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We investigate in this paper the dependence relation between the space-time periodic coefficients A, q and µ of the reaction-diffusion equation

and the spreading speed of the solutions of the Cauchy problem associated with this equation and compactly supported initial data. We prove in particular that (1) taking the spatial or temporal average of µ decreases the minimal speed, (2) if the coefficients do not depend on t and q ≡ 0, then increasiong the amplitude of the diffusion matrix A increases the minimal speed, (3) if A = I N , µ is a constant, then the introduction of a space periodic drift term q = ∇Q increases the minimal speed.

To prove these results, we use a variational characterization of the spreading speed that involves a family of periodic principal eigenvalues associated with the linearization of the equation near 0. We are thus back to the investigation of the dependence relation between this family of eigenvalues and the coefficients.

Introduction 1.General framework and definition of the spreading speed

This article investigates the asymptotic properties of the solutions of the space-time periodic Fisher-KPP equation:

∂ t u -∇ • (A(t, x)∇u) + q(t, x) • ∇u = µ(t, x)u(1 -u) in R + × R N , u(0, x) = u 0 (x) in R N , (1) 
where u 0 is a nonnegative, continuous and compactly supported initial datum. This equation arises in various models, that comes from genetics, population dynamics, combustion, chemistry etc. In these models, the function u represents a density of population or of a chemical material. It diffuses in a space-time heterogeneous media through a diffusion matrix A(t, x) and it reacts through a reaction term µ(t, x)u(1 -u), where µ(t, x) represents a growth rate at small density. Lastly, it is advected at a speed q(t, x). This equation has first been investigated in one-dimensional media by Kolmogorov, Petrovski and Piskunov [START_REF] Kolmogorov | Etude de l équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] and by Fisher [START_REF] Fisher | The advance of advantageous genes[END_REF] in the 30's, then in multidimensional media by Aronson and Weinberger [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF] in the 70's, under the hypotheses A = aI N and µ do not depend on (t, x), a > 0, µ > 0 and q ≡ 0 Among other properties, these authors proved that for all e ∈ S N -1 , if u is the solution of (1) and u 0 is compactly supported,

   lim inf t→+∞ u(t, cte) = 1 if 0 ≤ c < 2 √ µa, lim t→+∞ u(t, cte) = 0 if c > 2 √ µa. ( 2 
)
This result is called a spreading property and the speed c * = 2 √ µa is called a spreading speed in direction e.

In the late 70's, spreading properties have been proved for the space periodic Fisher-KPP equation by Freidlin and Gartner [START_REF] Freidlin | On the propagation of concentration waves in periodic and random media[END_REF] and Freidlin [START_REF] Freidlin | On wave front propagation in periodic media[END_REF]. In such media the spreading speed

In the present paper we give new dependence results between the spreading speed c * e = c * e (A, q, µ) and the space-time coefficients (A, q, µ). Some of these results are extension of results that are known from space periodic media to space-time periodic media. But we also prove some dependence relations that are new, even in space periodic media. Our main results are the following:

• taking the spatial or temporal average of µ decreases the minimal speed,

• if the coefficients do not depend on t and q ≡ 0, then increasing the amplitude of the diffusion matrix A increases the minimal speed,

• if A = I N , µ is a constant, then the introduction of a space periodic drift term q = ∇Q increases the minimal speed.

Organization of the paper. In Section 1.2, we give the hypotheses we require on the coefficients (A, q, µ). Then, we define the family of periodic principal eigenvalues involved in the variational characterization of the spreading speed and we clearly state this characterization in Section 1.3. We state our results in Section 2. We also give a review of the known dependence relations between the coefficients (A, q, µ) and the spreading speed in this Section. Lastly, we prove our dependence relations with respect to µ in Section 3, with respect to A in Section 4 and with respect to q in Section 5.

Hypotheses

We assume that the diffusion matrix A, the advection term q and the growth rate µ are periodic in (t, x). That is, there exist some positive constant T and some vectors L 1 , ..., L N , where L i is colinear to the axis of coordinates e i , such that for all i ∈ [1, N], for all (t, x) ∈ R × R N , one has:

A(t, x + L i ) = A(t + T, x) = A(t, x), µ(t, x + L i ) = µ(t + T, x) = µ(t, x), q(t, x + L i ) = q(t + T, x) = q(t, x).
We define the periodicity cell C = Π N i=1 (0, |L i |). In the sequel the notion of periodicity will always refer to the periods (T, L 1 , ..., L N ).

