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Abstract Integration of electroencephalography (EEG) and functional magnetic7

resonance imaging (fMRI) is an open problem, which has motivated many re-8

searches. The most important challenge in EEG-fMRI integration is the unknown9

relationship between these two modalities. In this paper, we extract the same fea-10

tures (spatial map of neural activity) from both modality. Therefore, the proposed11

integration method does not need any assumption about the relationship of EEG12

and fMRI. We present a source localization method from scalp EEG signal using13

jointly fMRI analysis results as prior spatial information and source separation for14

providing temporal courses of sources of interest.15

The performance of the proposed method is evaluated quantitatively along16

with multiple sparse priors (MSP) method and sparse Bayesian learning (SBL)17

with the fMRI results as prior information. Localization bias (LB) and source dis-18

tribution index (SDI) are used to measure the performance of different localization19

approaches with or without a variety of fMRI-EEG mismatches on simulated re-20

alistic data. The method is also applied to experimental data of face perception21

of 16 subjects.22

Simulation results show that the proposed method is significantly stable against23

the noise with low localization bias. Although the existence of an extra region24
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in the fMRI data enlarges localization bias, the proposed method outperforms1

the other methods. Conversely, a missed region in the fMRI data does not affect2

the localization bias of the common sources in the EEG-fMRI data. Results on3

experimental data are congruent with previous studies and produce clusters in the4

fusiform and occipital face areas (FFA and OFA, respectively). Moreover, it shows5

high stability in source localization against variations in different subjects.6

Keywords Integration Analysis · Referenced-Based Signal Processing ·Weighted7

Sparse Decomposition · Elastic Net · Pareto Optimization8

1 Introduction9

EEG is a non-invasive technique that records scalp electrical activity generated by10

brain structures and it greatly helps to figure out the aspects of cognitive processes.11

The EEG data is analyzed by solving its inverse problem, which looks for the12

localization and dynamics of cerebral activity sources. EEG reflects neural activity13

directly with high temporal resolution (around millisecond), but it lacks good14

spatial resolution. Recently, EEG-fMRI integration has been intensively addressed15

due to their complementary temporal and spatial resolutions. fMRI relies on the16

blood oxygen level dependent (BOLD) effect and measures hemodynamic signal.17

fMRI has high spatial resolution around millimeters. Therefore, it seems that the18

fMRI high spatial resolution can assist solving the EEG inverse problem.19

Different EEG and fMRI integration methods have been proposed recently20

which can be categorized into symmetric and asymmetric groups (Jorge et al, 2014;21

Rosa et al, 2010). Fusion or symmetric methods use the data of both modalities as22

the observation variables and consider their interactions to extract the maximum23

information about the neural activity (Henson, 2010). These methods are complex24

and most of them require accurate physiological models of the interaction between25

neuronal activity and BOLD signals. In asymmetric methods the data from one26

modality is used to constrain the inference (fMRI-informed EEG (Murta et al,27

2015)) or as a predictor (EEG-informed fMRI (Dong et al, 2015)) of the other28

modality.29

Here, we focus on the fMRI-informed EEG group. The fMRI-informed EEG30

methods apply the fMRI result in the inverse problem of EEG to improve the31

spatial resolution of source localization. Two main challenges are related to EEG-32

informed fMRI method: 1) How to solve the EEG inverse problem? 2) How to33

apply fMRI information?34

Two main approaches are used for solving the inverse problem: non-parametric35

(imaging) and parametric (scanning) methods (Baillet et al, 2001). A brief review36

of these methods can be found in (Bolstad et al, 2009). Parametric or scanning37

methods use a small number of dipoles (Bai and He, 2005; Michel et al, 2004; Shun38

Chi Wu et al, 2012), multi-poles (Bandyopadhyay et al, 2004; Mosher et al, 1999),39

or cortical patches (Limpiti et al, 2006; Wagner et al, 2000) and scan over any40

possible locations to find the best set of sources to represent the data. The examples41

of scanning methods include MUSIC (Mosher and Leahy, 1996), beamforming42

(Fuchs et al, 2011; Van Veen, 1991), and maximum likelihood estimation (Inan43

et al, 2001). Non-parametric methods are also referred to as imaging methods. In44

these models several dipoles with fixed locations and possibly fixed orientations45
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are distributed in the whole brain volume or cortical surface. In imaging method,1

the EEG forward problem is estimated with a linear system equations. Then, using2

head model, estimating the sources from scalp EEG is an underdetermined and3

ill-posed problem, which requires prior information and constraints for converging4

to a unique solution.5

Minimum Norm Estimation (MNE) is one of the earliest methods to solve6

the EEG inverse problem. MNE searches a solution with the minimum `2 norm,7

obtained from a closed-form equation involving a simple matrix product (Tikhonov8

and Arsenin, 1977). This makes the estimation extremely fast. However, using9

the `2 norm regularization method leads to smooth solution. Therefore, it fails to10

recover solutions with high spatial frequencies, because the extent of active regions11

is often over-estimated.12

Recently, sparsity has been used as an effective tool to find sparse (unique)13

solutions for an underdetermined system of linear equations. Sparsity means that14

the solution should only have a small number of non-zero elements. The `0 pseudo-15

norm1 is the mathematical way to measure sparsity of a vector x, which is nothing16

but the number of non-zero components of x. In the last few years, many algorithms17

have been developed to solve the ill-posed underdetermined linear system when18

considering sparse priors (Beck and Teboulle, 2009; Bruce et al, 1998; Daubechies19

et al, 2008; Efron et al, 2004; Friedman et al, 2010; Gorodnitsky et al, 1995;20

Tibshirani, 1996; Tibshirani et al, 2005).21

It has been proved that `1 regularization leads to a sparse solution (Chen et al,22

1999; Tibshirani, 1996) and under some conditions, produces the sparsest solu-23

tion (Candès and Tao, 2005; Donoho, 2004, 2006; Donoho and Elad, 2003). The24

`p norm is a real-valued function which is convex when p ≥ 1. For p = 1, `1 norm25

is marginally convex and is the best convex estimation of the `0 norm (Wipf and26

Nagarajan, 2009). Recently, some theoretical and practical studies show that the27

`0 regularization criterion is superior to that of `1 regularization in a sense of ac-28

curacy (Babaie-Zadeh and Jutten, 2010; Mancera and Portilla, 2006; Mohimani29

et al, 2009). Since `0 norm regularization leads to NP-hard problems, (Mohimani30

et al, 2009) proposed an algorithm to minimize the `0 norm by approximating `031

norm by a continuous and differentiable function. The algorithm, called smooth32

`0 norm (SL0), searches the optimal solution based on gradient ascent method.33

SL0 brings us two new opportunities. First, It is faster than the interior-point lin-34

ear programming (LP) solvers, while at the same time having the same or better35

accuracy. Second, contrary to the previous approaches, `0 norm minimization al-36

gorithms can provide a stable estimation from noisy data, with a weaker sparsity37

requirement on the data than using `1 norm2 (Babaie-Zadeh and Jutten, 2010).38

Some studies have solved the EEG inverse problem for a sparse solution such39

as the self-coherence enhancement algorithm (Dezhong Yao, 2001), the `1 norm40

solution (i.e., LASSO) (Tibshirani, 1996), and the `p norm iterative sparse source41

localization (LPISS) (Xu et al, 2007). Also, the combination of the `2 and `142

norms has been proposed (Gramfort et al, 2012, 2013). Different strategies are43

used to combine the `2 and `1 norms. Mixed-Norm Estimates (MxNE) algorithm44

minimizes the `1 norm of the `2 norm of the time series of the sources (MxNE =45

1 The `0 pseudo-norm does not satisfy the mathematical definition of a norm, However, in
the following, we simply say `0 norm.

