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Abstract—Many linear algebra libraries, such as the Intel
MKL, Magma or Eigen, provide fast Cholesky factorization.
These libraries are suited for big matrices but perform slowly on
small ones. Even though State-of-the-Art studies begin to take an
interest in small matrices, they usually feature a few hundreds
rows. Fields like Computer Vision or High Energy Physics use
tiny matrices. In this paper we show that it is possible to speedup
the Cholesky factorization for tiny matrices by grouping them in
batches and using highly specialized code. We provide High Level
Transformations that accelerate the factorization for current Intel
SIMD architectures (SSE, AVX2, KNC, AVX512). We achieve with
these transformations combined with SIMD a speedup from 13
to 31 for the whole resolution compared to the naive code on
a single core AVX2 machine and a speedup from 15 to 33 with
multithreading compared to the multithreaded naive code.

I. INTRODUCTION

Linear algebra is everywhere, especially in scientific com-
putation. There are a lot of fast linear algebra libraries like
MKL, Magma or Eigen. However, these libraries are usually
conceived with big matrices in mind. Experience shows that
these libraries are not adapted for tiny matrices and perform
slow on them.

Some fields like Computer Vision [14] or High Energy
Physics often use tiny matrices, and require linear algebra dif-
ferent from classical High Performance Computing. Matrices
up to a few dozen of rows are usual, for example through
Kalman Filter [8] (in [4], they use a Kalman Filter with 4
dimensions). People begin to take an interest in small matrices
[15], [17]. These studies are focused in matrices much larger
than SIMD register size.

The goal of this paper is to present an optimized imple-
mentation of the Cholesky factorization for tiny matrices.
It consists in a set of portable linear algebra routines and
functions written in C. The chosen way to do it is to solve
systems by batch, and parallelizing along matrices instead
of parallelizing inside one single factorization. Our approach
is similar to Spiral [16] or ATLAS [3]: we compare many
different implementations of the same algorithm to keep the
best one.

This paper presents the Cholesky factorization by batch. We
will first expose the Cholesky algorithm. Then we will explain
the transformations we made to improve the performance for
tiny matrices. And finally, we will present the result of the
benchmarks.

II. CHOLESKY ALGORITHM

The whole resolution is composed of 3 steps: the Cholesky
factorization (aka decomposition), the forward substitution and
the backward substitution. The substitution steps are grouped
together.

A. Cholesky Factorization

The Cholesky factorization is a linear algebra algorithm
used to express a symmetric positive-definite matrix as the
product of a triangular matrix with its transposed matrix:
A = L · LT (algorithm 1).

The Cholesky factorization of a n×n matrix has a complex-
ity in term of floating point operation of n3/3 that is half of
the LU one (2n3/3), and is numerically more stable [9], [10].
This algorithm is naturally in-place as every input element is
accessed only once and before writing the associated element
of the output: L and A can be the same storage.

TABLE I: Number of floating point operations

(a) Regular

Algorithm flop load + store AI
factorize 1

6

(
2n3 + 3n2 + 7n

)
1
6

(
2n3 + 16n

)
∼1

substitute 2n2 2n2 + 4n ∼1

substitute1 2n2 2n2 + 4n ∼1

solve 1
6

(
2n3 + 15n2 + 7n

)
1
6

(
2n3 + 12n2 + 40n

)
∼1

(b) Scalarized

Algorithm flop load + store AI
factorize 1

6

(
2n3 + 3n2 + 7n

)
1
2

(
2n2 + 5n

)
∼n/3

substitute 2n2 1
2

(
n2 + 5n

)
∼4

substitute1 2n2 n 2n

solve 1
6

(
2n3 + 15n2 + 7n

)
1
2

(
n2 + 6n

)
∼2n/3

Algorithm 1: Cholesky Factorization
input : A // n×n symmetric positive-definite matrix
output : L // n×n lower triangular matrix

1 for j = 0 : n− 1 do
2 s← A(j, j)
3 for k = 0 : j − 1 do
4 s← s− L(j, k)2

5 Lj,j ←
√
s

6 for i = j + 1 : n− 1 do
7 s← A(i, j)
8 for k = 0 : j − 1 do
9 s← s− L(i, k) · L(j, k)

10 L(i, j)← s/L(j, j)



B. Substitution

Once we have the factorized form of A, we are able to solve
easily systems like: A · X = R. Indeed, if A = L · LT , the
equation is equivalent to L · LT ·X = R. Triangular systems
are easy to solve using the substitution algorithm.

