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Abstract In the last decade, many papers have been
published to present sequential connected component la-
beling (CCL) algorithms. As modern processors are multi-
core and tend to many cores, designing a CCL algorithm
should address parallelism and multithreading. After a
review of sequential CCL algorithms and a study of their
variations, this paper presents the parallel version of the
Light Speed Labeling for Connected Component Anal-
ysis (CCA) and compares it to our parallelized imple-
mentations of State-of-the-Art sequential algorithms. We
provide some benchmarks that help to figure out the in-
trinsic differences between these parallel algorithms. We
show that thanks to its run-based processing, the LSL
is intrinsically more efficient and faster than all pixel-
based algorithms. We show also, that all the pixel-based
are memory-bound on multi-socket machines and so are
inefficient and do not scale, whereas LSL, thanks to its
RLE compression can scale on such high-end machines.
On a 4×15-core machine, and for 8192×8192 images,
LSL outperforms its best competitor by a factor ×10.8
and achieves a throughput of 42.4 gigapixel labeled per
second.

Introduction

Connected Component Labeling (CCL) algorithms play
a central part in machine vision because they often con-
stitute a mandatory step between low-level image pro-
cessing (filtering) and high-level image processing (recog-
nition, decision). As such, CCL algorithms have a lot
of applications and derivate algorithms like convex hull
computation, hysteresis filtering or geodesic reconstruc-
tion.
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Designing a new algorithm is challenging considering
the overwhelming literature and the performance achieved
by the best existing algorithms. Regarding objectives, it
is comparable to developing a new version of matrix mul-
tiplication. Indeed, the final result must be the same for
all the algorithms for a given image and only the execu-
tion time does matter.

Today, such a design should address parallel proces-
sors as all modern general purpose processors (GPP) are
multi-core, whatever their segment: embedded system,
workstation or server. For that purpose, CCL algorithms
have to consider the specificities of GPP: the processor
pipeline by minimizing conditional statements (like tests
and comparisons) to reduce the number of pipeline stalls,
the cache memories by limiting random sparse memory
accesses to lower the cache misses and the communica-
tions/synchronizations between cores.
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Fig. 1 An example of 8-connected component labeling with
Rosenfeld algorithm. Top: binary image, bottom left: image
of temporary labels, bottom right: image of final labels
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CCL is an intermediate level algorithm. It processes
the output data coming from low-level algorithms (typ-
ically binary segmentation) and produces an image of
labels (fig. 1) easily understandable by humans. Usually,
an additional computation step is done to transform the
image of labels into synthetic data, called features. This
step is called features computation (FC).

The most frequently computed features are the bound-
ary of bounding rectangle (for target tracking) and the
first order statistical moments (surface, centroid, orienta-
tion). They are used by other intermediate or high level
(decision) algorithms to analyze an image (for optical
character recognition) or a sequence of images (for mo-
tion detection and tracking).

The combination of connected component labeling
and features computation (fig. 2) is called Connected
Component Analysis (CCA).

This article introduces a new parallel algorithm called
Parallel Light Speed Labeling – that is derived from the
sequential Light Speed Labeling[19] – for connected com-
ponent analysis. There are two reasons for considering
CCA and not CCL algorithms. First, because for real
applications, this is CCA that matters, not CCL. Sec-
ondly – and this is the goal of the benchmarks presented
in the following sections, standalone FC algorithms can
not be efficiently parallelized because they intrinsically
have a concurrency issue leading to weak parallelism.
This article also shows that, by combining CCL and FC
together, the final labeling step (existing in all CCL al-
gorithm) that is memory bound (that prevents efficient
scaling) - can be omitted leading to more efficient paral-
lelization.

Fig. 2 Connected Component Labeling and Connected
Component Analysis in a movement detection system applied
to traffic surveillance

The article focuses on the parallelization of these al-
gorithms on multi-core processors and not GPUs because
GPUs are not suited for such a kind of algorithms. All
the benchmarked CCL algorithms are direct two-pass
data-dependent algorithms that use an equivalence ta-
ble that is shared by all threads. Algorithms specialized

for GPUs exist [16][32]. They are all iterative multi-pass
data-independent algorithms. Moreover and as far as we
known, none of the existing articles dealing with labeling
algorithms for GPUs addresses the features computation
issue. In order to make some comparisons feasible, we
provide – at the end of the article – some synthetic fig-
ures in gigapixel labeled per second.

Our contribution consists in five elements:

– a review of the State-of-the-Art CCL sequential al-
gorithms,

– a benchmark procedure that analyzes the duration of
each stage (labeling, features computation, merging)
to understand the global performance of each algo-
rithm and especially the features computation part
that is usually not addressed by other articles,

– a new parallel algorithm based on the sequential LSL
using OpenMP, that efficiently combines labeling and
features computation,

– an efficient parallelization of State-of-the-Art CCL
algorithms with the integration of an FC step,

– benchmarks for parallel versions on various architec-
tures.

This paper is organized as follows: the first section
presents the sequential algorithms and their parallelized
implementation. The second section presents the bench-
mark methodology. The third section presents some al-
gorithms variations that highlight some optimizations
and lead us to select a restricted set of algorithms. The
fourth section present the sequential results. The fifth
section presents the parallel results on two selected ar-
chitectures. The sixth section presents the performance
evolution across number of cores and images size.

1 Connected Component Labeling Algorithms

1.1 Sequential algorithms

Historical algorithms were designed by pioneers like Rosen-
feld [27], Haralick [10] and Lumia [20] who designed pixel-
based algorithms, Ronse [26] for run-based algorithms.
Modern algorithms derive from the algorithms of the 80’s
and try to make improvements by replacing some compo-
nents by a more efficient one. An extensive bibliography
can be found in [11] and [31]. Except Contour Tracing
algorithm [5] that is aesthetic but inefficient, all mod-
ern algorithms are two-pass (or less) algorithms, none is
a data-dependent multi-pass algorithm. They share the
same three steps:

– first labeling, that assigns a temporary label to each
pixel and builds labels equivalence,

– label equivalences solving, that computes the tran-
sitive closure of the graph associated with the label
equivalence table (where temporary labels are associ-
ated with final labels, in the equivalence table - usu-
ally the smallest one of each the component),
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– final (optional) labeling, to replace temporary labels
by final labels in the image of labels.
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Fig. 3 Masks topology of Rosenfeld, RCM, HCS2, Grana,
HCS, and LSL: input labels in white boxes, output labels in
gray boxes

They differ on three points: the mask topology, the
number of tests for a given mask to find out the minimal
value to assign to a label and the equivalence manage-
ment algorithm.

Mask topology has an impact on both the load/store
ratio to label a pixel and the number of temporary labels.

Rosenfeld and derived algorithms use a 4-pixel mask
(fig. 3). In order to reduce the number of loads to com-
pute a label (4:1 for Rosenfeld), RCM [14] and HCS2 [13]
provide alternative topologies of 3:1 and 5:2.

As the execution time of an image labeling is not
correlated to the total amount of final labels, but to
the number of patterns that create a new label within a
component (see figure 4 and section 2.1 for details), one
way to improve CCL algorithms is to widen the label
mask. That leads to block-based algorithms like HCS2

and Grana [8] that respectively compute 2 and 4 labels
from a 6-pixel and a 16-pixel neighborhood (fig. 3).

For example, when using the Rosenfeld mask, only
two basic patterns trigger label creation within a com-
ponent (fig. 4), whatever the connectivity (here 8-con-
nectivity). The first one is the stair. The second one is
the concavity. They are responsible for the temporary la-
bels created by pixel-based algorithms. Grana mask can
detect some concavities and avoid label creation if these
concavities are small enough to entirely fit in the mask.

But the only way to prevent label creation from stairs
is to use a run-based algorithm like HCS [12] or LSL
[19] that first detect the pixel adjacency in the neigh-
borhood before to assign a label to the run. Note that
HCS is a “half” run-based algorithm (run-based label-
ing but pixel-wise equivalence management) and LSL is a
“full” run-based algorithm (both run-based labeling and
equivalence management). LSL uses an additional but
efficient line-relative (see paragraph on LSL) labeling to
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1

Fig. 4 Minimal 8-connected basic patterns generating tem-
porary labels: stair (left) and concavity (right) for the Rosen-
feld mask

generate RLC coding to directly find adjacent runs on
the previous line whereas HCS has to perform a test on
every pixel to decide to continue to propagate a label or
to perform an equivalence.

Minimal positive value. For pixel-based algorithms,
one has to find out and propagate the minimum posi-
tive value (min+) to assign to the current label, based
on mask topology. It requires many tests and can be op-
timized by a decision tree (DT) [31]. For example the
min+4 function requires 4 loads and 7 comparisons for
the Rosenfeld mask (algo. 1) whereas with DT (fig. 5), it
requires an average of 2.25 loads and 2.25 tests. Decision
tree saves both tests and memory accesses.

