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Abstract—We revisit the problem of state masking and state
amplification for state-dependent channel with causal state infor-
mation at the encoder from the point of view of empirical co-
ordination. Empirical coordination, which requires all sequences
of symbols to be jointly typical for a target joint probability
distribution, provides a unified perspective to simultaneously
study state masking, state amplification, and capacity-distortion
trade-off. Our main result is a characterization of the set of
achievable rates, information leakages and joint distributions. We
also discuss several specializations and extensions of the result,
including the cases of zero message rate, without empirical co-
ordination, strictly causal encoding, two-sided state information
and noisy channel feedback. We introduce the notion of "core
of the decoder’s knowledge," to capture what the decoder can
infer about all the signals involved in the model.

Index Terms—Shannon Theory, State-Dependent Channel,
Information Leakage, Empirical Coordination, State Masking,
State Amplification, Causal Encoding, Noisy Channel Feedback.

I. INTRODUCTION

State-dependent channels with state information at the en-

coder have attracted significant interest and spawned a vast

literature since the works by Shannon [1] and Gel’fand Pinsker

[2]. The main idea behind coding schemes for state-dependent

channels is to have the encoder match the statistics of the input

symbols to those of the channel using his knowledge of the

state. This problem turns out to have deep connections with

digital watermarking, memory with defect, cognitive radio and

secret-key agreement [3].

More recently, the problem of communication over state-

dependent channels was modified with the additional require-

ment of estimating the channel state parameter at the decoder.

The authors of [4] have consequently examined the problem of

state masking by characterizing the information leakage about

the state, whereas the authors of [5] have studied the problem

of state amplification. State masking and state amplification

have been considered simultaneously in [6] for secure commu-

nication, in [7] for correlated information sources and in [8] for

applications to energy harvesting. Another approach consists
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in determining the minimal distortion between the channel

state and the decoder output, for a given amount of reliable

information. Optimal capacity-distortion trade-offs have been

characterized in [9] for causal encoder, in [10] for non-causal

encoder with Gaussian channel, and in [11], for non-causal

encoder with common reconstruction.

In this paper, we simultaneously investigate the problems

of state masking, state amplification and capacity-distortion

trade-off, through the framework of empirical coordination.

Empirical coordination, which is connected to the coordination

of autonomous agents in the literature of game theory [12],

refers to the set of target joint probability distributions that

are achievable by empirical frequencies of symbols [13], [14].

Optimal solutions has been provided for strictly causal and

causal encoding [16], for perfect channel [15], for strictly

causal and causal decoding [17], with source feedforward [18],

for lossless decoding [19], with secrecy constraint [20], with

two-sided state information [21] and channel feedback [22].
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Fig. 1. Causal encoding function fi : M×Si → X , for all i ∈ {1, . . . , n}
and non-causal decoding function g : Yn → M×Vn .

In this paper, we characterize the set of information rates,

information leakages about channel state and joint proba-

bility distributions that are achievable. Then, we consider

the expectation of the cost or the distortion with respect

to the set of achievable joint distributions and this provides

the region of achievable rate, information leakage, distortion

and cost. We introduce the notion of "core of the decoder’s

knowledge" corresponding to what the decoder can exactly

infer about the other random variables. We determine the

optimal solutions for particular cases such as, zero message

rate, without empirical coordination, strictly causal encoding,

two-sided state information and noisy channel feedback.

System model, definitions and the main result are stated in

Sec. II. Particular cases are studied in Sec. III. Conclusions

and sketch of proofs are stated in Sec. IV, App. A and B.



II. SYSTEM MODEL AND MAIN RESULT

Figure 1 represents the problem under investigation. Sn,

Xn, Y n, V n stands for sequences of random variables of

channel states sn = (s1, . . . , sn) ∈ Sn, inputs of the channel

xn ∈ Xn, outputs of the channel yn ∈ Yn and decoder’s

output vn ∈ Vn, respectively. The sets S, X , Y , V have

finite cardinality. M ∈ M denotes the uniform random

message and M̂ its decoded version. The set of probability

distributions P(X) over X is denoted by ∆(X ). The notation

||Q − P||tv = 1/2 ·
∑

x∈X |Q(x)− P(x)| stands for the total

variation distance between probability distributions Q and P .