2 i.e. with data less sparse than required with algorithm based on `1 norm.
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∑M
i=1

2

√∑T
j=1 |Xij|2, where X is an unknown matrix (M × T )). It also estimates1

the time series of the sources and their spatial maps simultaneously, but with a2

high computational cost. Therefore, it is used in a region of interest but cannot be3

applied for the whole brain. Group LASSO is used when we can partition the sparse4

variable into different groups (Cassidy et al, 2012; Yuan and Lin, 2006). Elastic5

Net uses the weighted sum of the `2 and `1 norms (λ1‖x‖1 + λ2‖x‖2, where x is6

an unknown vector) in the regularization term to estimate the connected sparse7

regions.8

Here, we are interested in the brain neural activities, which are sparsely local-9

ized, thus a relevant constraint is to use the sparse characteristics of the spatial dis-10

tribution of the sources (Ding, 2009; Ding et al, 2011; Friston et al, 2008; Gramfort11

et al, 2012). We choose the `0 norm to represent sparsity and benefit its accuracy12

and stability against the noise using the smooth `0 norm (SL0) algorithm (Babaie-13

Zadeh and Jutten, 2010; Mohimani et al, 2009). For using sparsity, since EEG is14

not potentially sparse, we have to project the EEG data to another space in which15

the data are represented by sparse unknown variables (see Figure 1). This space16

is made up of temporal sources which we are interested in, i.e. sources which are17

highly correlated with the paradigm of the task of interest. We call them highly18

correlated with interested task paradigm sources (HCTP sources). The HCTP19

source space is found by applying the reference-based source separation (R-SS)20

method proposed in (Samadi et al, 2013). R-SS is a semi-blind source separation21

method which extracts the discriminating sources of two data groups, one group22

being related to the task of interest. By projection to the HCTP source space, we23

reformulate the EEG inverse problem to achieve a sparse unknown variable which24

is the spatial map of HCTP sources. For a given sparsity level (i.e. `0 norm), we25

would like to promote neural activity concentrated in neighbour pixels of a small26

number of cerebral areas, instead to neural activity distributed on isolated voxels.27

For enforcing this sparsity, usually called block-sparsity, we will combine the `028

norm and the `2 norm like what was done in elastic net. We also use the spatial29

map extracted from the thresholded F-map of the fMRI data as a weight for the30

spatial map of the EEG source activation. It means that EEG source activity is31

assumed to be located in areas of significant fMRI activation with high probability.32

Here, we use the same feature, extracted from EEG and fMRI, which is the spatial33

map of neural activity. Therefore, we did not need to use any assumption about34

the relationship between EEG and fMRI, which may not be generally congruent35

with reality.36

The different spaces used in our method are illustrated in Figure 1, and defined37

as follows:38

– Spatial map means the map of activation inside the brain.39

– Temporal cerebral sources are the signals related to the cerebral sources ex-40

tracted from the scalp EEG data using the source separation method.41

– HCTP sources are the temporal sources (signals) highly correlated with the42

activity of interest: they are the outputs of the source selection algorithm.43

– HCTP sources space is the space spanned by the HCTP sources, i.e. whose44

HCTP sources are the basis.45

The main contributions of the current work are:46

1. Using the same feature from both modalities which is the spatial map of the47

neural activity.48
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Fig. 1: The different spaces and their relationships.

2. By projecting the forward problem of EEG onto the HCTP source space, we1

can reach enough sparsity to use sparse decomposition methods.2

3. Promoting solutions characterized by the concentration of active voxels in a3

few regions (block-sparsity) using the `0 norm combined with the `2 norm.4

4. Using fMRI spatial map as a weighting matrix in the penalty term to solve the5

inverse problem of EEG.6

5. Exploiting Pareto optimization to find the final results.7

The rest of the paper is organized as follows. The proposed method is explained8

in Section 2. The data protocol and the results are presented in Sections 3 and 4,9

respectively. Discussion and concluding remarks are brought in Sections 5 and 6,10

respectively.11

2 Method12

In the imaging method a grid of thousands of dipoles is used to model the forward13

problem of EEG as:14

X = GJ + n (1)

where X is a N × T matrix that contains scalp recordings, N is the number of15

channels and T is the number of time points, GN×M is the gain matrix, JM×T16

contains dipole magnitudes at different time instants, n represents the noise, and17
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M is the number of mesh vertices with, practically, N � M . Under this nota-1

tion, the inverse problem consists in finding an estimate of the dipole temporal2

courses, which are the rows of the matrix J, given the electrode positions and scalp3

recordings X and using the gain matrix G, which can be calculated with boundary4

element method (BEM).5

As denoted before, the EEG inverse problem is underdetermined (due to the6

fewer observations than the unknown variables (since N �M)) and ill-posed so, it7

lacks a unique solution. Therefore, some additional priors as constraints are needed8

to find a unique solution. The constraints are applied by adding a regularization9

term to the usual term of data fit, leading to the solution:10

Ĵ = arg min
J

‖X−GJ‖+ λh(J) (2)

Here, we are interested in localized brain neural activities, i.e. only a few regions11

of the brain that are responsible for the specific brain activity. Therefore, using the12

spatial sparsity as a constraint in solving the EEG inverse problem is consistent13

with this prior (Op de Beeck et al, 2008; Simoncelli and Olshausen, 2001). The14

most important question is: How can we find the spatial map of neural activity to15

apply sparsity constraint?16

We find the source spatial map in four steps. First by using a referenced based17

source separation (R-SS) method (Samadi et al, 2013) the time courses of the18

HCTP sources are estimated, secondly the forward model is projected on the19

HCTP source space and thirdly, the spatial map of each HCTP source is estimated20

using a sparse decomposition method. Finally, Pareto optimization method is used21

to find the active regions. From now on, as the proposed method is based on22

Spatial Sparsity in the Source Space, we call it ”S4” method. The architecture of23

the proposed method is shown in Figure 2, each block of which will be explained24

in details in next subsections.25

2.1 Source Space Estimation26

Here, we use the R-SS method introduced in (Samadi et al, 2013) to extract the27

uncorrelated temporal courses which have high similarity with a reference state28

