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ABSTRACT: A sensitivity analysis of a suspension model has been performed in order to highlight
the most influential parameters on the sprung mass displacement. To analyse this dynamical model, a
new global and bounded dynamic method is investigated. This method, based on the interval analysis,
consists in determining lower and upper bounds including the dynamic sensitivity indices. It requires
only the knowledge of the parameter variation ranges and not the joint probability density function of
the parameters which is hard to estimate. The advantage of the proposed approach is that it takes into
account the recursive behavior of the system dynamics.

1 INTRODUCTION

Suspension plays an important role in vehicle
safety and road holding. In general, the suspension
system behavior is described by dynamical models
depending on parameters that are subject to un-
certainty due to insufficient knowledge, measure-
ment error or imprecision, etc. Sensitivity analy-
sis can help to evaluate the impact of this lack of
knowledge on the model response, which here is
the displacement of the sprung mass.
Numerous studies have focused on the sensitivity
analysis for static models (Saltelli, Ratto, Andres,
Campolongo, Cariboni, Gatelli, Saisana, & Taran-
tola 2008). In the case of dynamical models, lo-
cal approaches based on partial derivatives are of-
ten used. However, in the automotive field, it can
be of great importance to consider the entire un-
certainty range of parameters since they can vary
within large intervals depending on their mean-
ing. Few global approaches have been proposed
for dynamical models. In general, these methods
are statistical and are based on the analysis of the
output variance. In the case of dynamical model,
they consist in computing the sensitivity indices at
each time instant (Haro Sandoval, Anstett-Collin,

& Basset 2012). This can lead to an important
amount of informations, not easy to analyse. More-
over, these approaches require the knowledge of
the joint probability density function of the pa-
rameters which is hard to estimate. In this work, a
new sensitivity analysis method based on interval
analysis is provided.
The key idea is to determine upper and lower
bounds including the sensitivity functions, based
on the knowledge of the parameter variation
ranges. If they exist, these bounds are guaran-
teed (Lin & Stadtherr 2008). Unlike the statisti-
cal methods, the proposed approach does not re-
quire the knowledge of the joint probability den-
sity function of the parameter. Furthermore, the
approach takes into account the recursive behav-
ior of the system dynamics. This paper is orga-
nized as follows: in section 2 problem statement is
introduced. In section 3, partial derivative based
sensitivity analysis method is described. In section
4, the principle of interval analysis technique is in-
troduced. An illustrative example, is presented in
the end of section 3 and 4. In section 5, an appli-
cation of the method on a quarter vehicle model is
presented. Conclusion is given in section 6.



2 PROBLEM STATEMENT

Consider a linear dynamic model represented in
the state space form as:{
ẋ(t) = A (θ)x(t) +B (θ)u(t)
y(t) = C (θ)x(t) +D (θ)u(t)
x(t0) = x0

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm

is the input vector, y(t) ∈ Rl is the output vec-
tor, A(.) ∈ Rn×n, B(.) ∈ Rn×m, C(.) ∈ Rl×n and
D(.) ∈ Rl×m. θ = [θ1, . . . , θp] is the uncertain pa-
rameter vector, where p is the parameters number,
θi ∈ R.
In order to study parameters variation impact on
the output model, classically, local sensitivity anal-
ysis is applied. This method consists of computing
parameter effect around a nominal value. The in-
fluence of parameter θi is defined by the partial
derivative of the output y(t) with respect to the
parameter θi and is given by:

Si(t) =
∂y(t)

∂θi
(2)

Assuming that θi ∈ [θimin
, θimax ], local sensitiv-

ity analysis application can lead to erroneous re-
sults and fault index interpretation. Consequently,
it cannot be efficient to measure the influence of
each parameter on the model output.
To overcome this problem and those ones given in
the introduction, a new methodology is presented.
The method consists of determining an upper and
lower bound, ensuring the existence of sensitivity
function inside, using interval analysis technique.
In the next section, the sensitivity analysis method
based on partial derivative, is explained.

