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Solving Uncalibrated Photometric Stereo using Total
Variation

Yvain Quéau · François Lauze · Jean-Denis Durou

Abstract Estimating the shape and appearance of an

object, given one or several images, is still an open and

challenging research problem called 3D-reconstruction.
Among the different techniques available, photometric

stereo produces highly accurate results when the light-

ing conditions have been identified. When these condi-
tions are unknown, the problem becomes the so-called

uncalibrated photometric stereo problem, which is ill-

posed. In this paper, we will show how total variation
(TV) can be used to reduce the ambiguities of uncali-

brated photometric stereo, and we will study two meth-

ods for estimating the parameters of the generalized

bas-relief ambiguity. These methods will be evaluated
through the 3D-reconstruction of real-world objects.

Keywords 3D-reconstruction, photometric stereo,
total variation, generalized bas-relief ambiguity.

1 Introduction

Photometric stereo was introduced by Woodham in [47]
in the early 80’s, using the commonly adopted Lamber-

tian model to recover both the surface shape and its

albedo, given m > 3 pictures of a fixed scene taken
from the same viewpoint but under different calibrated

illumination conditions. However, calibrating the light
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sources is not a trivial task, and it has been shown that

slight errors in this calibration could result in major

reconstruction errors [30]. Thus, uncalibrated photo-
metric stereo seems to be a promising alternative, as

the light vectors are estimated during the reconstruc-

tion. Unfortunately, this problem is ill-posed. If inte-
grability is imposed, the ambiguity is reduced to a set

of 3-parameter linear transformations called generalized

bas-relief transformations [7].

The estimation of these parameters is the subject

of this paper: we extend the preliminary results pre-
sented in [41] and show how TV-regularization of the

M field, which encodes the albedo and the normals,

or of the depth function u, considerably reduces the
ambiguities: the generalized bas-relief ambiguity is re-

duced to the classical bas-relief ambiguity, which is eas-

ier to solve. We demonstrate that the proposed meth-
ods can be written as the minimization of simple convex

functions, and are thus much faster than most previous

work involving either pixel identification [19, 44] or non-

convex minimization [3]. Despite the absence of statis-
tical justification on the distributions of the albedo, the

depth and the normal field, the results we obtain a pos-

teriori justify the choice of using total variation.

The rest of the paper is organized as follows: sub-
sequently to the recall of the equations of Lambertian

photometric stereo in Section 2, we empirically justify

in Section 3 the choice of using TV for solving the un-
calibrated photometric stereo problem. In Section 4, we

prove that minimizing the total variation of the M field

or that of the depth u reduces the generalized bas-relief

ambiguity to a simple bas-relief ambiguity. The meth-
ods are eventually evaluated in Section 51.

1 The Matlab codes corresponding to the proposed methods
are available online at:
http://ubee.enseeiht.fr/photometricstereo/



2 Background

2.1 Calibrated Photometric Stereo

Photometric Stereo (PS) was introduced in [47] to deal
with 3D-reconstruction, allowing the user to recover

both the normal field associated to a surface and the

albedo. In this technique, m images of a scene are taken
from the same viewpoint but under variable lighting

conditions. An example of such images, with m = 3, is

shown in Fig. 1.

Fig. 1:m = 3 images, of size 256× 256, of a Beethoven’s

bust, taken under 3 different illuminations2.

PS is an extension of the shape-from-shading prob-
lem [29], which is known for being ill-posed [37]. The

use of additional images with different lighting condi-

tions allows to solving the ambiguities of shape-from-
shading. Instead of a unique known light source, sup-

posed to be located at infinite or finite distance (a re-

cent shape-from-shading considered arbitrary location

[21]), dealing with several known sources allows obtain-
ing unambiguous, accurate and fast 3D-reconstructions.

As the normal vectors and the albedo values are esti-

mated at every pixel, dense depth and albedo maps
are recovered, unlike using stereoscopy. To obtain a full

3D-model rather than a depth map, PS can be coupled

with multi-view techniques, through the fusion of depth
maps [13] or the combination with, e.g., structure-from-

motion [50] or shape-from-silhouettes [26].

Assuming orthographic projection (the problem was

also studied in the perspective case [36]), the surface
to be reconstructed is represented by a Monge patch

(x, y, u(x, y))⊤ over a domain Ω ⊂ R
2, where the depth

function u(x, y) is assumed to be twice differentiable, at
least piecewise. The vector field of unit outward normals

is given by

N(x, y) =
1√

‖∇u‖2 + 1



−∂xu

−∂yu

1


 (1)

Let ρ(x, y) ∈ [0, 1] be the albedo map, and M(x, y) =

ρ(x, y)N(x, y), so that ρ(x, y) = ||M(x, y)||. Given a

2 http://www.ece.ncsu.edu/imaging/Archives/ImageDatabase/

directional light source Si = (Si
x, S

i
y, S

i
z)

⊤ ∈ R
3, the

graylevel Ii(x, y) obtained at point (x, y) of the image
plane for matte objects is given by Lambert’s law

Ii(x, y) = ρ(x, y)N(x, y)⊤Si = M(x, y)⊤Si (2)

(shadows are ignored).

In order to recover M (and thus ρ and N) with-
out ambiguity, at least 3 images associated with 3 non-

coplanar light vectors are mandatory. In the sequel the

m > 3 images will be denoted I1, . . . , Im, and the cor-

responding light vectors S1, . . . , Sm. It will also be as-
sumed that ∀(x, y), ρ(x, y) > 0. Defining the observa-

tion vector I(x, y) = (I1(x, y), . . . , Im(x, y)), the light

matrix S = (S1, . . . , Sm), and omitting the dependen-
cies in (x, y), the following equality holds:

I = M⊤S (3)

This is a system of linear equations which can be solved
in a least-squares sense using the Moore-Penrose pseudo-

inverse S+ of S:

M̂⊤ = IS+, ρ̂ = ‖M̂‖, N̂ =
M̂

ρ̂
(4)

(all through this paper, a hat above a letter will indicate

that this is an estimation).

The normal vectors being unitary, they have only

two degrees of freedom, so the problem is often equiv-
alently formulated as the estimation of ρ and ∇u =

(p, q)⊤, with




p = −Nx

Nz

q = −Ny

Nz

(5)

The first line of Fig. 2 shows the albedo and the

depth gradient estimated from the images of Fig. 1.

Although direct depth estimation may be carried

out [36], an additional step is usually needed to “in-

tegrate” the normal field into a depth map (see Fig.

2-d). This step, which can be problematic, will not be
presented in this paper. It usually results in estimating

the depth u as the least-squares solution of the equa-

tion ∇u = (p̂, q̂)⊤ [15, 20, 24, 28, 45]. All the depth
maps presented in this paper are obtained using the

same solver [45].

2.2 About the Assumptions

The usual assumption about the number of images (i.e.
the number of light sources) is that m > 3 and the light

vectors should be non-coplanar. Some attempts have

been made to solve the problem with m = 2 [32, 35, 38],



(a) (b) (c)

(d)

Fig. 2: Results of applying photometric stereo to the

three images of Fig. 1: (a) ρ̂; (b) p̂; (c) q̂. (d) Relighting

of the reconstructed surface. White pixels in (a)-(b)-(c)
indicate high values.

and an interesting recent application of the coplanar

configuration is 3D-reconstruction from an outdoor we-

bcam (since the Sun moves within a plane) [1, 2]. In
the present paper the traditional case of m > 3 non-

coplanar light vectors is studied.

In addition, although the m > 3 case improves the

robustness of PS thanks to the least-squares estima-
tion (4), a lot of physical phenomena like speculari-

ties, self-shadows, cast-shadows or inter-reflections are

not represented in Lambert’s law (2): such phenomena
can be treated as outliers in a robust estimation pro-

cess like Expectation-Maximization [46]. Specular re-

flections have also been successfully handled by adapt-

ing the photometric stereo technique to non-purely dif-
fuse models such as that of Torrance and Sparrow [22],

considering that the luminance is obtained by summing

a diffuse and a specular component.

The problem of self-shadows, specularities, and more
generally arbitrary reflectances can also be avoided by

using a reference object [27] whose geometry and re-

flectance are known. The case of cast-shadows is more

complicated, since they are impossible to locally model,
however they can be located and rejected from the esti-

mation process [6]. This has been done efficiently using

the popular Graph Cuts technique [12].

Another approach to deal with outliers is to pre-

process the data: under the Lambertian assumption,
any set of n pixels of the observed images forms a

n × m matrix which should be of rank 3. However,

this is not the case when dealing with real images, be-
cause of noise, quantization and outliers. Thus, Wu et

al. propose in [48] an algorithm to correct the input, via

low-rank approximation. It should also be noted that
specularities can be removed from RGB images by an

appropriate change of colour space [34]. In this work,

the outliers are ignored, i.e. it is assumed that we are

dealing either with synthetic data or with preprocessed
real data.