Algorithm 1: min+4 : minimum positive value of 4
values with at least a nonzero value
Input: 4 values e1, e2, e3, e4 with at least a nonzero

value
Result: ε = min+

4 (e1, e2, e3, e4), the minimum positive
value

1 ε← +∞
2 if (e1 6= 0) then ε← e1
3 if (e2 6= 0 and e2 < ε) then ε← e2
4 if (e3 6= 0 and e3 < ε) then ε← e3
5 if (e4 6= 0 and e4 < ε) then ε← e4
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Fig. 5 8-connected Decision Tree for a 4-pixel mask. Label
equivalence and the propagation to ex in dark gray

Equivalence management. There are two main al-
gorithms: the traditional Union-Find (UF) algorithms
(algo. 2 and 3) [7] usually associated with the original
Rosenfeld algorithm and the Suzuki one that requires
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three tables [11]. Table R holds the root of every label:
a transitive closure is applied to each equivalence man-
agement and merge of labels (algo. 5) and not at the end
like UF. Table N behaves like a next pointer for a linked
list and T points the tail of each set of labels (fig. 6). The
complexity of the Suzuki algorithms Find and Union is
the opposite of UF ones: FindSuzuki is just a lookup to
R table, but the Union (named merge in Suzuki paper)
consists in updating the three tables.

Algorithm 2: UF Find(e) algorithm

Input: e a label, T an equivalence table
Result: r, the root of e

1 r ← e
2 while T [r] 6= r do
3 r ← T [r]

4 return r

Algorithm 3: UF Union(e1, e2) algorithm

Input: e1, e2 two labels, T an equivalence table
Result: a, the least common ancestor of the e’s

1 a1 ← FindUF(e1)
2 a2 ← FindUF(e2)
3 if a1 < a2 then
4 a← a1, T [a2]← a
5 else
6 a← a2, T [a1]← a

7 return a

Algorithm 4: Suzuki Find(e) algorithm

Input: e a label, R an equivalence table
Result: r, the root of e

1 r ← R[e]
2 return r

Algorithm 5: Suzuki Union(x, y) algorithm

Input: x and y two labels to merge
1 u← FindSuzuki(x)
2 v ← FindSuzuki(y)
3 if v < u then swap(u, v)
4 i← v
5 while i do
6 R[i]← i
7 i← N [i]

8 N [T [u]]← v
9 T [u]← T [v]

10 return u
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Fig. 6 Suzuki tables: Root, Next and Tail before connecting
x = 1 and y = 2. S1 = {1, 3, 7}, S2 = {2, 6, 4} and after
connecting S1 = {1, 3, 7, 2, 6, 4}. Modified Data are in gray.

Concerning UF, there are many optimizations like
path-compression [15], path-halving, and path-splitting
[29] that were first analyzed by Tarjan [28] and re-ana-
lyzed in [25] on modern computers. As the equivalence
management algorithms are independent of the mask
topology, a mask can be associated with one or the other.
HCS2 was initially proposed with Suzuki management
but Gupta [9] proposed a version with a UF procedure
optimized with Rem optimization combined with Splic-
ing (SP) and named “ARemSP” (algo. 6). One can see
on figure 7 that the union of labels 8 and 9 makes the
biggest of the two roots (and the whole branch) to point
to the first smallest value of the other branch. The sec-
tion 3 will evaluate these variations.

Algorithm 6: ARemSP Union(x, y)

Input: x and y two labels to merge
1 while T [x] 6= T [y] do
2 if T [x] > T [y] then
3 if x = T [x] then
4 T [x] = T [y]
5 return T [x]

6 z = T [x], T [x] = T [y], x = z
7 else
8 if y = T [y] then
9 T [y] = T [x]

10 return T [x]

11 z = T [y], T [y] = T [x], y = z

12 return T [x]

Features computation.
Considering real applications, the fourth step – after

the relabeling one – is to perform the features computa-
tion (FC) step (fig. 8, left). But if the FC is performed
on-the-fly during the first labeling, the final labeling is
no more required (fig. 8, center). In that case, the first
labeling step consists in a line-labeling function and a
lineFC function that are applied to the whole image.
The procedure to solve the equivalences is then modi-
fied to also update the features. Thus, the two passes
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Fig. 7 ARemSP union of labels 8 and 9: 5 if the first label
smaller than the root 6

can be reduced to only one pass where FC is done on-
the-fly. With that modification, all two-pass algorithms
become one-pass algorithms. In this paper, the features
extracted for each component are the bounding box:
[xmin, xmax] × [ymin, ymax] and the first statistical mo-
ments: S, Sx and Sy.

first labeling =

image L

solve EQ

final labeling

image FC

first labeling =

line L + line FC

solve EQ

+ update F

first labeling 

PAR
border merging

PYR

Fig. 8 Sequential (left and center) and parallel (right) CCA
synopsis

Algorithm 7: solve equivalences and update fea-
tures
1 for each e ∈ [1 : ne] do
2 r ← T [T [e]] // root of the tree
3 T [e]← r
4 F [r]← F [r] ∪ F [e] // features update

Light Speed Labeling. Let us now focus on the LSL
implementation as this algorithm is more complex than
the pixel-based ones. Let us also define the following no-
tations:

– er, a relative label,
– ea, an absolute label,
– a, an ancestor label (aka the root of an absolute label
ea),

– X, a binary image of size h × w, Xi is the current
line of X, and Xi−1 the previous line,

– EA, an image of size h×w of absolute labels ea before
equivalence resolution,

– L, an image of size h × w of absolute labels ea after
equivalences resolution,

– ERi, an associative table of size w holding the rela-
tive labels er associated with Xi,

– ner, the number of segments of ERi,
– RLCi, a table holding the run length coding of seg-

ments of the line Xi, RLCi−1 is the similar memo-
rization of the previous line,

– ERAi, an associative table holding the association
between er and ea: ea = ERAi[er],

– EQ, the table holding the equivalence classes, before
transitive closure,

– RLC, a 2D table of size h× 2w holding all segments
of every line, used along LSL evolutions,

– LEA, a 2D-list of absolute labels of every line, used
in LSLRLE version,

1 1 1 3 3 52 4 64
0 0 1

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1ERi

ERi-1
j

Xi

Xi-1

0 01 2 30
0 1ERAi

ERAi-1
e 0 1 2 3 4 5

RLCi

RLCi-1
j
0
0 1 2 3 4 5

2 4 5 8 8
2 9

0
0 1 2 3e

EQ 1 1 1

Fig. 9 LSL tables

The specificity of LSL is to be run-based and to use
a line-relative labeling (fig. 9). From two consecutive
lines Xi−1, Xi, two relative labelings are produced where
runs (or segments) have odd numbers. In the same way,
the associated run-length codings are produced (tables
RLCi−1, RLCi). The table ERAi−1 holds the transla-
tion between Relative and Absolute labels. To find out
the labels of the previous line that are connected to the
current segment, one has to read in table ERi−1 at the
position given by RLCi the value of relative labels and
translates them into absolute labels to update the equiv-
alence table EQ. Details about the sequential implemen-
tation of the LSL are available in [19]. In order to figure
out what part of the algorithm is important (that makes
one algorithm to be faster than other ones), we modified
the LSL: there are still the STD (standard) and RLE
(RLE compression that uses LEA tables) versions, but
the equivalence management can be either the classic
Union-Find (named Rosenfeld in the following) or the
Suzuki method.

There are two algorithms of the line-relative labeling.
One algorithm (algo. 8) is associated with the LSLSTD

version. It is data-independent : there is no if-then-else
in the algorithm. Another algorithm (algo. 9) is associ-
ated with the LSLRLE. It contains a test (line 8) to avoid
unnecessary accesses to RLCi table (like algorithm 8 line
8).
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Algorithm 8: LSL segment detection STD

Input: Xi a binary line of width w
Result: ERi, RLCi and ner

1 x1 ← 0 previous value of X
2 f ← 0 front detection
3 b← 0 right border compensation
4 er ← 0
5 for j = 0 to w − 1 do
6 x0 ← Xi[j]
7 f ← x0 ⊕ x1
8 RLCi[er]← j − b
9 b← b⊕ f

10 er ← er + f
11 ERi[j]← er
12 x1 ← x0

13 x0 ← 0
14 f ← x0 ⊕ x1
15 RLCi[er]← w − b
16 er ← er + f
17 ner ← er
18 return ner

Algorithm 9: LSL segment detection RLE

Input: Xi a binary line of width w
Result: ERi, RLCi and ner

1 x1 ← 0 previous value of X
2 f ← 0 front detection
3 b← 0 right border compensation
4 er ← 0
5 for j = 0 to w − 1 do
6 x0 ← Xi[j]
7 f ← x0 ⊕ x1
8 if f 6= 0 then
9 RLCi[er]← j − b

10 b← b⊕ 1
11 er ← er + 1

12 ERi[j]← er
13 x1 ← x0

14 x0 ← 0
15 f ← x0 ⊕ x1
16 RLCi[er]← w − b
17 er ← er + f
18 ner ← er
19 return ner

Such a kind of front detection and run numbering
(algo. 8 line 10) is known in the field of parallel comput-
ing as referring to the scan concept [2]. Operations of
that type are defined more fundamentally as follows:

– given an associative operator � and a vector v(x),
0 ≤ x ≤ nN ,

– the � − scan of v produces a vector w = � − scan(v)
such that: w(x) = v(0) � v(1) � ... � v(xN )

In the case of LSL, we use a +scan that is applied to
a xor-ed vector v such as v(k) = X(k) ⊕ X(k − 1). It
comes:

ERi[j] = Σk=j
k=1Xi[k − 1]⊕Xi[k] (1)

Here, ner is equal to the number of odd and even
segments by construction. So the odd segment er is the

er/2-th odd segment of the line and its boundaries [j0, j1]
are stored into RLCi[er − 1] and RLCi[er] respectively.
In our example, the boundaries of the segment er = 1
are RLCi[0] = 0 and RLCi[1]− 1 = 10− 1 = 9.

