
HAL Id: hal-01361101
https://hal.science/hal-01361101v1

Submitted on 24 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new SIMD iterative connected component labeling
algorithm

Lionel Lacassagne, Laurent Cabaret, Daniel Etiemble, Farouk Hebbache,
Andrea Petreto

To cite this version:
Lionel Lacassagne, Laurent Cabaret, Daniel Etiemble, Farouk Hebbache, Andrea Petreto. A new
SIMD iterative connected component labeling algorithm. Principles and Practice of Parallel Program-
ming / WVMVP, ACM, Mar 2016, Barcelone, Spain. �10.1145/2870650.2870652�. �hal-01361101�

https://hal.science/hal-01361101v1
https://hal.archives-ouvertes.fr

A new SIMD iterative connected component labeling algorithm

Lionel Lacassagne
Laboratoire d’Informatique de Paris 6 (LIP6)

Univ. Pierre et Marie Curie
lionel.lacassagne@lip6.fr

Laurent Cabaret
Daniel Etiemble
Farouk Hebache
Andrea Petreto

Laboratoire de Recherche en Informatique (LRI)
Univ. Paris-Sud

firstname.name@lri.fr

Abstract
This paper presents a new multi-pass iterative algorithm for Con-
nected Component Labeling. The performance of this algorithm is
compared to those of State-of-the-Art two-pass direct algorithms.
We show that thanks to the parallelism of the SIMD multi-core pro-
cessors and an activity matrix that avoids useless memory access,
such algorithms have performance that comes closer and closer to
direct ones. This new active-tile iterative algorithm has been bench-
marked on four generations of Intel Xeon processors: 2×4-core
Nehalem, 2×12-core Ivy-Bridge, 2×14-core Haswell and 57-core
Knight Corner. Macro meta-programming was used to design a
unique code for SSE, AVX2 and KNC SIMD instruction set.

Keywords Connected Component Labeling algorithm, SIMDiza-
tion, SSE, AVX, KNC, Intel Xeon-Phi, direct vs iterative algo-
rithms.

1. Introduction
Some algorithms exist in two versions. One version is usually
named direct and run in a fixed number of iterations (classically
one or two) whereas another one is iterative with much more itera-
tions than the first one. Such algorithms exist in linear algebra and
in image processing fields. As SIMD and multicore parallelisms are
present in all processors and their degree increase continuously, one
can wonder whether a brute-force iterative algorithm combining
SIMD and multi-threading can match the performance of a smart
direct algorithm using only multi-threading (direct algorithms can-
not use SIMD).

This paper introduces the implementation of a new iterative
connected component labeling (CCL) algorithm that uses SIMD,
OpenMP and tiling to reduce the number of iterations and thus ac-
celerate its execution. CCL algorithms have been selected as they
are used in many applications in computer vision (video surveil-
lance, motion detection, motion tracking, optical characters recog-
nition) and are part of other algorithms in image processing (hole
filling, Euler number computing, hysteresis thresholding, max-tree

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WPMVP ’16, March 13 2016, Barcelona, Spain.
Copyright c© 2016 ACM 978-1-4503-4060-1/16/03. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2870650.2870652

computation, level-sets computation). They are also representative
of a class of algorithms (discrete geometry, mathematical morphol-
ogy) and so, optimizing them will help to optimize/transform/re-
design the algorithms of the same class.

Our contribution consists in two elements:

• a new SIMD iterative algorithm with tiling,
• some benchmarks for parallel versions on multiple architectures

with various SIMD (SSE, AVX2, and KNC),
• a comparison with State-of-the-Art direct algorithms.

The paper is organized as follows: the first section quickly
presents the State-of-the-Art CCL algorithms and details our new
iterative algorithm. The second section presents the benchmarks
run on a representative set of processors with all available Intel
SIMD extensions (SSE, AVX2, and KNC). The performance of our
new algorithm is analyzed and compared to direct algorithms.

2. Algorithms

1 01 1 1 1
1 1

1111
1

11 1 1
1
11111

1

1 1 1
1

1

1
1 1

1
11111

1

0 0 0 0
0 0 0 0 0 0 0 0

0 0 0
0 00 00 0

0 0 0 00
0 0

0
0

0 0 0
0 00 0

0

1 02 3 4 5
7 8

13121110
17

1918 20 21
25
3332313029

24

14 15 16
9

6

27
22 23

28
3837363534

26

0 0 0 0
0 0 0 0 0 0 0 0

0 0 0
0 00 00 0

0 0 0 00
0 0

0
0

0 0 0
0 00 0

0

1 0
1 1

1111
1

11 1 1
1
11111

1

6 6 6
6

6

22
22 22

22
2222222222

22

0 0 0 0
0 0 0 0 0 0 0 0

0 0 0
0 00 00 0

0 0 0 00
0 0

0
0

0 0 0
0 00 0

0

1 1 1 1

Figure 1. Labeling and min+ propagation. Top: binary image,
bottom left: initial labels, bottom right: labels after propagation
reaches a stabilized state

2.1 State-of-the-Art direct algorithms
Historical algorithms were designed by pioneers like Rosenfeld
[24], Haralick [10] and Lumia [19] who designed pixel-based

algorithms, Ronse [23] for run-based algorithms. Modern algo-
rithms derive from the algorithms of the 80’s and try to make
improvements by replacing some components by more efficient
ones. An extensive bibliography can be found in [12] and [28].
Except Contour Tracing algorithm [6] that is aesthetic but inef-
ficient, all modern algorithms are direct and require two-pass or
less. None is a data-dependent multi-pass iterative algorithm. They
share the same three steps: 1) the first labeling, that assigns a tem-
porary/provisional label to each pixel and builds labels equivalence,
2) the label equivalences solving, that computes the transitive clo-
sure of the graph associated with the label equivalence table and 3)
the final labeling (optional), to replace temporary label by the final
label (usually the smallest one of the component).

