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Automatic Landmark Location with a Combined Active Shape
Model

Dianle Zhou, Dijana Petrovska-Delacrétaz and Bernadette Dorizzi

Abstract— Automatic facial landmark location is a diffi-
cult challenge for realistic face recognition applications,
where the face is recorded under variable illumination
conditions including indoor and outdoor recordings and
also with some pose and scale variability. Moreover, the
image distortion and complex background also bring some
difficulty both for landmark location and face recognition.

The proposed landmark detection method, called Com-
bined Active Shape Models, is robust to illumination,
translation, and rotation. It exploits the Scale Invariant
Feature Transform (SIFT) [1] and the Active Shape Model
(ASM) [2]. In order to have a better representation of
face images, the landmarks on the face region and the
face contour are modeled and processed separately. The
performance of the proposed Combined-ASM algorithm is
tested on the BioID and FRGCv2.0 face image databases.

I. INTRODUCTION

Finding the correct position of facial landmarks (key-

points) is a crucial step for many face processing algo-

rithms such as face recognition, modeling or tracking. It

is also needed for a variety of statistical approaches in

which a model is built from a set of labeled examples.

Many 2D face recognition algorithms depend on a

careful normalization, by the location of landmarks such

as eyes and mouth centers, that is necessary for the

global feature extraction step. With more reliable and

more precise landmarks better face recognition perfor-

mance is obtained. The number and position of these

landmarks are not unique and depend on applications

and algorithms. For 2D face recognition with global

methods, usually eyes centers and nose and mouth

positions are used. Those landmarks can be labeled by

hand, but for realistic applications it is necessary to

have automated methods. Due to the variety of human

faces and their variability related to expressions, pose,

accessories, or lighting and acquisition conditions, fully

automatic landmark localization remains an unsolved

problem.
This paper focuses on automatic facial landmark

location for face recognition, in situations where mainly

illumination, pose and scale variabilities are present. We

are mostly interested in automatically detecting the two

eyes and mouth centers which are used for our face

normalization step for our face recognition system [3].

The rest of the paper is organized as follows: a brief

literature review about facial landmark location is given

in Section II. A reminder of the original Active Shape

Model (ASM) and Scale Invariant Feature Transform

(SIFT), on which our proposed combined model is based

on, are given in Section III. The proposed combined

model is explained in Section IV. The databases and ex-

perimental protocols used for the training and evaluation

phases are presented in Section V, whereas the results

are reported in Section VI. Finally, the conclusions and

perspectives can be found in Section VII.

II. BRIEF LITERATURE REVIEW ABOUT

AUTOMATIC LANDMARK LOCATION

A lot of algorithms have been proposed for facial

landmark location. As suggested by Hamouz et al. [4],

they can be classified in two categories: image-based

and structure-based methods.

In image-based methods, faces are treated as vectors

in a large space and these vectors are furthermore

transformed. The most popular transformations are Prin-

cipal Components Analysis, Gabor Wavelets [5], [6],

[7], [8], Independent Components Analysis [9], Discrete

Cosine Transform [7], and Gaussian derivative filters [5],

[10]. Through these transforms, the variability in facial

features is captured, and machine learning approaches

like boosted cascade detectors [11], [8], Support Vector

Machines [9], [12] and Multi-layer Perceptions are

used to learn the appearance of each landmark. Some

examples of such methods are proposed by Viola and

Jones [11], Jesorsky et al. [13], and Hamouz et al. [4].

Structure-based methods use prior knowledge about

facial landmark positions, and constrain the landmark

search by heuristic rules that involve angles, distances,

and areas. The face is represented by a complete model

of appearance consisting of points and arcs connect-

ing these points [14]. For each point of this model,

a description of these features is associated. Typical

methods include Active Shape Models (ASM) [2], [15],

[12], Active Appearance models (AAM) [16] and Elastic

Bunch Graph Matching [17], [18]. These methods are

well suited for precise localization [19]. However, few



extensive evaluation results have been published on face

recognition experiments.

III. REMINDER ABOUT ASM AND SIFT

A. Original Active Shape Model (ASM)

In the original Active Shape Model (ASM) [2] there

are two statistical models that exploit the global shape

and the local texture prior knowledge in the segmen-

tation process. The Point Distribution Model (PDM) [2]

represents the mean geometry of a shape and it’s sta-

tistical variations from the training set of shapes. While

the Local Texture Models (LTM) [2] are used to describe

the texture variations at each landmark position of the

Point Distribution Model.