2.3 Uncalibrated Photometric Stereo

In Section 4, we will focus on the problem with m > 3

unknown non-coplanar distant light sources, which is

the so-called uncalibrated photometric stereo problem.
It this case, it has been shown [17, 25] that the vector

field M defined as the surface normal multiplied by the

albedo can only be determined up to a 3 × 3 linear
transformation A ∈ GL(3), since

M⊤S =
(
A⊤M

)⊤
A−1S (6)

However, since the depth function u(x, y) is assumed
to be twice differentiable, Schwarz’ integrability con-

straint ∂2u/∂x∂y = ∂2u/∂y∂x should be satisfied. This

condition is equivalent to equating to zero the third
component of curl (N/Nz) = curl (M/Mz), denoted by
curlM :

curlM =
∂

∂y

(
Mx

Mz

)
− ∂

∂x

(
My

Mz

)
= 0 (7)

Imposing curlM = 0 as a hard constraint is not
possible, as Eq. (7) does not hold for points located at

discontinuities, which are present in real-world objects.

Thus, Yuille and Snow proposed in [49] to solve Eq.
(7) in a least-squares sense, while respecting Lambert’s

law (3) (still in a least-squares sense). We reformulate

this method as the estimation of a field M and a light

matrix S holding both constraints:

{
‖M⊤S− I‖2 = min

‖ curlM‖2 = min
(8)

where the notation = min signifies that the parameters

minimize the left hand of the equation.

Adapting Hayakawa’s method [25], Yuille and Snow
give in [49] a closed-form solution holding these con-

straints, which will be referred to as (M0,S0) in the

following.



Not all transformations A ∈ GL(3) preserve the

integrability of the field A⊤M : it has been shown in [7,
49] that imposing the integrability constraint reduces

the set of transformations A to the set of 3-parameters

transformations A = G with G of the form

G(µ, ν, λ) =



1 0 0

0 1 0
µ ν λ


 , G(µ, ν, λ)−1 =

1

λ




λ 0 0

0 λ 0
−µ −ν 1




(9)

where (µ, ν, λ) ∈ R
2 × R\{0}. This corresponds to the

generalized bas-relief (GBR) ambiguity [7]. As the sign

of λ is directly linked to the convexity of the object,
and as the concave/convex ambiguity cannot be solved

without additional information on the object, it is usu-

ally assumed that λ > 0.

Thus, problem (8) is still an ill-posed problem, as
one can apply any GBR transformation without either

changing the value of the data term (this comes from

(6)), or breaking the integrability condition, since it is

shown in [7, 49] that

‖ curlM‖2 = min ⇐⇒ ‖ curl(G⊤M)‖2 = min (10)

In terms of depth, the GBR transforms u(x, y) into

ū(x, y) =
u(x, y)− µx− νy

λ
(11)

Fig. 3 shows the effects of a GBR.

Research on the resolution of this GBR ambiguity
is prolific. It can be assumed, quite reasonably, that

real-world objects do not strictly follow the Lamber-

tian model, so as to exploit the presence of outliers like

specularities [14] or inter-reflections [12]. Local proper-
ties of the shape or the reflectance can also be used: for

example, critical points in an image (the brightest pix-

els) can reveal the direction of the light vector [19], and
intensity profiles allow identifying pixels which have the

same normal but different albedos [44]. We argue that

considering global properties is more general, and might
be easier to exploit as it does not rely on the identifi-

cation of critical points.

Quite surprisingly, very few attemps to exploit global

properties have been made, apart from the use of prior
on shapes [23] or on the albedo distribution: Alldrin

et al. propose in [3] to estimate the GBR parameters

which minimize the entropy of the albedo distribution,

since the albedo is spread by the GBR. Their motiva-
tion is to favour materials which are “homogeneous”,

i.e. made up of a small value of components. Consis-

tently with our formulation (8), we rewrite their method

(a) (b) (c)

(d)

Fig. 3: Effects of a GBR of parameters µ = 1/2, ν = 1

and λ = 1/3 on: (a) the albedo, (b)-(c) the normals
and (d) the shape of Fig. 2. The scales are the same as

in Fig. 2, so as to illustrate the drifts in all the three

directions. It is to be noted that the albedo (a) is spread,

compared to that of Fig.2-a: this led to the Minimum-
Entropy algorithm [3].

as the following pair of problems, which must be solved
sequentially:





{
‖M0⊤S0 − I‖2 = min

‖ curlM0‖2 = min

(µ̂, ν̂, λ̂) = argmin
µ,ν,λ

E(‖G(µ, ν, λ)⊤M0‖)
(12)

where E(‖G⊤(µ, ν, λ)M0‖) stands for the entropy of the
transformed albedo distribution.

2.4 TV-Regularized Models in Computer Vision

The total variation of a function is a widely used mea-
sure for regularity. For an almost everywhere differen-

tiable function f : Ω ⊂ R
p → R, it can be written

TV(f) =

∫

Ω

‖∇f(x)‖dx (13)



and extends to the class of so-called functions of bounded

variations [5].
In the sequel we take p = 2 as we deal with images.

Total variation was introduced to the imaging commu-

nity by the work of Rudin, Osher and Fatemi (ROF)
[43] for image denosing: given a (noisy) graylevel image

I0 = I + η, with η a Gaussian white noise of known

variance σ2, the ROF model finds an image Î which
solves ‖Î − I0‖2 ≤ σ2 on Ω, and with minimal total

variation TV (Î). The problem was shown in [10] to be

equivalent to the minimization of the functional

E(I) = ‖I − I0‖2 + γσTV (I)

for a certain weight γσ. Efficient algorithms have been
developed in the last decade for solving such problems,

using for instance primal-dual schemes [9].

In this paper, since both the total variation of the
depth u and that of the R2 → R

3 vector field M will be

considered, vectorial TV should also be defined. When

f takes its values in R
q with q > 1, several definitions

can be considered (see [8] for some discussion). The

most frequently used definition is probably

TV(f) =

∫

Ω

‖J(f(x))‖F dx (14)

where ‖J(f(x))‖F is the Frobenius norm of the Jaco-
bian matrix of f = (f1 . . . fq)

⊤ at point x. Another

definition is:

TV(f) =

q∑

i=1

∫

Ω

‖∇fi(x)‖dx =

q∑

i=1

TV(fi) (15)

The difference between both these definitions may
be important in the denoising context, as the first in-

troduces a coupling between the different channels, and

is invariant by rotation of these channels. However, in
our context, we are not concerned by this difference, as

the ordering of the three components Mx, My and Mz

is important for the integrability constraint (7), and as
each parameter of a GBR affects a single component

of M . Therefore, we will consider the definition (15),

which is easier to manipulate and produces better re-

sults. In this paper, unlike the preliminary version [41],
the total variation of the M field will thus refer to

TV(M) = TV(Mx) + TV(My) + TV(Mz) (16)

In Section 4, we will show that minimizing the total

variation of either the M field or the depth function
u reduces the ambiguities of uncalibrated photometric

stereo. As we will see, in this context, the minimiza-

tion of TV is quite simple as it depends only on the

GBR parameters. The resulting problems being convex,
standard convex optimization methods such as quasi-

Newton ones can be used: this offers considerably faster

methods, compared to state-of-the-art approaches.

3 An Empirical Evidence for using TV

Let us now introduce our motivations for using TV in

the context of uncalibrated photometric stereo. As it

will be illustrated on some examples, a GBR affects
the variations of both the albedo ρ, the depth u and

its gradient ∇u, which is linked to the normals by (1).

Moreover, the optimal values of µ and ν seem to corre-
spond to a minimum of the total variation.

Firstly, let us state that this work is inspired by the

method of Alldrin et al., who show in [3] that the GBR

parameters could be estimated by minimizing the en-
tropy of the albedo distribution. However, the entropy

being anything but convex, the minimization has to be

global: Alldrin et al. use a bruteforce discrete search on
a user-defined interval, which results in a very long op-

timization process. Furthermore, this entropy does not

consider the spatial variation of the albedo, as shown
in Fig. 4.
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Fig. 4: Three different albedo configurations and the

corresponding histograms: (a) has a significant entropy

value, cf. histogram (d); (b) and (c) have the same slight

entropy, cf. histograms (e) and (f), however the spatial
distributions of the albedo are different. Total variation

would tend to favour distributions such as (b).

When looking for “homogeneous” zones, one would
expect that similar albedo pixels would be close to each

other. This property can be obtained by using the to-

tal variation of the albedo, as one would expect that
locally, the variations of albedo should be slight. Also,

total variation having better differential properties than

entropy, we expect considerably shorter computation
times since convex optimization tools can be used in-

stead of bruteforce algorithms.