(HCTP sources). The R-SS method is used when we can segment the signal into29

non-overlapping time intervals each exclusively associated to one state among two30

different states. Defining states are dependent on the application. In this study31

state refers to different tasks in the experiment. In the experiment we may have32

task, control or rest states. We choose the state of interest as the reference state33

(denoted C1) and the other state as the non-reference state (denoted C2). The34

reference interval or state is related to the state of interest, here is the task state,35

and the non-reference interval or state can be considered as background, control36

or rest state. R-SS uses the concept of periodic independent component analysis37

or common spatial pattern which can be solved using the generalized eigenvalue38

decomposition (GEVD) (Koles et al, 1990; Sameni et al, 2008). Moreover, it uses39

the eigenvalues to estimate the number of HCTP sources (denoted i∗). The HCTP40

sources are the sources with the highest correlation with the reference state, which41

is the paradigm of the task of interest. A brief review of R-SS is explained in42
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SPM
1

h()

Linear Model
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As = GsBs

BsBoptimum

Projection

Fig. 2: Diagram of the proposed method (called S4). WEN0 is the regularization
method, and h(SM) = (1− α) + αSM

appendix A. The EEG recordings can be assumed as a linear combination of1

uncorrelated sources:2

X = AS (3)

where, A is a N ×N mixing matrix, aj is its j-th column, S is a N × T matrix,3

containing uncorrelated sources, and s′i is its i-th row. Without the loss of gen-4

erality the temporal sources are normalized, which means that SS′ = I, where I5

is an N ×N identity matrix, and S′ denotes the transpose of S. We use R-SS to6

extract the i∗ HCTP sources. Therefore, Eq. (3) can be rewritten as:7

X = [a1 . . . ai∗ ] [s1 . . . si∗ ]′+

[ai∗+1 . . . aN ] [si∗+1 . . . sN ]′

We rename the HCTP part of A as As = [a1 . . . ai∗ ] and the rest is renamed as8

As̄ = [ai∗+1 . . . aN ]. So Eq. (3) can be rewritten as:9

X = Xs + Xs̄ = As [s1 . . . si∗ ]′ + As̄ [si∗+1 . . . sN ]′ (4)

where the dimensions of As and As̄ are N × i∗ and N × (N − i∗), respectively.10

As X and J are linearly related (if one neglects the additive noise) according11

to Eq. (1), J can also be estimated from S as:12

J = BS (5)
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where B is an M ×N unknown mixing matrix which predicts J from S.1

We can partition J in two parts estimated by HCTP sources and other sources,2

as done for X:3

J = Js + Js̄ = Bs [s1 . . . si∗ ]′ + Bs̄ [si∗+1 . . . sN ]′ (6)

where the dimensions of Bs and Bs̄ are M × i∗ and M × (N − i∗), respectively.4

We put the HCTP sources, estimated with R-SS, in the rows of the matrix5

Ŝ = [ŝ1 · · · ŝi∗ ]′ and call it from now on the HCTP source space.6

2.2 Spatial Localization7

2.2.1 Source Space Projection8

In this step, we project the EEG forward problem to the HCTP source space by9

multiplying the forward model with the matrix Ŝ. Therefore, the projected version10

of the forward problem would be as:11

XŜ
′

= GJŜ
′
+ nŜ

′
(7)

Using Eq. (4) and Eq. (6) and the fact that sources are uncorrelated and normalized12

(SS′ ∼ I) and sources are uncorrelated with noise (nŜ
′ ∼ 0), we would have:13

AsI + As̄0 = GBsI + GBs̄0 + 0 (8)

where I is an i∗× i∗ identity matrix and 0 is a zero matrix. Therefore, As and Bs
14

are related by the following equation:15

As = GBs (9)

The i-th column of Bs contains the projection of the current dipole signal of all16

vertices on the i-th HCTP source. Therefore, the active vertices related to the17

i-th HCTP source have high value in the i-th column of Bs. In other words, each18

column of Bs represents the corresponding spatial map of the HCTP sources. Eq.19

(9) shows As, the projection of the observations on the HCTP source space, is a20

linear combination of the spatial maps. As the brain activity is localized, most of21

the vertices are not active and have a small value (near zero) in Bs, so Bs is a22

sparse matrix.23

2.2.2 Weighted Elastic Net24

A newly developed variable selection method (Zou and Hastie, 2005), called elastic25

net (EN), can produce a sparse model with good prediction accuracy, while encour-26

aging a grouping effect. Experimental results and simulations have demonstrated27

the superiority of the elastic net over LASSO (Zou and Hastie, 2005).28

Weighted elastic net (WEN) has also been developed in (Hong and Zhang,
2010; Jun-Tao and Ying-Min, 2010). For a linear model as

k = Gbs
k (bs

k -an M × 1
vector-is the k-th column of Bs and as

k-an N × 1 vector-is the k-th column of As),
weighted elastic net estimates are computed as:

b̂
s
k = arg min

bs
k

‖as
k −Gbs

k‖+ λ2‖W2b
s
k‖+ λ1‖W1b

s
k‖1
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where, ‖.‖ and ‖.‖1 represent the `2 and `1 norms, respectively, and W1 and W2

are M ×M weighting matrices. This optimization problem can be written as:

minimize
bs

k

‖W1b
s
k‖1

subject to ‖as
k −Gbs

k‖+ λ2‖W2b
s
k‖ < δ

Here, we replace `1 with `0 (denoted ‖.‖0) in the weighted elastic net and call it
WEN0:

minimize
bs

k

‖W1b
s
k‖0

subject to ‖as
k −Gbs

k‖+ λ2‖W2b
s
k‖ < δ

Using the following change of variables (Hong and Zhang, 2010):

G∗ = (1 + λ2)−
1
2

(
G√
λ2W2

)

a∗k =

(
as
k

0

)
b∗k =

√
1 + λ2b

s
k

WEN0 can be written in the simplified optimization problem:1

minimize
b∗

k

‖W1b
∗
k‖0

subject to ‖a∗k −G∗b∗k‖ < δ
(10)

Using the fast algorithm proposed by (Babaie-Zadeh et al, 2012; Mohimani2

et al, 2009) to solve Eq. (10), we estimate bs
1, · · · ,bs

i∗ which are the columns of3

Bs. Stability against the noise and convergence of the algorithm are discussed in4

details in (Babaie-Zadeh and Jutten, 2010). In our problem, as
k (an N × 1 vector)5

is the k-th column of As which is the projection of the EEG recordings onto the6

k-th HCTP source, and the weighting matrices W2 and W1 are N ×N diagonal7

matrices initialized by the inverse of the spatial map extracted from the fMRI8

data. The fMRI spatial map is the thresholded F-map which is normalized by its9

maximum value and it is registered on the mesh vertices using SPM8, which uses10

the value of the nearest neighbor. It is defined as SM , which is a M × 1 vector.11