The notation Y −
−X−
−U denotes the Markov chain property

corresponding to P(y|x, u) = P(y|x) for all (u, x, y). Channel

state S is i.i.d. distributed with Ps, the channel is memoryless

with transition probability Ty|xs and these statistics are known

by encoder C and decoder D.

Definition II.1 A code with causal encoding c ∈ C(n,M) is

a tuple of functions c = ({fi}i∈{1,...,n}, g) defined by (1), (2).

fi : M×Si −→ ∆(X ), ∀i ∈ {1, . . . , n}, (1)

g : Yn −→ M×∆(Vn). (2)

N(s|sn) denotes the occurrence number of symbol s ∈ S in
sequence sn. The empirical distribution Qn ∈ ∆(S×X ×Y×
V) of sequences (sn, xn, yn, vn) is defined by (3).

Q
n(s, x, y, v) =

N(s, x, y, v|sn, xn, yn, vn)

n
,

∀(s, x, y, v) ∈ S × X × Y × V. (3)

Definition II.2 Fix a target rate R, a target information
leakage E and a target probability distribution Q ∈ ∆(S ×
X ×Y×V). The triple (R,E,Q) is achievable if for all ε > 0,
there exists a n̄ ∈ N such that for all n ≥ n̄, there exists a
code with causal encoding c ∈ C(n,M) that satisfies:

log2 |M|

n
≥ R − ε,

∣

∣

∣

∣

Le(c)− E

∣

∣

∣

∣

≤ ε, with Le(c) =
1

n
· I(Sn;Y n),

Pe(c) = Pc

(

M 6= M̂

)

+ Pc

(

∣

∣

∣

∣

∣

∣Q
n −Q

∣

∣

∣

∣

∣

∣

tv
≥ ε

)

≤ ε.

We denote by A the set of achievable triples (R,E,Q) ∈ A.

Qn ∈ ∆(S×X×Y×V) is the random variable of the empirical

distribution of the sequences of symbols (Sn, Xn, Y n, V n)
induced by the code c ∈ C(n,M) and the probability distri-

butions of the source Ps and channel Ty|xs.

Theorem II.3 (Causal encoding) Consider a target joint
probability distribution Q ∈ ∆(S×X ×Y×V), with marginal
distributions Ps(s), T (y|x, s), that decomposes as follows:

Q(s, x, y, v) = Ps(s)×Q(x|s)× T (y|x, s)×Q(v|s, x, y). (4)

• The triple (R,E,Q) is achievable if and only if there
exists auxiliary random variables (W1,W2) with probability
distribution Q(s, w1, w2, x, y, v) ∈ Qe that satisfies:

R ≤ I(W1,W2;Y )− I(W2;S|W1), (5)

I(S;W1,W2, Y ) ≤ E ≤ H(S), (6)

R + E ≤ I(W1, S;Y ). (7)

Qe is the set of joint distributions Q(s, w1, w2, x, y, v) with
marginal Q(s, x, y, v), that decompose as follows:

Ps(s) × Q(w1) × Q(w2|s, w1) × Q(x|s, w1) × T (y|x, s) × Q(v|y, w1, w2).

Supports satisfy max(|W1|, |W2|) ≤ |S × X × Y × V|+ 4.

Theorem II.3 characterizes the optimal trade-offs between

reliable transmission, information leakage and empirical co-

ordination. The proof is stated in [23] and in App. A and B.

Remark II.4 Equation (5) is redundant with (6) and (7) since

both Markov chains X−
− (S,W1)−
−W2 and Y −
− (X,S)−

− (W1,W2), imply the Markov chain Y −
− (W1, S)−
−W2

and equation (7) writes: I(W1,W2, S;Y ) = I(W1, S;Y ).

b
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Fig. 2. Region of achievable (R,E) ∈ A for fixed joint probability
distribution Q(s,w1, w2, x, y, v), when I(S,W1;Y ) > H(S) is satisfied.

Remark II.5 (Strictly causal encoding) The set of achiev-

able triples (R,E,Q) for strictly causal encoder fi : M ×
Si−1 → X , ∀i ∈ {1, . . . , n} instead of causal encoder, is

characterized by replacing the auxiliary random variable W1

by the channel input X in Theorem II.3, as stated in [23].