We shall need some regularity assumptions on µ, A, q. The growth rate µ :

R × R N → R is supposed to be of class C δ 2 ,δ The matrix field A : R × R N → S N (R) is supposed to be of class C δ 2 ,1+δ
. We suppose futhermore that A is uniformly elliptic and continuous: there exist some positive constants γ and Γ such that for all ξ ∈ R N , (t, x) ∈ R × R N one has:

γ|ξ| 2 ≤ 1≤i,j≤N a i,j (t, x)ξ i ξ j ≤ Γ|ξ| 2 , ( 4 
)
where |ξ| 2 = ξ 2 1 + ... + ξ 2 N . and a i,j (t, x) is the coefficient (i, j) of the matrix A(t, x). The drift term q : R×R N → R N is supposed to be of class C δ 2 ,δ and we assume that ∇•q ∈ L ∞ (R×R N ). In the sequel, the direction of propagation e ∈ S N -1 will be fixed.

Characterization of the spreading speed with periodic principal eigenvalues

The characterization of the spreading speed invloves the family of operators which is associated with exponentially decreasing solutions of the linearization of (1) in the neighborhood of 0:

L λ ψ = ∂ t ψ -∇ • (A∇ψ) -2λA∇ψ + q • ∇ψ -(λAλ + ∇ • (Aλ) + µ -q • λ)ψ, (5) 
where λ ∈ R N and ψ ∈ C 1,2 (R×R N ). Then it has been proved by the author in [START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF] that there exists a unique real number k λ (A, q, µ) such that there exists a function

ψ ∈ C 1,2 (R × R N ) that satisfies    L λ ψ = k λ (A, q, µ)ψ in R × R N , ψ > 0 in R × R N , ψ is periodic. (6) 
We call k λ (A, q, µ) the space-time periodic principal eigenvalue associated with operator L λ . The variational characterization of the spreading speed we will use in the sequel has been proved by Berestycki, Hamel and the author [START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive excitable media[END_REF] in two different ways: Theorem 1.1 [START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive excitable media[END_REF] Assume that k λ (A, q, µ) < 0 for all λ ∈ R N . Then if u 0 ≡ 0 is a compactly supported, continuous and nonnegative initial datum and u is the associated solution of the Cauchy problem (1), one has

   lim inf t→+∞ u(t, cte) = 1 if 0 ≤ c < c * e (A, q, µ), lim t→+∞ u(t, cte) = 0 if c > c * e (A, q, µ), (7) 
with c * e (A, q, µ) = min

λ•e<0 k λ (A, q, µ) λ • e . ( 8 
)
This formula highly simplifies the investigation of the dependence relation between (A, q, µ) and c * e (A, q, µ).

2 Statement of the dependence results

Spatial and temporal averaging of the growth rate

We begin with two comparison principles with the averaged media in x or in t:

Proposition 2.1 (Influence of the spatial variations) If A and q do not depend on x, define

µ(t) = 1 |C| C µ(t, x)dx.
Then, if (0,T )×C µ ≥ 0, the following comparison holds:

c * e (A, q, µ) ≥ c * e (A, q, µ) = m in e•ξ>0 2 T T 0 ξAξ T 0 µ - 1 T T 0 q • ξ. (9) 
Moreover, the equality holds if and only if µ does not depend on x.

This theorem means that, somehow, the heterogeneity in x of the growth rate increases the speed of propagation. Using this heuristic definition of "heterogeneity", it is not true that heterogeneous drift or diffusion coefficient speed up the propagation. We will prove later that some compressible drifts may slow down the propagation. It has also been proved by Papanicolaou and Xin [START_REF] Papanicolaou | Mathematical biology[END_REF] that, in dimension 1, if b is a space periodic continuous function of average 0 and µ 0 is a positive constant, then c *

e 1 (1 + δb, 0, µ 0 ) ≤ c * e 1 (1, 0, µ 0 ) = 2 √ µ 0 when
δ is small enough. Taking the additive average of the diffusion or advection coefficients is not the good mean to quantify the heterogeneity. Other kind of averaging may give positive result. For example, it has been proved by the author [START_REF] Nadin | The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator[END_REF] that, for space periodic media, in dimension 1, c * e 1 (< a > H , 0, µ) ≤ c * e 1 (a, 0, µ), where < a > H is the harmonic average of a.

