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Abstract

Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics
equations with applications to both fusion and astrophysical plasmas, possessing a
noncanonical Hamiltonian structure and consequently a number of conserved func-
tionals. We propose a new discretisation strategy for these equations based on a
discrete variational principle applied to a formal Lagrangian. The resulting inte-
grator preserves important quantities like the total energy, magnetic helicity and
cross helicity exactly (up to machine precision). As the integrator is free of nu-
merical resistivity, spurious reconnection along current sheets is absent in the ideal
case. If effects of electron inertia are added, reconnection of magnetic field lines
is allowed, although the resulting model still possesses a noncanonical Hamilto-
nian structure. After reviewing the conservation laws of the model equations, the
adopted variational principle with the related conservation laws are described both
at the continuous and discrete level. We verify the favourable properties of the
variational integrator in particular with respect to the preservation of the invariants
of the models under consideration and compare with results from the literature and
those of a pseudo-spectral code.
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1 Introduction
The large scale dynamics of many astrophysical and laboratory plasmas can be effectively
modelled according to the magnetohydrodynamics (MHD) description, where the plasma
is treated as a single fluid interacting with the magnetic field. Although MHD already
provides a highly simplified description of the plasma behaviour, in some cases, even
more simplified and numerically tractable models are desirable. In particular, for this
purpose, the set of reduced magnetohydrodynamics (RMHD) equations was derived for
low-β plasmas [59], where β is the ratio between the plasma pressure and the magnetic
pressure. According to such model, the plasma motion is approximately incompressible
and nearly two-dimensional. This model aims at describing certain features, for instance,
of tokamak plasmas, where the presence of an intense component of the magnetic field
implies only weak variations along the toroidal direction.

The original RMHD model can be extended in order to account for effects of finite
electron inertia, which can lead to the phenomenon of magnetic reconnection [6]. In
particular, electron inertia can provide reconnection events faster than those induced by
plasma resistivity, and consequently provide a closer agreement with what is observed
during tokamak sawtooth collapses [69].

The equations of RMHD possess a noncanonical Hamiltonian structure [48], therefore
they preserve the total energy of the system. Moreover, the system features two families
of Casimir functional invariants, that is integrals of the dynamical variables, which are
also preserved exactly. The extended system, including effects of finite electron inertia,
is still Hamiltonian and possesses similar families of Casimir invariants as the original
RMHD system. When constructing numerical methods, it is desirable to preserve these
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quantities in the discrete setting in order to obtain trustable and physically correct results
in computer simulations.

Such numerical methods, which preserve certain structures of the continuous system,
are referred to as structure-preserving or geometric numerical methods [14, 26, 10]. For
many years, numerical mathematics and computer science have been focused on the de-
velopment of algorithms which are based on discretisations of the equations which aim
at minimising the local error of the numerical solution, that is the difference between the
numerical solution and the exact solution, during one solution step. Even though this
error might be very small during one step, the error will sum up when computing many
steps, so that the final result might be severely different from the exact solution. Geomet-
ric numerical integration methods, on the other hand, rather focus on the minimisation
of global errors, which often results in better long-time fidelity of the numerical solution.
In recent years, the study of such methods has become a flourishing field of research in
numerical analysis and scientific computing.

Some of this effort geared towards the structure-preserving discretisation of ideal mag-
netohydrodynamics. Liu and Wang [43] proposed to couple the MAC scheme [28] for the
Navier-Stokes equation with Yee’s scheme [70] for the Maxwell equations. Gawlik et al.
[20] followed a more geometric motivated approach based on discrete Euler-Poincaré re-
duction (see also [53]), which yields a similar scheme as that of Liu and Wang, but with
different time discretisation. A variational integrator in Lagrangian (material) variables,
based on directly discretising Newcomb’s Lagrangian [50], has been derived by Zhou et al.
[73]. A variational integrator in Eulerian (spatial) variables, based on combining a simi-
lar method as the one described here with discrete differential forms, has been obtained
by Kraus and Maj [37].

In the reduced case, however, the situation is more complicated and we are not aware
of any attempts to derive geometric numerical methods for RMHD so far. The difficulty of
this task is on the one hand that in contrast to ideal MHD there is no natural Lagrangian
formulation for RMHD readily available, which would recommend itself for discretisation
by variational methods [46, 53, 20]. On the other hand, although the RMHD equations
have a Hamiltonian structure, this structure is not of canonical type, so that standard
methods for Hamiltonian PDEs [8, 9] cannot be applied. Therefore, we propose here to
derive variational integrators for a formal Lagrangian formulation of RMHD [38, 31, 2].
That is, we treat the RMHD equations as part of a larger system which has a variational
formulation. The corresponding Lagrangian is simply constructed by multiplying each of
the RMHD equations with an auxiliary variable and summing the resulting expressions.
Applying Hamilton’s principle of stationary action yields an extended system consisting
of the RMHD equations plus a set of adjoint equations. These adjoint equations are
not solved for in the code but are crucial in the analysis of the conservation laws with
Noether’s theorem.

Even though we apply a simple finite difference discretisation to the Lagrangian, we
obtain a well working integrator, which preserves the total energy of the system, the L2

norm of the magnetic potential as well as magnetic helicity and cross helicity exactly
(up to machine accuracy). One of the highlights of our approach is that conservation
of these properties can be proved in a relatively straight forward manner, both on the
continuous and the discrete level, by the application of Noether’s theorem. The flexibility
of the variational integrator framework allows for an immediate generalisation towards
more elaborate, higher-order discretisation approaches [13, 41, 42, 27, 35, 36].
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We proceed as follows. In Section 2 we review the RMHD system with and without
electron inertia effects and construct a formal Lagrangian from which this system can
be obtained. This Lagrangian is then used to derive important conservation laws with
Noether’s theorem. We show how to rewrite and symmetrise the formal Lagrangian in or-
der to obtain a formulation that is better suited for discretisation. In Section 3 we review
the discrete action principle and detail the derivation of the discrete equations of motion
from the discretised Lagrangian. Using the previously obtained symmetry transforma-
tions and their infinitesimal generators, the discrete conservation laws follow immediately
by applying the procedure outlined in Reference [38]. In Section 4 we perform several
numerical experiments in order to demonstrate the numerical fidelity and the excellent
conservation properties of the integrator and perform a comparison with numerical sim-
ulations carried out with a pseudo-spectral code.

2 Reduced Magnetohydrodynamics
In this work, we consider a simplified version of the reduced MHD equations by Strauss
[59], which provide a toy-model for low beta tokamak dynamics. Our simplification con-
cerns the 2D reduction, which is based on the property that variations along the toroidal
magnetic field are much weaker than those in the poloidal plane. Also, we consider a slab
geometry, which makes our model valid only locally. With these limitations the model
acquires infinite Casimir invariants (among which the cross helicity) with respect to its
three-dimensional counterpart. The two-dimensional approximation therefore appears ap-
propriate for developing and testing discretisation methods which are particularly good
at respecting conservation laws. The choice of a uniform density is made for simplic-
ity. The proposed variational method could also be applied to more sophisticated models
with a Lie-Poisson structure, including, for instance, gyrofluid models [67], the four-field
model for tokamak dynamics [29], models for electrostatic turbulence [66] and models for
magnetic reconnection evolving temperature and heat flux fluctuations [22].

The reduced ideal MHD equations in two dimensions, defined on a bounded domain
Ω ⊂ R2, read

ωt + {φ, ω}+ {j, ψ} = 0, −∆φ = ω, (1a)
ψt + {φ, ψ} = 0, −∆ψ = j, (1b)

where φ is the stream function, ω the vorticity, ψ the magnetic potential, and j the
current density. All four fields depend on t, x and y. The canonical Poisson bracket {·, ·}
is defined by

{φ, ω} = φxωy − φyωx, (2)

and subscripts t, x and y denote derivatives with respect to time and the spatial dimen-
sions, respectively. The first equation in (1a) is called the vorticity equation, and the first
equation in (1b) the collisionless Ohm’s law. Note that while the second equation in (1a)
is a Poisson equation which has to be solved for φ, the second equation in (1b) is merely
an identity for j.