Algorithm 10: LSL equivalence construction with
either UF or Suzuki management

Input: ERi−1, RLCi, EQ, ERAi−1, ERAi, ner
Result: nea the current number of absolute labels,

update of EQ and ERAi
1 for er = 1 to ner step 2 do
2 j0 ← RLCi[er − 1]
3 j1 ← RLCi[er]
4 [check extension in case of 8-connect algorithm]
5 if j0 > 0 then j0 ← j0 − 1
6 if j1 < n− 1 then j1 ← j1 + 1
7 er0 ← ERi−1[j0]
8 er1 ← ERi−1[j1]
9 [check label parity: segments are odd]

10 if er0 is even then er0 ← er0 + 1
11 if er1 is even then er1 ← er1 − 1
12 if er1 ≥ er0 then
13 ea ← ERAi−1[er0]
14 a← FindRoot(ea)
15 for erk = er0 + 2 to er1 do
16 eak ← ERAi−1[erk]
17 ak ← FindRoot(eak)
18 [min extraction and propagation]
19 if a < ak then
20 UpdateTable(eak, a)

21 if a > ak then
22 UpdateTable(a, ak)
23 a← ak

24 ERAi[er]← a [the global min]
25 else
26 [new label]
27 nea← nea+ 1
28 ERAi[er]← nea

The algorithm 10 can use either UF or Suzuki equiv-
alence management. The FindRoot is either FindUF or
FindSuzuki (algo. 2 and algo. 4). The UpdateTable func-
tion is close to the pseudo-code of Union algorithms but
without the two internal calls to Find (algo. 5 and 5,
lines 1 & 2). The UpdateTable(e, r) function also makes
the hypothesis that e is the first argument and r the sec-
ond. In that case, for UF algorithm, it is just a simple
write into Q: Q[e]← r.

The last optimization to be done is zero-offset ad-
dressing. It could seem insignificant, but benchmarks
have shown a speedup of 5%. Instead of storing j0 and j1
– the actual boundaries of a segment – that also requires
the register b to compensated j1 (algo. 8 line 8 and 9, line
9), the value j1+1 will be stored into RLC. This leads to
an even smaller and faster algorithm for relative labeling
(algo. 11 line 7). The same optimization can also be done
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for RLE version. The other algorithms of LSL should be
also slightly modified to take into account that modifica-
tion. It appears that their complexity remains unchanged
while the line-relative labeling complexity drops. That is
an optimization without counterpart.

Algorithm 11: LSL segment detection STDZ

Input: Xi a binary line of width w
Result: ner the number of relative labels on the line

X
1 x1 ← 0 previous value of X
2 f ← 0 front detection
3 er ← 0
4 for j = 0 to w − 1 do
5 x0 ← Xi[j]
6 f ← x0 ⊕ x1
7 RLCi[er]← j
8 er ← er + f
9 ERi[j]← er

10 x1 ← x0

11 if x1 6= 0 then RLCi[er]← w
12 er ← er + x1
13 ner ← er
14 return ner

The FC part is faster to compute for LSL thanks to
run-length coding: first, the min and max operations are
done only twice, for the beginning and the end of a run,
instead of as many times as there are pixels in the run.
Secondly, the statistical moment can be calculated with
the begin and the end indexes. For a given run of interval
[j0, j1] at line i, S = j1 − j0 + 1, Sx = φ(j1)− φ(j0 − 1)
and Sy = i × S, with φ the first Bernoulli polynomial:
φ(n) = n(n + 1)/2. If the average run length is greater
than 2, LSL requires less arithmetic operations, tests,
and memory accesses than pixel-based algorithms.

Sequential Framework. The algorithms that are eval-
uated have been modified from their original version:
there is no more second labeling and the FC is done on-
the-fly instead of after the second labeling. That make
all sequential versions to run faster than previously [4].
A framework has been developed to easily integrate the
twenty different algorithms together and simplify their
parallelization and their benchmark. In the section 3 we
will discuss the algorithm selection depending of their
results and specificities.

1.2 Parallel algorithms

In order to simplify the parallelization of the algorithms
and to evaluate them with the same fairness, the sequen-
tial framework has been extended into a parallel frame-
work that reuses sequential functions like line-Labeling
and line-FC. There are two steps for all parallelized (fig.
8, right): the first parallel labeling and the pyramidal

border merging. For cache-awareness, the image is split
into p horizontal strips, with p the number of threads
(it could be twice or four times the number of cores
on processors with hyper-threading). For each strip, a
descriptor is set with the first and last line indexes. It
also contains a pointer to a unique equivalence table (1
pointer for UF, 3 for Suzuki) that is shared by all threads
and descriptors.

1.2.1 First parallel labeling

The first step of the parallel labeling (fig. 8, right) cor-
respond to the combination of the two steps of the se-
quential labeling: line-labeling + line-FC. For a H ×W
image, each strip has a size of h = H/p and w = W .
In order to have all strips being labeled in parallel, one
has to provision the max number of temporary labels for
each strip and thus avoid label collisions. Such amount
is equal to h+1

2 ×
w+1
2 for 8-connectivity.

After labeling each strip in parallel, a local solve (a
transitive closure of the set of labels produced by each
thread) and an update of the associated computed fea-
tures is done in parallel. These transitive closures can
be done in parallel because they are applied to disjoint
sets of labels. It makes the pyramidal border merging to
start with 1-depth trees. Thus, it minimizes the border
merging duration that is done in a pyramidal way and
not in parallel.

OpenMP is used with a #pragma omp parallel for
loop applied to an array of descriptors to parallelize all
the strip labelings. We have implemented the parallel
framework with OpenMP in order to provide a fair com-
parison with the most related works (see 1.2.4). It can
be implemented with OpenCL, Cilk+ or TBB. But eval-
uating their respective performance is beyond the scope
of this article.

1.2.2 Parallel features computation

Parallelizing the features computation has similarities
with the parallel computation of a histogram with addi-
tional issues. To parallelize a histogram – a well-known
concurrency paradigm – one has to duplicate histograms
(one by thread), to perform the votes in these temporary
histograms then merge them together. It works fine as
long as its cardinal is small compared to the size of data
but cannot be applied here as the amount of labels can
be very high (proportional to H ×W/4).

There are three kinds of parallelism for FC.
The first one is spatial and consists in splitting the

image into several strips and keeping one equivalence
table. But as labels can spread on 2 (or more) strips,
memory accesses should be serialized with mutex or lock
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when using Posix API and critical or atomic when us-
ing OpenMP API. Such a serialization will become more
and more inefficient when the number of cores/threads
increases (fig. 10 right).
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Fig. 10 Parallel features computation. Left: FC is done on-
the-fly during the first labeling, the two threads can vote for
disjoint-set of labels. No collision = no required serialization.
Right: FC is done after the first labeling, the two sets of labels
are not disjoint, serialization is required.

The second parallelism is the label space. Each thread
has to vote for labels belonging to a sub-range. There is
no serialization, but some load balancing issues can hap-
pen if a component is much bigger (typical in natural
images) than the others and (like previously) spreads
over strips (fig. 11). The second issue is that all threads
have to scan the whole image resulting in a stress of the
memory busses and poor transfers from external mem-
ory (memory wall) to parallel internal cache.

1 3

6

2

7

4
5

8

Fig. 11 Parallel features computation. Load balancing issue:
first thread votes for light gray labels in the range [1,4], sec-
ond thread votes for dark gray labels in the range [5,8]. No
serialization but both threads must scan the whole image of
labels resulting in a high stress on memory

The third one is internal features parallelism. Here
there are nF = 7 independent features to compute (xmin,
xmax, ymin, ymax, S, Sx, Sy). Instead of having an ar-
ray of structures that holds the nF features, one can use
a structure of arrays – one by feature – and create nF
threads, each of them having to compute one of the fea-
tures. As for the second option, all threads have to scan
the whole image, but moreover the maximum parallelism
is bound by the number of features.

We have evaluated the three options. It appears that
the first two ones have no speedup (the compiler even
de-activates OpenMP pragma and warns for poor paral-
lelism). The third one has a speedup of ×1.7 whatever
the number of cores and the memory bandwidth are.
So, FC should be done in the same step than the line-
labeling. If it avoids the second labeling for the sequen-
tial algorithm, it is mandatory for the parallel algorithm.

