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Introduction

Shape memory alloys (SMAs) are metallic materials named after the discovery of their unique capability to retrieve their original shape when their temperature is increased after a mechanical loading. It is the result of the transformation at the crystallic level between the two key solid phases that the material can adopt, austenite and martensite. The 5 dierence between these two phases lies on the architecture of the crystalline structure, which varies between a cubic-like conguration in austenite and a less symmetric conguration in martensite [START_REF] Patoor | Shape memory alloys, Part I: General properties and modeling of single crystals[END_REF][START_REF] Otsuka | Shape Memory Materials[END_REF]. Several dierent eects have been investigated, for instance superelasticity and actuation, depending on the thermomechanical conditions imposed. Such capabilities rank those materials in the 10 wider class of smart materials, according to their multi-physics (mechanical-thermal) coupling.

All those eects are based on the fact that such martensitic transformation can take place in both ways, and that the martensitic phase can be reoriented under the action of mechanical forces. The direction from austenite to martensite is systematically dened as forward transformation, whereas the inverse procedure is called reverse transformation.

This phase transformation can be the result of a change in temperature between critical values, and/or a change in the mechanical state. In the absence of applied stress, forward transformation occurs between martensite start (M s ) and nish (M f ) temperatures and reverse transformation between austenite start (A s ) and nish (A f ) temperatures. The development of appropriate stress levels can also lead to phase transformation. In particular, applying a mechanical loading/unloading cycle above A f demonstrates the eect of superelasticity in SMAs. During forward transformation, the transformation starts at a critical, temperature-dependent stress. A stress plateau is observed in the uniaxial stress-strain diagram, before the start of the elastic section of martensite. In the case of mechanical loading at temperatures above A f , the strain that appears between the two elastic sections on the stress-strain diagram corresponds to a transformation strain. This strain is fully recovered after reverse transformation has nished during unloading.

Martensite is the phase that appears at low temperatures/high stress state and consists of zones with dierent orientation directions found in a single crystal, called variants.

Two main forms , distinguished on the basis of the conguration of variants, are observed: twinned martensite, for which the variants appear in multiple directions and form a selfaccommodated assembly ; and detwinned or oriented martensite, for which a principal direction of variants dominates the martensitic composition [START_REF] Merzouki | Coupling between measured kinematic elds and multicrystal SMA nite element calculations[END_REF]. Contrary to the two-way direction of phase transformation, the transition between these two crystallic congurations occurs in one direction, resulting to detwinned martensite only and is called orientation or detwinning. This occurs with the help of mechanical working, when stress is increased between critical levels. Such oriented martensite can still be reoriented if the direction of mechanical forces change. Appropriate combination of orientation and phase transformation processes result in the characteristic shape memory eect [START_REF] Lagoudas | Shape Memory Alloys -Modeling and Engineering Applications[END_REF].

The properties of shape memory and superelasticity render SMAs an interesting material sought to be utilized in practical applications in the last twenty years (Lecce and Concilio, 2014;[START_REF] Barbarino | A review on shape memory alloys with applications to morphing aircraft[END_REF]. A signicant increase in the interest given to SMAs in publications and patents has recently been observed [START_REF] Jani | A review of shape memory alloy research, applications and opportunities[END_REF]. Specically, innovative systems were introduced in automotive and aerospace industries [START_REF] Hartl | Aerospace applications of shape memory alloys[END_REF][START_REF] Van Humbeeck | Non-medical applications of shape memory alloys[END_REF]. SMAs have also found particularly extended use in biomedical applications [START_REF] Auricchio | Chapter 12 SMA Cardiovascular Applications and Computer-Based Design[END_REF][START_REF] Morgan | Medical shape memory alloy applicationsthe market and its products[END_REF]. This wide array of applications motivates research to develop mathematical models able to capture their particular thermomechanical behavior [START_REF] Khandelwal | Models for Shape Memory Alloy Behavior: An overview of modeling approaches[END_REF].

These models aim at being utilized in robust computational tools, mostly Finite Element Analysis (FEA) methods. Their contribution is associated with the assistance provided to engineers to design SMA actuators and conceive innovative products.

In recent years, various phenomenological models have been proposed to explain the physics behind SMA behavior [START_REF] Cisse | A review of constitutive models and modeling techniques for shape memory alloys[END_REF]. They focus on the macroscopic variables, allowing for relatively simple numerical implementation with respect to micromechanical approaches based on the physics of the crystalline structure [START_REF] Patoor | Micromechanical modelling of the thermomechanical behaviour of shape memory alloys[END_REF][START_REF] Lagoudas | Shape memory alloys, Part II: Modeling of polycrystals[END_REF]. The primary macroscopic variable taken in mind in such models is the martensitic volume fraction (MVF). The actual representation of phase transformation in the macroscopic level is the change of the concentration of martensite in the material, thus justifying this consideration [START_REF] Hartl | Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys[END_REF][START_REF] Chemisky | Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation[END_REF][START_REF] Lexcellent | About modelling the shape memory alloy behaviour based on the phase transformation surface identication under proportional loading and anisothermal conditions[END_REF]. The direction of strain appearing during transformation is taken in mind using necessarily a tensorial variable that depends on the loading conditions [START_REF] Luig | On the modeling of shape memory alloys using tensorial internal variables[END_REF]. Generally, these models have proven suciently accurate in capturing the material behavior under unidirectional loading [START_REF] Peultier | A simplied micromechanical constitutive law adapted to the design of shape memory applications by nite element methods[END_REF].

The eect of orientation has also been investigated in recent works [START_REF] Ameduri | Shape Memory Alloy Engineering[END_REF][START_REF] Sedlák | Thermomechanical model for NiTibased shape memory alloys including R-phase and material anisotropy under multi-axial loadings[END_REF][START_REF] Saleeb | A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions[END_REF][START_REF] Saint-Sulpice | A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings[END_REF]. These models add the feature of simulating three-dimensional loading paths to previous simpler models [START_REF] Boyd | Thermomechanical Response of Shape Memory Composites[END_REF][START_REF] Brinson | One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redened Martensite Internal Variable[END_REF][START_REF] Saleeb | A general hereditary multimechanism-based deformation model with application to the viscoelastoplastic response of titanium alloys[END_REF]. Interesting experimental work has been carried with respect to such loading [START_REF] Bouvet | A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings[END_REF][START_REF] Grabe | Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes[END_REF][START_REF] Sittner | Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces[END_REF]. Reorientation consists in the change of the orientation of the martensite variants in existing martensite volume, without inducing further transformation. The procedure of reorientation has a visible eect on the preferred direction of inelastic strains, whereas detwinning mostly concerns their magnitude [START_REF] Liu | Stabilisation of martensite due to shear deformation via variant reorientation in polycrystalline NiTi[END_REF][START_REF] Popov | A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite[END_REF]. In certain models [START_REF] Panico | A three-dimensional phenomenological model for martensite reorientation in shape memory alloys[END_REF][START_REF] Helm | Shape memory behaviour: modelling within continuum thermomechanics[END_REF][START_REF] Arghavani | A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings[END_REF] and subsequent works, two dierent volume fractions for martensite are considered as driving material properties, one for twinned and one for the detwinned part. This proves a useful consideration, since the evolution of the martensitic strain can be associated to thermally induced and stress induced forward transformation. However, most of these models operate under the assumption that there is a direct relation between the stress induced martensitic fraction and an equivalent transformation strain magnitude, as investigated in [START_REF] Souza | Three-dimensional model for solids undergoing stress-induced phase transitions[END_REF]; [START_REF] Juhász | A Simple Model for Shape Memory Alloys Under Multi-axial Non-Proportional Loading[END_REF]; [START_REF] Taillard | Equivalent transformation strain and its relation with martensite volume fraction for isotropic and anisotropic shape memory alloys[END_REF].

In this paper, a phenomenological model, based on the physical interpretation of the processes that occur inside a SMA polycrystal is developed. The notion of mean transformation strain inside the martensitic volume discussed in the articles of [START_REF] Peultier | A simplied micromechanical constitutive law adapted to the design of shape memory applications by nite element methods[END_REF]; [START_REF] Chemisky | Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation[END_REF] is examined from a macroscopic point of view to redene the principles of reorientation, forward and reverse transformation. This leads to the introduction of independent scalar rate variables which drive each of the three strain mechanisms. Accordingly, a robust formalism is presented in terms of thermodynamics which is based on a Gibbs free energy potential.