The equation can be written like this: L · Y = R with
Y = LT · X . So we need to first solve L · Y = R (forward
substitution) and then to solve LT · X = Y (backward
substitution). Those two steps are group together to entirely
solve a Cholesky factorized system (algorithm 2). Like the
factorization, substitutions are naturally in-place algorithms:
R, Y and X can be the same storage.

Algorithm 2: Substitution
input : L // n×n lower triangular matrix
input : R // vector of size n

output : X // vector of size n, solution of L · LT ·X = R

temp : Y // vector of size n
1 // Forward substitution
2 for i = 0 : n− 1 do
3 s← R(i)
4 for j = 0 : i− 1 do
5 s← s− L(i, j) · Y (j)

6 Y (i)← s/L(i, i)

7 // Backward substitution
8 for i = n− 1 : 0 do
9 s← Y (i)

10 for j = i+ 1 : n− 1 do
11 s← s− L(j, i) ·X(j)

12 X(i)← s/L(i, i)

C. Batch

With small matrices, all the dimensions are small. But
parallelization is not efficient on small dimensions. A 3-
iteration loop can not be efficiently vectorized.

The idea is to add one extra and long dimension to compute
the Cholesky factorization of a large number of matrices
instead of one.

Our problem now has a long dimension which can be
parallelized with both vectorization and multi-threading. The
principle is to have a for loop iterating over the matrices,
and within this loop, compute the factorization of the matrix.
This is also the approach used in [5], [6].

III. TRANSFORMATIONS

Improving the performance of software requires transforma-
tions of the code, and especially High Level Transforms. For
Cholesky, we made the following transforms:

• memory layout transform [2],
• loop transforms (loop unwinding [13], loop unrolling and

unroll&jam),
• Architectural transforms: SIMDization + fast square root.

A. Memory Layout Transform

The memory layout is the first transformation considered.
The most important aspect of the memory layout is the battle
between AoS (Array of Structures) and SoA (Structure of
arrays) [1] (Figure 1).

The AoS memory layout is the natural way to store arrays
of objects in C. It consists in putting full objects one after the
other. The code to access the x member of the ith element
of an array A looks like this: A[i].x. This memory layout
uses only one active pointer and reduces the systematic cache
eviction. The systematic cache eviction appears when multiple
pointers share the same least significant bits and the cache
associativity is not high enough to cache them all. But this
memory layout is difficult to vectorize because the “xs” are
not contiguous in memory.

The SoA memory layout addresses the vectorization prob-
lem. The idea is to have one array per members, and group
them inside a structure. The access is written: A.x[i]. This
memory layout is the default one in Fortran 77. It helps the
vectorization of the code. But it uses as many active pointers
as the number of members of the objects and can increase
the number of systematic cache eviction when the number of
active pointers is higher than the cache associativity.

The AoSoA memory layout (aka Hybrid SoA) tries to
combine the advantages of AoS and SoA. The idea is to have a
SoA memory layout of fixed size, and packing these structures
into an array. Thus, it gives the same opportunity to vectorize
as with SoA, but it keeps only one active pointer like in AoS. A
typical value for the size of the SoA part is the SIMD register
cardinal (or a small multiple of it). This access scheme can
be simplified when iterating over such objects. The loop over
the elements is split into two nested loops: one iterating over
the AoS part, and one iterating over the SoA part. It is harder
to write, especially to deal with boundaries.

The SoA memory layout was not used in this paper, and the
term SoA will refer to the hybrid memory layout for the next
part of this paper.

AoS:
x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 . . .

SoA:
x0 x1 x2 x3 . . . y0 y1 y2 y3 . . . z0 z1 z2 z3 . . .