1.2.3 Pyramidal border merging

There are three strategies for merging the borders. The
first one is sequential and inefficient: each border is se-
quentially processed with the same function that is used
within the first labeling. The second one is parallel and
false – from a concurrency point of view – as a given
label (and its associated features) must be modified by
exactly one actor. Like previously, the inefficient modifi-
cation here would be to use mutexes (or semaphores or
locks) to serialize updates which would result in many
synchronizations leading to poor parallel performance
and “global” serialization. The third one is pyramidal:
for each level of the tree (Fig. 12), the merges can be
done in parallel (with OpenMP pragma). This is allowed
as such a division ensures that, at each step, the strip
containing a given label, will be merged with only one
strip at a time (a label can be present in only one strip).
To be efficiently implemented concurrency issues should
be addressed by algorithm modification and not by pro-
gramming (OpenMP decoration). During the pyramidal
merge, the features are updated and propagated to the
root of each component. For algorithms using UF, a tran-
sitive closure should be done on the whole equivalence
table.

If p is the number of strips (and the number of threads
and cores) and a power of 2 (p = 2q), the average degree
of parallelism par is (2q − 1)/q.

Fig. 12 Pyramidal merging of 8 strips in 3 steps

For example (fig. 12), in the case of p = 8 strips there
are q = log2(p) = 3 steps. In the first step, we merge in
parallel 1 ∪ 2, 3 ∪ 4, 5 ∪ 6, 7 ∪ 8 by processing the bor-
ders 1 − 2, 3 − 4, 5 − 6, 7 − 8. In the second step we
merge {1, 2} ∪ {3, 4}, {5, 6} ∪ {7, 8}, by processing the
borders 2 − 3 and 6 − 7 and finally in step 3, we merge
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{1, 2, 3, 4} ∪ {5, 6, 7, 8} by processing the border 4 − 5.
The average parallelism is then equal to 7/3 ' 2.3.

Algorithm 12: LSL border merging with either
UF or Suzuki management

Input: ERi−1, RLCi, EQ, ERAi−1, ERAi, ner
Result: nea the current number of absolute labels,

update of EQ and ERAi
1 for er = 1 to ner step 2 do
2 j0 ← RLCi[er − 1]
3 j1 ← RLCi[er]
4 [check extension in case of 8-connect algorithm]
5 if j0 > 0 then j0 ← j0 − 1
6 if j1 < n− 1 then j1 ← j1 + 1
7 er0 ← ERi−1[j0]
8 er1 ← ERi−1[j1]
9 [check label parity: segments are odd]

10 if er0 is even then er0 ← er0 + 1
11 if er1 is even then er1 ← er1 − 1
12 if er1 ≥ er0 then
13 ea ← ERAi−1[er0]
14 a← FindRoot(ea)
15 for erk = er0 + 2 to er1 do
16 eak ← ERAi−1[erk]
17 ak ← FindRoot(eak)
18 [min extraction and propagation]
19 if a < ak then
20 UpdateTable(eak, a)

21 if a > ak then
22 UpdateTable(a, ak)
23 a← ak

24 [a holds the runs min value]
25 eai ← ERAi[er]
26 ai ← FindRoot(eai)
27 if a < ai then
28 UpdateTable(ai, a)

29 if a > ai then
30 UpdateTable(a, ai)
31 a← ai

The algorithm for the border merging for LSL (algo.
12) is close to the sequential version (algo. 10) except
that there is neither write to ERAi nor label creation.
Instead, there is an additional part (lines 25-31) to union
a, the min value of the upper runs with ai the root of
the lower run.

For the pixel-based algorithms one has to do the same
kind of modifications. As far as we know the authors
of the sequential algorithms cited in the first part have
never published any parallel version of their algorithm,
except a parallelization of Suzuki algorithm on Tile64
processor (see next section). So we have created a pixel-
based merge algorithm for all these algorithms.

The equivalence management algorithm remains un-
changed but has an additional part to merge the upper
labels with the lower label.

The mask topology has been modified. Considering
the Rosenfeld mask (fig. 13), there is no more e4 label.
The equivalences are computed between the top three
labels with bottom label ex that already has a value.
Moreover, because of this mask modification, the paral-
lel version of the RCM and HCS2 masks are now identical
to the Rosenfeld one.

If the sequential algorithm uses a decision tree, the
corresponding border merging uses a simplified one (as
there is no more new label) as described in figure 14.

e1 e2 e3
ex

Fig. 13 Rosenfeld parallel mask. RCM and HCS2 masks are
identical to Rosenfeld one.

e1

e3
e2

e1
1

0 1

1

0 1

0

label equivalence

label double equivalence

=
e2=ex

e3=exe1=ex e1=e3=ex

=  =

Fig. 14 8-connected parallel Decision Tree for a 4-pixel
mask. Label equivalence in dark gray and label double equiv-
alence in white

1.2.4 Related works on multicore processors

As far as we know, only 3 papers deal with parallel
CCL on multicore. These three papers present CCL al-
gorithms without features computation.

Niknam et al. [23] is the first paper presenting the
parallelization of Suzuki algorithm on a 16-cores AMD
Opteron 885. The max speedup is ×2.5 on 4 threads for
256×256. With 16 threads, the speedup falls to ×1.2.
The author’s explanation for poor performance is Non-
Uniform Memory Access (NUMA) issues and cache misses
for bigger images.

Chen et al. [6] presents the parallelization of Suzuki
algorithm on Tilera Tile64 processor. Border merging is
done in a pyramidal way. The best speedup (from three
algorithm variations) is around ×11.38 with 48 cores for
2000× 1500 images.
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Gupta et al. [9] presents a modification of HCS2 al-
gorithm. Suzuki equivalence management is replaced by
UF with ARemSP (for the sequential algorithm) and
PARemSP (for the parallel algorithm) optimizations.
ARemSP is the most efficient UF optimization among
35 variations according to [25]. The processor is a 2×12-
core AMD Magnycours. The best speedup is around ×10
with 24 threads for database images. The border merging
step is done in parallel with OpenMP locks. In order to
reach a higher level of performance, the authors must use
a 465.20 MB image for which they reached a speedup
of ×20.1. For HCS2-ARemSP we took their ARemSP
proposition but with a pyramidal merge instead of their
parallel merge.

1.2.5 Other existing works

Some algorithms were also designed for specific archi-
tectures like Bailey’s one [1][21] that targets Field Pro-
grammable Gate Array (FPGA) and smart cameras. The
Union-Find structure is still used to hold the labels equiv-
alence but this algorithm uses a stack in order to avoid
the non-determinist Find() function. The reason is that,
unlike general purpose processors, FPGA should imple-
ment algorithm in a data-independent way without a
While() loop in order to determine their clock frequency.
This algorithm was parallelized by Klaiber et al. in [18][17].

2 Benchmark methodology

We now present the images and the processors used for
the benchmarking.

2.1 Random images

Usually, papers evaluate CCL performance first with ran-
dom images (varying pixel density from 0% to 100%) for
hard-to-label benchmarks and secondly with image data
base. But data base can be biased and may favor some
algorithms. As we want our benchmark to be as fair as
possible (quite difficult with data-dependent algorithms)
we decided to select Mersenne Twister MT19937 [22] to
control the random number generation and to extend
random images by changing the pixel granularity. The
initial random image has a granularity of 1. Then we cre-
ate g-random images whose blocks of pixels have a size of
g×g (Fig. 16), with g ∈ [1 : 16]. This methodology high-
lights some algorithm behavior linked to the number of
labels and the image density. An important point is that
we propose a reproducible benchmark procedure [30]. As
the random number generator is not the rand function
provided into the libC library, but MT19937 generator
with seed equal to zero, our procedure can be exactly re-
produced by any reader.

The figure 15 provide the temporary labels distribu-
tion for granularity g ∈ {1, 2, 4, 8} for pixel-based, run-
based and Grana algorithms (red, magenta and blue).
The number of final labels (green), concavities (cyan)
and stairs (orange) is also provided.

First, if we compare run-based and pixel-based label
distribution, we can see that run-based curve always has
the same behavior (close to the final label curve), con-
trary to the pixel-based curve. The reason is that the
amount of concavities is proportionally constant (from
one granularity to another one) to the number of final
labels. For g ≥ 2, it appears that the amount of stairs
becomes bigger than concavities, and then the pixel-
based also proportionally generates more temporary la-
bels than for g = 1. That is the reason run-based algo-
rithms have a better execution time when g is growing:
they avoid more and more label creation.

Concerning Grana algorithm, it generates quite the
same number of temporary labels for g = 1 than pixel-
based ones. For g = 2 it comes closer to run-based algo-
rithms as its wide mask avoids many temporary labels.
But for g ≥ 4, its wide mask does not avoid label cre-
ation, as 4-pixel wide stairs and concavities are beyond
the pixel neighborhood.