1) Point Distribution Model: The Point Distribution

Model is constructed by applying Principal Component

Analysis (PCA) to the aligned set of shapes, which are

presented by landmarks on the training face database.

Assume there are N training images , so the ith shape

Si and the model parameters Pi in the shape space can

be represented as follows:

Pi = ΦT (Si − S), Si = S + ΦPi, (1)

where S is the mean shape and Φ is the eigenvector

matrix. Briefly, the Point Distribution Model describes

heuristic rules of the face shape. During the fitting,

this model helps in the interpretation of noisy and low-

contrasted pixels.

2) Local Texture Models: A typical image structure

that describes the local texture around each landmark

is the Grey-Level Profile (GLP) [2], calculated from the

fixed-length pixels sampled around each landmark. The

direction of the profile is perpendicular to the contour.

The first derivative of the profile is calculated and used

as the feature vector. Those vectors are extracted from

all the training images, and represent the normalized

derivatives profiles, denoted as g1, g2, ..., gN . The mean

profile g and the covariance matrix Cg are computed for

each landmark. The Mahalanobis distance measure is

used to compute the difference between the new profile

and the mean profile g, defined as follows:

f(gnew) = (gnew − g)C−1
g (gnew − g)T . (2)

Some previous work exist that try to choose better

Local Texture Models [15], [19]. For example, Ordas

et al. [15] replace the 1D normalized first derivative

profiles of the original ASM with local texture de-

scriptors calculated from “locally orderless images”, for

reliable segmentation for cardiac Magnetic Resonance

data. In [19], the authors use the 2D profile in the

square region around the landmark for a more precise

fitting result. Actually different Local Texture Models

are adapted to different conditions. In our application,

we use the SIFT feature descriptor, which is robust to

degraded conditions, such as illumination or small pose

variations.

B. Scale Invariant Feature Transform (SIFT) Features

In 2004, David Lowe presented a method to ex-

tract distinctive invariant features from images [1]. He

named them Scale Invariant Feature Transform (SIFT).

The process consists of four major stages. In the first

stage, potential interest points are identified by scanning

the image over location and scale by constructing a

Gaussian pyramid and searching for local peaks (termed

keypoints). In the second stage, candidate keypoints are

localized to sub-pixel accuracy and eliminated if found

to be unstable. The third step identifies the dominant

orientations for each keypoint based on its local image

patch. Finally, local image descriptors are built for each

keypoint. Local gradient data is used to create keypoint

descriptors. The gradient information is rotated to line up

with the orientation of the keypoint and then weighted

by a Gaussian with variable scale. This data is then used

to create a set of histograms over a window centered on

the keypoint. In our application we use this SIFT local

image descriptor as our Local Texture model.

IV. A COMBINED FACE MODEL FOR

AUTOMATIC LANDMARK LOCATION

A. Advantages of the SIFT Feature Descriptor

Using SIFT features for object matching is very

popular, and seems to be a reliable choice for solving

the problem of illumination and pose variability. Since

it is based on the local gradient histograms around

the landmark, the SIFT descriptor is highly distinctive

and partially invariant to variations, like illumination or

3D view point. In our application, we use the SIFT

descriptor to replace the Grey-Level profiles. In order to

make the ASM shape model rotation invariant, the gra-

dient orientations of the descriptor are always computed

relative to the edge normal vector at the landmark point

which could be obtained by interpolation of neighboring

landmarks, as depicted in Fig.1.

There are a two main advantages of the SIFT feature

descriptor. The first advantage is that SIFT descriptors

encode the internal gradient information of a patch

around the landmark, thus capturing essential spatial

position and edge orientation information of the land-

mark while Grey-level Profile only capture the one-

dimensional pixel information that is perpendicular to

the contour. Though the Mahalanobis distance measure

assumes a normal multivariate unimodel distribution of



Fig. 1. Left: The Grey-Level Profile (GLP) is extracted from the
neighborhood pixels perpendicular to the contour. Right: The SIFT
descriptor is computed over a patch along the normal vector at the
landmark (the original image is from the BioID database [13])

Grey-level Profile, in practice, they can be any statistical

distribution. The SIFT descriptors have a more discrim-

inative likelihood model which is distinctive enough to

differentiate between landmarks.