AoSoA:
x0 x1 x2 y0 y1 y2 z0 z1 z2 x3 x4 x5 y3 y4 y5 . . .

Fig. 1: Memory Layouts

The alignment of the data is also very important. The
hardware has some requirements on the addresses of the
elements. It is easier (if not mandatory) for the CPU to load
a register from memory when the address is a multiple of the
register size. In scalar code, float loads must be aligned with
4 bytes. This is done by the compiler automatically. However,



vector registers are larger. The load address must be a multiple
of the size of the SIMD register: 16 for SSE, 32 for AVX and 64
for AVX512. Aligned memory allocation should be enforced by
specific functions like posix_memalign or _mm_malloc.
One might also want to align data with the cache size (usually
64 bytes). This may improve cache hits by avoiding data being
split into multiple cache lines when they fit within one cache
line and avoid false sharing between threads.

The way data are stored and accessed is also important.
The usual way to deal with multidimensional arrays in C is to
linearize the addresses. For example, a N×M 2D array will
be allocated like a 1D array with N ·M elements. A(i, j) is
accessed with A[i×M+j].

The knowledge of the actual size including the padding
is required to access elements. Iliffe vectors [11] allow to
access multi-dimensional arrays more easily. They consist of
a 1D array plus an array of pointers to the rows. A(i, j)
is accessed through an Iliffe vector with A[i][j] (see
Figure 2). It allows to easily store arrays of variable length
rows like triangular matrices or padded/shifted arrays. It is
easily extensible to higher dimensions.

With this memory layout, it is still possible to get the
address of the data beginning, and use it like a linearized
array. The allocation of an Iliffe vector needs extra space for
the array of pointers. It also requires an initialization of the
pointers before any use. As we work with pre-allocated arrays,
the initialization of the pointers is not part of the benchmarks.

Accessing an Iliffe vector requires to dereference multiple
pointers. It is possible to access the elements of an Iliffe vector
like a linearized array. Keeping the last accessed position
allows to avoid the computation of the new linearized address.
Indeed, the new address can be obtained by moving the pointer
to the previous address.

L 0,0 L0,1 L0,2 L1,0 L1,1 L1,2 L2,0 L2,1 L2,2

L0,0 L0,1 L0,2 L1,0 L1,1 L1,2 L2,0 L2,1 L2,2

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

L0,0 L0,1 L0,2 L1,0 L1,1 L1,2 L2,0 L2,1 L2,2
2 2 2 2 2 2 2 2 2

contigous memory

padding for alignment

padding for alignment

padding for alignment

L L L

L L L

1 1 1

2 2 2

0, 1, 2,

0, 1, 2,

L L L0 0 0
0, 1, 2,

L0

L contigous memory

...

... ...

L1

L2

Fig. 2: Iliffe vector example: array of 3×3 matrices aligned
with 64 bytes

B. Loop unwinding

It is possible to completely unroll the loops (see algorithms
3 and 4) as the matrices are tiny. This technique has several
advantages:

• it avoids branching,
• it allows to keep all temporary results into registers

(scalarization),
• it helps out-of-order processors to efficiently reschedule

instructions,
• it can be combine with data prefetch.

When the factorization and the substitution are merged to-
gether, lines 18–21 of algorithm 3 and lines 2–5 of algorithm 4
disappear reducing the amount of memory accesses (Table Ib).
This transform is very important as the algorithm is mem-
ory bound. One can see that the arithmetic intensity of the
scalarized version is higher, and even higher when the steps
are fused together leading to a version without intermediate
memory access.

The register pressure is higher and the compiler may gen-
erate spill code to temporarily store variables into memory. It
also makes the assembly code of the function bigger and may
have a negative impact on the instruction cache.