The system (1) possesses a noncanonical Hamiltonian structure [47] with Hamiltonian

H = 1
2

∫
Ω

(
|∇ψ|2 + |∇φ|2

)
dx dy = 1

2

∫
Ω

(ψj + φω) dx dy, (3)
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and Lie-Poisson bracket

[F,G] = −
∫ (

ω

{
δF

δω
,
δG

δω

}
+ ψ

({
δF

δω
,
δG

δψ

}
+
{
δF

δψ
,
δG

δω

}))
dx dy, (4)

subject to the elliptic constraints on the right-hand sides of (1), where F and G are two
functionals of ω, ψ, φ, j, so that the time evolution of any such functional is given by

Ḟ = [F,H]. (5)

The first term on the right-hand side of (3) corresponds to magnetic energy and the second
term to kinetic energy. The system possesses two infinite families of Casimir invariants,

C1 =
∫
Ω

f(ψ) dx dy, C2 =
∫
Ω

ω g(ψ) dx dy, (6)

where f and g are arbitrary functions of ψ. Notable examples of C1 are CMH, which is
proportional to the magnetic helicity, and the L2 norm of ψ, CL2 , given by

CMH =
∫
Ω

ψ dx dy, (7)

and

CL2 =
∫
Ω

ψ2 dx dy, (8)

respectively. Note that for a magnetic field of the form

B = B0ẑ +∇ψ × ẑ,

with vector potential

A = ψẑ + 1
2B0xŷ − 1

2B0yx̂,

magnetic helicity is given by∫
Ω

A ·B dx dy =
∫
Ω

[
−1

2B0y∂yψ − 1
2B0x∂xψ +B0ψ

]
dx dy = 2B0

∫
Ω

ψ dx dy,

and therefore proportional to CMH. An important special case of C2 is cross helicity, CCH,
where g(ψ) = ψ,

CCH =
∫
Ω

∇φ · ∇ψ dx dy =
∫
Ω

ωψ dx dy. (9)

In our discretisation, we aim at preserving the Hamiltonian (3) and the aforementioned
Casimir invariants (7)-(9).
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2.1 Formal Lagrangian
The starting point for the derivation of variational integrators is a continuous action
principle, more specifically a Lagrangian formulation of the RMHD system in Eulerian
coordinates. Unfortunately, such an Eulerian Lagrangian is not readily available, so that
we have to resort to a formal Lagrangian formulation [38, 31, 2]. The idea is to treat
the RMHD system as part of a larger system, which can be derived from a Eulerian
Lagrangian using Hamilton’s principle of stationary action. This Lagrangian is obtained
by multiplying each equation of (1) with an auxiliary variable, ξ, µ, χ and ζ, respectively.
The formal Lagrangian is given as the sum of the resulting expressions,

L(ϕ, ϕt, ϕx, ϕy) = ξ
(
ωt + {φ, ω}+ {j, ψ}

)
+ µ

(
ω + ∆φ

)
+ χ

(
ψt + {φ, ψ}

)
+ ζ

(
j + ∆ψ

)
. (10)

For concise notation, we write ϕ to denote all variables,

ϕ = (ω, ψ, φ, j, ξ, χ, µ, ζ)T , (11)

and ϕt, ϕx and ϕy to denote the corresponding derivatives with respect to t, x and y.
Requiring stationarity of the action functional (Hamilton’s principle),

δA[ϕ] = δ
∫
Ω

L(ϕ, ϕt, ϕx, ϕy) dt dx dy = 0, (12)

for variations δϕ of the variables ϕ, which vanish at the boundaries but are otherwise
arbitrary, we obtain the Euler-Lagrange field equations,

∂L
∂ϕa

(
ϕ, ϕt, ϕx, ϕy

)
− ∂

∂xµ

(
∂L
∂ϕaµ

(
ϕ, ϕt, ϕx, ϕy

))
= 0 for all a. (13)

Here and in the following, (xµ) denotes all coordinates, both spatial and temporal, and
summation over µ is implied following the Einstein summation convention. This yields
the RMHD equations (1) and in addition the so called adjoint equations, which determine
the evolution of the auxiliary variables,

ξt + {φ, ξ} = µ, {ξ, ω}+ {χ, ψ} = ∆µ, (14a)
χt + {φ, χ}+ {j, ξ} = ∆ζ, {ξ, ψ} = ζ. (14b)

For the analysis of the conservation laws, it will be necessary to construct a solution of the
adjoint variables in terms of the physical variables. The extended system can be solved
in terms of only the physical variables by using the embedding

Φ : (ω, ψ, φ, j) 7→ (ω, ψ, φ, j, ψ, ω, 0, 0), (15)

in order to restrict solutions of the extended system to solutions of the physical system
(see Reference [38, Section 3.3] for details). Setting χ = ω and ξ = ψ, we find that
ζ = {ψ, ψ} = 0 as well as ∆µ = {ψ, ω} + {ω, ψ} = 0. As a particular solution of this
equation, we can choose µ = 0, which justifies identifying ξ with ψ. Similarly, identifying
χ with ω is only justified because as a result ζ vanishes identically.
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2.2 Conservation Laws
In the analysis of conservation laws, we use the Noether theorem [51, 34], which con-
nects Lie point symmetries of the Lagrangian and conservation laws of the associated
Euler-Lagrange equations. We use the same formulation of the Noether theorem as in
Reference [38] (see also Reference [46]), which is summarised in the following. As in Ref-
erence [38], we restrict our attention to conservation laws which are generated by vertical
transformations, that is transformations which only affect the field variables but leave the
base space invariant1.

We directly prescribe the generating vector field V of the transformation map σ(ϕ, ε)
and not the transformation itself. The vector field is given in terms of its components ηa,

V (ϕ) = ηa(ϕ) ∂

∂ϕa
with ηa(ϕ) = d

dε
σa(ϕ, ε)

∣∣∣∣∣
ε=0
, (16)

where σa is the a-th component of the transformation map σ. For simplicity we assume
that V only depends on the fields ϕ but not explicitly on the base coordinates (t, x, y).
As the Lagrangian is a function not only of the fields but also of their derivatives, we
have to compute the action of the generating vector field on the derivatives induced by
the transformation in the fields. This is accounted for by the prolongation of V , which is
given by

prV = ηa
∂

∂ϕa
+ ϕbµ

∂ηa

∂ϕb
∂

∂ϕaµ
= ηa

∂

∂ϕa
+ ηaµ

∂

∂ϕaµ
. (17)

Denoting the transformed fields by ϕε = σ(ϕ, ε), the condition for a transformation σ(ϕ, ε)
being a symmetry transformation of the Lagrangian L reads

L
(
ϕε, ϕεt, ϕ

ε
x, ϕ

ε
y

)
= L

(
ϕ, ϕt, ϕx, ϕy

)
. (18)

Taking the ε derivative of (18), we obtain the infinitesimal invariance condition,

d

dε
L
(
ϕε, ϕεt, ϕ

ε
x, ϕ

ε
y

)∣∣∣∣∣
ε=0

= prV (L) = 0, (19)

which is equivalent to (18). The corresponding conservation law is given by

divJ (ϕ, ϕt, ϕx, ϕy) = 0, (20)

where div denotes the spacetime divergence and J denotes the so called Noether cur-
rent [21] with components

J µ
(
ϕ, ϕt, ϕx, ϕy

)
= ∂L
∂ϕaµ

(
ϕ, ϕt, ϕx, ϕy

)
· ηa(ϕ). (21)

The fact that J is divergence-free expresses the conservation law satisfied by solutions ϕ
of the Euler-Lagrange field equations (13). Commonly, (20) is integrated over the spatial

1Interestingly, in the framework of formal Lagrangians, conservation of e.g. energy and momentum of
the physical system does usually not follow from invariance of the Lagrangian with respect to temporal
or spatial translations, but from invariance with respect to vertical transformations. Therefore, these
symmetries are in general not lost when introducing a discrete temporal and spatial grid as would be
the case with natural Lagrangians. On the other hand, temporal and spatial symmetries of formal
Lagrangians are usually related to trivial conservation laws without physical relevance.
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domain Ω, so that under the assumption of appropriate boundary conditions only the
temporal component of the Noether current is retained,

d

dt

∫
Ω

divJ (ϕ, ϕt, ϕx, ϕy) dx dy = d

dt

∫
Ω

∂L
∂ϕat

(
ϕ, ϕt, ϕx, ϕy

)
· ηa(ϕ) dx dy = 0. (22)

