qµ k Iq ¢ τ pzq ¡ if x e ikx z k pγ k p ¤qµ k q ¢ τ pzq ¡ if x d C N ¡ifx k k I C N ¡ifx
Let us denote by N k;γ k the operator whose matrix on the basis tψ N n , n 0 . . . N ¡ 1u is N k;γ k .

We define the symbol of N k;γ k at the point z as the operator

σ k;γ k pzq : e ikx z k pγ k p ¤qµ k q ¢ τ pzq ¡ if x e ikx z k γ k pτpzq ¡ i f x qµ k ¢ τ pzq ¡ if x (3.15)
acting on L 2 pRq.

Definition 12. Let γpτ, θq K °k¡K γ k pτqe ikθ be a trigonometric function on the sphere with each

γ k C V ps0, 1rq L V pr0, 1sq. Let N γ N ¡1 ¡pN¡1q N k;γ k where pN k;γ k q ij δ j,i k γ k ppk ¡ p¡1q k ¡ 1 2 q q (3.16)
and N γ the operator whose matrix on the basis tψ N n u is N γ . We call symbol of N γ at the point z S 2 the operator

σrN γ spzq N ¡1 ķ¡pN¡1q σ k;γ k pzq (3.17)
where σ k;γ k is given by (3.15).

Let us finish this section by giving a more global "quantization" type definition of the symbol. This end of Section 3.4 is not necessary for the understanding of the rest of the paper.

Note that

σ k;γ k ¢ µ N ¢ τ pzq ¡ if x e ix z k γ k pτpzq ¡ i f x q £ µ N ¢ τ pzq ¡ if x e ipx θpzqq |z| k γ k pτpzq ¡ i f x q . e ikθpzq |z| k ¢ µ N ¢ τ pzq ¡ if x e ix k γ k pτpzq ¡ i f x q . e ikθpzq |z| k £d τ pzq ¡ i f x 1 ¡ pτpzqq ¡ i f x q e ix k γ k pτpzq ¡ i f x q . ¢ Zpzq |z| k γ k pτpzq ¡ i f x q .
Here the operator Zpzq is the canonical (anti) pseudodifferential quantization of the canonical function Zpx, τ q : τ 1¡τ e ix , "shifted by pτpzq, θpzq" where z τ pz0

1¡τ pzq e iθpzq , that is Z z pτ, xq f pτ τ pzq, x θpzqq.

More precisely, the (anti) pseudodifferential quantization of of a function g is the pseudodifferential quantization of G where one put all the differentail part on the left (rather than on the right for the standard pseudodifferential calculus introduced at the beginning of Section 1.

Namely, for any function gpe iθ , τ q on the sphere, we define Op AP D rgs and Op (3.18) and

σ k;γ k pzq ¢ Op AP D z ¢ Z z |z| k Op AP D z pγ k q.
Definition 13. For any trigonometric polynomial on the sphere s spe iθ , τ q °k e ikx s k pτq we Let us now define the "naive" symbol of N as the function s N pτ, θq N ¡1 ķ¡pN¡1q e ikθ γ k pτq γpθ, τ q.

(3.19) Proposition 14.

σrN spzq Op z rs N s.

Symbolic calculus.

As a direct corollary of (the second part of) Lemma 11 we get the following result. The following result is one of the main of this paper: it express that any trigonometric matrix, as defined by (3.16), is a-Töplitz operator, and that its a-Töplitz symbol is excatly the symbol, as defined by (12).

Theorem 18. Let γ, γ I and N γ , N γ I as in Definition 12. Then

N γ Op T a pσrN γ sq N γ I Op T a pσrN γ Isq N γ N γ I Op T a pσrN γ sσrN γ Isq
Proof. Theorem 18 is verbatim a straightforward consequence of Theorem 15.

Remark 19. Although we don't want to prove it here in order not to introduce too much semiclassical technicalities, let us mention that, in the case where the symbol of an a-Töplitz operator is just a regular potential (multiplication operator by a function of x), then one can show that the a-Töplitz operator is actually a standard Töplitz operator. Conversely, a standard T oplitz operator is an a-Töplitz operator with a symbol which is a potential. 3.7. Classical limit and underlying "phase-space". We can rewrite the general structure of the symbol of an a-Töplitz operator T has the form (near the south pole where τ |z| 0)

σpzq Sp1 ¡ i τ pzq f x , x θ, τ pzq ¡ i f x , q
where the function S is 2π periodic in the second variable and the quantization present in the two first variables is the one of antipseudodifferentail calculus.

The function S satisfies Sp1 ξ, x θ, τ pzq ξ, q Ñ Sp1, x θ, τ pzq, q γpτ pzq, θ xq as ξ Ñ 0, where γpτ, θ, q is the so-called naive symbol of T . As Ñ 0, z $ 0, σpzq Ñ γpτ, θ xq but the limit , z Ñ 0 is multivalued. Indeed as

6 8 7 Ñ 0 z Ñ 0 τ pzq 0 we have σpzq Ñ Sp1 ¡ i 0 f
x , e ipx θq , 0, 0q.