Since the GBR applies not only to the albedo but to

the whole M field, not only the variations of the albedo
ρ are affected but also those of the depth u and of its

first order derivatives ∇u = (p, q)⊤. We show in Fig. 5

the effect of a GBR on these variations.
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Fig. 5: The effects of a GBR transformation on the vari-

ations of the albedo, of the depth and of its derivatives.

(a) One of the input images. (b) The y = 100 straight
line. (c) Ground truth 3D-model. (d) GBR-transformed

3D-model. We plotted the values of the ground truth

and the GBR-transformed values of (e) ρ, (f) u, (g) p
and (h) q along the y = 100 straight line, with µ = 1/2,

ν = 1 and λ = 1/3. Obviously, the GBR-transformed

estimations have higher total variations.

Thus, to solve this GBR ambiguity, it seems reason-

able to consider not only ρ, but also u and ∇u. As ρ,

∇u and M are linked by

M =
ρ√

‖∇u‖2 + 1

(
−∇u

1

)
(17)

we can also directly consider the M field.

In Fig. 6, we report the impact of µ and ν on the

total variations of ρ, u and M estimated from the im-
ages of Beethoven’s bust. To do so, we consider as the

ground truth the solution of the calibrated photomet-

ric stereo problem and apply GBR transformations to
this ground truth, with λ fixed to 1: the ground truth

values thus correspond to (µ, ν) = (0, 0). To indepen-

dently study the impact of each parameter, one test per
parameter is executed while fixing the other parameters

to the ground truth value.
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Fig. 6: The effects of µ and ν on the total variations of

(a) the albedo ρ, (b) the depth function u and (c) the

M field. The three total variations seem to be minimal

for values of µ and ν close to the ground truth values.



This test tends to indicate that minimizing any of

these total variations may solve the problem in µ and
ν. The case of λ is different: the effect of λ on these

TV, with µ and ν fixed to the ground truth values, is

illustrated in Fig. 7. TV(u) is minimized for λ = +∞
and TV(M) for λ = 0 (these observations are proven in

Section 4), however these values correspond to degen-

erated depth maps (see Eq. (11)).
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Fig. 7: The effects of λ on the total variations of (a) the

albedo ρ, (b) the depth function u and (c) the M field.
Only the total variation of the albedo has a minimum

inside ]0;+∞[, whereas TV(u) is inversely proportional

to λ and TV(M) is proportional to λ. Both these last

observations are proven in Section 4.

Thus, only TV(ρ) seems to have a non-degenerated

minimum. However, in general, estimating λ by mini-
mizing TV(ρ) gives quite disappointing results: in fact

the previous test is biased by the obviously uniform

albedo of Beethoven’s bust (which is made of plaster).
Using the dataset Doll from [3], we obtain the plot of

Fig. 8 for TV(ρ) as a function of λ, with µ and ν fixed

to the ground truth values.
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Fig. 8: The total variation of the albedo ρ, as a function
of λ, on the Doll dataset. The value of λ minimizing

TV(ρ) is quite far away from the ground truth value 1.

Thus, to estimate λ, other methods should be con-

sidered. However, if µ and ν are already estimated, we
will see in Section 4.3 that this estimation is equivalent

to the resolution of the classical bas-relief ambiguity,

which is considerably easier to solve than the GBR. As
a consequence, very simple solutions do exist. For in-

stance, we will show that the constant light magnitude

constraint [25, 49] can be written as a simple linear sys-
tem. Of course, any method of resolution of the GBR

[3, 19, 44] would also be simplified by the knowledge of

µ and ν (see for instance the TV-u / ME method in Sec-

tion 5). Because of the link (17) between ρ, u andM , we
restrict ourselves in this paper to the study of TV(M)

and TV(u). Moreover, the following proposition shows

that minimizing TV(M) is linked (although not equiva-
lent) to simultaneously minimizing TV(ρ) and TV(∇u):

Proposition 1 TV(M) 6 3TV(ρ) + 4TV(∇u)

Proof Denoting ∇u = (p, q)⊤ and r = ‖∇u‖, we have

Mx =
−ρp√
r2 + 1

, My =
−ρq√
r2 + 1

, Mz =
ρ√

r2 + 1

(18)

The gradient of Mx is given by

∇Mx = − ρ∇p√
r2 + 1

− p∇ρ√
r2 + 1

+
ρpr∇r

(r2 + 1)3/2
(19)

(20)



Since 1√
r2+1

6 1, p√
r2+1

6 1 and r
r2+1 6 1, we get

‖∇Mx‖ 6 ρ‖∇p‖+ ‖∇ρ‖+ ρ‖∇r‖ (21)

We obtain in the same way

‖∇My‖ 6 ρ‖∇q‖+ ‖∇ρ‖+ ρ‖∇r‖ (22)

The gradient of Mz is given by

∇Mz =
∇ρ√
r2 + 1

− ρr∇r

(r2 + 1)3/2
(23)

Thus we have

‖∇Mz‖ 6 ‖∇ρ‖+ ρ‖∇r‖ (24)

Summing (21), (22) and (24) gives

∑

c=x,y,z

‖∇Mc‖ 6 3‖∇ρ‖+ 3ρ‖∇r‖+ ρ(‖∇p‖+ ‖∇q‖)

(25)

Finally, since ∇r = p∇p+q∇q
r and max(|p|, |q|) 6 r,

‖∇r‖ 6 ‖∇p‖+ ‖∇q‖ (26)

and thus
∑

c=x,y,z

‖∇Mc‖ 6 3‖∇ρ‖+ 4ρ(‖∇p‖+ ‖∇q‖) (27)

Integrating this inequality over the reconstruction do-
main Ω leads to:

TV(M) 6 3

∫

Ω

‖∇ρ‖dx + 4

∫

Ω

ρ(‖∇p‖+ ‖∇q‖)dx (28)

Since ρ ∈ [0, 1], using the definition (13) of TV(ρ)

and the definition (15) of TV(∇u) leads to

TV(M) 6 3TV(ρ) + 4TV(∇u) (29)

which is the announced result. ⊓⊔

Remark 1 In Eq. (28),
∫
Ω
ρ(‖∇p‖ + ‖∇q‖)dx is the ρ-

weighted total variation of ∇u and when minimizing
it, it allows for “relaxing” the minimization of TV(∇u)

where the albedo is low, i.e. where the material is dark.

Since it is obvious that an albedo equal to zero induces
ill-posedness, this “relaxation” allows us not to consider

areas which would induce errors in the reconstruction.

Finally, let us state that, though the proposed lim-

ited empirical evidence should be completed by a sta-

tistical study of the involved distributions, the results
shown in Section 5 will a posteriori justify the TV ap-

proach, as the accuracy of the estimations of µ and

ν reach state-of-the-art results, and the computation

times of the proposed methods are considerably shorter
than those of other approaches, thanks to the convexity

of the objective functions that are discussed in the next

section.

4 Solving the GBR using TV

In this section, we show how TV-regularization can

solve the uncalibrated photometric stereo problem. Our
aim is to estimate a solution (M̂, Ŝ) of (8) having min-

imal total variation. Given a solution (M0,S0) of (8),

this problem can be defined as the estimation of the
GBR parameters µ̂, ν̂ and λ̂: the M field is eventually

given by M̂ = G(µ̂, ν̂, λ̂)⊤M0.

4.1 The Proposed Model

In order to minimize the TV of the M field, different

approaches can be considered. The first, inspired by

denoising models, would be to replace (8) by:




(M̂, Ŝ) = argmin

M,S
‖M⊤S− I‖2 + γ TV(M)

s.t. ‖ curlM‖2 = min
(30)

where γ > 0 is a user-defined hyper-parameter. How-

ever, this is not the best solution: such a model would
be useful in order to smooth some artifacts due to the

presence of outliers, however, as already stated, in this

paper we are not concerned about such outliers as we
assume the data is preprocessed. Therefore, a weight

between the data term ‖M⊤S−I‖2 and the regulariza-

tion term TV(M) is not required, since we would like
to keep the data term minimal3.

In the context of the resolution of the GBR ambi-

guity, we propose to solve the following problem, which
seems more relevant:




M̂ = argmin
M

TV(M)

s.t.

{
‖M⊤S− I‖2 = min

‖ curlM‖2 = min

(31)

To satisfy the first constraint in (31), orthogonal
projection of a local least-squares estimation on the

space of curl-free vector field might be considered, as

such a projection can be achieved efficiently using, for

instance, Fourier transform [20, 45]. Unfortunately, since
the “curl” considered here (defined by Eq. (7)) is non-

linear, such an approach is not as simple to put in place

as it may seem. Another possibility would be to intro-
duce two Lagrange multipliers associated with the con-

straints. As the second constraint is nonlinear and as

there are several unknowns, proximal methods [4, 11]
could probably be used. Yet, this would require an iter-

ative scheme, which would result in high computation

times.