3 PARTIAL DERIVATIVE-BASED
SENSITIVITY ANALYSIS

Consider the model representation given by (1).
The objective of this section is to determine a sys-
tem of sensitivity functions describing the dynamic
behavior of sensitivity functions which measure the
influence of each model parameter. This system is
linear and can be written in a state space form (see
figure 1). It is determined using available informa-
tions such as: the output measurements y and the
model input u .
The objective of the following paragraph is to de-
termine the system of sensitivity functions.

3.1 Sensitivity functions representation

The partial derivative of the state vector x(t) given
by (1) is:

∂ẋ(t)
∂θi

= A(θ)∂x(t)
∂θi

+ ∂A(θ)
∂θi

x(t) + ∂B(θ)
∂θi

u(t)

+B(θ)∂u(t)
∂θi

(3)

ẋ(t) = A(θ)x(t) + B(θ)u(t)
y(t) = C(θ)x(t) +D(θ)u(t)

u y

ẋs(t) = As(.)xs(t)+Bs(.)us(t)
ys(t) = Cs(.)xs(t)+Ds(.)us(t)

ys

x

Figure 1: Principle of sensitivity functions system

Assuming u is a function of time which does not

depend on parameter θi,
∂
∂θi

(
∂x(t)
∂t

)
= ∂

∂t

(
∂x(t)
∂θi

)
as θi is a constant, not varying with time. We as-
sume also there is no dependence between these
parameters:

∂θj
∂θi

= 0 for i 6= j
Let define two sensitivity matrices of the model
output Sy(t) and of the state vector Sx(t) given
by:

Sy(t) =
∂y(t)

∂θ
Sx(t) =

∂x(t)

∂θ
(4)

For each parameter θi, the following subsystem is
defined:


Ṡix(t) = A (θ)Six(t) + ∂A(θ)

∂θi
x(t) + ∂B(θ(t))

∂θi
u(t)

Siy(t) = C (θ)Six(t) + ∂C(θ)
∂θi

x(t) + ∂D(θ)
∂θi

u(t)
Sx(t0) = Sx0

(5)

Grouped all subsystems together, the sensitiv-
ity of the state vector is defined by xs(t) =
[S1
x(t), S

2
x(t), . . . , S

p
x(t)]T which contains the sen-

sitivity functions and the sensitivity func-
tions of the output model define ys(t) =
[S1
y(t), S

2
y(t), . . . , S

p
y(t)]T .

The whole system of sensitivity functions is given
finally as:



ẋs(t) =


A (θ)S1

x(t) + ∂A(θ)
∂θ1

x(t) + ∂B(θ)
∂θ1

u(t)

A (θ)S2
x(t) + ∂A(θ)

∂θ2
x(t) + ∂B(θ)

∂θ2
u(t)

...

A (θ)Spx(t) + ∂A(θ)
∂θp

x(t) + ∂B(θ)
∂θp

u(t)



ys(t) =


C (θ)S1

x(t) + ∂C(θ)
∂θ1

x(t) + ∂D(θ)
∂θ1

u(t)

C (θ)S2
x(t) + ∂C(θ)

∂θ2
x(t) + ∂D(θ)

∂θ2
u(t)

...

C (θ)Spx(t) + ∂C(θ)
∂θp

x(t) + ∂D(θ)
∂θp

u(t)





(6)

Thus, the sensitivity system can be written in a
state space system form as:{
ẋs(t) = As (θ)xs(t) +Bs (θ)us(t)
ys(t) = Cs (θ)xs(t) +Ds (θ)us(t)

(7)

where:

As (θ) =


A (θ) 0n×n · · · 0n×n

0n×n A (θ)
. . .

...
...