Denoting SMi the i-th component of SM, the diagonal elements of W1 and W212

are initialized as:13

diag(W1)i = diag(W2)i =
1

(1− α) + αSMi
(11)

SM provides maximum values while the EEG localization is a minimization14

problem (Eq. (10)) so the inverse of fMRI spatial map is used in the weighting15

matrix. In other words, a low value for a given vertex implies that it is not crucial in16

the sparsity of the variable and the algorithm will focus on decreasing the values17

of the other vertices. Equation (11) can be replaced by any other well-behaved18

function in which the weights have the inverse relationship with the fMRI spatial19

map. The optimum function is not known and it will be investigated in future20

studies.21
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Although, we do not know exactly the relationship between EEG and fMRI,1

we extract the same feature from both i.e. spatial map of the HCTP sources. bs
i2

is the spatial map of the i-th HCTP temporal source, and it is weighted with the3

same feature (spatial map) from fMRI. In fact, this is very important because4

we are sure that we did not use any unreal assumption about the relationships5

between EEG and fMRI.6

α can be estimated experimentally. α = 0 removes the effect of the spatial7

map of the fMRI data and α = 1 constrains the results strictly to the spatial map8

of the fMRI. Experimentally (Liu et al, 1998), the best value of the parameter9

α (of Eq. (11)) is equal to 0.9 and this value has been used by others in the10

fMRI-informed EEG methods. However, it is not proved theoretically (Babiloni11

and Cincotti, 2005; Dale et al, 2000). Here, we do some experiments (see section12

4.1.2) to check if the proposed value is also optimum for our experiment.13

For i∗ times (number of HCTP sources), we solve Eq. (10) for b = bs
k and14

a = as
k , k = 1 · · · i∗, which are the columns of Bs and As, respectively. Therefore,15

we estimate i∗ spatial maps related to the i∗ HCTP sources derived from R-SS.16

Now, we should investigate the HCTP spatial maps and extract a unique spatial17

map. To this goal, for finding the activation site or the place of optimum coefficients18

in Bs, we use Pareto optimization (see appendix B) .19

2.2.3 Method Evaluation20

Evaluation of the method is done in two steps. First, the method is applied to21

simulation data. Secondly, it is applied to experimental data (see detail in the22

next section).23

Simulation data. Three simulation data sets are created as follows:24

– The first data set includes 50 EEG-fMRI data. In this set, two sources are25

activated both in EEG and fMRI in the same area. This data set is produced26

for 6 different SNR values of the EEG data.27

– The second data set includes 50 EEG-fMRI data. In this set, three sources are28

activated. Two of them are activated both in EEG and fMRI in the same area,29

and the third one, which is called fMRI extra source, is activated just in the30

fMRI data. In this data set, the SNR value of the EEG data is equal to 0 dB.31

– The third data set includes 50 EEG-fMRI data. In this set, three sources are32

activated. Two of them are activated both in EEG and fMRI in the same area,33

and the third one, which is called EEG extra source, is activated just in the34

EEG data. In this data set, the SNR value of the EEG data is equal to 0 dB.35

We also use this data set to show the effect of the parameter α in (11).36

To compare the performance of the methods, we use two measures. The first37

measure is the localization bias (LB), which is defined as Euclidean distance be-38

tween the mean site of the estimated activity area (µ̂) and the actual mean site39

of the simulated activity area, µ.40

LB = ‖µ− µ̂‖ (12)

with41

µ̂ =

∑
p ‖bp‖rp∑
p ‖bp‖

(13)
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where, rp is the MNI coordinate of a vertex and bp is its related activation level,1

which is the p-th row of Bs (bp = (bs
p)′).2

The second measure is the source distribution index (SDI), which is defined as3

the localization spread:4

SDI =

∑
p ‖bp‖‖rp − µ̂‖∑

p ‖bp‖
(14)

The details of the simulated data are explained in section 3.1.5

Experimental data. S4 has been also validated on experimental data and its group6

analysis is compared with the previous studies. The stability of the method against7

the value of α is investigated, using the idea of split-half resampling (Strother,8

2006). In this method, the subjects are divided in two equal groups. One group is9

used as a train data set, while the other one is used as test data set. The results,10

obtained from the train group is considered as ground truth and the results of the11

test group is evaluated using this ground truth.12

3 Data13

3.1 Simulated Data14

Monte Carlo modeling (sampling over randomized 50 source locations) is used to15

compare different methods with the proposed method. For each activation site16

two sets of EEG and fMRI data are created (details are given in the two next17

subsections). 50 random vertices are selected as the center of their active regions.18

The sources are assumed to be spread, so a smoothing Gaussian filter is used to19

model the spread sources.20

Here, we simulate the EEG and fMRI data after the preprocessing step. It21

means that for example in fMRI, slice timing is not simulated and in EEG, the22

mean of the trials after preprocessing is simulated.23

Sources are located in the grey matter. Grey matter is extracted from the24

tessellation of the real structural MRI of the first subject of our experimental data25

set. To be more realistic, we performed the source localization on the experimental26

EEG data and the spatial map is considered as an ROI (region of interest) in the27

simulated data set. We have put the sources in the ROI.28

The experiment has two states: task and control. Onsets of task and control29

states are set as the onsets of the experimental data for face and scrambled states,30

respectively. All the parameters of imaging methods are chosen as the experimental31

data, like the electrode positions and sampling rate in EEG and TR and image32

dimension in fMRI.33

3.1.1 fMRI34

We use the package neuRosim in R (R Core Team, 2012) for fMRI simulation,35

because the data generation in neuRosim is accurate and fairly fast and the pa-36

rameters can be adjusted by the user (Welvaert et al, 2011). A double-gamma37

function which is a linear combination of two gamma functions is used to model38

HRF (Friston et al, 1998; Glover, 1999). Fifty fMRI simulations are created with39
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Fig. 3: Sample activation sites in simulated data (the figure is generated with
xjView toolbox (http://www.alivelearn.net/xjview)).

noisy measurements with a fixed SNR= 5dB. In fact, the main known effect of1

low SNR in the result of our method is due to the number of false positive or false2

negative regions. Therefore, we evaluate the efficacy of our method in the presence3

of fMRI invisible or extra sources, at a fixed SNR, defined as:4

SNR = 20 log(
S̄

σN
) (15)

where S̄ represents the average magnitude of the signal, and σN stands for the5

standard deviation of the noise (Krüger and Glover, 2001). The noise is a mixture6

of different random signals: 1) Rician system noise; 2) temporal noise of order 1;7

3) low-frequency drift; 4) physiological noise; and 5) task-related noise (Krüger8

and Glover, 2001). The background is set to the mean image of the experimental9

data.10

In each fMRI data two sources are estimated: one is related to the task state11

and the other to the control state (see Figure 3). The center of the spatial sources12

related to the task state is chosen randomly and the sources are extended with a13

radius of 10 mm. The control source is located at (-10,-29,55) mm in the Montreal14