Moreover, the scope of this work extends to providing a general framework for addressing the numerical resolution of multiple strain mechanisms simultaneously activated, allowing for adding even more inelastic strain mechanisms. Motivated by the work of [START_REF] Auricchio | Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation[END_REF], each mechanism is thought to have its proper activation criterion.

These criteria take the form of yield functions, depending on internal variables. Based on simple observations, the methodology for carrying out the numerical algorithm is presented and the mechanical and thermal tangent moduli are calculated. Furthermore, recognizing the strong coupling of thermomechanical eects on SMA behavior [START_REF] Peyroux | Thermomechanical couplings and pseudoelasticity of shape memory alloys[END_REF][START_REF] Morin | Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling[END_REF], the heat caused by mechanical working is calculated under the scope of multiple mechanisms in play. This investigation is able to cover the issue of latent heat which aects mechanical tests in superelasticity [START_REF] Brinson | Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy[END_REF][START_REF] Hartl | Thermomechanical Characterization of Shape Memory Alloy Materials[END_REF].

In the rst part of this work, a physical description of the three non-linear mechanisms considered is presented. It is followed by the presentation of the thermodynamic framework which covers the current model. In the second part, certain important remarks allowing the numerical implementation of the model are given, along with a thermomechanical study. In the third part, results deriving from characteristic numerical implementations are given, demonstrating the validity of the model.

Physical description of deformation mechanisms in Shape Memory Alloys

Most successful SMA models describe the thermomechanical behavior of such materials with (at least) two important internal variables: The martensitic volume fraction and the transformation stain [START_REF] Lagoudas | Shape Memory Alloys -Modeling and Engineering Applications[END_REF]. The derivation of the last quantity as a function of the applied stress has been addressed extensively in the case of transformation only [START_REF] Qidwai | On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material[END_REF]. While reorientation of martensitic variants occurs together with a forward or reverse martensitic transformation, the proper derivation of the evolution equation for the transformation strain has to be dened accordingly. Here, a physical representation of the particular behavior of SMAs is described to provide more insight about the derivation of such evolution, depending on the physical deformation mechanisms activated. Its physical and mathematical description constitute the major contribution of the proposed model. However, this description necessitates to entirely review the denition of modeling within a thermodynamical framework, and also imposes the development of a numerical resolution scheme for the strongly coupled resulting set of equations. These two points also constitute major advancements in the simulation of the behavior of SMAs subjected to complex loadings.

Deformation mechanisms: Phase transformation and reorientation

The total continuum of the material is considered divided in a mass of representative volume elements (RVEs). Each of the RVEs has its own continuum for which the proper kinematical relations can be derived. From the work of Chemisky et al. [START_REF] Chemisky | Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation[END_REF], the notion of the mean transformation strain over the martensitic volume fraction of a RVE is already examined. Since it will be an important variable in the formulation of the model, it is chosen here to be the key element in describing the physical representation of the kinematics.

εT = 1 V M V M εT r dV (1) 
In the above expression, εT r as the eld of transformation strains inside the whole volume V of the RVE for any given point with coordinates r, V M as the martensitic volume in the RVE and εT is the average value of transformation strain inside V M . On the other hand, the total transformation strain of the RVE is considered a variable of the material continuum: it is called here ε T :

ε T = 1 V V εT r dV = 1 V   V A εT r dV + V M εT r dV  
where V A is the austenitic volume inside the RVE. Knowing that the rst integral is zero, and by eect of (1):

ε T = V M V εT ⇔ ε T = ξ εT (2)
ξ being the representation of the martensitic volume fraction (MVF).

The variables used so far correspond to dierent levels of continua. εT r is a local variable. ξ, ε T and εT are average values over the of the RVE, corresponding to the material continuum. Each RVE is thus treated as a point of the material continuum, achieving the transition to macroscopical considerations.

Note that the macroscopic eective inelastic strain ε T is here taken as the volume average of the inelastic strain. This is an assumption that holds only if the average stress in both phases is equal, which is adopted here for such a phenomenological model.

Each particular strain mechanism comes in eect in the evolution of the inelastic strain and the MVF. From (2), the time rate formula will be: Here, it is assumed that these two contributions are the eect of two mechanisms physically separated and independent. The rst is the direct eect of the martensitic transformation: in the case of forward transformation, it results to the addition of martensitic volume and, if this volume contains detwinned material, to the addition of the corresponding transformation strain. Accordingly, in the case of reverse transformation, it results to the suppression of martensitic volume and the corresponding transformation strain. Forward and reverse transformation do not aect the transformation strains within the preexisting martensitic volume, and therefore are considered independent of reorientation. The second is the direct eect of reorientation and takes place only inside the pre-existing martensitic volume. It can appear without any change of the martensitic volume fraction, and therefore is considered independent of transformation.

εT = ξ εT + ξ εT (3)
The value of the mean transformation strain in the second step will be a weighted average between the contributions of the two mechanisms, based on the volume in which they occur. The mean transformation strain in the second step is thus considered equal to:

(ε T + dε re )V M + ΛT dV M V M + dV M
and the respective dierential is:

dε T = (ε T + dε re )V M + ΛT dV M V M + dV M -εT ⇒ dε T = ( ΛT -εT )dV M + V M dε re V M + dV M (4)
Here, it is assumed that:

dV M V M (5)
which is acceptable in the scope of dierential calculus. Thus:

dε T = ( ΛT -εT )dV M + V M dε re V M = ( ΛT -εT ) dV M V M + dε re (6)
To simplify the term dV M V M , the dierential dξ is considered as:

dξ = d( V M V ) = dV M V - V M V 2 dV (7)
The martensitic transformation is considered to be an isochoric process in the sense that tr(dε T ) = 0 [START_REF] Patoor | Determination of the origin for the dissymmetry observed between tensile and compression tests on shape memory alloys[END_REF] and therefore it is recognized that:

dV = V tr(dε) = V tr(dε el + dε th ) (8)
The contribution of the elastic and thermal expansion of the volume of the RVE could be taken in mind to the full extent. However, for the sake of simplicity, these 155 contributions are considered negligible. As a consequence:

dξ = dV M V (9)
which is used to write:

dξ = dV M V M V M V = dV M V M ξ ⇔ dV M V M = dξ ξ (10) 
Under the light of (10), the equation ( 6) is written:

dε T = ( ΛT -εT ) dξ ξ + dε re (11)
The rate εre is viewed as the foremost eect of reorientation: it is the mean rate of change of transformation strains inside a martensitic volume which is considered constant in time (in two consecutive increments):

εre = 1 V M V M εT (r) dV (12) 
After giving the denitions for transformation and reorientation, it is considered important to clarify the term transformation strain". In the scope of this article, it is used to describe the sum of all inelastic strains in the continuum. All non-thermoelastic strain is included into the term transformation strain. It is stressed that this inelastic strain is not the direct product of only the phase transformation itself; it is also aected by reorientation. In this sense, both transformation (either forward or reverse) and reorientation contribute in the evolution of transformation strain. Still, this strain is linked to the lattice transformation/orientation in the martensitic, that is transformed", volume.

The above description does not in fact constitute a mathematical demonstration of the form of the transformation strain, involving average quantities over subdomains with moving boundaries. Such description is given to present a physical insight in the selection of the averaging quantities and the pragmatic signicance of the nal form 12.

A mathematical formulation of the evolution equation for transformation strain is given in Annex A. In the macroscopical level, three rate variables are introduced, each of those representing the activation and the magnitude of the eect of their respective mechanisms.

ξF represents the rate of change of the MVF induced by forward transformation is acti- vated. It is dened by:

ξF = V F M V (13)
ξR represents the rate of change of the MVF induced by reverse transformation is acti- vated:

ξR = V R M V (14) V F
M is the increment rate produced by the addition of martensitic volume when forward transformation occurs. Respectively, V R M is the increment rate produced by the suppres- sion of martensitic volume during reverse transformation.

The third rate variable ṗre represents the rate of change of the magnitude of the mean transformation strain inside a martensitic part of constant volume. It is dened as:

ṗre = 2 3 εre : εre (15) Accordingly, εre = ṗre Λ re ε (16)
where Λ re ε is a tensor named reorientation tensor representing the direction for the increment of the mean transformation strain induced by reorientation.