. . . . . . 0n×n
0n×n . . . 0n×n A (θ)

 (8)

Bs (θ) =


∂A(θ)
∂θ1

∂B(θ)
∂θ1

∂A(θ)
∂θ2

∂B(θ)
∂θ2

...
...

∂A(θ)
∂θp

∂B(θ)
∂θp

 (9)

Cs (θ) =


C (θ) 0l×n · · · 0l×n

0l×n C (θ)
. . .

...
...

. . . . . . 0l×n
0l×n . . . 0l×n C (θ)

 (10)

Ds (θ) =


∂C(θ)
∂θ1

∂D(θ)
∂θ1

∂C(θ)
∂θ2

∂D(θ)
∂θ2

...
...

∂C(θ)
∂θp

∂D(θ)
∂θp

 (11)

us(t) =

(
x(t)
u(t)

)
(12)

with xs(t0) = 0n×1. 0l×k is a l × k zero matrix .
In the next paragraph, a test example is considered
and sensitivity analysis functions, computed using
method previous described, are determined.

3.2 Illustrative example

3.2.1 System description
Consider a mass-spring-damper system given in
figure 2.

bbk

F y

m

Figure 2: Schematic representation of a mass-spring-
damper model

As a mechanical system, the dynamics of a mass-
spring-damper system can be described by the fol-
lowing 2nd-order differential equation:

mÿ(t) + bẏ(t) + ky(t) = F (t) (13)

where m is the mass, b is the damping coefficient,
k is the stiffness coefficient and F is the force act-
ing on the mass.

We introduce the state vector ẋ =

[
x1(t)
x2(t)

]
.

where x1 and x2 are respectively the mass displace-
ment and velocity.
The system (13) can be then written in a state
space form as follows:

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
− k
m
− b
m

] [
x1(t)
x2(t)

]
+

[
0
1
m

]
F (t)

y(t) = [ 1 0 ]

[
x1(t)
x2(t)

]
(14)

The objective is to study the influence of parame-
ters variation of m, b and k on the mass position
x1.

3.2.2 Partial derivative-based sensitivity analysis
Firstly, let us study the influence of parameters
m, b and k around their nominal values which are
fixed to 1. A constant integration step size is cho-
sen with h = 0.1m and the step signal is applied
on F . figure 3 represents the sensitivity function
of each parameter. These functions have been de-
termined using (7).
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Figure 3: Sensitivity analysis functions

We can see that all parameters are influent on the
mass displacement until t = 10s. After this tran-
sient time, only the stiffness coefficient k domi-
nates the mass position variation. In fact, the mass
and the damping coefficient depend on the velocity



and the acceleration, thus, they are influent in the
transient region. When the velocity and the accel-
eration tend to zero, only the stiffness coefficient
is influent. Its influence can be seen in the steady
state. In the next section, interval analysis method
is introduced.

4 INTERVAL ANALYSIS METHOD

Here, the principle of interval analysis for linear
and nonlinear model is explained. The objective
is to find a validated enclosure of all solutions of
parametric autonomous system:

ẋs(t) = f(xs(t), θ), xs(t0) = xs0 ∈ Xs0 , θ ∈ Θ.

(15)

where t ∈ [t0, tm]. θ is a p-dimensional parameter
vector, xs is the n-dimensional vector of state vari-
ables and xs0 is the n-dimensional vector of initial
values. The interval vectors Θ and Xs0 represent
enclosures of the uncertainties in θ and xs0 , respec-
tively.
f : Rn × Rp −→ Rn is (k − 1) times continuously
differentiable with respect to the parameter θ on
Rn.
VSPODE tool (Lin & Stadtherr 2007) is used to
compute a rigorously guaranteed enclosure on the
trajectories of a linear or nonlinear ODE system
with interval-valued initial values or parameters.
This enclosure is computed by using an interval
Taylor series method, combined with Taylor mod-
els to overcome the dependency of each uncertain
quantities and wrapping effect. The use of Tay-
lor models leads to a considerable large reduc-
tion of the overestimation which is often associated
with interval methods. Before describing how this
method works, a convenient notation for Taylor
Coefficients (TC) should be introduced.

f [0](xs) = xs
f [1](xs) = f

f [i](xs) =
1

i

(
∂f [i−1]

∂xs
f

)
(xs) for i ≥ 2

(16)

This interval method consists of two algorithms
applied at each integration step. In the first step,
existence and uniqueness of the solution are proved
using the Picard-Lindelöf operator. In the second
step, a tighter enclosure of the solution is com-
puted.