And the "classical" noncommutative multiplication for the function S is given by: S#S I p1 ¡ 0 ξ, θ x, τ, 0q Sp1 ¡ 0 ξ, θ x if ξ I, τ, 0qS I p1 ¡ 0 ξ I , θ x, τ, 0q| ξ I ξ : Sp1 ¡ 0 ξ, θ x i Ñ f ξ , τ, 0qS I p1 ¡ 0 ξ, θ x, τ, 0q

This define the classical phase-space, as a noncommutative algebra of functions i.e.a noncommutative blow up of the singularity.

Application to TQFT

In this section we apply the results of the preceding one and show that any curve operator in TQFT of the case of the once punctured torus or the 4-times punctured sphere. We first introduce in a very fast way curve operators. For more details, the reader can consult [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] which is precisely referred in the next sections, and [A06, A10, A11, BHMV, BP00, FWW, G86, H90, MV94, RT91, TW05, TU91, W89].

4.1. The curve operators in the case of the once punctured torus or the 4-times punctured sphere. To any closed oriented surface Σ with marked points p 1 , . . . , p n , any integer r ¡ 0 and any coloring c pc 1 , . . . , c n q, c i t1, . . . , r ¡ 1u of the marked points, TQFT provides, by the construction of [BHMV], a finite dimensional hermitian vector space V r pΣ, cq together with a basis tϕ n , n 1, . . . , dim pV r pΣ, cqqu of this space (see Sections 2.1 and 2.5 in [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF]).

On the other (classical) side, to each t pπQq n we can associate the moduli space:

MpΣ, tq tρ : π 1 pΣztp 1 , . . . , p n uq Ñ SU 2 s.t. di, trρpγ i q 2 cospt i qu{

where one has ρ ρ I if there is g SU 2 such that ρ I gρg ¡1 and γ i is any curve going around p i .

When Σ is either a once punctured torus or a 4-times punctured sphere, MpΣ, tq is symplectomorphic to the standard sphere S 2 CP 1 .

To nay curve γ on the surface Σ (that is, avoiding the marked points) we can associate two objects: a quantum one, the curve operator T γ acting on V r pΣ, cq, and a classical one, the function f γ on the symplectic manifold MpΣ, tq.

T γ is obtained by a combinatorial topological construction recalled in Sections 2.3 and 2.4 in [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF]. By the identification of the finite dimensional space V r pΣ, cq with the Hilbert space of the quantization of the sphere H N defined in Section 2.1 with N : dim pV r pΣ, cqq, through tϕ n , n 1, . . . , dim pV r pΣ, cqqu Ø tψ N n , n 1, . . . , N u, T γ can be seen as a matrix on H N . One of the main results of [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] was to prove than this matrix is a trigonometric one in the sense of Section 3.2.

f γ : MpΣ, tq Ñ r0, πs is defined by ρ Þ Ñ f γ pρq : ¡trρpγq. (4.1)
The asymptotism considered in [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] consists in letting r Ñ V and considering a sequence of colorings c r such that π cr r converges to t and the dimension of V r pΣ, c r q : N , grows linearly with r. One sees immediately that, by the identification V r pΣ, cq Ø H N , this correspondents to the semiclassical asymptotism N Ñ V.

The main result of [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] states that, for generic values of t, T γ is a (standard) Töplitz operator of leading symbol f γ .

the generic values of t are the one for which f γ considered as a function on S 2 by the symplectic isomorphism mentioned earlier, belongs to C V pS 2 q. 4.2. Main result. It is easy to see that, for the remaining non generic values of t, T γ is not a standard Töplitz operator. Nevertheless, it happens that it is an a-Töplitz one.

Theorem 20. Let again Σ be either the once punctured torus or the 4-times punctured sphere.

For all values of t, the sequence of matrices pT γ r q are the matrices in the basis tψ N n u| n0,...,N ¡1

of a family of a-Töplitz operators on H a N with symbol σ T T γ r satisfying, away of the two poles,

σ T T γ r pzq f γ pe ¡ix zq Op c q (4.2)
where f γ is the trace function defined by (4.1).

4.3.

Proof of Theorem 20. We give the proof in the case where Σ is the once punctured torus.

In [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] we proved that nay curve on Σ is generated by the curves γ, δ, ζ described in Section 3 of [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF]. Therefore any curve operator belongs to the algebra generated by three matrices 4 Note that in [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF] we proven this type of result by another method since we wanted also to define a symbol inside the interior of Σ in the singular cases. Since we proved that in any coloring the three matrices are a-Töplitz operators, we don't need such a direct result here.

where a N, a odd, is the color assigned to the marked point and u n ¡ £ sin p π N pn aq sin p π N nq sin π N pn a 1 2 q sin π N pn a¡1 2 q 1 2 .