Similarly, taking the temporal average of the growth rate decreases the minimal speed of propagation: Theorem 2.2 (Influence of the temporal variations) If A and q do not depend on t, define

μ(x) = 1 T T 0 µ(t, x)dt.
Then, if k 0 (A, q, μ) < 0, the following comparison holds:

c * e (A, q, µ) ≥ c * e (A, q, μ).

Moreover, the equality holds if and only if µ can be written:

µ(t, x) = µ 1 (x) + µ 2 (t).

Influence of the amplitude of the reaction term

We first state that increasing the reaction term increases the speed of propagation. This is an easy extension of Proposition 1.15 of [START_REF] Berestycki | The speed of propagation for kpp type problems. i -periodic framework[END_REF].

Proposition 2.3 If µ 1 ≥ µ 2
, then for all A, q, one has:

c * e (A, q, µ 1 ) ≥ c * e (A, q, µ 2 ).
Moreover, the equality holds if and only if

µ 1 ≡ µ 2 .
Next, one can wonder what is the influence of the amplitude of the growth rate on the minimal speed.

Proposition 2.4 1. Assume that µ 0 is a constant and consider a space-time periodic function η.

If (0,T )×C η ≥ 0 (resp. (0,T )×C η > 0), then B → c * e (I N , 0, µ 0 + Bη) is nondecreasing (resp. increasing). Moreover, if (0,T )×C η ≥ 0, then B → c *
e (I N , 0, µ 0 + Bη) is increasing if and only if η is not a constant with respect to x.

2. Assume that A, q and µ do not depend on t and that max x∈R N T 0 η(t, x)dt > 0. Then B → c * e (A, q, µ + Bη) is increasing for B large enough.

This result extends that of Berestycki, Hamel and Roques [START_REF] Berestycki | Analysis of the periodically fragmented environment model : II -Biological invasions and pulsating travelling fronts[END_REF] from space periodic to space-time periodic media. In such media, the hypothesis of 2. only reads max R N η > 0. Hence, the main interest of Proposition 2.4 is to identify the generalization of this hypothesis to time-dependent media, that is, max x∈R N T 0 η(t, x)dt > 0.

Montonicity with respect to the diffusion amplitude

It seems natural that increasing the diffusion coefficient may increase the speed of propagation. In [START_REF] Berestycki | The speed of propagation for kpp type problems. i -periodic framework[END_REF], Berestycki, Hamel and Nadirashvili have proved that κ → c * e (κA, 0, µ) is increasing if µ is constant and A only depends on x. It was an open problem to generalize this result to heterogeneous growth rate. Theorem 2.5 (Monotonicity with respect to the diffusion in space periodic media) Assume that A and µ do not depend on t and that q ≡ 0, then κ → c * e (κA, 0, µ) is increasing.

Unfortunately, such a generalization is not always true. If one includes a drift term that depends on x, El Smaily has proved in [START_REF] Elsmaily | Pulsating travelling fronts: Asymptotics and homogenization regimes[END_REF], that the associated speed is not monotonic in κ in general. El Smaily has also proved that A ≥ B in the sense of positive matrix does not imply c * e (A, 0, µ) ≥ c * e (B, 0, µ). In order to conclude this section, let us mention some dependence results for the function

κ → c * e (κA, 0, µ) √ κ
. The author has proved that this function is nonincreasing in [START_REF] Nadin | The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator[END_REF]. He has also computed the limit of this function when κ → +∞. In dimension 1, the limit when κ → 0 has been computed by Hamel, Roques and Fayard [START_REF] Hamel | Spreading speeds in slowly oscillating environments[END_REF] when A and µ only take two values and by Hamel, Roques and the author [START_REF] Hamel | [END_REF] for general A and µ with q ≡ 0.

Influence of the drift Incompressible drifts

It has been proved by Berestycki, Hamel and Nadirashvili [START_REF] Berestycki | The speed of propagation for kpp type problems. i -periodic framework[END_REF] that, in space periodic media, the introduction of an incompressible drift with null average increases the propagation speed.

Actually, the difficulty is to understand what it is the amplitude of this speed-up. It has been proved that this speed-up depends on the geometric properties of the level-lines of the flow associated with q (see [START_REF] Audoly | Réaction diffusion en écoulement stationnaire rapide[END_REF][START_REF] Berestycki | Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena[END_REF][START_REF] Heinze | Large convection limits for kpp fronts[END_REF][START_REF] Kiselev | Enhancement of the traveling front speeds in reactiondiffusion equations with advection[END_REF][START_REF] Ryzhik | KPP pulsating front speed-up by flows[END_REF][START_REF] Zlatos | Sharp asymptotics for kpp pulsating front speed-up and diffusion enhancement by flows[END_REF][START_REF] Zlatos | Reaction-diffusion front speed enhancement by flows[END_REF]). We only consider here the case of a shear flow.