The random benchmark protocol used is: random im-
ages with density d varying from 0% to 100% with a step
of 1%, and granularity g varying from 1 to 16 with a step
of 1. As the sequential results are intended to be com-
pared to the parallel results, we use the same image size
for the sequential benchmark than for the first step of
the parallel benchmark: 2048×2048. The parallel bench-
mark was also realized on 4096×4096 and 8192×8192
in order to evaluate the parallelization performance not
only from the number of cores point of view but also
from the amount of data point of view. As one machine
aggregates 60 cores (see next section), it is also impor-
tant to have images big enough – but still realistic – to
produce enough workload per core.

The following results are featured for three granular-
ities: first g = 1 as it is the worst configuration for all
algorithms, second g = 4 as it was the turning point
for sequential algorithms in previous works [4] and also
because with this granularity all pixel-based algorithms
are equal from the mask point of view, and third g = 16
(structured random images) to get the optimal behavior
of all algorithms close to the behavior with natural im-
ages.

2.2 Image data base

The Standard Image Data-Base (SIDBA) has been used
for natural image labeling. Gray-scaled images have been
automatically binarized with Otsu algorithm [24]. For
both random images and natural ones, we provide the



11

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 10  20  30  40  50  60  70  80  90  100

image density (%)

labels-pixel
labels-grana

labels-run
final labels

concavities
stairs

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10  20  30  40  50  60  70  80  90  100

image density (%)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10  20  30  40  50  60  70  80  90  100

image density (%)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10  20  30  40  50  60  70  80  90  100

image density (%)

Fig. 15 Distribution of labels, concavities and stairs versus
density for granularity g ∈ {1, 2, 4, 8}

cpp (cycles per point) of each algorithm with FC. As
the parallel algorithms are intended to handle more data
than sequential ones, we rescaled these images from 800×600
to 3200×2400 without anti-aliasing and named the re-
sulting database SIDBA4. As a matter of fact, the av-
erage density of the images used in this benchmark is
55.5% that is after the percolation threshold.

2.3 Benchmarked machines

For the benchmarks, we use two parallel machines with
processors belonging to server class to evaluate the im-

(a) g = 1 (b) g = 2 (c) g = 4

(d) g = 8 (e) g = 16 (f) g = 32

Fig. 16 random images with density = 35% at granularity
g ∈ 1, 2, 4, 8, 16, 32

Fig. 17 SIDBA database sample

pact of algorithm parallelization. The first one is a 2×12-
core Ivy-Bridge Xeon E5 2695v2 running at 2.4 GHz. The
second one is a 4×15-core Ivy-Bridge Xeon E7 8890v2
running at 2.8 GHz. As presented in the previous sec-
tion, the algorithms cannot scale perfectly for some rea-
sons: lot of control structures that is an issue for the
processors pipeline, many memory accesses for few com-
putations that is an issue for external memory and cache
and a pyramidal part that could not scale. So the par-
allelization on the 24-core dual-socket Xeon is intended
to generate a medium stress whereas the parallelization
on the 60-core quadri-socket Xeon is intended to gener-
ate the highest possible stress and to get an idea of the
behavior of future manycore processors.

Most of the results are focused on these two machines
because we want to compare the performance of paral-
lel LSL with the other algorithms for machines with lots
of cores. But in order to have results for more common
machines, we have also used two processors belonging to
workstation class.

The first one is a 4-core Sandy-Bridge i7-2600K pro-
cessor at 3.4 GHz, which architecture is close to the Ivy-
Bridge Xeon and a 4-core Skylake i7-6700K processor
running at 4.0 GHz. As these processors are separated by
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three generations (Ivy-Bridge, Haswell and Broadwell)
we can observe the impact of the architecture evolution
on the algorithm performance.

For all these processors, we use Intel C Compiler
2015. Processors are running at their nominal frequency
(SpeedStep and Turbo technologies being disabled) and
OpenMP is configured with compact mode to enforce
spatial locality of strips within caches.

2.4 Benchmark metrics

The metric used in the benchmarks is the execution time
measured in cycles per point (cpp), as processors have
different frequencies. It makes also the comparisons eas-
ier as three image size are benchmarked (2048×2048,
4096×4096 and 8192×8192). With cpp, the comparison
is straightforward, whereas with second or millisecond,
the reader has to apply a scaling factor (×4 or ×16).

In order to provide a direct comparison with the re-
lated works, some results are also expressed in millisec-
ond and in gigapixel per second. The cpp is useful to
compare two algorithms on the same architecture or the
same algorithm on two architecture while execution time
in ms and throughput in Gpixels/s are useful to compare
results from two publications and to get absolute results
for realtime execution.

It has been shown in [3] that, for a single-threaded
benchmark and for six generations of Intel processors
(Conroe, Penryn, Nehalem, Sandy-Bridge, Ivy-Bridge and
Haswell), the performance in cpp of the eight algorithms
are very stable. The key processor was the Nehalem which
introduces a new memory bus between the external mem-
ory and the cache hierarchy. On one side, Conroe perfor-
mance is close to Penryn one. On the other side, Sandy-
Bridge, IvyBridge and Haswell performance are close to
the Nehalem one. But Haswell is faster than Nehalem
thanks to its frequency increase, from 2.66 GHz up to
3.5 GHz.

This result enforces the utilization of cpp instead of
the execution time in seconds to compare algorithms and
architectures.

When an average cpp is provided, it is the average,
for a given granularity g of the cpp for all evaluated den-
sity d ∈ [0%, 100%].

3 Algorithms Variations

As described in the algorithms presentation, they can be
modified in many ways and more particularly with equiv-
alences management variations. In this part, we present

and analyze the performance differences between these
the variations.

The previously described benchmark procedure was
applied to twenty different algorithm variations. In this
section, we discuss Rosenfeld and HCS2 variations. Then,
we select a restricted set of algorithms with specific prop-
erties to make the subsequent tables and figures easier
to analyze.

3.1 Rosenfeld variations

Original Rosenfeld algorithm [27], introduces the CCL
principle and is a great canvas to challenge the various
optimizations that literature introduces since this first
communication. The Rosenfeld variations that are chal-
lenged here are: classical Rosenfeld, Rosenfeld + decision
tree (DT), Rosenfeld + path compression (PC), Rosen-
feld + decision tree + path compression (DT + PC),
Rosenfeld + quick-union (QU), Rosenfeld + decision tree
+ quick-union (DT + QU), Rosenfeld + decision tree +
ARemSP union-find (DT + ARemSP).
Random images:

Table 1 Rosenfeld Variations: Average cpp for granularity
g ∈ {1, 2, 4, 8, 16} on one IvyBridge core

granularity
algorithms g=1 g=2 g=4 g=8 g=16

Rosenfeld DT 31.41 19.73 14.24 12.08 10.95
Rosenfeld DT ARemSP 31.19 19.76 14.29 12.13 11.03
Rosenfeld DT PC 33.12 21.64 16.13 13.22 11.58
Rosenfeld DT QU 34.42 22.69 16.93 13.92 12.44

Rosenfeld 44.73 30.77 21.62 16.95 14.64
Rosenfeld PC 50.21 33.71 22.87 17.62 14.90
Rosenfeld QU 50.96 34.74 23.69 18.18 15.31

As figure 18 shows, optimizations have varying ef-
fect on the final result. There are two sets of algorithms,
those with a decision tree and those without. All the al-
gorithms using decision tree are very close with a thin
advantage to the Rosenfeld + DT variation, followed by
Rosenfeld DT ARemSP, Rosenfeld DT PC and Rosenfeld
DT QU, behind we find the classical Rosenfeld, followed
by Rosenfeld + PC and finally Rosenfeld + Quick Union.

Real case images:
For SIDBA4 results, Rosenfeld DT QU is first fol-

lowed by Rosenfeld DT PC, Rosenfeld DT ARemSP,
Rosenfeld + DT, the classical Rosenfeld, Rosenfeld PC
and finally Rosenfeld + Quick Union.

Results show that without decision tree some “opti-
mizations” have a negative impact on the performance
as PC or QU. For PC, each encountered label is com-
pressed even if it was already encountered in the same
mask neighborhood that is costly due to the systematic
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Fig. 18 Rosenfeld Variations: cpp for granularity g ∈
{1, 4, 16} and average cpp vs granularity with features com-
putation on one IvyBridge core

First Labeling Features               Free time 

Rosenfeld QU
13.72cpp

Rosenfeld PC
13.27cpp

Rosenfeld
13.09cpp

Rosenfeld DT
11.06cpp

Rosenfeld ARemSP
10.99cpp

Rosenfeld DT PC
10.70cpp

Rosenfeld DT QU
10.62cpp

Fig. 19 Rosenfeld Variations: average cpp on SIDBA4 im-
ages with features computation on one IvyBridge core, pie-
charts are normalized according to the slowest algorithm

while loop. But when a decision tree is used, the number
of labels to compress comes lower and the faster equiv-
alence solving introduce by PC is worthy. That is espe-
cially true on natural images where the number of labels
is lower than random images for a given density.