Algorithm 3: Factorization unwinded for 4×4 matrices
input : A // 4×4 symmetric positive-definite matrix
output : L // 4×4 lower triangular matrix

1 // Load A into registers
2 a00 ← A(0, 0)
3 a10 ← A(1, 0) a11 ← A(1, 1)
4 a20 ← A(2, 0) a21 ← A(2, 1) a22 ← A(2, 2)
5 a30 ← A(3, 0) a31 ← A(3, 1) a32 ← A(3, 2) a33 ← A(3, 3)
6 // Factorize A

7 l00 ←
√
a00

8 l10 ← a10/l00
9 l20 ← a20/l00

10 l30 ← a30/l00

11 l11 ←
√
a11 − l102

12 l21 ← (a21 − l20 · l10) /l11
13 l31 ← (a31 − l30 · l10) /l11
14 l22 ←

√
a22 − l202 − l212

15 l32 ← (a32 − l30 · l20 − l31 · l21) /l22
16 l33 ←

√
a33 − l302 − l312 − l322

17 // Store L into memory
18 L(0, 0)← l00
19 L(1, 0)← l10 L(1, 1)← l11
20 L(2, 0)← l20 L(2, 1)← l21 L(2, 2)← l22
21 L(3, 0)← l30 L(3, 1)← l31 L(3, 2)← l32 L(3, 3)← l33

C. Loop Unroll & Jam

The Cholesky factorization of n×n matrices involves n
square roots + n divisions for a total of ∼n3/3 floating point
operations (see Table I). The time before the execution of two
data independent instructions (aka: throughput) is smaller than
the latency. The latency of pipelined instructions can be hidden
by executing in the pipeline another instruction without any
data-dependence with the previous. The ipc (instructions per
cycle) is then limited by the throughput of the instruction and
not by its latency. Note that the “throughput” term used in
the Intel documentation is the inverse of classical throughput:
it is the number of cycles to wait between the launch of
two consecutive instructions. If the throughput is less than
1, several instructions can be launched during the same cycle.

As current processors are Out-of-Order, they can reschedule
instructions on-the-fly in order to execute in pipeline data-
independent instructions. The size of the rescheduling window
is limited and the processor may not be able to reorder instruc-
tions efficiently. In order to help the processor to pipeline
instructions, it is possible to unroll loops and to interleave



Algorithm 4: Substitution unwinded for 4×4 matrices
input : L // 4×4 lower triangular matrix
input : R // vector of size 4
output : X // vector of size 4, solution of L · LT ·X = R

1 // Load L into registers
2 l00 ← L(0, 0)
3 l10 ← L(1, 0) l11 ← L(1, 1)
4 l20 ← L(2, 0) l21 ← L(2, 1) l22 ← L(2, 2)
5 l30 ← L(3, 0) l31 ← L(3, 1) l32 ← L(3, 2) l33 ← L(3, 3)

6 // Load R into registers
7 r0 ← R(0)
8 r1 ← R(1)
9 r2 ← R(2)

10 r3 ← R(3)

11 // Forward substitution
12 y0 ← r0/l00
13 y1 ← (r1 − l10 · y0) /l11
14 y2 ← (r2 − l20 · y0 − l21 · y1) /l22
15 y3 ← (r3 − l30 · y0 − l31 · y1 − l32 · y1) /l33
16 // Backward substitution
17 x3 ← y3/l33
18 x2 ← (y2 − l32 · x3) /l22
19 x1 ← (y1 − l21 · x2 − l31 · x3) /l11
20 x0 ← (y0 − l10 · x1 − l20 · x2 − l30 · x3) /l00
21 // Store X into memory
22 X(3)← x3

23 X(2)← x2

24 X(1)← x1

25 X(0)← x0

TABLE II: div_ps() and sqrt_ps() instruction latencies
and throughputs on Haswell [7]

latency/throughtput 128-bit (SSE) 256-bit (AVX)
· · ·_add_ps() 3/1 3/ 1
· · ·_mul_ps() 5/0.5 5/ 0.5
· · ·_rcp_ps() 5/1 7/ 2
· · ·_div_ps() 11/7 19/14
· · ·_div_pd() 16/8 28/16
· · ·_rsqrt_ps() 5/1 7/ 2
· · ·_sqrt_ps() 11/7 19/14
· · ·_sqrt_pd() 16/8 28/16

instructions of data-independent loops (Unroll&Jam). In our
case, it is applied on the outer loop.