Proposition 2.6 Assume that µ 0 is a positive constant and that the drift term can be written q(t, x) = (q 1 (t, y), 0, ..., 0), where one writes

x = (x 1 , y) ∈ R × R N -1 , q 1 ≡ 0 and C q 1 = 0.
Then for all e ∈ S N -1 , B → c * e (I N , Bq, µ 0 ) is increasing.

This monotonicity has been numerically observed by Nolen and Xin [START_REF] Nolen | Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle[END_REF] in the case e = e 1 . There was no analytical proof of this numerical observation before, as far as we know.

Compressible drifts

There is hardly no paper on the influence of a compressible drift on the speed in the litterature. Only Nolen and Xin have investigated propagation problems in such media before [START_REF] Nolen | Kpp fronts in 1d random drift[END_REF]. For space stationary random drifts, when N = 1, A = 1 and µ 0 is a positive constant. They have proved that:

∀α ∈ (0, 1), ∃c, C α , ∀B > 0, c B ≤ c * e 1 (1, Bq, µ 0 ) ≤ C α B α ,
where c * e (1, Bq, µ 0 ) is the spreading speed in direction e 1 associated with the drift Bq. We focus here on the drifts that can be written q = A∇Q and prove that such drifts slow down the propagation.

Theorem 2.7 (Influence of a drift q = A∇Q) Assume that A = I N , µ 0 is a positive constant, q does not depend on t, C q = 0 and that q can be written q = ∇Q. Then:

1. c * e (I N , B∇Q, µ 0 ) B → 0 as B → +∞, 2. one has c * e (I N , B∇Q, µ 0 ) ≤ c * e (I N , 0, µ 0 ) = 2 √ µ 0 .
Remark. In dimension 1, if A = I N , the hypothesis is equivalent to (0,T )×C q = 0. In dimension 2 or 3, if A = I N , it is equivalent to (0,T )×C q = 0 and curl q = 0.

3 Proof of the dependence results with respect to the growth rate

The aim of this section is to prove Proposition 2.1, Theorem 2.2, Proposition 2.3 and Proposition 2.4. We first give a direct proof of Proposition 2.3. Then we state some general dependence relations with respect to the growth rate that will enable us to prove the other results.

Proof of Proposition 2.3

Proof of Proposition 2.3. We use the same kind of proof as Berestycki, Hamel and Nadirashvili in [START_REF] Berestycki | The speed of propagation for kpp type problems. i -periodic framework[END_REF]. If µ 1 ≥ µ 2 , one immediatly gets k λ (A, q, µ 1 ) ≤ k λ (A, q, µ 2 ) using the min-max characterization of k λ (A, q, µ) proved by the author in [START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF]:

k λ (A, q, µ) = max φ∈C 1,2 per (R×R N ), φ>0. min R×R N L λ φ φ . (10) 
Thus c * e (A, q, µ 1 ) ≥ c * e (A, q, µ 2 ). Assume now that c * e (A, q, µ 1 ) = c * e (A, q, µ 2 ) and take some λ ∈ R N such that λ • e < 0 and c * e (A, q, µ 1 ) = k λ (A, q, µ 1 ) λ • e .

One has:

c * e (A, q, µ 1 ) = k λ (A, q, µ 1 ) λ • e = c * e (A, q, µ 2 ) ≤ k λ (A, q, µ 2 ) λ • e ,
and then k λ (A, q, µ 1 ) ≥ k λ (A, q, µ 2 ), that is, k λe (A, q, µ 1 ) = k λe (A, q, µ 2 ). Take now φ 1 λ some eigenfunction associated with µ 1 and φ 2 λ some eigenfunction associated with µ 2 . Set κ = max (0,T )×C φ 1 λ φ 2 λ and z = φ 1 λ -κφ 2 λ . This function is nonpositive, vanishes somewhere and satisfies:

∂ t z -∇ • (A∇z) -2λeA∇z + q • ∇z -(λ 2 eAe + λ∇ • (Ae) + µ 1 -λq • e + k λe (A, q, µ 1 ))z = (µ 2 -µ 1 )φ 2 λ ≤ 0.
Thus the periodicity in t and the strong parabolic maximum principle give z ≡ 0. Hence µ 1 ≡ µ 2 .