4.1 Validating existence and uniqueness

To get a priori bounds of an ordinary differential
equation, we use an interval evaluated Taylor se-
ries with respect to time. Suppose that at tj we

have an enclosure [ysj ] of ys(t; t0, [ys0 ], θ). By us-
ing the Picard-Lindelöf operator and the Banach
fixed-point theorem, one can show that if a stepsize
hj and a priori enclosure [ỹj] satisfy:

[ysj ] + [0, hj]f([ỹsj ], θ) ⊆ [ỹsj ] (17)

then (15) has a unique solution ys(t; tj, ysj , θ) ∈
[ỹsj ]

4.2 Computing a tighter enclosure

A basic instinct to obtain the tighter enclosure
[ysj+1

] will be by using the interval Taylor series
with the following form:

[ysj+1
] = [ysj ]+

k−1∑
i=1

hijf
[i](ysj , θ)+h

k
jf

[k](ys; tj, tj+1, θ)

(18)

This basic first order interval evaluation form will
lead sooner the sets [ysj+1

] be overestimated as the
intrinsic wrapping problem. Without applying the
Taylor model directly on the inclusion function f ,
VSPODE using a mean-value form to reduce the
propagation of wrapping effect which results big
overestimation, the limitation of the use of this ap-
proach has been discussed by Neumaier (Neumaier
2002). By projecting the original domain sets to an
orthogonal domain with the help of parallelepiped
or QR-factorization methods (Nedialkov, Jackson,
& Corliss 1999), the wrapping effect in the poly-
nomial part of Taylor model could be relatively re-
duced but it still propagates in the reminder part
due to the intrinsic dependency problem of inter-
val analysis.
In the next paragraph, method described above is
applied on mass-spring-damper system considered
on previous section .

4.3 Illustrative example

Now, let us consider the parameters m, b and k
varying within the range of 0.9 to 1.1. Like the
previous case, a constant integration step size is
chosen with h = 0.1m and the step signal is ap-
plied on F.
Consider the initial state of x(0) = [0, 0]T , we use
VSPODE to determine a verified state enclosure
for t ∈ [0; 20]. The order of the Taylor model and
the interval Taylor series were chosen as 17 and 20,
respectively, which are aimed to avoid the overes-
timation during calculation.
figure 4 shows the curves representing the upper
and lower bounds and the sensitivity functions cor-
responding on the influence of m, b and k on the
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Figure 4: Interval enclosure for sensitivity functions

mass displacement.
Bounds are obtained using VSPODE. Several
points are chosen from parameters interval and
sensitivity functions have been determined by a
validated integrator VNODE (Validated Numer-
ical ODE). Sensitivity functions are guaranteed
within the bounds. A large interval has been ob-
tained in the transient regime until t = 12s. m, b
and k are influential on the mass position. How-
ever, in the static regime we can observe that the
enclosure is tightest so for any value of parameter
in this regime and only k is influential. In order to
show the effectiveness of this method, it is applied
to study the sensitivity analysis of quarter vehicle
model parameters.