They mainly differ on two points: the mask topology (pixel-
based or run-based) and the equivalence management algorithm.
There are two main equivalence management algorithms: the tra-
ditional Union-Find (UF) algorithm [7] usually associated to the
original Rosenfeld algorithm and the Suzuki one that requires three
tables [12]. As it had been shown in [5], Suzuki algorithm is not
efficient for parallelized algorithms with random images (with a
granularity of 1), we only use algorithms with UF management.

These direct algorithms – designed for CPUs – were paral-
lelized and benchmarked on 2 × 12-core Intel IvyBridge Xeon
and on a 4 × 15-core Intel IvyBridge Xeon for 2K, 4K and 8K
images [4][5]. It appears that the fastest pixel-based algorithm is
HCS2 −ARemSP [9] and the fastest one is the Light Speed La-
beling (LSLRLE) that is described in details in [16]. These two
algorithms will be used in this article as a reference for direct al-
gorithms. An important point to notice is that, unlike the iterative
algorithms, the direct one cannot be SIMDized because some con-
currency issues cannot be addressed with existing SIMD instruc-
tion set like voting and SIMD reduction within an array. Such an
issue should be efficiently solved by AVX512 conflict instruc-
tion. Some algorithms were designed for specific architectures like
Bailey’s one [1][20] that uses a stack in order to avoid the non-
deterministic Find() function. This algorithm was parallelized by
Klaiber et al. in [14][15]. Some algorithms were also designed for
GPUs [13][29] but are still slower (1 - 2 GPixels labeled per sec-
ond) than FPGA ones (up to 3.2 GPixel/s) and those for general
purpose processors (18 GPixel/s).

2.2 Iterative algorithms
Today, from an architecture point of view, the SIMD and multicore
parallelisms are present in all processors. Then not using SIMD
into an algorithm could lead to a loss of performance. Revisiting
old iterative algorithms by adding them SIMD, adapting them to
current architectures and transforming them into cache aware algo-
rithms is a challenge as SIMD emphasizes the memory bandwidth
issue.

For Haralick, who designed the first iterative CCL, the moti-
vation was the amount of memory physically available in 1981
into a computer to run the algorithm. The idea of Rosenfeld to use
an equivalence table and a second image of labels was not really
relevant in 1966 as it required twice more memory than Haralick
algorithm.

But the best argument to study again such kind of iterative algo-
rithms may be to cite Haralick himself as his argument make sense
today again. He wrote page 32 of his book [11]: “The iterative al-
gorithm [10] uses no auxiliary storage to produce the labeled image
from the binary image. It would be useful in environments whose
storage is severely limited or on SIMD hardware.” At this time,

SIMD (Single Instruction Multiple Data, according to Flynn tax-
onomy) hardware is a parallel computer composed of independent
processors running the same instruction at the same cycle.

2.2.1 The embarrassingly parallel iterative algorithm
This algorithm is not the first designed algorithm, but it is the
most frequently encountered as it can be easily parallelized with
OpenMP. This algorithm considers two images of labels, one for
the input and another one for the output. It is a two-stage algo-
rithm. The first stage consists in providing a temporary label to
each non-zero pixel (fig. 1, bottom left). The second stage consists
in computing the minimal positive value over a neighborhood (typi-
cally 3×3 like fig. 2) in the input image and writing this new value
in the output image. All these computations are independent and
can be done in parallel. The procedure is repeated (the output be-
comes the input) until there is no more change (fig. 1, bottom right).
The parallelization is straightforward: cut the image into horizon-
tal strips with a # pragma omp parallel for loop. Note that
in this paper we only consider 8-connectivity (each label has eight
neighbors) and not 4-connectivity. This choice has only an impact
on the number of iterations that is higher in 4-connectivity.

x
ba

d
c
e

gf h

Figure 2. extraction of the positive min value over a 3 × 3 neigh-
borhood

This algorithm has a major drawback: the number of iterations
is data-dependent and cannot be predicted. Figure 3 focuses on this
propagation issue. For a 5× 5 square, after the initial labeling, five
iterations are required: four to reach the stability and another one
to detect it. But for the same 5 × 5 square with a hole inside, the
number of iterations reaches eight.

2 3 4 5
6 7 8 10
12 13 14 15

16
11

9

17 18 19 20
21 22 23 24 25

2 3 4
2 4

6 7 8 9
11
6

3

11 12 13 14
16 16 17 18 19

32
2

32
6

3

6 6 7 8
11 11 11 12 13

2

2
2

2
6 6 6 6 7

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1

1 1
1 1

1

1

2 3 4 5
6 7
8

10
12 13 14 15 16

11
9

2 3 4

6 7
8

10 11
9

4

1110 13

2 3
3

6 7
8 9

4

98 10

2
2

4
6 7

3

76 8

3
4

2

46
2
33 2

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 1 1 1
1

1 1 1 1 1

1
1
1

1
1

1 1 1 1 1

1

1
1
1

1 1 1

1
1
1

1 1 1 1 11 1 1 1 1

1

1
1
1

1

1
1
1

1
1

1 11

1

1 1 1 1 11
1
1

1 1 1 1
1
1
1

1

Figure 3. Impact of the shape on labels propagation. Top: 5 iter-
ations for a full 5 × 5 square, bottom: 8 iterations for the same
square with a hole. labels in light gray are not stabilized, labels in
dark gray are stabilized

The number of iterations is directly related to the geodesic dis-
tance computation. For a convex shape, the geodesic distance of
two points is the classical Euclidian distance (straight line). But for
a concave one, it is the length of the shortest path inside the shape
that does not cut its boundary. In other words, it is a constrained
distance. The number of iterations is the longest geodesic distance
between two pixels belonging to the shape plus one. Figure 4 pro-
vides four examples of geodesic distances (gd) for 5 × 5 shapes.