Strict concavity of the principal eigenvalue

The concavity of µ → k λ (A, q, µ) has already been proved in [START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF], but we focus here on the strict concavity, which will be our main tool in order to investigate equality cases later.

Proposition 3.1 For all A, q, µ 1 , µ 2 , r ∈ (0, 1) and λ ∈ R N , one has

k λ (A, q, rµ 1 + (1 -r)µ 2 ) ≥ rk λ (A, q, µ 1 ) + (1 -r)k λ (A, q, µ 2 ).
Moreover, if A and q do not depend on t, the equality holds if and only if µ 1 -µ 2 does not depend on x.

Proof. As we already mentionned it, the concavity has already been proved by the author in [START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF]. We include this proof here by sake of completeness and because it will lead us to the strict concavity. As we are considering any possible q, µ 1 and µ 2 , we can assume2 that λ = 0. Set µ = rµ 1 + (1 -r)µ 2 and consider φ 1 and φ 2 some periodic principal eigenfunctions associated with µ 1 and µ 2 . Define z 1 = ln(φ 1 ), z 2 = ln(φ 2 ), z = rz 1 + (1 -r)z 2 and φ = e z . One can compute:

∂ t φ -∇ • (A∇φ) + q • ∇φ φ = ∂ t z -∇ • (A∇z) -∇zA∇z + q • ∇z,
and ∇zA∇z = r∇z 1 A∇z 1 + (1 -r)∇z 2 A∇z 2 -r(1 -r)(∇z 1 -∇z 2 )A(∇z 1 -∇z 2 ) ≤ r∇z 1 A∇z 1 + (1 -r)∇z 2 A∇z 2 .
(11) Hence, for all (t, x) ∈ R × R N :

∂ t φ -∇ • (A∇φ) + q • ∇φ φ -µ ≥ r(∂ t z 1 -∇ • (A∇z 1 ) -∇z 1 A∇z 1 + q • ∇z 1 -µ 1 ) +(1 -r)(∂ t z 2 -∇ • (A∇z 2 ) -∇z 2 A∇z 2 + q • ∇z 2 -µ 2 ) ≥ r ∂ t φ 1 -∇ • (A∇φ 1 ) + q • ∇φ 1 φ 1 -µ 1 +(1 -r) ∂ t φ 2 -∇ • (A∇φ 2 ) + q • ∇φ 2 φ 2 -µ 2 ≥ rk 0 (A, q, µ 1 ) + (1 -r)k 0 (A, q, µ 2 ).
Using the min-max characterization (10) of k λ (A, q, µ), we get

k 0 (A, q, µ) ≥ rk 0 (A, q, µ 1 ) + (1 -r)k 0 (A, q, µ 2 ). ( 12 
)
This gives the first part of Proposition 3.1. Assume now that the equality holds. Then ( 11) is an equality for all (t, x) ∈ R×R N and thus

∇z 1 ≡ ∇z 2 . Write z 1 (t, x) = z 2 (t, x)+f (t) for all (t, x) ∈ R × R N . Then φ 1 (t, x) = φ 2 (t, x)e f (t) and 0 = ∂ t φ 1 -∇ • (A∇φ 1 ) + q • ∇φ 1 -µ 1 φ 1 -k 0 (A, q, µ 1 )φ 1 = e f (t) f ′ (t)φ 2 + ∂ t φ 2 -∇ • (A∇φ 2 ) + q • ∇φ 2 -µ 1 φ 2 -k 0 (A, q, µ 1 )φ 2 = e f (t) f ′ (t)φ 2 + (µ 2 -µ 1 )φ 2 + (k 0 (A, q, µ 2 ) -k 0 (A, q, µ 1 ))φ 2 , Hence: µ 2 -µ 1 ≡ -f ′ (t) + k 0 (A, q, µ 1 ) -k 0 (A, q, µ 2 ),
and the right-hand side only depends on t.

In the other hand, if η = µ 1 -µ 2 does not depend on x, set

ψ(t, x) = φ 2 (t, x) exp t 0 rη(s)ds - t T T 0 rη(s)ds .
This function is periodic in t and x and satisfies:

∂ t ψ -∇ • (A∇ψ) + q • ∇ψ -(µ 2 + rη(t))ψ = (k 0 (A, q, µ 2 ) -r T T 0 η(t)dt)ψ.
The uniqueness of the eigenelements gives:

k 0 (A, q, rµ 1 + (1 -r)µ 2 ) = k 0 (A, q, µ 2 + rη) = k 0 (A, q, µ 2 ) - r T T 0 η(t)dt.
Thus for all r ∈ (0, 1): k 0 (A, q, rµ 1 + (1 -r)µ 2 ) = rk 0 (A, q, µ 1 ) + (1 -r)k 0 (A, q, µ 2 ).