Fig. 2. Left: Gradient profile matching cost of the landmark
highlighting in Fig. 1 over a window of size 21x21. Notice the multiple
minima resulting in poor alignment of shapes. Right: SIFT descriptor
matching cost for the same landmark point

In Fig. 2, we calculated the Mahalanobis distance of

the neighborhood points over a 21x21 window around

the landmark highlighted in Fig. 1. The SIFT descriptor

has a unambiguous minimal point in the center of the

neighborhood region. Also the SIFT descriptors are

invariant to affine changes in illumination and contrast

by quantizing the gradient orientations into discrete

values in small spatial cells and normalizing these dis-

tributions over local blocks. Such features are important

in challenging real-life situations presenting illumination

variabilities.

The second advantage of the SIFT descriptors is

that they are more stable to changes that occur due to

changes of pose, that can occur when dealing with faces.

As shown in Fig. 3, when using SIFT features, there is

a correspondence of the detected landmarks, even when

the position of the face is nonfrontal.

Fig. 3. Example showing the robustness of SIFT features to pose
variation. When in the ASM model we replace the the original Grey-
level Profile with SIFT features, the corresponding landmark points
are detecting correctly, despite the pose variation. The original image
is from the IMM database [20])

B. Combined Active Shape Model Based on Facial
Internal Region Model and Facial Contour Model

As shown above, using the SIFT features, we can find

correspondences between landmarks in two images that

have small pose variability, even when the landmarks

used to train the ASM are in 2D. The points in the face

region that we denote as “internal” (such as eyes’ cor-

ners), could be considered as the perspective projection

of the 3D face on the image plan. While the contour

points are different, and are more dependent on the 3D

view point. In that case the SIFT descriptor doesn’t work

when the acquisition angle of testing images is different

from the training images.

So in our proposed approach, two models are used

to represent the human face. One of the model repre-

sents the landmarks of what we call “internal region”,

including the landmarks on the eyes, nose, eyebrows

and mouth. Those points could be considered as 3D

position invariant during the perspective projection. So

we use the SIFT descriptor for this model, and we name

it facial internal region model. The other one models

the contour point on the face only. For those points using

SIFT representations will result in wrong matches. The

gradient of the profile is more suited for the contour

points, so we use Grey-Level Profile to describe them,

and we name it facial contour model.
The facial internal region model is represented with

45 points, while 13 points are used for the facial contour

model, as depicted in Fig. 4. Each of them has its own

shape model and shape variability. In order to cope with

the out-plan rotation case, we also use some training

images which contain faces with some pose variability.

In the fitting step, for each iteration the two models are

matched to the face image separately. After matching,



Fig. 4. Combined landmark detection model: 45 landmarks define
the facial internal region model (represented with SIFT features) and
13 landmarks define the facial contour model (represented with Grey-
Level Profile features)

we combine them into a new face model and use the

Point Distribution Model to constrain it to a plausible

shape in the shape space, as shown in Fig. 4. This is

repeated iteration by iteration at each resolution until

convergence is reached.

Fig. 5 (bottom row), shows some examples of the

fitting results of the proposed method, denoted as Com-

bined Active Shape Model (Combined-ASM). While in

the original Active Shape Model the texture is repre-

sented only by Gray-level Profile features, we propose

to use two ASM models with SIFT and Gray-level

Profile features. For comparison purposes, we show on

the bottom row the results of the automatic landmark

detection with the original ASM model (using only

profile features), the ASM model that is based on SIFT

features (middle row), and the result of our Combined-

ASM 5, . We can observe that the Grey-Level Profile has

better performance on the contour points of side-view

images, while SIFT features seem to be more adapted

for the internal face region points.

V. DATABASES

Different face databases are needed for our exper-

iments. Some of them are needed to train the ASM

models, some of them to tune different parameters, and

Fig. 5. Typical fitting result of non-frontal face achieved by original
ASM (top row), SIFT-ASM (middle row) and Combined-ASM (bottom
row), (the original images are from the IMM database [20])

distinct datasets are necessary for the evaluation of the

proposed method.

For the training phase of the Combined-ASM, we

have used a subset of IMM database [20], composed of

240 annotated monocular images of 40 different human

subjects. And Points of correspondence are placed on

each image.

The BANCA database [21] is used to tune the pa-

rameters of the Combined-ASM (the size of the square

region to calculate the SIFT descriptors and the length

of the profile). It is a challenging dataset designed

for audio-visual biometric experiments. The subjects

were recorded in three different scenarios-controlled,

degraded and adverse-over 12 different sessions, with

a variable time span between sessions. We used the

English subset of this database for tuning purposes.