Following these denitions, it is necessary that each of these three variables are zero when the respective mechanism is not activated and positive when activated. As for the rate of martensitic volume fraction, it is deduced to take the form of:

ξ = ξF -ξR (17) 
Indeed, the expression

ξ = V F M V - V R M V
complies with the suggestion made in equation ( 9), where dV M can take positive values for forward and negative values for reverse transformation. It is directly implied that at any given moment,

ξ = t 0 ξF dτ - t 0 ξR dτ (18) 
These time integrals are denoted as:

ξ F = t 0 ξF dτ (19) and ξ R = t 0 ξR dτ (20) 
In order to comply with the physical limitation of the notion of a volume fraction, it is necessary that:

0 ≤ ξ ≤ 1 ⇔ ξ R ≤ ξ F ≤ 1 + ξ R (21)
Furthermore, the eect of each mechanism in the rate of transformation strain is assumed to follow a linear relation with its respective rate variable. The rate of the total transformation strain is partitioned into three contributors, each driven by the dierent mechanisms:

εT = εF + εR + εre (22) 
For forward transformation:

εF = ξF Λ F ε (23)
where Λ F ε is dened as the forward transformation tensor and gives the relation between ξF and the magnitude and direction of the induced increment of transformation strain.

For reverse transformation:

εR = ξR Λ R ε (24)
Here, the denition reverse transformation tensor is presented, which gives the relation between ξF and the magnitude and direction of the induced increment of transformation strain. As already established at the beginning of the subsection, this should be:

Λ R ε = -ε T (25) 
For reorientation, the eect of the rate of increment of mean transformation strain within the martensitic part contributes to the rate of transformation strain in the RVE proportionally to its fraction: εre = ξ εre and, following equation ( 16):

εre = ξ ṗre Λ re ε (26)
Here, the product ξ ṗre is replaced by the new rate variable ṗre to reach:

εre = ṗre Λ re ε (27)
Thus, equation ( 22) is rewritten:

εT = ξF Λ F ε + ξR Λ R ε + ṗre Λ re ε (28)
An important assumption is implied here: Since forward and reverse transformation are considered to appear independently, they may occur simultaneously. In this case, recalling the denition of ΛT at A.7, it is deduced that, at any moment:

ξF Λ F ε + ξR Λ R ε = ξ ΛT (29) 
A simultaneous activation of forward and reverse transformation that may take place 185 during loading presents interesting eects. The increment of forward transformation strain is thought to follow the direction of evolving stress (see Fig. 2). The exact relation will be examined later. The evolution of stress is not necessary colinear with previous stress states nor with preexisting strain, thus leading to new average strain direction.

An eect of apparent reorientation" is therefore observed, even if the mechanism of reorientation is activated. A similar phenomenon is proposed in [START_REF] Saint-Sulpice | A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings[END_REF]. In that work, the term reorientation is used to describe the exact eect of coupled forward and reverse transformation. Careful consideration should be taken when referring to this term in our present article. Still, simulations conducted in our work demonstrate that this eect would not be enough to fully capture the change in the direction of inelastic strains and that a full model should be used for complex loading cases.

By using the time integral of equation ( 22), a partition of the total transformation strain in the contribution of forward and reverse transformation and reorientation is proven evident:

ε T = ε F + ε R + ε re (30)

Thermodynamic formulation of the phenomenological model

Having dened the main variables that are actually representative of the deformation mechanisms described in the previous sections, it is essential to describe hereafter the general framework of thermodynamics in which this work is developed. Also, the proper selection of internal variables, associated to each phenomenon, and the formulation of a thermodynamic potential will lead to the couplings (i.e. the reciprocal impact of the progression of physical mechanisms on each other) that naturally arise during arbitrary complex loadings. Next, criteria for transformation and reorientation are dened from those thermodynamic considerations. Finally, evolution equations are expressed accordingly, taking into account the important features highlighted with respect to reverse transformation (see also [START_REF] Lagoudas | Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys[END_REF]).

Free energy potential and general thermodynamic forces

Generally, the macroscopic behavior of SMAs is approached by means of using suitable constitutive equations which involve state variables of the material [START_REF] Patoor | Shape memory alloys, Part I: General properties and modeling of single crystals[END_REF].

Thermodynamic state variables are those that represent all quantities that characterize a material body at a certain state [START_REF] Coleman | Thermodynamics with internal variables[END_REF]. If they can be observed, they are called external state variables, otherwise internal state variables [START_REF] Lagoudas | Shape Memory Alloys -Modeling and Engineering Applications[END_REF]. Henceforth, the set of all the internal variables will be denoted as V .

Those constitutive equations are derived through a prescribed thermodynamic potential. This is a function that characterizes a certain thermodynamic state of the body and depends on the state variables. At every state, the thermodynamic potential represents a quantity of energy within the material system. Therefore, it evokes products of the state variables with their thermodynamically conjugant quantities, called the general thermodynamic forces (GTFs). The set of all GTFs will be henceforth denoted as A.

It is commonly shown that the transformation strain is thermodynamically conjugant to stress, usually by implementing the procedure rst applied by [START_REF] Coleman | The thermodynamics of elastic materials with heat conduction and viscocity[END_REF] under the conditions described by [START_REF] Lubliner | On the thermodynamic foundations of non-linear solid mechanics[END_REF]. All the basic laws of continuum mechanics need to be validated through the implementation of the thermodynamic potential, including the second law of thermodynamics, usually expressed by the local form of the Clausius-Duhem inequality [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF].

In the thermodynamic framework, it is aimed to incorporate the assumptions made in section 2. A Gibbs free energy potential is chosen to be the base of our model:

G =U o -s o T + C v ∆T -T ln T T o - 1 2 σ : S : σ -σ : α∆T -σ : ε T + (1 + λ re )X : v re + H(ξ) (31) 
where:

σ is the Cauchy stress.

S is the elastic compliance tensor. α is the thermal expansion coecient.

∆T = T -T o is the dierence between the current temperature T and the temperature at the reference state T o .

U o is the specic internal energy at the reference state.

s o is the specic entropy at the reference state.

C v is the specic heat capacity.

H(ξ) is a function accounting for the isotropic hardening associated with transformation, linked to the martensitic volume fraction [START_REF] Hartl | Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys[END_REF].

v re is dened as the hardening strain for reorientation. X is dened as backstress.

Finally, λ re is a limiting cofactor for reorientation.

It is noted that the variables S, α, U o , s o and C v are assumed to vary linearly according to the martensitic volume fraction. For example: S = S A + ξ(S M -S A ) for the elastic compliance tensor, where the superscripts A and M stand for the austenitic and martensitic phases respectively. Similar assumption has been adopted in [START_REF] Lagoudas | Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys[END_REF], supported by the analysis of Boyd and Lagoudas.

In the case of mechanical elastic properties, it was shown that using either the rule of mixtures on the compliance tensors (which is assumed here) or a micromechanical scheme (Mori-Tanaka) has little impact on the eective response [START_REF] Boyd | Thermomechanical Response of Shape Memory Composites[END_REF].

The internal variables are chosen to be: σ, T, ε F , ε R , ε re , v re , ξ F , ξ R . Following the typical Coleman-Noll procedure, the entropy s and the total strain ε are found as:

s = - ∂G ∂T = s o + σ : α + C v ln T T o (32) and ε = - ∂G ∂σ = S : σ + α∆T + ε T (33)
In the latter, a typical decomposition of the total strain is recognized:

ε = ε el + ε th + ε T (34)
where ε el = S : σ is the elastic and ε th = α∆T is the thermal strain.

The rest of the derived GTFs of the internal variables are found as:

A ε F = - ∂G ∂ε F = - ∂ε T ∂ε F : ∂G ∂ε T = σ A ε R =A ε re = σ A v re = - ∂G ∂v re = -(1 + λ re )X A ξ F = - ∂G ∂ξ F = - ∂G ∂ξ ∂ξ ∂ξ F = - ∂G ∂ξ = -Ũo + sT -Cv ∆T -T ln T T o + 1 2 σ : S : σ + σ : α∆T - ∂λ re ∂ξ X : v re - ∂H ∂ξ (35)
Here, the variables appearing with a tilde denote the dierence of respective constants between the martensitic and austenitic phase. For example:

S = S M -S A Moreover, A ξ R = - ∂G ∂ξ ∂ξ ∂ξ R = ∂G ∂ξ = Ũo -sT + Cv ∆T -T ln T T o - 1 2 σ : S : σ- σ : α∆T + ∂λ re ∂ξ X : v re + ∂H ∂ξ (36) 
Following [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF], the second thermodynamic law is reduced to:

A ε F : εF + A ξ F ξF + A ε R : εR + A ξ R ξR + A ε re : εre + A v re : vre - 1 T q --→ gradT ≥ 0 (37)
where q is the heat ux and --→ gradT the spatial gradient of temperature.