This technique increases the register pressure with the order
of unrolling k, the number of unrolled iterations. Unroll&jam
of order k requires k times more local variables. Its efficiency
is limited by the throughput of the unrolled loop instructions.

D. Fast square root reciprocal computation

div_ps() and sqrt_ps() are weakly pipelined and
have a high throughput: 7 cycles with SSE (Table II). Both
use the same execution unit and their throughput is shared
between them. For example, a division can only be executed
at least 7 cycles after a square root and vice versa.

The factorization of a 3×3 matrix requires 3 square roots
and 3 divisions. Consequently, the factorization in SSE is at
least 3× 7+3× 7 = 42 cycles long for up to 4 matrices. The
other 11 floating point operations have a lower throughput and
can be partially executed in parallel to the square roots and

divisions. Thus, their execution time is negligible compared to
the square roots and divisions.

AVX square root and division have a throughput twice longer
than SSE. The factorization is at 3× 14+ 3× 14 = 84 cycles
long for up to 8 matrices. In this case AVX is not faster than
SSE.

These instructions can be replaced by faster and less accu-
rate ones: rcp_ps() and rsqrt_ps(). They respectively
compute an approximation of the reciprocal and an approxi-
mation of the square root reciprocal with a 12-bit accuracy.
These instructions are highly pipelined and may improve the
factorization speed. In our algorithm, only rsqrt_ps() is
needed:

√
x = x ·

√
x
−1. A lot of cycles are saved using

the fast instruction rsqrt_ps() instead of sqrt_ps() +
div_ps().

We do not need to compute any reciprocal as we get the
reciprocal with the previous combination, and it is stored
for later use. Every time the algorithm needs a division, a
multiplication by the previously computed reciprocal is done.

It is less accurate than regular instructions, but it can be
enough for some uses. If needed, it is possible to recover
accuracy [12]. The method consists in the calculation of
one Newton-Raphson iteration (algorithm 5). The Newton-
Raphson algorithm converges quadratically which leads after
one iteration to an accuracy of 0.46 ulp (Unit in last Place)
in average on all normal finite positive floats (max: 4.7
ulp). Considering the latency only, it is actually slower than a
regular square root. But it is much more pipelineable.

Algorithm 5: Accuracy recovering for 1/
√
x

input : x
output : rsqrtx // approximate value of 1/

√
x

1 rsqrtx← rsqrt_ps(x) // first approximation
2 sqrtx← x · rsqrtx
3 α← sqrtx · rsqrtx
4 rsqrtx← −0.5 (α− 3) · rsqrtx // corrected approximation

IV. BENCHMARKS

A. Benchmark protocol

In order to calculate the impact of the transforms, we used
exhaustive benchmarks.

The algorithms were evaluated on 4 machines whose spec-
ifications are provided in Table III.

The tested functions are the following:
• factorize: Cholesky factorization: A→ L · LT

• substitute: Solve the 2 triangular systems: L·LT ·X = R
• substitute1: same as substitute, but with the same L for

every Rs
• solve: Solve the unfactorized system (factorize + substi-

tute): A ·X = B

The function substitute1 has been tested as it is the only one
to be available in the MKL in batch mode.

The time is measured with _rdtsc() which provides
reliable time measures in cycles. Indeed, on current CPUs,



TABLE III: Benchmarked machines

CPU fullname cores/threads
cache (KiB) memory bandwidth (GB/s)per core per CPU

L1 L2 L3 1 core 1 CPU total
i7 i7-4790 4/8 32 256 8192 7.8 7.8

NHM X5550 2× 4/8 32 256 8192 8.6 15.7 21.6
HSW E5-2683 v3 2× 14/28 32 256 35840 10 40 75
KNC 7120P 61/244 32 512 5.3 300
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Fig. 3: Performance for 3×3 systems on HSW as a function of the number of matrices
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Fig. 4: Best performance for 3×3 systems on HSW

the timestamp counter is normalized around the nominal fre-
quency of the processor and is independent from any frequency
changes.