This relation states the conservation of the so called Noether charge2.
The restriction to vertical vector fields appears logical as in the discrete case we can

only consider such vertical transformations due to the spatio-temporal grid being fixed.
However, as it turns out, the generating vector fields of the interesting conservation laws
corresponding to (3) and (7)-(9) feature horizontal components. To circumvent this prob-
lem, we consider a simplified version of (10), where we assume that φ and j are prescribed
and constant in time. This amounts to a partial linearisation of the system. The reduced
solution vector is ϕ̄ = (ω, ψ, ξ, χ)T and the corresponding Lagrangian is given by

L̄(ϕ̄, ϕ̄t, ϕ̄x, ϕ̄y) = ξ
(
ωt + {φ, ω}+ {j, ψ}

)
+ χ

(
ψt + {φ, ψ}

)
. (23)

Using this simplification, the analysis of the conservation laws carries over to the discrete
case in a straight forward way. As we will see, the conservation laws thus obtained will also
be respected by the fully nonlinear continuous and discrete systems (see Reference [38,
Section 4.3.2] for a similar analysis for the vorticity equation). The adjoint equations
of (23) are

ξt + {φ, ξ} = 0, χt + {φ, χ}+ {j, ξ} = 0, (24)

so that the system is immediately seen to be self-adjoint, using the embedding

Φ : (ω, ψ) 7→ (ω, ψ, ψ, ω). (25)

For the invariants of interest, c.f. Equations (3) and (7)-(9), the generating vector
fields can easily be constructed by observation. That is knowledge of the exact form
of the Noether charge (22) together with the restriction map (25), immediately dictates
the components ηa of the generating vector field corresponding to a transformation of
one of the physical variables (ω, ψ). The components of the adjoint variables can then be
determined by the procedure outlined in References [38, Section 3.3] and [32, Theorem 3.3].

The generating vector field for magnetic helicity reads

ηω = 1, (26)

with prolongation

prV = ∂

∂ω
, (27)

so that

prV (L̄) = 0. (28)
2We remark that Noether charge and current do not correspond in general to electrical charge and

current.
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The corresponding Noether charge (22) becomes

d

dt

∫
Ω

ξ dx dy = 0. (29)

Restricted to solutions of the form ϕ̄ = (ω, ψ, ψ, ω)T , c.f. Equation (25), this corresponds
to conservation of magnetic helicity (7),

d

dt

∫
Ω

ψ dx dy = 0. (30)

The generating vector field for the L2 norm of ψ is

ηω = ψ, ηχ = −ξ, (31)

and its prolongation

prV = ψ
∂

∂ω
+ ψt

∂

∂ωt
+ ψx

∂

∂ωx
+ ψy

∂

∂ωy
− ξ ∂

∂χ
− ξt

∂

∂χt
− ξx

∂

∂χx
− ξy

∂

∂χy
. (32)

The symmetry condition is verified to be satisfied,

prV (L̄) = ξ
(
ψt + {φ, ψ}

)
− ξ

(
ψt + {φ, ψ}

)
= 0, (33)

and conservation of the corresponding Noether charge (22) becomes

d

dt

∫
Ω

ξψ dx dy = 0, (34)

which after restriction of the solution by (25) becomes conservation of the L2 norm of ψ
(8). For cross helicity, we consider

ηω = ω, ηξ = −ξ, (35)

so that the prolongation of the generating vector field becomes

prV = ω
∂

∂ω
+ ωt

∂

∂ωt
+ ωx

∂

∂ωx
+ ωy

∂

∂ωy
− ξ ∂

∂ξ
− ξt

∂

∂ξt
− ξx

∂

∂ξx
− ξy

∂

∂ξy
. (36)

The symmetry condition reads

prV (L̄) = ξ
(
ωt + {φ, ω}+ {j, ψ}

)
− ξ

(
ωt + {φ, ω}+ {j, ψ}

)
= 0, (37)

and conservation of the Noether charge (22) becomes

d

dt

∫
Ω

ξω dx dy = 0, (38)

which amounts to conservation of cross helicity (9) when restricting the solution with (25).
Energy conservation is obtained from the generating vector field

ηω = 1
2j, ηψ = 1

2φ. (39)
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As φ and j are treated as constant and not dynamical vector fields, the prolongation is
trivial, that is

prV = 1
2j

∂

∂ω
+ 1

2φ
∂

∂ψ
, (40)

and the symmetry condition is satisfied,

prV (L̄) = 0. (41)

The corresponding conservation law reads

d

dt

∫
Ω

1
2

(
ξj + χφ

)
dx dy = 0, (42)

which upon restriction of the solution with (25) states that the total energy of the system
(3) is conserved.

2.3 Electron Inertia
The RMHD model can be extended to account for collisionless reconnection by adding
effects of electron inertia in the following way [57],

ωt + {φ, ω}+ {j, ψ} = 0, −∆φ = ω, (43a)
ψ̄t + {φ, ψ̄} = 0, −∆ψ = j. (43b)

Here, ψ̄ = ψ + d2
ej is the electron canonical momentum and de denotes the electron skin

depth, assumed to be constant. This model is also Hamiltonian with

H = 1
2

∫
Ω

(
|∇ψ|2 + d2

e(∆ψ)2 + |∇φ|2
)
dx dy = 1

2

∫
Ω

(
ψ̄j + φω

)
dx dy, (44)

Lie-Poisson bracket

[F,G] = −
∫ (

ω

{
δF

δω
,
δG

δω

}
+ ψ̄

({
δF

δω
,
δG

δψ̄

}
+
{
δF

δψ̄
,
δG

δω

}))
dx dy, (45)

subject to the elliptic constraints on the right-hand sides of (43), and, just as the original
RMHD model, possesses two families of Casimir invariants,

C1 =
∫
Ω

f(ψ̄) dx dy, C2 =
∫
Ω

ω g(ψ̄) dx dy. (46)

Special cases of C1 are the generalised magnetic helicity and the L2 norm of ψ̄, given by

CMH =
∫
Ω

ψ̄ dx dy, (47)

and

CL2 =
∫
Ω

ψ̄2 dx dy, (48)
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respectively, and a special case of C2 is the generalised cross helicity, given by

CCH =
∫
Ω

∇φ · ∇ψ̄ dx dy =
∫
Ω

ωψ̄ dx dy. (49)

For the model with electron inertia, we aim at preserving the Hamiltonian (44), the gen-
eralised magnetic helicity (47), the L2 norm of ψ̄ (48), and generalised cross helicity (49).
The verification of these conservation laws via Noether’s theorem follows analogous to
Section 2.2.

2.4 Symmetrisation
In order to avoid second order derivatives and therefore to simplify the discretisation of
the formal Lagrangian (10), we apply symmetrisations (corresponding to integration by
parts in the action functional) in the terms that produce the Laplacians,

L′(ϕ, ϕt, ϕx, ϕy) = ξωt + ξ {φ, ω}+ ξ {j, ψ}+ χψt + χ {φ, ψ}
+ µω −∇µ · ∇φ+ ζj −∇ζ · ∇ψ. (50)

This provides an equivalent Lagrangian, which yields the same Euler-Lagrange equations,
but depends only on first order derivatives of the fields.