A general dependence result

In [START_REF] Berestycki | Analysis of the periodically fragmented environment model : II -Biological invasions and pulsating travelling fronts[END_REF], Berestycki, Hamel and Roques proved that, if A, q and µ are constant, if η does not depend on t and if C η ≥ 0, then B → k λ (A, q, µ + Bη) is a nonincreasing function. In order to prove some of our results, we need to extend this property to general heterogeneous coefficients. This extension involves the principal eigenfunction φ λ associated with the adjoint problem, defined up to multiplication by a positive constant by:

         -∂ t φ λ -∇ • (A∇ φ λ ) + 2λeA∇ φ λ -∇ • (q φ λ ) -(-λ∇ • (Ae) + λ 2 eAe -λq • e + µ) φ λ = k λ (µ) φ λ , φ λ > 0, φ λ is periodic. (13) 
We normalize this adjoint eigenfunction by (0,T )×C φ λ φ λ = 1.

Proposition 3.2 Take η a periodic continuous function. If (0,T )×C ηφ λ φ λ ≥ 0 (resp.

(0,T )×C ηφ λ φ λ > 0), then the function B → k λ (A, q, µ + Bη) is nonincreasing (resp. decreasing) over R + . Moreover, if (0,T )×C ηφ λ φ λ = 0 and if A, q and µ do not depend on t, then the function B → k λ (A, q, µ + Bη) is decreasing over R + if and only if η is not a constant with respect to x.

Proof. Set F (B) = k λ (A, q, µ + Bη). This function is concave and analytic from the Kato-Rellich theorem. It has been proved in Theorem 3.3 of [START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF] that F ′ (0) = -(0,T )×C µφ λ φ λ dtdx. Thus if this quantity is negative, F is clearly decreasing over R + . If it is null, then F is nonincreasing. As this is true for all λ > 0 and as c * e (A, q, µ+Bη) is a minimum, the opposite monotonicity properties are also true for B → c * e (A, q, µ + Bη). Moreover, if A, q and µ do not depend on t, Proposition 3.1 yields that F is strictly concave if and only if η is not a constant with respect to x. Hence, if F ′ (0) = -(0,T )×C ηφ λ φ λ dtdx = 0, then F is decreasing if and only η is not a constant with respect to x.

Applications of Proposition 3.2

We are now in position to prove our dependence results using Proposition 3.2.

Proof of Theorem 2.2. We set η = µ -μ and we apply Proposition 3.2, replacing µ by μ. The function F : B → k λ (A, q, μ + Bη) is nonincreasing if (0,T )×C µφ λ φ λ ≥ 0, where φ λ and φ λ are associated with the coefficients (A, q, μ). As (A, q, μ) do not depend on t, these eigenfunctions do not depend on t and thus:

(0,T )×C ηφ λ φ λ = C ( T 0 (µ(t, x) -μ(x))dt)φ λ (x) φ λ (x)dx = 0 since μ(x) = 1 T T 0 µ(t, x)dt. Thus: F (1) = k λ (A, q, μ + η) = k λ (A, q, µ) ≤ F (0) = k λ (A, q, μ).
As this is true for all λ ∈ R + , this gives:

c * e (A, q, µ) ≥ c * e (A, q, μ).
If the equality holds, considering some λ ∈ R N such that λ•e < 0 and c * e (A, q, µ) = k λ (A,q,µ)

λ•e , one gets k λ (A, q, µ) λ • e = c * e (A, q, µ) = c * e (A, q, μ) ≤ k λ (A, q, μ) λ • e .
Thus k λ (A, q, μ + η) = k λ (A, q, μ). Proposition 3.2 then gives that η does not depend on x. Thus µ(t, x) = μ(x) + η(t).

Proof of Proposition 2.1. First of all, if A, q and µ do not depend on x, using Proposition 3.1 of [START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF], we have:

k λ (A, q, µ) = - 1 T T 0 (λAλ -λ • q + µ).
In order to compute min λ•e<0 0 q • ξ. This gives the equality in [START_REF] Berestycki | Liouville-type results for semilinear elliptic equations in unbounded domains[END_REF].