In order to evaluate our automatic landmark de-

tection algorithms, we have used the BioID [13] and

the FRGCv2.0 databases [22]. The BioID database was

chosen because there are already published results on

that database for facial landmark detection, while the

FRGCv2.0 was chosen because it includes a huge num-

ber of subjects (around 500) with some variabilities

including illumination, pose and expression, and because

the ground truth position of eyes, and mouth is available.

The BioID dataset consists of 1521 gray level images



with a resolution of 384 × 286 pixels. Each one shows

the frontal view of a face of one out of 23 different test

persons. The number of images per subject is variable,

as is the background (usually cluttered like in an office

environment). The FRGCv2.0 face database consists of

50,000 recordings. The validation partition consists of

data from 4,003 subject sessions. A subject session is

the set of all images of a person taken each time a

person’s biometric data is collected and consists of four

controlled still images, two uncontrolled still images.

The controlled images were taken in a studio setting,

are full frontal facial images taken under two lighting

conditions and with two facial expressions (smiling

and neutral). The uncontrolled images were taken in

varying illumination conditions; e.g., hallways, atrium,

or outside. Each set of uncontrolled images contains two

expressions, smiling and neutral.

VI. EXPERIMENTAL RESULTS

For the evaluation of our algorithms we use two

databases BioID and FRGCv2.0. Because we are in-

terested in face recognition scenarios, we evaluate in

this paper only the points which we use for our face

normalization step [3]. These points are the centers of

the eyes and the mouth center. For the eyes we use the

measure that was proposed by Jesorsky et al. [13], where

the localization criterion is defined in terms of the eyes

center positions:

deye =
max(dlefteye, drighteye)

||Cl − Cr|| (3)

where Cl, Cr are the ground truth eye center coordinates

and dlefteye, drighteye are the distances between the

detected eye centers and the ground truth ones. In the

evaluation, we treat localizations with deye above 0.05 as

unsuccessful. Mouth center is evaluated in the some way

but normalized with the distance between the average

point of two eyes CeyeC and mouth center Cmouth from

ground truth.

CeyeC =
Cl + Cr

2
, dmouth =

dmouthRaw

||CeyeC − Cmouth|| (4)

where dmouthRawis the distances between the detected

mouth centers and the ground truth.

As explained in Section IV, for the Combined-ASM

model, we use the 58 landmarks (present in the IMM

database), divided into 45 landmarks for the internal fa-

cial region and 13 points that belong to the facial contour

regions. As eyes’ and mouth centers are not present

among these 58 landmarks (see Fig. 4), we calculate

them by averaging the landmarks detected around the

eyes and mouth. For training the combined-ASM model,

we use a subset of the IMM database [20], ignoring

some nonfrontal images. We use coarse to fine search

over 2 levels of Gaussian scale pyramid. The SIFT

block contain 4x4 cells with 4x4 pixels and 8 gradient

orientation bins thus having descriptor size of 128. The

length of the profile is set to be 17. It has to be noted that

as prior to the landmark location step, we apply a face

detection algorithm in order to have a rough location of

where the face is located. We use the AdaBoost approach

proposed by Viola and Jones [11], freely available from

the OpenCV library [23].
For comparison purposes, we also use the publicly

available STASM software [19], with already trained

models for face landmark location. There are published

results of this software for automatic landmark detection

on the BioID database. So we can compare the per-

formances of the proposed Combined-ASM method for

facial landmark detection with the published results on

the BioID database and also with the existing STASM

software. We also used the STASM available code, to

train a new model, using different training databases, in

order to evaluate the influence of the training data used

to train the statistical models.

A. Evaluation on the BioID Database

Fig. 6. Comparison of the proposed Combined-ASM with already
published results for eyes detections on the BioID database

For comparison purposes, in Fig. 6, we reproduce

three published result related to the deye measurements

including results of Jesorsky et al. [13], Hamouz et

al. [4], and the results of the STASM software by

Milborrow [19]. These results are compared with our

Combined-ASM model implementation. The first two

methods are image-based methods, while the last two

ones are structure-based methods. It is obvious that

structure-based methods have better performance than

image-based methods even at the error level of Er-

ror < 0.1. Our Combined-ASM method performs better

then the two image-based methods, but worse then the

available STASM software.



The STASM method extended the original ASM by

using among other points, 2D profile and more land-

marks, during the training step (using annotated images

from the XM2VTS database). The effect of the number

of landmarks on the detection performance is out of

scope of this paper. Generally speaking, using more

landmarks will give an overall better fitting [24]. The

results of the STASM software that we trained with

a different training data (the IMM database) are also

presented in Table VI-B.