3 However, as mentioned in the perspectives, the model (30)
could be useful to post-process the results.



Moreover, we did not use the fact that we do know

a closed form solution of (8), and the analytical form of
all acceptable transformations (the GBR matrices). We

propose a simple solution to (31), based on the solution

of Yuille and Snow [49] and the estimation of the GBR
parameters. We use the following proposition:

Proposition 2 Problem (31) is strictly equivalent to

(M̂, Ŝ) =
(
G(µ̂, ν̂, λ̂)⊤M0,G(µ̂, ν̂, λ̂)−1S0

)
(32)

where (M0,S0) is the solution of Yuille and Snow, and



(µ̂, ν̂, λ̂) = argmin

µ,ν,λ
TV(G(µ, ν, λ)⊤M0)

s.t. λ > 0
(33)

Proof Let (M̂, Ŝ) be given by (32) and (33). A method

for estimating µ̂, ν̂ and λ̂ is proposed in the following

section. All the GBR matrices being invertible, we have
‖M0⊤S0−I‖2 = ‖(G(µ̂, ν̂, λ̂)⊤M0)⊤(G(µ̂, ν̂, λ̂)−1S0)−I‖2.
As, by construction, ‖M0⊤S0 − I‖2 = min, it follows

that ‖M̂⊤Ŝ − I‖2 = min. By construction also, M0

is such that ‖ curlM0‖2 = min. From (10), we de-

duce ‖ curl M̂‖2 = min. Both constraints are thus re-

spected, thanks to the properties of the GBR. Finally,
the GBR parameters being chosen so as to minimize

TV(G(µ, ν, λ)⊤M0), M̂ is a solution of (31).

Now, let M̂ be a solution of (31), and Ŝ the associ-

ated light matrix. (M̂, Ŝ) satisfies the two constraints,

as does (M0,S0). As the only transformations which
preserve these constraints are the GBR [7, 49], there

necessarily exists a GBR matrix G(µ̂, ν̂, λ̂) such that

M̂ = G(µ̂, ν̂, λ̂)⊤M0 and Ŝ = G(µ̂, ν̂, λ̂)−1S0, i.e. (M̂, Ŝ)

can be expressed under the form (32). ⊓⊔

Let us now explain how to solve (33).

4.2 Estimating µ and ν

Firstly, for computational issues, we propose to replace

the constraint λ > 0 by λ > ǫ, with ǫ > 0. We will

discuss the influence of ǫ in Section 4.3, and propose
solutions for choosing it (in the preliminary results [41],

we manually chose ǫ).

Now, remark that, from our definition (15) of TV

and the form of a GBR, the objective function reads:

E(µ, ν, λ) = TV(G(µ, ν, λ)⊤M0)

= TV(g1(µ)M
0) + TV(g2(ν)M

0)

+TV(g3(λ)M
0) (34)

where g1(µ) = (1, 0, µ), g2(ν) = (0, 1, ν) and g3(λ) =

(0, 0, λ) denote the three lines of G(µ, ν, λ)⊤.

Writing TV(g3(λ)M
0) =

∫
Ω
‖∇(λM0

z )‖dx, one ob-

tains ∂λE = λTV(M0
z ), and thus TV(M) is linear in λ

(cf. Fig. 7-c), and the solution in λ is given by:

λ̂ = ǫ (35)

This explains why we replaced the constraint λ > 0 by

λ > ǫ, as λ = 0 would provide a degenerated depth
function ū(x, y) (see (11)). Thus, the choice of ǫ is im-

portant for the estimation of λ, but we can state the

following:

Proposition 3 The estimations of µ and ν are totally

independent from that of λ, thus from ǫ.

Proof Denoting by E(µ, ν, λ) = TV(G(µ, ν, λ)⊤M0) =

TV(M0
x + µM0

z ) + TV(M0
y + νM0

z ) + TV(λM0
z ), its

derivatives in µ and ν read:




∂µE =

∫

Ω

µ‖∇M0
z ‖2 + (∇M0

x)
⊤(∇M0

z )

‖∇(M0
x + µM0

z )‖
dx

∂νE =

∫

Ω

ν‖∇M0
z ‖2 + (∇M0

y )
⊤(∇M0

z )

‖∇(M0
y + νM0

z )‖
dx

(36)

Since λ does not appear in Eq. (36), this proves the
proposition. It should be stated that this comes from

the choice of the definition (15) of TV: λ would remain

in the equations if the definition (14) were used. ⊓⊔

Remark 2 Differentiating Eq. (36) w.r.t. µ and ν proves
the convexity of TV(M) w.r.t. µ and ν.

As will be shown in Section 4.3, the choice of ǫ

actually corresponds to the resolution of the classical

bas-relief ambiguity, which can be solved quite simply.
Hence, the proposed TV formulation reduces the GBR

to the bas-relief ambiguity. As already stated by Bel-

humeur et al. in [7], this is consistent with the work
of Fan and Wolff [18], who show that the Hessian of u

can only be recovered up to a scaling factor (which here

corresponds to λ). In their work, two other parameters

are required (the boundary conditions of a differential
equation): these parameters correspond to the remain-

ing parameters µ and ν.

At this point, let us focus on the estimations of
µ and ν. They involve the minimization of a convex

function which depends only on two parameters µ and

ν. Given the expression (36) of the gradient ∇E, we
solve for µ and ν in problem (33) using a quasi-Newton

method. In our implementation, we use the fminunc

Matlab function. We can accelerate the optimization

by choosing an adequate initialization, such as the so-
lution of the Tikhonov regularization, given by




µ̂0 = argmin
µ

∫
Ω
‖∇(M0

x + µM0
z )‖2dx

ν̂0 = argmin
ν

∫
Ω
‖∇(M0

y + νM0
z )‖2dx

(37)



which admits the closed-form solution




µ̂0 = −
∫
Ω
(∇M0

x)
⊤(∇M0

z )dx∫
Ω
‖∇M0

z ‖2dx

ν̂0 = −
∫
Ω
(∇M0

y )
⊤(∇M0

z )dx∫
Ω
‖∇M0

z ‖2dx

(38)

4.3 Estimating λ

According to (35), the solution in λ of problem (33) is
λ̂ = ǫ. Similarly to a hyper-parameter, ǫ can be manu-

ally tuned by the user so as to obtain visually accept-

able shapes. However, instead of manually choosing this
parameter, we can use additional information, which is

greatly facilitated by the following observation:

Corollary 1 The estimation of λ can be performed af-

ter estimating µ and ν.

Proof This is a direct consequence of Prop. 3. ⊓⊔

This corollary justifies that µ and ν can be esti-

mated before fixing ǫ: we can replace (33) by the follow-

ing pair of problems, which must be solved sequentially:





(µ̂, ν̂) = argmin
µ,ν

TV(G(µ, ν, 1)⊤M0)



λ̂ = argmin

λ
TV(G(µ̂, ν̂, λ)⊤M0)

s.t. λ > ǫ

(39)

where ǫ can then be chosen after estimating µ and ν. It
can be stated that:

Lemma 1 The estimation of λ corresponds to the res-

olution of the classical bas-relief ambiguity.

Proof As we have

G(µ̂, ν̂, λ)⊤M0 = G(0, 0, λ)⊤(G(µ̂, ν̂, 1)⊤M0) (40)

we are now dealing with GBR matrices G(0, 0, λ) which

will transform the field M1 = G(µ̂, ν̂, 1)⊤M0: this par-

ticular GBR ambiguity with µ = ν = 0 corresponds to
a bas-relief ambiguity on the field M1 [7]. ⊓⊔

The influence of λ is clear: λ → ∞ will “flatten”

the depth function u while increasing the values of the

albedo ρ, whereas λ → 0 will give “peaky” shapes
with lower albedo. Indeed, according to (11), the trans-

formed depth ū writes

ū(x, y) =
u(x, y)

λ
(41)

and, as shown in [7], the transformed albedo writes

ρ̄(x, y) = ρ(x, y)

(
λ2 + ‖∇u‖2
1 + ‖∇u‖2

)1/2

(42)

Further discussion on the link between the geometry of

the object and its albedo under bas-relief transforma-
tions can be found in [31]. We show in Fig. 9 the effects

of such a transformation on the shape and albedo of

Beethoven’s bust, estimated from the images of Fig. 1.

(a) (b) (c)

(d) (e) (f)

Fig. 9: Effects of a bas-relief transformation. First line:

reconstructed shapes with (a) λ = 1/2, (b) λ = 1 (orig-
inal shape), and (c) λ = 2. Second line: albedo with (d)

λ = 1/2, (e) λ = 1, and (f) λ = 2.