A. Achievable region of rate, info. leakage, distortion and cost

We consider a cost function c : X → R for channel input X
and a distortion function d : S ×V → R between the channel

state S and the decoder output V . As mentioned in [17] and

[19], the empirical coordination approach provides directly the

optimal (R,E,C,D) rate-leakage-cost-distortion trade-offs.

Corollary II.6 A tuple of rate, information leakage, distortion

and cost (R,E,D,C) is achievable if and only if there exists a

joint probability distribution Q(s, x, y, v) such that the triple

(R,E,Q) ∈ A is achievable and that satisfies:

EQ

[

c(X)
]

= C, EQ

[

d(S, V )
]

= D. (8)

The proof is a direct consequence of Theorem II.3, since

(R,E,Q) is achievable and equations (8) are satisfied. Oth-

erwise, (R,E,Q) is not achievable. Corollary II.6 extends to

any general objective function Φ : S × X × Y × V 7→ R by

considering the expectation EQ

[

Φ(U,X, Y, V )
]

with respect

to the set of achievable joint distributions Q, as in [17].

III. OPTIMAL SOLUTIONS FOR PARTICULAR CASES

A detailed version of these results is provided in [23].



A. Zero-rate R = 0 and minimal information leakage E
⋆(Q)

We consider the pairs of information leakage and joint

probability distribution (E,Q) ∈ A that are achievable with

zero-rate R = 0. By Theorem II.3, there exists a probability

distribution Q(s, w1, w2, x, y, v) ∈ Qe, that satisfies:

0 < I(W1,W2;Y )− I(W2;S|W1), (9)

I(S;W1,W2, Y ) < E. (10)

We define the minimal achievable information leakage

E
⋆(Q) = min(E,Q)∈A E, for a fixed Q with zero-rate R = 0.

Corollary III.1 The minimal information leakage E corre-

sponding to the probability distribution Q ∈ ∆(S×X×Y×V)
is given by:

E
⋆(Q) = min

Q(s,w1,w2,x,y,v)∈Qe ,

s.t. I(W1 ,W2;Y )−I(W2;S|W1)>0

I(S;W1,W2, Y ). (11)

The proof is a direct consequence of Theorem II.3, since

E
⋆(Q) is achievable and every E < E

⋆(Q) is not achievable.

Corollary III.1 states that the minimal information leak-

age I(Sn;Y n) = I(Sn;Wn
1 ,W

n
2 , Y

n) is close to n ·
I(S;W1,W2, Y ), as if the sequences (Sn, Y n,Wn

1 ,W
n
2 )

were generated with an i.i.d. probability distribution Q×n
syw1w2

.

In fact, the empirical coordination of the sequences

(Sn,Wn
1 ,W

n
2 , Y

n) ∈ A⋆n
ε (Q) implies that the posterior prob-

ability distribution P(Sn|Wn
1 ,W

n
2 , Y

n) is closely related to

the single-letter conditional probability distribution Qs|yw1w2
.

Based on the triple of symbols (Y,W1,W2), the decoder gen-

erates symbol V using the conditional probability distribution

Qv|yw1w2
and infers the channel state S with the conditional

probability distribution Qs|yw1w2
. We claim that the random

variables (Y,W1,W2) determine the "core of the decoder’s

knowledge," regarding other random variables, as S and V .

B. Removing the empirical coordination requirement

In this section, the decoder decodes the message M but does

not return a symbol V coordinated with other random variables

(S,X, Y ). The decoding function writes g : Yn → M and the

error probability should satisfy Pe(c) = Pc

(

M 6= M̂
)

≤ ε.

Theorem III.2 (Removing empirical coordination)

A pair of rate and information leakage (R,E) is achievable

if and only if there exists an auxiliary random variable W1

with probability distribution Q(s, w1, x, y) ∈ Qc, such that:

R ≤ I(W1;Y ), (12)

I(S;Y |W1) ≤ E ≤ H(S), (13)

R + E ≤ I(W1, S;Y ). (14)

Qc is the set of distributions Q(s, w1, x, y) that decomposes:

Ps(s)×Q(w1)×Q(x|s, w1)× T (y|x, s).

The support of W1 is bounded by |W1| ≤ |S × X × Y|+ 1.