From one hand, the Clausius-Duhem inequality expresses the positive character of these two parts of disspation:

A ε F : εF + A ξ F ξF -A ε R : εR + A ξ R ξR + A ε re : εre + A v re : vre ≥ 0 (38)
and

- 1 T q --→ gradT ≥ 0 (39)
On the other hand, it is postulated here that the contribution of the internal variables linked to each mechanism to the total dissipation is also non negative:

   γ F = A ε F : εF + A ξ F ξF ≥ 0 γ R = A ε R : εR + A ξ R ξR ≥ 0 γ re = A ε re : εre + A v re : vre ≥ 0 (40)
with γ m being the part of the dissipation induced by the mechanism denoted m.
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A thermoelastic domain Γ is considered to exist within the coordinates of the free energy potential, in which the dissipation is zero. A hypersurface ∂Γ is the boundary of the thermoelastic domain. This hypersurface is dened as the set of solutions of the equation:

Φ(A) = 0
where A is the set of all GTFs. For all given coordinates, the following inequality is satised:

Φ(A) ≤ 0
This thermoelastic domain is described by three surfaces corresponding to the three strain mechanisms:

   Φ F (A F ξ , A ε F ) = 0 Φ R (A R ξ , A ε R ) = 0 Φ re (A re ξ , A ε re ) = 0 (41)
The Φ function for forward transformation is given as:

Φ F = A ξ F + ΦF (A ε F ) -Y F (42)
where

ΦF (A ε F ) = ΦF (σ)
is the function describing the forward transformation function in the space of the stress components. The choice of this function determines which eects relative to anisotropy and asymmetry during forward transformation are taken in mind [START_REF] Qidwai | On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material[END_REF][START_REF] Sedlák | Thermomechanical model for NiTibased shape memory alloys including R-phase and material anisotropy under multi-axial loadings[END_REF][START_REF] Taillard | Equivalent transformation strain and its relation with martensite volume fraction for isotropic and anisotropic shape memory alloys[END_REF]. In the scope of this paper, a modied Prager function is chosen. It accounts for tension-compression asymmetry but not anisotropy.

In a superelastic loading at constant temperature, it predicts that the SMA behavior for forward transformation depends on the stress tensor invariants and asymmetry-related parameters. Thus, it is assumed that:

ΦF (σ) = J 2 (σ) 1 + b J 3 (σ) J 3/2 2 (σ) 1 n -k σ (43)
For a second-order tensor u, the notations J 2 (u) and J 3 (u) give the second and third invariants of its deviatoric part u . It is reminded that they are given as:

J 2 (u) = 1 2 u ij u ij and J 3 (u) = 1 3 u ij u jk u ki
using the Einstein summation for double indices. b and n are parameters associated with the ratio between transformation stresses in tension and compression loading. Convexity is ensured under specic conditions [START_REF] Chatziathanasiou | Phase Transformation of Anisotropic Shape Memory Alloys: Theory and Validation in Superelasticity[END_REF].

The threshold for forward transformation is given as:

Y F = Y F o + Dσ : Λ F ε - ∂λ re ∂ξ X : v re (44) 
The variables D and Y F o are considered material constants. They are not considered independent, but are calculated with the help of other material constants, see (Hartl 260 et al, 2010).

Likewise, the Φ function for reverse transformation:

Φ R = A ξ R + ΦR (A ε R ) -Y R (45)
where

ΦR (A ε R ) = ΦR (σ) = -σ : εT (46) and Y R = Y R o -Dσ : εT - ∂λ re ∂ξ X : v re (47) 
with Y R o another material constant. In this work, it is taken equal to Y F o . The functions for forward and reverse transformation account for isotropic hardnening, holding as hardening parameter the martensitic fraction. On the contrary, the function for reorientation is designed to predict kinematic hardening:

Φ re = Φre (A ε re + A v re ) -Y re (48) 
The choice for the yield function of reorientation is also the modied Prager criterion, in order to account for tension-compression asymmetry during detwinning. Only this time taking in mind the sum of the thermodynamic forces for ε re and v re :

Φre (A ε re + A v re ) = |A ε re + A v re | = J 2 (Σ) 1 + b J 3 (Σ) J 3/2 2 (Σ) 1 n (49) 
Here, the inclusive variable Σ is introduced as:

Σ = σ -(1 + λ re )X (50) 
Finally, the reorientation threshold is considered as a material constant:

Y re = Y re o (51)

Evolution laws

The activation of the evolution of the model variables depends on the satisfaction of the mechanism criteria. This is given by the Kuhn-Tucker loading conditions [START_REF] Qidwai | On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material[END_REF]: 265

It is aimed to link the evolution of the model variables within linear relation with the rate variables given in subsection 2.2. The forward transformation tensor is expressed as:

Λ F ε = H cur η σ (52) 
where η u for a second-order tensor u is given as:

η u = 1 + b J 3 (u) J 3/2 2 (u) 1 n -1 u 2 J 2 (u) + b 6nJ 2 2 (u) 6J 2 (u)u .u -4J 2 2 (u)I + (3n -9)J 3 (u)u
This form is chosen to accommodate experimental data demonstrating lower transformation strains under compression than under tension [START_REF] Bouvet | A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings[END_REF][START_REF] Grolleau | Assessment of tensioncompression asymmetry of NiTi using circular bulge testing of thin plates[END_REF][START_REF] Chemisky | Analysis of the deformation paths and thermomechanical parameter identication of a shape memory alloy using digital image correlation over heterogeneous tests[END_REF]. H cur is considered the same as in [START_REF] Hartl | Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys[END_REF].

The reorientation tensor introduced in ( 16) is:

Λ re ε = η Σ (53)
With those denitions, the rates for the partition of transformation strains is now complete:

   εF = ξF Λ F ε = ξF H cur η σ εF = ξR Λ R ε = -ξR εT εre = ṗre Λ re ε = ṗre η Σ (54) 
It is noted that the direction of εre is normal to the respective yield surface:

η Σ = ∂Φ re ∂A ε re = ∂Φ re ∂σ
The evolution of the internal variable v re is also given normal to the reorientation yield surface:

vre = ṗre Λ re v ( 55 
)
with

Λ re v = ∂Φ re ∂A v re = ∂Φ re ∂(-(1 + λ re )X) = η Σ (56) 
As for the evolution of backstress, it is decomposed as well in the contributions of the three strain mechanisms:

Ẋ = ẊF + ẊR + Ẋre (57) 
The parts of backstress linked to forward and reverse transformation evolve since it is assumed that all processes that eventually lead to a change of transformation strain aects the reorientation behavior. The part linked to reorientation itself is in linear relation with the respective strain part so as to allow for kinematic hardening:

           ẊF = 3 2 ξF ε re max H re : σ |σ| ẊR = - X ξ Ẋre = ṗre H re : Λ re ε (58)
The cofactor H re is a fourth order tensor considered a material constant. In the scope of this work, it is given simply by:

H re = H re I (4) (59) 
with I (4) the fourth order symmetric identity tensor. It has the property:

I (4) : x = x
for any arbitrary symmetric second-order tensor x. ε re max is the maximum inelastic strain allowed to develop during martensite detwinning, usually considered less than the strain caused by phase transformation. H re is a parameter controlling the hardening during reorientation. The stress allowed between start and saturation of detwinning in a uniaxial case is:

∆σ reo = H re ε re max (60)
It is apparent that the variable characteristic of backstress aects only the activation of reorientation. The concurrent evolution of backstress with forward and reverse transformation, as implied by ( 58), is introduced to comply with the need to impose a limit for reorientation. Relevant experiments [START_REF] Lagoudas | Shape Memory Alloys -Modeling and Engineering Applications[END_REF] show that, just like transformation, the process of reorientation is limited: after the saturation of detwinning, the elastic part of detwinned martensite is reached. To this aim, when a threshold in the magnitude of backstress is reached, the lagrange multiplier λ re is activated, which leads to an innitessimal value of ṗre and subsequently to the depending rates of reorientation variables.