For the derivation of one-step methods of arbitrary order, it will be important to
symmetrise the time derivatives in a similar fashion as the Laplacian,

L′′(ϕ, ϕt, ϕx, ϕy) = 1
2ϕ

T
t Λϕ+ ξ {φ, ω}+ ξ {j, ψ}+ χ {φ, ψ}

+ µω −∇µ · ∇φ+ ζj −∇ζ · ∇ψ, (51)

where Λ is an anti-symmetric matrix, given by

Λ =



0 0 0 0 +1 0 0 0
0 0 0 0 0 +1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (52)

Further, care has to be taken when discretising the Poisson bracket (2). In order to
retain the antisymmetry property of the continuous bracket at the discrete level, another
symmetrisation has to be introduced in the Lagrangian (c.f. Salmon and Talley [56]).
Using integration by parts while assuming appropriate boundary conditions, it is seen
that the cyclic permutations of the functions in the integrand are all identical, e.g.,∫

ξ {φ, ω} dx dy =
∫
φ {ω, ξ} dx dy =

∫
ω {ξ, φ} dx dy. (53)

Instead of selecting one of those equivalent forms, a convex combination can be considered,
namely, ∫

ξ {φ, ω} dx dy =
∫ [

α ξ {φ, ω}+ β φ {ω, ξ}+ γ ω {ξ, φ}
]
dx dy, (54)
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with α+ β + γ = 1. As the symmetric case, α = β = γ = 1/3, is the one that retains the
properties of the bracket at the discrete level, we use the modified Lagrangian

L′′′(ϕ, ϕt, ϕx, ϕy) = 1
2ϕ

T
t Λϕ+ 1

3

(
ξ {φ, ω}+ φ {ω, ξ}+ ω {ξ, φ}

)
+ 1

3

(
ξ {j, ψ}+ j {ψ, ξ}+ ψ {ξ, j}

)
+ 1

3

(
χ {φ, ψ}+ φ {ψ, χ}+ ψ {χ, φ}

)
+ µω −∇µ · ∇φ+ ζj −∇ζ · ∇ψ (55)

as basis for the variational discretisation procedure described in Section 3. The conserva-
tion laws obtained in Section 2.2 are still valid for the symmetrised Lagrangian. The only
difference is that pure symmetries of the original Lagrangian will be divergence symme-
tries of the symmetrised Lagrangian (see References [52, 32] or [38, Section 2.3] for more
details).

3 Variational Integrators
In the application of most numerical methods to physical systems, the starting point
for discretisation are the dynamical equations of the state variables. In the variational
integrator methodology, instead, the starting point is the Lagrangian with the action
integral. It is not the dynamical equations that are discretised but the building blocks
of the underlying field theory. That is, after discretising the Lagrangian and the action
integral, a discrete variational principle is applied which leads to the discrete dynamical
equations.

In general, the discretisation and the application of the action principle do not com-
mute, that is the equations obtained from the discrete action principle are not the same
as the ones obtained from directly discretising the dynamical equations. The advantage
of using the discrete action principle is that the resulting equations will automatically
preserve momenta related to symmetries of the discrete Lagrangian as well as a discrete
multisymplectic form. Both properties are important for obtaining physically sound re-
sults as well as for good long-time fidelity of numerical simulations.

The general framework of variational integrators has been developed by Marsden et al.
[46], while Kraus and Maj [38] describe the particular application to formal Lagrangians
like the one given in equation (55). For more details see also References [64, 65, 49, 68,
44, 45, 35, 37, 39].

3.1 Discrete Action Principle
In this section, we outline the discretisation of the action functional A on a simple carte-
sian grid with one temporal and two spatial dimensions, and apply a discrete version of
Hamilton’s principle of stationary action [46, 38]. For simplicity, we consider a Veselov-
type finite difference discretisation of the Lagrangian [64, 65, 49], but the extension to-
wards other, more elaborate, e.g. Galerkin-type approaches [41, 42, 27, 35], finite elements
[13] or splines [36] is straight forward.

We introduce a space-time split, that is first we consider the semi-discretisation in
space and thereafter perform the discretisation in time. The semi-discrete fields are de-
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noted by

ϕh(t) =
{
ϕi,j(t)

∣∣∣ i = 1, ..., nx, j = 1, ..., ny
}
, (56)

while the fully discrete fields are denoted by

ϕd =
{
ϕni,j

∣∣∣ i = 1, ..., nx, j = 1, ..., ny, n = 1, ..., nt
}
. (57)

Here, nx, ny and nt denote the number of grid points in space and time, respectively. The
semi-discrete Lagrangian Lh approximates the integral of the continuous Lagrangian over
one cell of the spatial grid, that is

xi+1∫
xi

dx

yj+1∫
yj

dyL
(
ϕ, ϕt, ϕx, ϕy

)
≈ Lh

(
ϕi,j(t), ϕi+1,j(t), ϕi+1,j+1(t), ϕi,j+1(t),

ϕ̇i,j(t), ϕ̇i+1,j(t), ϕ̇i+1,j+1(t), ϕ̇i,j+1(t)
)
, (58)

where the dot indicates the time derivative. To make the manipulations more tractable,
the semi-discrete Lagrangian is rewritten in a slightly more abstract way, namely in terms
of cells rather than grid points. Let us consider a cell � determined by its vertices,

� =
(
(i, j), (i+ 1, j), (i+ 1, j + 1), (i, j + 1)

)
. (59)

The vertices �l of a cell � with 1 ≤ l ≤ 4 are counted counter-clockwise in the x-y-plane
(c.f. Figure 1), namely,

�1 = (i, j), �2 = (i+ 1, j), �3 = (i+ 1, j + 1), �4 = (i, j + 1).

The field values on the vertices of that cell are denoted by

(ϕ�1 , ϕ�2 , ϕ�3 , ϕ�4) = (ϕi,j, ϕi+1,j, ϕi+1,j+1, ϕi,j+1). (60)

The solution vector and the time derivatives on each grid cell are compactly denoted as

ϕ�(t) =
(
ϕ�1(t), ϕ�2(t), ϕ�3(t), ϕ�4(t)

)T
, (61)

ϕ̇�(t) =
(
ϕ̇�1(t), ϕ̇�2(t), ϕ̇�3(t), ϕ̇�4(t)

)T
, (62)

so that the semi-discrete Lagrangian (58) can be written as

Lh(ϕ�, ϕ̇�) ≡ Lh(ϕ�1 , ϕ�2 , ϕ�3 , ϕ�4 , ϕ̇�1 , ϕ̇�2 , ϕ̇�3 , ϕ̇�4). (63)

In order to approximate the formal Lagrangian L′′′(ϕ, ϕt, ϕx, ϕy) from (55), we adopt
a similar strategy as in Reference [38], using simple finite differences to approximate the
derivatives and the trapezoidal rule for the two spatial integrals (see also Reference [39]).
On each cell �, the Lagrangian L′′′ is approximated by

Lh(ϕ�, ϕ̇�) = hxhy
4 L′′′

(
ϕ�1 , ϕ̇�1 ,

ϕ�2 − ϕ�1

hx
,
ϕ�4 − ϕ�1

hy

)
+ hxhy

4 L′′′
(
ϕ�2 , ϕ̇�2 ,

ϕ�2 − ϕ�1

hx
,
ϕ�3 − ϕ�2

hy

)
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y

Figure 1: Vertices of a primal grid cell in a two-dimensional rectangular grid and field
components at those vertices.

+ hxhy
4 L′′′

(
ϕ�3 , ϕ̇�3 ,

ϕ�3 − ϕ�4

hx
,
ϕ�3 − ϕ�2

hy

)
+ hxhy

4 L′′′
(
ϕ�4 , ϕ̇�4 ,

ϕ�3 − ϕ�4

hx
,
ϕ�4 − ϕ�1

hy

)
, (64)

where hx and hy denote the grid step size. In order to establish a flexible framework for
the temporal discretisation, we employ a Hamilton-Pontryagin principle [55, 60, 71, 7],

Ah[ϕh] =
T∫

0

[∑
�
Lh(ϕ�, υ�)− 〈λ� , ϕ̇� − υ�〉

]
dt, (65)

where we introduced Lagrange multipliers λ and the pairing 〈· , ·〉 defined by

〈λ� , ϕ�〉 = 1
4

4∑
l=1

λ�l · ϕ�l . (66)

The discretisation in time is performed in a similar way as described in Reference [35] for
the special case of one internal stage, leading to the fully discrete action

Ad[ϕd] =
∑
n

∑
�

[
ht Lh(ϕn+1/2

� , υ
n+1/2
� )− ht

〈
λ
n+1/2
� , ϕ

n+1/2
� − ϕn� − 1

2htυ
n+1/2
�

〉
+
〈
πn+1
� , ϕn+1

� − ϕn� − htυ
n+1/2
�

〉 ]
, (67)

with ht being the time step. The expression in the second line constitutes the continuity
constraint connecting ϕn� with ϕn+1

� . Requiring stationarity of the discrete action (67),

δAd =
nt−1∑
n=0

[
ht
∑
�

4∑
l=1

(
∂Lh
∂ϕ�l

(ϕn+1/2
� , υ

n+1/2
� ) · δϕn+1/2

�l + ∂Lh
∂υ�l

(ϕn+1/2
� , υ

n+1/2
� ) · δυn+1/2

�l

)