Assume now that µ depends on x. Set η = µ -µ. The same arguments as in the proof of Theorem 2.2 give c * e (A, q, µ) ≥ c * e (A, q, µ) and the equality holds if and only if η does not depend on x. In this case, µ = µ + η does not depend on x.

Proof of Proposition 2.4. 1. This is an immediate consequence of Proposition 3.2 since, when A = I N , q ≡ 0 and µ is a constant, one has φ λ ≡ φ λ ≡ 1.

2. Set η(x) =1 |C| C η(t, x)dx. We know from Theorem 2.2 that k λ (A, q, µ + Bη) ≤ k λ (A, q, µ + B η).

Moreover, Berestycki, Hamel and Roques have proved in [START_REF] Berestycki | Analysis of the periodically fragmented environment model : II -Biological invasions and pulsating travelling fronts[END_REF] that, as max x∈R N η > 0, the right-hand side goes to -∞ as B → +∞. Thus the left-hand side converges to -∞ as B → +∞. As it is a concave function of B, it is decreasing over [B 0 , ∞), with B 0 large enough. Hence B → c * e (A, q, µ + Bη) is increasing.

4 Proof of the monotonicity with respect to the diffusion term

Proof of Theorem 2.5. fix e ∈ S N -1 and λ > 0. It has been proved by the author in [START_REF] Nadin | The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator[END_REF] that k λe (κA, 0, µ) = min

α∈A C κ∇αA(x)∇α - C µ(x)α 2 -λ 2 κ|C|D e (α 2 A) , where A = {α ∈ C 1 per (R N ), α > 0, C α 2 = 1}.
and D e (A) is the effective diffusivity of a matrix field A in direction e, that is,

D e (A) = min χ∈C 1 per (R N ) 1 |C| C (e + ∇χ)A(x)(e + ∇χ). (14) 
This formula yields that κ → k λe (κA, 0, µ) is a concave function. In the other hand, it has been proved by Pinsky [29] that λ → k λe (A, 0, µ) is strictly concave and we know (see [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF][START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF] for example) that this function reaches iots maximum when λ = 0, thus k λ (κA, 0, µ) < k 0 (κA, 0, µ) for all λ ∈ R N \{0}.

Moreover, k 0 (κA, 0, µ) ≤ -max R N µ. We now prove that k λe (κA, 0, µ) → -max R N µ as κ → 0 in order to conclude. To do so, we use Lemma 5.1 (see below) to get:

k λ (κA, 0, µ) ≥ k 0 (κA, 0, λAλ + µ) ≥ k 0 (κA, 0, µ) -γκ|λ| 2 ,
where γ is the ellipticity constant given by ( 4). This leads to lim inf

κ→0 k λe (κA, 0, µ) ≥ lim inf κ→0 k 0 (κA, 0, µ) = -max R N µ,
where the convergence in the right-hand side has been proved by the author in [START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF]. This gives k λe (κA, 0, µ) → -max R N µ as κ → 0 Hence, for all κ > 0, k λe (κA, 0, µ) ≤ lim κ ′ →0 k λe (κ ′ A, 0, µ). As κ → k λe (κA, 0, µ) is concave, it is then a decreasing function. This gives the conclusion.

5 Proof of the dependence results with respect to the drift term Proof of Proposition 2.6 This proposition relies on the following observation, which holds for general diffusion matrix A, drift term q and reaction term µ that can be written A = a(t, y)I N , q(t, x) = (q 1 (t, y), 0, ..., 0) and µ = µ(t, y). In this case, for all direction of propagation e = (e 1 , e) ∈ S N -1 , define k λ (a, q 1 , µ) the periodic principal eigenvalue defined by the existence of a function ϕ

λ ∈ C 1,2 per (R × R N -1 ) that solves        ∂ t ϕ λ -∇ • (a(t, y)∇ϕ λ ) -2λa(t, y) e • ∇ϕ λ -(λ∇ • (a(t, y) e) + λ 2 a(t, y) -λq 1 (t, y)e 1 + µ(t, y))ϕ λ = k λ (a, q 1 , µ)ϕ λ in R × R N -1 , ϕ λ > 0 in R × R N -1
, ϕ λ is periodic in t and y.

(15) Setting ψ(t, x 1 , y) = ϕ λ (t, y), this function satisfies the eigenvalue problem (6) associated with L λ . The uniqueness of the periodic principal eigenvalue yields that k λ (aI N , q, µ) = k λ (a, q 1 , µ). Thus if a ≡ 1 and µ is a positive constant, we immediatly get from the proof of Proposition 2.4 that B → k λ (I N , Bq, µ 0 ) is decreasing, which conludes the proof.