Finally, we select Rosenfeld + DT + PC as the repre-
sentative variation because it belongs to the best set and
in order to evaluate DT + PC behavior in a parallelized
context.

3.2 HCS2 variations

In [9], the authors propose HCS2 variation with UF with
DT+ARemSP. We challenged this version with the clas-
sical HCS2, HCS2 + decision tree, HCS2 + decision tree
+ Quick-Union.

Random images:

Table 2 HCS2 Variations: Average cpp for granularity g ∈
{1, 2, 4, 8, 16} on one IvyBridge core

granularity
algorithms g=1 g=2 g=4 g=8 g=16

HCS2 DT ARemSP 27.73 18.42 14.04 11.76 10.50
HCS2 DT 28.42 18.64 14.10 11.81 10.53
HHCS2 DT QU 28.83 18.57 13.80 11.61 10.56
HCS2 35.97 22.97 16.70 13.36 11.85

As for Rosenfeld, the most significant algorithm modifi-
cation is the decision tree, with a thin advantage to the
HCS2 DT ARemSP, followed by HCS2 DT, HCS2 DT +
QU and finally classical HCS2.

Real case images:
The relative order of the results is the same for SIDBA

than for random images. The difference between classi-
cal HCS2 and its variations only affects the first labeling
part.

These results confirm the assertion of [9] about the
performance of ARemSP for the HCS2 algorithm but
the difference with the DT variation is in the thick of
the line. Finally, we select HCS2 + DT + ARemSP as
the representative variation to provide direct comparison
with the results of [9].

3.3 Restricted algorithm set selection

These results allows us to select a representative set of
algorithms for the remainder of the paper:

– Rosenfeld: original Rosenfeld [27] algorithm with UF
memory management improved with DT and PC.

– Suzuki: 4-pixel mask with Suzuki tables management
[11] improved with DT,
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Fig. 20 HCS2 Variations: cpp for granularity g ∈ {1, 4, 16}
and average cpp vs granularity with features computation on
one IvyBridge core

First Labeling Features               Free time 

HCS2
11.29cpp

HCS2 DT QU
10.28cpp

HCS2 DT
10.14cpp

HCS2-ARemSP
10.14cpp

Fig. 21 HCS2 variations: average cpp on SIDBA4 images
with features computation on one IvyBridge core, pie-charts
are normalized according to the slowest algorithm

– Grana: block-based algorithm with 128-stage DT, us-
ing Suzuki management [8],

– RCM: pixel-based algorithm with Suzuki manage-
ment and DT [14],

– HCS2 DT ARemSP: block-based algorithm with UF
memory management (instead of Suzuki one) and im-
proved with Rem+Splicing optimization [9],

– HCS: run-based algorithm with Suzuki management
[12],

– LSL: run-based algorithm with either UF or Suzuki
management, with two variants: LSLSTD (standard
version, as systematic as possible) and LSLRLE (ver-
sion with compression).

These algorithms will be first studied in a sequential
context and then parallelized on various architectures.

4 Benchmarks Results and Analysis: Sequential
algorithms

4.1 Global Analysis

Density behavior: Figure 22 shows us that algorithms’
curves, for g = 1, are symmetrical about their maxi-
mum value. The abscissas of the maximum values are
contained in the [45%; 55%] area depending on the algo-
rithm. Concavities and stairs (fig. 15), lead to temporary
label creation and labels merging, they also increase the
probability of having more tests to perform in the deci-
sion tree (e.g., stair makes to traverse all the DT graph
until the label creation node “+1” - figure. 5) and doing
so, increase cpp.

One can observe that when the number of stairs and
concavities decrease (g comes higher) the density curves
tend to flatten.

Granularity influence: Table 3 and figure 22 describe
the behavior of algorithms faced to images of different
granularities. The main trend is that when g grows cpp
drops. First quickly for g ∈ {1, 2}, and then slowly for
g ∈ [2:16]. One can notice that LSLRLE is the most accel-
erated when granularity grows while LSLSTD is the most
regular. It comes from their construction as explained
in[19].

Above g = 2, RLE is the absolute fastest indepen-
dently of the equivalence management algorithm, and
LSLSTD is the most stable in cpp. One can notice that
while LSLSTD and all the pixel-based algorithms became
stable over granularity evolution (×1.1 between g = 8
and g = 16), LSLRLE is still accelerating (×1.3 between
g = 8 and g = 16).

The ARemSP optimization is efficient and makes HCS2

run as fast as HCS (without this optimization HCS2 was
one of the slowest pixel-based algorithm [4]).

Real case images: SIDBA4 natural images database
benchmark confirms random images conclusion.
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Fig. 22 Sequential algorithms: cpp for granularity g ∈
{1, 4, 16} and average cpp vs granularity with features compu-
tation on one IvyBridge core with random 2048×2048 images

We give the results for each algorithm (table 4) with
min, average and max values for processing time and
cpp, for direct comparison with others articles results
(considering that there is 16× more pixels in SIDBA4
than SIDBA). LSLRLE is first followed by LSLSTD, HCS,
HCS2-ARemSP, Rosenfeld-DT-PC, Suzuki-DT, Grana,
and RCM.

One can notice that LSLSTD is extremely stable in
execution time on all images: the variation is 1.1 ms
(< 7%) while the second most stable (LSLRLE) has a
variation of 2.4 ms.

4.2 In-Depth algorithm time-slicing analysis

In order to well understand the time distribution be-
tween each step of CCL algorithm, we monitored the

Table 3 Sequential algorithms: average cpp according to
granularity with features computation on one IvyBridge core,
with random 2048×2048 images

granularity
algorithms g=1 g=2 g=4 g=8 g=16

LSLRLE-Rosenfeld 18.29 8.99 5.27 3.66 2.84
LSLRLE-Suzuki 18.47 8.75 5.04 3.46 2.66

LSLSTD-Rosenfeld 13.88 8.05 6.03 5.23 4.86
LSLSTD-Suzuki 13.96 8.02 5.99 5.21 4.85

HCS 29.71 18.51 12.93 10.69 9.47
HCS2 DT ARemSP 26.97 17.07 12.45 10.61 9.70
Rosenfeld DT PC 31.35 19.94 14.54 12.02 10.76

Suzuki DT 32.58 21.02 14.68 12.03 10.81
Grana 34.89 20.09 14.91 12.41 11.24
RCM 33.23 21.49 15.89 13.33 11.98

Table 4 Sequential algorithms: average execution time and
cpp on SIDBA4 images with features computation on one
IvyBridge core at 2.4GHz

time (ms) cpp
algorithms min avg max min avg max

LSLRLE-Rosenfeld 5.2 6.4 7.9 1.64 2.01 2.47
LSLRLE-Suzuki 5.4 6.9 8.8 1.69 2.17 2.76
LSLSTD-Rosenfeld 15.8 16.4 16.9 4.92 5.11 5.28
LSLSTD-Suzuki 15.9 16.5 16.9 4.97 5.16 5.28

HCS 25.4 30.7 37.1 7.94 9.58 11.59
HCS2 DT ARemSP 26.9 32.5 39.1 8.40 10.14 12.21
Rosenfeld DT PC 28.9 34.2 40.6 9.03 10.70 12.69
Suzuki DT 30.6 37.5 45.0 9.57 11.72 14.06
Grana 32.3 38.2 45.3 10.09 11.95 14.17
RCM 36.7 41.0 46.4 11.47 12.80 14.49

first labeling and the features computation steps.

Random Images: One can see (fig. 23 & fig. 24), that
labeling and features computation parts are very similar
for all pixel-based algorithms, and have quite the same
duration.

The FC part is by far smaller for both LSL thanks
to run-length coding: first, min and max operations are
done only twice, for the beginning and the end of a run,
instead of as many times as there are pixels in the run.
Secondly, the statistical moment can be calculated inex-
pensively with the begin and the end indexes.

When g grows, the labeling part of LSLSTD is very
similar to pixel-based algorithms while as there are fewer
regions, these parts for LSLRLE become faster. For pixel-
based algorithms, as the duration of these parts decreases,
FC becomes the main part of the total computation time,
whereas, for LSL versions FC is so fast that it is a neg-
ligible part of the graph.

Furthermore, for a given density, there is a better
temporal and spatial cache locality for g = 4 than for
g = 1 (and a smaller amount of labels, and shorter de-
cision trees) that leads to a general cpp decrease. This
phenomenon can be observed when comparing figures 23
and 24. We can also observe that while the fraction of
FC (related to the total execution time in cpp) increases
for pixel-based algorithms, it remains approximatively
constant for LSL algorithms. Thus, the ratio between
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Fig. 23 Sequential algorithms: step analysis for g = 1 on
one IvyBridge core, with random 2048×2048 images

Fig. 24 Sequential algorithms: step analysis for g = 4 on
one IvyBridge core, with random 2048×2048 images

algorithms execution times increases with g.
If we focus on the ratio (fig. 25) between LSLRLE-Rosenfeld

and the best competitor – that is either HCS or HCS2

– we can see that the ratio increases with g (having in
mind that g = 1 is the worst configuration for a run-
based algorithm like LSL). The average ratio is ×1.9 for
g = 1, ×2.4 for g = 4 and reaches ×3.0 for g = 16.