The lagrange multiplier is designed as a function of a one-dimensional argument.

When it attains values close to 1, the function is activated. For values of the argument between 0 and 1, the function returns 0. The exact form of the function can be found in Appendix A. The argument taken in mind in the case of reorientation is:

f re = |X| ξX max (61) 
and thus the respective lagrange multiplier is:

λ re = λ(f re ) (62) 
Here, X max represents a maximum magnitude of backstress when the whole RVE is composed by martensite. According to these assumptions, the maximum magnitude of backstress at any given state is proportional to the MVF. When the value ξX max is reached, the lagrange multiplier is activated and forces the variables linked to reorientation to stop evolving, by imposing: ṗre = 0

Accordingly, forward and reverse transformation are limited through their respective lagrange multipliers. The following functions:

λ F = λ(ξ) (63) 
and

λ R = λ(1 -ξ) (64) 
are added into the forward and reverse transformation criteria respectively. When activated, they mark the saturation of transformation by imposing ξF = 0 or ξR = 0. The criteria ( 42) and ( 45) are updated:

Φ F = A ξ F + ΦF (A ε F ) + λ F -Y F (65) Φ R = A ξ R + ΦR (A ε R ) + λ R -Y R (66) 
At this point, to clear the overall view of the reader, a summarizing table providing the general architecture of the model is presented. In Table 1, the most important equations are classied by the mechanism that they concern.

Forward transformation

Reverse transformation Reorientation 

ΦF (σ) + A ξ F -Y F + λ F ≤ 0 ΦR (σ, ε T ) + A ξ R -Y R + λ R ≤ 0 Φre (Σ) -Y re ≤ 0 εF = ξF Λ F ε εR = ξR Λ R ε εre = ṗre Λ re ε ẊF = ξF Λ F X εR = ξR Λ R ε Ẋre = ṗre Λ re X Σ = σ -(1 + λ re )X Composition ξ = ξ F -ξ R ε T = ε F + ε R + ε re ε = ε el + ε th + ε T ε th = α(ξ)∆T ε el = S(ξ) : σ X = X F + X R + X re

Numerical implementation

In the scope of this section, it is aimed to provide a framework for addressing the numerical implementation of a generic model that considers multiple strain mechanisms.

Initially, a general solution taking in mind a random number of strain mechanisms will be examined. Next, the framework will be reduced to the specic needs of the proposed 285 SMA model. It is important to note that the added value of such general description, contrary to an ad-hoc algorithm, will allow to include additional mechanisms, for instance viscoplasticity in the case of High Temperature SMA (HTSMAs) [START_REF] Chatzigeorgiou | <title>A constitutive model for high temperature SMAs exhibiting viscoplastic behavior</title>[END_REF][START_REF] Chemisky | A constitutive model for cyclic actuation of high-temperature shape memory alloys[END_REF], or plasticity [START_REF] Hartl | Thermomechanical Characterization of Shape Memory Alloy Materials[END_REF].
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The evolution of inelastic strains is due to several mechanisms which are considered strongly thermodynamically independent. This means that the dissipation caused by each one of them must be non-negative. The total inelastic strain is:

ε T = m ε m (67)
where the index m stands for every dierent mechanism. Each mechanism m is responsible for the evolution of ε m .

Considering each ε m as an internal variable, the GTF for each one deriving from the Gibbs free energy potential is:

- ∂G ∂ε m = σ - ∂G v ∂ε m (68)
where G v is found in the general form of G :

G = -σ : ε T + G v (69) 
Each mechanism m involves a set of variables {V m i }. Each dierent V m i might be considered an internal variable or not. The rst element of every set is dened to be a scalar p m : p m = V m 1 . The property of every p j is that the rate of all other variables V j i are found by:

V j i = ṗj Λ j i ( 70 
)
with j being an index denoting any mechanism m consistently throughout this section.

Λ j i is a tensor of order which varies according to the nature of V j i . In the scope of this section, they are given the name evolution tensors. For instance, 295

Λ j 1 = Λ j p = 1 is a zero order tensor equal to the unit so as to comply with (70).

Likewise,

Λ j 2 = Λ j ε is a second-order tensor corresponding to ε j . The second element of every set {V j i } will consistently be considered ε j . In thermodynamics, any element V j i which is an internal variable, has a conjugant GTF:

A m V i = - ∂G ∂V m i (71) 
The thermodynamic criteria which govern the activation of each mechanism have the general form:

Φ m ({A m V }) ≤ 0 (72) 
where {A m V } is the whole set of GTFs for the mechanism m.
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For a given loading case, the convex cutting plane (CCP) [START_REF] Hartl | Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys[END_REF] algorithm is implemented. For every iteration k within a loading step n → n + 1, it is considered that:

δV m (k) i n+1 = δp m (k) n+1 Λ m (k) i n+1 (73) 
The symbol δ denotes the dierence in a value of a variable between two consecutive iterations in the CCP scheme.

During iterative correction, the total current strain and temperature are held constant such that:

δε (k) n+1 = 0 and δT (k) n+1 = 0
According to the decomposition of strains:

ε = ε el + ε th + ε T = ε el + ε th + j ε j (74) 
the constitutive relation for elasticity:

ε el = S : σ (75)
and the null increments of ε n+1 and T n+1 , it is deduced that:

-δε

th (k) n+1 - j δε j (k) n+1 = δS (k) n+1 : σ (k) n+1 + S (k) n+1 : δσ (k) n+1 (76) 
According to (73),

δε j (k) n+1 = δp j (k) n+1 Λ j (k) ε n+1 (77) 
If the elastic compliance tensor and the thermal expansion coecient are considered a direct function of the variables p j , it also evident that:

δS (k) n+1 = j δp j (k) n+1 ∂S (k) n+1 ∂p j (78) 
and

δα (k) n+1 = j δp j (k) n+1 ∂α (k) n+1 ∂p j (79)
With the help of ( 77), ( 78) and ( 79), the equation ( 76) is now written:

-∆T n+1 j δp j (k) n+1 ∂α (k) n+1 ∂p j - j δp j (k) n+1 Λ j (k) ε n+1 = j δp j (k) n+1 ∂S (k) n+1 ∂p j : σ (k) n+1 +S (k) n+1 : δσ (k) n+1 ⇔ δσ (k) n+1 = -C (k) n+1 : j δp j (k) n+1 ∂S (k) n+1 ∂p j : σ (k) n+1 + ∆T n+1 ∂α (k) n+1 ∂p j + Λ j (k) ε n+1
The following notation is accepted:

K j (k) n+1 = ∂S (k) n+1 ∂p j : σ (k) n+1 + ∆T n+1 ∂α (k) n+1 ∂p j + Λ j (k) ε n+1
to reach:

δσ (k) n+1 = -C (k) n+1 : j (δp j (k) n+1 K j (k) n+1 ) (80) 
On the other hand, the consistency condition of the Φ m criteria dictates that:

Φ m (k) n+1 + δΦ m (k) n+1 = Φ m (k+1) n+1 ≈ 0 (81)
From ( 72), in decomposing A m V , the following general form is reached:

Φ m (σ, T, {V j i }) ≤ 0 (82)
In the latter, applying the chain rule it is derived:

δΦ m (k) n+1 = ∂Φ m (k) n+1 ∂σ : δσ (k) n+1 + j i ∂Φ m (k) n+1 ∂V j i : δV j (k) i n+1 (83) 
In light of (80), this is written:

δΦ m (k) n+1 = - ∂Φ m (k) n+1 ∂σ : C (k) n+1 : j (δp j (k) n+1 K j (k) n+1 )+ j δp j (k) n+1 i ∂Φ m (k) n+1 ∂V j i : Λ j (k) i n+1 δΦ m (k) n+1 = j δp j (k) n+1 - ∂Φ m (k) n+1 ∂σ : C (k) n+1 : K j (k) n+1 + i ∂Φ m (k) n+1 ∂V j i : Λ j (k) i n+1 (84) 
The equation ( 81) will be:

δΦ m (k) n+1 = j δp j (k) n+1 - ∂Φ m (k) n+1 ∂σ : C (k) n+1 : K j (k) n+1 + i ∂Φ m (k) n+1 ∂V j i : Λ j (k) i n+1 = -Φ m (k) n+1 (85) 
Each of the equations out of the set of ( 85) corresponds to each of the mechanisms m.