− ht
〈
δλ

n+1/2
� , ϕ

n+1/2
� − ϕn� − 1

2ht υ
n+1/2
�

〉
− ht

〈
λ
n+1/2
� , δϕ

n+1/2
� − δϕn� − 1

2ht δυ
n+1/2
�

〉
+
〈
δπn+1

� , ϕn+1
� − ϕn� − ht υ

n+1/2
�

〉
+
〈
πn+1
� , δϕn+1

� − δϕn� − ht δυ
n+1/2
�

〉 ]
= 0, (68)
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leads to the discrete Euler-Lagrange field equations,

λ
n+1/2
i,j =

∑
�

4∑
l=1

�l=(i,j)

∂Lh
∂ϕ�l

(ϕn+1/2
� , υ

n+1/2
� ), (69a)

πn+1
i,j =

∑
�

4∑
l=1

�l=(i,j)

∂Lh
∂υ�l

(ϕn+1/2
� , υ

n+1/2
� ) + 1

2ht λ
n+1/2
i,j , (69b)

πn+1
i,j = πni,j + ht λ

n+1/2
i,j , (69c)

ϕ
n+1/2
i,j = ϕni,j + 1

2ht υ
n+1/2
i,j , (69d)

ϕn+1
i,j = ϕni,j + ht υ

n+1/2
i,j . (69e)

Upon defining

π
n+1/2
i,j =

∑
�

4∑
l=1

�l=(i,j)

∂Lh
∂υ�l

(ϕn+1/2
� , υ

n+1/2
� ) = 1

2ΛTϕ
n+1/2
i,j , (70)

and using (69c), equation (69b) can be rewritten as

π
n+1/2
i,j = πni,j + 1

2ht λ
n+1/2
i,j . (71)

In the Hamilton-Pontryagin action (67), we introduced an additional set of variables π,
which in practice are not needed to be solved for. If π is initialised by π0

i,j = 1
2ΛTϕ0

i,j, the
variational integrator preserves the functional relation between π and ϕ, so that

πni,j = 1
2ΛTϕni,j for all n. (72)

To see this, we equate relations (70) and (71) for πn+1/2
i,j ,

1
2ΛTϕ

n+1/2
i,j = πni,j + 1

2htλ
n+1/2
i,j . (73)

We insert the definition of ϕn+1/2
i,j from (69d) and replace πni,j with the initial condition

πni,j = 1
2ΛTϕni,j, hence

1
2ΛT

(
ϕni,j + 1

2htυ
n+1/2
i,j

)
= 1

2ΛTϕni,j + 1
2htλ

n+1/2
i,j . (74)

This shows that

λ
n+1/2
i,j = 1

2ΛTυ
n+1/2
i,j , (75)

so that upon insertion into the definition of πn+1
i,j from (69c), we find

πn+1
i,j = 1

2ΛT
(
ϕni,j + htυ

n+1/2
i,j

)
= 1

2ΛTϕn+1
i,j . (76)

That is if πni,j = 1
2ΛTϕni,j then πn+1

i,j = 1
2ΛTϕn+1

i,j . This allows us to eliminate π from the
scheme. Combining equations (69a), (70) and (71),

ΛT

ϕn+1/2
i,j − ϕni,j

ht

 =
∑
�

4∑
l=1

�l=(i,j)

∂Lh
∂ϕ�l

(ϕn+1/2
� , υ

n+1/2
� ), (77)
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provides integrators for the vorticity equation and Ohm’s law,

ω
n+1/2
i,j − ωni,j

ht
+ 1

2Ai,j(φ
n+1/2, ωn+1/2) + 1

2Ai,j(j
n+1/2, ψn+1/2) = 0, (78)

ψ
n+1/2
i,j − ψni,j

ht
+ 1

2Ai,j(φ
n+1/2, ψn+1/2) = 0, (79)

where A denotes Arakawa’s discretisation of the Poisson bracket [1], given by

Ai,j(φ, ω) = 1
3

[
A++
i,j (φ, ω) + A+×

i,j (φ, ω) + A×+
i,j (φ, ω)

]
, (80)

with

A++
i,j (φ, ω) = 1

4hxhy

[(
φi+1,j − φi−1,j

)(
ωi,j+1 − ωi,j−1

)
−
(
φi,j+1 − φi,j−1

)(
ωi+1,j − ωi−1,j

)]
, (81a)

A+×
i,j (φ, ω) = 1

4hxhy

[
φi+1,j

(
ωi+1,j−1 − ωi+1,j+1

)
− φi−1,j

(
ωi−1,j−1 − ωi−1,j+1

)
−φi,j+1

(
ωi−1,j+1 − ωi+1,j+1

)
+ φi,j−1

(
ωi−1,j−1 − ωi+1,j−1

)]
, (81b)

A×+
i,j (φ, ω) = 1

4hxhy

[
φi+1,j+1

(
ωi+1,j − ωi,j+1

)
− φi−1,j−1

(
ωi,j−1 − ωi−1,j

)
−φi−1,j+1

(
ωi−1,j − ωi,j+1

)
+ φi+1,j−1

(
ωi,j−1 − ωi+1,j

)]
, (81c)

as well as an integrator for the Poisson equation for φ and a discrete rule for computing
j,

−∆xφ
n+1/2
i,j −∆yφ

n+1/2
i,j = ω

n+1/2
i,j , (82)

−∆xψ
n+1/2
i,j −∆yψ

n+1/2
i,j = j

n+1/2
i,j . (83)

Here, ∆x and ∆y denote the standard centred finite difference second-order derivative
with respect to x and y, i.e.,

∆xφi,j = φi−1,j − 2φi,j + φi+1,j

h2
x

, ∆yφi,j = φi,j−1 − 2φi,j + φi,j+1

h2
y

. (84)

In addition, we obtain discrete versions of the adjoint equations (14). Using (69d), the
update rule (69e) can be rewritten as

1
2

[
ϕn+1
i,j + ϕni,j

]
= ϕ

n+1/2
i,j . (85)

As all discrete operators Ai,j, ∆x and ∆y are linear in their arguments, we can use this
relation to eliminate ϕn+1/2

i,j and rewrite the integrator solely in terms of ϕni,j and ϕn+1
i,j ,
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namely

0 =
ωn+1
i,j − ωni,j

ht
+ 1

4
[
Ai,j(φn+1, ωn+1) + Ai,j(φn, ωn+1) + Ai,j(φn+1, ωn) + Ai,j(φn, ωn)

]
+ 1

4
[
Ai,j(jn+1, ψn+1) + Ai,j(jn, ψn+1) + Ai,j(jn+1, ψn) + Ai,j(jn, ψn)

]
,

(86a)

0 =
ψn+1
i,j − ψni,j

ht
+ 1

4
[
Ai,j(φn+1, ψn+1) + Ai,j(φn, ψn+1) + Ai,j(φn+1, ψn) + Ai,j(φn, ψn)

]
,

(86b)

ωn+1
i,j = −∆xφ

n+1
i,j −∆yφ

n+1
i,j , (86c)

jn+1
i,j = −∆xψ

n+1
i,j −∆yψ

n+1
i,j , (86d)

where the last two equations follow under the assumption that φ0
i,j and j0

i,j are initialised
using (86c) and (86d). In summary, we obtain a scheme of second-order, which consists
of the Crank-Nicolson method for the time derivatives, Arakawa’s method for the Poisson
bracket and the standard centred finite difference approximation for the Laplacian.