In order to have reliable measures, we run several times
each function and take the minimum execution time measured.
Then, we divide the time by the number of matrices to have

a time per matrix.
The code has been compiled with intel icc v16.0.2 with the

following options: -std=c99 -O3 -vec -ansi-alias

• Series labelled scalar are scalar written code. The SoA
versions are vectorized by the compiler though.

• Series labelled SSE are SSE code executed on the ma-
chine, even if it is an AVX machine.

• Series labelled AVX are AVX code executed on the ma-
chine.

• “unwinded” tag stands for inner loops unwinded (ie:
fully unrolled).

• “fast” tag stands for the use of fast square root recip-
rocal.

• “×k” tags stand for the order of unrolling of the outer
loop (unroll&jam)

B. Results

We first present the monocore results and in a second part
the multicore results with OPENMP.

We focus on the analysis of 3×3 matrix factorization as it
is the slowest. We will show that our analysis remains correct
for larger matrices.

1) Monocore: Figure 3 shows important results for the
understanding of our function performance. It shows the
performance of factorize, substitute and solve on HSW for
3×3 matrices. If we look at these charts, we can notice similar
behaviors for the 3 functions: the performance drops of a
factor 2-3 for every version. It happens when data do not fit
anymore in caches: this is a cache overflow. On the factorize
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Fig. 6: Impact of loop unrolling for solve with 3×3 matrices
on HSW

chart (Figure 3a), one can notice 3 intervals of batch size for
3×3 matrices on HSW:

• [400, 1000]: this is the L1 cache overflow. As the L1
cache is 32 KB, we can not store data for more than
546 systems.

• [3000, 8000]: this is the L2 cache overflow. As the L2
cache is 256 KB, we can not store data for more than
4369 systems.

• [3·105, 106]: this is the L3 cache overflow. As the L3
cache is 35 MB, we can not store data for more than
611,669 systems. After that, the data has to be fetched
from the main memory.

As we repeat several times the same function and take the

minimum time, data are as much as possible within caches. If
data fit within a cache, they may not be within it at the first
execution, but they will at the next one. But if data size is
larger than the cache, the cache will be constantly overflowed
by new data. At the next execution, the needed data will not
be within the cache as they have been overridden by the extra
data of the previous execution. If data are only a bit larger
than the cache, then a part can remain within the cache and
be reused the next time.

Basically, one can interpret the performance plot like this:
If all the matrices fit within the L1 cache, the performance
per matrix will be the performance on the plot before the L1
cache overflow. The performance at the right end is actually
the performance when none of the matrices are in any caches,
ie: they are in main memory only. The performance drops after
the cache overflow because lower level caches are faster.

After the L3 cache overflow, the best versions have almost
the same performances: they are limited by the memory
bandwidth. In this case, the bandwidth of the factorize function
after the last cache overflow is about 10 GB/s, which the
bandwidth of our machine external memory .

On every plot of Figure 3, for the fastest version, the
performance starts by increasing on the left. This is mainly
due to the amortization of the overheads mainly due to SIMD.

The MKL is very slow. The reason is that it does a lot of
verification on input data, has many functions calls and has
huge overheads. These overheads are required for speeding
up the execution, but are effective only for large matrices. For
large matrices, the MKL is, of course, very fast and it would
have impossible to be faster than the MKL for large matrices.

Still on Figure 3, the scalar AoS versions are slow: they
are not vectorized, unlike the other versions. The compiler is
unable to vectorize these because of the memory layout even
with -vec compiler option. Although, it is possible to write
SIMD code for AoS, but requires scatter/gather instructions (or
a way to emule it).

When we look at Figure 4, we can see that the scalar SoA
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Fig. 7: Efficiency of solve multithreading
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Fig. 8: Best performance of solve for multiple sizes

unwinded version performs very well on substitute and substi-
tute1, but is slower on other functions. The function substitute1
provides the higher Gflops: the number of load/store is the
lowest as L is kept in registers. The plots for other sizes and
other machines have similar shapes and are not shown here.

Figure 5 gives the speedup of each transformation in the
following order: unwinding, SoA + SIMD, fast square root,
unroll&jam. The speedup of a transformation is dependent of
the transformations already applied: the order is important.