Achievability proof comes from Theorem II.3, by removing

auxiliary random variable W2 = ∅ and considering single

block coding instead of block-Markov coding.
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Fig. 3. Causal encoding function fi : M × U i × Si → X , for all i ∈
{1, . . . , n} and non-causal decoding function g : Yn × Zn → M×Vn.

Remark III.3 (Strictly causal encoder - no coordination)

The set of achievable pairs (R,E) for strictly causal encoder

fi : M × Si−1 → X , ∀i ∈ {1, . . . , n} instead of causal

encoder, is characterized by replacing the auxiliary random

variable W1 by the channel input X in Theorem III.2, [23].

C. Two-sided state information

The case of two-sided state information is represented by

Fig. 3. The distribution Pusz ∈ ∆(U × S ×Z) generates i.i.d.

correlated channel state S, information source U and state

information Z at the decoder. The encoding is causal fi :
M×U i × Si → X , for all i ∈ {1, . . . , n} and the decoding

is non-causal g : Yn × Zn → M × Vn. The information

leakage Le(c) is defined with respect to the pair of sequences

(Un, Sn) and the observation (Y n, Zn) of the decoder.

Le(c) =
1

n
· I(Un, Sn;Y n, Zn). (15)

Theorem III.4 (Two-sided state information) Consider a

target joint distribution Q ∈ ∆(U × S × Z × X × Y × V)
with marginal Pusz(u, s, z), T (y|x, s), that decomposes as:

Pusz(u, s, z)×Q(x|u, s)× T (y|x, s)×Q(v|u, s, z, x, y).

• The triple (R,E,Q) is achievable if and only if there
exists auxiliary random variables (W1,W2) with probability
distribution Q(u, s, z, w1, w2, x, y, v) ∈ Q2, such that:

R ≤ I(W1,W2;Y, Z) − I(W2;U, S|W1),

I(U, S;W1,W2, Y, Z) ≤ E ≤ H(U, S),

R + E ≤ I(W1, U, S;Y,Z).

Q2 is the set of distributions with marginal Q that decompose:

Pusz ×Qw1
×Qw2|usw1

×Qx|usw1
× Ty|xs ×Qv|yzw1w2

.

Supports of (W1,W2) are bounded by max(|W1|, |W2|) ≤
d+ 4 with d = |U × S × Z × X × Y × V|.

The achievability proof of Theorem III.4 follows directly from

the proof of Theorem II.3, by replacing the random variable of

the channel state S by the pair (U, S) and the random variable

of the channel output Y by the pair (Y, Z), as in [21].

D. Noisy channel feedback observed by the encoder

We characterize the set of achievable triples (R,E,Q) when

the encoder has noisy feedback Y2 from the state-dependent

broadcast channel T (y1, y2|x, s), as in Fig. 4. Encoding func-

tion writes fi : M×Si×Yi−1
2 → X , ∀i ∈ {1, . . . , n} and both

decoding function and information leakage remain unchanged.
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Fig. 4. Noisy feedback Y i−1
2 from state-dependent broadcast T (y1, y2|x, s)

channel. Encoding writes fi : M×Si ×Yi−1
2 → X , ∀i ∈ {1, . . . , n}.

Theorem III.5 (Noisy channel feedback)

Consider target joint distribution Q ∈ ∆(S×X×Y1×Y2×V)
with marginal Ps(s), T (y1, y2|x, s), that decomposes as:

Ps(s)×Q(x|s)× T (y1, y2|x, s)×Q(v|s, x, y1, y2).

• The triple (R,E,Q) is achievable if and only if there
exists auxiliary random variables (W1,W2) with probability
distribution Q(s, w1, w2, x, y1, y2, v) ∈ Qf , such that:

R ≤ I(W1,W2; Y1)− I(W2;S, Y2|W1),

I(S;W1,W2, Y1) ≤ E ≤ H(S),

R + E ≤ I(W1, S;Y1).

Qf is the set of distributions with marginal Q that decompose:

Ps ×Qw1
×Qx|sw1

× Ty1y2|xs ×Qw2|sw1y2 ×Qv|y1w1w2
.

Supports of (W1,W2) are bounded by max(|W1|, |W2|) ≤
d+ 4 with d = |S × X × Y1 × Y2 × V|.

The achievability proof of Theorem III.5 follows directly from

the proof of Theorem II.3, by replacing the pair (Sn,Wn
1 ) by

the triple (Sn,Wn
1 , Y

n
2 ) when the encoder finds Wn

2 . The de-

coding functions and the leakage analysis remain unchanged.