For the FC step, the difference is bigger. These results
enforce the fact that run-based coding and line-relative
labeling (that avoids too many comparisons and tables
updates) make LSL algorithms intrinsically better than
all pixel-based algorithms.
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Fig. 25 LSLRLE-Rosenfeld vs best competitor (HCS2 DT
ARemSP/HCS) ratio on one IvyBridge core

Real case images: pie-graphs (fig. 26) show the time
repartition for SIDBA4 images. The average SIDBA4 cpp
compared to random images of granularity is in the in-
terval [8 → 16] for pixel algorithm and [12 → 16+] for
LSL versions. So random images with a granularity g = 1
are not representative of real use cases, they are just use-
ful to find the synthetic/theoretical worst case. However,
for a practical case, random images with g ≥ 4 are more
suitable. As for random images with high granularity, FC
is invisible for LSL algorithms, whereas it exceed half of
the whole processing time for all pixel-based algorithms.
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Fig. 26 Sequential algorithms: average cpp on SIDBA4 im-
ages with features computation on one IvyBridge core, pie-
charts are normalized according to the slowest algorithm
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4.3 Conclusions on sequential algorithms behavior

In this part, we exposed specificities of connected compo-
nent labeling algorithms, using an extensive benchmark
for in-depth analysis. That confirms that LSL algorithms
are the fastest CCL algorithms. That highlights too that
full run-based algorithms are necessary to reduce the
features computation part and RLE variation provide
a ×2.5 speedup over STD for SIDBA4.

In order to take another step in CCL algorithm accel-
eration, we will now focus on the multi-core adaptation
of all these algorithms. That is the topic of the following
parts.

5 Benchmarks results and analysis: parallel
algorithms

5.1 Parallel benchmark on a 2×12-core Ivy-Bridge

Global benchmark: Figure 27 and table 5 provide the
execution time in cpp. Two points can be noticed. First,
for g ∈ [1, 4], the equivalence management algorithm has
a major impact. The Suzuki management generates a
loss of performance around the percolation threshold –
here, for d ∈ [40%, 60%], whereas Union-Find (with or
without optimization like DT and PC) does not induce
such a dysfunction. The impact is very important for
g = 1 and still observable for g = 4. Second point, LSL
algorithms outperform all other algorithms.

Detailed Analysis: figure 30 focuses on the cpp of each
algorithm step (first labeling in green, features computa-
tion in red and border merging in yellow) and highlights
two points for g = 1.

First, the Suzuki equivalence management issue only
affects the border merging step. For g = 1 (fig. 30) and
density = 43%, one can notice that the merge part for
Suzuki management based algorithms take 44% or more
(58%for RCM) of the total time. For Rosenfeld (UF)
management, the pyramidal implementation is very effi-
cient for all algorithms and does not represent more than

Table 5 cpp for granularity g ∈ {1, 2, 4, 8, 16} on a 2 × 12-
core Ivy-Bridge at 2.4GHz, with random 2048×2048 images

granularity
algorithms g=1 g=2 g=4 g=8 g=16

LSLRLE-Rosenfeld 0.86 0.45 0.28 0.20 0.16
LSLRLE-Suzuki 1.02 0.50 0.29 0.20 0.16
LSLSTD-Rosenfeld 0.68 0.41 0.30 0.26 0.24
LSLSTD-Suzuki 0.83 0.45 0.31 0.26 0.24

HCS 1.68 1.07 0.72 0.59 0.53
HCS2-ARemSP 1.37 0.93 0.71 0.60 0.54
Rosenfeld DT PC 1.60 1.05 0.77 0.64 0.57
Suzuki 1.74 1.10 0.73 0.60 0.53
Grana 1.89 1.06 0.79 0.65 0.59
RCM 2.13 1.22 0.87 0.72 0.67
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Fig. 27 cpp vs granularity for g ∈ {1, 4, 16} and average
cpp vs granularity with FC on a 2× 12-core Ivy-Bridge, with
random 2048× 2048 images
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Fig. 29 Average cpp vs granularity on a 2×12-core Ivy-
Bridge, for random images with size ∈ {4096× 4096, 8192×
8192}

8% of the total cpp. Second, the shape of the curves of
the parallel versions is very similar to the sequential ones.

Real case images: Figure 34 highlights the efficient
speedup of all algorithms and the evolution of the cpp
of the different steps. On a 2×12-core Ivy-Bridge proces-
sor, LSLRLE computes the SIDBA4 images in the aver-
age time of 0.15 ms achieving a speedup of ×13.4. For
SIDBA4 the ratio between LSLRLE and the best pixel-
based algorithm is ×3.7.

Dependency to the image size: as figure 29 shows,
all pixel-based algorithms slow down when the image size
increase, especially Grana.

But in that case, LSLRLE is even more efficient due to
its RLE compression. Figures 32 and 33 show that, while
all pixel-based algorithms and LSLSTD have a first la-
beling part uncorrelated with the image density that ex-
press a strong dependency to the memory performance,
LSLRLE has the same behavior than for smaller images.

Indeed, a constant first labeling part means that whether
or not there is foreground pixel in the image, the com-
putation time of the neighborhood remains constant.

5.2 Parallel Benchmark on a 4×15-core Ivy-Bridge

Global benchmark: Figure 35 and table 6 provide the
execution time in cpp. Two points can be noticed. First,
the dysfunctional behavior of the algorithms based on
the Suzuki equivalence management around the percola-
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Fig. 30 Execution time (cpp) decomposition for g = 1 on a
2×12-core Ivy-Bridge, with random 2048×2048 images
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Fig. 31 Execution time (cpp) decomposition for g = 4 on a
2×12-core Ivy-Bridge, with random 2048×2048 images
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Fig. 32 Execution time (cpp) decomposition for g = 1 on a
2×12-core Ivy-Bridge, with random 8192×8192 images
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Fig. 33 Execution time (cpp) decomposition for g = 4 on a
2×12-core Ivy-Bridge, with random 8192×8192 images
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Fig. 34 Average cpp on SIDBA4 images with features com-
putation on a 2×12-core Ivy-Bridge, pie-charts are normal-
ized according to the slowest algorithm

Table 6 cpp for granularity g ∈ {1, 2, 4, 8, 16} on a 4 × 15-
core Ivy-Bridge, with random 2048× 2048 images

granularity
algorithms g=1 g=2 g=4 g=8 g=16

LSLRLE-Rosenfeld 0.49 0.30 0.21 0.17 0.15
LSLRLE-Suzuki 0.66 0.34 0.22 0.17 0.14
LSLSTD-Rosenfeld 0.41 0.28 0.22 0.20 0.18
LSLSTD-Suzuki 0.59 0.32 0.23 0.19 0.17

HCS 1.04 0.69 0.52 0.47 0.45
HCS2 DTARemSP 0.77 0.59 0.54 0.51 0.50
Rosenfeld DT PC 0.85 0.63 0.52 0.48 0.47
Suzuki DT 1.07 0.71 0.53 0.48 0.46
RCM 1.39 0.78 0.62 0.57 0.55
Grana 1.11 0.71 0.60 0.53 0.51

tion threshold for g ∈ [1, 4] is enforced with more cores.
Second, the LSLRLE is the absolute fastest above g = 3
and LSLSTD is faster than all the pixel-based algorithms
in any conditions (from g = 1 to g = 16), meaning that
no pixel based algorithm can achieve a CCL faster than
LSLSTD whatever the image complexity is.

Detailed Analysis. Figures 37 and 38 provide two pieces
of information. As for the 2×12-core configuration, the
dysfunctional behavior of the algorithms based on the
Suzuki equivalence management comes from the merge
part. For g = 1 (fig. 30) and density = 43%, one can no-
tice that the merge part for Suzuki management based
algorithms take 62% or more (72% for RCM) of the to-
tal time. For Rosenfeld equivalence management based
algorithms, the merge part increases too but remains un-
der 25% of the total cpp. Indeed, the first labeling and
the FC parts were accelerated while the number of steps
increase. The merge part is linked to the number of cores
p by a dlog2(p)e relation due to the pyramidal merging,
so with this setup there is one more merging step than
with the 2×12-core setup. One can notice that for the
Grana algorithm, the FC part decrease less than for the
others.

SIDBA4: The algorithms react differently when the core
number increases. For RCM, the proportion of the first-
labeling part increases whereas it decreases for the oth-
ers pixel-based algorithms. As previously, the FC part
for LSL is small, and one can notice that LSLSTD takes
more advantage of the increase in the number of cores
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Fig. 35 Average cpp vs granularity on a 4×15-core Ivy-
Bridge, for random images with size ∈ {2048× 2048, 4096×
4096, 8192× 8192}

than LSLRLE. Due to the RLE compression, the LSLRLE

parallel efficiency decreases for a lower number of proces-
sors than for the other algorithms. However, the execu-
tion time remains better than for all the other competi-
tors.