There are as many equations in (85) as the total number of m (N m ) and therefore the total number of p m . A set of linear equations of {δp

j (k)
n+1 } is recognized in the form of:

B (k) n+1 {δp j (k) n+1 } = -{Φ m (k) n+1 } (86) B (k)
n+1 is a N m × N m matrix, the components of which are found by: B m (k)

j n+1 = B (k) mj n+1 = - ∂Φ m (k) n+1 ∂σ : C (k) n+1 : K j (k) n+1 + i ∂Φ m (k) n+1 ∂V j i : Λ j (k) i n+1 (87) 
From ( 86), the set of δp j (k) n+1 is found by: {δp

j (k) n+1 } = -(B (k) n+1 ) -1 {Φ m (k) n+1 } (88)
At the end of every iteration the values of the set of {V m i } and the rest of the internal variables.
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During an arbitrary thermomechanical path, the mechanical and thermal tangent moduli need to be calculated at the end of every loading step. Again, the additive decomposition of strains and their respective rates is taken in mind:

dε = dε el + dε th + j dε j (89)
where the sum denoted by j refers only to the mechanisms m that are activated in the current step. j may take the values F, R or re. Given that these moduli examine the tangent behavior between two consecutive steps, the symbol d denotes the dierence in the value of the variables between those steps.

The previous equation gives:

dε = d(S : σ) + d(α∆T ) + j (dp j Λ j ε ) ⇔ dσ = C :   dε - j dp j K j -αdT   ( 90 
)
where

K j = ∂S ∂p j : σ + ∂α ∂p j ∆T + Λ j ε
For all dierent mechanisms m, it is also assumed: dΦ m = 0. But:

dΦ m = ∂Φ m ∂σ : dσ + ∂Φ m ∂T dT + j i ∂Φ m ∂V j i : dV j i (91)
In light of ( 70), this is written:

dΦ m = ∂Φ m ∂σ : dσ + ∂Φ m ∂T dT + j dp j i ∂Φ m ∂V j i : Λ j i (92)
Substituting with the expression of dσ from (90), it is found:

dΦ m = ∂Φ m ∂σ : C :   dε - j dp j K j -αdT   + ∂Φ m ∂T dT + j dp j i ∂Φ m ∂V j i : Λ j i (93)
and, given the null increment of the Φ m functions:

∂Φ m ∂σ : C : dε+ ∂Φ m ∂T - ∂Φ m ∂σ : C : α dT + j dp j i ∂Φ m ∂V j i : Λ j i - ∂Φ m ∂σ : C : K j = 0 (94)
There are as many equations in (94) as the total number of m (N m ) that are activated for the current step and therefore the total number of p m .A set of linear equations of the vector{dp j } is recognized in the form of:

B{dp j } = - ∂Φ m ∂σ : C : dε - ∂Φ m ∂T - ∂Φ m ∂σ : C : α dT (95)
where: B is a N m × N m matrix, the components Bmj of which are found by:

Bmj = i ∂Φ m ∂V j i : Λ j i - ∂Φ m ∂σ : C : K j (96)
Following ( 95),

{dp j } = B-1 - ∂Φ m ∂σ : C : dε - ∂Φ m ∂T - ∂Φ m ∂σ : C : α dT or dp j = - m B-1 mj ∂Φ m ∂σ : C : dε - m B-1 mj ∂Φ m ∂T - ∂Φ m ∂σ : C : α dT (97)
Here, the following notations are dened:

P j T = m B-1 mj ∂Φ m ∂T - ∂Φ m ∂σ : C : α (98) 
and

P j ε = m B-1 mj ∂Φ m ∂σ : C (99)
Given the major symmetry C uvst = C stuv of the elastic stiness tensor, the latter is now:

P j ε = C : m B-1 mj ∂Φ m ∂σ (100)
Thus, the equation ( 97) is now updated:

dp j = -P j ε : dε -P j T dT (101) 
Substituting this expression for dp j in (90), it is deduced:

dσ =    C :   I (4) + j (K j ⊗ P j ε )      : dε +    C :   j (P j T K j ) -α      dT (102)
Here, the desired tangent moduli become evident. The mechanical tangent modulus is:

L = C :   I (4) + j (K j ⊗ P j ε )   (103)
and the thermal tangent modulus:

Θ = C :   j (P j T K j ) -α   (104)
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The local form of the rst law of thermodynamics is written:

u = r -∇ • q + σ : ε = Q + σ : ε (105)
Here, u is the internal energy, r is the power of the internally generated heat, q is the thermal ux and Q is the total heat exchange due to both internal heat sources and conduction. On the other hand, the Gibbs free energy is given as:

G = u -σ : ε -sT (106)
Its rate form:

u = Ġ + (σ : ε) + (sT ) (107) 
is replaced into (105) to give:

Ġ + σ : ε + ṡT + s Ṫ = Q (108)
Applying the chain rule to derive the rate of the Gibbs free energy potential, it is found:

Ġ = ∂G ∂σ : σ + ∂G ∂T Ṫ + j i ∂G ∂V j i : V j i ( 109 
)
Recalling equations ( 32), (33,) ( 70) and ( 71), this rate is now:

Ġ = -ε : σ -s Ṫ - j ṗj i A j i : Λ j i (110)
Giving the denition:

π j = i (A j i : Λ j i ) (111) 
the equation ( 108) is now:

ṡT = j (π j ṗj ) + Q (112)
in which ṡ is found from (32):

ṡ = ∂s ∂σ : σ+ ∂s ∂T Ṫ + j ∂s ∂p j ṗj = σ : α+C v Ṫ T + j ṗj ∂s o ∂p j + σ : ∂α ∂p j + ∂C v ∂p j ln T T o (113) 
Thus, from (112):

C v Ṫ = j ṗj π j - ∂s o ∂p j + σ : ∂α ∂p j + ∂C v ∂p j ln T T o T -σ : α • T + Q (114)
The following notation is adopted:

π j T = π j - ∂s o ∂p j + σ : ∂α ∂p j + ∂C v ∂p j ln T T o T (115) 
The known forms of ṗj and σ from ( 101) and ( 102) are also substituted into (114) to acquire:

C v Ṫ -Q = -   j π j T P j ε + L : α • T   : ε -   j π j T P j T + Θ : α • T   Ṫ (116) 
The last equation states that the volumetric heat generation per unit time is not equal to the total heat exchange. The dierence between these two quantities arises by eect of mechanical work, as it appears in the right-hand part of the equation. The part of dissipation linked to mechanical reaction of the material, such as the one found in (38), is also found in this part. 315

The quantities

D ,ε = -   j π j T P j ε + L : α • T   (117) 
and

D ,T = -   j π j T P j T + Θ : α • T   (118)
track the linear relation of the power of the heat generated through thermomechanical coupling with the dierentials of strain and temperature.

Reduction for current model

The scalar quantities p m whose rates drive the three strain mechanisms are: ξ F for forward, ξ R for reverse transformation and p re for reorientation. In Table 2, the relation 320 of the rates of the model with the driving scalar rates through their respective evolution The strain quantities K m are reduced to:

tensors Λ m V i . Evolving variables Strain mechanisms FT RT Re V m 1 ξ F ξ R p re V m 2 ε F ε R ε re V m 3 X F X R X re
K F = S : σ + α∆T + Λ F ε K R = -S : σ -α∆T + Λ R ε K re = Λ re ε (120)
Furthermore, multiple derivatives appearing in the components of the B and B matrices in equations ( 87) and ( 96) take zero values, since the Φ m yield equations are not dependent on all the evolving variables. Table 3 presents which variables aect the three 325 yield functions.

Φ F Φ R Φ re σ, T, ξ σ, T, ξ, ε F , ε R , ε re σ, ξ X F , X R , X re
Table 3: Variables aecting the yield functions

Numerical results and discussion

The thermomechanical response of the proposed model is compared to several experimentally observed complex, non-proportional thermomechanical response of SMAs, to the extent of their availability.

The selected experimental database includes proportional and non-proportional loading conditions in various thermal and mechanical levels.