Defining as before π N , and α a, we obtain that the naive symbols of T γ r , T δ r , T ζ r , as defined in (3.19), are (τ n ) σ T γ r pτ, θ, q ¡2 cos pτ α 2 q σ T δ r pτ, θ, q ¡ £ sinpτ α q sinpτ q sinpτ α 2 q sinpτ α 3 2 q 1{2 e iθ ¡ ¢ sinpτ αq sinpτ q sinpτ α 2 q sinpτ α¡ 2 q 1{2 e ¡iθ σ T ζ r pτ, θ, q e i 2 σ T δ r pτ, θ τ, q and, as Ñ 0, σ T γ r pτ, θ, 0q ¡2 cos pτ α 2 q σ T δ r pτ, θ, 0q ¡ ¢ sinpτ αq sinpτ q sinpτ α 2 q sinpτ α 2 q 1{2 e iθ ¡ ¢ sinpτ αq sinpτ q sinpτ α 2 q sinpτ α 2 q 1{2 e ¡iθ σ T ζ r pτ, θ, 0q σ T δ r pτ, θ τ, 0q.

We see that, for all values of α, σ T γ r pτ, θ, 0q C V pS 2 q. For α ¡ 0, σ T δ r pτ, θ, 0q ¡ c τ cos θ, as τ 0, so that. for α ¡ 0, σ T δ r pτ, θ, 0q, σ T ζ r pτ, θ, 0q C V pS 2 q. But when α 0 then σ T δ r pτ, θ, 0q ¡2 cos θ σ T ζ r pτ, θ, 0q ¡2 cos pθ τ q so that σ T δ r pτ, θ, 0q, σ T ζ r pτ, θ, 0q are singular on the sphere. Note that, for α 0, the corresponding moduli space M is also singular (see Remark 4.13 in [START_REF] Marché | Toeplitz operators in TQFT via skein theory[END_REF]).

In fact T δ r ¡M 1 where M 1 is precisely the toy matrix defined in Section 3.1 above. The same way, T ζ r ¡M 1,κ as defined in Section 3.2 with κpτ q e iτ . Therefore its symbol, together with the one of T ζ r , is given out of the trace functions of δ and ζ by Definition 12. In other words, T η r Op T a pσrN fη sq Op q, η γ, δ, ζ. where f η ¡trρpηq is the trace function defined by (4.1).

Straightforward but tedious computations show that the symbols of all the curve operators on the 4th-punctured sphere are also given out of the corresponding trace functions by Definition 12. This suggest the conjecture in the following section. in the sense of Definition 12.
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  . . . . . . . . . . . . . . . , An elementary computation shows that

  . . . . . . . . . . . . . . . . . . . I ¡ |h 0 yxh 0 | I,
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  AP D rgspx, yq » gpy, τ qe iτ px¡yq{ dτ {p2π q Op AP D z rgspx, yq » gpy θpzq, τ τ pzqqe iτ px¡yq{ dτ {p2π q, one has Zpzq Op AP D rZ z s Op AP D z rZs.

,σ

  Theorem 15. σrN I N s σrN I sσrNs.3 one can also say that Op T z rss s P S ¡ where s P S is the pseudodifferential ordering of the trigonometric polynomial s, that is the one with all the Op AP N pze ¡iθ qCp|z|e iθ qdθ.

  By decomposition on k-diagonal parts of N , Proposition 16 is a direct consequence of Proposition 10 and the fact that Σ k,γ k pzq σ k,γ k Cpzq. 3.6. a-Töplitz quantization. Definition 17. To a (trigonometric) family z Þ Ñ Σpzq of (bounded) operators on L 2 pRq we associate the operator Op T a pΣq on H a
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  Any curve operator T γ r is an a-Töplitz operator whose symbol satisfies σ T T γ r σrN ¡trρpγq s Op q.

  The Hilbert structure. The Hilbert scalar product on H a N is obtained out of (2.15) by bi-linearity. Since any polynomial f satisfies

	2.3.	
		2.14)
	where H a N is the same space of polynomials as H N but now endowed with the renormalized scalar
	product x¤, ¤y a fixed by	
	xψ N m , ψ N n y a δ m,n ,	(2.15)
	and	
	|ψ a z y a xψ a z |ψ : xψ a z , ψy a ψ a z , ψ H a N .	(2.16)

  But if we "change" of representation and define F pzq : xψ a z , f y, Gpzq : xψ a z , gy then, by (2.13) we have xf, gy a xF, Gy

	»

C

F pzqGpzqdµ N pzq.

by this we mean that α is bounded on r0, 1s and C V on any open subset of r0, 1s.