Neurological Institute (MNI) coordinates and is extended as a sphere with a radius15

of 7 mm and a fading ratio of 0.01. The task sources are located at least 6 mm far16

from the control source.17

Extra source in fMRI. For evaluating the effect of extra fMRI sources which cannot18

be detected in the EEG data, another data set is produced by appending another19

active region in the fMRI data but not in the EEG data. The extra region is20

supposed to be located in a fixed area and the other source which is active both21

in EEG and fMRI in the same area (common source) is chosen randomly in the22

ROI at least 8mm far from the extra source in fMRI.23
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3.1.2 EEG1

For each fMRI data, the related EEG data is generated using the linear forward2

model (Eq. (1)). The gain matrix is calculated using the structural MRI of a3

real subject and the position of the electrodes in experimental data acquisition.4

The time courses of the sources are generated as an additive source problem in5

which two main sources are distinguished, namely (1) the activation caused by an6

experimental design, and (2) the background. The experiment is defined by two7

states, task and control trials. The details are as follows.8

– Activation site. We assume 50 random sites to put a dipole related to the9

activation of interest (task). These random sites are the same for EEG and10

fMRI. We also assume a fixed site for a dipole related to the control state (like11

in fMRI it is located at (-10,-29,55) mm in the MNI coordinates).12

– Activation time courses. For simulating the activation time courses, we extract13

EEG source time courses from the experimental data. To extract the task and14

control time courses, the R-SS method is used on the experimental data. To do15

this, alternatively, the task interval (faces) or control state (scrambled faces)16

is assumed to be the reference state, for estimating the task temporal course17

or the control temporal courses, respectively.18

– Background time course. It is extracted from experimental data. It can be found19

by extracting the common sources between the task and control trials, X1 and20

X2, respectively. Common source extraction is done by canonical correlation21

analysis (CCA) (Hotelling, 1936). We use the first common source as an es-22

timation of the background EEG signal. By back reconstruction, we compute23

the EEG background in the electrode space.24

– Time courses of the electrodes. To compute the electrode time courses, we25

use the forward linear model (Eq. (1)). To estimate the gain matrix, we use26

the structural MRI of a real subject with its fiducials and electrode posi-27

tions. For this purpose, we use BEM with 8196 nodes developed in SPM828

(http://www.fil.ion.ucl.ac.uk/spm). As EEG is sensitive to the signal of29

the Pyramidal neurons of the cortex, which are perpendicular to the cortical30

surface, we assume that the dipoles are on the cortical grey matter, where each31

dipole is perpendicular to the cortical sheet. We put the task and control time32

courses in the related rows of the matrix J. We put the estimated activation33

sources in the predefined sites and use a Gaussian filter with full width at34

half maximum (FWHM) of 8 mm to estimate the activation of the neighboring35

mesh vertices. After computing the effects of activations on the electrode space,36

we add the background signal to the electrodes with different SNR values in37

the range of [−20, 5] dB with a step size of 5 dB.38

Extra source in EEG. For evaluating the effect of extra EEG sources which cannot39

be detected in the fMRI data, another active region in the EEG data is added with40

a weak signal power which is not detected in the fMRI data.41

3.2 Experimental Data42

Experimental data is taken from ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.43

henson/wakemandg_hensonrn/. A brief summary of the acquisition characteristics,44
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and preprocessing steps are brought in this section. More details can be found in1

(Henson et al, 2009, 2011).2

3.2.1 Participants3

The participants are sixteen healthy young adults (eight female). The study pro-4

tocol is approved by the local ethics review board (CPREC reference 2005.08).5

Each subject performs two days experiments; once for concurrent MEG + EEG6

and once for fMRI + sMRI. The protocol is the same each day, but the fMRI and7

EEG data are not recorded simultaneously.8

3.2.2 Stimuli and Tasks9

The paradigm is similar to that used previously under EEG, MEG, and fMRI10

(Henson et al, 2009, 2011). A central fixation cross (presented for a random du-11

ration of 400−600 ms) is followed by a face or scrambled face (presented for a12

random duration of 800−1000 ms), followed by a central circle for 1700 ms.13

3.2.3 EEG Acquisition14

The EEG data is recorded simultaneously with MEG with a VectorView system15

(Elekta Neuromag, Helsinki, Finland). EEG data is recorded with 70 Ag-AgCl16

electrodes with the sampling rate of 1.1 kHz. The low-pass filter with the cut-off17

frequency of 350 Hz is applied on EEG data.18

An elastic cap (EASYCAP GmbH, Herrsching- Breitbrunn, Germany) is used19

according to the extended 10-10 and a nose electrode is used as the recording20

reference. Vertical and horizontal EOG (and ECG) are also recorded.21

3.2.4 fMRI + sMRI Acquisition22

Structural MRI (sMRI) is a T1-weighted MPRAGE-MRI scan, which was acquired23

for each subject with voxel size 1 × 1 × 1 mm, on a 3T Trio (Siemens, Erlangen,24

Germany) with TR= 2250 ms, TE= 2.99 ms, flip-angle= 9◦ and acceleration25

factor= 2.26

The fMRI volumes comprise 33 T2-weighted transverse echoplanar images27

(EPI) (64 × 64, 3 mm × 3 mm pixels, TE = 30 ms) per volume, with blood28

oxygenation level dependent (BOLD) contrast. EPIs comprise 3 mm thick axial29

slices taken every 3.75 mm (3 mm thick with a 0.75 mm gap), acquire sequen-30

tially in a descending direction. 195 volumes were collected continuously with a31

repetition time (TR) of 2.25s. The first six volumes were discarded to allow for32

equilibration effects.33

3.2.5 EEG Preprocessing34

The steps of preprocessing are as follows:35

– Epoching from -500 to +1000 ms poststimulus onset.36

– Down-sample to 250 Hz (using an antialiasing low-pass filter with a cutoff37

frequency of approximately 100 Hz).38



Integrated Analysis of EEG and fMRI Using Sparsity of Spatial Maps 15

– Reject the epochs with the EOG exceeded 150 µV (number of rejected epochs1

ranged from 0 to 47 across participants, median=5).2

– Re-reference the EEG data to the average over non-bad channels. The number3

of bad channels, which are rejected, varies between 0 to 7, according to the4

participants.5

3.2.6 sMRI Processing6

Structural MRI is used to model the forward problem. sMRI images of each par-7

ticipant are segmented and spatially normalized to an MNI T1 template brain in8

Talairach space. The inverse of the normalization transformation is then used to9

warp a cortical mesh from a template brain in MNI space to each participant’s10

MRI space. The mesh has 8196 vertices (4098 per hemisphere) with a mean inter-11

vertex spacing of 5 mm. The lead-field matrix is then calculated for the dipoles at12

all points in the cortical mesh, oriented normal to the mesh. All is done in SPM.13