5 SENSITIVITY ANALYSIS OF A
SUSPENSION SYSTEM

5.1 System description

Consider a simple quarter vehicle model given in
figure 5. This model is often used in studies deal-
ing with suspensions.

m

ffks

kt

mr

zc

zr

zv

Figure 5: Model of quarter vehicle

The model is composed of a sprung mass m and

an unsprung mass mr connected by a spring with
the stiffness coefficient ks and a damper with the
damping coefficient f . The tire is modeled by a
spring with the stiffness coefficient kt. Distances
zc, zr and zv are, respectively, the road profile,
the vertical displacements of unsprung and sprung
masses.
The vertical dynamics of the quarter vehicle is gov-
erned by the following equations:

{
msz̈v(t) = −ks (zv(t)− zr(t))− b (żv(t)− żr(t))
mrz̈r(t) = −ks (zr(t)− zv(t))− b (żr(t)− żv(t))
−kr (zr(t)− zc(t))

(19)

The system (19) can be written in a state space
form as follows:

 żv(t)
z̈v(t)
żr(t)
z̈r(t)

 =


0 1 0 0
− ks
ms

− b
ms

ks
ms

b
ms

0 0 0 1
ks
mr

b
mr

−kr−ks
mr

− b
mr


 zv(t)

żv(t)
zr(t)
żr(t)



+


0
0
0
kr
mr

 zc(t)

y(t) =
[

1 0 0 0
]  zv(t)

żv(t)
zr(t)
żr(t)


(20)

The objective here is to study the influence of pa-
rameters ks, m, f , mr and kt on the vertical dis-
placement of the sprung mass. We determine then
sensitivity functions as defined in (7).

5.2 Results

Firstly, sensitivity functions have been deter-
mined, using (7), around the nominal values of
parameters ks, m, f , mr and kt which are fixed
respectively to 29500N.m−1, 450kg, 2000Ns.m−1,
40kg and 210000N.m−1. figure 6 shows the sen-
sitivity functions, considering a step road profile
(the amplitude is 0.1m).
One can observe that in the transient region, the
most important parameter is the unsprung mass
mr. When the system has passed its transient
phase, all sensitivity functions converge to zero.
Thus parameters become not influent. In fact,
this result depends on road profile applied which
corresponds to a situation where a vehicle goes up
on a sidewalk. When the road profile changes, the
sprung mass is the most influent. Once the vehicle
is on the sidewalk, the vertical displacement of
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Figure 6: Sensitivity analysis functions

the unsprung mass zv returns to its first state.
We assume now that parameters ks,
m, f , mr and kr vary in the interval
[265500N.m−1; 32450N.m−1], [260kg; 540kg],
[1800Ns.m−1; 2200Ns.m−1], [36kg; 44kg] and
[189000N.m−1; 231000N.m−1].
Figure 7 shows the curves representing the upper
and lower bounds obtained using VSPODE.
Figure 7 gives also sensitivity functions computed
around different values of parameters in their
interval variation in order to verify the determined
bounds.
It is clearly observed that upper and lower bounds
have ensured the existence of sensitivity functions
inside. In this interval of variation, unsprung mass
mr is the most influential. The sprung mass m
follows. Other parameters appear of less impact,
compared to mr and m, on the displacement of
the sprung mass.

6 CONCLUSION

In this paper, global and dynamic sensitivity anal-
ysis method have been presented. Sensitivity func-
tions are firstly computed using the partial deriva-
tive then interval enclosure ensuring the exis-
tence of sensitivity function inside is determined.
The upper and lower interval enclosure are com-
puted using VSPODE solver. The effectiveness
of the proposed approach has been demonstrated
through an illustrative example and an applica-
tion on a quarter vehicle model. Consistent re-
sults have been shown. However, it is necessary

Figure 7: Interval enclosure for sensitivity functions

to note that interval enclosure depends on the ini-
tial condition of the states and the parameters.
When dealing with large intervals, possibly, this
interval approach produces the overestimation of
the reachable sets. One can divide the initial sets
with several small sets to reduce the overestima-
tion, or try to take all the parameter around 1 will
also release the pessimism. For near future, it will
be interesting to consider a more complex model.
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