3.2 Discrete Conservation Laws
The derivation of the discrete conservation laws follows analogously to the case of the
vorticity equation described by Kraus and Maj [38]. Here, we only provide the discrete
expressions of (3), (7), (8) and (9), that is

(a) total energy

E = hxhy
2

∑
i,j

(
φi,j ωi,j + ψi,j ji,j

)
= const., (87a)

(b) magnetic helicity

CMH = hxhy
∑
i,j

ψi,j = const., (87b)

(c) L2 norm of ψ

CL2 = hxhy
∑
i,j

ψ2
i,j = const., (87c)

(d) and cross helicity

CCH = hxhy
∑
i,j

ωi,jψi,j = const.. (87d)

The corresponding discrete expressions of (44) and (47)-(49) are defined analogously. In
practice, the tolerance of the nonlinear solver plays a crucial role in conserving these
quantities exactly (i.e., up to machine precision). We observe that if the tolerance is set
to a value above a certain threshold, the errors in the conservation laws exhibit a drift on
top of the oscillating behaviour usually observed (see e.g. Figures 4, 6, and 10).
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Variational integrators also preserve a discrete symplectic structure arising from the
boundary terms in Hamilton’s action principle [46]. Considering that, it seems striking
that the RMHD integrator preserves energy exactly. According to the famous theorem by
Ge and Marsden [72] there are no symplectic integrators that preserve energy exactly. This
is an intricate delicacy of variational integrators for formal Lagrangians. To understand
this issue, it is important to realise that the energy, which is preserved, is the energy of the
physical system, whereas the symplectic structure, which is preserved, is the symplectic
structure of the extended system. Thinking in terms of energy as the conservation law
that originates from invariance of the Lagrangian with respect to temporal translations,
we find that the corresponding “energy” of the formal Lagrangian is not preserved in the
discrete case. Therefore there is no contradiction to the Ge-Marsden theorem.

This observation has further implications. In practice it also implies that we cannot
make an immediate statement about the symplecticity of the resulting algorithm for
the physical system. We only know that the discrete extended system has a symplectic
structure which is indeed preserved. On the attempt of reducing this symplectic structure
to the physical system by restricting solutions of the extended system to solutions of
the physical system, c.f. Equation (25), we usually find that the restricted symplectic
structure vanishes identically.

4 Numerical Experiments
In this section we verify the properties of the variational integrator (86) by considering
several standard test cases from the literature. In the first example, we simulate the evo-
lution of the Orszag-Tang vortex, which is a challenging problem due to the appearance
of strong nonlinear flows. In the second example, we consider a current sheet model often
used in reconnection studies in order to verify that the integrator is free of numerical re-
sistivity, so that spurious reconnection along current sheets is absent. In the last example,
we show that, when adding effects of electron inertia, collisionless magnetic reconnection
is observed. We find that important features of the reconnection process are in very good
qualitative and quantitative agreement with a pseudo-spectral code previously used in
reconnection studies.

A reference implementation of the variational integrator is provided based on Python [58,
40], Cython [5], PETSc [4, 3] and petsc4py [16]. Visualisation is done using NumPy [63],
SciPy [33], matplotlib [30] and the IPython notebook [54]. The nonlinear system is solved
with Newton’s method, where in each iteration the linear system is solved via GMRES.
An important problem for solving the linear system is efficient preconditioning. In this
work, we use a simplified version of the physics-based preconditioner described by Chacón
et al. [12]. For details on the solver and the preconditioner the reader is referred to Ap-
pendix A. The absolute tolerance of the nonlinear solver is set to 5×10−16 and the relative
tolerance to 10−10, which is usually reached after 2− 5 iterations.

For comparison we use an initial value code, based on a Fast Fourier Transform scheme
for the spatial operators and a third order Adams-Bashforth scheme for advancing in time.
This scheme has already been adopted by some of the authors in many investigations of
collisionless reconnection [24, 25, 61, 62].
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4.1 Orszag-Tang Vortex
The first example describes the evolution of current sheets in an Orszag-Tang vortex
according to the RMHD equations (1) with initial conditions from Cordoba and Marliani
[15], given by

φ = 2 cos(x)− 2 sin(y), ψ = 2 cos(x)− cos(2y).

The spatial domain is (x, y) ∈ [0, 2π) × [0, 2π) with periodic boundaries. We consider a
spatial resolution of nx × ny = 64× 64 grid points and the time step ht = 0.01.

The Orszag-Tang vortex describes a turbulent setting in which current sheets develop.
These are areas where the magnetic field changes sign such that the current density
becomes very large. Figure 3 compares the current density computed with the variational
integrator (86) and the pseudo-spectral integrator. The current sheets are located in
those parts of the plot where the colour changes from blue to yellow within a small
region. The results shown here are in good agreement with those of Cordoba and Marliani
[15] as well as those of another variational integrator for ideal MHD [37] and a method
based on discrete Euler-Poincaré reduction [20]. Moreover, the variational integrator and
the pseudo-spectral integrator also show good quantitative agreement as can be seen in
Figure 2, which shows a comparison of the L2 norms of the current density j and the
vorticity ω as well as the kinetic and magnetic energy. After t = 0.7, the simulation
is under-resolved. Note that in the original work, Cordoba and Marliani [15] use an
adaptive mesh refinement approach with an initial resolution of 1024 × 1024 points and
several refinement cycles. The variational integrator, on the other hand, captures the
correct behaviour and preserves energy, magnetic helicity and cross helicity to machine
precision even at very low resolution (see Figure 4).
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Figure 2: Orszag-Tang vortex. Time evolution of the L2 norms of j and ω as well as the
kinetic and magnetic energy.
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Figure 3: Orszag-Tang Vortex with the pseudo-spectral integrator (left) and the varia-
tional integrator (right). Current density j. Fixed colour scale.
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Figure 4: Orszag-Tang vortex with the pseudo-spectral integrator (left) and the variational
integrator (right). Error of the total energy E, the L2 norm CL2 of ψ, magnetic helicity
CMH and cross helicity CCH. Note the common factor on the top of the axis.

4.2 Current Sheet
Also in this example we adopt the variational integrator (86) to solve the RMHD equa-
tions (1). We consider the following initial condition

φ = φ0
(

cos(x+ y)− cos(x− y)
)
, ψ = ψ0

cosh2(x)
, (88)

with ψ0 = 1.29 and φ0 = 10−3, which leads to the formation of a current sheet centred at
x = 0. The same initial condition was adopted for collisionless reconnection studies [23,
61]. The spatial domain is (x, y) ∈ [−π,+π)×[−π,+π) with periodic boundaries, resolved
by nx×ny = 1024× 512 grid points. In order to satisfy the periodicity condition in the x
direction a Fourier series representation of the equilibrium flux function has been adopted.
Namely, we expand the expression for ψ in Equation (88) in a Fourier series, truncated up
to 22 modes. This truncation has already been shown [23] to provide a good representation
of the equilibrium flux function.

In Figure 5 the magnetic potential ψ is plotted at various points in time. It is seen
that the topology of the contour lines of the magnetic potential is preserved. Artificial
reconnection due to spurious effects of the numerics is absent. This is also reflected in the
good conservation properties regarding energy, magnetic helicity and cross helicity (see
Figure 6).

4.3 Collisionless Reconnection
In the previous example we verified that in the ideal case, the variational integrator (86) is
free of artificial reconnection due to numerical resistivity or other spurious effects. Here,
we use the same setup and the same initial condition as in the example of Section 4.2, but
we solve the RMHD model with electron inertia effects corresponding to equations (43),
so that reconnection of magnetic field lines is expected to take place. We compare the
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Figure 5: Current sheet. Contour lines of the flux function ψ.
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Figure 6: Current sheet with the variational integrator. Error of the total energy E, the
L2 norm CL2 of ψ, magnetic helicity CMH and cross helicity CCH.

results obtained from the variational integrator with those obtained from a pseudo-spectral
code. The simulation reported here has been performed on a spatial domain of (x, y) ∈
[−π,+π) × [−π,+π) with periodic boundaries using nx × ny = 1024 × 512 grid points.
The value of the electron skin depth de has been set equal to 0.2. For the variational
integrator we use a time step of ht = 0.01. For the pseudo-spectral code a minimum
value of ht = 0.001 in the nonlinear phase has been adopted. A first important quantity
to consider in reconnection studies is the linear growth rate of the initial perturbation,
which is defined as

γ(t) = d

dt
ln(ψ(t, 0, π)− ψ(0, π, 0)). (89)

From Figure 7 one sees that the growth rate follows the expected behaviour consisting of
a transient phase up to t = 6, approximately, followed by the linear phase, from t = 6
to t = 12, where γ is nearly constant, before entering the nonlinear phase for t > 12.
We observe that growth rates determined with the variational integrator and with the
pseudo-spectral code are almost identical. The same level of agreement is observed for
a case with weaker initial perturbation (φ0 = 10−8), where the linear phase lasts longer
than in the case shown here.