Remark III.6 (Noisy feedback improve coordination)

Channel feedback increases the set of achievable triples

(R,E,Q), since the new conditional distribution Qw2|sw1y2

depends on channel outputs Y2 whereas the previous one

Qw2|sw1
does not. The information constraints of Theorem III.5

are reduced to that of Theorem II.3 as soon as Qw2|sw1y2 =
Qw2|sw1

⇐⇒ W2−
−(S,W1)−
−Y2 ⇐⇒ I(W2;Y2|S,W1) = 0.

More details on channel feedback for empirical coordination

are provided in [22].

IV. CONCLUSION

We have simultaneously investigated the problems of state

masking, state amplification and empirical coordination for

state-dependent channel with causal state information at the

encoder. We have characterized the achievable triples of rate,

information leakage and joint probability distribution and we

provide optimal distortion and cost levels. The information of

the decoder regarding other random variables is characterized

precisely and called the "core of the decoder’s knowledge."

We provide optimal solutions for zero message rate, without

empirical coordination, strictly causal encoding, two-sided

state information and noisy channel feedback.

APPENDIX

The full versions of the proofs are available in [23].

A. Sketch of achievability proof of Theorem II.3

Achievability proof is based on rate splitting and on the proof of
Theorem V.1 in [21]. Consider a triple (R,E,Q) and a probability
distribution Qsw1w2xyv ∈ Qe satisfying equations (5), (6), (7) of
Theorem II.3. We introduce parameters RL, RK and block-Markov
code c ∈ C defined over B ∈ N blocks of length n ∈ N.

Random Codebook. We generate 2n(H(S)+ε) sequences of
states Sn(l, j) ∼ P×n

s indexed by (l, j) ∈ ML × MJ with

cardinalities |ML| = 2nRL and |MJ| = 2nRJ . We generate

2n(R+RL+RK) sequences W n
1 (m, l, k), drawn from Q×n

w1
with index

(m, l, k) ∈ M × ML × MK with |MK| = 2nRK . For each triple

(m, l, k), we generate the same number 2n(R+RL+RK) of sequences

W n
2 (m, l, k, m̂, l̂, k̂) with indexes (m̂, l̂, k̂), drawn from Q×n

w2|w1

depending on W n
1 (m, l, k).

Encoding function. At block b, the encoder observes the previous
channel states Sn

b−1 and finds the indexes (lb−1, jb−1) such that
(

Sn(lb−1, jb−1), S
n
b−1

)

∈ A⋆n
ε (Q) are jointly typical. Encoder

observes the message mb and the index lb−1 and recalls the
sequence W n

1 (mb−1, lb−2, kb−1) of block b−1. It finds kb such that
(

Sn
b−1,W

n
1 (mb−1, lb−2, kb−1),W

n
2 (mb−1, lb−2, kb−1,mb, lb−1, kb)

)

∈ A⋆n
ε (Q) are jointly typical. Encoder sends Xn

b drawn from Q×n

x|sw1

depending W n
1 (mb, lb−1, kb) and Sn

b .
Decoding function. At block b, decoder recalls Y n

b−1 and
the indexes (mb−1, lb−2, kb−1) of W n

1 (mb−1, lb−2, kb−1)
correctly decoded. Decoder observes Y n

b and finds
(mb, lb−1, kb) such that

(

Y n
b ,W n

1 (mb, lb−1, kb)
)

∈ A⋆n
ε (Q) and

(

Y n
b−1,W

n
1 (mb−1, lb−2, kb−1),W

n
2 (mb−1, lb−2, kb−1,mb, lb−1, kb)

)

∈ A⋆n
ε (Q) are jointly typical. Decoder returns the

message mb and V n
b−1 drawn from Q×n

v|yw1w2
depending on

(

Y n
b−1,W

n
1 (mb−1, lb−2, kb−1),W

n
2 (mb−1, lb−2, kb−1,mb, lb−1, kb)

)

.
Decoder knows that the sequences
(

Sn
b−1,W

n
1 (mb−1, lb−2, kb−1),W

n
2 (mb−1, lb−2, kb−1,mb, lb−1, kb),

Xn
b−1, Y

n
b−1, V

n
b−1

)

∈ A⋆n
ε (Q) are jointly typical and Sn

b−1 belongs
to the bin with index lb−1 ∈ ML.