For the full square, the longest geodesic distance is the length of
the diagonal (in discrete geometry).

Examples of worst cases (which set is not always countable) are
a Z and a spiral, with gd = 12. The spiral is usually considered as
the most famous worst case as for a n × n image, the number of
iterations is proportional to n2/2. That explains why the number of
iterations cannot be evaluated and why this algorithm is not suited
to real-time implementation (as its upper bound is too high) and
why such algorithms are never used today.

0 1 2 3 4
4

7
8
9 9 10 11 12

6 558

0 1 2 3 4
4

79
6
5

7810
10
11 11 12

1 2 3 4
2 2 3

3 3 4
4
3

4

4 4 4

0 1 2 3 4
1
2

4
3

0 1 2 3 4
1 4
2
3
4 4 5 6 7

6
5

Figure 4. Geodesic distance of four 5×5-pixel shapes. From left to
right: full square (gd=4), square with a hole (gd=7) a “Z” (gd=12)
and a spiral (gd=12)

Some optimizations exist for this algorithm like using a larger
neighborhood, but a 5× 5 will only halve the number of iterations
compared to a 3 × 3 (and will increase the stress on the bus
connected to the external memory). The mathematical properties
of the min+ operator (associativity and idempotence) could also
be used to factorize the operator, but it will not be enough to reach
real-time processing. The most efficient transform is to make the
algorithm pixel recursive.

2.2.2 The pixel recursive algorithm
The pixel recursive algorithm consists in using only one image for
input and output. By writing the minimal positive value into the in-
put image, it makes this value available for the computations related
to the pixels connected to the current one. To take advantage of this
information the pixels should be scanned in order, typically from
left to right and from top to bottom (called forward scan). That
creates a serialization into the algorithm (that make it unsuitable
for GPUs). The positive min value cannot be propagated beyond
the element of parallelization (typically a set of lines). Moreover,
the propagation is no more isentropic.

Considering an image composed of only one connected compo-
nent and the min positive value in x (fig. 5 left), the forward scan
will propagate it in the area in gray. Such an asymmetry makes
shapes that required the same number of iterations with the pre-
vious algorithm (because they have the same max geodesic dis-
tance) to require a different amount of iterations. There are four
ways to scan the image : {from left to right, from right to left} ×
{top - down, bottom-up}.

The optimal number of iterations (for unknown random images)
is reached when the four scan ways are used alternatively. But for
efficient cache usage, only the forward and the backward (bottom-
up, from right to left) (fig. 5, right) scans will be used. Considering
the scanning order, some labels of the 3 × 3 mask are useless as
they will be used by the opposite scan. That makes the 3× 3 mask
(where nine labels should be read to produce a value) to be split
into two masks – known as Rosenfeld masks (fig. 7) in the litera-
ture – that require only five values instead of nine to compute the
positive min. One for the forward scan and one for the backward
scan.

Figure 8 shows the number of iterations for the embarrassingly
parallel (EP), the pixel-recursive forward algorithm (F) and the

x x

Figure 5. Instantaneous propagation of the min value in x to the
whole area in gray

x
ba

d
c

Figure 6. Extraction of the positive min value over the Rosenfeld’s
mask

x
ba

d
c

x
b a

d
c

Figure 7. Forward and backward Rosenfeld masks

pixel-precursive forward-backward algorithm (FB) for an image
of size n× n (n = 128). For g = 1, the max number of iterations
is close to the percolation threshold (d = 50%). For d = 100%,
the graph of the EP algorithm is close to the horizontal asymptote
iter = n that is the max geodesic distance (here iter = n = 128).

algorithm EP F FB
granularity max avg max avg max avg
g = 1 252 102 112 21.2 25 5.9
g = 4 232 110 95 20.5 14 4.3
g = 16 176 96 34 15.9 3 2.2

Table 1. Max and average number of iterations, for EP , F and
FB scans, for g ∈ {1, 4, 16}

The Haralick original algorithm is the pixel-recursive one with
Forward and Backward masks (fig. 7) and not the embarassingly
parallel algorithm with the 3×3 mask.

2.2.3 A new SIMD pixel-recursive algorithm
In the following section, we only consider 128-bit integer register
in order to simplify the explanation and reduce the size of the fig-
ure. The extension to 256 and 512-bit register is straightforward as
all the different steps of the SIMD algorithm can be coded in each
SIMD instruction set existing today.

The SIMDization of the positive min value of five labels (a, b,
c, d and x) (fig. 9) is quite complex and computing the positive min
of five SIMD register is not enough (fig. 10). One must propagate
the positive min value within the register, taking into account the
presence of zeros that stop the propagation.

This is done with a do-while loop whose exit condition written
in SSE (and AVX) is the combination of a comparison and a reduc-
tion instruction that converts an SIMD register of flags into a scalar
(typically mm cmpeq epi32 and mm movemask epi8). In KNC,
only one instruction is required (mm512 cmpeq epi32 mask) as
the result of the comparison is directly a 32-bit integer. As a matter
of fact, the SIMD code requires about fifty SIMD instructions.