The proof of Theorem 2.7 uses a lemma of independent interest that we state separately: Lemma 5.1 For all coefficients (A, q, µ) that do not depend on t and λ ∈ R N , one has

k λ (A, q, µ) ≥ k 0 (A, 0, ∇ • q 2 + λAλ -λ • q + µ).
Proof. We know that L λ φ λ = k λ (A, q, µ)φ λ , where φ λ does not depend on t. Multiplying this equation by φ λ and integrating over C, this gives:

k λ (A, q, µ) C φ 2 λ = C ∇φ λ A∇φ λ + 1 2 C (q -2Aλ)∇(φ 2 λ ) -C (λAλ + ∇ • (Aλ) -q • λ + µ)φ 2 λ = C ∇φ λ A∇φ λ -C (λAλ + ∇•q 2 -q • λ + µ)φ 2 λ .
But we know from the Rayleigh characterization that if

X = {φ ∈ C 2 per (R N ), φ > 0, C φ 2 = 1},
then: k 0 (A, 0, ∇•q 2 + λAλ -λ • q + µ) = min φ∈X C ∇φA∇φ -(0,T )×C (λAλ + ∇•q 2 -q • λ + µ)φ 2 . This gives the conclusion.

Proof of Theorem 2.7. As ∇Q is periodic and C q = 0, it has been proved in [START_REF] Berestycki | Liouville-type results for semilinear elliptic equations in unbounded domains[END_REF] that Q is periodic. Set φ λ a positive eigenfunction associated with k λ and ψ λ (x) = φ λ (x)e -Q(x)/2 . This new function satisfies: We are now in position to prove the results. Using Lemma 5.1, we get 1 λB 2 k λB (I N , B∇Q, µ 0 ) = 1 λB 2 k λB (I N , 0,

   L λ ψ λ -( 1 2 ∆Q -1 4 |∇Q| 2 )ψ λ = k λ ψ λ , ψ λ > 0, ψ λ is periodic.
B 2 ∆Q - B 2 4 |∇Q| 2 + µ 0 ) ≥ 1 λB 2 k 0 (I N , 0, λ 2 B 2 - B 2 ∆Q - B 2 4 |∇Q| 2 + µ 0 ) ≥ 1 λB 2 k 0 (I N , 0, λ 2 B 2 - B 2 4 |∇Q| 2 ) - B 2 ∆Q + µ 0 ∞ 1 B 2 ≥ -λ + 1 λB 2 k 0 (I N , 0, - B 2 4 |∇Q| 2 ) + O(1/B) ≥ -λ + O(1/B). (17) 
Thus, one gets lim inf B→+∞ k λB (I N , B∇Q, µ 0 ) λB 2 ≥ -λ.

In the other hand, we know that for all λ > 0, one has 

This proves 2. of Theorem 2.7.

( 16 ) 4 |∇Q| 2 -

 1642 This yields that:k λ (I N , ∇Q, µ) = k λ (I N , N , ∇Q, µ) = c * e (I N , 0, µ -1 ∆Q)).

2 .=

 2 N , B∇Q, µ 0 ) ≤ -k λB (I N , B∇Q, µ 0 ) λB Letting B → +∞, this gives lim sup B→+∞ 1 B c * e (I N , B∇Q, µ 0 ) ≤ λ.As this is true for all λ > 0, one has lim sup B→+∞1 B c * e (I N , B∇Q, µ 0 ) ≤ 0.Next, for all λ, it has been proved in[START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF] thatk λ (I N , B∇Q, µ 0 ) = k λ (I N , 0, B 2 ∆Q -B 2 4 |∇Q| 2 + µ 0 ) ≤ k 0 (I N , 0, B 2 ∆Q -B 2 4 |∇Q| 2 + µ 0 ) ≤ k 0 (I N , B∇Q, µ 0 ) = -µ 0 < 0.Thus lim sup B→+∞ 1 B c * e (I N , B∇Q, µ 0 ) ≥ 0, which proves 2. of Theorem 2.7. If µ 0 is a positive constant and Q does not depend on t, using Lemma 5.1, we get: k λ (I N , B∇Q, µ 0 ) = k 0 (I N , -2λe, |λ| 2k 0 (I N , B∇Q, |λ| 2 + µ 0 ) = -|λ| 2 -µ 0 .

We refer to the references below for the definition of this notion.

This is where the hypothesis "A and q do not depend on x" is used in the equality case.

λ•e