As stated in Section 3, one possible solution involv-

ing total variation to solve for this last parameter is to

minimize the total variation of the albedo:

λ̂ = argmin
λ

TV(‖G(0, 0, λ)⊤M1‖) (43)

This approach is very similar to that of Alldrin et al. [3]

who minimize the entropy of the albedo distribution,

nevertheless here only λ has to be estimated. How-
ever, we already stated in Section 3 that in general this

approach gives poor results, as real-world albedos are

usually not sufficiently regular, and moreover the cum-
bersome expression of the total variation of the albedo

leads to numerical difficulties.

Thus, it is better to use another method for estimat-
ing λ. In the experiments, we solve this residual ambigu-

ity by adapting the constant light magnitude constraint

[25, 49] to the case of the bas-relief ambiguity, i.e. we

assume that all the light vectors Si, i ∈ [1,m], have the
same norm S0. When in addition µ and ν are unknown,

it is shown in [49] that this constraint requires solving a

constrained least-squares problem which is not trivial.



Here, µ and ν being already estimated, the problem is

much easier. Let us denote S1 = G(µ̂, ν̂, 1)−1S0. The
constant light magnitude constraint reads:

∀i ∈ [1,m], (G(0, 0, λ)−1S1,i)⊤(G(0, 0, λ)−1S1,i) = S2
0

(44)

where S1,i refers to the i-th column of S1, S0 is the
unknown magnitude and λ is the bas-relief parameter.

This is nothing more than a linear system with two
unknowns (1/λ2, S2

0) and m equations, which can be

solved using Moore-Penrose pseudo-inverse. We can thus

solve for λ2 using this method, then deduce λ, since we

assume λ > 0 for convexity.

Note that this system might not admit a real solu-

tion (as the estimation of λ2 might be negative), which
is not stated in [25, 49]. Such problems might occur

for example if the distribution of the light magnitudes

is far away from a uniform distribution: in such cases,
other constraints should be considered. It is noticeable

that the proposed method for estimating µ and ν is gen-

eral, and can be used to simplify any method of resolu-
tion of the GBR. In Section 5, we adapt the Minimum-

Entropy method [3] when the constant light magnitude

constraint is not valid: the discrete search on all the

possible values of µ, ν and λ proposed in [3] is reduced
to a discrete search on the possible values of λ, which

considerably accelerates the method.

4.4 An Alternative Approach: Depth Regularization

As will be shown in Section 5, the estimation of µ and
ν proposed in Section 4.2, coupled with an efficient

resolution of the bas-relief ambiguity, reaches state-of-

the-art results, and is considerably faster compared to
other methods. It has however, in practice, the draw-

back of involving numerical approximations of the par-

tial derivatives of M by finite differences. We can avoid

computing these derivatives by regularizing the depth
map u. Indeed, let us state that:

1. Formulation (36) requires the knowledge of J(M0).

This involves necessary numerical approximations
of ∇M0

x , ∇M0
y and ∇M0

z in the implementation,

which might occasionally be a source of problems,

depending on the presence of discontinuities in the
depth function. As such discontinuities are present

in real-world objects, it might be necessary to apply

Gaussian filtering onM0 so as not to bias the results

(the same “trick” is used during the integrability
enforcement, as advised in [3]).

2. We showed in Section 3 that the GBR has an im-

pact on the variations of the albedo, the depth and

its first order derivatives, however we did not ex-

plicitely use information about the depth.

Thus, we propose an alternative approach involving to-

tal variation of the depth u, which, as we will show,

does not involve numerical approximations of ∇u by
finite differences, as ∇u depends only on the known

quantities p0 = −M0
x/M

0
z , q

0 = −M0
y /M

0
z and on the

GBR parameters.

Let us recall that the depth function u is assumed
to be piecewise twice differentiable, so the integrability

condition ∂2u/∂x∂y = ∂2u/∂y∂x is implicitely satisfied

almost everywhere, and problem (31) can be reformu-
lated in terms of depth as the following problem:



û = argmin

u
TV(u)

s.t. ‖ρ (−∂xu,−∂yu,1)√
‖∇u‖2+1

S− I‖2 = min
(45)

Since this is as complicated to directly solve as (31),

we adopt the same parametric formulation. Let us de-

note by u0(x, y) the depth map obtained by integrating

a normal fieldN0 estimated by the method of Yuille and
Snow [49] (we do not need to explicitely perform this

integration), by U0 = (x, y, u0(x, y))⊤ the correspond-

ing Monge patch and by g(µ, ν, λ) = 1
λ (−µ,−ν, 1) the

vector depending on the GBR parameters, which cor-

responds to the third line of G(µ, ν, λ)−1. Similarly to

Prop. 2, we have:

Proposition 4 A solution of (45) is given by

û = g(µ̂, ν̂, λ̂)U0 (46)

where



(µ̂, ν̂, λ̂) = argmin

µ,ν,λ
TV(g(µ, ν, λ)U0)

s.t. λ > 0
(47)

Proof Simply remark that, according to (11), a GBR-

modified depth function reads:

ū = g(µ, ν, λ)U0 (48)

The rest of the proof is similar to that of Prop. 2. ⊓⊔

We consider u0 and U0 are implicitely obtained by
integrating the normal field estimated by using [49]. We

focus on:

(µ̂, ν̂, λ̂) = argmin
µ,ν,λ

TV(g(µ, ν, λ)U0) (49)

As the gradient of the modified depth function ū =

g(µ, ν, λ)U0 is equal to:

∇ū = − 1

λ
(M0

x/M
0
z + µ,M0

y /M
0
z + ν)⊤

= − 1

λ

(
(M0

x + µM0
z )/M

0
z

(M0
y + νM0

z )/M
0
z

)
(50)



the estimation of λ is problematic, as it leads to λ →
∞. In practice, similarly to the previous case, we have
to impose a constraint λ 6 ǫ′, ǫ′ > 0 to avoid this

degenerated solution. As previously, ǫ′ can be manually

tuned so as to obtain satisfactory 3D-reconstructions,
or λ can be estimated by using another constraint, as

already discussed in Section 4.3, which is justified by

the following lemma:

Lemma 2 The estimations of µ an ν do not depend

on that of λ.

Proof Eq. (50) shows that

∇(g(µ, ν, λ)U0) =
1

λ
∇(g(µ, ν, 1)U0) (51)

and thus:

argmin
µ,ν

TV(g(µ, ν, λ)U0) = argmin
µ,ν

TV(g(µ, ν, λ′)U0)

(52)

for any λ′ > 0. Note also that Eq. (51) shows that

TV(u) is inversely proportional to λ (cf. Fig. 7-b). ⊓⊔

This lemma justifies the choice of separating the es-

timations of (µ, ν) and that of λ: we can first fix λ = 1

(for example) and estimate µ and ν. Once again, this
reduces the generalized bas-relief ambiguity to the bas-

relief ambiguity.

Thus, we estimate µ and ν by solving:

(µ̂, ν̂) = argmin
µ,ν

TV(g(µ, ν, 1)U0) (53)

The solution of (53) can be obtained once again us-

ing quasi-Newton methods, the derivatives of E′(µ, ν) =
TV(g(µ, ν, 1)U0) = TV(−µx− νy + u0(x, y)) reading:





∂µE
′ =

∫

Ω

M0
x + µM0

z√
(M0

x + µM0
z )

2 + (M0
y + νM0

z )
2
dx

∂νE
′ =

∫

Ω

M0
y + νM0

z√
(M0

x + µM0
z )

2 + (M0
y + νM0

z )
2
dx

(54)

To accelerate the estimation, we choose to start from
the solution (µ̂0, ν̂0) of the Tikhonov regularization:

(µ̂0, ν̂0) = argmin
µ,ν

∫

Ω

∥∥∇(g(µ, ν, 1)U0)
∥∥2 dx (55)

which easily gives

{
µ̂0 = p̄0

ν̂0 = q̄0
(56)

where p̄0 and q̄0 stand for the means of p0 = −M0
x/M

0
z

and of q0 = −M0
y /M

0
z . In fact, (55) results in forcing

the mean value of N to be equal to [0, 0, 1]⊤. This sim-

ply signifies that, on average, the normals should be

oriented toward the camera, which is quite reasonable.
This has also been used as a prior in an Expectation-

Maximization algorithm for calibrated photometric stereo

in presence of outliers [46].
Moreover, note that in (54), only known terms M0

x ,

M0
y and M0

z are involved: no numerical approximation

of J(M0) is needed.