RL = E − I(S;W1,W2, Y )− 2ε ≥ 0, (16)

RL + RJ = H(S) + ε, (17)

RK = I(W2;S|W1) + ε, (18)

R + RL + RK < I(W1;Y ) + I(W2;Y |W1)− ε. (19)

Equations (17), (18), (19) imply that for all n ≥ n̄:

Ec

[

P

(

S
n
b−1 /∈ A

⋆n
ε (Q)

)]

≤ ε,

Ec

[

P

(

∀(lb−1, jb−1) ∈ ML × MJ, (S
n
(lb−1, jb−1), S

n
b−1) /∈ A

⋆n
ε

)]

≤ ε,

Ec

[

P

(

∀kb ∈ MK, (S
n
b−1,W

n
1 (mb−1, lb−2, kb−1),

W
n
2 (mb−1, lb−2, kb−1 ,mb, lb−1, kb)) /∈ A

⋆n
ε (Q)

)]

≤ ε,

Ec

[

P

(

∃(mb, lb−1, kb) 6= (m
′
b, l

′
b−1, k

′
b), s.t.

{

(Y
n
b ,W

n
1 (m

′
b, l

′
b−1, k

′
b)) ∈

A
⋆n
ε (Q)

}

∩
{

(Y
n
b−1,W

n
1 (mb−1 , lb−2, kb−1),W

n
2 (mb−1 , lb−2, kb−1,

m′
b, l

′
b−1, k′

b)) ∈ A⋆n
ε (Q)

}

)]

≤ ε.

For a large number of blocks B ∈ N, the sequences are jointly
typical for distribution Q and the rate R is correctly decoded,.
Upper bound on the information leakage

n · Le(c) = I(Sn;Y n|C)

≤ I(S
n
;W

n
1 ,W

n
2 , L,M|C) + I(S

n
; Y

n
|W

n
1 ,W

n
2 , L,M,C) (20)

≤ n · (E − I(S;Y |W1,W2) − ε) + n · (I(S;Y |W1,W2) + ε) (21)

≤ n · (E + 2ε). (22)

Eq. (21) comes from equations (25) and (29) and concludes.

I(Sn;Wn
1 ,W

n
2 , L,M|C) = I(Sn;Wn

2 , L|Wn
1 ,M,C) (23)

≤ H(Wn
2 , L|Wn

1 ,M,C) ≤ log2 |ML| + H(Wn
2 |Wn

1 , L,M,C) (24)

≤ log2 |ML| + log2 |MK| = n ·
(

E − I(S;Y |W1,W2) − ε
)

. (25)



Eq. (23) is due to the independence of Sn and (W n
1 ,M,C).

Eq. (25) comes from the size |MK| of the bin of sequences W n
2 .

I(Sn;Y n|Wn
1 ,W

n
2 , L,M,C)

= H(Y n|Wn
1 ,W

n
2 , L,M,C) − H(Y n|Sn

,W
n
1 ,W

n
2 , L,M,C)(26)

= H(Y
n
|W

n
1 ,W

n
2 , L,M,C) − n · H(Y |S,W1) (27)

≤ n · (H(Y |W1,W2) + ε) − n · H(Y |S,W1,W2) (28)

≤ n · (I(S;Y |W1,W2) + ε). (29)

Eq. (27) is due to the cascade of memoryless channels Q(x|w1, s)×
T (y|x, s). Eq. (28) comes from empirical coordination hence se-
quences (Y n,W n

1 ,W n
2 ) are jointly typical.

Lower bound on the information leakage
We introduce the set S⋆(wn

1 , w
n
2 , y

n, l) of sequences sn ∈ Sn that
are jointly typical with (wn

1 , w
n
2 , y

n) and that belong to bin l ∈ ML.