0 10 20 30 40 50 60 70 80 90 100
Density (%)

0

50

100

150

200

250

300

#I
te

ra
ti

on
s

EP F FB

0 10 20 30 40 50 60 70 80 90 100
Density (%)

0

50

100

150

200

250

#I
te

ra
ti

on
s

0 10 20 30 40 50 60 70 80 90 100
Density (%)

0
20
40
60
80

100
120
140
160
180

#I
te

ra
ti

on
s

Figure 8. Number of iterations of the EP algorithm (red), the
pixel-recursive F algorithm (green) and the pixel-recursive FB
algorithm (blue) for 128× 128 images

x
ba

d
c

x0
b0a3

d3
c0

x1 x2 x3
b1 b2 b3

Figure 9. Forward SIMD Rosenfeld mask

x0

b0

x1 x2 x3

b1 b2 b3
b0a3 b1 b2

c0b1 b2 b3
x0d3 x1 x2

Figure 10. extraction of the positive min value of 5 SIMD registers

For a given connected component and a set of equivalence la-
bels, the iterative algorithm can be viewed as a greedy algorithm
that, propagates the minimum positive value over a neighborhood
(typically 3× 3) until stabilization.

As far as we know, this algorithm has never been published be-
fore, but we cannot claim it is new as the only difficult part is the
min+ propagation within an SIMD register. Wende published the
embarrassingly parallel algorithm with KNC instruction, but do not
mention any pixel-recursive algorithm [27].

In order to have only one code for all the SIMD architecture,
the algorithms have been written with macro meta-programming

for SSE, AVX2 and KNC (Xeon Phi Knight Corner) instruction
set. These sets of macros can be easily extended for IBM Altivec
or ARM Neon SIMD extension. An alternative is to use a generic
SIMD library like [18] [8] [26]. Another one is to use the Intel
SPMD Program Compiler (ISPC) [2].

2.2.4 The new SIMD algorithm with active tiles
Combining SIMD and OpenMP to vectorize and parallelize the al-
gorithm can be very efficient as long as all the data fit in the cache
memory hierarchy. But usually, in order to provide enough data to
all cores running SIMD instructions one has to provide data that
does not fit in the cache anymore. So additional optimizations must
be done to enforce cache locality and to reduce the amount of cache
overflow [17].

The idea – as it is an iterative algorithm – is to tile it and launch
computations only if a propagation within a tile reaches one border
and has to be propagated to the connected tiles. Such a strategy will
reduce the amount of computations (to the only tiles that need it)
but most of all, will reduce the amount of memory accesses that is
the major limitation of a parallel SIMD code.

We use an activity matrix A that holds – for each tile – 0 if
the tile is stabilized or a positive number otherwise. In order to use
only one activity matrix and not two, we use two bits to encode the
stabilization information. One bit for the tile itself and one bit for
the neighboring tiles. There are two cases:

• (00)b: tile is stable
• (01)b: tile is unstable

Then the information of the unstable state is propagated (dila-
tion), leading to four cases:

• (00)b: tile and neighboring tiles are stable
• (01)b: tile is unstable, neighboring tiles are stable
• (10)b: tile is stable, neighboring tiles are unstable
• (11)b: tile and neighboring tiles are unstable

If at least one bit is set, the tile has to be scanned. Initially, A is
set to 1: all the tiles have to be scanned. Then two algorithms are
applied until the whole image is stabilized (A = 0).

The algorithm 1 processes tiles that need to be scanned. The
algorithm 2 is a sub-part of the previous one and details the pro-
cessing of one tile. It corresponds to the line 4 of the first algorithm
(scan tile). Then we have to update and propagate (into A) the in-
formation of which tiles should be processed again (algo. 3).

Algorithm 1: Processing all tiles
1 foreach tile t(it, jt) do
2 if A(it, jt) 6= (00)b then
3 A(it, jt)← (00)b
4 scan tile t(it, jt)
5 if t is not stabilized then
6 A(it, jt)← (01)b

This tiling enables load balancing: instead of scanning a tile
until its stabilization, there is a fixed number of scans (here equal
to 2). In the following, we will only consider the FB scan for effi-
ciency reasons.

Algorithm 2: scan tile t(it, jt) of coordinates [i0, i1]×[j0, j1]
1 flag ← (00)b
2 for (i = i0, i ≤ i1; i++) do
3 for (j = j0, j ≤ j1; j ++) do
4 a← E(i− 1, j − 1), b← E(i− 1, j)
5 c← E(i− 1, j + 1), d← E(i, j − 1)
6 x← E(i, j)

7 x′ ← min+(a, b, c, d, x)
8 E(i, j)← x′

9 flag ← (flag or (x xor x′))

10 for (i = i1, i ≥ i0; i−−) do
11 for (j = j1, j ≥ j0; j −−) do
12 a← E(i+ 1, j + 1), b← E(i+ 1, j)
13 c← E(i+ 1, j − 1), d← E(i, j + 1)
14 x← E(i, j)

15 x′ ← min+(a, b, c, d, x)
16 E(i, j)← x′

17 flag ← (flag or (x xor x′))

18 return flag

Algorithm 3: information propagation
1 foreach cell A(it, jt) do
2 if

(
A(it, jt) and (01)b

)
= (01)b then

3 A(it − 1, jt − 1)←
[
A(it − 1, jt − 1) or (10)b

]
4 A(it − 1, jt + 0)←

[
A(it − 1, jt + 0) or (10)b

]
5 A(it − 1, jt + 1)←

[
A(it − 1, jt + 1) or (10)b

]
6 A(it − 0, jt − 1)←

[
A(it − 0, jt − 1) or (10)b

]
7 A(it − 0, jt + 1)←

[
A(it − 0, jt + 1) or (10)b

]
8 A(it + 1, jt − 1)←

[
A(it + 1, jt − 1) or (10)b

]
9 A(it + 1, jt + 0)←

[
A(it + 1, jt + 0) or (10)b

]
10 A(it + 1, jt + 1)←

[
A(it + 1, jt + 1) or (10)b

]

10
01

01
01

00

11
11

01
00

00 00 00 00 00 00

00 00 00

10
10 10

10
10 10 10 10

10 10
10 10 10

10 10 10

00 00 00 00 00
00 00 00 00 00 00

00 00 00 00 00 00

00 00 00
00 00 0000 00

00

Figure 11. Example of dilation: left 1-bitAmatrix before dilation,
right: 2-bit A matrix after dilation

We used OpenMP2 to parallelize the tiles processing (with an
#omp parallel for on a 1D view of the 2D matrixA). OpenMP3
(tasking) or OpenMP4 (tasking with activation linked to array de-
pendency) or TBB can also be used. Note that TBB implements the
workpile pattern [22] that is the processing model used here.