4.5 GBR-consistency

It was recently emphasized in [39] that an appropri-

ate method for estimating the GBR parameters should
be GBR-consistent, i.e. it should return the same esti-

mates M̂ and Ŝ, whatever the initial solution (M0,S0)

of (8). Papadhimitri and Favaro prove in [39] that this
property holds for the “Diffuse Maxima” method (DM)

initially described in [19]. However, this is not the case

for the “Minimum Entropy” method [3], neither for the

“Self calibrating” method [44]. The estimations of µ
and ν previously discussed actually hold this property,

and we can state the following result:

Proposition 5 Both the TV methods described in Sec-

tions 4.2 and 4.4 are GBR-consistent.

Proof We present the proof for the TV-regularization

of M , the other proof is similar.

Let (M01,S01) and (M02,S02) be two different solu-

tions of (8). The problem of estimating a field M̂ with

minimal TV, given the initial field M01, is synonymous
to solving:



(µ̂, ν̂, λ̂) = argmin

µ,ν,λ
TV(G(µ, ν, λ)⊤M01)

s.t. λ > 0
(57)

On the other hand, there are necessarily three param-

eters (µ01, ν01, λ01) ∈ R
2 × R

∗
+ such that the equality

M01 = G(µ01, ν01, λ01)⊤M02 holds. From the form of a

GBR, we have G(µ, ν, λ)⊤G(µ01, ν01, λ01)⊤ = G(µ01+

µλ01, ν01+νλ01, λλ01)⊤. Writing µ′ = µ01+µλ01, ν′ =
ν01 + νλ01 and λ′ = λλ01, the problem becomes:



(µ̂, ν̂, λ̂) = argmin

µ′,ν′,λ′

TV(G(µ′, ν′, λ′)⊤M02)

s.t. λ′ > 0
(58)

which is exactly the problem of estimating a field M̂

with minimal TV, given an initial field M02. Thus, the

solution in M is the same, whether we initialize the
algorithm with M01 or with M02. ⊓⊔



5 Results

In this section we evaluate the accuracy of the two pro-

posed reconstruction methods. Some authors [19, 44]

evaluate this accuracy by calculating the mean angu-
lar error between the estimated normal field and that

estimated by calibrated photometric stereo (Eq. (4)),

although it is advocated in [3] that uncalibrated pho-
tometric stereo might give overall “better” results than

calibrated photometric stereo, as the use of prior infor-

mation might compensate for some inaccuracy in the

light parameters. Thus, we evaluate our methods firstly
on synthetic datasets, for which ground truth normals

are known.

5.1 Results on Synthetic Images

To evaluate the accuracy of the reconstructions ob-

tained by our methods, referred to as TV-M and TV-u,
we use synthetic images of a vase. The images were cre-

ated in the following way:

• The depth equation can be written as the equation

of a polynom (this equation can be found for ex-
ample in [16]), thus the analytical expression of the

normals is known. The depth function u is shown in

Fig. 10-a, and its derivatives p and q in Figs. 10-b
and 10-c.

• We created a 3 × m light matrix S, choosing m =

22 light vectors having the same intensity (so as to

solve the residual bas-relief ambiguity).
• We manually created an albedo map, thus obtaining

a ground truth M field (see below).

• Eventually, the 256×256 images were generated us-
ing the Lambertian model: I = max(M⊤S, 0) (the

max operator models the self-shadows).

(a) (b) (c)

Fig. 10: Ground truth functions (a) u, (b) p and (c) q

for the synthetic vase dataset.

We compared our reconstructions to those of [3] and

[19], for which Matlab codes are freely available on

the authors’ websites. All our codes were developed

using Matlab too so as to provide a fair comparison.

CPU times were measured on a personal I7 processor
at 2.9GHz. Those methods solve the GBR in this way:

• The Minimum-Entropy method (ME) [3] estimates
the GBR by minimizing the entropy of the albedo.

• The Diffuse-Maxima method (DM) [19] considers

the brightest pixels as locally oriented towards the

light source and thus deduces the GBR.

As these methods have different features, we are study-

ing three cases here, depending on the way we create
the albedo:

• With a uniform albedo (Fig. 11-a), the albedo has

a very low entropy, and the maxima of intensity
give the orientation of the light, so both [3] and [19]

should work perfectly.

• With a piecewise uniform albedo (Fig. 11-b), the
albedo still has a low entropy, but the maxima of

intensity might correspond to high albedo values,

so this case favours [3].
• With a radial gradient albedo (Fig. 11-c), the en-

tropy is important, and maxima of intensity might

again correspond to high albedo values.

One image of each dataset is shown in the second line

of Fig. 11. To evaluate the accuracy of the different

methods, we can calculate the relative errors between
the estimated GBR parameters and the ground truth

parameters, as well as the angular errors between the

estimated normals and the ground truth normals. All

these results are reported in Table 1.

(a) (b) (c)

(d) (e) (f)

Fig. 11: First line: ground truth albedo maps: (a) uni-
form; (b) piecewise uniform; (c) radial gradient. Second

line: one image of each dataset, corresponding to each

different albedo (the same lighting was used to generate

these three images).



|µ−µ̂|
|µ|

|ν−ν̂|
|ν|

|λ−λ̂|
|λ|

MAE (deg.) Max-AE (deg.) Min-AE (deg.) σAE (deg.) CPU (s)

Uniform

ME 1.54 0.00 0.05 0.63 16.41 0.03 1.10 26.41
DM 5.36 0.28 0.01 0.98 16.04 0.01 0.95 2.79
TV-M 93.72 0.27 0.57 10.09 24.77 0.03 3.14 0.13

TV-M (G.f) 0.61 0.02 0.07 0.57 16.75 0.00 1.28 0.26
TV-u 0.61 0.02 0.07 0.57 16.75 0.00 1.28 0.57
P/w unif.
ME 1.19 0.02 0.04 0.59 16.35 0.00 1.09 28.54
DM 24.11 1.59 0.11 4.82 14.97 0.06 1.25 3.34
TV-M 53.38 0.11 0.36 7.42 21.53 0.11 2.11 0.07

TV-M (G.f) 0.50 0.02 0.07 0.56 16.77 0.00 1.27 0.26
TV-u 0.50 0.02 0.07 0.56 16.77 0.00 1.27 0.50
Rad. grad.

ME 8.01 18.22 0.21 15.59 18.89 2.03 3.64 30.82
DM 8.77 20.74 0.10 15.53 18.40 3.03 3.45 0.56
TV-M 102.61 0.89 0.20 4.43 18.76 0.07 1.35 0.06

TV-M (G.f) 2.70 0.03 0.07 0.75 16.53 0.01 1.26 0.15
TV-u 2.41 0.02 0.07 0.75 16.53 0.01 1.26 0.23

Table 1: Comparison of the results of the Minimum-Entropy method (ME), the Diffuse-Maxima method (DM)

and the proposed methods TV-M (without or with applying Gaussian filtering (G.f) before calculating J(M0))

and TV-u. We show the relative errors on the GBR parameters µ, ν and λ, as well as the mean angular error
(MAE), the maximal angular error (Max-AE), the minimal angular error (Min-AE), the standard deviation of

the angular error (σAE) on the normals, and the CPU time. Uniform refers to the synthetic vase with uniform

albedo, P/w unif. to the vase with piecewise uniform albedo, and Rad. grad. to the vase with a radial gradient

albedo. The proposed methods overcome state-of-the-art results, and are considerably faster. They can also deal
with situations state-of-the-art methods usually fail on (smoothly varying albedo).

As expected, the ME and DM methods give satis-

factory results in the first case, but fail if the albedo

varies smoothly. On the contrary, our methods produce
comparable results in all three cases, as they do not rely

on a hypothesis on the albedo, nor on pixel identifica-

tion. They are thus more general methods, at least for
estimating µ and ν.

The ME method uses a global optimization to min-

imize the (non-convex) entropy of the albedo distribu-

tion, resulting in very high CPU times. The CPU time
for the DM method is also totally unpredictable, since

it depends on the number of local maxima found in the

images. On the contrary, the TV methods solely involve
simple convex optimization tools and are thus faster.

Finally, let us explain the differences between the

results of TV-M and TV-u. As mentioned, TV-M in-

volves numerical approximations, which is totally bi-
ased by the non-integrability of the vase on the bound-

aries. It is for that reason that TV-u performs better.

It is possible to apply Gaussian filtering before calcu-

lating the numerical derivatives in (36) and (38), which
reduces the impact of these approximations and im-

proves the results of the TV-M method. This modified

method is referred to as TV-M (G.f).

5.2 Evaluation on Real-World Datasets

5.2.1 Datasets

To evaluate the accuracy of the reconstructions on real-

world datasets, since no ground truth is available, we
can only compare the results to those of calibrated pho-

tometric stereo. It should be recalled that this compar-

ison is purely informative, since estimating the normal
field by calibrated photometric stereo is subject to in-

accuracy in the given light parameters. We used:

• Ten datasets of almost Lambertian objects. The Bud-

dha, Cat, Horse, Owl and Rock datasets, courtesy

of Dan Goldman and Steven Seitz4, are composed
of twelve 320 × 300 images (except Horse, which is

composed of twelve 270×350 images). The Octopus,

Redfish and Korean Doll datasets can be found on

Neil Alldrin’s homepage5: they are composed of five
images, respectively of size 321×281, 351×301 and

1321× 521. The Doll dataset was presented in [19],

and is composed of fifteen 405×250 images. Finally,
Beethoven dataset is composed of three 256 × 256

images.