The dynamics of the island growth is practically identically modelled by both, the
variational and the pseudo-spectral integrator (see Figure 8). This does not appear too
surprising, given the exponential convergence of the pseudo-spectral method and its good
conservation properties until shortly before the end of the simulation. Only then we
observe minor differences in the solutions at the inside of the island. At this point, after
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t = 30, power spectra, not shown here, indicate that the simulation is under-resolved for
both integrators, with non-negligible amounts of energies residing in the smallest scales.
This phase of the evolution corresponds to the onset of a secondary Kelvin-Helmholtz-
type of instability, that characterises this collisionless reconnection regime [17, 18]. A
turbulent regime follows, with energy continuously transferred to smaller scales but with
the constraint of total energy conservation due to the Hamiltonian nature of the system.
In this situation, from Figure 8 it emerges that the variational integrator does not preserve
the intrinsic parity symmetry of the equations, ψ(x, y) = ψ(−x, y) and ψ(x, y) = ψ(x,−y),
anymore. This, however, is expected in the turbulent regime as a consequence of chaotic
dynamics. The same loss of parity, although not visible here, actually occurs also for the
pseudo-spectral code, although at a slightly later time.

In general, the results of both integrators agree very well also in the generalised mag-
netic potential ψ̄ (see Figure 9) and the vorticity ω (not shown here), except for the
turbulent fine scale structures along the x = 0 and more prominently the y = 0 axes,
which appear at about t = 30. For a given resolution, these structures appear later in
the solution of the pseudo-spectral method, which might also explain why the pseudo-
spectral integrator retains parity symmetry longer than the variational integrator. This
could be due to the dissipation introduced by the discretisation of the time derivative,
which has a smoothing effect on the solution and causes the dissipation of energy and the
L2 norm of ψ̄. We remark that, when increasing resolution, the appearance of the small
scale turbulent structures occurs earlier. The growth rate of the related instability seems
indeed to increase with decreasing scales, as is the case for the standard Kelvin-Helmholtz
instability.

Throughout the simulation, the variational integrator shows excellent preservation of
energy, the L2 norm of ψ̄, generalised magnetic helicity and cross helicity (see Figure 10).
The pseudo-spectral integrator dissipates energy and the L2 norm of ψ̄, but preserves
magnetic helicity and cross helicity (see Figure 10). Only towards the end of the simula-
tion, conservation of cross helicity degrades rapidly. Without electron inertia and for the
simulation time considered here, the pseudo-spectral integrator also preserves energy and
the L2 norm of ψ exactly. With the variational integrator we also see an increase in cross
helicity when the island develops, but the order of magnitude of the total cross helicity
still remains close to machine accuracy.
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Figure 8: Magnetic reconnection with the pseudo-spectral integrator (left) and the vari-
ational integrator (right). Vector potential ψ.
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Figure 9: Magnetic reconnection with the pseudo-spectral integrator (left) and the vari-
ational integrator (right). Generalised vector potential ψ̄. Fixed colour scale.
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Figure 10: Reconnection with the pseudo-spectral integrator (left) and the variational
integrator (right). Error of the total energy E, the L2 norm CL2 of ψ̄, generalised magnetic
helicity CMH and cross helicity CCH.

5 Summary and Outlook
In this work we developed a variational discretisation of ideal and inertial RMHD. As
we do not have a suitable physical Lagrangian available, we adopted a formal Lagrangian
approach [38, 31, 32]. A particularly interesting feature of this formulation is that not only
conservation laws related to variational symmetries but also the conservation of Casimirs
can be analysed by the Noether theorem.

In the spatial discretisation of the action principle, we used a simple finite difference
approach, which is a straight forward extension of our previous work on the vorticity
equation [38]. Here, however, we used a different strategy for the discretisation in time,
which directly leads to one-step time integrators of Runge-Kutta type. Even though
we restricted ourselves to such a simple discretisation of the Lagrangian, leading to the
Arakawa scheme combined with the Crank-Nicholson scheme, the generalisation to higher-
order methods is straight forward. Due to the flexibility of the variational integrator
framework, both the spatial and temporal discretisation can easily be extended towards
more elaborate methods [41, 42, 27, 35, 36, 13]. In that sense the current work can be
understood as a proof of principle, showing that even simple finite difference schemes
obtained as variational integrators of a formal Lagrangian have excellent conservation
properties when applied to nonlinear, coupled systems like RMHD.

The particular method obtained in this work preserves the total energy as well as
linear and quadratic Casimir invariants of the system, namely magnetic helicity, cross
helicity and the L2 norm of the magnetic potential. In simulations of the Orszag-Tang
vortex and of a current sheet model, we verified the favourable properties of the variational
integrator, especially that it respects the aforementioned conservation laws of the RMHD
system exactly (up to machine accuracy). A remarkable feature is that in the ideal case
magnetic reconnection is absent. This is inherent to the physics but rarely respected
by the numerics. Only when effects of finite electron inertia are added to the system,
reconnection is observed as is expected from the theory.
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We compared the results of the variational integrator with a well established pseudo-
spectral integrator [24, 25, 61, 62] and found excellent qualitative and quantitative agree-
ment. Moreover, we found that at a given resolution the variational integrator, due to
absence of dissipation effects, retains more structures at fine scales than the pseudo-
spectral integrator. Therefore, in order to perform a simulation with a certain level of
detail, less resolution is needed when using the variational integrator than when using the
pseudo-spectral method.

The absence of dissipation can cause numerical instabilities and is problematic in the
presence of turbulence, e.g., in the setting of a Kelvin-Helmholtz instability, where energy
is transferred to ever finer scales, so that at some point of the simulation the resolution will
always be insufficient. For such problems, however, ideal reduced magnetohydrodynamics
is not an appropriate model. For realistic simulations in turbulent regimes, dissipation
needs to be included in the model, e.g., viscosity and resistivity in the case of MHD, in
order to remove energy and smoothen small structures at the correct scale. Even though
adding dissipation can lead to the loss of conserved quantities like energy, we believe that
it is of great importance to preserve such conservation laws in the discretisation of the
ideal part of the system. Only that way uncontrolled dissipation, as it is often introduced
with other discretisation schemes, can be avoided, so that the amount of dissipation in the
simulation is exactly the amount put in by physical mechanisms while spurious numerical
dissipation is absent.

In the current work, we do not address questions regarding the performance of the
proposed method but only provide a reference implementation in order to verify the
favourable conservation properties. The work by Chacón et al. [12] shows that efficient
and scalable solvers for such methods can be constructed based on Jacobian-free Newton-
Krylov methods with physics-based preconditioning. We expect the performance of the
variational integrator derived in Section 3 to be similar to that of the scheme used by
Chacón et al. [12] when applying the same solver strategies. Let us note that the vari-
ational integrator, due to being a finite difference method which requires communica-
tion only between nearest neighbours, is much more amenable to parallelisation than the
pseudo-spectral method, which relies on Fast Fourier Transforms and therefore global
operations. Hence the variational integrator is better suited for the extension towards
computationally more challenging problems, e.g., in three dimensions.

A natural extension of this work is the development of higher-order discretisations [35,
36] as well as the treatment of more physics-comprehensive models like the gyrofluid four-
field model proposed by Waelbroeck and Tassi [67], models for electrostatic turbulence
[66] and models for magnetic reconnection evolving temperature and heat flux fluctuations
[22]. As the structure of the respective equations is very similar to the ones treated here,
the extension of the scheme and its implementation is expected to be straight forward.
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A Nonlinear Solver and Preconditioner
The system (86) constitutes a nonlinear algebraic system of equations, which is solved
using Newton’s method. Denoting ϕ = (ω, ψ, φ, j), we can write (86) as F (ϕn+1) = 0,
with

Fω = ωn+1 − ωn + ht
4
[
A(φn+1, ωn+1) + A(φn, ωn+1) + A(φn+1, ωn) + A(φn, ωn)

]
+ ht

4
[
A(jn+1, ψn+1) + A(jn, ψn+1) + A(jn+1, ψn) + A(jn, ψn)

]
, (90a)

Fψ = ψn+1 − ψn + ht
4
[
A(φn+1, ψn+1) + A(φn, ψn+1) + A(φn+1, ψn) + A(φn, ψn)

]
, (90b)

Fφ = ωn+1 + ∆φn+1, (90c)
Fj = jn+1 + ∆ψn+1. (90d)