3.2.7 fMRI Processing14

The processing steps are performed with SPM8 (http://www.fil.ion.ucl.ac.uk/15

spm). General linear model (GLM) is used to model BOLD response and maximum16

likelihood estimation is used to estimate the parameters. A statistical paramet-17

ric map (SM) of the F-statistic that compare faces against scrambled faces was18

thresholded for p < 0.05 (family-wise error corrected across the whole-brain) and19

the regions of at least 10 contiguous voxels are considered as active regions.20

This analysis produces clusters in the fusiform and occipital face areas (FFA21

and OFA, respectively).22

4 Results23

The efficiency of S4 is compared with two other methods. The first method is the24

multiple sparse priors (MSP) (Friston et al, 2008) with or without the fMRI spa-25

tial map as prior information. MSP is implemented in SPM8 (http://www.fil.26

ion.ucl.ac.uk/spm). We also compare S4 with sparse Bayesian learning (SBL)27

with or without the fMRI spatial map as prior information (Wipf and Nagarajan,28

2009). Among the integration methods MSP (Friston et al, 2008) and SBL (Tip-29

ping, 2001) are the most similar methods to the proposed one, as they use the30

spatial sparsity of the activated regions. In these methods the active sources can31

be correlated and any extra information which gives information about the covari-32

ance matrix of the sources can be used e.g. the fMRI results. In these methods33

the information about the experiment is not used, while we have used it in the34

proposed method.35
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Fig. 4: Mean of localization bias over 50 random activation sites compared for five
methods (MSP, MSP+fMRI, SBL, SBL+fMRI, S4).

4.1 Simulated Data1

4.1.1 Spatial Accuracy2

To compare the spatial accuracy of different methods, mean values and standard3

deviations of LB (Eq. 12) are calculated for all methods (see Figure 4). Also, mean4

values and standard deviations of SDI (Eq. 14) are represented in Figure 5.5

Figure 4 shows the mean localization bias of different methods in different SNR6

values. Comparing the results of MSP and SBL when fMRI information is used or7

not, shows that using fMRI information results in better resolution especially in8

lower SNR values. The figure also shows that SBL and S4 have the same accuracy.9

It is the result of using fMRI information directly to solve the EEG inverse problem10

and using the `0 norm. In addition, S4 is more robust to noise. This is because the11

reference-based source separation method removes the common sources between12

the two states and thus, it removes the background effect as much as possible.13

Figure 5 shows the mean source distribution index (SDI) of different methods14

in different SNR values. The mean SDI of the actual source is 15mm. Therefore,15

the results of S4 and SBL are more accurate. In contrary, MSP estimates sources16

with a too small SDI.17

4.1.2 Effect of parameter α18

Extra Source in fMRI. For SNREEG = 0 dB, repeating the Monte Carlo simula-19

tion, using the second simulated data set, shows that the results would not change20

even for α = 0.9 when there exists an extra source in fMRI, which is not detectable21

in EEG. In this case the mean of LB is equal to 18 mm, and no extra region has22

been found. It means that our method will miss the regions which are in fMRI23
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Fig. 5: Source distribution index over 50 random activation sites compared for five
methods (MSP, MSP+fMRI, SBL, SBL+fMRI, S4).

but not in EEG, while the accuracy of the estimated activity site does not change1

much. It changes from 10mm (See figure 4) to 18mm (LB of the common source2

in the presence of the extra source in fMRI). In contrary, MSP and SBL fail to3

estimate even the common source site.4

Extra Source in EEG. In the case of the existence of an extra region, which5

is in EEG but not in fMRI, repeating the Monte Carlo simulation for 50 ran-6

dom common source localization and fixed extra source in EEG shows that for7

SNREEG = 0 dB and α = 0.9, mean of LB is 13 mm for the common source8

between EEG and fMRI, and no extra region has been found in 45 experiments. α9

can balance the role of fMRI information in EEG inverse problem (see Eq. (11)).10

To see the effect of α, we have repeated the experiment for α = 0.1, · · ·α = 0.9.11

Figure 6 shows LB for three different values of α calculated for the common source.12

Table 1 shows the percentage of the EEG extra source detection in the 50 EEG-13

fMRI data sets, and Table 2 shows the percentage of the common source detection14

in the 50 EEG-fMRI data sets. Detection happens when S4 finds a region less than15

20 mm far from the EEG extra source.16

Although α = 0.9 is the optimum value, which is suggested in (Liu et al, 1998),17

in our experiments α = 0.7 is the optimum value. Tables 1 and 2 show that for18

α = 0.7, we have the highest detection percentage of the extra source while the19

common source is estimated correctly in all experiments.20

Table 1: Detection percentage of the extra EEG source.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Detection (%) 58 58 52 56 52 46 54 20 10
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Fig. 6: Localization bias in the presence of an extra EEG source as a function of
α.

Table 2: Detection percentage of the common EEG source.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Detection (%) 36 46 46 54 68 100 100 100 100

We have applied MSP and SBL on the same data set, in which there exists an1

extra EEG source. These methods did not converge to the real solution and they2

fail to estimate even the common source site.3

4.2 Experimental Data4

4.2.1 Spatial Sources5

The maps of spatial sources for group analysis of 16 subjects, using MSP and S4,6

are shown in Figures 7 and 8, respectively. A zoom of the spatial map extracted7

by S4 algorithm is shown in Figure 9. For group analysis, the EEG data were8

analyzed for each subject and SPM is used to do group analysis. One-sample t-9

test is used and the t-statistics is thresholded for p < 0.05 and the regions of at10

least 10 contiguous voxels are considered as active regions.11

The other methods, MSP and SBL, with fMRI priors could not find a common12

region between different subjects as their solutions are too sparse, and they did13

not consider any grouping constraint.14

4.2.2 Effect of parameter α15

To evaluate the stability of S4, we count the false positive and false negative16

regions using the idea of split-half resampling (Strother, 2006). For this purpose,17

we partition the EEG data into two non-overlapping groups each with 8 subjects.18

For each group, the spatial map is extracted using S4. One group is assumed as19

the ground truth and the other as the test one. To evaluate false positives and20

false negatives, the localization bias of the regions in the test image is compared21

with the localization bias of the regions in the ground truth one. If any region22
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Fig. 7: Activation sites in the experimental data of 16 subjects by MSP (the figure
is generated with xjView toolbox, http://www.alivelearn.net/xjview, and scale
unit=1).