3. Benchmarks and analysis
3.1 Targeted SIMD machines
Three SIMD extensions are used: SSE on Nehalem and Ivy-Bridge
processors, AVX2 on Haswell processors and KNC on Xeon-Phi
Knight Corner processor. Intel C compiler (icc 15 and 16.1) is used.
The latest release does not generate faster SIMD code and does not
vectorize scalar code because an anti dependence between lines 4,

5 and 8 of algorithm 2. The table 2 provides the specifications of
the benchmarked machines with their theoretical peak performance
(in giga operations per second) and peak bandwidth (in gigabytes
per second). Two other parameters are calculated: π and C/BW ra-
tio. The value of π is the product of processor’s parallelisms: the
core number multiplied by the SIMD cardinal (here, the number
of 32-bits integer within a register). The C/BW ratio is the peak
performance divided by the peak external memory bandwidth. It is
usually used to characterize an algorithm, in that case it is the num-
ber of computations divided by the number of memory accesses
(the lower, the more the algorithm is memory-bound). Here C/BW
is the ratio of the peak performance by the peak bandwidth of the
processor. A high ratio is interesting for processors handling algo-
rithms with many computations and few memory accesses, while
a low ratio indicates that the processor is not too sensitive (or less
sensitive) to memory bound algorithms.

3.2 Benchmark procedure
Usually, papers evaluate CCL performance first with random im-
ages (varying pixel density from 0% to 100%) for hard-to-label
benchmarks and secondly with image database. As we want our
benchmark to be as fair as possible (quite difficult with data-
dependent algorithms) we decided to select Mersenne Twister
MT19937 [21] to control the random number generation and to
extend random images by changing the pixel granularity.

The initial random image has a granularity of 1. Then we create
g-random images whose blocks of pixels have a size of g × g (Fig.
12), with g ∈ [1 : 16]. The pixel block is set to 1 if the random
value is smaller or equal to the density d and set to zero otherwise.

This methodology highlights some algorithm behavior linked to
the number of labels and to the image density. An important point
is that we propose a reproducible benchmark procedure [25]. As
the random number generator is not the rand function provided into
the libC library, but MT19937 generator with seed equal to zero,
our procedure can be exactly reproduced by any reader.

(a) g = 1 (b) g = 4 (c) g = 16

Figure 12. Random images with density = 35% at granularity
g ∈ {1, 4, 16}

For “small” machines, we use 2K images and 4K for big ones,
to ensure that each core has enough data to process. As the num-
ber of cores of each processor is different, the performance of the
machines can not be easily compared. Explanations are by far not
straightforward. That is why we focus on the comparison of direct
versus iterative algorithms on each machine separately.

The execution time is measured in cycles per point (cpp), as
processors have variable frequency. Average cpp is the average,
for a given granularity g of the cpp for all evaluated density d ∈
[0%, 100%] with a step of 1%. The cpp are computed for all values
g ∈ [1 : 16], but we provide results only for g ∈ {1, 4, 16} in order
to provide synthesis results as cpp varies continuously with g. For
the same reason, we provide only one value – the arithmetic mean
– cpp for a given g and d. People interested in the evolution of the
cpp with the density can read [3][4][5].

processors acronym freq cache nb SIMD π peak perf. peak BW C / BW
used (GHz) (MB) cores parallelism Gops GB/s ratio

Nehalem X5550 NHM8 2.67 2× 8 2× 4 SSE 4.2 32 85.1 64.0 1.3
IvyBridge E5-2697v2 IVB24 2.66 2× 30 2× 12 AVX 1 96 255.4 119.4 2.1

Haswell-EP E5-2697v3 HSW28 2.6 2× 14 2× 14 AVX 2 224 582.4 136.0 4.3
Xeon Phi 3120A KNC57 1.1 1× 28.5 1× 57 KNC 912 1003.2 240.0 4.2

Table 2. Main characteristics of the evaluated machines.

To analyze the impact of the tile size, we have tested all power
of two from 24 up to 211. For SIMD implementations, the min
tile width is the cardinal of an SIMD register, that is 4, 8, 16 for
respectively SSE, AVX2, and KNC.