Newton’s method consists of solving a series of systems of the form

J(ϕn+1
m ) δϕn+1

m = −F (ϕn+1
m ), (91)

where J denotes the Jacobian matrix,

J(ϕn+1) = F ′(ϕn+1), (92)

ϕn+1
m is the mth field vector, δϕn+1

m is the mth increment, from which the (m+ 1)th field
vector is computed as

ϕn+1
m+1 = ϕn+1

m + δϕn+1
m , (93)

F (ϕn+1
m ) is the vector of residuals as defined in (90) and m is the nonlinear iteration

level. This iterative procedure is stopped when some convergence criterion is satisfied,
specifically ∥∥∥F (ϕn+1

m )
∥∥∥

2
< nεabs + εrel

∥∥∥F (ϕn+1
0 )

∥∥∥
2
, (94)

where ‖·‖2 denotes the l2 norm, n = nx × ny is the total number of grid points εabs =
5 × 10−16 is the absolute tolerance and εrel is the relative tolerance (usually set to 10−10

in this work). The 4× 4 block matrix J can easily be computed as

J =


1 + ht

2 A(φn+1/2
m , ·) ht

2 A(jn+1/2
m , ·) −ht

2 A(ωn+1/2
m , ·) −ht

2 A(ψn+1/2
m , ·)

0 1 + ht

2 A(φn+1/2
m , ·) −ht

2 A(ψn+1/2
m , ·) 0

1 0 ∆ 0
0 ∆ 0 1

 , (95)

where ϕn+1/2
m = (ϕn + ϕn+1

m )/2. With that, the system (91) is solved iteratively using
GMRES. In each iteration of the GMRES algorithm, we only have to compute a matrix-
vector product of the form Jυ, which can be implemented in a matrix-free way so that
the actual Jacobian matrix J does not need to be constructed and stored.

In order to increase the efficiency of the solver, we introduce a preconditioning matrix
P into (91), that is (

J(ϕn+1
m )P−1

) (
P δϕn+1

m

)
= −F (ϕn+1

m ), (96)

28



so that GMRES will solve (
J(ϕn+1

m )P−1
)
υ = −F (ϕn+1

m ). (97)

In each GMRES iteration, we have to solve P υ̂ = υ for υ̂ and compute the matrix-
vector product Jυ̂. The Newton increment is found upon solving P δϕn+1

m = δϕ̂n+1
m ,

where δϕ̂n+1
m is the result of the GMRES solver. The matrix P should be such that it

approximates J but is easier to solve for. In its construction, we use a physics-based
approach, following the work of Chacón et al. [12] (see also Chacón and Knoll [11]). The
derivation is summarised in the following section.

Derivation of the Preconditioner
We start the construction of the preconditioner with the linearised, semi-discrete (Crank-
Nicolson in time, c.f. (86)) version of (1), that is

δωn+1 + ht

2 {φ
n+1/2, δωn+1}+ ht

2 {δφ
n+1, ωn+1/2}

+ ht

2 {j
n+1/2, δψn+1}+ ht

2 {δj
n+1, ψn+1/2} = −Fω, (98a)

δψn+1 + ht

2 {φ
n+1/2, δψn+1}+ ht

2 {δφ
n+1, ψn+1/2} = −Fψ, (98b)

δωn+1 + ∆δφn+1 = −Fφ, (98c)
δjn+1 + ∆δψn+1 = −Fj. (98d)

Insert (98c) and (98d) as well as the definitions of ω and j into (98a),

∆δφn+1 − ht

2 {∆φ
n+1/2, δφn+1}+ ht

2 {φ
n+1/2,∆δφn+1}+ ht

2 {φ
n+1/2, Fφ}

+ ht

2 {∆ψ
n+1/2, δψn+1} − ht

2 {ψ
n+1/2,∆δψn+1} − ht

2 {ψ
n+1/2, Fj} = Fω − Fφ. (99)

Following Equation (22) in Reference [12], we introduce the approximations

{φn+1/2,∆δφn+1} − {∆φn+1/2, δφn+1} ≈ ∆{φn+1/2, δφn+1}, (100a)
{ψn+1/2,∆δψn+1} − {∆ψn+1/2, δψn+1} ≈ ∆{ψn+1/2, δψn+1}, (100b)

so that

∆δφn+1 + ht

2 ∆{φn+1/2, δφn+1} − ht

2 ∆{ψn+1/2, δψn+1} =
= Fω − Fφ − ht

2 {φ
n+1/2, Fφ}+ ht

2 {ψ
n+1/2, Fj}. (101)

Upon inversion of the Laplace operator, we obtain

δφn+1 = ht

2 {ψ
n+1/2, δψn+1} − ht

2 {φ
n+1/2, δφn+1}+ L, (102)

with

L = ∆−1
(
Fω − Fφ − ht

2 {φ
n+1/2, Fφ}+ ht

2 {ψ
n+1/2, Fj}

)
. (103)

In order to solve this equation together with (98b), we use the following Jacobi iteration,

δφn+1
l+1 = ht

2 {φ
n+1/2, δφn+1

l }+ ht

2 {ψ
n+1/2, δψn+1

l+1 }+ L, (104a)
δψn+1

l+1 − ht

2 {ψ
n+1/2, δφn+1

l+1 } = −ht

2 {φ
n+1/2, δψn+1

l } − Fψ, (104b)
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where l denotes the iteration count. Note, that here we evaluate the advective term with
ψn+1
l and not with ψn+1

l+1 as in Reference [12]. Insert (104a) into (104b), so that

δψn+1
l+1 −

h2
t

4 {ψ
n+1/2, {ψn+1/2, δψn+1

l+1 }} =

= h2
t

4 {ψ
n+1/2, {φn+1/2, δφn+1

l }}+ ht

2 {ψ
n+1/2, L} − ht

2 {φ
n+1/2, δψn+1

l } − Fψ. (105)

In order to solve this equation, we have to invert a parabolic operator Q, given by

Q = 1− h2
t

4 {ψ
n+1/2, {ψn+1/2, ·}}. (106)

This is done by a matrix-free conjugate gradient solver3 with a low number of iterations
(depending on the problem, we use 3 − 5). Once the Jacobi iteration is terminated
(after 1 − 3 iterations in this work), the vorticity and current density are computed
by (98c) and (98d). We use the same discretisations for the Poisson brackets {·, ·} and
the Laplacian ∆ as in (80) and (84). The iterative Jacobi solver provides an approximate
solution of (91) by δϕn+1

m ≈ P−1
(
− F (ϕn+1

m )
)
. In the preconditioner, we have to solve

more general systems of the form P υ̂ = υ. This is accomplished by replacing −F in (103)
and (105) with υ. For each Jacobi iteration we have one inversion of Q. In addition, for
each GMRES iteration we have one inversion of the Laplacian ∆ in order to compute
the right-hand sides. This is done with conjugate gradients, preconditioned with the
HYPRE/BoomerAMG multi-grid solver [19].

For the case with electron inertia (c.f., Section 2.3), Equation (105) is replaced by

δψn+1
l+1 − d2

e ∆δψn+1
l+1 −

h2
t

4 {ψ
n+1/2, {ψn+1/2 + d2

e j
n+1/2, δψn+1

l+1 }} =

= h2
t

4 {ψ
n+1/2 + d2

e j
n+1/2, {φn+1/2, δφn+1

l }}+ ht

2 {ψ
n+1/2 + d2

e j
n+1/2, L}

− ht

2 {φ
n+1/2, δψn+1

l } − d2
e
ht

2 {φ
n+1/2, δjn+1

l } − Fψ, (107)

so that the parabolic operator that has to be inverted becomes

Q̄ = 1− d2
e ∆− h2

t

4 {ψ
n+1/2, {ψn+1/2, ·}}. (108)

Here, the same solution strategy as above is used. However, convergence of the precon-
ditioner can be further accelerated by preconditioning the conjugate gradient solver with
HYPRE/BoomerAMG applied to 1 − d2

e ∆, as this expression becomes the dominating
part of Q̄, and the corresponding matrix can easily be implemented.

3Let us remark that the optimal solution strategy for this problem is a multi-grid approach as outlined
in Reference [12]. However, as we are concerned with a reference implementation and not with obtaining
the best possible performance we adopted a simplified strategy that is easier to implement.
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