A rst set of experiments concern the isothermal tension loading of NiTi wires under various temperatures, either above or in-between martensitic transformation temperatures [START_REF] Sittner | Roundrobin SMA modeling[END_REF]. A second set of experiments corresponds to non-proportional tension-torsion loading of SMA tube structures [START_REF] Sittner | Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces[END_REF]. A last set of experiment is complex tension/torsion and tension compression on NiTi tube [START_REF] Grabe | Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes[END_REF]. Parameter identication was carried out using a proven method reliable in identifying complex modeling parameters for SMAs using inverse identication methods developed by [START_REF] Meraghni | Parameter identication of a thermodynamic model for superelastic shape memory alloys using analytical calculation of the sensitivity matrix[END_REF] and extended for heterogeneous conguration in [START_REF] Chemisky | Analysis of the deformation paths and thermomechanical parameter identication of a shape memory alloy using digital image correlation over heterogeneous tests[END_REF]. Table 4: Material constants for equiatomic NiTi utilized in loading simulations of experiments presented in [START_REF] Sittner | Roundrobin SMA modeling[END_REF]. Values that are not result of identication appear in parentheses. 

E A (MPa) E M (MPa) v A v M α (K -1 ) H min H sat 40000 23000 (0.33) (0.33) (10 -5 ) 0.052 0.052 k C A (MPa/K) C M (MPa/K) M f (K) M s (K) A s (K) A f (K) 7.

Iso-thermal proportional tension-compression loading

Three tensile loading tests on NiTi wires of 0.1 mm in diameter and 50 mm in length are simulated in iso-thermal conditions for dierent temperatures The numerical model corresponds to the experiments in [START_REF] Sittner | Roundrobin SMA modeling[END_REF]: The displacement control of wires 345 of 0.1 mm in diameter and 50 mm in length is taken as a strain-controlled simulation of a material point in its loading direction, and in stress-free condition in shear in other directions. In these experiments, compression cannot be carried out, since the small diameter of a wire would cause buckling immediately. In the simulations, though, inelastic geometry eects can be ignored. 350

For the temperature of 333 K , the wire demonstrates a superelastic behavior, since the stress levels cross all the transition thresholds for the start and nish of forward and reverse transformation before returning to zero stress. The behavior is similar for the temperature of 283 K, only with lower stress levels for forward and reverse transforma- Table 5: Material constants for CuAlZnMn tube subjected to non-proportional tension-torsion from [START_REF] Sittner | Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces[END_REF]. Values that are not result of identication appear in parentheses.

E A (MPa) E M (MPa) v A v M α (K -1 ) H min H sat 38000 13000 0.20 0.20 (10 -5 ) (0.007) 0.007 k C A (MPa/K) C M (MPa/K) M f (K) M s (K) A s (K) A f (K) 8.
tion, following a typical SMA phase diagram. At 253 K though, the transformation strain during loading is induced by forward transformation activated alongside reoreintation.

This strain cannot be recovered upon unloading: since the temperature is lower than the austenitic transition level, no reverse transformation can take place. Still, the proposed model can predict some lef `vel of inelastic strain recovery just before reaching zero stress, associated with reorientation. Continuing further into compression, the material passes in a behavior aected only by reorientation. In the second cycle of loading, no transformation is considered, explaining the dierence of shape from the rst cycle. Good agrement is observed between the simulation and the experimental ndings in tension.

It is noted that the value of the elastic modulus is considered dierent for the test at no reverse transformation occurs. The identied parameters appear in Table 4.

Iso-thermal non-proportional loading

Next, the proposed model is aimed at being further validated by comparing experimental results corresponding to non-proportional loading of thin-walled tube structures [START_REF] Sittner | Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces[END_REF]. A cylindrical tube made of CuAlZnMn alloy was subjected to a loading path resembling a rectangle in the space of normal (axial) and shear (along the tube walls) stress, with return to zero loading. The path is represented in transformation along the shear direction in the branch A to B, and therefore reorientation is not activated. Sucient accuracy of the predictive capabilities of the model in this case of non-proportional loading is demonstrated, especially in comparison with the attempts made by previous models. As a nal remark, it is added that even the Young's modulus for austenite was captured with higher precision relatively to the other models, as becomes evident at the elastic phase in Fig. (4c). This improved approach to such an important material parameter demonstrates the combined adaptive capabilty of the new model and the implemented identication algorithm.

Comparing the results from simulations between the current model and the model by [START_REF] Lagoudas | Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys[END_REF], it becomes clear that certain aspects of material response are handled better. Specically, after point B, reorientation is activated alongside reverse transformation when the stress levels are low enough. This has an impact on the twobranch linear response between points B and C in the shear-normal strain curve in Fig. [START_REF] Grabe | Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes[END_REF]. Values that are not result of identication appear in parentheses.

E A (MPa) E M (MPa) v A v M α (K -1 )
k C A (MPa/K) C M (MPa/K) M f (K) M s (K) A s (K) A f (K) 0.
4(b). The transition point between the two branches is shifted to lower normal strain values, which is a direct eect of the simultaneous activation of reorientation and reverse activation. This leads to a strong reduction of normal but not shear transformation strains, following the evolution of stress. This could not have been predicted with the previous model. Moreover, in Fig. 4(d), the crossing of the response curve in the shear 405 stress-shear strain space is reproduced, whereas, with the previous model, the return path C-D never crosses the initial A-B curve. The dierence in the predicted capacity for developing transformation strains is also evident. Whereas the previous model is presents a value of 3.5% for recoverable strain, the identication of model parameters with the current model reveals that 0.7% would be a better estimate. This implies that 410 the non-linear eects are mostly a result of the change in elastic modulus. As the phase transformation carries through, the fading elastic modulus of martensite takes eect in allowing for more elastic strain to appear at higher values of MVF. The austenitic modulus is recovered during reverse transformation. Note that such parameter identication comes directly ou of an optimization process aimed at minimising the square dierence between experimental and numerical strains. Also, the proposed model can be viewed here as an extension of [START_REF] Lagoudas | Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys[END_REF] model in the sense that it is a special case of the proposed model in absence of reorientation mechanism or combined forward/reverse transformation.

Tension-compression-torsion loading with ranging temperature

A more complicated loading path is chosen to put the new model under test. In [START_REF] Grabe | Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes[END_REF], an experiment alternating the stress level of the SMA material between tension and compression, combined with torsion, subjected to a wide range of temperature levels is presented. The full path is presented in Fig. 5. A tube specimen made of 50.7 at. % NiTi with a wall thickness of 1.68 mm is heated from 193 to 243 K at a stress-free state. It is then loaded in the axial direction to 120 MPa in tension up to point B, and then to a combined tension-torsion state at 120 MPa in torsion to point C. From this point, axial stress is reversed to 132 MPa in compression (D). Then, maintaining the stresses, the tube is heated to 363 K (E), where it is gradially released from torsion rst (F) and then compression (G). Finally, the specimen is cooled down to 243 K, returning to the initial point A. The identied material parameters appear in Table 6. This time, the model parameters for asymmetry are important, since compression is present in the loading path.

The curves resulting from the loading simulation are presented in Figs. 6 and 

Analysis of strain rate dependency on SMA structure

The eect of themomechanical coupling becomes evident in cases when the strain rate imposed by external working is so high that regular convection is not sucient to ensure isothermal conditions. In a simple test-case scenario, a holed plate made of NiTi is simulated using the Finite Element Package (FEA) Abaqus, and subjected to non-proportional mechanical loading. Convection-type thermal boundary conditions are applied to the surface of the structure.

The plate is considered to be placed in a temperature pool, in which the air has a constant temperature T ∞ = 280K. A surface lm interaction" with convection parameter h = 0.4 kW/m 2 K [START_REF] Enemark | Experimental analyses of dynamical systems involving shape memory alloys[END_REF][START_REF] Pathak | Transformation strain based method for characterization of convective heat transfer from shape memory alloy wires[END_REF] is kept constant throughout the whole analysis to control heat exchanges. Such boundary conditions ressemble to that of a real experiment at room temperature. The material properties are reported in Table 7. The bottom surface of the plate is considered in encastre conditions. In the rst step of the loading, tension is applied by controlling the position of the upper surface, gradually increasing to 1.8 mm. Then, in the second step, a "shear-type" loading is applied, consisting of a uniform displacement applied on the same surface in the lateral direction, gradually reaching 2.3 mm, while longitudinal displacement is maintained at the previous level. In the third step, the two displacements are simultaneously removed until full unloading is reached. The geometry and the history of loading is illustrated in Fig. 8. The full geometry has been simulated, since the thermomechanical load does not present any symmetry. C3D8T elements were used for the mesh. Two simulations were executed, where the boundary conditions of the top surface were imposed under two dierent speeds ∆l/l ∆t : at 10 -5 sec -1 , considered to correspond to a "static load, and at 10 -4 sec -1 , which induces a temperature change actively aecting the mechanical behavior. loading case (9d) and the loading at higher speed is evident, although the MVF contours are practically the same.