3.3 Results
Tables 3, 4, 5 and 6 present the results for the four machines, for
direct and iterative algorithms with/without SIMD.

g = 1 g = 4 g = 16 mean
cpp of direct algorithms

LSLRLE 13.167 5.233 3.559 7.32
HCS2 13.800 7.644 6.260 9.23
LSLRLE+OMP 2.157 1.139 0.969 1.42
HCS2+OMP 3.080 2.342 2.242 2.55

cpp of iterative FB min+ algorithm
scalar 1028 294.0 105.7 475.90
SIMD 243.3 137.0 67.56 149.29
scalar+OMP 169.2 78.92 55.89 101.34
SIMD+OMP 44.46 33.15 26.89 34.83
activity+SIMD+OMP 27.06 19.29 15.96 20.77

cpp of iterative FB max algorithm
SIMD+OMP 59.84 42.60 38.52 46.99
activity+SIMD+OMP 21.84 13.74 11.91 15.83

Table 3. Performance of Nehalem NHM8 for 2K images

g = 1 g = 4 g = 16 mean
cpp of direct algorithms

LSLRLE 13.81 5.43 3.19 7.48
HCS2 14.09 7.57 6.17 9.28
LSLRLE+OMP 1.67 0.995 0.854 1.17
HCS2+OMP 3.43 2.312 2.096 2.61

cpp of iterative FB min+ algorithm
scalar 1317 446.6 176.8 646.80
SIMD 348.4 175.3 87.11 203.60
scalar+OMP 95.01 40.09 26.25 53.78
SIMD+OMP 28.28 21.14 17.12 22.18
tile+SIMD+OMP 15.86 11.40 9.39 12.22

cpp of iterative FB max algorithm
SIMD+OMP 73.70 57.34 51.21 60.75
activity+SIMD+OMP 10.16 6.36 5.46 7.33

Table 4. Performance of Ivy-Bridge IVB24 for 4K images

3.4 Direct algorithms analysis
The results are split into two sets. As long as the machines have
few cores and a low C/BW ratio, the ratio between the algorithms
LSL andHCS2 is alike,×2.3 with OpenMP for NHM8 and×2.6

g = 1 g = 4 g = 16 mean
cpp of direct algorithms

LSLRLE 12.840 4.492 2.645 6.66
HCS2 13.195 6.695 5.620 8.50
LSLRLE+OMP 1.317 0.357 0.249 0.64
HCS2+OMP 2.524 2.249 1.711 2.16

cpp of iterative FB min+ algorithm
scalar 1180.2 360.5 140.17 560.29
SIMD 190.4 360.5 50.67 200.52
scalar+OMP 78.73 44.24 45.79 56.25
SIMD+OMP 63.24 32.32 29.13 41.56
activity+SIMD+OMP 7.78 4.50 3.94 5.41

cpp of iterative FB max algorithm
SIMD+OMP 28.73 22.21 18.30 23.08
activity+SIMD+OMP 5.42 3.95 3.21 4.19

Table 5. Performance of Haswell HSW28 for 4K images

g = 1 g = 4 g = 16 mean
cpp of direct algorithms

LSLRLE+OMP 2.816 1.721 1.460 2.00
HCS2+OMP 52.640 52.070 51.971 52.23

cpp of iterative FB min+ algorithm
scalar+OMP 170.4 141.5 126.0 145.97
SIMD+OMP 26.87 26.43 25.76 26.35
activity+SIMD+OMP 6.04 4.08 2.86 4.33

cpp of iterative FB max algorithm
SIMD+OMP 30.88 29.40 27.47 29.25
activity+SIMD+OMP 5.23 3.30 2.46 3.66

Table 6. Performance of Knight Corner KNC57 for 4K images

with OpenMP for IVB24. But when the machines have lots of cores
and a high C/BW ratio, the behaviors change: the LSL keeps on
accelerating whereas HCS2 does not. The ratios become ×6.9
with OpenMP for HSW28 and ×35.6 for KNC57. As the KNC’s
cores are not designed neither for scalar nor single-threaded com-
putations, there is almost one order of magnitude between HSW28

and KNC57.

The explanation comes from the intrinsic algorithm design:
LSL uses run-length encoding (RLE) to compress data and reduce
the amount of memory accesses (except for g = 1 where it has
the same performance than HCS2), while HCS2 is a pixel-based
algorithm that requires much more memory accesses than LSL.
This result has been already observed on bi-socket and quad-socket
Xeon Ivy-Bridge [4], but neither on Haswell nor Knight Corner.
This is a clear evidence that none of all pixel-based CCL algorithm
scales on multi and manycore processors.

2.93 3.55 2.05

4.24 5.0 3.58

5.01 5.63 4.77

2.19 2.42 1.86

2.58 2.42 2.77

3.75 2.92 2.60

4.12 4.10 3.61 3.18 3.39 2.92

2.38 2.42 2.29 2.23 2.14 2.30

512

256

128

64

32 64 128 256 512 1024

1024 2.38 6.09 4.83

2.30 4.64 6.95

1.24 3.12 6.04

3.41 2.22 1.17

8.90 2.42 5.82

7.36 2.92 7.55

0.85 1.72 2.90 5.75 3.39 5.93

0.23 0.46 0.84 2.68 2.14 3.65

512

256

128

64

32 64 128 256 512 1024

1024

Figure 13. Hotmaps of ratio between algorithms with tiling / ver-
sion without tiling for g = 4 (the higher, the better) for HSW28 and
KNC57. Gray legend: dark gray = slower, light gray = faster, white
= fastest

0 10 20 30 40 50 60 70 80 90 100
Density (%)

0
20
40
60
80

100
120
140
160

cp
p

FB+SIMD+OMP FB+Active Tiles+SIMD+OMP

0 10 20 30 40 50 60 70 80 90 100
Density (%)

0
10
20
30
40
50
60
70

cp
p

FB+SIMD+OMP FB+Active Tiles+SIMD+OMP

Figure 14. cpp for SIMD+OpenMP version with and without ac-
tivity for KNC, for g = 1 (top) and g = 16

3.5 Iterative algorithms analysis
Same kind of observations can be done for the FB iterative algo-
rithm without tiling. For machines with a low C/BW ratio, both
OpenMP and SIMD provide a speedup. But, as the combination of
OpenMP and SIMD generates a lot of stress on the external mem-
ory busses, the speedups are not perfect and the tiling only provides
a small additional speedup: ×1.7 for NHM8 and ×1.8 for IVB24.
For high C/BW ratio machines, the impact of tiling is significant:
×7.4 for HSW28 and ×9.0 for KNC57.