The speedup given by the KNC plot (Figure 5d) is actually
not representative as KNC is not adapted for scalar code. How-
ever, this plot allows to see the impact of each transformation
on the performance.

If we look at the speedups on HSW (Figure 5c), we can

see that unwinding the inner loops improves the performance
well: from ×2 to ×3.5. The impact of unwinding decreases
when the size of the matrix increase: the register pressure is
higher. SIMD gives a sub-linear speedup: from ×3.2 to ×5.5.
In fact, SIMD instructions can not be fully efficient on this
function without fast square root (see subsection III-D). With
further analysis, we can see that the speedup of SIMD + fast
square root is almost constant around ×6. The impact of the
fast square root decreases as their number become negligible
compared to the other floating point operations. SIMD has
more place to be efficient. For small matrices, unroll&jam
allows to get the last part of the expected SIMD speedup.
SIMD + fast square root + unroll&jam: from ×6.5 to ×9.
Unroll&jam loses its efficiency for larger matrices: the register



pressure is higher.

Figure 6 shows the performance of solve for different AVX
versions. The performance of the “non-fast” versions are
limited by the square roots and divisions around 9 Gflops
(see subsection III-D). In this case, both unrolling (unwinding
and unroll&jam) are not very efficient and can not improve
performance further this limitation. For “fast” versions, both
unrolling are efficient. Unroll&jam achieves a ×3 speedup on
regular code and ×1.5 speedup on unwinded code. We can
see that unroll&jam is less efficient when the code is already
unwinded but keeps improving the performance. Register
pressure is higher when unrolling (unwinding or unroll&jam).

2) OPENMP: Figure 7 shows how our implementation
scales with higher number of cores. The scaling of the SIMD
version is strong and for some sizes, the code get a super-linear
speedup.

The MKL version however does not scale at all: it does
not support batch function for the Cholesky factorization and
it does not enable the multithreading as the matrices are
too small according to its heuristics. Again, the MKL is
not adapted for tiny matrices, but scales very well for large
matrices.

On KNC, the scaling is strong and for some sizes of
matrices, it has a super-linear speedup (see Figure 7c). The
scaling is actually not representative as it is compared to
mono-thread execution. Indeed, latencies on KNC are high
and a single thread can not use efficiently the whole core.

3) Extension to matrices up to 16×16: Figure 8 shows
that our transformations studied for 3×3 matrices are also
efficient with larger matrices. Speedups for benched machines
are summarized into Table IV. Again, the speedup for KNC
is not representative as it is compared to scalar code.

TABLE IV: Speedups of solve for matrices up to 16×16
machine speedup monocore speedup multicore

i7 ×14 – ×30 ×14 – ×29
NHM ×8 – ×21 ×9 – ×19
HSW ×13 – ×31 ×15 – ×33
KNC ×40 – ×440 ×50 – ×170

CONCLUSION

In this paper, we have presented a fast implementation
for tiny matrices (6 16×16) of the well-known Cholesky
algorithm. The State-of-the-Art codes and libraries lack of
support for tiny matrices: existing libraries deals with large
matrices (usually thousands of rows), and are usually slow
for small matrices. For a lot of people, a “small matrix”
is about few hundreds rows. But in Computer Vision/High
Energy Physics, people need tiny matrices and scalar naive
code was a rather good option. We have shown that the scalar
naive code is much slower compared to the very specialized
code we wrote.

Our approach is to compute the factorization by batch which
enables efficient parallelization (both SIMD + OPENMP).

We achieve a high overall speedup: more than an order of
magnitude compared to scalar naive version in monothread.
The speedup for 3×3 matrices on 2×14 cores Haswell Xeon
is between ×13 and ×31. Our multi-threaded implementation
has almost the same speedup compared to the multithread
naive code. Our Haswell get a speedup between ×15 and ×33

The speedup decreases as the reference version becomes
faster, but for all sizes of matrices from 3×3 to 16×16, the
code performance is close to the sustainable peak performance
of the processor.

In the future, we will add support for other SIMD architec-
tures like ARM Neon or IBM Altivec. The double precision
and mixed precision will also be part of futur implementa-
tions.
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