Ec

[

∣

∣

∣
S⋆(wn

1 , w
n
2 , y

n
, l)

∣

∣

∣

]

= Ec

[

∑

sn∈A⋆n
ε

(wn
1 ,wn

2 ,yn)

1
{

s
n ∈ B(l)

}

]

(30)

=
∑

sn∈A⋆n
ε (wn

1
,wn

2
,yn)

Ec

[

1
{

s
n ∈ B(l)

}

]

(31)

≤
∑

sn∈A⋆n
ε (wn

1 ,wn
2 ,yn)

2−n·RL ≤ 2n·(H(S|W1,W2,Y )−RL+ε)
. (32)

Eq. (32) is due to the random code that induces a uniform probability
distribution over the bins B(l) and to the size of the set of typical
sequences. Markov’s inequality gives:

Pc

[

∣

∣

∣
S⋆(wn

1 , w
n
2 , y

n
, l)

∣

∣

∣
≥ 2n·(H(S|W1,W2,Y )−RL+2ε)

]

≤

Ec

[

∣

∣

∣
S⋆(wn

1 , wn
2 , yn, l)

∣

∣

∣

]

2n·(H(S|W1,W2,Y )−RL+2ε)
≤

2n·(H(S|W1,W2,Y )−RL+ε)

2n·(H(S|W1,W2,Y )−RL+2ε)
(33)

≤ 2−nε ≤ ε. (34)

We define the event F = 0 if the size
∣

∣S⋆(wn
1 , w

n
2 , y

n, l)
∣

∣ <

2n·(H(S|W1,W2,Y )−RL+2ε) and F = 1 otherwise.

n · Le(c) = I(Sn;Y n|C) = I(Sn;Y n
,W

n
1 ,W

n
2 , L|C) (35)

= n · H(S) − H(S
n
|Y

n
,W

n
1 ,W

n
2 , L, C) (36)

≥ n · H(S) − H(Sn|Y n
,W

n
1 ,W

n
2 , L, C, F = 0)

− P(F = 1) · log2 |S| − hb(P(F = 1)) (37)

≥ n · (H(S) − H(S|W1,W2, Y ) − RL − 3ε) ≥ n · (E − ε). (38)

Eq. (35) is due to decoding of (W n
1 ,W n

2 , L) based on Y n.
Eq. (36) is due to the i.i.d. property of the channel state S.
Eq. (37) is inspired by Fano’s inequality.
Eq. (38) is due to size

∣

∣S⋆(wn
1 , w

n
2 , y

n, l)
∣

∣ and parameter RL.

B. Sketch of converse of Theorem II.3

Consider a code c ∈ C(n,M) with small error probability and
auxiliary random variables W1,i = (M,Si−1) and W2,i = Y n

i+1

satisfying Markov chains of the set of probability distributions Qe.

n ·H(S) ≥ n · E ≥ I(Sn; Y n)− n · ε (39)

≥

n
∑

i=1

I(Si;Y
n
,M |Si−1)−H(M |Y n)− n · ε (40)

≥

n
∑

i=1

I(Si;Y
n
i+1,M, S

i−1
, Yi)− n · 2ε (41)

=

n
∑

i=1

I(Si;W1,i,W2,i, Yi)− n · 2ε. (42)

Eq. (39) comes from the definition of the information leakage.
Eq. (41) is due to Fano’s inequality and the i.i.d. property of S.

n · R ≤ I(M; Y
n
) + n · ε (43)

≤

n
∑

i=1

I(M, S
i−1

, Y
n
i+1; Yi) −

n
∑

i=1

I(Si; Y
n
i+1|S

i−1
,M) + n · ε (44)

=

n
∑

i=1

I(W1,i, W2,i; Yi) −

n
∑

i=1

I(Si;W2,i|W1,i) + n · ε. (45)

Eq. (43) is due to Fano’s inequality and properties of mutual info.
Eq. (44) is due to Csiszár Sum Identity and properties of MI.

n ·

(

E + R

)

≤ I(S
n
;Y

n
) + I(M ;Y

n
) + H(M|Y

n
) (46)

≤ I(S
n
,M ;Y

n
) + n · ε ≤

n
∑

i=1

I(Si,M, S
i−1

;Yi) (47)

+

n
∑

i=1

I(Sn
i+1, Y

n
i+1;Yi|Si,M, S

i−1) + n · ε (48)

=
n
∑

i=1

I(Si,W1,i;Yi) + n · ε. (49)

Eq. (47) is due to Fano’s ineq. and independence M and Sn.
Eq. (48) comes from the causal encoding that implies the Markov
chain: Yi −
− (Si,M, Si−1)−
− (Sn

i+1, Y
n
i+1).
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