As an illustration of the impact of active tiles, the figure 13
shows the ratio between the algorithms with active tiles (for 30 tile
sizes) and the algorithm without ones. With active tiles, HSW28 is
up to×5.63 faster than the algorithm without tiling. This ratio rises
×8.90 for KNC57.

Unlike the classic FB algorithm (without active tiles) – where
data are split into horizontal strips by OpenMP – the active tiles
algorithm has a better cache use and re-use, as two iterations (one
forward and one backward) are done on a set of labels that fit in the
core cache.

Max propagation have been implemented and benchmarked, as
it makes the codes smaller (less comparisons than for min+ compu-

tation). It appears that for SIMD+OMP version without active tiles,
the max propagation is slower than the min propagation whereas
for versions with active tiles, result is the opposite. Right now we
have no explanation of this behavior.

For each architecture and each image size, it appears that the
best tile is quite always the same. So for a real application, an auto-
tuning step can be added to set up the optimal parameters.

3.6 Direct versus iterative algorithms comparison
If we now compare direct algorithms with the iterative one with
active tiles, the same two sets still exist. For NHM8 and IVB24

the direct algorithm HCS2 is faster: respectively ×7.1 and ×3.6,
but for a machine with a lower C/BW ratio and more cores, the
ratio is smaller: only ×2.3 on HSW28. For the KNC57 the ratio is
not significative as HCS2 is a scalar algorithm and FB + active
tiles is SIMD. But we can notice that the average cpp of KNC57

is smaller than HSW28: 2.46 versus 3.94. In comparison, the cpp
without tiling were respectively 27.5 and 18.3.

In conclusion, concerning connected component labeling, the
pixel-based algorithms do not scale on State-of-the-Art architec-
tures. The reasons are that direct algorithms require two much
bandwidth (that generates too much stress on external memory) and
a pyramidal transitive closure to merge labels leading to a weak par-
allelism. One solution is data compression, that LSL does, but on
a more parallel machine – like the upcoming quadri-socket Xeon
Broadwell-EX – it could be limited by the pyramidal merge for
small image (if each core has few data to proceed). Another one
is tiling combined with an activity matrix. It save external memory
accesses and useless computations (for temporary stabilized tiles).

3.7 Anticipate the algorithm scalability on future processors
Let us try to anticipate the future performance with the Amdahl law
(1), where sp is the speedup, p the parallelism (π in table 2) and τ
the fraction of sequential code that cannot be accelerated.

sp =
1

τ + 1−τ
p

⇒ τ =
π − sp
sp(π − 1)

(1)

processors NHM8 IVB24 HSW28

LSLRLE 7.9 % 12 % 6.3 %
HCS2 17.3% 25.0 % 22.6 %
FB 4.3 % 2.4 % 7 %
FB + activity 1.3 % 0.9 % 0.5 %

Table 7. Average fraction τ of sequential code according to Am-
dahl’s law (lower is better)

The general interpretation of Amdahl’s law is that a whole code
cannot be accelerated. In our case, the codes are globally paral-
lelized and SIMDized, even if there are very few instructions out-
side parallel loops and the fact that OpenMP requires an overhead
to create threads. Here, the lack of scalability is due to the com-
bination of OpenMP+SIMD puts too much stress on the external
memory. All SIMD cores cannot run in parallel at full speed and
must wait for the data. The value of τ reflects the algorithm scala-
bility and the stress on memory.

We can see (tab. 7) that the proposed algorithm (pixel-recursive
Forward-Backward with tiling and SIMD + OpenMP has always
the smallest τ value and so the highest scalability. The τ value is
not relevant for KNC57 because, as previously written, both single-
threaded and scalar codes performance are not significant on this
architecture. We can envision that it could match and outperform

HCS2 the best pixel-based algorithm because their cpp are already
close and because it should continue to scale, unlike the pixel-based
ones.

4. Conclusion
In this paper, we have presented a new parallel and tiled SIMD
algorithm for connected component labeling that uses an activity
matrix to signal what are the tiles that need to be processed. Some
macro meta-programming was used to get the same SIMD code to
run on SSE, AVX2, and KNC SIMD processors. The tiling makes
the algorithm efficient for architecture combining wide SIMD and
lots of cores. Right now, the answer to the question stated in the
introduction “does a brute-force iterative algorithm can match a di-
rect algorithm ?” is still no. But the results of the benchmarks done
on four generations of processors – Nehalem, Ivy-Bridge, Haswell
and Knight Corner – show that the gap, initially very large is getting
smaller and smaller. On a 2×14-core 256-bit SIMD Haswell the it-
erative algorithm is only 1.5 slower than the fastest pixel-based
algorithm. On a 57-core 512-bit SIMD Knight Corner, the process-
ing requires fewer cycles than on Haswell. That clearly shows that
if the answer was no for many years, it could be different in few
years when general purpose processors and specialized ones will
increasingly have more cores.

In future works, we will focus on AVX-512 specific instruc-
tions – available for Xeon Skylake and Knight Landing processors
– to design more efficient CCL algorithms. KNC provides masked-
instructions and sparse memory accesses through scatter-gather
instructions but AVX-512 will provide additional instructions to
tackle some concurrency issues like parallel vote with SIMD regis-
ter. We will also evaluate GPU implementation and manycore pro-
cessors available into research laboratories.

Acknowledgements
The authors would like to thank, Francois Hannebicq from Intel
France, for the access to State-of-the-Art machines and Zakhar A.
Matveev from Intel Russia, for its valuable help on Xeon-Phi.