4 http://courses.cs.washington.edu/courses/cse455/10wi/projects/
5 http://vision.ucsd.edu/~nalldrin/research/



• The first twenty sets of images from the Extended

Yale DataFace B [23, 33]. These datasets originally
contain 64 different illumination conditions: we se-

lected only the 27 with lowest elevation angles, so as

to discard the images the most corrupted by shad-
ows. Each image of each dataset is 192× 168.

Because real-world images in reality contain outliers
such as shadows or specularities, we apply the prepro-

cessing from [48], which involves a hyper-parameter C

that we fixed, as advised in [19], to 1.7 for the datasets
with at least 12 images, and to 3 for the other datasets.

One preprocessed image of each dataset is shown in

Fig. 12. However such a preprocessing cannot remove
all the outliers: specular highlights are still visible in,

for instance, the Owl dataset (see the eyes of the owl in

Fig. 12).

5.2.2 Results

The relative errors on the GBR parameters, the mean

angular errors on the normal fields and the CPU times

can be found in Tables 2 and 3. As can be seen, the
proposed methods reach, in general, state-of-the-art re-

sults on those datasets, and considerably overcome the

two others in terms of computation times.

For some datasets, no error is given: this corresponds

to the cases where the resolution of (44) results in neg-
ative values of λ2. The constraint of uniform light mag-

nitude is not adapted to such datasets. However, as

the estimated values of µ and ν do not rely on this con-
straint, the estimation of λ can be achieved for example

by adapting another method of resolution of the GBR

to the resolution of the bas-relief ambiguity. Thus, we

also report the results of estimating λ by ME, with µ
and ν estimated by TV-u (this method is referred to

as TV-u / ME). Unifying models (12) and (53), this

method can be written:





(µ̂, ν̂) = argmin
µ,ν

TV(g(µ, ν, 1)U0)

λ̂ = argmin
λ

E(‖G(µ̂, ν̂, λ)⊤M0‖)
(59)

The discrete search for the minimization of the entropy

is thus performed only with respect to λ, which results

in considerably shorter computation times, compared to
ME. The example of the Korean Doll dataset (cf. Table

2) is striking: the computation time is reduced from

more than two minutes to a couple of seconds using

TV-u / ME, while obtaining a very acceptable level of
accuracy. This confirms that the proposed method for

the estimation of µ and ν can be used to accelerate any

method of GBR resolution.

Moreover, these tests empirically prove the valid-

ity of the “Minimum-TV” constraint for a wide vari-
ety of objects, since the obtained errors are comparable

to state-of-the-art methods. However, as the proposed

methods do not rely either on pixel identification or on
minimizing non-convex functions, they are faster than

other methods.

Finally, we show in Fig. 13 a side-view of a relighting
of each 3D-model obtained after integrating the nor-

mals estimated with the TV method which gives the

lowest MAE and warping the estimated albedo on the

surface. We use three light sources (one in front of the
object, one on the left side and one on the right side)

and the Phong model [40] for rendering.

5.2.3 Guidelines

Finally, we provide some guidelines to help the user

choose the right method. To use the proposed methods,
two choices have to be made:

• TV-regularization of M or TV-regularization of u:
this is linked to the estimation of µ and ν.

• How to solve the residual bas-relief ambiguity, which

is linked to the estimation of λ.

The TV-regularization of u should, in the most gen-
eral case, give better results, as it does not rely on nu-

merical differentiations of the initial field M0, which

are biased in the presence of depth discontinuities (e.g.,
the Owl dataset). However, if both the surface and the

albedo are smooth enough (e.g., the Horse and the B13

datasets), the TV-regularization of M will offer compa-

rable or better results. However, it is hard to a priori
ensure the absence of depth discontinuities.

Thus, to choose the appropriate method, we advise

considering the following strategy:

• If no prior information is available, the best choice
is probably to firstly try the TV-u method: the es-

timation of µ and ν does not involve any numerical

approximation, and the estimation of λ using the

constant light magnitude constraint is quite fast.
• If the surface and the albedo seem smooth enough,

the TV-M method may give overall better estima-

tions of µ and ν.
• Finally, if the constant light magnitude constraint

is not satisfied, in both cases (TV-u or TV-M) neg-

ative values of λ2 will be obtained, or the surface
will look either too flat or too peaky. In that case,

other methods of estimation of λ should be consid-

ered. If the albedo is regular enough, one can easily

adapt the Min. Entropy method to the estimation of
λ only (we provide such an implementation in Mat-

lab): this corresponds to the TV-u / ME method.

Other methods [19, 44] would also be easy to adapt.



Fig. 12: One preprocessed image of each real-world dataset used in the experiments.



Fig. 13: Relighting of each 3D-model obtained by the TV method which gives the lowest MAE.



|µ−µ̂|
|µ|

|ν−ν̂|
|ν|

|λ−λ̂|
|λ|

MAE CPU

B01

ME 18.83 5.26 0.26 14.78 17.03
DM 33.92 5.17 0.06 14.78 9.05
TV-M 35.45 3.27 0.75 16.23 0.03

TV-u 24.45 4.23 0.75 16.22 0.03

TV-u / ME 24.45 4.23 0.22 12.69 0.26
B02
ME 2.27 13.24 0.30 17.08 16.92
DM 3.80 15.51 0.16 18.56 4.34
TV-M 3.95 3.45 1.02 15.41 0.14
TV-u 1.12 8.86 1.15 16.66 0.12

TV-u / ME 1.12 8.86 0.11 9.37 0.26
B03

ME 7.70 3.25 0.23 11.56 23.57
DM 10.79 2.86 0.10 9.23 4.67
TV-M 22.32 0.64 0.51 12.95 0.04
TV-u 10.18 0.61 0.33 9.01 0.03

TV-u / ME 10.18 0.61 0.16 5.41 0.28
B04

ME 77.65 2.90 0.18 10.41 20.85
DM 73.36 4.69 0.01 14.23 4.44
TV-M 121.13 2.11 0.63 15.69 0.03

TV-u 49.40 4.22 0.94 19.15 0.03

TV-u / ME 49.40 4.22 0.14 12.84 0.39
B05

ME 0.40 0.12 0.26 7.50 18.54
DM 0.04 0.39 0.13 3.38 5.65
TV-M 2.38 2.91 0.59 13.93 0.03

TV-u 0.86 2.51 0.58 13.08 0.03

TV-u / ME 0.86 2.51 0.02 8.87 0.28
B06

ME 3.32 3.73 0.19 12.89 19.23
DM 4.53 2.93 0.19 11.35 3.11
TV-M 1.28 1.58 0.30 9.05 0.03

TV-u 4.96 2.02 0.55 13.43 0.03

TV-u / ME 4.96 2.02 0.21 9.85 0.32
B07
ME 1.94 3.54 0.24 11.21 18.53
DM 2.29 2.62 0.15 7.98 11.48
TV-M 2.28 2.00 0.53 11.97 0.03

TV-u 3.63 3.19 0.83 16.41 0.03

TV-u / ME 3.63 3.19 0.21 10.73 0.35
B08

ME 157.37 4.66 0.34 19.70 18.31
DM 127.10 3.69 0.25 14.75 2.90
TV-M 136.65 0.87 0.33 10.01 0.03

TV-u 154.10 1.13 0.38 10.96 0.03

TV-u / ME 154.10 1.13 0.22 7.90 0.40
B09
ME 5.50 6.99 0.30 17.98 23.36
DM 7.24 7.22 0.14 15.98 1.10
TV-M 7.76 2.11 0.30 10.95 0.03

TV-u 8.24 0.88 0.21 9.36 0.03

TV-u / ME 8.24 0.88 0.30 9.38 0.32
B10

ME 12.34 217.43 0.15 6.92 19.22
DM 16.48 459.18 0.14 11.34 5.32
TV-M 6.22 340.09 0.22 9.10 0.03

TV-u 25.54 87.17 0.17 7.83 0.03

TV-u / ME 25.54 87.17 0.13 6.26 0.33

|µ−µ̂|
|µ|

|ν−ν̂|
|ν|

|λ−λ̂|
|λ|

MAE CPU

B11

ME 2.29 4.62 0.13 19.10 17.99
DM 2.17 2.32 0.16 12.06 1.67
TV-M 0.14 1.96 0.68 16.49 0.03

TV-u 2.02 1.52 0.51 14.36 0.03

TV-u / ME 2.02 1.52 0.33 12.79 0.43
B12
ME 4.33 22.20 0.46 25.51 21.27
DM 0.83 10.92 0.36 14.92 1.06
TV-M 5.52 5.30 0.04 7.92 0.04
TV-u 6.70 1.34 0.03 6.63 0.03