As said in the parallel algorithms section, the merge
part prevents the algorithm to have a perfect scaling.
We can observe here that in the case of “small” im-
ages compared to the number of available cores/threads
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Fig. 36 Average cpp for SIDBA4 images with features com-
putation on a 4×15-core Ivy-Bridge, pie-charts are normal-
ized according to the slowest algorithm

(2048×2048 image with a 4×15-core machine) the merge
part is becoming significant. For SIDBA4, the merge is
proportionally longer than the FC (fig. 36 vs fig.34) and
even quite as long as the first labeling for LSLRLE.

Dependency to the image size: The figure 35 present
the average cpp evolution for an image size of 2048×2048,
4096×4096, 8192×8192. As for the 2×12-core Ivy-Bridge,
when the image size is 8192×8192 all the pixel-based al-
gorithms have a constant first labeling part. However,
on this machine when the image size is 4096×4096, the
performance is better than for 2048×2048.

6 Performances evolution across number of
cores and image size

To summarize the evolution of the LSLRLE (with UF
equivalence management) performance depending on the
architecture and the image size, we provide the tables 7
and 8 where we report the execution time (in ms) and
the throughput (in Gpixel/s). HCS2 DT ARemSP has
been selected as the fastest competitor. Table 9 provides
the performance ratio between LSL and HCS2 on the
four machines.

There are two kinds of results depending on the socket
number. For mono-socket machines, the max performance
is reached for 2048×2048 images and sustained until 8192
×8192 images. We can also notice the performance evolu-
tion of the i7 processor family: the Skylake is ×1.7 faster
than the SandyBridge. Real-time (≤40 ms for a camera
frame rate of 25 images/s) is achieved for all configu-
rations, except the SandyBridge for 8192×8192 images
with HCS2 algorithm. On the same machines, the LSL is
around ×3.7 faster than HCS2. The sustainable through-
puts of HCS2 and LSL on the Skylake are respectively
1.8 and 6.6 Gpixel/s.

For multi-socket machines, the performances of LSL
and HCS2 diverge. For LSL performance increases with
the image size whereas for HCS2, it decreases. For LSL,
the peak performance is reached for 4096×4096 images
for the 2×12-core and 8192×8192 for the 4×15-core ma-
chine. LSL reaches 42.4 Gpixel/s while HCS2 reaches
only 5.8 Gpixel/s.

The performance ratio that was ×3.7 on 4-core Sky-
lake reaches ×10.8 on 4×15-core IvyBridge. The reason
of the HCS2 performance loss is that – like all pixel-based
algorithms – HCS2 is memory bound. That is the reason
why LSL on a 4-core skylake is faster than HCS2 on a
multi-socket machine.

As long as data (binary image of pixels, image of la-
bels) fit in the cache, the performance can scale. But
when it is no longer the case, there are too many cache
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Fig. 37 Execution time (cpp) decomposition for g = 1 on a
4×15-core Ivy-Bridge, with random 2048×2048 images
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Fig. 38 Execution time (cpp) decomposition for g = 4 on a
4×15-core Ivy-Bridge, with random 2048×2048 images
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Fig. 39 Execution time (cpp) decomposition for g = 1 on a
4×15-core Ivy-Bridge, with random 8192×8192 images
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Fig. 40 Execution time (cpp) decomposition for g = 4 on a
4×15-core Ivy-Bridge, with random 8192×8192 images
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misses resulting in a cpp increase. That is what we call
a cache overflow. In order to highlight that issue, we
have benchmarked LSL and HCS2 in a different way.
The have selected the quad-socket IvyBridge and we run
the algorithms on one, two, three or four sockets (with
OpenMP affinity in compact mode and still without hy-
perthreading). This benchmark is done for three densi-
ties: g ∈ {1, 4, 16}. If we look first at LSL performance
(fig. 41), we can see that neither the granularity nor the
image size has an impact of the cpp: all the curves are
horizontal. In fact, there is a very small cache overflow
but the image scale makes it not noticeable. If we now
focus on the HCS2 performance, we can observe cache
overflows. For g = 1, the magnitude of cache overflow is
small for 1,2 and 3 sockets. For four sockets, it is signif-
icant: for 10K images, the 4-socket cpp is the same than
the 3-socket one (around 0.9 cycle/pixel). For g = 4 and
10K images, all the cpp are smaller and then put more
stress on the memory busses: both 3-socket and 4-socket
cpp converge to the 2-socket ccp. For g = 16 all the cpp
are even smaller, the stress is even higher and all the cpp
converge to the same value.

For HCS2, using a high-end multi-socket machine is
only efficient for images that fit in the cache (except for
irrealistic random images with g < 4). Thanks to its RLE
compression, LSL does not stress the memory buses too
much, and then can scale on multi-socket machines.

Table 7 Execution time (in ms) and throughput (in
Gpixel/s) of LSLRLE, for 20482, 40962, 81922 and 3200×2400
SIDBA4 images

random images SIDBA4
machines 2048 4096 8192

SDB1×4
t(ms) 1.1 4.3 17.4 2.0

Gpixel/s 4.0 3.9 3.9 3.8

SKL1×4
t(ms) 0.65 2.6 10.2 1.0

Gpixel/s 6.8 6.6 6.6 7.5

IVB2×12
t(ms) 0.31 1.05 4.2 0.48

Gpixel/s 13.3 16.0 16.0 16.0

IVB4×15
t(ms) 0.24 0.50 1.6 0.27

Gpixel/s 17.5 33.3 42.4 28.0

7 Conclusion

In this paper, we have presented the parallelization of
the Light Speed Labeling algorithm for multi-core gen-
eral purpose processors and compared it to our paral-
lelized versions of State-of-the-Art algorithms. As far as
we know, this paper is the first to present efficient par-
allelization of connected component labeling algorithms
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Fig. 41 cpp vs size for granularity for g ∈ {1, 4, 16} on a
4× 15-core Ivy-Bridge for LSLRLE

15-Core 60-Core45-Core30-Core

2K 3K 4K 5K 6K 7K 8K 9K 10K
Size

0.0

0.5

1.0

1.5

2.0

cp
p

2K 3K 4K 5K 6K 7K 8K 9K 10K
Size

0.0

0.2

0.4

0.6

0.8

1.0

cp
p

2K 3K 4K 5K 6K 7K 8K 9K 10K
Size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

cp
p

Fig. 42 cpp vs size for granularity for g ∈ {1, 4, 16} on a
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23

Table 8 Execution time (in ms) and throughput (in
Gpixel/s) of HCS2 DT ARemSP, for 20482, 40962, 81922 and
3200×2400 SIDBA4 images

random images SIDBA4
machines 2048 4096 8192

SDB1×4

t(ms) 3.7 14.8 58.0 7.8
Gpixel/s 1.1 1.1 1.2 1.0

SKL1×4

t(ms) 2.4 9.4 37.4 4.9
Gpixel/s 1.8 1.8 1.8 1.6

IVB2×12

t(ms) 0.94 5.9 34.1 1.9
Gpixel/s 4.4 2.8 2.0 4.0

IVB4×15

t(ms) 0.75 4.3 17.0 1.3
Gpixel/s 5.6 5.8 3.9 6.1

Table 9 Ratio of cpp between the fastest pixel-based algo-
rithm and LSLRLE, for g = 16

Image size
machines 2048 4096 8192

SDB1×4 × 3.5 × 3.4 × 3.3
SKL1×4 × 3.6 × 3.7 × 3.7
IVB2×12 × 3.0 × 5.7 × 8.1
IVB4×15 × 3.1 × 5.7 × 10.8

on multi-core processors.

In order to be efficiently parallelized, we have ex-
plained and detailed why the features computation should
be done on-the-fly during the first labeling, and the merge
should be done in a pyramidal way.

The benchmarks have shown that for low granularity
images, the Suzuki equivalence management algorithm
has a major dysfunction and so, the classic Union-Find
is the only choice for all parallel algorithms.

The paper enforces the results of the previous ones
dealing with sequential comparisons: LSL is intrinsically
faster than all other pixel-based algorithms as it is fully
run-based (then producing less temporary labels than
pixel-based algorithms) and uses RLE compression to
reduce the amount of memory accesses and so the stress
on memory busses.

Moreover, we show also that all the pixel-based algo-
rithms are memory bound and so are inefficient and do
not scale on multi-socket machines whereas LSL scales
with the image size and the number of cores.

As a matter of fact, LSL is ×3.7 faster than its best
competitor for 2048×2048 images and on a 4-core Sky-
lake where it sustains a throughput of 6.6 Gpixel/s. LSL
becomes up to ×10.8 faster than its best competitor on
a 4×15-core Ivy-Bridge for 8192×8192 images and sus-
tains a throughput of 42.4 Gpixel/s.

In future works, we will design new algorithms for ac-
celerators like Xeon-Phi and GPUs. We will also consider

the port of LSL on many-core architecture for which no
efficient implementation has been yet proposed.
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