References
[1] D. Bailey and C. Johnston. Single pass connected component analysis.

In Image and Vision New Zeland (IVNZ), pages 282–287, 2007.
[2] J. Brodman, D. Babokin, I. Filippov, and P. Tu. Writing scalable

SIMD programs with ISPC. In Workshop on Programming Models
for SIMD/Vector Processing (PPoPP), pages 25–32. ACM, 2014.

[3] L. Cabaret and L. Lacassagne. What is the world’s fastest connected
component labeling algorithm ? In IEEE International Workshop on
Signal Processing Systems (SiPS), pages 97–102, 2014.

[4] L. Cabaret, L. Lacassagne, and D. Etiemble. Parallel Light Speed
Labeling: an efficient connected component labeling algorithm for
multi-core processors. In IEEE International Conference on Image
Processing (ICIP), pages 1–4, 2015.

[5] L. Cabaret, L. Lacassagne, and D. Etiemble. Parallel Light Speed
Labeling for connected component analysis on multi-core processors.
Journal of Real Time Image Processing, To be published:1–18, 2016.

[6] F. Chang and C. Chen. A linear-time component-labeling algorithm
using contour tracing technique. Computer Vision and Image Under-
standing, 93:206–220, 2004.

[7] T. Cormen, C. Leiseirson, R. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2001.

[8] P. Estérie, J. Falcou, M. Gaunard, and J.-T. Lapresté. Boost.SIMD:
generic programming for portable SIMDization. In Workshop on

Programming Models for SIMD/Vector Processing (PPoPP), pages 1–
8. ACM, 2014.

[9] S. Gupta, D. Palsetia, M. A. Patwary, A. Agrawal, and A. Choud-
hary. A new parallel algorithm for two-pass connected component
labeling. In Parallel & Distributed Processing Symposium Workshops
(IPDPSW), pages 1355–1362. IEEE, 2014.

[10] R. Haralick. Some neighborhood operations. In Real-Time Parallel
Computing Image Analysis, pages 11–35. Plenum Press, 1981.

[11] R. Haralick and L. Shapiro. Computer and Robot Vision. Addison-
Wesley ISBN 0-201-56943-4, 1992.

[12] L. He, Y. Chao, and K. Suzuki. A run-based two-scan labeling
algorithm. In ICIAR, pages 131–142. LNCS 4633, 2007.

[13] W. W. Hwu, editor. GPU Computing Gems, chapter 35: Connected
Component Labeling in CUDA. Morgan Kaufman, 2001.

[14] M. Klaiber, L. Rockstroh, Z. Wang, Y. Baroud, and S. Simon. A
memory-efficient parallel single pass architecture for connected com-
ponent labeling of streamed images. In International Conference on
Field Programmable Technology (FPT), pages 159–165. IEEE, 2012.

[15] M. Klaiber, D. Bailey, S. Ahmed, Y. Baroud, and S. Simon. A
high-throughput FPGA architecture for parallel connected compo-
nents analysis based on label reuse. In International Conference on
Field Programmable Technology (FPT), pages 302–305. IEEE, 2013.

[16] L. Lacassagne and B. Zavidovique. Light Speed Labeling: Efficient
connected component labeling on RISC architectures. Journal of Real-
Time Image Processing, 6(2):117–135, 2011.

[17] L. Lacassagne, D. Etiemble, A. Hassan-Zahraee, A. Dominguez, and
P. Vezolle. High level transforms for SIMD and low-level computer
vision algorithms. In ACM Workshop on Programming Models for
SIMD/Vector Processing (PPoPP), pages 49–56, 2014.

[18] R. Leissa, I. Haffner, and S. Hack. Sierra: a SIMD extension for C++.
In Workshop on Programming Models for SIMD/Vector Processing
(PPoPP), pages 17–24. ACM, 2014.

[19] R. Lumia, L. Shapiro, and O. Zungia. A new connected components
algorithms for virtual memory computers. Computer Vision, Graphics
and Image Processing, 22-2:287–300, 1983.

[20] N. Ma, D. Bailey, and C. Johnston. Optimised single pass con-
nected component analysis. In International Conference on Field Pro-
grammable Technology (FPT), pages 185–192. IEEE, 2008.

[21] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudorandom number gener-
ator. Transactions on Modeling and Computer simulation, 8(1):3–30,
1998.

[22] M. McCool, A. Robison, and J. Reinders. Structured Parallel Pro-
gramming: patterns for efficient computation. Morgan Kaufmann,
2012.

[23] C. Ronse and P. Dejvijver. Connected components in binary images:
the detection problems. In Research Studies Press, 1984.

[24] A. Rosenfeld and J. Platz. Sequential operator in digital pictures
processing. Journal of ACM, 13,4:471–494, 1966.

[25] P. Vandewalle, J. Kovacevic, and M. Vetterli. Reproducible research
in signal processing. Signal Processing Magazine, 26,3:37–47, 2009.

[26] H. Wang, P. Wu, I. Tanase, M. Serrano, and J. Moreira. Simple,
portable and fast SIMD intrinsic programming: generic simd library.
In Workshop on Programming Models for SIMD/Vector Processing
(PPoPP), pages 9–16. ACM, 2014.

[27] F. Wende and T. Steinke. Swendsen-wang multi-cluster algorithm for
the 2d/3d Ising model on Xeon Phi and GPU. technical report 13-44,
Zuse Institue Berlin, 2013.

[28] K. Wu, E. Otoo, and A. Shoshani. Optimizing connected component
labeling algorithms. Pattern Analysis and Applications, 2008. .

[29] G. Ziegler. Connected components revisited on Kepler. In Nvidia,
editor, GPU Technology Conference, pages 1–56, 2013.