TV-u / ME 6.70 1.34 0.36 11.19 0.38
B13

ME 0.84 1.03 0.08 5.21 22.26
DM 2.21 1.89 0.10 8.36 11.63
TV-M 0.39 0.43 0.41 7.13 0.03

TV-u 2.99 3.29 3.53 26.68 0.03

TV-u / ME 2.99 3.29 0.09 14.82 0.52
B15

ME 22.59 3.06 0.16 11.47 19.11
DM 38.75 4.45 0.09 16.38 2.62
TV-M 35.21 2.06 0.63 16.25 0.03

TV-u 30.25 4.07 1.17 22.55 0.04
TV-u / ME 30.25 4.07 0.15 14.80 0.35
B16

ME 4.89 2.16 0.26 8.55 21.61
DM 8.42 4.12 0.07 9.96 6.34
TV-M 7.53 0.68 0.34 8.71 0.04
TV-u 7.42 1.57 0.38 9.65 0.03

TV-u / ME 7.42 1.57 0.21 7.25 0.33
B17

ME 3.35 2.72 0.19 10.15 21.45
DM 4.86 3.25 0.02 10.84 3.68
TV-M 5.06 2.00 0.53 12.99 0.03

TV-u 2.25 2.59 0.64 14.61 0.03

TV-u / ME 2.25 2.59 0.18 9.56 0.32
B18
ME 2.01 1.98 0.18 10.12 20.21
DM 5.14 1.89 0.12 11.19 1.39
TV-M 4.53 0.18 0.27 9.38 0.03

TV-u 4.16 1.52 0.61 14.64 0.03

TV-u / ME 4.16 1.52 0.13 9.33 0.43
B19

ME 24.39 5.47 0.18 16.24 21.73
DM 32.28 5.71 0.24 17.80 3.18
TV-M 23.29 2.45 0.45 13.26 0.10
TV-u 37.93 3.61 0.73 17.61 0.08

TV-u / ME 37.93 3.61 0.18 12.50 0.82
B20
ME 1.83 6.90 0.33 17.20 18.05
DM 3.89 5.17 0.21 11.86 5.69
TV-M 2.76 1.90 0.30 8.38 0.03

TV-u 5.91 1.40 0.31 8.71 0.03

TV-u / ME 5.91 1.40 0.22 7.10 0.32
B21

ME 43.56 1.80 0.27 9.98 16.76
DM 90.43 2.64 0.18 11.93 2.35
TV-M 112.68 1.05 0.55 14.06 0.03

TV-u 103.96 1.82 0.67 15.67 0.03

TV-u / ME 103.96 1.82 0.16 10.38 0.48

Table 2: Comparison of the results of the ME, DM and TV methods, on the first twenty datasets of the extended
Yale DataFace B. Note that B14 does not exist in this database. Units are the same as in Table 1.



|µ−µ̂|
|µ|

|ν−ν̂|
|ν|

|λ−λ̂|
|λ|

MAE CPU

Buddha

ME 0.81 0.22 0.06 6.38 13.87
DM 0.07 0.06 0.12 4.99 1.91
TV-M 0.91 0.35 0.21 10.92 0.06
TV-u 1.03 0.51 1.34 18.85 0.03

TV-u / ME 1.03 0.51 0.00 14.79 0.35
Cat
ME 0.48 0.49 0.17 14.37 17.82
DM 0.95 0.05 0.08 5.37 0.57
TV-M 1.00 0.10 0.27 6.16 0.06
TV-u 0.13 0.54 5.94 35.57 0.04

TV-u / ME 0.13 0.54 0.18 16.04 0.45
Horse

ME 11.33 0.28 0.09 10.88 14.21
DM 14.25 0.20 0.03 4.80 1.25
TV-M 11.64 0.11 0.21 6.68 0.07
TV-u 34.83 0.34 0.64 18.25 0.03

TV-u / ME 34.83 0.34 0.13 15.59 0.34
Owl

ME 0.41 0.63 0.25 15.67 22.71
DM 0.35 0.00 0.07 6.63 0.43
TV-M 0.50 0.23 0.13 8.42 0.08
TV-u 0.15 0.13 0.08 5.54 0.05

TV-u / ME 0.15 0.13 0.15 7.54 0.54
Rock

ME 14.77 0.75 0.23 18.37 32.30
DM 5.35 0.39 0.05 11.61 0.61
TV-M 3.13 0.88 - - 0.08
TV-u 9.43 1.19 - - 0.07

TV-u / ME 9.43 1.19 0.19 27.56 0.76
Octopus

ME 0.06 0.07 0.07 3.06 22.49
DM 0.10 0.16 0.19 6.64 0.26
TV-M 0.03 0.14 - - 0.07

TV-u 0.11 0.29 - - 0.07

TV-u / ME 0.11 0.29 0.28 9.41 0.67
Redfish
ME 7.06 0.06 0.03 4.38 21.52
DM 8.85 0.18 0.05 5.60 0.79
TV-M 20.83 0.06 3.48 25.92 0.10
TV-u 3.28 3.75 2.93 26.07 0.05

TV-u / ME 3.28 3.75 0.17 14.17 0.61
Korean Doll

ME 0.04 0.19 0.08 3.39 151.99
DM 0.20 0.80 0.27 17.74 2.28
TV-M 0.11 0.46 - - 0.49
TV-u 0.09 0.50 - - 0.34

TV-u / ME 0.09 0.50 0.15 10.36 3.87
Doll
ME 0.05 2.64 0.47 26.24 17.13
DM 0.03 0.81 0.34 12.15 0.59
TV-M 0.05 1.81 - - 0.06
TV-u 0.04 1.82 - - 0.03

TV-u / ME 0.04 1.82 0.44 19.84 0.35
Beethoven

ME 10.50 6.69 0.57 63.83 16.39
DM 0.02 0.25 0.41 10.01 1.31
TV-M 0.15 0.34 0.65 16.44 0.05
TV-u 0.06 0.31 0.47 13.70 0.03

TV-u / ME 0.06 0.31 0.07 13.30 0.32

Table 3: Comparison of the results of the ME, DM and
TV methods, on ten almost Lambertian objects. Units

are the same as in Table 1.

6 Conclusion and Future Work

Contributions. In this paper, we showed that the prop-
erties of total variation were highly useful in the reso-

lution of the uncalibrated photometric stereo problem,

since estimating the parameters of the GBR transfor-

mation as the minimizers of the total variation of ei-
ther the M field or the depth function u reduces the

GBR ambiguity to the classical bas-relief ambiguity,

which is considerably easier to solve. We experimentally
proved that the proposed methods reached state-of-the-

art results in terms of accuracy, with much shorter com-

putation times, thanks to the parametric formulation
of the original problem (31), which we converted into

the problem of minimizing a convex function depending

only on 3 parameters.

Future prospects. Despite the fact that very satisfac-

tory results were obtained using the proposed methods,

their justification remains empirical: a statistical study
of the distributions of ρ, u and ∇u over a wide vari-

ety of objects would probably help understanding why

total variation offers such satisfactory results.

All the work presented here assumes the light sources

considered are directional, so as to obtain a linear for-
mulation of the problem. In practice, directional light-

ing is difficult to ensure, and point-light sources should

be considered. The problem becoming nonlinear, the
GBR ambiguity would disappear. However, the prob-

lem would become numerically much more difficult, so

efficient strategies should be considered.

Finally, for a robust estimation, it would be nec-

essary to consider outliers such as noise, specularities
and shadows, as they induce a bias in the estimation.

Indeed, as the preprocessing [48] is purely driven by

the rank of the matrix, it does not take spatial con-
siderations into account and thus gives poor results in

presence of noise or strong outliers, therefore some ar-

tifacts in the reconstructions are still visible (see the

eye of the owl in Fig. 13). However, such artifacts could
easily be removed by “smoothing” the normal field: the

model (30) could be used as a post-processing method

after the estimation of M and before the integration
step. To ensure that the normal fields are “almost ev-

erywhere” integrable, we could switch the L2 minimiza-

tion ‖ curlM‖2 = min in (30) to a L1 minimization
‖ curlM‖1 = min (this could be efficiently achieved

by using iteratively reweighted least-squares). Proceed-

ing so would actually result in an improvement of the

method of Reddy et al. [42], who are concerned in en-
forcing integrability on the normal field, but not in the

particular case of photometric stereo, for which not only

the normal field, but also the albedo has to be corrected.
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