Fig. 8: Activation sites in the experimental data of 16 subjects by
the proposed method (the figure is generated with xjView toolbox,
http://www.alivelearn.net/xjview, and scale unit=1).

in the test data is at least 20 mm far from all regions in the ground truth, it1

would be false positive. In reverse, if any region in the ground truth is at least2

20 mm far from all regions in the test data, it would be false negative. 20 mm is3

chosen because the best resolution of MSP in the simulation was around 20 mm4

(see Figure 4) and it is assumed that the regions that are less than 20 mm far5

from each other are acceptable as close regions. This test is repeated 20 times6

for 20 different partitioning. The results for two different values of α (0.9 and7

0.7) are shown in table 3. For α = 0.9, no false positive region is detected in all8

experiments and only two false negative regions occurred in all experiments. For9

α = 0.7, two false positive regions are detected in all experiments and eight false10

negative regions occurred in all experiments. The number of regions detected in11

each experiment is between 1 and 5 (mean=3). The results show that α = 0.9 is12

more stable against subject changes which was expected, because we have used the13

fMRI group analysis as the constraint, and the results of the EEG group analysis14

will be more restricted to the fMRI results, with higher value of α. Therefore the15

search space in different subjects is limited to the same space (fMRI group analysis16

spatial map) and the variability between subjects would be ignored in higher value17

of α.18
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Fig. 9: Zoom of the activation sites in the experimental data of 16 subjects by S4
(the figure is generated with xjView toolbox, http://www.alivelearn.net/xjview).

Table 3: Effect of α in group analysis.

α for the train group 0.7 0.9
α for the test group 0.7 0.9

number of false positive regions 2 0
number of false negative regions 8 2

5 Discussion1

Although EEG-fMRI integration is intensively investigated in recent years, some2

challenges still exist as open problems. The most important challenge is the un-3

known relationship between EEG and fMRI data. In this study, we investigate the4

EEG inverse problem from a new point of view. By projecting the EEG inverse5

problem to HCTP source space, we accurately associate the temporal space to the6

spatial space.7

The projection basis used in S4 (HCTP sources) directly results in the spatial8

maps of interest, which are assumed to be sparse. Therefore, we can use sparse9

decomposition methods: in this work, the `0 norm regularization leads to high10

accuracy and stability against the noise.11

After projection, the unknown variables are HCTP spatial maps, so we could12

use the spatial map of activation, extracted from fMRI, in the weighting matrix.13

Therefore, we solve the integration inverse problem using the same feature ex-14
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tracted from fMRI and EEG. This strategy was a remedy for overcoming (without1

assumption or estimation) the unknown relationships between EEG and fMRI.2

However, if we have a more accurate information about the relationship be-3

tween EEG and fMRI data, it may improve the results. Especially, we could opti-4

mize the weighting matrices, instead of choosing an arbitrary function to use the5

fMRI spatial map in the weighting matrix.6

Another challenge in EEG-fMRI integration is the mismatch between EEG and7

fMRI sources. The proposed method has a good stability against an extra region8

in fMRI. Although it was not capable of detecting EEG extra regions, it achieves9

an acceptable detection rate of common sources between EEG and fMRI in the10

presence of mismatches.11

Without definitely solving the open questions of EEG-fMRI integration, ex-12

periments show the S4 method achieves a step forward to use fMRI spatial maps13

in the EEG inverse problem with more feasibility.14

The results are discussed in details as follows.15

5.1 Simulated Data16

The results of the method on the simulated data and its comparison with two17

methods, MSP and SBL, show that the spatial maps estimated by S4 and SBL,18

which minimize the `0 norm, have smaller mean and variance of localization bias19

(LB) for all SNR values, compared to results obtained with MSP (Figure 4). SBL20

and S4 also estimate the mean of source distribution index (SDI) more accurately,21

while S4 has less variance of SDI (Figure 4). Therefore, SBL and S4 are more22

accurate and stable against the noise.23

Invisible sources either in fMRI or EEG result in an inconsistent constraint24

(here, it is a weighting matrix that contains fMRI information) in the EEG inverse25

problem. In this case, MSP and SBL fails even to estimate the common sources26

between EEG and fMRI, while S4 correctly estimates the common sources.27

The activation regions which are missing in fMRI data may be related to neural28

activities which have a short activation time or involve a few numbers of neurons29

that cannot produce a detectable increase of cerebral blood flow (Babiloni et al,30

2004). Missed regions can also be due to the analysis method. The result shows31

that the effect of missed regions in fMRI is dependent on the balancing variable α32

in Eq. (11). With α = 0.9 fMRI invisible sources are also missed in the EEG-fMRI33

result, but with α = 0.7, the EEG extra source could be detected in 54 percent of34

our experiments. Figure 6 and Tables 1 and 2 show that, by decreasing the α value,35

the probability of the extra source detection would increase while the mean of LB36

(localization bias) would not change much. The α parameter can be considered as37

a user-defined parameter for the method. User can decrease the α value to see if38

there exists any extra region in EEG. However, the optimum value of α is an open39

question by now.40

Some brain cells (stellate cells) and cortical regions (thalamus) produce closed41

electromagnetic field. This field cannot be detected on the scalp electrodes, al-42

though their activation requires high blood flow. This would also happen when43

”sources of activation cancel each other according to the orientation disparity of44

the cortex” (Irimia et al, 2012). Therefore, these neuronal populations present45

high metabolism requirements that can be detected by the fMRI technique, while46
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at the same time they are invisible in the EEG modality (Babiloni and Cincotti,1

2005). We have evaluated the algorithm S4 when it exists an extra source in fMRI2

that is invisible in EEG. In this case, S4 increases the mean of the localization3

bias from 10 mm to 18 mm, but again, it outperforms the other methods, which4

fail to estimate the common source in the existence of an extra source.5

5.2 Experimental Data6

S4 algorithm is applied on experimental EEG and fMRI data of a face perception7

experiment. Spatial sources are shown in Figure 8. These activation regions are8

located in the fusiform face area (FFA) and the occipital face area (OFA). These9

clusters are in general agreement with previous studies reporting a similar contrast10

of faces versus scrambled faces (Henson et al, 2009, 2011). Previous studies inves-11

tigated the role of these two regions in face perception and they proposed that the12

OFA is the first stage in a hierarchical face perception network in which the OFA13

represents facial components (e.g., eyes, nose, and mouth) (Pitcher et al, 2011),14

while the FFA encodes both the facial components and the configural information15

of faces (i.e., spatial relation among features) (Zhang et al, 2012). The most im-16

portant factor here is that this activation area should be similar in all participants.17

In other words, the activation site should have little spatial variation in different18

participants. The results show that S4 algorithm can find a common region be-19

tween subjects, while MSP and SBL are not able to estimate a common region20

between different subjects because their solutions are sparse but not block-sparse.21