Conclusion

A new phenomenological model to describe the complex behavior of SMAs while experiencing coupled transformation/reorientation during complex, non-proportional thermomechanical loading is proposed. It has been shown that this model is thermodynamically consistent, and the proposed evolution equations correctly describe the evolution of martensitic volumes in a SMA. The original contribution of this work concerns the independent way in which the physical mechanisms are conceived to take place. The rst contribution brought about is the decoupling of forward and reverse transformation. In such a way, it is observed that, in terms of modeling, these two can occur simultaneously inside the material. One more novelty is the simple form for describing the process of reorientation. It is also considered an independent mechanism. Finally, a general framework to resolve the numerical problem of complex non-proportional loading is presented 1 Values of ξ over 1 and below 0 are due to extrapolation from integration points to the element surface.

for the case of multiple mechanisms. The thermomechanical eects are fully taken in mind. Simulations of simple and complex experiments on SMA structures appearing in the literature have been carried out. The eect of strain rate in a pertinent nite element simulation has also been examined. In particular, the coupling between transformation and orientation allows to describe with a good accuracy the thermomechanical response of SMAs observed by several authors. The comparison of simulation with experimental results is a nding that demonstrates the advanced predictive capability of the model to capture the complex overall thermomechanical behavior of SMAs. This dierential operation yields: where ∆t is the time increment corresponding to step n.

According to convex cutting plane considerations, the various dierentials appearing in the last equation are: The indices j and g give reference to strain mechanisms, while the indices i and f refer to model variables associated to the strain mechanism denoted by j and g respectively.

δπ j = δ i A j i : Λ j i = i δA j i : Λ j i (A.17
Replacing the nding of (A.18) in (A.17 
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 1 Figure 1: Time step representation of a SMA RVE behavior
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 2 Figure 2: Eect of inelastic mechanisms on a SMA RVE

Table 2 :

 2 Classication of evolving model variables according to the respective mechanisms Next, the linear relations of the elastic compliance tensor and the thermal expansion coecient with the driving scalars are reduced to: ∂S ∂ξ F = -∂S ∂ξ R = S and ∂S ∂p re = 0 ∂α ∂ξ F = -∂α ∂ξ R = α and ∂α ∂p re = 0 (119)

Figure 3 :

 3 Figure 3: Experimental results (points) and model reponse (continuous line) on stress-strain diagrams for isothermal tension-compression loading of NiTi wires under temperatures of 333 (a), 283 (b) and 253 K (c) taken from[START_REF] Sittner | Roundrobin SMA modeling[END_REF] 

  333 K, taken at 56000 MPa, since the stress-strain relation clearly indicates so. The current model does not take into account any dependence of the elastic modulus from temperature. However, all other material parameters are considered constant for the three experiments.Figs. 3 (a) to (c) present the comparison of the stress-strain diagrams for the isothermal tension-compression loading paths. In Fig.3 (c), a prediction of the material behavior in compression is also presented. Reverse transformation cannot take place at such temperature. The eect of combined transformation/reorientation leads to a transient response for the rst cycle, then to a stable reorientation loop since

  Figure 4: Experimental results (points) and model reponse (continuous line) on SMA thin-walled tube from (Sittner et al, 1995). Comparison with model results from (Lagoudas et al, 2012) (L2012), (Arghavani et al, 2010) (A2010) and (Panico and Brinson, 2007) (P2007).

Figure 5 :

 5 Figure5: Tension-compression loading combined with torsion in varying temperature, taken from[START_REF] Grabe | Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes[END_REF] 

  Figure 7: Experimental results (points) and model reponse (line) on SMA thin-walled tube from[START_REF] Grabe | Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes[END_REF] 

Figure 8 :

 8 Figure 8: Geometry (a) and loading history (b) of the holed plate. Dimensions in mm.

Figure 9 :

 9 Figure 9: Martensitic volume fraction (ξ) on the rst row (a-c) and temperature contour maps (d-f) corresponding to the same time step for the two loading speeds at the end of Step 1 and end of Step 2. 1

  δπ j ∆p j + π j -πj δp j -(δσ : α • T + ∆σ : δα • T + ∆σ : α • δT ) (A.16) 

  the sake of simplicity, new variables Γ j g are dened to satisfy the equality: (A.16), the dierentials δπ j and δα are written:

Table 1 :

 1 Most important relations of the proposed model.

Table 6 :

 6 Material constants for NiTi tube subjected to tension-torsion-thermal loading presented in

	021		9	9	255	258	264	277
	Y reo o	(MPa)	ε re max	H re	b	n	
	132.9		1546	0.046	0.608	2	
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Appendix A. Mathematical formulation of the evolution equation for transformation strain

Revisiting equation 11, a rigorous mathematical formalism is intended to be given. 730

The moving boundaries of the martensite volume, the mathematical representation of which is found in the term VM is shown to be an important aspect to dierentiate the two mechanisms. Therefore, it is essential to dene the rate of change of the martensitic volume. 

and in rate form:

On the other hand, the rate of the mean transformation strain is given strictly by: 735

According to Leibniz-Reynolds' transport theorem, the rate of the last integral is written:

v(r) being the vector dened earlier.

In the light of equation ( 12):

Here, according to the second mean value theorem for integrals, there is a point ψ on the surface S M for which:

and, by eect of (A.1):

The value of ε T (ψ) is the weighted average of εT r based on div v(r) in the volume V M .

Here, the denition of ΛT is updated in order to t ε T (ψ). It is the weighted average of εT r on the surface S M based on the divergence of the velocity in V M :

Still, in this sense, the product

will represent, according to (A.4) the contribution of the transformation strain inside the newly formed martensitic volume to the rate of change of εT .

Back to the equation (A.3), it will be written, according to (A.4) and (A.6):

and by eect of 10:

which is the rate form of (11).

Substituting this in 3, it is found that:

In the incremental scheme described in Fig. 1, when an elemental part of martensite dV M is considered to be removed after the rst step, it seems necessary to remove all the transformation strain existing within its volume. This is considered to have a mean value equal to the mean value existing in V M . Therefore: ΛT = εT . In the absence of reorientation: εT = ξ εT

Still, there is the need for a major constraint of SMA behavior to be satised: inelastic strains return to zero when there is no martensitic volume. To this end, the following case of loading of a RVE is considered, which induces reverse transformation:

ξ ≤ 0 in a time frame ∆t = t -0. The reverse transformation is concluded at t, meaning that ξ(t) = 0. εre = 0 for at least one point of ∆t, meaning that reorientation is not excluded. Finally, it is assumed that ΛT = εT , since there is no forward transformation.

It is deduced that:

and, by eect of (A.8):

εT = εre = ΛT

The equation ( 3) is now:

Looking for ε T (t), it is found that:

Conclusively, the nding that ε T (t) = 0 is easily reached. This is an indication that the assumptions made so far satisfy the physical limitations of reverse transformation.

Appendix B: Implementation of thermomechanical eects with Abaqus

Any computation associated with the heat caused by mechanical working is carried out during the loop of force balance. After any kind of computation, a value corresponding to a variable belongs to a set of three repetitive processes. The most general process is the one that loops all the steps required to complete a time step. It is called here the n loop.

The second process is the one that loops the RVE to nd the balance in forces. It is called the ω loop.

The third process is the one that loops the algebraic manipulations to nd the next admissible set of variable coordinates for a RVE. It is called the k loop.

When the n loop is carried out, a dierential

is approximated to nd x n+1 . Here, x n(w+1) is considered a constant. When the ω loop is carried out, a dierential
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Abaqus requires the quantities:

which, at the end of a ω loop, must satisfy the equation:

Here, r pl is the quantity of energy rate found in equation ( 116):

To this end, we start with the expression from (114):

The following denition is given:

The dierential δr pl is approximated:

where the rate variables are substituted with the nite dierences of the n loop: The second derivatives with respect to the scalars s j are ignored. In the current model, they are null. 775 Thus, (A.16) is rewritten:

where, according to equations (A.20), (A.22), (A.23) and (A.24),

The quantity D s can be written as an expression of a single common cofactor δp j :

The variables dr j are introduced as such: dr j = g ∆p g Γ g j + π j -πj -∆σ :