B. Evaluation on the FRGC Database

From the FRGCv2.0 database, we used the subpart

called spring2003 which contains 11, 204 images, to

evaluate our landmark location precision. There are not

published results available on the FRGCv2.0 related to

landmark location. Therefore we can only compare our

results with the results of the STASM software.

Because with the STASM software (that also uses a

face detection part as a fist step) there are about 39 % of

the above mentioned spring2003 set of the FRGCV2.0

database images where the STASM face detection algo-

rithm fails, we applied our landmark location software

on the same set, for sake of comparison.
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Fig. 7. Cumulative histograms on FRGCv2.0 database with Maximum
eyes and mouth error

In Fig. 7 we compare the results of the STASM

software, with the Combined-ASM model. In order to

evaluate the contribution of using different models for

different parts of the face, we also report results of using

the ASM model with the SIFT features instead of the

originally proposed features (denoted as SIFT-ASM).

The result show that the combined-ASM method gives

better performance for the eyes and mouth locations then

the STASM software and the ASM method with new

SIFT features.
The Combined-ASM highly improves the precision

of the mouth center, because the SIFT feature descriptor

works more inaccurately in the contour points, and those

points will affect the mouth region landmarks during the

fitting phase.

TABLE I

SPATIAL MEAN ERROR RATE (AT 10 % ) OF EYES AND MOUTH

CENTERS DETECTION, OF VARIOUS LANDMARK DETECTION

ALGORITHMS ON BIOID AND FRGCV2.0, FROM VARIOUS

LEARNING DATABASES: IMM AND XM2VTS(XM2 FOR SHORT)

(IN %)

Testing data BioID FRGCv2.0
Training data IMM XM2 IMM XM2

Stasm 78.5 95 77.4 81.6

SIFT-ASM 75 - 86.8 -

Combined-ASM 86 - 95 -

C. Discussion
The above presented experiments show that structure-

based methods have better performance than image-

based methods for facial landmark location. The STASM

software which uses the 2D profile and an extended

set of landmarks for the training phase, presents better

results on the BioID database but not as good as in the

FRGCv2.0 Database. One possible reason is due to the

different characteristics of the databases. In the BioID

database, all the images are captured when the person is

near to the camera, so the face is the largest part of the

image. In the FRGCv2.0 database, there are uncontrolled

images where the human face occupies a smaller area

in the image. When the face area is small in the image,

the initialization from the face detector will not be as

precise as it works for ”passport style” photographs.

Actually the ASM is an iteration strategy whose per-

formance highly depends on the initialization. Using

2D profile as Local Texture Models will increase the

precision, while using the SIFT descriptor will increase

the robustness when bad initialization happens. Because

the SIFT descriptor is scale and rotation invariant, even

if the face area detected by the face detector is enlarged

and decreased or distorted, it will not affect the Local

Texture Models matching phase.



In the BioID database the average distance between

two eyes is about fifty pixels, one pixel costs two

percent error rate, and that error can be ignored when

normalizing the face for face recognition. In that case the

Combined-ASM algorithm seems to be robust without

losing much of its accuracy for facial landmark detection

for face recognition in cases when illumination, scale

and small pose variation is present in the recording

conditions (such as in the FRGCv2).

VII. CONCLUSIONS AND PERSPECTIVES

We present a new algorithm that successfully lo-

calizes facial landmarks for face recognition experi-

ments. We assess the localization performance of the

proposed method on two benchmarking datasets (BioID

and FRGCv2). A preliminary version of the proposed

method (using only the ASM model with SIFT features)

was experimented on the portal challenge experiment

of the MBGCv1 evaluations, that took place in Decem-

ber 2008, and that is described in [3], where an automatic

landmark detector was needed, in order to find the

position of the normalization points in the video frames.
In the proposed Combined-ASM we extend the orig-

inal ASM by using the SIFT descriptor as a new

local texture model and split the facial landmarks in

facial internal region and facial contour landmarks. The

proposed Combined Active Shape Model algorithm is

more robust for eyes and mouth center localization in

more challenging lighting conditions, and also where

some pose and expressions variabilities are presented.
Our future work is oriented towards working on an

extended set of landmarks which are not only limited to

eyes and mouth locations, and that can be used for face

processing algorithms, like face modeling and tracking.
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and B. Dorizzi, “Utilisation de séquences vidéo avec critres de
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