In fact, we have counted the false positive regions and false negative regions using22

the split-half resampling algorithm proposed in (Strother, 2006). The results show23

high stability or low spatial variation over different participant groups with α = 0.924

in which the results are strictly biased with fMRI spatial map. For α = 0.7, more25

false positives and false negatives are detected, but again it is acceptable.26

6 Conclusion27

We propose a new method, called S4, to integrate scalp EEG recording and fMRI28

data for the identification of the active regions of the brain with high spatial29

resolution. Using R-SS, a semi-blind source separation method, we estimate the30

spatial filter that maximizes the power of reference over non-reference states and31

provides temporal sources with high correlation with the paradigm of the task32

of interest (called HCTP sources). The EEG signal was projected to the HCTP33

source space. The inverse problem of EEG in the HCTP source space can be34

considered as a sparse decomposition problem. The unknown variables are the35

spatial maps of the HCTP sources. As we focus on the localized sources, their36

spatial maps are sparse. For promoting block-sparsity, we extend the elastic net37

idea by combining `0 and `2 norms. This algorithm, called WEN0, takes into38

account the fMRI information through weighting matrices related to the F-map39

of fMRI extracted with GLM.40

In more details advantages of the proposed method are as follows.41

– The simulation results show that the localization quality of S4 and SBL, mea-42

sure with localization bias (LB) and source distribution index (SDI), is 5043
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percent better than MSP. The results of S4 is significantly stable against the1

noise.2

– The stability of S4 against false positive and false negative regions in the prior3

information is investigated. S4 can estimate the common source between EEG4

and fMRI in the existence of an extra region and missed region in the fMRI5

data, while both SBL and MSP fail to estimate the sources.6

– Using Pareto optimization helps us in avoiding additional statistical methods7

and thresholding.8

The drawback of S4 is that the final result is dependent on the first source sep-9

aration step and any mistake in the first step will propagate to the rest. However,10

we did not obtain any false discovery in the simulation experiments, even for the11

lowest SNR value.12

In future works, S4 may be applied to simultaneous EEG and fMRI data.13

Defining different weighting matrices for the `2 and `0 norms may be investigated14

and also, the optimized value of α, which controls the contribution of fMRI spatial15

map in the weighting matrix, can be defined using the data.16
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Appendix A Referenced-based Source Separation21

The objective is to extract the sources related to a reference activation model.22

We consider two states, denoted C1 and C2, which correspond to the reference23

and non-reference activations, respectively. Denoting T `, ` = 1, 2, the set of time24

samples related to each state, we can build the corresponding segment matrix,25

X` ∈ RN×M`

.The correlation matrix of data for each state can be estimated as:26

R̂
`

=
1

M`
X`X`′. (16)

The spatial filters, W (whose columns are generically denoted w), for which27

the temporal sources, S = W′X have maximum similarity with the reference28

activation state, i.e., maximum variance in the reference state compared to the29

other state, is computed as:30

max
w

w′R̂
1
w

w′R̂
2
w

(17)

Solving (17) leads to generalized eigenvalue decomposition (GEVD) of (R̂
1
, R̂

2
):31

R̂
1
W = R̂

2
WΛ (18)

Using W, the spatial patterns, A = (W′)−1, and the temporal sources, S =32

W′X, are extracted. The maximum eigenvalue in (18) is related to the maximum33

power ratio in (17). We rank the eigenvalues in decreasing order. This implies34
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ranking of the estimated temporal sources, according to their resemblance to the1

reference activation state. Here, we propose a simple method to define the number2

of sources. Remember that the simplicity of this method is due to two facts;3

1) the usage of experiment information in the source separation step, and 2) a4

special interpretation of the eigenvalues in the source selection step, which will be5

explained below.6

After obtaining the discriminative sources (si) between the reference and non-7

reference states, sources are ranked according to their similarity to the reference8

state. Now, we need to select the sources, which are similar enough to the reference,9

for being considered as belonging to the reference class. To this end, we propose10

the following procedure.11

The probability of the reference class (ω1) membership is calculated as follows:12

p(s′i ∈ ω1) =
λi

max(λj=1,...,N )
(19)

where λi, i = 1, . . . , N indicate the eigenvalues or the diagonal elements of Λ in
(18). For the classification of the sources, the error probability using Bayes rule is
defined as:

perror =
N∑

j=1

(
p(s′j ∈ ω2 |ω1 )p(ω1)

)
+

N∑
j=1

(
p(s′j ∈ ω1 |ω2 )p(ω2)

)
where p(sj ∈ ω2 |ω1 ) = 1 − p(sj ∈ ω1) and p(sj ∈ ω1 |ω2 ) = 1 − p(sj ∈ ω2)13

as ω1 and ω2 constitute a partition. p(ω1) and p(ω2) are the prior probabilities14

of the reference and non-reference classes, respectively. We remind that GEVD15

sorts the separated sources in the decreasing order of similarity with respect to16

the reference. Therefore, if we assume that only the first i sources belong to the17

reference class (and consequently the N − i others belong to the non-reference18

class), then the total error probability (false positive plus false negative errors)19

can be written as follows:20

perror(i) =
∑i

j=1 p(s
′
j ∈ ω2 |ω1 )p(ω1) +

∑N
j=i+1 p(s

′
j ∈ ω1 |ω2 )p(ω2) (20)

where p(ω1) = i
N and p(ω2) = N−i

N . Thus, the minimum of perror(i) provides the21

number i∗ of the sources in the reference class, i.e., i∗ = arg mini perror(i).22

Appendix B Pareto Optimization23

Bs is a M × i∗ matrix whose columns present the contributions of the related24

sources in each mesh vertex. All the i∗ sources are involved in the neural activation.25

Therefore, all of them are important, and if we use the sum or the square sum of the26

contributions the weak sources would be hidden in the shadow of the sources with27

higher power. The remedy of this problem is to use multi-objective optimization28

method, called Pareto method (Deb, 1999). Therefore, we are able to take into29

account the individual effect of each source. Pareto optimization finds the optimum30

without any threshold, that obviates the need for arbitrary user-defined threshold.31
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A multi-objective optimization problem, in Pareto sense, has the following1

form:2

maximize (bs
i )′ for i = 1, · · · ,M

subject to (bs
i )′ ∈ P ⊂ <i∗ (21)

It then consists of i∗ objective functions that are aimed to be maximized simul-3

taneously. (bs
i )′ is the i-th row of the matrix Bs which shows the contributions4

of the sources at the ith vertex. From the geometrical point of view, each (bs
i )′5

can be considered as a point in a i∗-dimensional space. In Pareto optimization6

the non-dominated points should be chosen as the optimum points (Deb, 1999):7

a point is non-dominated if either it dominates the others, or there is no other8

point dominating it. Point (bs
i )′ dominates point (bs

k)′, if ∀l, bs
i (l) ≥ bs

k(l), and9

∃l∗, bs
i (l) > bs

k(l∗)3, where bs
i (l) is the l-th component of the vector bsi . The10

set of all non-dominated points is called non-dominated layer. Let us consider M11

i∗-dimensional decision vectors, (bs
i )′, as M points in the search space P . The12

non-dominated layer, denoted by D(P ), is obtained using the following Pareto13

optimization algorithm (Deb, 1999):14

1. Initialize D(P ) with the first point (i = 1) with the value of (b1)′. This can be15

any point.16

2. Choose a new point (i = i+ 1):17

(a) If any node in D(P ) dominates point i go to step 3.18

(b) Else add point i to D(P ) and remove any points of D(P ) that point i19

dominates.20

3. If i is not equal to M go to step 2.21
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